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Abstract

BACKGROUND: The analysis of coherent networks from continuous recordings of neural activity with functional MRI
or magnetoencephalography has provided important new insights into brain physiology and pathology. Here we assess
whether valid localizations of coherent cortical networks can also be obtained from high-resolution electroencephalography
(EEG) recordings.
METHODS: EEG was recorded from healthy subjects and from patients with ischemic brain lesions during a tonic
hand muscle contraction task and during continuous visual stimulation with an alternating checkerboard. These tasks
induce oscillations in the primary hand motor area or in the primary visual cortex, respectively, which are coherent
with extracerebral signals (hand muscle electromyogram or visual stimulation frequency). Cortical oscillations were
reconstructed with different inverse solutions and the coherence between oscillations at each cortical voxel and the
extracerebral signals was calculated. Moreover, simulations of coherent point sources were performed.
RESULTS: Cortico-muscular coherence was correctly localized to the primary hand motor area and the steady-state
visual evoked potentials to the primary visual cortex in all subjects and patients. Sophisticated head models tended
to yield better localization accuracy than a single sphere model. A Minimum Variance Beamformer (MVBF) provided
more accurate and focal localizations of simulated point sources than an L2 Minimum Norm (MN) inverse solution. In
the real datasets, the MN maps had less localization error but were less focal than MVBF maps.
CONCLUSIONS: EEG can localize coherent cortical networks with sufficient accuracy.
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1. Introduction

The brain is a complex network of dynamic systems
with abundant functional interactions between local and
more remote brain areas (Varela et al., 2001). Interre-
gional neural communication is thought to be accompa-
nied by a synchronization of oscillations between differ-
ent brain regions (Aertsen et al., 1989; Engel et al., 1992;
Gray et al., 1989; Gray and Singer, 1989). This interre-
gional synchronization can be quantified with the concept
of “functional connectivity” which is a measure of sim-
ilarity between activity in different brain regions and is
therefore considered to be an index of functional interac-
tion (Gross et al., 2001; Lachaux et al., 1999; Nolte et al.,
2004; Nunez et al., 1997; Stam et al., 2003). Studies using
functional magnetic resonance imaging (fMRI) in healthy
humans have shown that spontaneous fluctuations of brain
activity at rest are highly organized and coherent within
specific neuro-anatomical systems (Fox et al., 2005; Frans-
son, 2005). Thus, a careful analysis of coherence between
brain regions gives access to the functional brain organi-
zation. Furthermore, the pattern of coherence between
brain regions observed with fMRI at rest corresponds to
the pattern of brain activation induced by corresponding
tasks (Vincent et al., 2007), thus showing that techniques
relying on functional connectivity do not depend on a cor-
rect task participation of the patients. Functional connec-
tivity therefore opens an exciting and accessible window
for a non-invasive assessment of brain function.

The concept of functional connectivity can be applied
to any measurement of brain activity, such as fMRI, mag-
netoencephalography (MEG), or electroencephalography
(EEG). EEG was the first brain signal to be used for calcu-
lating functional connectivity (Lopes da Silva et al., 1973;
Thatcher et al., 1986). However, like MEG, it has the
disadvantage that the indices of functional interaction cal-
culated between sensors cannot be attributed to brain re-
gions of interest or to structural lesions. Field spread leads
to a wide representation of sources in many sensors, which
makes the interpretation of functional connectivity mea-
sures between sensor pairs difficult (Schoffelen and Gross,
2009; Srinivasan et al., 2007).

For MEG, it has been shown that this limitation can
be overcome by combining measures of functional connec-
tivity with source localization algorithms. For instance,
such “functional connectivity maps” (FCMs) can correctly
localize the cortical generators of cortico-muscular inter-
action to the primary motor cortex (Gross et al., 2001;
Jerbi et al., 2007; Schoffelen et al., 2008). We have shown
that MEG maps of resting state intracortical interaction
can correctly localize dysfunctional cortex in patients with
brain tumors and distinguish it from tumor-infiltrated ar-
eas that are still functional (Guggisberg et al., 2008a; Mar-
tino et al., 2011).

Given the limited availability and high costs of MEG,
it would be desirable to use source localization combined
with functional connectivity measurements also for EEG

recordings (Astolfi et al., 2005; De Vico Fallani et al.,
2007). In principle, the algorithms used in MEG stud-
ies can be applied also to EEG, but there are differences
between EEG and MEG signals that need to be consid-
ered.

• Electric fields are distorted to a greater extent than
magnetic fields by the inhomogeneous conductivities
of the brain, skull, and scalp. EEG is therefore more
dependent on accurate head models to resolve the
forward problem than MEG. The analysis of patients
with brain lesions could also be problematic because
of different conductivity of lesion tissue compared to
healthy tissue.

• When functional connectivity is assessed between
EEG sensors, the choice of the reference electrode
critically influences and potentially biases the results
(Fein et al., 1988; Guevara et al., 2005). Projecting
EEG sensor data through inverse solutions to the
brain effectively eliminates the reference problem of
EEG studies, since the data becomes reference-free
(Fender, 1987; Geselowitz, 1998). However, previous
studies have reported that the choice of the refer-
ence electrode can lead to minor variations in the
output of minimum variance beamformers (MVBF)
(Van Veen et al., 1997).

This study aimed to evaluate the feasibility of localizing
cortico-peripheral coherence with EEG in healthy subjects
and patients with brain lesions, and to compare the perfor-
mance of different analysis parameters. More specifically,
we assessed the influence of the head model, the inverse
solution, the method for determination of dipole orienta-
tions, and (for beamformers) the reference electrode on the
accuracy of functional connectivity localization.

To this end, we collected two sets of real data in which
cortical nodes with known location oscillate in synchrony
with extracerebral activity.

• Tonic muscle contraction is known to induce beta fre-
quency (∼15-30 Hz) oscillations in the contralateral
primary motor cortex which are coherent with co-
registered electromyographic (EMG) activity (Mima
and Hallett, 1999; Murthy and Fetz, 1992). Hence,
the algorithms should localize cortical activity that
is coherent with EMG activity to the contralateral
primary motor cortex.

• Rhythmic visual stimulation is known to induce a
steady state visual evoked potential (SSVEP) in the
primary visual cortex, which oscillates in the fre-
quency of the stimulation and harmonics (Bianciardi
et al., 2009; Emir et al., 2008; Victor et al., 1994).
Hence, the algorithms should localize cortical oscil-
lations that are coherent with the stimulation fre-
quency to the primary visual cortex.

In order to test whether the EEG localizations remain valid
in patients with brain lesions, we obtained the data not
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only from healthy subjects but also from patients with
unilateral territorial ischemic stroke.

In addition, we carried out simulations of point sources
to evaluate the performance of different inverse solutions.

2. Methods

2.1. Subjects and patients

Two healthy subjects and four patients with ischemic
stroke participated in this study (mean age 44, age range
29-70, 3 women). The lesions were located in the territory
of the left middle cerebral artery in 3 patients and of the
right anterior cerebral artery in one patient (Figures 1 and
2, blue arrows).

2.2. Recordings

Recordings were obtained with a 128-channel Biosemi
ActiveTwo system (Biosemi V.O.F. Amsterdam, Nether-
lands), using a sampling rate of 512 Hz. Impedances were
kept below 5 kΩ.

Bad EEG channels as determined by visual inspection
were excluded. The data was re-referenced to the average
of all non-excluded channels. We additionally created a
second version of EEG data by re-referencing to the ver-
tex electrode (Cz), in order to assess the influence of the
reference montage on beamformers (see below).

2.3. Corticomuscular coherence task

EEG and EMG of the first dorsal interosseus (FDI)
muscle were recorded simultaneously in 1 healthy subject
and 3 patients during a tonic muscle contraction task. The
contractions were performed with the non-paretic hand
ipsilateral to the lesioned hemisphere in 2 patients with
hemiparesis, and with the hand contralateral to the le-
sioned hemisphere in one patient without hemiparesis.
Bipolar surface EMG was recorded at 512 Hz with the ac-
tive EMG electrode fixed on the FDI muscle belly and the
reference electrode ∼4 cm proximal over the volar part of
the radius head. The participants were visually instructed
by a hand symbol displayed on a monitor to exert about
50% of their maximum force during repeated periods of
10 s which were separated by pauses of 5 s. The EEG
and EMG data were high-pass filtered at 10 Hz with a
fifth-order ellipsoid IIR filter. Forward and backward fil-
tering was applied to obtain zero-phase distortion. Seg-
ments with artifacts as well as the resting periods were
excluded. A total of at least 3 min of artifact-free EEG
and EMG signal during FDI contraction were obtained for
each participant.

2.4. Steady state visual evoked potential (SSVEP) task

EEG recordings during continuous visual stimulation
with a bilateral, alternating, black and white checkerboard
pattern were obtained in 2 healthy subjects and 2 patients
with ischemic stroke. All patients had a normal visual
field as determined clinically. Participants were asked to

Figure 1: Functional connectivity maps (FCMs) of corticomuscular
coherence in 1 healthy subject and 3 patients with ischemic brain
lesions (marked with blue arrows). The EMG was recorded from
an intrinsic hand muscle (first dorsal interosseus). The imaginary
component of corticomuscular beta-band coherence (IC) is indicated
as % of the individual maximum value at the peak voxel. The peak
absolute imaginary coherence magnitude was 0.11±0.02 (mean±SD).
IC was greatest around the hand notch in all participants. Average
referenced EEG recordings, a SMAC head model, dipole orientations
with maximum output SNR, and a Minimum Norm inverse solution
were used for all maps.3



Figure 2: FCMs of steady-state visual evoked potentials (SSVEP)
oscillating coherently with the visual stimulation frequency obtained
from 2 healthy subjects and 2 patients with ischemic brain lesions
(marked with blue arrows). The IC is indicated as % of the individ-
ual maximum value at the peak voxel. The peak absolute imaginary
coherence magnitude was 0.49±0.07 (mean±SD). IC at the stimu-
lation frequency was largest around the primary visual cortex in all
participants. The same analysis parameters as in Figure 1 were used.

fixate a red cross in the center of the screen. The interval
between the alternating patterns was set to 200 ms, which
corresponds to an alternation frequency of 5 Hz. The EEG
was (forward and backward) band-pass filtered between 4
and 6 Hz with a fifth-order ellipsoid IIR filter. Segments
with artifacts were rejected by visual inspection. A total
of at least 3 min of artifact-free EEG signal during visual
stimulation were obtained for each subject. In addition, a
5 Hz sinusoidal oscillation representing the visual stimula-
tion was created.

2.5. Structural imaging

A high-resolution, T1-weighted cerebral MRI covering
the entire skull was obtained for each participant. In addi-
tion, a MNI standard volume consisting of the average of
152 healthy subjects was used for coregistration in order
to assess the impact on localization accuracy.

2.6. Head models and lead-potential

Each subject’s brain was segmented into scalp,
skull, gray and white matter with the software
BrainSuite09 (http://www.loni.ucla.edu/~shattuck/
brainsuite/) written by David Shattuck. The gray mat-
ter volume was divided into a regular 10 mm grid. Three
different head models were used to calculate the lead-
potential for each grid location.

Spherical model with anatomical constraints (SMAC)

The SMAC head models were created with the software
SMAC Toolbox (Functional Brain Mapping Laboratory,
University of Geneva) written by Franois Tavel. The algo-
rithm of this head model is described elsewhere (Spinelli
et al., 2000). In short, the individual T1 MRI was trans-
formed to a best-fitting sphere. The solution points were
defined in the gray matter tissue of this deformed MRI and
the lead field was computed using an analytical solution for
a 3-shell spherical head model (Ary et al., 1981) which as-
sumes conductivities of 1:0.0125:1 and radii of 1:0.92:0.87
for scalp, skull, and brain, respectively (Rush and Driscoll,
1968).

Berg 3-shell single-sphere head model

This model was created with the NUTEEG plugin
(Wong and Gordon, 2009) of NUTMEG (http://nutmeg.
berkeley.edu) (Dalal et al., 2011). A single sphere with
the best fit to the individual skull shape was defined and
3 concentric shells with radii of 1:0.93:0.85 relative to the
fitted sphere were created (Berg and Scherg, 1994). The
solution points were confined to the gray matter as defined
by the segmented MRI of the subject. The conductivities
for scalp, skull, and brain, were set to the same standard
values as for SMAC.
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Boundary Element Head Model

A 3-shell BEM model was created with the Helsinki
BEM library (http://peili.hut.fi/BEM/) (Stenroos
et al., 2007) and the NUTEEG plugin of NUTMEG. The
BEM approach constructs a realistic head model by defin-
ing discrete 3-D compartments comprising the brain, scalp,
and skull. Each compartment is assumed to have uniform
electrical conductivity. Together with the shape of each
compartment, this information is then used to compute the
voltage at the electrode positions expected to result from
a source with a given position and orientation (Mosher
et al., 1999). We created triangular meshes for scalp, and
outer and inner skull surface based on the segmented T1
MRI (with 1000, 1500, and 2000 nodes, respectively). The
lead-potential was calculated over the grid of gray matter
solution points. The conductivities for each shell were set
identically to the SMAC and Berg models.

The electrode positions were determined by fitting and
projecting the spherical standard electrode coordinates to
the individual scalp form.

2.7. Scalarization of the lead-potential

For the localization of functional connectivity in the
brain, we require an estimation of neural network oscil-
lations at each solution point. Vector weights obtained
from the inverse solution allow only reconstructing squared
power values for a given location; the reconstruction of
neural oscillations requires a scalar weight matrix. In or-
der to scalarize the lead-potential as input to scalar weights
computation, we need to determine the dipole orientation
at each grid location. Here, we compared two different
techniques to achieve this.

(i) Computation of an optimal dipole orientation yield-
ing maximum output SNR. For the MVBF, the optimum
orientation at each dipole r is given by (Sekihara et al.,
2004):

ηopt(r) = vmin{[LT (r)R−1L(r)]−1[LT (r)R−2L(r)]},
(1)

where vmin is the eigenvector corresponding to the mini-
mum eigenvalues of the matrix in {}, L is the vector lead-
potential, R the sensor covariance matrix, and superscript
T denotes the matrix transpose.

For the MN inverse solution, it is obtained as (Pascual-
Marqui et al., 2009):

ηopt(r) = vmax{LT (r)G−1RG−1L(r)}, (2)

where vmax the eigenvector corresponding to the maxi-
mum eigenvalues of the matrix in {}, and G = LLT is the
Gram matrix.

(ii) Anatomically constrained surface normal dipole
orientations. A model of the individual cortical surface
was created for each participant with BrainSuite09. The
number of vertices of the cortical surface model was down-
sampled to 8000. For each solution point, the dipole ori-
entation was defined as normal to the orientation of the

closest cortex surface with the NUTEEG plugin of NUT-
MEG.

The scalar lead-potential was then calculated as:

l(r,ηopt) = L(r)ηopt(r) (3)

and will henceforth be designated l(r) for simplicity.

2.8. Inverse solutions

Inverse solutions were calculated with NUTMEG
(Dalal et al., 2011). A spatial filter matrix w was cal-
culated for estimation of the signal at each grid location.
Two different inverse solutions were compared. The min-
imum variance beamformer (MVBF) (Van Veen et al.,
1997; Vrba and Robinson, 2001; Sekihara et al., 2001,
2005) is an adaptive spatial filter which uses the sensor
covariance matrix R of the entire recording to estimate
the spatial filter matrix w.

wMVBF (r) =
R−1l(r)

lT (r)R−1l(r)
(4)

For our average-referenced EEG datasets, we used the
Moore-Penrose pseudoinverse to estimate R−1 for the fol-
lowing reason. An average reference introduces a linear de-
pendence between the channels, such that any given chan-
nel can be calculated as a sum of the remaining channels,
reducing the rank of the data matrix by exactly 1. The
sensor covariance matrix then becomes rank-deficient and
invertible only with regularized inversion methods. An al-
ternative solution to this problem is to apply a rotation
to the rank-deficient covariance matrix such that the last
column contains zeros, and the remaining columns contain
independent data. The same rotation is then also applied
to the lead-potential, to keep the contributions of each
channel identical. Both the pseudoinverse and the matrix
rotation approach produced identical beamformer output
for the tested data.

The covariance can also become ill-conditioned when
using especially short data lengths or bandwidths, in which
case Tikhonov regularization procedures can be applied
(Brookes et al., 2008). This was however not the case in
our datasets.

In order to ensure that the MVBF performance was
not sensitive to the choice of the data bandwidth used for
calculation of the covariance matrix, we compared three
different bandwidths for the analysis of corticomuscular
coherence in 2 subjects. One subject had the individ-
ual corticomuscular coherence peak at 24 Hz, the sec-
ond subject at 26 Hz. The frequency bands >10 Hz, 20-
30 Hz, and peak coherence ±1 Hz were compared. The
resulting FCMs were highly correlated among each other
(r >.78), and the coherence peaks located within the same
10 mm radius. For the main analyses of the corticomuscu-
lar dataset, the sensor covariance was calculated from the
data that was high-pass filtered at 10 Hz. A bandwidth of
4 to 6 Hz was used for the SSVEP dataset.

5

http://peili.hut.fi/BEM/


An alternative version of a beamformer is “dynamic
imaging of coherent sources (DICS)” (Gross et al., 2001).
DICS uses correlations in the frequency domain (a cross-
spectrum density matrix) for source estimation instead of
temporal correlations (sensor covariance matrix) used for
the MVBF. Given the similarity of the two approaches,
DICS was not separately tested in this study.

The L2 Minimum Norm (MN) is a non-adaptive in-
verse solution which tries to minimize the overall 3-D
current distribution. We used the basic MN algorithm
(Hämäläinen and Ilmoniemi, 1994):

wMN (r) =
l(r)

lT l+ λI
, (5)

where λI is a regularization matrix.
Weighted versions of MN (WMN) additionally allow

to re-weight the inverse solution, e.g., with regards to
the depth of the solutions points or with regards to prior
knowledge about the spatial distribution of the source ac-
tivity (Dale et al., 2000; Lin et al., 2004). These variants
are not evaluated here.

The inverse solutions sLORETA (Pascual-Marqui,
2002) and dSPM (Dale et al., 2000) additionally standard-
ize the MN or WMN solution by the variance of the esti-
mated current density J :

wsMN (r) = wMN (r)J(r) (6)

We show below that the standardization J is canceled
out during calculation of source space coherence. The
sLORETA and dSPM algorithms therefore yield the same
source coherence results as (W)MN algorithms.

2.9. Functional connectivity in source space

Localization of coherence in source space was done with
the FCM plugin of NUTMEG written by AGG. The EEG,
EMG and visual stimulation sinusoid were divided into
non-overlapping data segments of 1 s duration (512 data
points). A fast Fourier transform (FFT) was performed
for each data segment and sensor. For the corticomuscu-
lar coherence, a multi-taper approach was used (Mitra and
Pesaran, 1999). Each data segment was tapered using a
set of discrete prolate spheroidal sequences (Slepian func-
tions). The number of tapers used determines the amount
of spectral smoothing. As described previously (Schoffelen
et al., 2008), we maximized the sensitivity of subsequent
analysis steps by determining the peak frequency and the
amount of spectral smoothing individually for each sub-
ject. To this end, we computed the coherence between
the EMG and the contralateral central electrode (C3 or
C4) using different numbers of tapers. We then selected
the number of tapers which produced a coherence peak
with a width corresponding approximately to the smooth-
ing bandwidth. The frequency was set at the coherence
peak. For the SSVEP dataset, the Fourier coefficients were
calculated for the frequency band between 4 and 6 Hz.

The complex Fourier coefficients F of all electrodes at
frequency f were then projected through the spatial filter
w into the source space:

d(r, f) = wT (r)F (f) (7)

This is equivalent to first projecting the filtered data to
source space and then calculating the FFT at each grid
location (Guggisberg et al., 2008a), but is computationally
more efficient.

The complex coherence between neural oscillations at
each grid location and either the EMG or the visual stim-
ulus sinusoid could then be computed as

CC(r, f) =

K∑
k=1

dk(r, f)∗Ek(f)√
K∑

k=1

|dk(r, f)|2
K∑

k=1

|Ek(f)|2
, (8)

where k = [1, ...,K] stands for the data segments, ∗ for
the complex conjugate, and E for the Fourier transformed
extracerebral signals (EMG or visual stimulus sinusoid),
averaged (in the case of EMG) across all tapers.

From the complex coherence, the absolute imaginary
component (IC) (Nolte et al., 2004) as well as the magni-
tude squared coherence (MSC) were computed:

IC = |={CC}| (9)

MSC = |{CC}|2 (10)

When calculating cortico-peripheral coherence with
sLORETA or dSPM, we obtain from equations 6, 7 and 8
above:

CC(r, f) =

K∑
k=1

wMN (r)J(r)F k(f)∗Ek(f)√
K∑

k=1

|wMN (r)J(r)F k(f)|2
K∑

k=1

|Ek(f)|2

(11)

=
J(r)√
|J(r)|2

K∑
k=1

wMN (r)F k(f)∗Ek(f)√
K∑

k=1

|wMN (r)F k(f)|2
K∑

k=1

|Ek(f)|2

Since the elements of J are positive real, J is can-
celed out during calculation of cortico-peripheral coher-
ence. The same can be shown for calculations of cortico-
cortical coherence. Hence, standardized (W)MN variants
such as sLORETA and dSPM do not provide additional
advantage over (W)MN for the localization of coherence.

2.10. Visualization

3-D renderings of the FCMs were performed with Car-
tool (Brunet et al., 2011) (http://sites.google.com/
site/cartoolcommunity/home).
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Figure 3: Comparison of the performance of different analysis pa-
rameters for FCMs of the imaginary component of coherence (IC).
The distance between the FCM peak and the anatomically defined
target is indicated. Note that the Minimum Norm inverse solution
(MN) provided significantly better localization accuracy than a Min-
imum Variance Beamformer (MVBF). The SMAC and BEM head
models showed less localization error than a Berg single sphere head
model, although the difference did not reach statistical significance.
The method for calculating dipole orientations did not significantly
influence the localization accuracy.

2.11. Evaluation of Performance

The anatomical centers of the hand notch and of the
interhemispheric junction of the calcarian sulcus were de-
fined individually in the co-registered MRIs. The distance
between the FCM peak coherence and these anatomical
targets were used as an index of FCM accuracy.

2.12. Simulations

We simulated single cortical point sources with a con-
tinuous 10 Hz sinusoidal rhythm while the remaining corti-
cal grid locations were set to Gaussian random oscillations.
An additional extracerebral 10 Hz oscillation was defined
with a radial phase lag of π/2 (= 25 ms) relative to the
cortical point source. This phase difference leads to maxi-
mal values in the imaginary part of coherence. The dipole
orientations were fixed to be normal to the cortical sur-
face. The cortical sources were then projected to the EEG
sensors by using a scalar lead-potential calculated with a
SMAC head model. Four different levels of Gaussian white
random noise were added to the sensors (SNR 1, 2, 5, or
10). The simulated sensor data was then bandpass filtered
between 1 and 20 Hz, and projected back to all gray mat-
ter grid locations through a spatial filter matrix calculated
with the MVBF and MN inverse solutions described above.
The IC between the extracerebral sinusoid and all cortical
grid locations was then computed for the 10 Hz frequency
bin. The distance between the IC peak and the source co-
ordinate was then calculated to determine the localization
error. The spatial spread of the obtained maps was quanti-
fied as the full-width-half-maximum (FWHM) around the
IC peak. The sources were placed randomly in the cortex
of healthy subject 1. The results of 20 different locations
distributed throughout the entire cortex were averaged.

Figure 4: Comparison of the performance of different analysis param-
eters for FCMs of magnitude squared coherence (MSC). The Mini-
mum Norm inverse solution (MN) provided better localization accu-
racy than a Minimum Variance Beamformer (MVBF). The SMAC
and BEM head models showed less localization error than a Berg
single sphere head model, although the difference did not reach sta-
tistical significance. The method for calculating dipole orientations
did not significantly influence the localization accuracy.

2.13. Statistics

A three-way analysis of variance (ANOVA) was used
to compare the peak-to-peak error and FWHM of FCM
maps obtained with different head models (SMAC vs. sin-
gle sphere vs. BEM), methods for determining the dipole
orientation (maximum output SNR vs. surface normal),
and inverse solutions (MVBF vs. MN).

3. Results

3.1. Real Data

Figures 1 and 2 demonstrate that EEG-based FCMs
correctly localized the imaginary component of cortico-
muscular coherence to the primary motor cortex and
SSVEP oscillations to the primary visual cortex in all sub-
jects and in all patients with brain lesions.

Figure 3 visualizes the peak-to-target error of FCMs
obtained with different analysis parameters. The choice
of the inverse solution had a significant impact on the
accuracy of imaginary coherence localizations, with MN
performing significantly better than the MVBF, both in
the cortico-muscular coherence (overall mean ± SD: MN,
21±4 mm; MVBF, 37±12 mm; F1,47=10.2, p=0.0028) as
well as in the SSVEP dataset (MN, 22±7 mm; MVBF,
34±14 mm; F1,47=8.6, p=0.0057). On the other hand,
MVBF produced maps with less spatial spread than MN
in both the corticomuscular coherence (44 vs. 65 mm,
F1,47=10.5, p=0.0025) and the SSVEP dataset (36 vs.
46 mm, F1,47=3.8, p=0.060). The choice of the head model
and of the method for determining the dipole orientation
did not significantly affect the localization accuracy in ei-
ther dataset (p≥0.28), although Figure 3 shows a non-
significant difference in performance in favour of SMAC
and BEM head models as compared to a single Berg sphere
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(overall mean of both datasets and both inverse solutions:
SMAC, 26±3 mm; Berg, 32±8 mm; BEM, 27±3 mm).
With an optimal choice of parameters (SMAC or BEM
head model, MN inverse solution), the peak-to-target lo-
calization error was <20 mm for both datasets.

When comparing average-referenced to vertex (Cz)-
referenced sensor data, we found a non-significant but non-
vanishing difference in MVBF localization accuracy for ei-
ther dataset (p≥0.33). The sources of this difference will
be discussed below.

When a standard MNI template instead of the individ-
ual MRI was used for the creation of a SMAC head model,
the peak error of localizations obtained with MN was
larger for the corticomuscular coherence dataset (27 mm
instead of 19 mm), but not for the SSVEP dataset (18 mm
in both cases).

The performance of MSC maps is shown in Figure 4,
and was not significantly different from the performance of
imaginary coherence maps (F1,95=0.58, p=0.45). Again,
the inverse solution had a significant influence on perfor-
mance in both datasets (F1,47 ≥7.9, p≤0.008), in favor of
MN. The choice of the head model (F1,47 ≤2.5, p≥0.1)
and the method for determination of the dipole orienta-
tions (F1,47 ≤0.48, p≥0.49) were not associated with sig-
nificantly different localization errors.

3.2. Simulations

The MVBF localized the single point sources with sig-
nificantly less error (F1,159=9.9, p=0.002) and less spatial
spread (F1,159=25.2, p<0.0001) than MN (see Figure 5).
As expected, the SNR only influenced the spatial spread
of the MVBF (F1,79=29.2, p<0.0001), but not of the MN
solution (F1,79=0.32, p=0.57)

4. Discussion

This study demonstrates that coherent sources can be
localized with reasonable accuracy from EEG data. With
optimal analysis parameters, we observed a mean distance
between the center of the anatomical target regions and
the FCM peaks of <20 mm. Given that both FCMs and
anatomical targets had extensions of >20 mm, this cor-
responds to a good overlap (shown in Figures 1 and 2),
which is sufficient for localization of large-scale networks
across the entire cortex. Hence, the analysis of coherent
functional networks which has proven to offer exciting new
possibilities in fMRI (Carter et al., 2010; He et al., 2007;
Raichle and Snyder, 2007; Vincent et al., 2007) and MEG
studies (Castellanos et al., 2010; de Pasquale et al., 2010;
Guggisberg et al., 2008a; Jerbi et al., 2007) is also pos-
sible with EEG data. In comparison with fMRI, EEG
has the disadvantage of lower spatial resolution, but the
advantage that it can assess actual neural oscillations at
different spectral frequencies. The localization of cortico-
muscular coherence, for example, would not be possible
with fMRI. Furthermore, EEG recordings are less costly
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Figure 5: Simulations of single point sources oscillating in syn-
chrony with an external sinusoid were performed. The graph shows
the mean (±SD) peak error and spatial spread (full-width-half-
maximum, FWHM) of 20 separately simulated source locations dis-
tributed randomly in the entire cortex of one healthy subject.

and more widely available than fMRI or MEG recordings.
Unlike MEG, EEG may also be recorded simultaneously
with fMRI.

A methodological limitation of our study is that we
did not individually record the position of EEG electrodes,
but merely fit standard coordinates to the individual head
shape. The usage of digitized electrode positions may im-
prove the localization accuracy reported here. However,
the corresponding infrastructure is not generally available
and our data shows that reasonably precise localizations
can be obtained even with this approach.

4.1. Inverse solutions

The most important parameter for localization accu-
racy and distribution was the choice of the inverse solu-
tion. Non-adaptive algorithms provided significantly bet-
ter localization accuracy in real datasets than adaptive al-
gorithms. On the other hand, beamformers yielded more
accurate localizations of point sources in the simulations.
This apparent contradiction can be explained with the
principle of operation of the inverse solutions. The MVBF
uses the temporal covariance of the EEG data (in addi-
tion to the sensor geometry) to create a custom spatial
filter depending on the signal characteristics. This en-
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ables more precise and focal source localizations (Sekihara
et al., 2005; Dalal et al., 2008; Guggisberg et al., 2008b)
that we also observe here in the simulations. However,
beamformers are especially sensitive to the accuracy of
the head model; measured data that is inconsistent with
the head model is liable to be rejected as noise (Stein-
sträter et al., 2010). Additionally, the beamformer ap-
proach assumes that reconstructed sources are temporally
uncorrelated with each other. In case of spatially distant
sources that are correlated with each other and coherent
with peripheral oscillations, the algorithm may therefore
yield erroneous localizations (Hadjipapas et al., 2005; Sek-
ihara et al., 2002; Van Veen et al., 1997). In continuous
recordings of real data, such correlations may occur and
seem to outweigh the technical advantages of MVBF for
the localization of coherent functional networks. Yet, the
performance differences observed in real data must be in-
terpreted with caution, because we do not know the true
location of strongest cortico-peripheral coherence in real
datasets. For instance, there is evidence not only for in-
volvement of the primary motor cortex in corticomuscular
coherence but also of somatosensory and parietal areas
(Witham et al., 2010; Baker, 2007). Premotor areas could
also be involved. The peak of corticomuscular coherence
could therefore be shifted away from the hand notch and
lead to biased performance estimates of the inverse so-
lutions. The peak coherence location estimated by the
MVBF was on average anterior to the hand notch and to
the localizations of MN. Hence, if the true corticomuscular
coherence peak was anterior to the hand notch, this would
reduce the inferior performance of MVBF compared to
MN we observed. In any case, valid localizations of motor
and visual coherent sources could be achieved in all par-
ticipants also with MVBF, although the distance to the
anatomical target used here was ∼10 mm larger than with
MN.

The spatial spread of FCMs has similar characteristics
as the spatial spread of activation maps and follows the
point-spread function of each algorithm (Sekihara et al.,
2005). The MVBF provides significantly more focal local-
izations than MN both in simulations and real data.

Although to our knowledge no systematic comparison
of adaptive vs. non-adaptive algorithms has been per-
formed for FCMs from MEG data so far, it is probable
that the differences found with EEG data in this study
also apply to MEG data.

4.2. EEG-specific parameters

The parameters that are specific for EEG studies
turned out to be of relatively minor importance for local-
ization accuracy of coherence. We did not observe signifi-
cant differences in performance between the different head
models, and valid results could even be obtained without
a co-registered individual structural MRI with head mod-
els based on MRI templates. However more precise head
models (SMAC and BEM) yielded better localization ac-
curacy, and should therefore be preferred. The motor and

visual cortex that were used as targets in this study are
relatively superficial; the accuracy of the head model is
probably more critical for the localization of deeper net-
works, e.g., in the hippocampus. Furthermore, studies us-
ing a larger number of participants and a smaller solution
grid size will probably find significant performance differ-
ences even for superficial sources. Future studies could
address the effect of different head models on coherence
localisation with simulations, e.g., by creating simulations
with a finite element model (FEM) and by evaluating the
performance of other head models such as the ones used
in this manuscript.

Valid localizations of coherent cortical sources were not
only obtained in healthy participants but also in all pa-
tients with ischemic brain lesions. Hence, it is feasible to
use the EEG to map functional connectivity also in pa-
tients with brain lesions. However, our study was not de-
signed to make a systematic comparison between patients
and healthy controls, and does therefore not rule out a
performance decrease in patients, especially in areas close
to the lesions.

In sharp contrast with functional connectivity analyses
between EEG sensors where the choice of the reference is
crucial (Fein et al., 1988; Guevara et al., 2005), the refer-
ence montage has no significant influence on localization
accuracy of source space connectivity maps, since the in-
verse solutions make the data reference-free (Fender, 1987;
Geselowitz, 1998). However, in accordance with a previous
report (Van Veen et al., 1997), we found non-vanishing dif-
ferences between average- and vertex-referenced montages
when using a beamformer. This may be initially surprising
since the coordinate transform introduced by the reference
is applied equally to the lead-potential and the data and
therefore should be canceled. However, the observed dif-
ferences arise for 2 reasons. First, the inversion of the sen-
sor covariance matrix R introduces minor variances lead-
ing to reference dependent variations in the localizations.
This can be avoided by using the pseudoinverse of R (or
other constant regularization across the different reference
choices), even when the matrix is well-conditioned, which
yields reference-independent results for vector beamform-
ers. Second, equation (1) used for determination of the
dipole orientation with maximum SNR for the MVBF is
not neutral to a coordinate transform introduced by the
EEG reference and therefore explains the non-vanishing
differences observed here with a scalar beamformer. Nev-
ertheless, the differences are minor and did not reach sig-
nificance in our datasets (p≥0.33). By the way, the MN
algorithm for calculation of dipole orientation used here
(equation 2) is reference-independent.

4.3. Dipole orientation

Concerning dipole orientations, our results show that
output maximization algorithms yield similar FCM per-
formance as anatomically defined surface normal orienta-
tions, while being more convenient and requiring much
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less human work load. This is in agreement with a previ-
ous MEG study which showed that surface normal dipole
orientations are only advantageous if the MEG-MRI co-
registration error is smaller than 2 mm and the error in
the estimation of the cortical surface orientation is smaller
than 10◦ (Hillebrand and Barnes, 2003). Such output max-
imization algorithms are valid not only for beamformers
but also for non-adaptive algorithms. We can, however,
not rule out minor performance differences which might
have been masked due to the relatively low number of
participants in this study. Future studies could use sim-
ulations of different dipole orientations to compare more
systematically the performance of the two procedures for
orientation determination.

4.4. Measures of functional connectivity

In this paper, we compared the traditional measure of
MSC to the more recently introduced variant IC. Unlike
MSC, IC ignores spectral similarities among 2 signals that
occur with zero time delay (Nolte et al., 2004). This has
the advantage that it is robust to volume conduction and
crosstalk among voxels arising from spatial leakage of the
inverse solutions, since these artificial similarities occur
with zero time-delay and are therefore removed. IC can
therefore not only be used for the localization of cortico-
peripheral connectivity as done in this study, but also for
the localization of cortico-cortical interactions (Guggisberg
et al., 2008a). On the other hand, it ignores a portion
of true interactions and could therefore lead to less reli-
able localizations of interactions than MSC. Yet, cortico-
peripheral coherence is presumed to never occur at zero
lag because of the time needed for neural transmission.
Indeed, we observed a similar localization accuracy for IC
as for MSC in our analyses of cortico-peripheral connec-
tivity.

Many other methods for calculating cortical functional
connectivity are available instead of coherence applied here
(see e.g. Lachaux et al., 1999; Le Van Quyen et al., 2001;
Stam et al., 2003, 2007). While some of them have been
compared head-to-head for analyses on the sensor level
(Dauwels et al., 2010; Guevara et al., 2005; Le Van Quyen
et al., 2001), future studies will need to address perfor-
mance differences for source connectivity analyses.

5. Conclusions

We show that coherent functional sources can be ac-
curately localized and studied with high-resolution EEG
systems. The best performance is achieved with precise
models of the individual head shape and with inverse solu-
tions that are not susceptible to interference from spatially
distant coherent sources.
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