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NUTMEG is a source analysis toolbox geared towards cognitive neuroscience researchers using MEG and EEG, including
intracranial recordings. Evoked and unaveraged data can be imported to the toolbox for source analysis in either the time or
time-frequency domains. NUTMEG offers several variants of adaptive beamformers, probabilistic reconstruction algorithms,
as well as minimum-norm techniques to generate functional maps of spatiotemporal neural source activity. Lead fields can be
calculated from single and overlapping sphere head models or imported from other software. Group averages and statistics can be
calculated as well. In addition to data analysis tools, NUTMEG provides a unique and intuitive graphical interface for visualization
of results. Source analyses can be superimposed onto a structural MRI or headshape to provide a convenient visual correspondence
to anatomy. These results can also be navigated interactively, with the spatial maps and source time series or spectrogram linked
accordingly. Animations can be generated to view the evolution of neural activity over time. NUTMEG can also display brain
renderings and perform spatial normalization of functional maps using SPM’s engine. As a MATLAB package, the end user may
easily link with other toolboxes or add customized functions.

1. Introduction

As exemplified by this special issue on open-source analysis
toolboxes, many software solutions exist to suit a variety
of experimental goals and level of end-user programming
experience, including the option to mix and match toolboxes
for different stages of processing. However, a decade ago,
few options existed for analyzing magnetoencephalography
(MEG) data with noncommercial open-source software,
especially for more sophisticated inverse algorithms or with
a graphical interface to navigate results.

Electroencephalography (EEG) analysis and correspon-
ding software packages are dominated by sensor level pro-
cessing, such as topography, evoked responses, and ICA.
Source localization is more feasible with MEG data; howe-
ver, many commercial packages offer only one of several
basic inverse methods (dipole fitting, beamforming, and
minimum-norm). Within open-source options available
at present, BrainStorm (http://neuroimage.usc.edu/brainst-
orm) and MNESuite (http://www.nmr.mgh.harvard.edu/
martinos/userInfo/data/sofMNE.php) offer similar source
localization options; FieldTrip (http://fieldtrip.fcdonders.nl/)
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additionally offers beamforming, and SPM8 (http://www
.fil.ion.ucl.ac.uk/spm/) offers an advanced Bayesian source
estimation method. However, to date, other packages do not
provide a whole suite of reconstruction algorithms ranging
from the simple to the complex powerful ones that have
been recently published.

In 2003, the seeds of NUTMEG (Neurodynamic Util-
ity Toolbox for Magnetoencephalo- and Electroencephalo-
Graphy) were planted at the University of California, San
Francisco (UCSF), with the motivation to meet several
research goals, including implementation of experimental
source localization algorithms and general independence
from commercially provided software, as well as user extensi-
bility for custom analyses [1]. Specific strengths of NUTMEG
include: (1) choice of several inverse algorithms, including
variants of popular beamforming, minimum-norm, and
Bayesian inference techniques, (2) intuitive viewing and
navigation of results, (3) both GUI and command-line batch
use, and (4) several methods of source space functional
connectivity analysis.

NUTMEG can be downloaded from http://nutmeg.ber-
keley.edu/. Documentation and a user’s wiki are also located
at this website, and users can subscribe to a mailing list which
is intended as a general forum for questions related to the
software itself or analysis procedures.

NUTMEG is primarily written in MATLAB (Math-
Works, Natick, MA, USA). The MATLAB Signal Processing
Toolbox is required for digital filter operations, and the
Image Processing Toolbox is needed for (optional) graphical
volume-of-interest (VOI) selection. A link with SPM8 allows
activations to be overlaid onto standard orthogonal magnetic
resonance imaging (MRI) slices or a rendered 3D brain
volume; at present, SPM8’s data analysis engine is not used.
Via SPM8, activations may also be spatially normalized and
displayed on an MNI template brain [2, 3]. Visualization
tools in Python (http://www.python.org/) are under devel-
opment and will be made available in future versions.

NUTMEG is also interoperable with other software for,
for example, scrolling through and artifact rejection of sensor
data (FieldTrip and Brainstorm), BEM forward models
(OpenMEEG, http://openmeeg.gforge.inria.fr/), FieldTrip,
SPM8, Helsinki BEM Toolbox), preprocessing (CTF MEG
software, MEG International Services, Coquitlam, Canada),
and ELAN (see [4]).

2. Philosophy

2.1. Need for Open Source. Releasing analysis software as
open source provides a fair and effective means to distribute
methodological developments made possible by public
research funds, as well as to promote the spirit of academic
scientific cooperation. Additionally, the open-source model
allows the same analysis methods to be easily used with
nearly any type of input data, regardless of equipment
manufacturer. The source code, being open to the end
user and the academic community at large, also becomes a
transparent tool, removing any mystery as to how data is
being manipulated and allowing custom modifications; any
errors can be found and corrected more efficiently as well.

Furthermore, both the theory and practical implementation
of analysis methods for MEG/EEG data have been rapidly
developing in the past two decades. Whether one is a meth-
ods researcher comparing algorithms or a cognitive scientist
eager to use the latest methods, neither should have to wait
the several years that it can sometimes take for a method to
be released as part of a proprietary software package.

2.2. Types of Data/Experiments/Paradigms. Other functional
neuroimaging modalities such as fMRI benefit from a
relatively established stream of standard processing steps
that facilitate learning by beginners and batch processing by
more experienced users. However, with MEG and EEG, it
sometimes seems that there can be as many ways of analyzing
the data as there are datasets, as appropriate analyses can
vary considerably according to the paradigm and the types
of responses. A useful software package needs to be flexible
enough to introduce the various analysis streams as they are
developed and straightforward to use for routine analysis.

Experiment types that have been successfully processed
with NUTMEG include (1) evoked paradigms, for example,
auditory stimulation in healthy subjects [5], verbal stimula-
tion compared between healthy subjects and schizophrenia
patients [6], perturbation of self-speech perception [7],
and somatosensory stimulation in humans and monkeys
[8], (2) time-frequency analysis, for example, finger move-
ments [9], visual stimulation [10], decision making [11],
discrimination of tone rate modulation [12], and visually
guided behavior [13], and (3) resting state and task-induced
connectivity [14, 15]. Data types supported in NUTMEG
include MEG, EEG [16], and intracranial EEG [17].

2.3. Integration with Other Toolboxes. It is logical for certain
basic software components, such as data import/export, to be
shared between different toolboxes. Nevertheless, a particular
software package may excel for certain processing or analysis
procedures; it would benefit other software packages to be
able to call the code for such components transparently
from within their own package. Throughout the description
of processing steps for NUTMEG, we will describe which
procedures are specifically implemented in NUTMEG and
which ones take advantage of links to other software.

3. NUTMEG Processing Steps

The first step of the NUTMEG workflow (illustrated in
Figure 1) involves loading in the MEG/EEG data and, if
available, MRI and coregistration information. A forward
lead field is computed within NUTMEG, or imported
from external software. This information is all stored in a
MATLAB structure that advanced users may access from
the command line or with user-created scripts, facilitating
links with other software. Translators between NUTMEGs
structure and the FieldTrip and ELAN formats are included
in the standard NUTMEG distribution. Likewise, results are
stored in a separate structure, so that derived outputs such
as “virtual electrode” time series can be further analyzed
in MATLAB with the user’s preferred tools. Results from
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Figure 1: NUTMEG workflow. After preprocessing, sensor data is combined with head coregistration information to create a forward lead
field model, which is then used to compute a source estimate either for time-series or time-frequency domains. Source space data can be
further processed with single- or multisubject statistics, or for functional connectivity.

external programs can also be reformatted to allow viewing
with NUTMEGs results navigator.

The main GUI (Figure 2) guides a new user through
the processing steps, greying out the boxes that cannot yet
be completed given the information currently provided. An
advanced user may bypass the GUI and operate all steps from
the command-line.

3.1. Loading Different Data Types. NUTMEG can import
MEG, EEG, and intracranial EEG data from various man-
ufacturer’s systems. At present, this includes CTF, 4D/BTi,
KIT/Yokogawa, and Elekta Neuromag MEG systems, as well
as EEG data from BrainProducts and Micromed. Several
other formats are also supported via a link with the
fileio module of FieldTrip. Data may comprise unaveraged
multiple trials, an average across trials, or continuous data.

3.2. Sensor Preprocessing. After loading the data into NUT-
MEG, the user may click on “View/Select MEG Channels”
from the main GUI (Figure 2), which opens a new window
(Figure 3). After selecting a time window of interest, the
root mean square of the sensors is displayed on a 2D sensor
map. Sensors can be (de-)selected for further processing. The
effects of baseline removal and filtering on the sensor map
can also be examined.

Preprocessing components from other software packages
may optionally be used as well and imported into NUTMEG.
SPM8 has especially useful tools for automated artifact
rejection. For more advanced sensor or trial selection, the
graphical interface from FieldTrip could be used.

3.3. Forward Methods. NUTMEG includes a built-in single
sphere [18] and multisphere model for MEG [19]. The
individual subject’s structural MRI or digitized headshape
can be loaded via the Coregistration Tool GUI (Figure 4).
Here, additional information such as a spatially normalized
MRI or rendered brain surface (created via SPM8) can be
loaded, and fiducial positions can be imported or manually
set. Furthermore, a head surface mesh can be generated
within NUTMEG, which can aid with fiducial coregistration
if digitized headshape measurements have been made, for
example, with a Polhemus FASTRAK device (Colchester, VT,
USA). If no individual subject MRI or headshape is available,
the MNI template brain may be used in their place. Cortical
segmentation is not used to constrain either the source
locations or orientations computed within NUTMEG, as
slight errors in coregistration may lead to larger errors in
source estimation. Lead fields for scalp and intracranial EEG
can be computed within NUTMEG, currently implemented
as a simple semi-infinite homogeneous volume conductor.
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Figure 2: NUTMEG session main interface for guiding the user through processing steps and calling other GUIs for loading data and
coregistration and computing forward lead field and source localizations.
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Figure 3: Sensor Preprocessing GUI. The left subplot shows the averaged time series for each sensor overlaid. The right subplot shows the
RMS over a selected time window. The effects of filtering and time window selection on both the sensor time series and RMS spatial plots can
be viewed here. Channels may be (de-)selected for further processing, either as individual noisy channels or groups of channels by spatial
region.

Additionally, boundary element model (BEM) and finite
element model (FEM) head models can be generated
externally and imported for use with NUTMEG for either
MEG or EEG. Currently supported external models include
OpenMEEG (BEM), MNE (BEM), FieldTrip (BEM), and
SMAC [20] (spherical model with anatomical constraints).
A link to generate and import FEM from SimBio/NeuroFEM
(https://www.mrt.uni-jena.de/simbio) is planned. Imported
lead fields may be specified either with free orientations in
vector form or orientation-constrained in scalar form.

After the data and coregistration information are loaded
and lead field obtained, the NUTMEG main GUI (Figure 2)
will make available the buttons for source estimation.

The coregistration from MEG sensors to MNI coordi-
nates can also be used independently of NUTMEGs source
localization tools in order to obtain MNI coordinates of
dipole fits computed elsewhere, as shown in Zhu et al. [21].

3.4. Inverse Methods. NUTMEG can be used to localize evo-
ked (averaged) data or induced (nonphase-locked) data.
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Figure 4: Coregistration Toolbox GUI allows inclusion of subject’s MRI, fiducials to be loaded or set manually, spatially normalized MRI or
rendered surface (created via SPM8), surface mesh, and digitized headshape points.

Certain methods are better tuned to each type of anal-
ysis. When the user clicks the button from the main
GUI (Figure 2) called “Source Analysis: Time-Series,” a
new window appears (Figure 5). Included in this window
are drop-down menus for choice of inverse method and
regularization. The user has a choice about whether to use
the covariance from averaged or single-trial data, for those
inverse algorithms that use data covariance. The main GUI
has tick-boxes for this averaging choice, for whether to create
a contrast with a control time window, and for whether
to send the computations to the “qsub” distributed job
manager.

3.4.1. Beamformers. The most commonly used and devel-
oped class of inverse method within NUTMEG is the
beamformer. This is an adaptive method which minimizes
the variance at a given source location while suppressing
noise from other locations [22]. It takes as inputs both
the sensor data covariance and the forward lead field,
represented by the basic formula

WT
r =

Lr
TR�1

yy

Lr
TR−1

yy Lr
, (1)

where Wr comprises the computed sensor weights to derive
the activity at brain location r, Lr contains the gain at each
sensor (forward model) for a source at location r, and Ryy is
the sample covariance for the chosen data segment.

Many flavors of beamforming are created by the many
ways to compute the data covariance estimate and lead field.
These choices can be dictated by the experimental paradigm
or by tradeoffs of computational intensiveness versus accu-
racy (in the case of a lead field). The data covariance estimate
needs to be optimally tuned to the effect of interest (e.g.,
time window length and filter parameters) while maintaining
invertibility. The sample data covariance may be computed

either from an averaged evoked response or by averages of
the sample covariance of each trial, as selected by the user
with the tick-box on the Beamforming Tool GUI (Figure 5);
also see section Regularized Beamformer for Evoked Data.

3.4.2. Eigenspace Beamformer for Evoked Data. Sekihara et
al. [23] proposed the eigenspace beamformer to improve
stability of reconstructions using averaged evoked responses.
Based on the singular value decomposition (SVD) of the
covariance matrix of the averaged data, the user defines
the signal space from the largest few eigenvalues, rejecting
eigenvalues from the remaining noise space. A signal space
data covariance is then computed and inverted, replacing the
data covariance of the weight formula (1) in the numerator
while maintaining the original evoked response covariance
in the denominator. This method has the advantage of
improving weight computation for averaged data, focusing
the result on the eigenvectors of interest, and allows for
effective removal of large-amplitude phase-locked artifacts.
To aid selection of desired signal space eigenvalues, the right-
hand plot within the “Source Analysis: Time-Series” GUI
(Figure 5) displays the relative magnitudes of the eigenvalues
and the time course of the top selected eigenvectors.

3.4.3. Time-Frequency Beamformer. Dalal et al. [9] devel-
oped a method for optimized time-frequency beamforming
(TFBF). NUTMEG implements this algorithm to be com-
puted easily over a grid of many time-frequency windows,
assembling the results for intuitive interactive navigation
(Figures 6 and 7(b)). TFBF is based on the LCMV beam-
former [22] and contrasts each active time-frequency win-
dow with a common control window. The user is encouraged
to select time windows as short as possible to focus on
transient and frequency-specific power changes, within the
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Figure 5: Time-series source estimation GUI. The left subplot shows the averaged sensor time series for each sensor. The right subplot
changes depending on user selection. The eigenvalues can be plotted (as shown) for assisting the eigenspace beamformer; alternatively,
cleaned sensor data and factors can be plotted if SEFA denoising is selected. The condition number of the sensor data covariance is displayed
to help prevent meaningless results computed with overly high condition numbers. Other options here include filtering, time window
selection, averaging before/after data covariance computation, method of source inversion, other denoising methods, sensor covariance
regularization, and the option to submit the computation to a grid cluster for site-specific setups.

confines of SNR and period of oscillation for the given
frequency band. Data covariance for TFBF is estimated by
averaging the sample covariance from each trial.

The TFBF GUI (Figure 6) is opened from the main GUI
by clicking “Source Analysis: Time-Freq” and guides the
user through selecting options. These parameters can be
saved and called again or run as a batch process on a single
computer or a high performance computing grid.

3.4.4. Regularized Beamformer for Evoked Data. SAMerf and
erSAM [24] use weights derived from the data covariance
of unaveraged data and applied to evoked averaged data;
however, these may not be optimally tuned for phase-locked
activity, especially if the nonphase-locked activity is stronger.
To overcome the difficulty of inverting the ill-conditioned
matrix obtained from the covariance of averaged data,
Brookes et al. [25] proposed to regularize with the minimum
eigenvalue of the unaveraged data covariance. This option is
included in the “regularization-type” drop-down menu on
the Source Analysis: Time-Series GUI (Figure 5) and can be
used with the Scalar LCMV Beamformer applied to averaged
data. This option works especially well for stimulus-driven
phase-locked effects, such as from a flashing checkerboard.

3.4.5. Coherent Source Suppression. An occasional point of
failure with beamformer techniques occurs when two sources
are highly temporally correlated, as might occur, for example,
in some subjects with bilateral auditory evoked responses.
We have implemented a coherent source suppression technique
in NUTMEG that can overcome such a correlated source
failure [5]. A zone containing an expected interfering source
must be defined, and this can be accomplished interactively
with the MRI viewer. The algorithm has been independently
shown to improve upon standard beamformer performance
whether using the “partial sensor coverage” strategy [26] or
using whole head coverage as usual [27]. The method has
also been successfully applied to suppress cochlear implant
artifacts in EEG data [16].

3.4.6. Source Stability Index for Evoked Data. Another
method to bypass the problem of beamformers with tempo-
rally correlated evoked sources is proposed by Prendergast
et al. [28], termed the Source Stability Index. First, one
obtains a source localization estimate from data covariance
of unaveraged trials, then the corresponding weights are
applied to an average of two separate halves the trials.
The correlation at each voxel between the source estimates
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Figure 6: Time-Frequency Beamformer GUI. The pre-specified NUTMEG session including dataset and forward lead field is loaded.
Multiple active windows and a single control time window, as well as filtering parameters are selected in the GUI or loaded from prespecified
parameter files. Details of the source inversion methods are specified, and the whole setup can then be saved and set to run as a batch process,
potentially sending each time-frequency window to a separate computer node. Finally, all the windows are recombined into one file to view
the 5-D output.

derived from the separate halves will be high at locations
of a true evoked source; this step is repeated for different
divisions of the trials, and an average correlation map is
obtained to localize the sources. This method has been
implemented to work within the NUTMEG work flow and
has been successfully applied to auditory evoked data from
tone stimulation [29].

3.5. Bayesian Inference Inversions. The following denoising
and source localization methods are designed to be used with
averaged data. If unaveraged trials are loaded, they will be
averaged first prior to input into these methods.

3.5.1. Denoising/Factor Analysis of Sensor Data. To remove
background noise from evoked data with a prestimulus base-
line, Nagarajan et al. [30] proposed stimulus evoked factor
analysis (SEFA). The SEFA algorithm uses Bayesian inference
to determine which temporal “factors” (like a component in

ICA) are stimulus-evoked versus background activity. Using
a probabilistic model, hyperparameters over each factor help
determine which to keep or to suppress. SEFA can be selected
from the drop-down “denoising” menu, and the immediate
effects on the cleaned sensor data can be viewed within a
subfigure of the Source Analysis: Time-Series GUI.

3.5.2. SAKETINI Inverse Method. In order to estimate source
activity using knowledge of event timing and independent
from noise and interference (SAKETINI), a probabilistic
model [31] was proposed which, for each source voxel,
separates the contribution to the sensors from (1) evoked
activity at that given voxel, (2) evoked activity at all
other voxels, (3) background neural activity present in the
prestimulus period, and (4) sensor noise. Using a similar
probabilistic model to SEFA but with an additional term for
(1), SAKETINI also uses hyperparameters to determine how
many factors belong to each category. This method can be
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called from the drop-down menu on the Source Analysis:
Time-Series GUI (Figure 5) or from batch scripts and can
optionally be run on a parallel computing cluster to speed
computation time.

3.5.3. NSEFALoc Inverse Method. Using the factors from
SEFA as a set of temporal basis functions (TBFs), the neural
SEFA localization (NSEFALoc) method [32] determines, for
each source voxel, the optimal linear combination of the
TBFs with an additive noise term to model voxels at which
no evoked activity occurs. NSEFALoc has been shown to be
superior to the eigenspace beamformer and minimum-norm
methods for evoked activity. Like SAKETINI, it can be called
from the GUI or command line and may also optionally be
run on a parallel computing cluster.

3.5.4. Champagne Inverse Method. NUTMEG also imple-
ments Champagne [33], a tomographic Bayesian inference
algorithm that combines SEFA modeling of background
noise with sparse Bayesian inference of source activity in all
voxels simultaneously using fast, robust update rules with
guaranteed convergence under many realistic conditions.
Champagne bears some similarities to SAKETINI. Whereas
SAKETINI considers each voxel sequentially while statisti-
cally modeling contributions to sensors from other voxels,
Champagne considers all voxels simultaneously. Champagne
has been shown to successfully localize many simultaneous
and temporally correlated sources.

3.6. Minimum-Norm Methods. For algorithm performance
evaluation as well as comparison with results from the
literature, two common minimum-norm methods are also
included in NUTMEG. Both sLORETA [34] and dSPM [35]
normalize the standard mininum-norm inverse

LT
(

LLT
)−1

(2)

by an estimate of source noise obtained by projecting sensor
noise

LT
(

LLT
)−1

Rnn

(
LLT

)−1
L. (3)

By using a form of the regularized Gram matrix LLT in
place of Ryy in (1), the (data-dependent) beamformer can
be translated to a (data-independent) weighted minimum-
norm method. As the Gram matrix is not full-rank, yet
needs to be inverted, performance is highly dependent on
choice of regularization. NUTMEG includes two options to
regularize the Gram matrix prior to inversion: (1) add the
sensor covariance matrix (based on either individual subject
data or room noise) weighted by a constant or (2) Tikhonov
regularization, that is, add a constant to the diagonal of
the Gram matrix, based on the strength of the off-diagonal
elements of the inverted matrix.

dSPM traditionally sets Rnn to room noise covariance. If
this covariance is taken to be the identity matrix (times a
constant), this leads to the regularized Gram matrix in the
numerator in place of Ryy and the square of the regularized
Gram matrix in the denominator. In contrast, sLORETA sets

Rnn to the sensor noise covariance obtained from assuming
(in a Bayesian fashion) identity source power and identity
sensor noise (times a constant), which is equivalent to a type
of regularized Gram matrix.

Note that, while minimum-norm spatial filters are non-
adaptive relative to the sensor data, they enforce that all
measured activity arises from the defined VOI. A cortically
constrained VOI is often used with both methods.

Lastly, NUTMEG implements a recently developed
method by Kumihashi and Sekihara [36] called the Array
Gain constraint Minimum-Norm, with Recursively Updated
Gram matrix (AGMN-RUG) method, which estimates
the sensor covariance matrix by recursively updating the
weighted Gram matrix using the source covariance from
the previous estimate. Like the minimum-variance adaptive
beamformers, the source estimates are spatially focal, while,
like the minimum-norm methods, unhindered by tempo-
rally correlated sources or few available time points.

4. Visualization

NUTMEG supports both orthogonal view visualization
as well as 3D rendering of cortical surface visualization.
NUTMEG utilizes the SPM8 navigator to display functional
maps on structural MRIs (Figure 7(a)). This is interactively
linked with NUTMEGs time series or time-frequency display
(Figure 7(b)). That is, when the user clicks to a different loca-
tion in the brain, the time series/frequency display updates
to show the temporal change at that location. Likewise, the
user can click on a different time point or frequency band
and the MRI display automatically updates with the 3D
functional map corresponding to that new time/frequency
point. Additional buttons exist for manipulating the view,
for example, displaying different contrast types (simple
difference of active and control, % change, etc.), zooming in
time, rescaling the colormap, and calling SPM8 functions for
projecting functional overlays onto a rendered surface.

In addition to these main tools, data can be exported
to analyze format images which can then be further mani-
pulated in CarTool (http://sites.google.com/site/cartoolcom-
munity/), mri3dX (http://www.cubric.cf.ac.uk/Documenta-
tion/mri3dX/), DataViewer3D (https://www.ynic.york.ac.uk/
software/dv3d), and MRICro (http://www.cabiatl.com/mri-
cro/), all of which can be used to generate publication-
quality surface renderings with superimposed functional
maps.

5. Statistics

5.1. Within-Subject Statistics. A nonparametric statistical
threshold for time series source reconstructions can be
calculated based on the distribution of baseline activity
across trials within a single subject [37]. For time-frequency
source reconstructions, Wilcoxon Z scores assess the contrast
between baseline time-frequency windows versus “active”
windows [17].

5.2. Group Statistics. Group statistics can also be performed
to assess statistical significance across subjects. The mean and
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Figure 7: NUTMEGs results viewer, in time-frequency mode. The modified SPM8 viewer shows the functional map corresponding to the
selected time-frequency window, marked by a red box in the spectrogram. Conversely, the time-frequency spectrogram corresponds to the
voxel indicated by the cross-hairs on the MRI navigator. The MRI display and time-frequency spectrogram are interactively linked to each
other; changing a selection in one automatically updates the other. Movies can also be created from animations of the functional images
across time.

variance of power across subjects can be computed by first
spatially normalizing each subject’s source reconstruction
and then resampling each subject’s result into a common
voxel space.

Statistical tests can then be applied to these transformed
datasets. For situations in which normal distributions of
power change can be expected, or after transformation to a
normal distribution, one option is to apply the Student’s t-
test or ANOVA across multiple conditions.

Alternatively, statistical nonparametric mapping (SnPM)
can be applied to data that may not necessarily follow a
normal distribution [38]. One of the advantages of SnPM
over parametric methods is that it can be applied to a
population of as few as 5 subjects, though having more
subjects will allow detection of weaker effects. Since variance
estimates can be noisy for a relatively low number of subjects,
variance maps are smoothed with a 3D Gaussian kernel.
From this, a pseudo-t statistic can be obtained at each voxel,
time window, and frequency band. Then, a distribution of
pseudo-t statistics is created from 2N permutations of the
original N datasets (subjects). Each permutation consists of
two steps: (1) inverting the polarity of the power change

values for some subjects (with 2N possible combinations of
negations) and (2) finding the current maximum pseudo-
t value among all voxels and time windows for each
frequency band. Instead of estimating the significance of
each nonpermuted pseudo-t value from an assumed normal
distribution, it is then calculated from the position within the
distribution of these maximum permuted pseudo-t values.
The comparison against maximum values effectively corrects
for the family-wise error of testing multiple voxels and time
windows.

6. Connectivity

The brain is a complex network with abundant functional
interactions among local and remote brain areas [39]. The
synchronization of oscillations in different brain areas, that
is, the so-called functional connectivity, is considered as an
index of their functional interaction [40, 41]. Techniques
based on functional connectivity open an accessible window
for a noninvasive assessment of brain function in healthy
subjects [42, 43] as well as in patients with brain lesions
[14, 44].
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Figure 8: NUTMEGs time-frequency statistics tool, showing
various options for calculating statistical significance across subjects
for source time-frequency maps.

NUTMEG computes the localization of functional con-
nectivity among brain areas from MEG and EEG recordings
by combining source localization algorithms with measures
of functional connectivity. The oscillations of neural net-
works at each brain voxel are estimated by calculating the
linear combination of the sensor data matrix with a spatial
weighting matrix obtained with inverse solutions.

6.1. FCM Toolbox for Imaginary Coherence. Imaginary coher-
ence, applied to the source time series, is a measure of
functional connectivity that is robust to sensor cross-talk and
volume conduction [14, 45]. In order to reduce computation
times for large datasets or for exploration of numerous con-
nections among brain voxels, the calculations in NUTMEG
can be performed in parallel on Linux clusters. The toolbox
also offers visualization tools for inspection of the complex
functional interactions data as well as a set of statistical tests.
Figure 9 shows an example of corticomuscular coherence in a
single subject, which is localized to the bilateral motor cortex.
Cortico-cortical interaction can also be analyzed.

6.2. Full Coherence. As a standalone command line option
or called from a GUI (Figure 10), both the magnitude and

imaginary cross-coherence can be computed for an input of
voxels’ power spectrum (after FFT and windowing of time
series) for each trial. The output can be placed into the
appropriate NUTMEG data structure to view results overlaid
on the MRI.

6.3. Hilbert Envelope Correlation. An alternative metric for
MEG/EEG functional connectivity involves computing the
correlation of the Hilbert envelope (amplitude) of bandpass
filtered time series from source locations [46]. This method
may also be called from a GUI (Figure 10) or command-line.

7. Extension to Include Scalp
and Intracranial EEG

7.1. Scalp EEG. NUTMEG has been expanded to support
beamforming with electroencephalography data via the
NUTEEG module. This module allows the import of data
recorded from EEG systems, along with electrode coordi-
nates. NUTEEG automatically performs average referencing
on EEG data and lead potentials as part of the preprocessing
procedure. For situations where an MRI is not available,
NUTEEG provides the option of warping a template MRI
and corresponding boundary element model to digitized
electrode positions, based on the algorithm described by
Darvas et al. [47] (see Figure 11).

Forward lead potentials can be calculated either using
spherical head models, or via BEM with the previously
mentioned toolboxes. If a boundary element model is
used, digitized electrode positions can be projected to
the scalp surface. Boundary element models can be cre-
ated from segmented MRI images using a Delaunay tri-
angulation method provided by the ISO2MESH tool-
box (http://iso2mesh.sourceforge.net/) (Figure 12), or from
BrainSuite Duff surface files via a triangulated sphere
wrapping procedure.

NUTEEG allows the user to import cortical surface Duff
files from BrainSuite to create a file containing orthogonal
dipole orientations for voxels near the cortical surface. These
dipole orientations can then be used for implementing
cortical constraints, where one assumes that sources are
cortical and are oriented tangential to the cortical surface.
The imported cortical surface files can also be used to show
results in 3D (Figure 13).

After data import and lead field computation/import
of EEG, the subsequent steps for source estimation and
visualization are straightfoward, as for MEG.

7.2. Intracranial EEG. Invasive electrode implants are some-
times performed in human patients to aid in surgical
planning for, for example, intractable epilepsy or brain
tumors. Although intracranial EEG is often considered to be
the “gold standard” of electrical brain activity, it may also be
susceptible to undesired physiological noise sources [48, 49].
Furthermore, intracranial electrodes are not immune to far-
field potentials from strong brain sources.

Referencing choice can also complicate interpretation of
results. A simple focal source appears as a polarity inversion
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Figure 9: Corticomuscular coherence, showing relationship between motor and somatosensory cortices and left finger EMG. Note that
regions that lead and lag the EMG activity can be clearly differentiated.

Figure 10: The connectivity GUI allows the user to specify the type of metric, the frequency band of interest, the whole time windows of
interest which may be across condition types, the length of time chunk within each time window, and whether to compute over whole brain
or seed based. The GUI assumes the inverse weights have already been computed, but the source-level time series or power need not have
been saved out previously.

between electrodes in a monopolar scheme but a local peak
in a bipolar montage. Furthermore, for complex voltage
topographies, the actual source origin may be ambiguous
and difficult to deduce from any montage. Finally, traditional
voltage topographies are limited by the spatial sampling of
the electrode placement.

Source localization techniques from scalp EEG/MEG
may provide a solution to these problems. In particular,
adaptive spatial filtering methods such as beamforming are
particularly well suited [50]. Unlike previous attempts that
use minimum-norm-based techniques [51–54], beamform-
ers do not enforce that all source activity arise from the
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Figure 11: The overlay of the warped template MRI (red/yellow) with the actual MRI (grey) shows a reasonable fit of the scalp surface and
neuro-anatomy. A mesh overlay of the warped template brain (blue) and the actual brain (grey) is also shown.
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Figure 12: Three-layer boundary element mesh created with Delaunay triangulation. Projected electrode positions are shown as blue dots
on the scalp surface.

defined volume of interest. Thus, noise sources such as
heart and muscle would be rejected by the spatial filter
rather than projected into the brain, and, conversely, brain
regions that contribute negligible signal would not distort the
localization results. Finally, source localization allows gaps
between electrodes to be “filled in” to gain an effectively
higher spatial resolution, providing similar benefits to denser
electrode coverage.

Therefore, development of intracranial EEG localization
and analysis techniques is considered a research priority
for NUTMEG. Figure 14 shows preliminary results from a
beamformer applied to depth electrode responses evoked
by photographic stimuli. Lead fields can be computed
within NUTMEG, currently implemented as a simple
semi-infinite homogeneous volume conductor; alternatively,

a BEM-based lead field can be computed and imported from
the OpenMEEG package.

8. NUTMEG in Python

Python is an open-source, general-purpose, object-oriented
programming language that is gaining popularity as a tool for
scientific computing. As an interpreted language with robust
object model support, Python allows a wide variety of pro-
gramming styles, from line-by-line scripting to abstracted,
reusable library code. Its strengths include an emphasis on
legibility and ease-of-use, system portability, and straightfor-
ward access to system libraries. Additionally, there is a very
stable stack of basic computational tools actively developed
by the scientific Python community. First among the many
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commonly used tools are: NumPy for multidimensional
arrays, SciPy for a wealth of computational code, much of it
being a Python layer over established, validated libraries such
as LAPACK and FFTPACK, and Matplotlib, which provides
interactive and scriptable 2D plotting tools that emulate
MATLAB plotting. All these features provide a convenient
computing environment for the development of modern
scientific data processing systems, whose scope may expand
over time, and whose core functionality typically demand
a design covering a range from optimized algorithms to
complex data models for physical phenomena.

NUTMEG-Py is a complementary project that entails
a small scale reformulation of NUTMEG components into
Python. To date, implementation of visualization and sta-
tistical postprocessing have been emphasized, with source
reconstruction algorithms remaining in MATLAB.

8.1. From MATLAB Data to Python Objects. The workflow
for a NUTMEG-based analysis that incorporates Python
tools presents both a design challenge and a technical data
translation problem. The latter is a solved problem, thanks
to code from SciPy enabling I/O between NumPy arrays and
MATLAB data contained in MAT files. The former allows the
use of Python’s object model.

NUTMEG-Py’s core includes very simple data models
which, abstractly, have immutable data and metadata, have
methods to interrogate or transform the data in some
fashion, and finally can read and write itself on disk without
loss of precision. The TFBeam is an example of such an
object and is the Python analog to the MATLAB “struct”
containing a time-frequency reconstruction (NUTMEGs
beam structure).

The toolbox side of NUTMEG-Py currently includes a
nonparametric statistical testing package, based on Nichols
and Holmes [55], including cluster level analysis from
Hayasaka and Nichols [56]. Both approaches have been
adapted to the five-dimensional space of time-frequency
MEG imaging. The results are encapsulated in an object
oriented manner, as the TimeFreqSnPMResults, which stores
the generated null distributions, and has methods available
for creating thresholds and maps based on levels of signifi-
cance.

8.2. Visualization. While the MATLAB/SPM based visualiza-
tion of results in NUTMEG allows for easy navigation across
space, time, and frequency, the interactive viewing is limited
to the orthogonal slice projection, which can make wide-
spread global brain activations difficult to visualize. The
project to transition NUTMEG into a Python-based toolkit
has also spawned a small but powerful visualization effort
named Xipy (cross-modality imaging in Python), which lies
under the umbrella of the seminal NiPy (Neuroimaging
in Python) project (http://nipy.sourceforge.net/). The main
ambition of Xipy is to provide a flexible and extensible system
for displaying and navigating brain imagery from various
data sources (e.g., anatomical MRIs, functional maps, and
diffusion tracks) in the same 3D scene (see Figure 15).
Xipy is designed to be independent from NUTMEG-Py, and
visualization of results from NUTMEG and NUTMEG-Py
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Figure 13: EEG beamformer reconstruction of an evoked response
from auditory cortex projected to the cortical surface.

within Xipy is enabled by a richly featured plugin contained
in the NUTMEG-Py package.

9. NUTMEG’s Future Directions

The future of NUTMEG is influenced by both the research
priorities of the developers as well as requests from users.

At present, we intend to create more formal links with
SPM8, FieldTrip, and Brainstorm. Specifically, as methods
developers, we would like to import, view, and directly com-
pare the Multiple Sparse Priors [57] from SPM8 with other
source estimation methods included in NUTMEG; further,
we would like to enable direct comparison within NUTMEG
of Dynamic Causal Modelling (DCM) for M/EEG [58] with
other metrics for functional connectivity. The advanced
time-frequency analysis and viewing tools for sensor level
data within FieldTrip can be useful to NUTMEG users for
planning of further analysis in source space. NUTMEG
should be able to display source level results computed in
FieldTrip. The cluster-based and permutation test statistics
for sensor and source space results implemented in FieldTrip
would also be of benefit to be more formally linked to the
NUTMEG format. Sensor selection via visual inspection is
a highly developed tool within Brainstorm, the output of
which could be imported to NUTMEG. Brainstorm also
contains useful GUIs for dataset, trial-condition selection,
and batch processing setup, which could be linked to
NUTMEG via a conversion of MATLAB data structures.

As several methods for connectivity analysis have
recently become available within NUTMEG and additional
methods are planned for inclusion, a means to visually
browse the results is needed beyond a simple extension of
the current source-space viewer. The eConnectome pack-
age (http://econnectome.umn.edu/) already implements the
computation and elaborate visualization of connectivity, to
which we may link.

The fusion of multiple sensor types (MEG magnetome-
ters and planar gradiometers, scalp EEG, and intracranial
EEG) simultaneously recorded for source reconstruction
is a compelling need, but is not yet considered directly
straightforward or well established; NUTMEG and other
open-source software packages would benefit greatly from
further developments on this topic.
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Figure 14: Intracranial EEG beamformer reconstruction of a visual evoked response. Depth electrode trajectories are evident on the sagittal
MRI view.

Figure 15: NUTMEG and DTI results in Xipy viewer.
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10. Conclusion

NUTMEG provides a full set of MATLAB-based open-source
functions with which to compute neural source estimates
and additional manipulations thereof, as well as a graphical
interface to process and view results. It is linked (to varying
degrees) to other open-source packages for processing steps
which are better performed by those toolboxes. NUTMEG
is flexible to inclusion of new methods at any stage and
welcomes new users and developers.
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