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Abstract 

Construction project features (CPFs) are organisational, physical and operational 

attributes that characterise construction projects. Although previous studies have 

examined the accident causal influence of CPFs, the multi-causal attribute of this causal 

phenomenon still remain elusive and thus require further investigation. Aiming to shed 

light on this facet of the accident causal phenomenon of CPFs, this study examines 

relevant literature and crystallises the attained insight of the multi-causal attribute by a 

graphical model which is subsequently operationalised by a derived mathematical 

expression that offers a systematic approach for evaluating the health and safety impact 

of the accident causal influence of CPFs. The graphical model and the derived expression 

put forth by the study advance current understanding of the accident causal phenomenon 

of CPFs and present an opportunity for managing the health and safety impact of CPFs 

from the early stages of construction project procurement. 
 

Keywords: accident, construction project features, health and safety, literature review, 

risk. 

 

1. Introduction 

An accident is any unplanned event that results in injury or ill-health of people, or 

damage or loss to property, plant, materials or the environment or a loss of a business 

opportunity (Hughes and Ferrett, 2008). Accidents are thus associated with adverse 

outcomes which have dire cost implications for the construction industry and society as a 

whole (cf. Darshi De Saram and Tang (2005), Imriyas et al. (2008), and Hughes and 

Ferrett (2008)). The adverse outcomes of accidents have created the need for accident 

prevention which requires knowledge of accident causal factors, how the causal factors 

contribute to accident causation, the extent to which causal factors contribute to accident 

causation, and the risk posed by these factors (Suraji et al., 2001; Hughes and Ferrett, 

2008). The quest to acquire this knowledge has resulted in accident causation studies 

pioneered by Heinrich (1936).  Beyond the unique contributions made by various 

accident causation studies to the understanding of accidents, they also generally 

demonstrate the complex and multi-causal nature of accidents (cf. Behm (2005), Elvik 

(2006), and Shapira and Lyachin (2009)) and as such the need to fully appreciate the 

complexity and multi-causality of any accident phenomenon in order to be able to 

adequately address accidents.  

Construction project features (CPFs) are organisational, physical and operational 

characteristics of construction projects and until quite recently the accident causal 

phenomenon of these project characteristics has not been examined in greater depth 

despite their persistent mention in literature.  In spite of the significant examination of the 

accident causal influence of CPFs (cf. Manu et al. (2010a)) the multi-causal attribute of 

this causal phenomenon still remain elusive and thus require further investigation. In an 

effort to shed light on this facet, this study begins with a review of some past accident 
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causation models  to highlight the multi-causality of accidents and also to provide a 

sound theoretical underpinning for the study. The study proceeds to examine how CPFs 

contribute to accident causation to bring out the multi-causal dimension of the causal 

phenomenon of CPFs. Subsequently, the study presents an examination of the multi-

causal attribute in relation to the extent to which CPFs contribute to accident causation 

(i.e. their potential to cause harm) and the risk posed by CPFs. Through the examination, 

the study finally puts forth a derived mathematical expression which captures the multi-

causal attribute of the causal influence of CPFs and provides a systematic approach for 

assessing the health and safety (H&S) impact of CPFs.  

2. Accident causation models: A review 

Following the seminal work by Heinrich (1936) there have been considerable efforts 

toward investigating causes of accidents, how accidents occur and why they occur. These 

have resulted in several accident causation models, generally with the overall aim of 

providing tools for better industrial accident prevention. Accident causation models differ 

in many ways and may be classified based on their purpose, area of application, general 

structure, and key characteristics (Lehto and Salvendy, 1991; Chua and Goh, 2004). In 

reviewing accident causation models, three general categories are presented below i.e. 

energy transfer models, individual/human models and system/systematic models.  

The energy transfer models view accident causation as the transmission of uncontrolled 

energy from a source through a path to the victim. An example is the energy transfer 

model by Haddon (1980). Haddon (1980) proposed 10 basic prevention strategies based 

on the points of intervention: the energy source, the path of energy transfer, and the 

victim. Despite its usefulness in categorizing types of preventive measures, Haddon’s 

model has been criticized by Chua and Goh (2004) for not providing a suitable feedback-

oriented framework for accident investigation and safety planning. 

The individual/human specific models are models that place emphasis on the direct 

contribution made by individuals to accidents (Chua and Goh, 2004). These models 

identify the causes and effects of erroneous acts by individuals (usually front-line 

workers) and they usually focus on the psychological and behavioural aspects of humans 

(Chua and Goh, 2004). An example is the distraction theory by Hinze (1996). Human 

models thus do not explicitly facilitate the continual improvement of safety management 

systems as they do not emphasise the role of organisation and management in accident 

causation (Chua and Goh, 2004). 

Systems/systematic models refer to models that highlight the role of the organization and 

its systems in the causation of accident (Chua and Goh, 2004). The models view 

accidents as by-products of a production system and they focus on the characteristics of 

the production system that generate hazardous situations and shape the behaviour of 

workers (Mitropoulos et al., 2005). Systemic models also view accidents as emergent 

phenomena, which arise due to the complex interactions between system components 

(human, technical, organisational and management) that may result in an accident 

(Qureshi, 2007). Henderson et al. (2001) regarded a system-based approach to accident 

causation as one of the requirements of a successful accident investigation.  Mitropoulos 

et al. (2005) also argued that effective causation models need to take a systems view of 

safety and provide better understanding of how the characteristics of a production system 

generate unsafe conditions and shape the behaviour of workers. Examples of systems 

models are the pathogen model (Reason, 1990), the loss causation model (Bird and 

Germain, 1996), the modified loss causation model (Chua and Goh, 2004), the constraint-

response model (Suraji et al., 2001), and the ConCA model (Loughborough University 

and UMIST, 2003). These models are concerned with the underlying mechanisms of 



                                                                                                                                  

accident causation (which are generally latent/subtle), the induced/generated immediate 

causes and the complex interactions between them. These models thus reinforce the 

multi-causality of accidents.  

From the above broad classifications of accident causation models, the accident causal 

phenomenon of CPFs can be viewed from the perspective of systematic causation models 

as CPFs in their contribution to accident causation function as underlying (latent/subtle) 

determinants of the nature, extent and existence of immediate causes of accidents (cf. 

Haslam et al. (2005)). The alignment of the causal phenomenon of CPFs with the systems 

view of accident causation is further reinforced by the following detailed examination of 

the process by which CPFs contribute to accident causation which points out the complex 

and multi-causal attribute of the causal phenomenon of CPFs.  

 3. How CPFs contribute to accident causation 

Manu et al. (2010a) through an extensive review of the construction H&S literature 

reported the accident causal influence of construction project features such as the nature 

of project, method of construction, site restriction, project duration, procurement system, 

design complexity, level of construction, and subcontracting. These CPFs are 

organisational, operational, and physical attributes that characterise construction projects 

and like other originating influences in construction accidents, these CPFs are high level 

determinates of the nature, extent and existence of immediate causes of accidents 

(Haslam et al., 2005). A succinct representation of the review presented by Manu et al. 

(2010a) is shown in Table 1 which clearly indicates that the accident causal influence of 

CPFs is undeniably existent and has persistently been reported albeit in a somewhat 

disparate and fragmented manner. 

Table 1: Summary of literature highlighting the accident causal influence of CPFs 

          Literature     

          Sources 
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Nature of Project                  

Method of Construction                  

Site Restriction                  

Project Duration                  

Procurement System                  

Design Complexity                  

Level of Construction                  

Subcontracting                  



                                                                                                                                  

 

CPFs emanate to a large extent from the client’s brief, design decisions and project 

management decisions at the pre-construction stage of project procurement (cf. Suraji et 

al. (2001), Cheng et al. (2005) and Haslam et al. (2005)) and they contribute to the 

causation of accidents through the introduction of other accident causal factors into the 

construction stage. These other causal factors which give rise to accidents are termed 

proximal causal factors (PFs) (Suraji et al., 2001; Haslam et al., 2005). Proximal factors 

are closer to accident events than CPFs which are distal to accident events and are 

therefore also termed distal/root/originating causal factors (Suraji et al., 2001; Haslam et 

al., 2005). This basic understanding of how CPFs contribute to accident causation is 

illustrated in Figure 1. A summary of the proximal factors that are introduced by CPFs as 

initially discussed by Manu et al. (2010a) is also presented in Table 2.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Pattern of contribution of CPFs to accident causation (Adapted from Suraji et al. (2001),  

Haslam et al. (2005) and Reason (1990)) 

    

  Table 2: Summary of CPFs and Proximal Factors  

    CPFs                    Proximal Factors 

Nature of project                                                                                                                                                                                                                                                                                                                                              Uncertainty & complexity of hazards (Egbu, 1999; Loughborough University, 

2006)  

Method of 

Construction  

Manual handling (McKay et al., 2002; Wright et al., 2003)  

Site Restriction  Site congestion (Loughborough University and UMIST, 2003; Loughborough 

University, 2009)  

Project Duration  

 

Time-pressure (Loughborough University and UMIST, 2003; Loughborough 

University, 2009)  

Procurement System Fragmentation of project team (HSL, 1999; Entec UK Ltd, 2000; Loughborough 

University and UMIST, 2003)  

Design Complexity  Difficulty in constructing (Loughborough University and UMIST, 2003; 

Loughborough University, 2009)  

Level of Construction  Working at height/confined space (Hughes and Ferrett, 2008; HSE, 2009)  

Subcontracting  Fragmentation of workforce (Mayhew and Quinlan, 1997; Loughborough 

University and UMIST, 2003; Ankrah, 2007)  

 

Client’s brief, Design decisions & 

Project management decisions 

Proximal Factor (PF) 

Accident 

Construction stage 

Construction Project Feature (CPF) 

Pre-construction stage 



                                                                                                                                  

As established in literature, accidents are multi-causal (Loughborough University and 

UMIST, 2003; Behm, 2005) which therefore means that considering the accident causal 

phenomenon of CPFs, there could be several CPFs contributing to the causation of an 

accident(s). Again, referring to the accident causal phenomenon of CPFs, the multi-

causal nature of accidents also manifests itself through complex causal interactions that 

transpire between CPFs and the proximal factors they introduce in the causation process 

and this reflects the systems view of accident causation. For instance it is established 

knowledge that a particular method of construction (i.e. pre-assembly) can reduce site 

congestion (i.e. a proximal factor) which could be introduced by the physical restriction 

of a site (Wright et al., 2003). 

Another dimension of the multi-causal nature of the causal influence of CPFs is the 

possible introduction of multiple proximal factors by a CPF. For instance, apart from the 

introduction of manual handling by method of construction, method of construction could 

also introduce housekeeping problems (cf. Wright et. al. (2003)) which Loughborough 

University and UMIST (2003) identified to contribute to accidents. Evidently this 

dimension further complicates the complexity surrounding the causal phenomenon of 

CPFs and it would be useful to have a model that tries to capture this complexity. As in 

several accident causation studies, graphical models have been used to advance the 

understanding of the complexity and multi-causality of accident causation (cf. Suraji et. 

al. (2001), Mitropoulos et al. (2005), and Haslam et al. (2005)), and in the context of the 

causal phenomenon of CPFs, Figure 2 can similarly be put forth in the light of the above 

discussion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The multi-causal influence of CPFs 
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Beyond illustrating the basic path of causation (i.e. from underlying factors through 

proximal factors to accidents), Figure 2 adds to current understanding of the accident 

causal phenomenon of CPFs by its enhanced depiction of the multi-causal nature of this 

phenomenon. From it’s depiction of underlying and proximal causal influences and the 

causal interactions between them, Figure 2 clearly shows that the accident causal 

phenomenon of CPFs reflects the systems/systematic view of accident causation. 

Drawing on Figure 2, the following sections now examine the multi-causal attribute of 

the causal influence of CPFs in relation to the extent to which CPFs contribute to 

accident causation and the H&S risk posed by CPFs. 

3. The extent of contribution of CPFs to accident causation  

Concerning the extent to which CPFs contribute to accident causation, the review by 

Manu et al. (2010b) demonstrates that it varies depending on the degree of prevalence of 

proximal factors within their associated CPFs. This implies that the more 

common/prevalent a proximal factor is within a CPF the greater the extent to which the 

CPF contributes to accident causation as shown by the continuum in Table 3.  

It can however be also argued that the extent to which CPFs contribute to accident 

causation is primarily influenced by the extent to which their related proximal factors 

contribute to accident causation (Manu et al., 2010b). This is because it is by reason of 

the related proximal factors contributing to the causation of accidents in the first place 

that the CPFs are also able to contribute to accident causation as a result of their 

introduction of the proximal factors. This means that if a proximal factor does not 

contribute to accident causation, no matter its prevalence within a CPF that CPF will not 

also contribute to accident causation (Manu et al., 2010b).  Advancing this argument 

further, the extent to which a CPF contributes to accident causation is therefore the 

combined effect of; 

 the extent to which the related proximal factor contributes to accident causation 

(represented by ‘R’) ; and  

 the extent to which the proximal factor is prevalent/common within the CPF 

(represented by ‘r’) (Manu et al., 2010b). 

 

From Table 3 it can be seen that whereas factor ‘r’ alone provides the opportunity for 

relative comparison among CPFs of the same kind (e.g. partnering and management 

contracting), in terms of their extent of contribution to accident causation, the combined 

effect of ‘r’ and ‘R’ would enable the relative comparison among CPFs of different kinds 

(e.g. conventional construction and management contracting) as the combined effect 

takes into account the direness of proximal factors (i.e. ‘R’). The combined influence of 

‘r’ and ‘R’ is therefore a holistic and better depiction of the extent to which CPFs 

contribute to accident causation (Manu et al., 2010b). The extent to which CPFs 

contribute to accident causation indicates the extent to which they contribute to harm and 

hence an indication of their potential to cause harm. This is a useful insight for accident 

prevention as it provides the opportunity for identifying CPFs that have a relatively high 

potential to cause harm. To enable a quantitative assessment of the extent to which CPFs 

contribute to accident causation, Manu et al. (2010b) presented a mathematical 

expression showing that the extent to which a CPF contributes to accident causation 

(represented by ‘C’) is a function of ‘R’ and ‘r’ (i.e.  C = ƒ(R, r)). By adapting the 

method of mathematical combination by multiplication as used in mathematical risk 

expressions (e.g. Risk = hazard x exposure (CCHOS, 2008)), Manu et al. (2010b) put 

forth the expression, C = R x r, i.e. ‘C’ is the combined effect/influence of ‘R’ and ‘r’ 

where ‘R’ and ‘r’ are qualitative-quantitative ratings as commonly used in quantitative 



                                                                                                                                  

risk assessment (cf. Hughes and Ferrett (2008)). In spite of the utility of this expression in 

enabling comparative assessment of the potential of CPFs to cause harm, its limitation is 

evident in the fact that it does not capture the multi-causal nature of the causal influence 

of CPFs, especially where a CPF introduces multiple proximal factors. 

 

Table 3: Extent of contribution of CPFs to accident causation 

Proximal Factors                   Extent of Contribution of CPF to Accident Causation  

                            (Prevalence of proximal factor within CPF) 

                                                                                                                                                                                              

Uncertainty and complexity 

of hazards (Egbu, 1999; 

Loughborough University, 

2006) 

New work                                                                                     Refurbishment                                                              

                                                                                                        

                                                                                                      Demolition             

Manual handling (McKay et 

al., 2002; Wright et al., 

2003) 

Pre-assembly construction                                 Conventional on-site construction                  

Site congestion 

(Loughborough University 

and UMIST, 2003; 

Loughborough University, 

2009) 

Unrestricted site                                                                               Restricted site 

Time pressure 

(Loughborough University 

and UMIST, 2003; 

Loughborough University, 

2009) 

Unconstrained duration                                                          Constrained duration          

Fragmentation of project 

team (HSL, 1999; Matthews 

and Rowlinson, 1999; Entec 

UK Ltd, 2000; 

Loughborough University 

and UMIST, 2003; Baiden et 

al., 2006; Eriksson, 2010) 

Design and Build            Traditional procurement            Management contracting                            

 

Partnering 

Difficulty in constructing  

(Loughborough University 

and UMIST, 2003; 

Loughborough University, 

2009) 

       Simple Design                                                                Complex Design 

(Simple aesthetic qualities)                                        (Intricate  aesthetic qualities)    

Working at height / Confined 

space (Hughes and Ferrett, 

2008; HSE, 2009) 

Low-level construction                                             Multi/High-level  construction 

                                                                                   

                                                                                   Underground construction 

Fragmentation of work force 

(Mayhew and Quinlan, 1997; 

Loughborough University 

and UMIST, 2003; Ankrah, 

2007) 

Single-layer subcontracting                                        Multi-layer  subcontracting 

 

In light of the multi-causal nature of the causal influence of CPFs, it is therefore 

appropriate to modify the expression as follows: C = ƒ (R1, r1; R2, r2; …; Rn, rn), where 

‘n’ is the number of proximal factors that may be introduced by a CPF. The independent 

contribution by the ‘n’ proximal factors using the method of combination (i.e. 

multiplication) would thus  be; C1 = r1 x R1; C2 = r2 x R2;…; Cn = rn x Rn. Evidently, the 

challenge posed by this scenario in contrast to where a CPF introduces a single proximal 



                                                                                                                                  

factor is the amalgamation of the individual effects (i.e. C1, C2,…,Cn). Given that, the 

proximal factors are each contributing to the causation of accident through their 

introduction by a CPF, the scenario can be conceptualised in structural engineering terms 

as a system of forces where C1, C2,…,Cn are the individual forces making up a resultant 

force (i.e. C) as shown in Figure 3. The use of structural engineering concept in health 

and safety research is not far fetched. Hallowell and Gambatese (2009) similarly adapted 

a structural engineering concept (i.e. the structural capacity of a beam) when 

conceptualising the risk capacity of a site safety programme.  

 

 

 

 

 

 

 

Figure 3: A system of forces 

 

As shown in Figure 3, the resultant of the individual forces (i.e. C) will thus be; 

C = C1 + C2 +…+ Cn.  Relating this to the introduction of multiple proximal causal factors 

by a CPF, the extent of contribution of a CPF to accident causation (C) can be expressed 

as; 

C = C1 + C2 +…+ Cn.  = r1 x R1 + r2 x R2 +…+ rn x Rn. 

Relating the causal interactions that transpire between CPFs and proximal factors to the 

extent to which CPFs contribute to accident, literature indicates that the causal 

interactions affect the degree of prevalence of proximal factors within CPFs (i.e. ‘r’). For 

example where pre-assembly construction is present with high rise construction, a 

restricted site and/or constrained project duration, the pre-assembly construction can 

reduce the extent (i.e. prevalence) of working at height, site congestion and time pressure 

that would be introduced by the high level construction, the restricted site and the 

constrained project duration, respectively (Wright et al., 2003). Conversely where 

conventional on-site construction is used on a restricted site, there could be an 

aggravation of the site congestion introduced by the restriction of the site. It can be 

further argued that the decreasing-increasing (mitigating-aggravating) effect of the causal 

interaction on ‘r’ is not static but rather dynamic given the dynamic nature of 

construction (Hallowell and Gambatese, 2009). An example is the dynamic effect which 

conventional construction could have on the extent of congestion given that conventional 

construction involves on-site production and is labour intensive. This means that at 

certain periods (depending on the construction programme) there may be fewer/greater 

piles of materials on site and also fewer/more operatives on site which would increase or 

decrease the extent of congestion imposed by the restriction of the construction site. This 

dynamism clearly reflects the complexity of accident causation which Groeneweg (1994) 

likened to a marble standing on a rough plateau of which the undermining mechanism 

likely to cause its moving and dropping is unpredictable. This dynamism also imposes 

challenges in the assessment of the potential of CPFs to cause harm especially from the 

perspective of the pre-construction stage of project procurement where minute details of 

on-site construction operations are less likely to be known. Nonetheless, the above 

C1 KN C2 KN C…KN Cn KN 

C KN 



                                                                                                                                  

expression provides the opportunity for a systematic independent assessment of the 

potential of CPFs to cause harm which can be complemented by the knowledge of 

potential causal interactions between CPFs and proximal factors.  Given that the pre-

construction phase offers the greatest opportunity for influencing the H&S outcomes of 

projects (Szymberski, 1997) and CPFs emanate from this stage, these two strands of 

information could be useful to project participants at the pre-construction stage in 

devising measures for mitigating the accident causal influence of CPFs. Having 

examined the multi-causality of the accident causal phenomenon of CPFs in the light of 

the potential of CPFs to cause harm, the subsequent section of the study examines its 

implication for the health and safety risk posed by CPFs.  

4. The health and safety risk posed by CPFs 

Concerning the H&S risk associated with CPFs, the insight provided by H&S literature is 

simplistic and limited to a few CPFs. For instance refurbishment has been associated with 

a higher risk than new work (cf. Loughborough University (2006)), and conventional 

construction has also been associated with a higher risk than pre-assembly construction 

(cf. McKay et al. (2002)). This limitation in the literature therefore implies the need to 

evaluate the risk posed by CPFs as it is inadequate to use the extent to which CPFs 

contribute to accident causation (i.e. potential to cause harm) as the sole basis for 

accident prevention. Though simplistic, these risk evaluations reflect the illustration in 

Table 3 where refurbishment and conventional construction have a higher potential to 

cause harm than new work and pre-assembly construction respectively.  

Regarding this link between the extent of contribution of CPFs to accident causation and 

H&S risk, the risk expressions put forth by Chicken and Posner (1998) and the Canadian 

Centre for Occupational Health and Safety (CCOHS) (2008) provide some illumination. 

Chicken and Posner (1998) and the CCOHS (2008) indicate that risk is a function of 

hazard and exposure, expressed as Risk = Hazard x Exposure. Duffus and Worth (2001) 

also argued that risk is a function of hazard and exposure because, no matter the severity 

of a hazard if there is no exposure, there would be no risk of harm. Hazard is the potential 

of a source or substance to cause harm and risk is the likelihood of a source or substance 

to cause harm (Hughes and Ferrett, 2008). Exposure is the extent to which people are 

subjected to the hazard (CCOHS, 2008) and can be assessed in terms of duration (Duffus 

and Worth, 2001; CCOHS, 2008). Given that the extent to which CPFs contribute to 

accident causation indicates their potential to cause H&S harm, the above risk expression 

is useful in providing understanding into the relationship between the extent of 

contribution of CPFs to accident causation (i.e. their potential to cause H&S harm) and 

H&S risk (i.e. their likelihood to cause H&S harm).  

The risk expression (i.e. Risk = Hazard x Exposure) can thus be adapted for the context 

of the accident causal influence of CPFs as, Risk (Rk) = Potential of a CPF to cause harm 

(C) x Exposure (E), where exposure is assessed in terms of the duration within which the 

workforce is subjected to the CPFs. Drawing on the above expression, C = C1 + C2 +…+ 

Cn, the health and safety risk associated with a CPF can thus be generally written as; 

 Rk = C x E = (C1 + C2 +…+ Cn.) x E = (r1 x R1 + r2 x R2 +…+ rn x Rn.) x E. 

By this expression, the H&S risk associated with a CPF is thus the combined effect of; 

 the extent to which the related proximal factors contribute to accident causation 

(i.e. the potential of the proximal factors to cause harm, represented by ‘R’) ;  

 the extent to which the proximal factors are prevalent/common within the CPF 

(represented by ‘r’); and the  



                                                                                                                                  

 duration of exposure of the construction workforce to the CPF (represented by 

“E”). 

For simplicity of measurement, rather than measuring duration of exposure in terms of 

actual time units (e.g. days, weeks) an ‘exposure index’ can be used. This exposure index 

can be assessed relative to the project duration similar to the assessment of relative 

density (i.e. ratio of the density of a substance to the density of water (Abbott, 1984)) as 

commonly used in the physical sciences and in engineering. Using this exposure index 

would also facilitate the comparative assessment of the risk posed by CPFs. To illustrate, 

the exposure index of subcontracting for a project would be, ds / D; where ‘ds’ is the 

anticipated duration of subcontracting, and ‘D’ is the anticipated project duration. 

Obviously for some CPFs such as a restricted site, the duration of exposure will be the 

same as the anticipated project duration. The above risk expression reflects a key element 

of the accident causal influence of CPFs (which is the multi-causal nature) and the study 

now examines the utility of the expression for accident prevention and also its 

implication for further research.  

5. Implications for accident prevention and research  

As previously mentioned, CPFs emanate to a large extent from decisions by the client, 

design team and project management team at the pre-construction stage which offers 

project participants the greatest scope to influence the H&S outcomes of project 

(Szymberski, 1997; Entec UK Ltd., 2000). The above risk expression, being a mechanism 

for the systematic comparative analysis of the H&S risk associated with CPFs, it provides 

pre-construction decision-makers (the client, project management team, and decision 

team) the opportunity to make decisions that will promote positive on-site H&S on the 

basis of the systematic assessment of H&S risk posed by CPFs. However, at present, 

there are no quantitative measures for the determinant factors of the extent to which CPFs 

contribute to accident causation (i.e. “R” and “r”) and this offers an opportunity for 

further studies to determine these inputs for subsequent application in the derived H&S 

risk expression. The attainment of these inputs would further entrench the utility of the 

risk expression as pre-construction decision-makers would be able to systematically 

evaluate the potential of CPFs to cause harm and consequently the H&S risk implications 

and on that basis possibly select CPFs that have low potential to cause harm and/or a low 

risk.  However, in practice, these project participants are faced with certain constraints 

which also influence their decisions (Suraji et al., 2001), and this means that the client, 

design team and project management team may be constrained by certain factors to 

choose CPFs which may have significant adverse impact on H&S. For instance where the 

client requires a facility to be completed within a constrained duration (probably as a 

result of a business plan), or where the site available for the development is a highly 

restricted site, or where the client requires a multi-level facility, these would impose 

constraints on the design team and project management team to go by such CPFs despite 

their potentially adverse H&S effects. Where such CPFs are inevitable, or as it were 

‘fixed’, depending on constraints faced by pre-construction decision-makers, other risk 

mitigation measures (e.g. measures to eliminate or reduce the prevalence of proximal 

factors) could be introduced by the decision-makers (through some aspects of the project 

design and management), and also by the construction team when preparing the 

construction phase plan. The knowledge of the causal interactions between CPFs and 

proximal factors as depicted by the graphical model could especially be useful in 

selecting CPFs that could potentially reduce the prevalence of proximal factors or 

possibly avoiding CPFs that could aggravate the prevalence of the proximal factors that 

are introduced by other CPFs. Beyond the known mitigating/aggravating interaction 

effects offered by method of construction, it is important to investigate other potential 

interactions between CPFs and proximal factors, and this also presents another 



                                                                                                                                  

opportunity for research. Given that the pre-construction stage offers project participants 

the greatest opportunity to influence the H&S outcomes of projects, it is anticipated that 

the graphical model and the derived mathematical risk expression (both of which reflect 

the complex and multi-causal attribute of the causal phenomenon of CPFs) would be 

useful to pre-construction decision-makers and also to the construction team in managing 

the H&S impact associated with CPFs.  

6. Conclusions 

By examining H&S literature, this study has shed light on the multi-causal attribute of the 

accident causal influence of CPFs in greater depth and by that has advanced the 

understanding of this causal phenomenon. The study has achieved this by revealing the 

process by which CPFs contribute to accident causation pointing out the path of causation 

(from CPFs (i.e. underlying causal influences) through proximal factors to accidents), the 

possible introduction of multiple proximal factors by CPFs, and the dynamism of the 

complex causal interactions between CPFs and proximal factors. The study has thus 

shown that the causal phenomenon of CPFs reflects the systems view of accident 

causation, and the study has captured this complex and multi-causal attribute of the 

causal phenomenon of CPFs by a graphical model. The model has been operationalised 

by a derived mathematical expression that offers a systematic approach for evaluating the 

H&S impact of CPFs. The graphical model and the mathematical expression are thus 

useful tools for accident prevention. However their present utility is limited as the 

quantitative inputs to be applied in the expression as well as the insight of other potential 

causal interactions which is needed to complement the utility of the model and expression 

are presently unknown.  These unknowns thus pose a challenge to the utility of the 

expression and the model and as such must be obtained by research if the benefits of the 

model and the expression are to be entrenched. On-going research which aims to provide 

these unknowns offers some hope and it is anticipated that the final outcome of the 

research will help improve H&S on construction projects through the systematic analysis 

of H&S impact of CPFs for subsequent application in pre-construction decision-

making/planning and accident prevention.  
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