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Abstract

We compare performance of several machine learning methods, including support vector machine, k-nearest neighbours, k-means
clustering, and Gaussian mixture model, used for increasing transmission reach in the optical communication system based on
the periodic nonlinear Fourier transform signal processing.

1 Introduction

There are several major factors limiting the performance of
contemporary optical communication systems, including fibre
attenuation, chromatic dispersion, amplifier-induced noise, and
nonlinearity of fibre. In particular, the fibre nonlinearity is often
considered to be the most challenging transmission impairment
in the optical fibre channel [1]. Among the many methods
for the nonlinearity mitigation, the nonlinear Fourier trans-
form (NFT) has attracted some attention recently [2]. While
many other approaches are aimed at diminishing the effects
of nonlinearity in fibre, the NFT-based methods use it as an
element of the data modulation scheme. The NFT effectively
linearises the evolution of signal even at high powers within
the idealised path-average model - the lossless and noiseless
nonlinear Schrödinger equation (NSL). The quasi-linear evo-
lution of nonlinear modes allows us to utilise the efficient
techniques developed for linear communication in order to
improve system’s performance [3]. However, in the real world
applications, the fibre deviates from the idealised model, i.e. the
NLS with the account of losses and noise is not exactly solv-
able by the means of NFT, meaning that we effectively have
the channel and processing mismatch bringing about system’s
performance degradation. However, the NFT-based transmis-
sion systems still excel the systems utilising just dispersion
compensation [4]. The important unavoidable sources of NFT
transmission degradation are the practical system’s gain-loss
profile and optical noise. While the first effect can be partially
compensated for by the means of a path-averaged approach [5],
the effects of latter are more involved, and the optimal detec-
tion strategy tailored to the NFT system features is yet to be
designed. This work investigates the efficacy of machine learn-
ing (ML) methods in dealing with the problem of noise that
degrade the performance of NFT-based systems.

We note that in recent years ML techniques have widely
been used in optical communications as the effective tool

for improving systems’ performance [6–8]. In this work we
compare potential of several ML methods to improve the per-
formance of a periodic NFT-based optical transmission system.
Supervised, k-nearest neighbours (k-NN), Gaussian mixture
model (GMM), and support vector machine (SVM), and unsu-
pervised (k-means clustering) ML methods are used to process
received data. Then we compare the methods performance in
terms of the achieved BER improvement for our transmission
system.

In our approach we append a periodic NFT-based communi-
cation system [9, 10] with a ML block at the receiver (Rx) after
the demodulation.

The path-average propagation of the slow-varying envelope
q(z, t) of the electromagnetic field along the optical fibre can be
approximated by the NLS: iqz + qtt + 2q|q|2 = n(z, t), where
z is the distance along the fibre, t represents the retarded time
and n is the ASE noise. The main idea of the NFT is that
the signal can be represented in the nonlinear Fourier domain
through its nonlinear spectrum (NS), where the nonlinear spec-
tral components evolve linearly. Within the NFT-based system
we modulate data using the parameters of the NS modes.
The inverse NFT stage is used to produce the time-domain
waveform that is then launched into the fibre. At the Rx side
we compensate the phase shift in the NS that occurs during
propagation and retrieve our data back [11]. Although NFT
is conventionally used for localised signals, it is shown that
the NFT communication systems based on the periodic signal
extension can be advantageous in terms of our having a smaller
processing window at Rx, lower computational complexity, and
the possibility of control over the signal properties [10, 12]. For
the sake of brevity, details of the considered periodic NFT sys-
tem is not repeated here but can be found in [9]: in particular,
the NS the signals that we use for data modulation is shown in
Fig. 1 of [9]. In [9] it was also reported that the effective noise
in the nonlinear Fourier domain has a nonlinear dependence to
the transmitted QAM symbol structure, which, in fact, is our
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Fig. 1 The communication system based on periodic NFT and
ML-based equaliser/symbol detector.

main motivation to implement ML techniques as the equali-
sation/detection stage. In our communication scheme, random
data is mapped on a set of complex-valued eigenvalues which
are used to construct a signal through the inverse transforma-
tion described in [9]. The constructed signal is then sent to the
fibre undergoing linear and nonlinear distortions and perturbed
by ASE noise. We assume an ideal Raman amplification pro-
viding a constant signal power over the transmission line. The
distorted signal is received at the receiver and the main spec-
trum (comprising the eigenvalues) is calculated using through
direct transformation. The received eigenvalues, distorted by
the nonlinear noise-signal interaction, are fed to the ML-based
equaliser/detector where an estimation of the transmitted sym-
bol is made. The BER is then calculated by directly counting
the mismatches between the sent and received QAM symbols,
see Fig. 1.

We would like to mention that k-NN [13], GMM [14],
SVM [15–17] and k-means clustering [17, 20] algorithms
have already been successfully applied for the performance
improvement of optical systems. However, to the best of our
knowledge, the comparison of all these ML-methods used as
the equalisers/detectors at the Rx side of optical communica-
tions systems has not been reported yet.

2 Methods and simulations results

The two simplest ML algorithms considered in our study are
k-NN [21–23] and k-means clustering [21, 22]. We can use
the k-NN to identify different classes of data, i.e. the par-
ticular participants (symbols) of the constellation. One of the
advantages of k-NN is that this algorithm does not require any
computational resources at all for the training process. Within
this method, for any new unlabelled sample from testing data,
we compare that new sample with each sample in the existing
training set. All the distances from the testing sample to each
training sample are computed. After that we determine the k
nearest training data points (the nearest neighbours) and check
their labels. Than, we take a majority vote from the k nearest
neighbours, and the majority is the new class (the constellation
symbol) we assign to the data we were asked to classify.

The unsupervised k-means clustering, or Lloyd’s algorithm
[24], groups the similar samples together into clusters, where
each cluster defined to which constellation symbol our sam-
ple belongs. It operates with unlabelled data, i.e., the data that
does not initially belong to any group (any particular constel-
lation symbol). The algorithm partitions data into k clusters,
and returns the index of the cluster to which it has assigned
each sample. That index identifies the particular constellation
point obtained. We use transmitted symbols for cluster centroid
initialisation and also for cluster indexing. Such a initialisa-
tion provides a higher accuracy of classifying compared to
k-means++ algorithm [25] for cluster centre initialisation.

The SVM is a powerful ML method that can be used in
optical communication problems for both classification and
regression tasks [15, 16]. The SVM determines the support
vectors and maximises their margins that are defined to be the
smallest distance between the decision boundary and any of the
samples. In SVM, the decision boundary is chosen to be the one
for which the margin is maximised.

To classify received symbols of 64-QAM constellation, the
GMM composed from the 64 linear multivariate normal density
components have been employed in our work. The algorithm
allocates each received point to a cluster by maximising the
probability that a data point belongs to this cluster. Overall, the
GMM tends to find a set of Gaussian probability distributions
that describes our data points in the most accurate way.

The results of our ML methods comparison are represented
via the BER vs. distance (and vs. launch power) curves to show
the improvement obtained by the utilisation of supervised (k-
NN, GMM, and SVM) and unsupervised (k-means clustering)
ML techniques. To calculate each point in the BER figure 215

symbols are used. The average signal bandwidth is 5.3 GHz
and the data-rate for a 64-QAM periodic NFT-based system is
around 7.2 Gb/s. Each signal is cyclically extended to the dura-
tion of the channel memory to avoid inter-symbol interference
caused by chromatic dispersion.

The BER resulting from decoding by using the hard deci-
sion based on rigid rectangular symbol boundaries and the
BER levels for four ML methods described above are pre-
sented in Fig. 2 for different transmission lengths ranging
from 770 to 1078 km. One can see that in the range 770-924
km all studied ML methods provide a significant performance
improvement. Notably, for all distances from that range, the
relatively simple k-NN method operating with training sam-
ples only, which does not account for the parameters obtained
from training process, gives us approximately the same BER
improvement as that of the more advanced SVM algorithm.
Using the proposed SVM demodulator, we achieved the BER
value lower than the HD-FEC limit 3.8× 10−3 at 1000 km,
while k-NN and GMM’s BER were slightly above HD-FEC.
We also mention that the BER achieved by employing the other
ML methods was lower than the SD-FEC threshold 2× 10−2

[26] with k-means demonstrating the lowest performance gain
but still below that value at 1000 km, while the “conventional”
HD detection is above HD-FEC at approximately 950 km and
above SD-FEC at 1000 km and further.
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Fig. 2 The BER dependence on the transmission distance for
the (almost) optimal power -7 dBm for 64-QAM periodic NFT
obtained by using the conventional hard decision, k-means,
GMM, SVM and k-NN based detectors (amber (circle), vio-
let (asterisk), blue (triangle), green (square) and red (diamond)
curves respectively). Horizontal black dashed and red dotted
lines represents HD-FEC and SD-FEC thresholds respectively.

Fig. 3 shows the BER curves for the received signal for
924 km and 1000 km transmission lengths as a function of the
launch power. The examples of constellation diagrams obtained
by system’s simulation for these transmission lengths and most
interesting power values are given in the insets on Fig. 3. The
values of BER for the powers lower than -7 dBm achieved by
conventional HD and k-means decoders much higher than the
HD-FEC threshold, and so we do not show them there. As
before, the best performance was rendered by the SVM for
almost all power range studies, excluding the extra low power
values at 924 km, and at the optimal power point the perfor-
mance shown by the k-NN and GMM is very close to that of the
SVM. Poor performance of k-means method can be explained
by the fact that only distances to cluster centroids are taken into
account for new symbols classification. Therefore, the method
is failing to label correctly the symbols belonging to noncir-
cular and located close to each other clusters. In the case of
such clouds k-NN and SVM show better performance because
k-NN use 8− 15 nearest to new symbol neighbours for classifi-
cation and SVM creates nonlinear boundaries representing the
complicated pattern of received symbols. In our opinion k-NN
and SVM are more useful for compensation of nonlinearity-
induced impairments while k-means and GMM can be applied
to diminish the impact of ASE noise.

3 Conclusion

In this paper we compared detectors, based on three super-
vised (SVM, k-NN, GMM) and one unsupervised (k-means
clustering) ML methods for the periodic NFT-based optical

Fig. 3 BER as a function of optical launch power. Curves
denote in the same way as in Fig 2 (a) at 1000 km (b) at 924 km.

communication system. We have shown that for whole dis-
tances range addressed all studied ML methods provide a
significant improvement of the system performance. At the
same time, at 1000 km distance only the SVM can reduce the
performance penalty below the HD-FEC threshold, though typ-
ically the simpler k-NN method is just a bit worse than more
resource-demanding SVM. The attained system’s performance
improvements can be understood as an expansion of usable
transmission distance.
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