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THESIS SUMMARY 

 

Asymmetric Price Transmission in EU Petroleum Markets 

Osama Al Sabbagh 

Doctor of Philosophy 

Aston University – 2014 

 

This research investigates the determinants of asymmetric price transmission (APT) in 
European petroleum markets. APT is the faster response of retail prices to cost increases 
than to cost decreases; resulting in a welfare transfer from consumers to fuel retailers. I 
investigate APT at 3 different levels: the EU, the UK and at the Birmingham level. 

First, I examine the incidence of asymmetries in the retail markets of six major EU 
countries; significant asymmetries are found in all countries except from the UK. The 
market share data suggest that asymmetries are more important in more concentrated 
markets; this finding supports the collusion theory. I extend the investigation to 12 EU 
countries and note that APT is greater in diesel markets. The cross-country analysis 
suggests that vertical and horizontal concentration at least partly explains the degree of 
asymmetry. I provide evidence justifying scrutiny over retail markets’ pricing and 
structure. 

Second  daily data unveil the presence of APT in the UK fuel markets. I use break tests 
to identify segments with different pricing regimes. Two main types of periods are 
identified: periods of rising oil price exhibit significant asymmetries whilst periods of 
recession do not. Our results suggest that oligopolistic coordination between retailers 
generate excess rents during periods of rising oil price whilst the coordination fails due 
to price wars when oil prices are going downwards.  

Finally I investigate the pricing behaviour of petroleum retailers in the Birmingham 
(UK) area for 2008. Whilst the market structure data reveals that the horizontal 
concentration is higher than the national UK average, I find no evidence of APT. In 
contrast, I find that retail prices are sticky upwards and downwards and that firms with 
market power (majors and supermarkets) adjust their prices slower than other firms. 
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1. Introduction 

In the first two sections I introduce and illustrate the research topic. The third section describes 

the theoretical framework. The fourth section provides some background on the European 

petroleum markets. Finally, the fifth section motivates the present thesis and sets the research 

objectives. 

 

1.1 Overview of the research topic 

Oil prices have recently been subject to significant scrutiny due to the importance of oil for 

industrial, commercial and residential purposes. Whilst the short-run rises are often due to 

political crises such as conflicts in oil-rich countries, the long-run increase in the last decade is 

explained by economic theory. It reflects the increasing long-term demand as well as the 

depletion of oil reserves. 

 In fact, oil prices do not only vary with the availability and accessibility of oil reserves but also 

with the way global demand changes or is expected to change. Speculation and uncertainty 

about demand for oil has caused oil prices to become far more volatile in the recent years. For 

instance, the Brent crude price went from $144 on the 3rd July 2008 down to $34 on the 28th 

December 2008. Whilst remaining volatile to a certain extent, the oil price recovered its upward 

trend until the end of 2010 reaching the $100 threshold once again. In the absence of a serious 

substitute to petroleum in the short-term, the long-run rising trend in oil price is expected to 

persist despite the significant price manipulation of the OPEC cartel. 

 In addition to the ever-increasing oil prices, there has been rising concern among consumers in 

recent years that petrol stations react to cost increases more quickly than they do for decreases. 

Economists have started looking at the phenomenon from the early 90s, especially Bacon (1991) 

who introduced the concept of “rockets and feathers” in gasoline markets. The basic assumption 

motivating the search for asymmetries in gasoline markets is the common belief that 

oligopolistic retailers belonging to vertically integrated oil companies coordinate their prices in 
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order to increase their average margins. Consumers often observe that the retailers respond 

much quicker to an oil price increase than to a similar decrease; this is often associated in the 

press to the size of major oil companies. 

 Is the price transmission of crude and spot prices onto retail prices asymmetric? If so what are 

the reasons or mechanisms behind this phenomenon? These two questions are the focus of over 

60 journal articles in the past 20 years. The petroleum markets represent by far the dominant 

share of the literature on asymmetric pricing; such predominance may be caused by the public 

interest for the topic. As far as the EU is concerned, an overwhelming share of the population 

owns a car and in recent year motorist organisations have attempted to raise attention on the 

issue of APT.  

  The Fédération Internationale de l’Automobile (FIA) which represents 35 million European 

drivers has sent a letter to call an investigation by the European Union.  “The price of fuel in the 

UK reached record levels in April as the cost of Brent crude rose above $125 a barrel. Although 

the price of crude has fallen $10 since then, motoring groups say the wholesale price of petrol 

has not fallen as fast” (BBC, 2011). Similar articles have been recently published by several UK 

and EU websites, showing the rising importance of the phenomenon for the public opinion. 

   It is worth mentioning that interest in the topic generally arises when fuel prices are high; 

which denotes that controversy over asymmetries is mainly due to anger caused by ‘ever-

increasing’ fuel prices in the long-run. Due to the combination of high taxation and ever-

increasing crude prices, the fuel budget of European drivers is becoming an increasingly 

important part of their revenue. Not surprisingly, Bacon (1991) wrote the first “rockets and 

feathers” paper for the United Kingdom market;  the UK being one of the countries in Europe 

with the higher fuel prices, especially the diesel fuel which is higher taxed compared to the 

other European countries. 



 
 

26 
 

 This research will outline the controversy over the methods used and the lack of link between 

empirics and economic theory. So far we have abstractly defined the phenomenon of APT 

whilst the following section will further illustrate it within the context of the petroleum industry. 

 

1.2 Illustration of the research topic 

I focus on the two most utilised motoring fuels: diesel and unleaded gasoline. Diesel and 

gasoline are two fuels produced from refining crude oil alongside with jet fuel, heating fuel, 

kerosene and other products. The type and price of the end product depends on the different 

refining processes. In the petroleum industry three major pricing stages are considered: 

upstream, midstream and downstream.  

 The upstream price is the crude price, in other words the price of crude oil after exploration and 

extraction and before the refining process. Crude oil (e.g. Brent) is then typically shipped and 

processed into a refinery and subsequently the refined product enters the midstream market at a 

price at which wholesalers trade branded (e.g. Shell) and unbranded products.  

 The downstream price is the retail price at which drivers pay their fuel. The retail price 

typically includes the costs of marketing, logistics, the duty and the Value-Added Tax VAT. In 

this thesis I focus only on the transmission from the midstream “spot” prices to the downstream 

“retail” prices in EU countries.  

Figure 1.1 below illustrates the oil product supply chain, detailing the physical flows of crude 

oil and its products alongside the supporting contractual relationships. The main physical stages 

are: the purchase of crude oil; the refining of crude oil into a range of products; the distribution 

and storage of those refined products; and the marketing and retail to end-users. The wholesale 

product market sits alongside this physical chain as a means to obtain agreement of contractual 

relationships between refiners and distributors as well as retailers. 
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Figure 1.1 - The petroleum industry supply chain 

 

The actual wholesale prices, ‘the contract prices’ are generally extremely hard to obtain and 

very costly; in the literature the most used midstream prices are the spot ex-refinery prices. 

More details about the choice of EU spot prices will be provided in section 1.4.  

 As far as the topic of interest is concerned, Figure 1.2 below illustrates the phenomenon of 

asymmetry and compares it to symmetric transmission: the welfare transfer is represented by the 

shaded area. In the present thesis I analyse the transmission from the wholesale to retail prices 

whilst the figure shows the crude to retail price transmission. 
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 The literature has discussed the implausibility of size asymmetry alone within the ECM-type of 

models, as in Geweke (2004); however it is possible to find a combination of time and size 

asymmetry called “combined asymmetry”. The distinction between time asymmetry and the 

combination of time and size asymmetry is only academic; in fact the models used with 

aggregated data will always exhibit a combined type of asymmetry. The implication is that 

although the models used in the literature involve a full transmission of upstream to downstream 

prices, the type of APT found is shown in a faster or fuller response of downstream prices to 

upstream prices increases than to similar decreases.  

 

Figure 1.2 - Asymmetric Price Transmission 

Source: Wlazlowski (2008) 

   

In other words, retailers gain from the welfare transfer generated from the faster and fuller 

response to input prices increases and the slower response to input prices decreases.  Peltzman 

(2000) called this type of asymmetry positive asymmetry. In a similar fashion, negative 

asymmetry would occur when retail prices react more rapidly/fully to price decreases than to 

upstream price increases; this would suggest a welfare transfer from the petroleum retailers to 
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the end users. However, in my empirical investigation I have not observed any significant 

negative asymmetry for the 12 countries studied. Henceforth, in what follows APT will only 

refer to positive asymmetry. 

1.3 Theoretical framework 

 The article that first attempted to present the possible causes for the phenomenon of APT is by 

Borenstein et al (1997) although they did not formally test them empirically. They mentioned 

three explanations for asymmetries: the oligopolistic coordination theory, the asymmetric 

inventory adjustment costs and the consumer search theory. The oligopolistic coordination 

theory and the consumer search theory are the principal explanations mentioned in the APT 

literature. The objective of the present thesis is to link the empirical evidence to these theories 

and to other less-mentioned theories.  

 In what follows, I briefly discuss the oligopolistic coordination theory, the consumer search 

theory and other less known explanations such as the asymmetric inventory adjustment theory. I 

conclude by explaining the difference between those studies focusing on APT and the growing 

literature focusing on the Edgeworth price cycles phenomenon.  

1.3.1 The oligopolistic coordination theory 

Collusive behaviour, abuse of market power, abuse of oligopolistic position: there are numerous 

expressions used to point at the most popular explanation for APT. This frequently mentioned 

explanation of asymmetries is primarily based on allegations related to mergers at the 

downstream, midstream or upstream level. To illustrate this, Eckert (2011) reports that there 

were 100 mergers in the US petroleum industry between 2000 and 2007, with around 18% 

occurring at the retail level. These mergers followed the wave of mergers of 1998-2000 between 

major oil companies forming the Big Five or Big Six of “supermajors”1. 

                                                   
1 BP plc, Chevron Corporation, ExxonMobil Corporation, Royal Dutch Shell plc and Total SA; 
ConocoPhillips Company can be considered as the 6th ‘major’. 
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 In the EU, colluding to artificially increase margins is punishable by law according to the EC 

treaty (Wlazlowski, 2008). Whilst a cartel-like behaviour is implausible in the EU, tacit 

collusion could occur between petroleum retailers at the expense of the end user.  

The literature often takes for granted that imperfect competition at the refining and retailing 

stages allows major oil companies to abuse market power. Borenstein et al (1997) argue that due 

to imperfect information regarding prices charged by other firms, the old retail price offers a 

natural focal point following changes in input price. While increases in crude oil price lead to a 

fast or immediate increase in retail price as margins are swiftly squeezed, a decrease in crude 

price may not be passed-through as quickly as long as the firms’ sales remain above a certain 

level. 

Overall, it is often assumed but rarely proved that is due to collusion that input price increases 

are passed through faster that input price decreases. Although most APT papers predict a 

positive relationship between asymmetries and market concentration, the lack of empirical 

testing suggests some theoretical deficiencies. Nevertheless, there have been theoretical 

developments that are worth mentioning; especially when they suggest that collusion does not 

necessarily/only lead to positive APT. 

First, Lloyd et al (2006) developed a framework to model the impact of market power on price 

transmission in the food sector and show that market power can lead to imperfect or partial price 

transmission. Although they did not essentially test for APT, their model shows that market 

power may cause slower or partial pass-through of prices. This is further backed by Garrod 

(2012) who analysed collusive price rigidity with price-matching punishments. By analysing an 

infinitely repeated game, the results suggest that the best collusive prices are rigid over time 

when the two cost levels are sufficiently close, which is typically the case of the retail petroleum 

markets. This study provides support for the kinked demand curve theory. 

Second, Ward (1982) proposed that market power may lead to negative rather than positive 

APT if oligopolistic firms fear losing market share in periods of increasing input prices. In an 
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oligopoly context, their results support the view that both positive and negative APTs are 

possible depending on the market structure and behaviour.  

Third, Peltzman (2000) attempted to test empirically the relationship between APT and market 

power in different markets by utilising two proxies for market power: the number of competitor 

and market concentration. The results suggest conflicting impact on APT; APT increased as the 

number of firms fell, and decreased with increasing market concentration (measured by the 

Herfindahl-Hirschman Index, hereinafter HHI).  

The collusion hypothesis is the most commonly found in the APT literature, whereas it was 

rarely tested in the context of the petroleum industry. The study that most accurately tested the 

link is that of Neuman & Sharpe (1992) for the banking sector. They provided evidence 

suggesting that market concentration explained asymmetries in the consumer bank deposit 

sector. In a similar spirit, Hastings (2004) showed that when independent retailers were replaced 

by vertically integrated petroleum firms, local prices systematically rose. Combining the 

evidence from these two studies, APT may well be explained by retail market concentration. 

The evidence from the banking industry on market concentration has not been applied to the 

petroleum industry whereas Hastings (2004) did not discuss the issue of asymmetric pricing. 

If I take the example of the retail gasoline market, each station chooses its selling price without 

knowing exactly what will be the price charged by others. There might be computer-based 

programs or websites providing real-time information about retail prices, but some stations will 

still take decisions more promptly than others as a result of different margins and volumes of 

sales. Some stations might choose to maintain a price above the competitive level until they 

experience a drop in sales. If I assume imperfect information of petrol stations about others’ 

prices, the signal expected before adjusting the price down will be the decrease in sales. Even 

with the assumptions of newly available real-time information on retail prices (e.g.: 

governmental websites in the EU); stations might consider only reducing their prices if they 

experience a drop in sales. 



 
 

32 
 

 This model explains how retailers maintain prices above the competitive level, but does not 

explicit how they coordinate on a particular price. Indeed there are multiple possible 

equilibriums and the model does not predict how the choice is made. Another shortcoming of 

the Borenstein et al (1997) model is that when coordination breaks down due to a drop of sales 

in one of the stations, the retailers quickly drop their prices to the competitive level. This pattern 

is not compatible with most of the findings in the literature where prices decline slowly.  

Finally the model would predict than in periods of high volatility, retailers would be less 

efficient in their coordination and as a consequence margins and asymmetries would decrease. 

Results in chapter 2 show that the findings of Peltzman (2000) and Radchenko (2005b) support 

this hypothesis. Consequently in chapter 3 I provide evidence suggesting that horizontal and 

vertical concentration explain asymmetries better than retail margins and the results in chapter 4 

suggest that APT depend on different pricing coordination regimes in periods of booms and 

recessions. My findings are consistent with the collusion theory and call for further research 

across different industries. 

1.3.2 The search costs explanations 

Whilst there are variations of the search costs theory, the common feature is the assumption that 

APT can be generated from the demand side due to the cost of searching for the cheapest petrol 

stations. 

The standard search theory:  

The standard search theory states that consumers are more likely to believe that an increase in 

retail price of a station is due to an increase in cost than in a change in the relative pricing 

position of this particular station. As a result the expected payoff from a search is lower for 

imperfectly informed drivers and petrol stations benefit from an increase market power for a 

certain time. This market power allows the retailers to respond quicker to cost increases than to 

cost decreases. This model implies that asymmetries will be more important in periods of high 

price volatility, since the signal-extracting problem is amplified. The findings in the literature 



 
 

33 
 

generally provide little support for this version of the search costs theory. Peltzman (2000) and 

Radchenko (2005b) suggested that the level of asymmetries is negatively correlated to oil price 

volatility.  

The search theory with Bayesian updating by Benabou and Gertner (1993) 

Benabou and Gertner (1993) formalise a theory of costly search with an element of learning. 

The drivers are in this version allowed to weigh the costs and benefits of searching. They also 

argue that macroeconomic shocks (inflation) can change the amount of search in a given 

market, and in turn increase or decrease competition among retailers. They find that search is 

more likely to decrease due to common cost shocks if the search costs are high in the market. 

This applies perfectly to the European gasoline markets where the search costs are high to the 

high level of taxation on refined petroleum products.   

 On the other hand, the fact that fuel prices are published on free websites in most EU countries 

has often been neglected. Are search costs really high as a consequence? Another prediction of 

the model is developed in Johnson (2002) regarding the comparisons between fuels. In most 

European countries the after tax price of diesel is sensibly cheaper than the price of unleaded 

gasoline; and the fuel-efficiency of diesel cars makes it much more economical to drive a diesel 

car, especially for long-distance drivers. Diesel drivers can be considered more cost-conscious 

because their initial investment on the car is higher than it would be on an equivalent petrol car. 

As a result if the price difference between the diesel car they purchased and the equivalent 

petrol cars is 2000 Euros, they generally expect to justify the price difference within the first 2 

or 3 years by saving a similar amount at the pump. In other words this theory would predict that 

asymmetries would be higher in the gasoline markets than in the diesel markets. Johnson (2002) 

confirms this prediction with US data. 

 Another consequence of the above-mentioned mechanisms is that increased volatility in oil 

price would change the perceptions of the consumers. Increased volatility would increase price 

dispersion across stations and as a result consumer search and its value would also increase. On 
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the other hand, an increased volatility can lead to a lower probability of search if drivers believe 

the high prices they face might not be station-specific but industry-wide. However, the 

reservation price condition can be invalidated by the very frequent changes in petroleum prices 

and the existence of transportation costs. The US literature generally reports very small price 

differentials across stations and an increased volatility of downstream prices. The empirical 

evidence suggests little incentive to search but Marvel and Lewis (2011) have shown the 

growing importance of websites providing free price comparison. These websites and 

smartphones applications now exist in Europe, the US and Canada and the real search costs 

would be the cost of the time spent opening a phone application; which is close to zero.  

1.3.3 Asymmetric inventory adjustment  

  Another theory frequently mentioned in the literature and generally associated with the 

production stage is the asymmetric inventory adjustment costs model. It was developed by 

Reagan & Weitzman (1982) who stated that profit-maximising firms utilise their inventory in 

order to spread the effects of unexpected changes in demand over time. 

  According to this model, the cost of creating inventories is a floor below which it is 

unreasonable to sell in periods of adverse demand shocks. In such a setting, profit-maximising 

firms facing lower demand start depleting their inventories and cutting their production instead 

of decreasing their prices. Consequently, such a shock has a limited effect on the downstream 

price and is translated into a minor decrease in the retail gasoline price in the context of my 

thesis. Conversely, a rise in demand results in a sharp price increase as production lags and 

limited inventories oblige the retailers to quickly increase their prices.  

 The consequence is that surges in demand are mitigated through higher prices whilst 

diminutions in demand are met through lower production and relatively small price reductions. 

In other words, in the short-run prices respond more to situations of excess demand than to 

excess supply because firms are more able to adjust their inventories in the latter case. 

 Borenstein et al (1997) illustrated the theory for the gasoline market by considering the 

specificities of the oil industry. They argue:  
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“If half of all world oil reserves suddenly disappeared, the long-run competitive price of 

gasoline would increase greatly, and consumption would decrease greatly. Oil companies could 

accommodate that change quickly by raising gasoline prices. Since refinery production 

schedules cannot be adjusted immediately.... the results would be a short-run building up of 

finished gasoline inventories. In contrast, if world oil reserves doubled overnight, the short-run 

response in the gasoline market would be limited by available supplies of finished gasoline.” 

(Borenstein et al, 2007: 327).  

 

  Moreover, Borenstein and Shepard (2002) remark that US refiners hold inventories of motor 

spirits equal to 25 days of sale to guarantee smooth refining operations. Because of 

transportation lags and technicalities their distribution centres hold inventories equal to several 

days of sales. Similarly, In the EU each member state holds inventories equal to at least 90 days 

of domestic consumption. Given the size of those inventories and the price of stored products, it 

is evident that the costs involved are consequent. 

  Kaufmann and Laskowski (2005) analysed the relationship between crude oil price and 

gasoline price and their results indicate that APT are probably generated by refinery utilisation 

rates and inventory behaviour. When the effects of inventories and refinery utilisation rates are 

removed from the model, the results indicate that gasoline prices respond asymmetrically to 

changes in crude oil prices. When the effects of inventories and refinery utilisation rates are 

included in the model, the APT disappears.  

  Johnson (2002) argues that most of the petrol stations in the US are supplied once a week or 

sometimes daily and consequently should not have substantial costs of inventory adjustments. 

There is a lack of evidence on EU markets but the evidence in the next section on European 

market structure suggests that the retail stage is unlikely to be affected by inventory adjustment 

costs.  

 Vasquez (2005) argues that given the stock rotation, inventory adjustment could be responsible 

for APT at the refining level but not at the retailing level. The author also predicts that refineries 

might create asymmetries incidentally - by postponing price decreases at times of lower crude 

oil prices to recover margins squeezed by the costly adjustment of production at times of 
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increasing oil prices, or directly - by adjusting the value of their inventory. Unfortunately, direct 

tests of this explanation cannot be performed due to lack of storage and production data. Even 

though Kauffman and Laskowski (2005) attempted to test this hypothesis, they have only done 

so with monthly and aggregated data.  

 

1.3.4 Other explanations for APT 

Menu Costs 

Some authors argued that APT might be generated by the cost of the actual pricing process. If 

changing retail petroleum prices involves incurring substantial costs, retailers are more likely to 

do so when midstream prices rise, rather than when they decline. According to Dixit’s (1991) 

model of price determination with a fixed cost of changing prices, the history of the firm’s 

prices and fundamentals should help forecast a price change only through the current gap 

between price and fundamentals.  

 Testing this model, Davis & Hamilton (2004) analyse the pricing decisions of nine individual 

gasoline wholesalers in the Philadelphia area. They first seem to find support for the menu cost 

model. Yet, further analysis of the data reveal that the model is not consistent with the 

asymmetric answer to positive and negative price gaps. In fact, when the actual price is below or 

above the target price by a small amount, a price increase is more likely to occur than a price 

decrease. In contrast, when the gap is large, reductions are more likely than increases. The 

probability of adjustment for positive and negative price gaps is presented in Figure 1.3 below. 
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Source: Davis & Hamilton (2004). 

 

Davis & Hamilton (2004) conclude that it is difficult to accept the menu-cost model as a literal 

description of firms’ pricing behaviour. Although the size of the estimated menu costs is of a 

credible magnitude, the model credits to firms much more uncertainty about fundamentals than 

is warranted by the data, and would call for much larger price changes than firms actually make. 

Eckert (2002) and Noel (2007b) argued that menu costs are insignificant or even equal to zero 

whilst Slade (1998) points out that costs related to small price changes might actually involve 

costs of losing the reputation gained by keeping the prices stable.  

  Davis (2007) reconsiders this model focusing on four retail stations located in Newburgh, New 

York, USA. He analyses the probability of price changes using the same framework as Davis & 

Hamilton (2004) to analyse wholesale pricing, but this time for retail pricing. The results 

indicate that retailers are more likely to increase their prices than to reduce them for almost 

every price gap, which contrasts with Davis & Hamilton (2004). Furthermore, the retailers are 

also more likely to make large decreases than large increases. The results indicate that a menu-

cost model describes the data quite well, but the author concludes that the pricing behaviour is 

Figure 1.3 - Probability of Retail Price Changes as a Function of 
Disequilibrium 
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being determined by a combination of search costs for the consumers and menu costs for the 

producers. 

 

Market Perception  

  Pindyck (2001) first suggested that cost shocks to commodity can be permanent or temporary. 

Analysing the relationship between spot prices, futures prices and inventory levels for different 

petroleum products, he distinguishes between temporary shocks-such as a demand shock due to 

weather conditions- and persistent shocks such as a sustained change in price volatility. He 

therefore develops a model where a permanent shock will generate a new equilibrium in which 

price levels and inventory levels will be higher. Conversely, if the shock is deemed transitory 

the equilibrium for the spot prices and inventory level will remain the same. 

  Radchenko (2005a) further investigates the possible link between APT-that he calls ‘lags in the 

response of gasoline prices to changes in crude oil price changes and retailers’ and perception of 

market changes. He analyses the impact of market perception in the transmission between 

weekly prices of US crude oil and motor gasoline. The results indicate the presence of APT in 

both regimes. He finds that the majority (97%) of price changes are viewed as temporary by the 

market and only 3% have a long-run impact on the retail price. It is however hard to find much 

support for these findings in the APT literature and even elsewhere as the model is based on 

strong assumptions regarding the firms’ perceptions of the changes and the modelling exercise 

considers both regimes as asymmetric by definition. 

 

1.3.5 Edgeworth price cycles 

 The Edgeworth cycles phenomenon is concerned with price dynamics not driven by midstream 

or upstream prices. Edgeworth price cycles are purely the result of price wars over market share 

at the retail level. In this section, I discuss this phenomenon due to the growing number of 

articles including the Edgweorth cycles into the APT literature.  
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  Although the recent wave of articles concerned with Edgeworth cycles is due to Eckert (2002), 

the phenomenon was first observed by Castanias and Johnson (1993) in the Los Angeles 

gasoline retail markets over 1968-1972. The weekly city level price data used revealed a 

peculiar type of APT: retail gasoline prices would increase rapidly in one week before declining 

slowly over the following weeks. Such an unusual pricing pattern raised a lot of interest as it 

was not the consequence of a causing midstream or upstream price. The authors argued that this 

type of price war dynamics were similar to the dynamic pricing equilibrium proposed by 

Edgeworth (1925) and later formalised in Maskin and Tirole (1988). 

  The model based on dynamic equilibrium considers 2 identical firms producing homogeneous 

goods and setting prices alternatively. It assumes that each firm makes its next decision on price 

based on other firms’ prices at the time t. Maskin & Tirole (1988) showed that, in these 

circumstances, two types of equilibrium could occur. In the first type, the firms converge on a 

focal price and each firm matches the other firm’s price alternatively and forever. 

  In the second type of equilibrium (Edgeworth), firms enter in an undercutting phase which 

resembles a price war until the marginal cost is eventually reached. When the marginal cost is 

reached, a random price setting war is initiated between the two firms; alternating between 

setting marginal costs and restoring price to initiate a new cycle. Figure 1.4 below illustrates the 

phenomenon for the city of Guelph, Ontario, Canada. 
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Figure 1. 4 - Edgeworth Cycles in Guelph Ontario Mode Retail Prices: 24/10 to 24/11/2005. 

Source: Eckert (2013). 

 

However, it is worth mentioning that price cycles similar to figure 1.6 above have only been 

identified in a relatively small number of cities in the world.  In the US, Zimmerman et al 

(2010) only found cycles in some Midwestern cities that began “cycling” in 2000. The seven 

states concerned are located in the Midwest: Illinois, Indiana, Kentucky, Michigan, Minnesota, 

Missouri and Ohio.  

 The phenomenon was chiefly identified in Canada, (Eckert, 2002, 2003; Noel 2007a, 2007b; 

Atkinson, 2009) and Australia (Wang, 2008, 2009a; Erutku & Hildebrand, 2010) although often 

associated with tacit collusion. Finally, the only European study detecting Edgeworth cycles in 

retail petroleum markets was conducted for Norway by Foros & Steen (2008) although it is one 

of several explanations. Since price cycles are usually detected with high-frequency city-level 

data, further investigation into EU petroleum markets is likely to be costly. A discussion of the 

Edgeworth phenomenon can be found in the literature review- chapter 2. 
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1.4 The EU Petroleum Markets 

The wave of mergers in the oil industry in the late 90s raised many concerns for policy-makers 

given the high level of vertical concentration in the oil industry. The whole process of extracting 

and refining crude oil and selling its refined product to the end user is increasingly controlled by 

one single ‘Big Oil’ company. The increasing concentration in the oil production industry has 

frequently been associated with higher concentration in the gasoline wholesale and retail 

markets as well. Nonetheless, considering upstream (crude to wholesale) and downstream 

markets (wholesale to retail) as following similar trends might be erroneous. Given that the oil 

industry is dominated by 5 integrated “Big Oil” companies (Exxon-Mobil, Chevron, BP, Royal 

Dutch Schell and Total) the fact is often taken for granted.  

  I provide a brief overview of the crude oil market as well as the refining market and I further 

present the wholesale and retail petroleum markets.  

 

1.4.1 Crude oil purchase 

Although the upstream markets are outside the scope of this research, a brief presentation of the 

world market for crude oil is paramount to understand the position of the EU countries.  

Indeed, the European Union taken as whole is highly dependent upon crude oil imports. Even 

though there are indigenous sources – mainly from the North Sea, Romania and northern Italy – 

they are insufficient to meet EU requirements. The main sources of imported crude oil include 

chiefly Russia, the Middle East and Northern Africa.  Table 1.1 below shows the repartition of 

proven (a debatable concept) oil reserves in the world; one can observe that no single EU 

country is in the top 10 which comprises: Canada, Iraq, Iran, Kuwait, Libya, Nigeria, Russia, 

Saudi Arabia, the United Arab Emirates and Venezuela. 
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Table 1.1 - List of the world’s top 10 countries with proven oil reserves 

Source: U.S. Energy Information Administration, International Energy Outlook 2013 

 

 The variety of potential sources of crude oil means refineries in diverse locations use different 

crude oils, which are only imperfect substitutes. Although figures differ according to sources, 

one can consider that there are nearly 200 varieties of crude oil traded in the world markets. In 

general, the European  market is divided into three regions of refining and wholesale activities– 

North West Europe (NWE), the Mediterranean (MED) and the Central and Eastern Europe 

(CEE), as shown in Figure 1.5 below. 
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Figure 1.5 - Oil products regions in Europe 
Source: Poyry (2009) 

 

This division is based on the consideration of transportation infrastructure, distribution markets 

and accessibility to different crude streams. For example, North Sea crude blends account for 

around 48% of the crude oil used in refineries in NWE, whereas 80% of the crude in the CEE is 

Urals crude (see Figure 1.6 below). 
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Figure 1.6 - Crude varieties and market share by source 

Source: Poyry (2009) 

 

1.4.2 Refining and wholesale markets 

  Refining capacity in the EU has been relatively stable over the last twenty years, and most of 

the activity has been centred in Western Europe. Over half of the capacity is situated in NWE 

where refineries are larger, enabling them to benefit from greater economies of scale. The 

capacity is not uniformly dispersed: refineries are often clustered around strategic infrastructure 

facilities such as major ports or pipelines (Figure 1.9). These clusters are at the heart of 

wholesale trading hubs, by far the largest of which is the Amsterdam-Rotterdam-Antwerp 

(ARA) market.  
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Figure 1.7 - Map of refinery clusters 

Source: Poyry 2009 

 

Furthermore, figure 1.8 below shows the refining capacity of the top 10 refiners in the European 

Union. In 2009, the top six refinery players in the EU accounted for around 50% of capacity, but 

the market itself is not excessively concentrated if I calculate the Herfindahl-Hirschmann Index 

(HHI). However, the main players differ between the regions. Whereas the International Oil 

Companies have a strong presence in the NWE market; they are less prominent in the MED 

market. In the MED region, National Oil Companies (NOCs) such as Repsol and ENI are the 

major players. The CEE region is also dominated by the NOCs. 

 The wholesale petroleum market is the non-physical market- generally centred on the refining 

hubs- that facilitates the contracts between refiners and retailers. The main feature of the 

European wholesale market is that the main reference price is the ARA (Amsterdam-Rotterdam-

Antwerp) for most of Europe and there are region-specific reference price such as the MED 

(Mediterranean countries) and the NWE (North West Europe). 
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Figure 1.8 - Refining capacities of the top 10 refiners in the EU 

Source: Poyry (2009) 

 

1.4.3 Retail markets 

This subsection presents some general information on the twelve countries analysed in chapter 

3; further details can be found in section 3.1.  

  Whilst some APT often refer to the global oligopolistic position of the “majors” in the oil 

industry, the major oil companies have seen their market shares decreasing (or stabilising) in 

most countries in the last two decades. The trend is very pronounced in countries where 

hypermarkets play an important role in the petroleum retailing business. For instance, in the UK 

the volume share of oil companies (supplying the gasoline and the brand sign to the station) has 

shrunk from 47.5% in 2000 to 28.3% in 2011. (Experian Catalist reports, 2011)2. The pattern is 

different in Germany: the volume share of supplying oil companies in 2011 represents 35.6% (it 

was 66% in 2003) of the market, against 59.8% for the independent dealers (29.1% in 2003). 

This pattern is also observed in France where hypermarkets deliver the largest volume (61%) of 

                                                   
2 All the market share figures in this chapter are taken from Experian Catalist reports, unless stated 
otherwise. 
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gasoline and diesel despite the leadership of the oil companies such as Total in number of 

stations (47% against 41%, UFIP)3.  

 In contrast, the Dutch market presents a very different structure and has experienced an 

opposite trend. The volume share of oil companies in the retail market has increased from 

47.1% in 2002 (32.6% of stations) to 57.4% in 2011 (47.8% of station). As the hypermarkets 

have insignificant market shares in the Netherlands, the major oil companies led by Shell have 

been able to improve their position. As far as Spain is concerned, the restructuration is not as 

pronounced as in the other markets; the supplying companies have lost some volume share 

(from 32.6% in 2003 to 30.7% in 2011) and sites share (from 29.3% to 24.8% in 2003-2011) to 

the benefit of hypermarkets. Finally the Italian retail market shows an overwhelming 

domination of NOCs, although there has been a decrease in their volume share from 83.2% in 

2003 to 70.3% in the end of 20104. 

 Overall, major and international oil companies hold approximately 50% of Europe’s service 

stations network according to recent reports (CBRE, 2013). Their share has fallen by 5% since 

2009. National and independent networks are expanding their coverage at a faster pace and have 

grown by approximately 10% within the same period. Figure 1.9 below illustrates that 3 

supermajors -Shell, Total and Esso- are the leading companies in Europe.  Two NOCs, Eni 

(Italy) and Repsol (Spain) are also in the top 10 due to their dominance in their national 

markets. Nevertheless, IOCs such as Q8 and Lukoil possess almost as many petrol stations as 

Repsol, although their strategy is to hold a limited market share (usually less than 10%) in every 

EU country.  

 

                                                   
3 www.ufip.fr: website of the French Union of Petroleum Industry. 
4 The distinction in the Experian Catalist reports is between 3 actors in the petrol retailing market: a) the 
supplying oil companies which are generally vertically integrated oil companies b) the independent 
dealers or petrol stations that are possibly branded by a Big Oil Company but never belongs to the supply 
chain and c) the hypermarkets chains or supermarkets which are major players in France and the UK 
(dominated by Carrefour, Leclerc and Intermarche in France; Tesco, Asda, Sainsbury, Morrisons in the 
UK). For the purpose of this thesis I distinguish three sub-categories of supplying oil companies: majors, 
international (IOCs) and national companies (NOCs) 
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Figure 1.9 - Number of sites of the top 10 petroleum retail firms in Europe, 2013 

Source: CBRE (2013) 

 

Figure 1.10 below shows that majors still dominate the EU petroleum markets and that the 

IOCs, NOCs and independent retailers (others) follow with similar market shares. Supermarkets 

(and hypermarkets) still play a relatively marginal role at the European level in spite of their 

dramatic growth in France and the UK. The reason is that they focus on a high-efficiency, high-

volume and low-cost strategy while holding few sites compared to the major actors in the 

market. Indeed the data reveal that most of the increase in market share is due to the closure of 

many majors, IOCs and NOCs petrol stations. On the other hand, supermarkets’ now sell the 

highest volume of fuel in France despite the dominance of Total in terms of number of sites. 

 

Figure 1.10 - Market share by retailer type 

Source: CBRE (2013) 
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Table 1.2 below shows the market concentration statistics for each of the countries analysed. 

2013 HHI1  

 

Table 1.2 - HHI, Cumulative Market Share (MSTOP3) and top 3 firms 

Source: CBRE (2013).  

Notes: 1.HHI stands for the Herfindahl-Hirschmann index 

2.MSTOP3: cumulative market share of the top 3 firms 

 

Figure 1.11 below exhibits the important differences across Europe in terms of the market 

shares of majors, IOCs, NOCs, supermarkets and ‘others’ (independent retailers). 
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Figure 1.11 - Retail Market Shares by category of firm 

Source (CBRE 2013) 

 

 

1.5 Motivation and research objectives  

Whilst the issue of asymmetric price transmission has raised a lot of interest in the last 25 years 

with over 75 articles investigating the issue, I observe that more than 80% of the articles are 

based on the petroleum industry, mostly for the following reasons: 

-The cost of fuel for the average European driver; driven mainly by high taxation but also 

increasing oil prices in the long-run and reduced income due to the recent periods of recession. 

-The relationship between petroleum prices and the overall inflation. For example, the key role 

of diesel prices for the transport and travel industry is vividly demonstrated by the impact of 

diesel prices on groceries and supermarkets’ prices. 

-The increased scrutiny over the petroleum industry following the wave of mergers in the late 

90’s of the last century. There is an assumption that such mergers could generate oligopolistic 

behaviours; there is also a need to analyse the real impact of such mergers on the petroleum 

retailing industry.  
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Consequently, there are a number of gaps identified in the literature which are the basis for 

establishing key research objectives: 

 Aggregation over time. The most recent papers have increasingly used disaggregated 

data although they focused mainly on North American petroleum markets. The next 

chapter will justify the necessity to use weekly and daily data for APT studies, as the 

results based on monthly data are less appropriate with recent data. For this reason, I 

use only weekly and daily data in the present thesis; the comparison between the weekly 

and daily models at the UK level provides some important insights. 

  

 Aggregation over space. The early studies have used national averages of retail prices; 

the most recent have increasingly looked into the microeconomic level. Whilst 

complaints are often based on local observations made by drivers at the local level, 

most studies uncovering APT used nationally aggregated data. As a consequence this 

thesis analyses APT at the EU and the UK levels to conclude on the relationship 

between asymmetries and market structure; and the local level (Birmingham) to 

understand the pricing mechanisms involved in the petroleum retail markets. 

 

 Aggregation over the distribution chain. Whilst this has been an issue with the early 

papers, most recent papers have studied the downstream relationship between spot 

prices and retail prices. It is also the focus of the present thesis as the existing evidence 

confirms that APT is a phenomenon that takes place within the downstream segment of 

the distribution chain. 

 

 Two-way causality. There is a unanimous assumption in the literature that the 

relationship between spot and retail prices is structural, Geweke (2004) found little 

questioning of the possibility of feedback from retail to spot prices. This possibility 

exists when I analyse the transmission of Rotterdam spot prices to the national average 
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prices of the major EU countries. Our preliminary results confirmed the endogeneity of 

mid-stream spot prices (ARA) and as a consequence the importance of using VAR/VEC 

type of models. This is explained in detail in Geweke (2004) who suggests that 

downstream markets might be small and local but they are not independent. 

 

 Region of study. Whilst the first paper focusing on “rockets and feathers” is Bacon’s 

(1991) investigation of the UK petroleum markets, most subsequent studies have 

focused primarily on North American markets. EU studies using weekly or daily data 

are underrepresented in this strand of the literature. There is also a lack of cross-country 

comparisons except from Galeotti et al (2003) who used monthly data for France, 

Germany Italy, Spain and the UK. 

In line with the above, the aim of the present thesis is three-fold. First, to outline the relationship 

between market concentration and asymmetry using European weekly data. Second, to consider 

the effects of different pricing regimes during booms and recessions on APT using UK prices. 

Finally, to understand the pricing mechanisms and competition at a more local level with the 

available Birmingham (UK) data.  

 

1.5.1 APT and market structure  

  The first empirical study aims at testing empirically the collusion theory with a cross-country 

comparison between the main 6 countries (further, 12 countries) in the EU. I argue that market 

concentration as measured by the Herfindahl-Hirschmann Index (HHI) is related to the degree 

of APT. If countries with higher concentration in retail petroleum markets exhibit higher 

asymmetries, this would support the collusion theory. On the other hand, the comparison 

between diesel and gasoline price transmission could reveal different price-setting strategies by 

fuel retailers depending on their customers’ price elasticities. Particularly, Johnson (2002) 

argued that the higher degree of APT in the gasoline market than in the diesel market could be 
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caused by the higher search costs faced by American gasoline users. Similar results would thus 

provide support to the search costs theory. 

 Further, I extend the analysis to 12 EU countries and include additional explanatory variables to 

analyse the determinants of APT. Vertical concentration is measured by the volume sold in 

retail stations by companies operating in the refining business. Margins as measured by the 

difference between retail and wholesale prices are considered as a proxy for the market power 

of the vertically-integrated firms. 

 

1.5.2 APT, data frequency and structural break: evidence from the UK 

 This study aims at uncovering the determinants of APT. It shall also outline the importance of 

data disaggregation in the APT literature. It finally enables us to test whether volatility has a 

decreasing effect on the level of asymmetry as stated in the literature. Structural break tests 

enable us to differentiate pricing regimes. I identify two types of pricing regimes: long periods 

of rising prices and period of declining prices and economic recession. The overall trend is that 

petroleum prices are increasing and the recessive periods correspond to the dot-com bubble 

burst of 2000 (from January 2000 until March 2001) and the consequences of the financial crisis 

of 2008 (May 2008 to January 2009). I investigate the findings of Peltzman (2000) and 

Radchenko (2005b) on the negative relationship between volatility and the degree of asymmetry 

and I observe that periods of recession might be associated with higher volatility although not 

always. I discuss whether the presence or not of APT depends more on price volatility or on the 

long-run oil price trend. To conclude, I link the findings to economic theory and provide support 

to the collusion theory. 
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1.5.3 Sticky prices at the Birmingham (UK) level 

This investigation slightly departs from the APT literature as the main characteristic we observe 

in local daily data is the fact that prices are in fact sticky downwards as well as upwards. Due to 

non-availability of data, we only focus on the year 2008. Although we find no evidence of 

significant APT, it seems that firms with market power react more slowly than competitive 

retailers. This is consistent with the collusion theory as well as the menu costs theory in its 

broader definition.   
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2. Literature review 

What is asymmetric price transmission (APT)? The literature is unanimous: when petroleum 

prices respond to cost increases faster than they do to decreases, there is asymmetry. APT has 

been the subject of considerable attention in the last three decades, especially in the petroleum 

industry.  The start of the APT literature in petroleum markets dates back to Bacon (1991) who 

introduced the concept of “rockets and feathers” in gasoline markets. From the consumers’ point 

of view, they often observe that the retailers respond much quicker to a crude oil price increase 

than to a similar decrease. 

  The press often linked this with the collusion theory and the early literature only mentioned 

this explanation as the most plausible without formal testing. Economists are particularly 

interested in the rockets and feathers literature as it may have revealed some key gaps in 

economic theory. From the policy-maker viewpoint, the lack of theoretical framework 

explaining APT also calls for further investigation. Indeed Peltzman (2000) showed that in the 

great majority of the 282 products’ prices he investigated, APT was predominant. It seems that 

the petroleum markets have been more scrutinized than other markets due to the economic 

weight of the industry and the recent wave of mergers.  

 The present review of the literature confirms the presence of significant APT in numerous 

countries. Excluding those studies that provided mixed results, APT was detected in Canada, 

Chile, France, Germany, Italy, the Netherlands, Norway, the Philippines, Spain, Sweden, the 

United Kingdom and the United States.  Whilst I note that the early studies using monthly data 

found evidence of asymmetry, when the data are more recent the results are rather mixed. I 

argue that as oil price volatility increased from 2000 onwards, studies covering the last 15 years 

shall use weekly data as the lowest frequency. 

  I further argue that it is unlikely that APT can be uncovered with recent monthly data; as the 

frequency should at least approach that of cost movements. For instance, Birmingham et al 

(2011) use a TAR-ECM and monthly data from 1994 to 2009 for the UK and Ireland and 



 
 

56 
 

rejected the presence of APT. Similarly; Perdiguero (2010) used a VAR methodology with 

monthly Spanish data from 1998 to 2008 and found no evidence of APT.  

  I further discuss similar issues linked to data aggregation such as aggregation over the supply 

chain. I note the important number of papers (15) investigating the pass-through of crude oil 

prices onto retail prices through one unique structural equation. Whilst some studies 

investigated different tiers such as Galeotti et al (2003), other have shown how important it is to 

disaggregate the data along the supply chain. Meyler (2009) confirmed this fact empirically with 

recent European data; providing support to the critical review of Geweke (2004). 

 Moving to theoretical considerations, I argue that the mounting debate in the APT literature is 

due to the gap in economic theory it represents. Most early papers on APT were purely 

empirical with no link at all with theory. However, the tacit collusion explanation was often 

mentioned as the most plausible based on market conditions. More recent papers have departed 

from this theoretical assumption of tacit collusion and have actually tested alternative theories in 

order to explain the presence of asymmetries. So far there are few published papers supporting 

the search theory (4) and the collusion theory (5), whilst there are 12 published studies on the 

Edgeworth price cycles phenomenon. This shows how complicated it is to test the alternatives 

explanations for APT whereas detecting the presence of Edgeworth cycles requires to obtain 

some panel data. Interestingly, the Edgeworth cycles is a localized phenomenon only detected in 

a certain number of cities in the Midwestern USA (Lewis and Noel, 2011) and Canada (8 

studies) mainly; and more recently in Australia (Wang 2008, 2009) and Norway (Foros and 

Steen, 2013). 

2.1 Previous reviews 

 Although there have been four published reviews of the issue of APT, three reviews encompass 

various topics whereas only Perdiguero (2013) is specifically focusing on APT in petroleum 

markets. The first review of the issue of APT was conducted by Meyer and Cramon-Traubadel 

(2004), who were motivated by the “considerable attention in agricultural economics” (page 
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581). They note that whilst Peltzman (2000) found evidence of asymmetry in two-thirds of all 

the cases he investigated, the evidence of asymmetry in their review does not exceed 50%. They 

interestingly conclude: “the existing literature is far from being unified or conclusive, and that it 

has often been largely method-driven, with little attention devoted to theoretical underpinnings 

and the plausible interpretation of results” (Meyer and Cramon-Traubadel, 2004: 581). They 

particularly note the lack of link between market power and APT, an observation that is still 

valid today: “to date only a few attempts have been made to test the link between market power 

and APT empirically”… “Generally, attempts to test the link between APT and market power 

must deal with two major difficulties. First, most empirical studies of APT deal with only one 

product/market using times series data. Unless important changes in market power are known to 

have occurred within the study period, this sort of analysis provides no basis for comparing 

price transmission under conditions of more of less market power because there is no variation 

in the treatment variable” (Meyer and Cramon-Traubadel, 2004: 588).  

  They further argue that using a broad cross-section of different products similar to Peltzman 

(2000) would allow drawing conclusions on the link between market power and APT. Although 

this requires studying more than one industry one can transpose Peltzman’s methodology into 

one unique industry but across various countries. Finally, they report the difficulty to find an 

appropriate proxy for market power: Peltzman (2000) used two proxies that gave him 

contradictory results. Whilst a higher number of competitors increased the level of APT, a 

higher market concentration as measured by the HHI decreased the level of APT. They 

conclude their review by observing that the issue of APT first emerged in the agriculture 

industry and that other researchers could benefit greatly from looking into this important work.  

  Frey and Manera (2007) analysed the econometric models of APT in general, taking a meta-

analysis approach. Although the excellent discussion of the different models used in the 

literature is highly valuable, I hereby focus on the main results of the meta-analysis. Out of the 

70 reviewed studies (34 on the US) published between 1991 and 2005, 34 focused on the 

petroleum industry, 18 on the agricultural industry, 16 on the alimentary industry and 2 on other 

industries. Out of the 70 papers considered in the survey, which provided 87 different models, 
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only 11 models exhibited no evidence of APT at all. They also note that 72.9% of the studies 

conducted no causality tests between input and output prices. This and data aggregation over 

tiers probably explain the lack of studies (3 only) using a VECM instead of the ECM in its 

different forms (39). Interestingly, this review contradicts Bachmeier and Griffin (2003) and 

Bettendorf et al (2003) as far as data aggregation is concerned. For instance the percentage of 

rejection of asymmetric pricing is the same (12%) with weekly (33 papers) and monthly data 

(42 papers). Indeed monthly data may well be still appropriate for markets known to be less 

volatile than petroleum markets.  

 Eckert (2013) reviewed gasoline retailing whilst considering the relationship between market 

structure and pricing in general. Hence, the issue of asymmetric pass-through only represents 

one section and the Edgeworth cycles literature is discussed in greater depth. Eckert’s choice to 

discuss different aspects of gasoline pricing rather than only APT may be explained by the fact 

that he instigated the recent large Edgeworth cycles (EC) literature with the two earliest papers 

on the topic (Eckert, 2002 and 2003). It is worth noting that APT has only been identified by 

Sen (2003) in the petroleum markets, who linked the presence of asymmetric pricing to market 

power. On the other hand, 8 out of the 12 papers uncovering EC utilised Canadian data. Eckert 

(2013) reviewed all articles published since 1980 and outlines more particularly the recent 

developments in the literature:  

“Due likely in part to this regulatory and antitrust attention, a large empirical literature studying 

gasoline retailing has developed. Since 2000 alone, over 75 empirical studies of gasoline 

retailing have been published in English language academic journals, with many more studies 

existing in working paper form or as reports issued by governments or other agencies or 

institutes” (Eckert, 2013, p1).  

Also he outlines the importance of providing an up-to-date survey: 

 “Much of the literature is very recent, with 79 of the 102 studies collected being published in 

the 2000s” (Eckert, 2013, p4). 

 In turn his study includes 102 papers of which 26 focus on asymmetric pass-through and 15 on 

EC. The distinction made in this survey between APT studies and EC studies is justified, 
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considering that Edgeworth cycles can exist independently from any upstream change; whilst 

APT can only be detected through modelling the transmission of upstream prices to gasoline 

prices. In addition Edgeworth cycles are generally found with station level data (in general 

daily) whilst asymmetries can be found with averaged or aggregated data and lower frequency 

data (mainly weekly).  

Nonetheless, he confirms the evident fact that crude oil prices play a larger role in the 

determination of the fuel retail price levels than market concentration.  He goes further than 

Meyer and Cramon-Traubadel (2004) by stating that the precise characteristics of the retailers in 

a market may be more important than mere measures of concentration.  

 Moreover, he notes that although space does matter although the impact of local market power 

seems rather small. On the other hand, the impact of mergers on retail gasoline prices remains 

unclear and seems to depend on the data used. In general, some further theoretical developments 

are to be expected to better understand APT and EC. Finally he concludes that a better 

understanding of the retailers’ pricing strategy would require estimating demand equations for a 

large number of individual stations at least at a daily frequency.  

 Perdiguero (2013) also used a meta-analysis to discuss the great heterogeneity of results in the 

literature focusing on APT in the petroleum industry. The focus of this meta-analysis differs 

from that of Frey and Manera (2007) and it provides some interesting insights. First, the results 

show that APT is more likely to be observed at the downstream stage of the oil industry; in 

other words in the transmission of spot/wholesale prices onto retail prices. Second, it shows the 

importance of using daily data rather than weekly or monthly data to capture the increasing 

volatility of petroleum prices. Third, the model type (regime-switching models or VECM/VAR) 

does not appear to be the cause of the heterogeneity in the results. Fourth, he finds that the 

papers using the most recent data are more likely to accept the hypothesis of symmetric price 

transmission. He argues that this might be the consequence of increased competition at the retail 

level. Fifth, he presents evidence suggesting that papers which analyse a specific area are more 

likely to find evidence of APT. Sixth, the longer the sample, the less likely is the uncovering of 

the APT phenomenon.  
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 This suggests that APT might be period-dependent. Finally, he concludes that APT might be 

related to the level of competition in the market. He states that the retailing market is the least 

competitive (as compared to upstream markets) although there is no data provided to back this 

statement. 

The 4 reviews provide various and highly valuable insights in terms of both empirical facts and 

theoretical implications. Frey and Manera (2007) and Perdiguero (2013) both conducted meta-

analyses: whilst the former showed the predominance of APT across industries, the latter 

revealed that increased competition in the petroleum industry seems to have reduced the 

occurrence of APT. On the other hand Meyer and Cramon-Traubadel (2004) and Eckert (2013) 

both suggest that to better understand APT, it is necessary to focus on the link between the 

empirical findings and the collusion theory. The former advocates the use of cross-section 

studies between different countries and the latter the estimation of retailers’ demand equation 

with high-frequency panel data. 

 

2.2 Empirical review 

This section provides a chronological overview of the empirical contributions to the APT 

literature. The literature focusing on asymmetries in petroleum markets is strongly related to the 

characteristics of the time series studied. In fact over a long time period, retail gasoline prices 

seem to perfectly follow the pattern of crude oil prices or spot prices. The characteristics of 

petroleum price data involve that the error-correction model (ECM) is chosen in most empirical 

papers. Asymmetries represent short-lived departures from the long term relationship between 

input prices and retail prices.  

 Apart from the recent ones using panel data, all the “rockets and feathers” papers assume a 

long-run stable relationship between the retail price and the input price which can be any price 

taken from the petroleum production chain: crude, rack, terminal or wholesale. Given that 

obtaining the actual wholesale prices is far from being an easy task, most studies used 

‘reference’ input prices such as the terminal or rack prices for the US studies or the Rotterdam 



 
 

61 
 

(ARA) spot prices for European studies. The trend in the literature is to disaggregate the data as 

much as possible in order to identify in which tier asymmetries are found along the supply 

chain. The standard procedure is to test whether the series used are unit roots and in this case the 

cointegration test is performed. The data always confirms this and the long-run relationship is 

then written: 

Rt = γ0 + γ1Wt + et                 (2.1) 

R is the Retail price (the unleaded gasoline price is studied in most papers) and W represents the 

Wholesale price. The constant γ0 represents the fixed costs implied in the gasoline retailing 

industry such as marketing and labour costs. The coefficient on the wholesale price γ1 represents 

a proxy for the relation between the elasticity of demand and the price at the retail level and et is 

the error term. 

The mainstream literature uses the standard Engle and Granger (1987) procedure to compute the 

constant and the coefficient γ1. Equation (2.2) below represents the ECM without autoregressive 

terms. 

 ΔRt = α + λ+ (Rt-1 – γ0– γ1 Wt-1) + + λ- (Rt-1 – γ0– γ1 Wt-1) - + Σ βi
+ (ΔWt) 

+
 + Σ βi

-
 (ΔWt) 

- + εt  (2.2) 

 

Rt-1 – γ0– γ1 Wt-1 is the error-correction term; it is split into positive and negative deviations from 

the long-run equilibrium. The lambdas represent the speed of adjustments coefficients; in other 

words the speed of return to the long-run equilibrium. In many papers the restriction λ+= λ-  is 

imposed; for example in Borenstein et al (1997).  

Sometimes autoregressive terms are included, as for example in Johnson (2002): 

ΔRt = α + λ+ (Rt-1 – γ0– γ1 Wt-1) + + λ- (Rt-1 – γ0– γ1 Wt-1) - + Σ βi
+ (ΔWt) 

+
 + Σ βi

-
 (ΔWt) 

– 

+ Σ θi
+ (ΔRt-i) +

 + Σ θi
-(ΔRt-i)- + εt                                                               (2.3) 

Table 2.1 below shows the empirical studies looking at asymmetries in pricing in gasoline 

markets.  
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Table 2.1 - Purely empirical APT studies (continued) 

Notes for table 2.1: 1 Data frequency - D: daily, W: weekly, 2W: bi-weekly, M: monthly. 2 Country - 
DE: Germany, FR: France, CA: Canada, IR: Ireland, NL: the Netherlands PH: Philippines, SE: Sweden, 

NZ: New Zealand. 3Model - PAM: partial adjustment model, ARDL: Autoregressive distributed lag 
model, ECM: error-correction model, SETAR: self-exciting TAR model, STAR: smooth transition AR 
model, TAR: threshold autoregressive model, VECM: vector ECM, VAR: vector autoregressive model. 

4Prices - C: crude oil, S: spot, W: wholesale, R: retail. 5Product – P: petrol/gasoline in its leaded or 
unleaded forms, D: diesel, HO: heating oil/gasoil. 6Results - Y: Significant asymmetries detected, N: no 

significant asymmetries detected, M: mixed results. 
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Although I selected 33 published journal articles, there are numerous government reports and 

working papers available online. In general government reports cover large areas and use 

different methodologies and the results are often mixed. I avoid examining working papers for 

consistency of results. As there have already been recent reviews of these empirical papers, I 

only provide further insights towards a better understanding of the APT phenomenon.  

 Tables 2.2, 2.3, 2.4 and 2.5 present some features of the empirical studies. These features are 

only useful when compared to those of the theoretical papers presented in the next section. I 

briefly note that most empirical papers used monthly or weekly national data and that only 

Duffy-Deno (1996) used local panel data. The other exception is the study by Asplund et al. 

(2000) which focuses only on retail data for one petroleum retailing firm.  

 I also note that 14 out of 33 papers analysed the pass-through of crude oil prices onto retail 

prices directly. The problems associated with such a methodology are explained by Geweke 

(2004), Wlazlowski (2008) and Meyler (2009) and need not to be confirmed by further 

evidence. Perdiguero (2013) also confirms that APT is more likely to be observed at the retail 

level. Wlazlowski et al. (2012b) stand out as the unique empirical paper focusing solely on the 

upstream stage of the petroleum industry.  Finally, most empirical papers have focused either on 

the US (15) or the UK (7) and 5 papers perform a cross-country comparison using European 

data. For instance, Wlazlowski et al. (2009) include 25 countries EU in the analysis, although 

with different samples. 

Frequency Number 
Monthly 13 
Weekly  12 
Daily 5 

Bi-weekly 2 
Total 34 

Table 2.2 - Empirical papers - Data frequency 
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Country Number 
US 15 
UK  7 
EU 5 
DE 2 
NL 2 
CA 1 
FR 1 
IR 1 
NZ 1 
PH 1 
SE 1 

Total 37 
Table 2.3 - Empirical papers - Country covered 

 

Tiers Number 
C, R 14 
W, R 11 

C, W, R 5 
C, S, W, R 2 

C, W 1 
Total  33 

Table 2.4 - Empirical papers - Tiers covered 

 

Spatial aggregation Number 
National 26 

EU 5 
Regional 1 

Firm level 1 
Total 33 

Table 2.5 - Empirical papers - Type of data used 

The empirical papers on APT in petroleum markets can be classified into two phases: the 

pioneers published between 1991 and 1999 and the proliferation phase between 2000 and 2012. 
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2.2.1 The pioneers of the APT in petroleum markets literature: 1991-1999 

  Only 8 articles have been published during these 9 years; these can be viewed as the pioneering 

APT investigations. Unsurprisingly, they concentrate only on the question of the presence of 

asymmetries or not. Bacon (1991) first used bi-weekly data for the UK for 1982-89 and a partial 

adjustment model (PAM) with a quadratic term to incorporate asymmetry. He found some 

evidence of APT from wholesale prices onto retail prices; the degree of asymmetry seems 

marginal and likely driven by the large drop in upstream prices in 1986 and the spike of 1989. I 

note how with the sample period used, increases were passed-through within two months, whilst 

one more week was required for decreases. With such a marginal and short-lived asymmetry, he 

confirmed governmental reports that UK gasoline markets were highly competitive. The 

methodology raises some questions whilst the main contributions are the use of the dollar/pound 

exchange rate and the ARA (Amsterdam-Rotterdam-Antwerp) spot price. 

  Manning (1991) focused on a longer timespan with UK monthly data for 1973-88 and a 

classical ECM instead of the PAM. Analysing the transmission of crude oil prices onto UK 

retail prices, he also found evidence of APT although he describes them as weak and non-

persistent. The issue lies in the elasticity of retail prices with respect to crude oil prices that does 

not exceed 30 percent, a very partial pass-through. Given the high level of data aggregation and 

the elimination of coefficients in the modelling exercise, Geweke (2004) argued that there are 

good reasons not to trust the results. Indeed the time needed for the full pass-through of input 

prices is 2 years, which seems highly implausible. 

Kirchgassner and Kubler (1992) also looked at West Germany using monthly data from 

1972 to 1989. They analysed the response to the Spot Rotterdam price of both consumer and 

producer leaded gasoline prices. They fitted both symmetric and asymmetric ECMs, 

distinguishing between two periods chosen due to an assumed structural break: the sudden 

increase in liquidity in January 1980. For the 70s, they found considerable evidence of APT 

whilst for the 80s they did not find evidence of asymmetric adjustment of prices. They point at a 

possible higher monopolisation of the market before the structural break. This study calls for 
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more investigation on the relationship between petroleum retail market concentration and the 

presence or not of asymmetries.  

 Shin (1994) used monthly US data from 1986 to 1992 to investigate the transmission of 

crude oil prices onto wholesale prices and of wholesale prices onto retail prices. He utilised two 

different models: the PAM used by Bacon and also an autoregressive distributed lags model 

(ARDL); both methodologies rejected the hypothesis of APT. In fact he found that if 

asymmetries exist at the upstream level, it is negative asymmetry as wholesale prices seem to 

fall faster than they rise.  

In the first APT study to focus on a particular city, Duffy-Deno (1996) found evidence of 

asymmetries in Salt Lake City with weekly data from 1989 to 1993. Using an ARDL, he 

provides evidence that retail prices adjust more fully to cost increases than to cost decreases. He 

argues that although asymmetry is predominant, during market shocks the evidence points in the 

direction of symmetric pass-through.  

Borenstein et al (1997) first used weekly prices at 4 different stages of the US petroleum 

supply chain: crude, wholesale, terminal and retail for 1986-1992; this paper is often 

considered as a seminal paper. The other notable improvement is the performing of 

endogeneity and causality tests. They find evidence of APT from crude to sport and from 

wholesale to retail. On the other hand, they do not find evidence of APT from spot to wholesale 

prices. They also provide alternative explanations without formal testing. They argue that 

upstream APT may be due to inventory adjustment asymmetric effects whilst APT downstream 

may indicate short-run market power among retailers.  

Eltony (1998) also used and ECM and monthly data for 1980-96 to examine the 

transmission of crude oil prices onto UK and US retail prices. The empirical results strongly 

support the APT hypothesis in both the UK and the USA. As far as the UK is concerned there 

is also evidence that there is also APT of exchange rate changes. 
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Reilly and Witt (1998) used crude and retail UK monthly data over the time period 

1982-95 with an ECM. Their empirical evidence showed strong evidence supporting the 

presence of APT in the UK retail markets; as they concluded that most of the increase in crude 

oil prices appears to be passed through within a given month with cost reductions taking 

somewhat longer to feed through to pump prices. The evidence on the exchange rate is less 

clear-cut. In the short-run, devaluations in the three month moving average of the dollar sterling 

exchange rate are passed on as cost decreases with an effect that is comparable to the long-run 

effect. In contrast to Bacon (1991), the authors did not find evidence suggesting that change in 

crude prices and the exchange rates are fully passed on into retail prices in the long-run. 

 

2.2.2 The proliferation phase: 2000-2012 

 Twenty-five purely empirical papers were published on the topic during those thirteen years at 

a rate of nearly two per year; this fact shows how the papers published in the 90s have created a 

literature specific to the petroleum markets. The objective reasons for such a rising interest may 

also be the wave of mergers in the oil industry from 1998 to 2001 as well as the increasing 

volatility observed from 2000 onwards.    

Asplund et al. (2000) use daily data and an ECM for 1980-1996 to investigate pricing 

dynamics in the Swedish gasoline market. They introduce firm-level data into the APT literature 

and provide further insights on the role of exchange rates in APT. They find support for the 

hypothesis that the retail price is stickier downwards than upwards in response to the cost 

shocks. They also find that the retail price responds more quickly to changes in the exchange 

rate than to spot price movements. They explained the difference in responses by the greater 

volatility of the spot price. According to their conclusions, firms may wait to see whether the 

spot price reverts, but react faster to the less volatile exchange rate. 

Godby et al. (2000) studied the Canadian market for both premium and regular gasoline, 

using weekly data from 1990 through 1996 for 13 Canadian cities. They used the TAR model 
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within an ECM framework and did not find evidence of APT for several reasons. First, they 

pointed out that there are twice as many service stations per capita as in the US. Secondly, they 

underline the problem of data availability associated with several previous studies. They 

conclude that previous studies using biweekly or monthly date cannot be trusted. 

Indjehagopian et al (2000) used monthly French and German data for heating oil prices 

for the period 1987-97 with a vector error-correction model and do not find evidence of APT. 

The main features are the use of the DM/US$ and FF/US$ exchange rates and rigorous 

structural break tests and weak exogeneity tests. The pass-through of spot Rotterdam heating oil 

prices onto retail heating oil prices appears to be symmetric; although monthly data may be too 

aggregated to possibly uncover APT. 

Peltzman (2000) conducted an ambitious study using large samples of diverse products, 

77 consumer goods and 165 producer goods. He found that asymmetric pricing occurs in two 

out of three cases. This study attempts at linking APT to measures of market concentration and 

is further reviewed in chapter 3. 

Salas (2002) focused on the Philippines retail gasoline market for the period January 

1999 to February 2002. The data used was daily for unleaded gasoline although the author 

computed weekly average to minimise the noise associated with daily changes. He used three 

different models; the ordered Probit regression was used to determine the appropriate lag length. 

He found that the decision to adjust retail prices depends on 8 weeks of previous changes in 

crude cost. He then used a partial adjustment model to measure the adjustment rate of retail 

prices to its long run equilibrium relation with crude price. He finally used an ECM to capture 

the effects to current retail price adjustment of current and lagged changes in crude cost and 

previous price movements. The results support the APT hypothesis.  

Bachmeier and Griffin (2003) commented on Borenstein et al. (1997) by using daily 

data instead of weekly data. They argued that the results in Borenstein et al. (1997) are biased 

by the aggregation of the data and the use of a non-standard methodology. They conclude that 
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there is no evidence of asymmetries in the period 1985-1998 with daily data and state that the 

(ECM) model’s OLS estimation is superior to that of Boresnstein et al. (1997)  

Galeotti et al. (2003) review the issue of APT of crude and spot prices onto retail 

gasoline prices.  They investigate 5 key European countries: Germany, France, the UK, Italy 

and Spain with monthly data from 1985 through 2000. They used an ECM repeated for two 

stages; the first stage is concerned with the transformation of crude oil into the refined 

product, the second deals with the distribution of the leaded gasoline to retailers. They are the 

first authors to use the bootstrap procedure to overcome the low-power of the ECM. The 

results seem to confirm the common perception that price increases are larger than 

reductions, nearly for all countries and for both stages. However, the results should be treated 

with caution due to econometric deficiencies; as it is often the case with monthly data. Some 

coefficients on long-run ECM terms are either not different from zero or are greater than 

unity, suggesting (incompatible with an ECM) explosive behaviour.  

Bettendorf et al. (2003) studied APT in the Dutch retail gasoline market. Similar to most 

studies in the applied literature, they used an asymmetric ECM on weekly price changes for 

the period 1996-2001. On the other hand, the interesting and distinguishing aspect of the 

study is the use of a dataset for each working day. Their results show that the choice of the 

dataset is not as harmless as it seems. The estimation results demonstrate that a spot price 

change is fully passed through to the retail price in the long run. The results do not 

unambiguously point at symmetry or asymmetry. The Wald tests strongly reject symmetry for 

Monday, Thursday and Friday, whereas for Tuesday and Wednesday symmetry cannot be 

rejected. They conclude that the mixed conclusions found in the literature might be explained 

by the lack of robustness of the outcomes. This is probably due to the fact that APT in the 

Dutch market is extremely marginal and might therefore depend on the day of study. In 

chapter 3 I find evidence of APT in the Dutch diesel market, not in retail gasoline prices.  

Driffield et al. (2003) studied the UK market from January 1973 through April 2000 

using monthly data for crude price, retail gasoline price and consumer price index (CPI). The 
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model used is an asymmetric ECM, yet it is different in one aspect. It does not split the short-

run term into positive and negative changes. Instead, the response of petrol prices to 

situations where they are above or below equilibrium are analysed in the equation. Their 

results show petrol prices respond differently to changes in crude oil prices depending on 

whether they are above or below their long-run equilibrium. When they are above 

equilibrium, the response is smaller than when they are below equilibrium, providing the 

evidence of downward stickiness. The different response to increases and decreases in oil 

price are then analysed in a simulation of the model. The graph provided shows a full and 

persistent response to increases while there is strong “clawing back” effect in case of an oil 

price cut and the upward adjustment to equilibrium is far more violent. They conclude that 

firms, instead of seeking to gain market share, seek to increase margins when prices are 

below equilibrium. On the other hand when prices are above equilibrium, any cost reduction 

involves a brief period of price competition. This result is consistent with the collusion 

hypothesis of Slade (1992). 

Wlazlowski (2003) examined the relationship between crude oil prices, the dollar-pound 

exchange rate and petrol prices in the UK for the period 1982-2001. He used monthly data 

and three different models: a classical ECM, a TAR model and a momentum TAR model. He 

found that the short-run responses to cost increases were faster than responses to similar 

decreases and evidence of long-run APT. He also observed that the pass-through is not as full 

as previously assumed, confirming what previous papers uncovered partly. 

Chen et al. (2005) investigate the role of future prices in addition to crude and spot 

prices in the observed APT from 1991 through 2003, using monthly US data. They use a 

threshold ECM and confirm that retail gasoline prices respond asymmetrically to crude and 

spot price changes; but also to future price of ex-refinery gasoline. They conclude that APT 

occurs downstream and not upstream, which according to them points at a search costs 

explanation. 
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Grasso and Manera (2007) revisit the paper by Galeotti et al. (2003) by using an 

updated dataset (1985-2003) and different models as in Wlazlowski (2003): ECM, TAR and 

ECM with threshold cointegration. The most interesting finding is that the APT inference 

depends on the type of model utilised. The asymmetric ECM provides evidence that long-run 

APT is most likely at the distribution level for Germany, Spain and the UK whilst it is found 

at all stages for Italy and France. Similarly, the ECM with threshold cointegration suggests 

that APT affects Spain in each stage of the supply chain and that there is no APT in Germany. 

The short-run asymmetries are best captured by the ECM and the TAR-ECM. The TAR-

ECM suggests that all retail markets are affected by APT with the exception of the UK. They 

conclude by preconizing the use of TAR-ECM to better capture short –run APT and the 

asymmetric ECM fir long-run APT. 

Bettendorf et al. (2009) innovate by using daily data for the Netherlands (1996-2004) 

and by considering GARCH effects through EGARCH-ECM estimation. They state that 

using daily data in OLS regressions leads to a loss of statistical efficiency if volatility is 

serially correlated over time. The EGARCH-ECM model allows capturing volatility 

clustering whilst keeping the cointegration that characterises the data. They confirm that there 

is no long-run amount asymmetry when series are cointegrated; there is however a faster 

reaction to upward changes (8 days) than to downward changes (9 days) in spot prices. This 

is confirmed when observing the pass-through 3 days after the change in spot price: increases 

are more fully passed-through than similar decreases.  

Meyler (2009) attempted to develop the cross-country methodology of Galeotti et al. 

(2003) by considering 12 EU countries and 3 fuels -diesel, heating oil and gasoline- with 

recent weekly data (1994-2008). The EU15 countries are considered with the exclusion of 

Malta, Slovenia and Cyprus. The interesting finding is that spot prices are fully passed-

through onto retail prices for all fuels and all countries. He also argues that using prices in 

raw levels improves the stability of estimates as compared to using log levels. Finally, he 

concludes that even where APT is statistically significant, it is not economically significant. 
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However, I argue in chapter 4 of the present thesis that although the welfare transfer 

generated by APT in the UK retail market may seem marginal from the end user viewpoint, it 

is significant for the big oil companies selling millions of barrels every year.  

Douglas (2010) uses weekly US data for 1990-2008 and a threshold cointegration model 

to analyse the transmission of spot gasoline price onto retail gasoline price. He finds that the 

observed APT is only due to a small number of outlying observations and that once these 

outliers removed from the sample there is little or no asymmetry observed. Even when 

asymmetry is considered with the outliers, the consumer welfare loss is minimal. He 

concludes that retail gasoline prices depart less from traditional price theory than previously 

assumed.    

Liu et al. (2010) examine both diesel and gasoline prices in New Zealand with weekly 

data from 2004 through 2009. Their results exhibit significant APT for the diesel market 

whilst the APT observed in the gasoline market is not statistically significant. They conclude 

by calling for closer monitoring of diesel pricing by the government . 

 Bermingham and O’Brien (2011) use a TAR model with multiple regimes to test for the 

presence of APT in the Irish and British fuel markets with monthly data from 1994 through 

2009. They find no evidence of APT and link it to the very competitive nature of the two 

national markets. Although the methodology is highly advanced by allowing up to 4 different 

regimes, the use of recent (volatile) data at a monthly frequency the results remains highly 

questionable. 

Wlazlowski et al. (2012b) use daily data to examine the transmission from Brent crude 

oil onto the ARA wholesale price from 1994 to 2006. Their analysis includes all types of 

refined products with the exception of liquefied petroleum gas (LPG) due to its different 

nature. The other interesting feature is the use of a STAR model and the comparison between 

the use of weekly and daily data. With weekly data, the results indicate presence of APT only 

for diesel oil. With daily data, the hypothesis of symmetric price transmission is rejected for 
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all fuels. This shows the importance of using daily data to study upstream to midstream price 

transmissions into the EU. They also find that adjustment is faster for large disequilibria and 

slower for small disequilibria. This suggests that the EU suppliers have more arbitrage 

opportunities due to exchange rates; consequently EU petroleum markets are less integrated 

and less efficient than in the US. To conclude, the results provide evidence of the presence of 

ESTAR-type (exponential STAR) nonlinearities which they attribute to transactions costs and 

frictions in price transmission. 

 

2.3 Theory-testing studies 

In this section I focus on studied attempting to link empirics and theory.  First I provide an 

overview in the form of a comprehensive table. Then, I discuss some key contributions that 

have attracted the attention of the research community. 

 

2.3.1 Overview of the theory-testing APT literature 

The 29 theory-testing articles chosen in table 2 are those that attempted to formally provide a 

link between theory and empirics. Given the total size of the literature on asymmetries in 

gasoline markets, this new approach is rapidly developing. Table 2 shows how the increasing 

availability of panel data has hugely contributed to a greater understanding of APT. 18 of those 

papers have used panel data whilst table 1 showed that only one empirical paper had used panel 

data: Duffy-Deno (1996) with Salt Lake City prices.  

 Moreover, table 2 shows the increasing complexity of the literature, as there is little consensus 

on the plausible explanations for APT. Yet, there seems to be a certain amount of specialisation 

required and this is showed by the studies of Eckert (2002, 2003) and Noel (2007a, 2007b, 

2008, 2009, 2012), Atkinson (2009) and Atkinson et al (2009) on the Canadian market and 

Wang (2008, 2009) for Australia.   
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  The general trend is the use of increasingly disaggregated and local data in models that are 

easier to interpret such as the regime-switching models (RSM). The RSMs rather than the 

traditional ECM allow having a limited number of switching regimes: up and down for instance. 

Geweke (2004) explained how the ECM estimates are hard to interpret due to the large number 

of regimes: upward deviation from the long-run deviation (downward deviation), positive 

change in the upstream price (negative change). These different situations make a large 

combination of regimes whilst the RSMs use a simple probabilistic fashion. With daily panel 

data it is possible to analyse the behaviour of a restricted number of stations. Noel (2009) 

studied 22 petrol stations for Toronto and detected the presence of Edgeworth price cycles that 

partly explain asymmetric pricing. He finally concludes that other phenomena are responsible 

for asymmetries but he could not uncover them.  

  I note that Edgeworth cycles (EC) papers are over-represented although the phenomenon is 

specific to Canada and certain US and Australian cities, as table 2 exhibits. In fact, out of the 29 

APT papers 12 are EC papers. As a consequence, 17 papers only were actually looking into 

explaining APT outside of the EC context. 
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Table 2.6 - Theory-testing studies  

(Continued on next page) 

A
ut

ho
r (

s)
D

at
a

C
ou

nt
ry

Pa
ne

l
M

od
el

Pr
ic

es
 

Pr
od

uc
t

C
ov

er
ag

e
R

es
ul

ts
Th

eo
ry

 s
up

po
rt

ed

Ec
ke

rt 
(2

00
2)

W
CA

W
in

ds
or

EC
M

W
, R

P
19

89
-9

4
Y

EC

Jo
hn

so
n 

(2
00

2)
D

U
S

N
EC

M
W

, R
P,

 D
19

96
-9

8
Y

Se
ar

ch
 

Ec
ke

rt 
(2

00
3)

W
CA

N
RS

M
W

, R
P

19
90

-9
5

Y
EC

Se
n 

(2
00

3)
M

CA
Y

O
LS

W
, R

P
19

91
-9

7
Y

M
P

D
av

is 
&

 H
am

ilt
on

 (2
00

4)
W

U
S

N
O

th
er

W
P

19
89

-9
1

Y
M

K
au

ffm
an

 &
 L

as
ko

w
sk

i (
20

05
)

M
U

S
N

EC
M

C,
 W

, R
P,

 H
O

19
86

-0
2

Y
I

Ra
dc

he
nk

o 
(2

00
5a

)
M

U
S

N
EC

M
C,

 W
, R

P
19

91
-0

3
Y

Pe
rc

ep
tio

n

Ra
dc

he
nk

o 
(2

00
5b

)
W

U
S

N
EC

M
/V

A
R

C,
 R

P
19

91
-0

3
Y

M
P

N
oe

l (
20

07
a)

W
CA

19
 c

iti
es

RS
M

W
, R

P
19

89
-9

9
Y

EC

N
oe

l (
20

07
b)

12
H

CA
To

ro
nt

o
RS

M
W

, R
P

20
01

Y
EC

Ba
lm

ac
ed

a 
an

d 
So

ru
co

 (2
00

8)
W

C
L

Sa
nt

ia
go

EC
M

W
, R

P
20

01
-0

4
Y

M
P 

(lo
ca

l)

D
el

ta
s (

20
08

)
M

U
S

N
EC

M
W

, R
P

19
88

-0
2

Y
M

P 
(lo

ca
l)

H
os

ke
n 

et
 a

l (
20

08
)

D
U

S
W

as
hin

gt
on

 D
C

EC
M

W
, R

P
19

97
-9

9
Y

M

O
lad

un
joy

e 
(2

00
8)

D
U

S
N

EC
M

C
, W

P
19

87
-0

4
Y

M
P

V
er

lin
da

 (2
00

8)
W

U
S

So
ut

he
rn

 C
A

EC
M

W
, R

P
20

02
-0

3
Y

M
P 

(lo
ca

l)

W
an

g 
(2

00
8)

D
A

U
Fi

rm
 d

at
a

RS
M

R
P

19
99

-0
0

Y
EC



 
 

77 
 

 

Table 2.6 – Theory-testing studies (continued) 

 
 

 

 
 

 
 

 

 

Notes for table 2.6:1 Data frequency –H: hourly, D: daily, W: weekly, M: monthly. 2 Country – AU: 
Australia, CA: Canada, CL: Chile. ES: Spain, NO: Norway   3Model - PAM: partial adjustment model, 
ACB: autoregressive conditional binomial ARDL: Autoregressive distributed lag model, ECM: error-
correction model, FE: fixed effects, OLS: ordinary least square, RSM: regime-switching model TAR: 
threshold autoregressive model, VECM: vector ECM, VAR: vector autoregressive model. 4Prices - C: 
crude oil, S: Spot market, W: wholesale, R: retail. 5Product – P: petrol in its different form leaded or 
unleaded, D: diesel, HO: heating oil/gasoil. 6Results - Y: Significant asymmetries detected, N: no 
significant asymmetries detected, M: mixed results: symmetry/asymmetry depending on the country, the 
model or the fuel/stage considered. 7Theory supported – EC: Edgeworth Cycles, I: Inventory adjustment, 
Perception: Market perception theory, MP: market power/collusion, search: search costs. 
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Frequency Number 
Monthly 5 
Weekly  10 
Daily 10 
12H 2 
3H 2 

Total 29 
Table 2.7 - Theory-testing studies - Data frequency 

 

 

 

 

 

 

 

 

Geographic 
aggregation Number 

National aggregated 11 
1 city 11 

Regional 3 
National panel 2 

19 cities 1 
Firm level 1 

Total 29 
Table 2.9 - Theory-testing studies - Type of data used 

 

Tiers Number 
W, R 20 

C, W, R 2 
C, W 2 
C, R 1 

R 1 
W 1 

Total 29 
Table 2.10 - Theory-testing - Tiers studied 

Country Number 
US 14 
CA 9 
AU 2 
SP 2 
NO 1 
CL 1 

Total 29 

Table 2.8 - Theory-testing studies - Country covered 
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Tables 2.7, 2.8, 2.9 and 2.10 above show the dramatic shift in the type of investigation 

conducted in order to link the empirical results to theory. Whilst studies using monthly data 

were predominant in the purely empirical papers, the theory-testing studies primarily use 

weekly, daily or even twice-daily data. Table 2.7 demonstrates the fact that monthly data is only 

marginally used for this purpose (5/29). Furthermore, table 2.8 shows the dominance of North 

American markets in the theory-testing papers (23/29). More particularly, I note the dramatic 

increase of Canadian studies (9/29); whilst only one empirical Canadian APT was listed in the 

previous section. Whilst to my knowledge APT had never been documented in Canada, Sen 

(2003) found evidence of APT and linked it to the collusion theory. One should be cautious with 

this study as monthly data was used, whilst the other 8 Canadian studies all documented the 

presence of Edgeworth price cycles with higher frequency data. 

  Table 2.9 suggests that theory-testing studies tend to use panel or city-level data rather than 

national aggregated data as it was the case with the purely empirical papers. This can be 

explained by the need to look at a more local level in order to understand the mechanisms 

behind APT. On the other hand, only local or panel data allow to uncover the presence of 

Edgeworth cycles. Finally, table 2.10 confirms that APT is mostly studied at the retail level and 

the literature has clearly taken the direction of examining more precisely the pass-through of 

wholesale/spot prices onto retail prices. As the overall direction is towards disaggregation of the 

data, only one study directly examined the pass-through of crude prices onto retail prices 

(Radchenko, 2005b). Crude prices are only used in 5 studies and I note the presence of one 

study using only wholesale prices and two studies only retail prices. The latter are not APT 

studies but EC studies whilst the former is a test of the menu-cost theory at the wholesale level. 

 

2.3.2 Discussion of the most significant theory-testing contributions 

Eckert (2002) examines the pass-through of wholesale prices onto Canadian retail 

prices for the period from 1989 to 1994 and the city of Windsor, Ontario. Whilst standard time-

series methods suggest the presence of APT, he observed cyclical patterns consistent with the 
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Edgeworth cycles theory of Maskin and Tirole (1988). He argues that asymmetries between the 

responses over different portions of the price cycle can be mistaken for APT. He also suggests 

that new prices cycles are more likely to be initiated when retail prices are near cost. Retail 

prices appear to be rather insensitive to cost over the decreasing phase of the cycle (the 

undercutting phase). This has an important theoretical implication as in the alternating-move 

model of price cycles; cycles equilibria generate fewer profits for the firms than the collusive 

models such as that of Green and Porter (1984). In the latter model, retailers set prices near the 

monopoly prices and match each other forever. In Edgeworth cycle equilibria, retailers engage 

in an undercutting war over market share until they reach a price near the marginal cost. In 

conclusion, aggressive pricing patterns can be linked to price cycles within competitive markets 

and no policy response is justified.     

  Johnson (2002) uses US daily/weekly prices and included diesel prices to formally test 

the search costs hypothesis. He found that upstream diesel prices are passed through more 

quickly than gasoline prices and that the asymmetries are more important in the gasoline case. 

He finds that evidence of APT is independent of market size which he considers an indicator of 

market power. He acknowledges that market size is not the only relevant variable for 

competition but performs correlation tests.  He concluded that as diesel drivers have lower 

search costs, they are more likely to engage in an intense search for a cheaper price whilst petrol 

drivers have less incentive as they usually purchase smaller volumes of fuel. 

 Sen (2003) used monthly data and an OLS methodology in an attempt to link market 

concentration to gasoline retail prices. Although it is not an APT investigation, it carries some 

interesting findings that could be used in APT studies. He investigated the impact of local 

market concentration and wholesale prices on average retail gasoline prices. In addition he 

examined the relationship between the number of wholesale competitors and crude oil prices on 

average wholesale prices. Interestingly, the results suggest different patterns at the upstream and 

the downstream markets. He finds that the variance of wholesale prices (43.92%) is a more 

important determinant of the variance of retail prices than the variance of local market 
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concentration (34.09%). Conversely, changes in crude oil prices (43.35%) are a much more 

important determinant of wholesale prices than market competition (13.67%). He concludes that 

as retail market competition has some impact on retail prices, government policies aiming at 

enhancing competition downstream should be encouraged.   

Kauffman and Laskowski (2005) revisit the issue of APT in the US with monthly data 

from 1986 to 2002; they attempt to link APT to refinery utilization rates and inventory levels. 

They find APT in the home heating oil market and little evidence of APT in the gasoline 

market. However, there are good reasons not to trust the results. Particularly, the lack of 

cointegration may have resulted in the over-rejection of the APT hypothesis. Also, the definition 

of utilisation rates does not account for the increases in the short-run level of supply. Finally, 

monthly data is too aggregated for such a long period with segments of high volatility.  

Radchenko (2005b) empirically found with US weekly data that asymmetries tend to 

decrease when volatility increases. According to his findings, increased volatility makes it 

harder for collusive firms to coordinate their prices, hence decreasing the level of asymmetries. 

More recently, two papers assumed that local market power translates into collusion between 

retailers; resulting in asymmetry in the pass-through of wholesale prices to retail prices.  

The following studies are only briefly presented as they will further analysed in the next 

subsection as they most likely represent a basis for the future directions in the literature: 

Verlinda (2008) looked at the influence of local market power on the degree of 

asymmetry in Southern California; using weekly data over the period running from July 2002 to 

May 2003. He found that brand identity, proximity to rival stations and local market features 

and demographics all play a role in the degree of asymmetric response of a given station.  

Balmaceda and Soruco (2008) used a weekly time-series panel of 44 retail stations in 

Chile and found a similar pattern of asymmetries and collusive behavior. Brand identity and 

local market power as measured by average margins partly explained asymmetric pricing.  
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Deltas (2008) also considered average margins as a proxy for local market power, found 

a positive correlation between asymmetries and average margins for 48 US contiguous states 

with monthly data from 1988 to 2002.  

Lewis (2011) developed a search model that assumes consumers’ expectations of prices 

are based on prices observed during previous purchases. This model predicts that consumers 

search less when prices are falling. He conducted an empirical study with a mix of weekly 

station data in San Diego and Los Angeles daily price averages and his findings backed the 

theory.  

 Lewis and Marvel (2011) measured consumer search directly from traffic statistics for 

web sites that provide gasoline prices. They also found that consumers search more as prices 

rise than they do when prices fall. 

 

2.3.3 Likely future directions in the literature 

Throughout the literature, I observe a lack of studies linking empirical evidence to explanations. 

Overall, only few studies have taken advantage from the increasing availability of station-level 

daily data. In contrast, the use of such data has been extensively used in recent years to uncover 

the presence of Edgeworth price cycles principally located in Canada and Midwestern states in 

the US.  

 The most promising link between theory and empirics has been made by industrial economics 

studies.  Balmacedo and Soruco (2008), Deltas (2008) and Verlinda (2008) made an interesting 

attempt by linking local market power to margins. All three studies suggest that market power 

as measured by retail margins is correlated with the degree of asymmetry at the local level. This 

is a key contribution as it explains at least partly APT with a well-defined measure of market 

power.  
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 Although their assumptions are rather strong, the models used are backed by the empirical 

evidence respectively from Chile and the US. Retail margins can be used as a measure of local 

market power provided that the real cost faced by each firm is known, which is not necessarily 

the refinery price. The real cost faced by each firm is the contract prices; obtaining these prices 

allows computing the real margins. This is well-explained in Balmaceda and Soruco (2008) and 

a major limitation in Deltas (2008).  

 Moreover, Deltas (2008) also argues that sticky prices are linked to market power:  he observes 

that markets with high average retail-wholesale margins experience a slower adjustment. He 

concludes that market power at least partially explains APT and slower price adjustment. In 

addition, Verlinda (2008) demonstrates that branding, geographical isolation and other 

characteristics are consistent with tacit coordination in pricing among stations. Balmaceda and 

Soruco (2008) also find that brand identity contributes measurably to increase APT. They show 

it by comparing price responses of branded stations versus unbranded stations. 

  In the absence of a formal model encompassing APT and market concentration, few studies 

have actually explained the presence or absence of asymmetries. However the contribution of 

the above-mentioned studies suggests market power at least partly explains asymmetries, and as 

Deltas (2008) argues, sticky prices.  

 As far as the search costs theory is concerned, there have been some recent contributions with 

potential for the future development of a formal model. Lewis (2011) presents a model of 

consumer search where consumers form their price expectations based on a reference price; he 

assumes that this reference price is the average price level of the previous period. The resulting 

asymmetric price transmission is due to a straightforward mechanism: a cost increase will 

generate upward pressure on retailers whilst consumers’ expectations will tend to be too low. 

Their resulting higher search translates into lower margins and less price dispersion. 

Conversely, a cost decrease will generate less search; resulting in higher margins and price 

dispersion. 
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  The empirical investigation of Lewis (2011) shows that prices respond faster to cost changes 

during periods of high margins. It also reveals that margins may be more important than the 

direction of the cost change in determining the speed of price response. When controlling for the 

size of the current margins he finds little evidence of APT. 

  Lewis and Marvel (2011) measure consumer search directly from traffic statistics for 

web sites that report gasoline prices. They observe that consumers search more when prices rise 

than they do when prices fall. Their results suggest that when consumers who do not know the 

distribution of prices, an increase in a station’s price could be particular to this station; rendering 

search worthwhile. In contrast, a lower price faced at a local station does not justify any 

additional search. 
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3. The relationship between market concentration and APT 

The topic of APT has taken a new direction in the past fifteen years. Whilst the earlier studies of 

the 90s were purely empirical and focused on the existence of the phenomenon, the most recent 

papers have attempted to search for the causes of asymmetries. Despite the proliferation of 

studies on the topic, there is an ongoing debate on which theory best explains the phenomenon. 

Questions have been often raised5  about the robustness of the results due to a lack of 

consideration for technical issues such as data aggregation over time and over the distribution 

chain, exogeneity and bi-directional causality. 

 In this chapter I intend to provide evidence supporting either the collusion theory or the search 

costs theory. I take into consideration most of the modelling issues raised in the literature. Based 

on evidence suggesting some feedback and bi-directional causality I consider the wholesale 

price as endogenous. As a result I choose to use the Vector Autoregression (VAR) methodology 

modified into an asymmetric form of the Vector Error-Correction (VEC) model due to 

cointegration. I generate impulse response functions for two different fuels (diesel and unleaded 

gasoline) and six European markets: France, Germany, Italy, the Netherlands, Spain and the 

UK. Finally I innovate by investigating the possible relationship between different measures of 

concentration and the degree of asymmetry as measured by the asymmetry index. This new 

approach intends to link the market structure to the phenomenon of asymmetric pricing in fuel 

markets. Finally I provide evidence suggesting a possible relation between vertical integration 

and asymmetries. 

The contribution of the present investigation is three-fold. Firstly, it extends the literature on 

asymmetries in European gasoline markets with up-to-date weekly data. I observe that 13 out of 

17 papers focussing on one or several EU countries used monthly data and the basic ECM; in 

contrast I utilise a VECM with weekly data.  I therefore answer the question: to what extent to I 

do find asymmetries in the diesel and gasoline retail markets of the six major European 

                                                   
5 See for example Bachmeier and Griffin (2003) and Geweke (2004) 
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countries? Secondly, by comparing the degree of asymmetry and the concentration indexes 

across countries I provide evidence suggesting a positive correlation between the degree of 

asymmetry and the level of concentration of a given retail market; thus supporting the collusion 

theory. Thirdly, I compare the degree of asymmetry between gasoline and diesel markets and 

provide evidence contradicting the assumptions and conclusions of Johnson (2002) about search 

costs. 

 Whilst station-level data has been often used in recent papers to improve our understanding of 

the determinants of asymmetric pass-through at the local level, I use national-level data as I 

intend to show to which extent the average European driver is affected by the phenomenon. In 

fact the reality and importance of the phenomenon has been often based on studies with mixed 

results due to low-frequency data or on studies which were never published in academic 

journals. As my weekly data show bi-directional causality and feedback I treat both the retail 

and the wholesale prices as endogenous whilst many studies considered the input price as 

exogenous. In turn use a Vector Error Correction Model (VECM) and construct Cumulative 

Response Functions (CRFs) based on it. To date, no study has tested this combination of 

methodology and data for European fuel retail markets. 

  In addition, its cross-sectional aspect allows us to draw conclusions on the importance of 

market structure in explaining asymmetries. In fact, this study intends to link the presence or not 

of asymmetries to the market concentration measures through a cross-country comparison. Thus 

far all the studies that have attempted to link the empirics to the theory have done it for North 

American gasoline markets. The different regions or cities studied have implied different 

theoretical explanations and this raises the question: where and to what extent do I find 

asymmetries in the EU and why? The explanatory variables considered are retail market 

concentration measures; I compare them between the six countries and test them against the 

level of asymmetries found.   

 Finally the comparison between gasoline and diesel markets provides further insights on 

whether asymmetries are explained by market power or by search costs. For this purpose I use 
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the assumptions and the comparative methodology of Johnson (2002); implying that diesel 

drivers have lower search costs and in turn that asymmetries would be greater in gasoline 

markets than in diesel markets. Is the pass-through of cost changes to diesel prices also quicker 

than in the case of unleaded gasoline prices?  

 

3.1 Market concentration in the EU 

 The market structure data comes principally from Experian Catalist reports, they are available 

only from 2003 (and only for the UK and the Netherlands they were available from 2000)9. The 

latest reports obtained are those covering the year 2010 and issued early in 2011, the data are 

highly informative about the different main actors in each country10. The wave of mergers 

between IOCs in the late 90s is often associated with decreased competition in the oil industry. 

Despite the claims that fuel retail markets are becoming overly concentrated, investigations and 

reports have contradicted these concerns. The Poyry (2009) report analyses the competitive 

aspects of EU refining and retail markets and also uses Experian Catalist and other data. Poyry 

(2009, p14) reports that in general: 

 “The level of horizontal integration at refining and retail levels does not appear excessive. 

While there has been some consolidation in both markets, concentration ratio measures such as 

the HHI are typically low to moderate”11.  

This is backed by the available European market share data which show that the proportion of 

retail stations belonging to International Oil Companies (IOCs) has been rather shrinking in the 

                                                   
9 Experian Catalist has developed a database of retail stations information covering 13 European Member 
States. However French data could not be obtained because at least 40% of stations are hypermarkets and 
would not collaborate. Each site is visited every two years and information is continually collected during 
the intervening period through: telephone surveys, internet and client supplied data. 
10 The reports differentiate between four key ownership categories: (a) multinational vertically-integrated 
oil companies (IOCs), (b) national vertically-integrated oil companies (NOCs) (c) the independent dealers 
are small to medium enterprises or single petrol stations that are possibly branded by a IOC but never 
belongs to the supply chain and (d) the hypermarkets or supermarkets which are major players in French 
and British fuel markets. 

11 HHI is the Herfindahl-Hirschmann Index defined as the sum of the squared market shares of the 
different companies. Poyry (2009) studied a larger number of EU countries, and such consolidation is not 
obvious in the 6 countries investigated in the present study.  
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past 10 years, due to intense competition from supermarkets such as Tesco in the UK and 

Carrefour in France; or National Oil Companies (NOCs such as ENI in Italy and Repsol in 

Spain). 

 This restructuring is very pronounced in countries where supermarkets and hypermarkets play 

an important role in the fuel retailing business. For instance, in the UK the volume share of 

major oil companies has shrunk from 47.5% in 2000 to 28.3% in 2011(Experian Catalist 

reports, 2010)12. The outstanding feature of the British fuel market is the very high effectiveness 

of the supermarkets stations with a site share of only 14.4% but a volume share of 38.4% in 

2010.  

 Some of these characteristics are also observed in France for which I have less data available. 

As in the UK, French hypermarkets deliver the largest volume (61%) of gasoline and diesel in 

spite of the leadership of IOCs such as Total in number of stations (47% against 41%, UFIP, 

2010)13. The pattern is different in Germany: the volume share of IOCs in 2010 represents 37% 

(a sharp decrease from 66% in 2003) of the market, against 58.4% for the independent dealers 

(29.1% in 2003).  

 Meanwhile, the Dutch market has experienced an opposite trend. The volume share of oil 

companies in the retail market has increased from 47.1% in 2002 (32.6% of stations) to 57.4% 

in 2010 (47.8% of stations) whilst independent retailers have lost market share. Besides, 

supermarkets play a very marginal role in German and Dutch fuel markets. As far as Spain is 

concerned, the restructuration is not as pronounced as in the other markets; IOCs have lost some 

volume share (from 32.6% to 31.2%) and sites share (from 29.3% to 25.6% between 2003 and 

2011) and NOCs still dominate the market. Finally the Italian market shows an overwhelming 

domination of national (mainly ENI) oil companies in the retail markets, although there has 

been a decrease in their volume share from 83.2% in 2003 to 70.3% in 2010.  

                                                   
12 All the figures related to market structure in the fuel retailing industry mentioned in this chapter are taken from 
Experian Catalist reports, unless stated otherwise. Poyry (2009) used the same source and added data from country-
specific data providers. 
13 www.ufip.fr: website of the French Union of Petroleum Industry. Experian Catalist reports are not 
available for France. 
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 Table 3.1 below shows indicators of market concentration for the year 2008; the reports 

available from year 2000 to 2010 show that both indexes and positions between countries do not 

change and the year 2008 is chosen for French data availability14. The 3 concentration measures 

available are the Herfindahl-Hirschmann Index (HHI), the market share of the three leading 

retail companies (MS TOP3) and the market share of the leader in the retail fuel markets (MS 

Leader); they do not change sensibly during this period of time. In some markets leading actors 

have been facing competition from hypermarkets and supermarkets; however there is no 

evidence of monopolisation of the fuel retails markets. Besides, positions are stable if I accept 

the fact that France, Germany and Italy have very similar measures of concentration 

(respectively 2nd, 3rd and 4th). In general Spain has the most concentrated fuel retail markets (1st) 

whilst the British (6th) and Dutch (5th) fuel markets are the least concentrated. 

2008 SPA FRA ITA GER NED UK 

HHI-VOLUME 2219 1514 1460 1420 1096 999 

MS TOP3 69% 56% 55% 56% 44% 41% 

MS Leader 40% 32% 27% 23% 20% 16% 

Concentration rank 1 2 3 4 5 6 

Table 3.1 - Concentration Measures 

Note for table 2.1: 2008 is chosen as an indicator of the average measure of concentration, any other year 
would provide an identical ranking. All the measures are provided in terms of share of the total volume of 
fuel delivered in the retail market. HHI-VOLUME is the Herfindahl-Hirschmann Index as measured by 

volume share. MS TOP3 is the total of volume shares of the top 3 firm in each country. 
MS Leader is the volume share of the leading retailer in each country. 

The concentration rank is easily chosen by looking at the HHI-VOLUME and MS Leader. 

 

3.2 Methodology and price data 

The methodology used is consistent with most of the literature. I first check that the variables 

are I(1) and if they are I test for cointegration. Secondly I use the Engle and Granger (1987) 

procedure to write the ECM transformed into a Vector ECM (VECM) due to clear evidence bi-

                                                   
14 Econ Pôyry report no R2010-LGH-EU Oil Review, Project no. 6A080018. This report presents the 
advantage of using other reports to check the robustness of the data provided by Catalist reports. 
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directional causality and feedback. Thirdly I use the lag length criteria to find the best lag order 

for the VECM.  Fourthly the best VECM is estimated and impulse responses are built for 

positive and negative changes in the search for asymmetric responses. Finally I present the data 

used. 

3.2.1 The long-run relationship between variables. 

Following the existing literature, I test for a long-run relationship between the retail price of 

gasoline (G) and its corresponding wholesale spot price (S) of the form: 

Gt = γ0 + γ1 St + et       (3.1) 

 

The constant term γ0 reflects the marketing costs at the retail level; the slope γ1 can be equal to 

one; finally et is the random error term. 

 In the first instance, I test the stationarity properties of the all variables under investigation 

using Augmented Dickey-Fuller and Phillips-Perron tests. Both tests suggest that all the 

variables are I(1). Given that the variables  are found to be I(1), I test for the existence of  

equation (1) using a cointegrated vector autoregressive (VAR) model framework based on 

Johansen’s (1988) maximum likelihood method. 

I then write a similar equation for the diesel market where P is the retail price and W the 

wholesale gas oil price:  

Pt = γ0 + γ1 Wt + et          (3.2)  

For equations (3.1) and (3.2), the gammas γ are obtained through the Engle and Granger (1987) 

procedure16. In order to simplify I use the gammas γ in the long-run relationships for all 

markets; although they take different values in each case. 

                                                   
16The use of the normalized coefficients of the Johansen (1988) cointegration test provides similar results. 
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3.2.2 The Vector Error-Correction Model (VECM)  

Given that I am able to establish cointegrating relationships, I specify an error-correction model 

(ECM) to allow adjustment to the long-run equilibrium. 

 

  ΔGt = α + λ( Gt-1 - γ0 - γ1 St-1)+Σβi
+(ΔSt-i) 

+
 + Σβi

-(ΔSt-i )- + εt    (3.3) 

I also consider the lagged changes in the retail gasoline price G and I obtain: 

ΔGt = α + λ(Gt-1 - γ0 - γ1 St-1) + Σβi
+(ΔSt-i) 

+
 +Σβi

-(ΔSt-i )-+ Σθj(ΔGt-j) +  εt  (3.4) 

The lagged changes in the retail price can also be split into positive and negative changes; for 

consistency I tested both versions without noticing any difference in the results. Similarly, in the 

literature some papers split the error-correction term into positive and negative changes; which 

is unlikely due to the underlying assumptions of the ECM. It is the version used by the seminal 

paper of Borenstein et al. (1997) and by Peltzman (2000) and my tests confirm that the 

hypothesis of symmetry in the long-term adjustment coefficients can never be rejected in all the 

markets considered. 

For diesel prices a similar equation with lagged changes of the retail diesel price P is written:  

ΔPt = α + λ( Pt-1 - γ0 - γ1 Wt-1)+ Σβi
+(ΔWt-i)++Σβi

-(ΔWt-i )- + Σθj(ΔPt-j)+  εt   (3.5) 

As pointed by Geweke (2004), there is an unquestioned assumption in many studies that the 

relation between wholesale prices and retail prices is structural by nature; as a consequence the 

upstream price (generally the wholesale or crude oil price) is often treated as exogenous. 

Geweke (2004) notes that it is possible and even likely that shocks to downstream prices impact 

upstream markets. The literature review in the previous chapter outlined the fact that there has 

been little concern for two-way causality. The exceptions are Borenstein et al. (1997), Balke et 

al. (1998) Indejehagopian and Simon (2000), Salas (2002), Wlazlowski et al (2009) and Liu et 

al (2010) who conducted endogeneity tests and found a two-way causality.  
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One could mention many articles that rejected endogeneity tests but with monthly data that does 

not match the frequency of price change the result is not surprising. Hence that is why most 

papers mentioned in chapter 2 used a classical ECM assuming a structural relation. Whilst retail 

markets are small and local, they are not independent from global markets. They are often 

subject to macroeconomic shocks that affect demand for diesel and petrol; when demand for oil 

is globally reduced, crude oil prices are likely to decrease. Consequently, it is important for the 

validity of the results to conduct such tests. 

I perform Granger causality/block exogeneity tests. As I expected wholesale prices Granger 

cause retail prices but more surprisingly, retail prices also Granger cause wholesale prices. The 

results show strong evidence of lead-lag interactions between the wholesale and the retail prices. 

In all cases there is evidence of bi-directional causality and feedback within a week at least, in 

some countries within 2 or 3 weeks. In turn the model estimated should treat the wholesale price 

as endogenous in both the diesel and the gasoline case. I therefore use a bivariate VAR in first 

differences with k lags transformed into a VECM by including the error-correction term Yt-1: 

ΔYt = Yt-1 + 1 ΔYt-1 + 2ΔYt-2 + ... + q ΔYt-q+ t           (3.6) 

Where Yt  is x×1 vector of the retail and wholesale variables of interest: respectively Gt and St for 

the gasoline market; and Pt and Wt for the diesel  market. t  is  x×1 vector of errors terms, 1,…, 

q  are n×n coefficient matrices, and  is the long run coefficient matrix, which could be 

decomposed into product of matrices α and γ (matrix of r cointegrating vectors): 

 = αn×r γʹr×n                                                                                    (3.7) 

In order to include asymmetric price transmission into the model, I modify (6) and split the 

vector into positive and negative prices changes: 

ΔYt =  Yt-1 + 1
+Δ+Yt-1 +1

-Δ-Yt-1 +... + q
+ Δ+Yt-q+ q

- Δ-Yt-q +              (3.8)
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3.2.3 Estimation 

 I perform the estimation after selecting the appropriate lag order for the 12 VECMs. The 

Schwarz criterion is carefully used. The Schwarz criterion (SBIC) is the most used in the 

literature. For all of the 12 VECMs analyzed, the time period suggested by the SBIC criterion 

varies between week 2 and week 3. In other words any change in wholesale price in any given 

week is passed-through to the corresponding retail price in 2 to 3 weeks.  This is consistent with 

the literature using weekly data.  

 My tests with different lag orders and different versions of the models show that it is preferable 

to use the SBIC rather than the Akaike or Hannan-Quinn (HQ) criteria in order to avoid 

estimating larger-than-required models. I also performed lag exclusion tests to check whether 

the SBIC’s penalty on additional lags was not too exaggerated. Nevertheless my conclusions did 

not differ when using the other criteria; although the asymmetries were unrealistically long-

lived when using larger models. 

 As in Borenstein et al. (1997)  my  empirical analysis is based on the cumulative response 

functions (CRFs) rather than on the parameter estimates.  I use the cumulative orthogonalised 

impulse response functions (COIRFs) of the VAR. Hamilton (1994, p 322) provided further 

details on the COIRFs their definition and interpretation. Here the recursive ordering of the 

variables is straightforward as I am primarily interested in the pass-through of the wholesale to 

the retail price; although I take into consideration the feedback in the underlying model. 

 

3.2.4 COIRFs and Asymmetry Index (AI) 

To date there is little agreement on the definition of asymmetry; Geweke (2004) argues that 

amount asymmetry in the long-term is implausible in the context of cointegrated series as it 

would imply that input and output prices drift apart. In the literature the papers testing for 

possible asymmetries in the long-run coefficients never rejected the hypothesis of symmetry; 

consistently with the assumptions of the ECM. The VECM enables us to uncover combined 
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asymmetry as defined in chapter 1; the framework we use does not distinguish between time or 

amount asymmetry. As discussed in chapter 1, the distinction is purely academic when using 

aggregated data.  

To measure and compare the extent of the asymmetry, I use the cumulative orthogonalised 

impulse response functions (COIRFs) of the VECM. The details on the definition and 

interpretation of the COIRFs are found in Hamilton (1994, p 322). Any significant difference 

between price responses to cost increases and cost decreases is considered APT. The 

straightforward implication is to take into consideration for each country x the difference in 

COIRFs which is significant at the 95% CI; respectively: 

Max(ΔPτ+i
+ - ΔPτ-i

+)x
** for diesel markets; and Max(ΔGτ+i

+ - ΔGτ-i
+)x

** for gasoline markets.  

Table 3.2 in the section 3.3 (results) provides the full account of the computed asymmetry and I 

subsequently comment on the measures of asymmetry in the results and discussion. In general, 

the impulse response functions generated from VAR-type models suffer from very large 

confidence intervals and require further restrictions. For instance, Hamilton (1994: 339-340) 

noted:  

“In practice the dynamic inferences based on VARs often turn out to be disappointingly large 

...To gain more precision, it is necessary to impose further restrictions”.  

Given the use of the appropriate data and methodology, the confidence intervals are satisfactory 

up to week 2 which is rather predictable through an analysis of the structural relation between 

wholesale and retail prices. The recent data is rather volatile and I did not expect any significant 

asymmetry more than 2 weeks since the change. 

 Additionally, I take into consideration different speeds of pass-through to compare asymmetries 

across countries. I observe that prices are stickier in Italy and Spain, and that prices adjust much 

quicker in France, Germany and the Netherlands. It is likely that the use of the MED spot price 

for Italy and Spain would have resulted in a faster adjustment; however it would have been 

more difficult to make a cross-country comparison. To smooth out differences in speed of 
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adjustment, I create an index for each fuel: respectively called Diesel Relative Asymmetry and 

Gasoline Relative Asymmetry based on the significant  difference between the positive and 

negative CRFs for each country x: 

DRAx = Arg Max [ln (ΔPτ+i
+/ ΔPτ+i

-)]x      (3.9) 
                   τ    
               

GRAx = Arg Max [ln (ΔGτ+i
+/ ΔGτ+i

-)]x         (3.10) 
                   τ 
 

As I want to consider the total asymmetry at the pump for a given country, I then create the 

Asymmetry Index:  

 AIx= DRAx + GRAx        (3.11) 

Table 3.2 in the results section provides these indexes.  

 

3.2.5 Price Data 

I use weekly prices for 6 major European markets: Germany, France, the UK, Italy, Spain and 

the Netherlands23. The sample period starts on Tuesday 4/01/1994 and ends on Tuesday 

28/12/2010. The total number of observations for each series is 887, an ample number when 

compared to the existing literature using an ECM with weekly data; particularly since it can 

plausibly address the small sample problems that may arise with an ECM specification (see 

Galeotti et al. 2003, for example). Also the use of weekly data with the ECM is considered as 

the best fit by Geweke (2004), who considers all the possible issues in the literature. Due to 

non-availability of country-specific wholesale contract prices on a weekly basis, the available 

spot prices are the ARA24 (Amsterdam-Rotterdam-Antwerp) prices which are dominantly used 

in Europe: S is used for gasoline markets and W for the diesel markets as follows: 

 S, for spot price: Gasoline ARA Reg FOB Conventional; UC/GAL (US cent/gallon). 
                                                   
23 All the price data are from Datastream 
24 ARA is a transparent reference point used for wholesale prices, the study could also have used the 
NWE (North West Europe) prices for the UK, the Netherlands, Germany (although the eastern part of 
Germany uses Central and Eastern Europe , CEE prices) and the North of France; MED (Mediterranean) 
prices for Italy, Spain and the South of France. Estimations performed with NWE and MED returned 
similar results and ARA is the most suitable for my comparative approach. 
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 W, for wholesale price: Gasoil ARA Spot FOB; UC/GAL.  

The two wholesale prices are converted into USD/barrel. The retail prices considered exclude 

taxes in order to remove the effects of different taxations between countries and over time. I 

convert them to USD/barrel for consistency with the input prices. 

 G, for unleaded Gasoline price: the retail unleaded gasoline prices are provided in 

Euros/kilolitres (£ for the UK).  

 P, for diesel price: the retail diesel prices are provided in Euros/kilolitres (£ for the UK). 

 

3.3 Results 

 The detailed results are in Appendix A. 

The 6 graphs in figure 3.1 show the CRFs of retail diesel and gasoline prices in France (3.1.a 

and 3.1.b), Germany (3.1.c and 3.1.d) and Italy (3.1.e and 3.1.f) to a standard deviation cost 

change whilst the 6 graphs in figure 3.2 show the results for the Netherlands (3.2.a and 3.2.b), 

Spain (3.2.c and 3.2.d) and the UK (3.2.e and 3.2.f). Reading on the graphs, asymmetries are 

represented by the difference between the positive change line and the negative change line. 

Some degree of asymmetry is found in all cases. However, in 3 cases asymmetry is not 

statistically significant and the hypothesis of symmetry cannot be rejected; indeed in the Dutch 

gasoline (Fig.3.2.b) and the UK diesel (Fig.3.2.e) and gasoline (Fig.3.2.f) markets the graphs 

show no evidence of asymmetry at the 95% confidence index. For the other 9 cases the 

asymmetries are significant and proportionately the most important one week after the change. 

In general, prices are passed through quite rapidly in the first week after the cost change and the 

cumulated asymmetry in the subsequent weeks is marginal. 

 Given the nature of dynamic inferences based on VAR such as the COIRFs, I strictly analyse 

the results according to 95% confidence indexes (CIs). In the 12 graphs below the lower line of 

the CIs for an increase meets the upper line of the CIs for a decrease one or two weeks after the 
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change. This greatly simplifies the comparison between countries as I hereby analyse the cost of 

asymmetric price response one week or two weeks after a wholesale price change. Prior to the 

cross-country comparison using a computed measure of asymmetry, I shall first assess the cost 

of asymmetries for consumers using the COIRFs table. Table 3.2 below shows the different in 

adjustment of retail prices to an increase or a decrease in wholesale price that occurred at time τ. 

Do these have asymmetries substantial effects on consumers? Due to methodological 

considerations, only Borenstein et al. (1997) and a few other papers using CRFs answered this 

question. Our results provide a rather clear answer: although asymmetries do not seem to have 

an excessive impact on the consumer’s budget, they are important in relative terms. Spain diesel 

is found to be the most asymmetric market in terms of significant relative asymmetry at the 

pump. Indeed the response to a one dollar cost increase after a week (0.76$) is twice as great as 

a similar decrease (0.38$).  

 A comparable pattern is found in France, Germany and Italy with a relatively smaller difference 

in proportion but not in absolute cost to the consumer. As explained briefly in the previous 

section, the relative asymmetry is important to take into account different rates of pass-through. 

In terms of cost to the consumer the German gasoline market is the most asymmetric one week 

after the change in wholesale price. A one dollar per barrel increase in spot wholesale price is 

expected to increase German gasoline retail prices on average by $1.17 whilst a similar decrease 

is estimated to decrease diesel retail prices by $0.66 (Table 3.2). Therefore a dollar increase in 

wholesale price costs German gasoline users $0.51/barrel (0.32¢/litre) more than a dollar 

decrease in wholesale price would have benefited them.  

 Considering an average motorway user in Germany consuming one barrel or 159 litres per 

month, the cost of asymmetries for a dollar increase in wholesale price is 51¢. The asymmetry 

found in the German diesel market and in France is only marginally smaller; in turn for drivers 

using similar volumes of diesel/gasoline the effect will be quite similar. However for a transport 

company utilizing 100,000 litres per month, the cost rises to $320 for a one dollar increase. This 
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means that in a period of very high volatility25, a $15 increase in wholesale price would cost this 

driver (company) $4.8 ($4,800) more than a similar decrease would benefit. Our results suggest 

that only in volatile periods asymmetries will have sensible effects on the consumers’ welfare 

whilst their effects are never negligible for companies using high volumes of fuel. To sum up, 

asymmetric pricing in fuel markets seem to be predominant in all of France, Germany, Italy and 

Spain. In the market where asymmetries are the most important, I have shown that the cost for a 

normal driver is generally marginal. However it is much more important for transport 

companies and in periods of high volatility, provided that the model holds in such periods. In 

the Netherlands and the UK asymmetries are smaller (Figure 3.2.c) or statistically non-

significant (Figure 3.2.d, 3.2.e and 3.2.f).  

  Finally, in all the six countries the level of asymmetries is greater in the diesel case than in the 

gasoline case. According to Johnson (2002), diesel drivers who have lower costs than petrol 

drivers are more likely to search for the lower prices. In all the countries studied apart from the 

UK the after-tax price of the litre of diesel is cheaper than that of gasoline. Therefore as diesel 

cars are also sensibly more fuel-efficient diesel drivers are substantially advantaged by lower 

search costs. The theory implies that diesel drivers search more and as a result diesel prices 

would be passed-through more quickly and more symmetrically. In fact table 3.2 shows that in 

the 6 countries the pass-through is quicker in the gasoline case than in the diesel case. In 

addition, in all countries but Germany the asymmetry is greater in the diesel market than in the 

unleaded gasoline market. In conclusion my results do not support the search costs theory 

developed by Johnson (2002). 

 

 

                                                   
25 Although the average change in wholesale price is less than 10¢, the maximum change culminates at 
almost $15. The use of a VAR methodology for such a large sample implies that CRFs behave identically 
in periods of high and low volatility. Of course this is a strong assumption as Peltzman and Radchenko 
(2005) showed that asymmetries decrease in period of high volatility. Radchenko (2005) linked this 
observation to the collusion theory, arguing that oligopolistic retailers fail to coordinate their prices in 
periods of high volatility.  
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Diesel price impulse response ΔD in US$ to a one US$ change in wholesale price at τ [Standard deviation in 
W+ = 1.73 ; W- = 1.72] 

  France  Germany  Italy  The Ned  Spain  The UK  
ΔDτ+1

+ 1.02** 1.13** 0.67** 0.83* 0.76** 0.19 
ΔDτ+1

- 0.57** 0.67** 0.38** 0.56* 0.38** 0.13 
ΔDτ+2

+ 1.65** 1.58 1.16** 1.03 1.27 0.58 
ΔDτ+2

- 1.15** 1.3 0.77** 0.87 0.9 0.43 
ΔDτ+3

+ 1.99 1.86 NA NA 1.57 0.87 
ΔDτ+3

- 1.48 1.32 NA NA 1.12 0.66 

Max(ΔDτ+i
+ - ΔDτ+i

-)** 0.50** 0.46** 0.39** 0.27* 0.38** 0 
 DRA 0.58 0.52 0.57 0.39 0.69 0 

 Gasoline price impulse response ΔG in US$ to a one US$ change in wholesale price at τ [Standard deviation 
in S+ = 1.60 ; S- = 1.65] 

  France  Germany  Italy  The Ned  Spain  The UK  
ΔGτ+1

+ 1.08** 1.17** 0.67** 0.92 0.73** 0.22 
ΔGτ+1

- 0.65** 0.66** 0.40** 0.81 0.45** 0.19 
ΔGτ+2

+ 1.63 1.61 1.05 1.04 1.14 0.6 
ΔGτ+2

- 1.27 1.18 0.8 1.08 1.01 0.58 
ΔGτ+3

+ 2 NA NA NA 1.53 0.92 
ΔGτ+3

- 1.5 NA NA NA 1.21 0.8 

Max(ΔGτ+i
+ - ΔGτ+i

-)** 0.43** 0.51** 0.27** 0 0.28** 0 
 GRA 0.51 0.57 0.52 0 0.48 0 

AI 1.09 1.09 1.09 0.39 1.17 0 
 

Table 3.2 - Asymmetric adjustment showed by COIRFs 
Notes:**indicates significant asymmetry at the 5%level; 

* indicates significant asymmetry at the 10% level (for the Dutch diesel market) 

 

See Appendices A1 to A13 for the detailed results. 

Figures 3.1 and 3.2 show the overall faster response of retail prices to increases than to 

decreases. The black line in figures 3.1 and 3.2 represents the cumulative orthogonalised 

impulse response of the retail price in US$ in response to a standard deviation US$ change in 

wholesale price. Changes in wholesale prices are split into two impulses: increase (black) and 

decrease (grey) and the corresponding responses are also shown with their 95% CI (dark grey 

for the positive impulse and light grey for the negative impulse). The underlying VECM with 

either 2 or 3 lags implies that robust conclusions can only be drawn from the graphs from week 

1 to week 3 since the change. The significant asymmetries are only visible when there is a white 
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area between the dark grey (positive impulse) and the light grey (negative impulse) confidence 

intervals. 

The overlapping confidence intervals raise a traditional issue associated with the used VECM. 

In general, the impulse response functions generated from VAR-type models suffer from very 

large confidence intervals and require further restrictions. As mentioned above, Hamilton (1994: 

339-340) noted:  

“In practice the dynamic inferences based on VARs often turn out to be disappointingly large 

...To gain more precision, it is necessary to impose further restrictions”.  

Some papers i0n the literature (see Galeotti et al., 2003) have attempted to use the bootstrap 

procedure to overcome this problem; nevertheless it seems to be associated primarily with 

monthly data and the use of a basic ECM. In the present study, the confidence intervals 

generated from the VECM are satisfactory up to week 2 which is rather predictable through an 

analysis of the underlying structural relation between wholesale and retail prices. The recent 

data used are rather volatile and I did not expect any significant asymmetry more than 2 weeks 

since the change. 

The overlapping confidence intervals demonstrate the importance of using the appropriate lag 

length for the VECM model. Throughout the present empirical investigation, the CIs have been 

consistently overlapping after the chosen lag length in the underlying model. This greatly 

simplified the analysis although the use bootstrap methods to construct confidence intervals 

would have been an interesting addition. 
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Figure 3.1 (graphs 3.1.a to 3.1.f) - COIRFs for France, Germany and Italy 

 

Note: The black line represents the cumulative orthogonalised impulse response of the retail price in US$ 
in response to a standard deviation US$ change in wholesale price. Changes in wholesale prices are split 
into two impulses: increase (black) and decrease (grey) and the corresponding responses are also shown 
with their 95% CI (dark grey for the positive impulse and light grey for the negative impulse). The 
underlying VECM with either 2 or 3 lags implies that robust conclusions can only be drawn from the 
graphs from week 1 to week 3 since the change. The significant asymmetries are only visible when there 
is a white area between the dark grey (positive impulse) and the light grey (negative impulse) confidence 
intervals. 
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Figure 3.2 - (graphs 3.2.a to 3.2.f) - COIRFs for the Netherlands, Spain and the UK 

 
Note: The black line in figures 3.1 and 3.2 represents the cumulative orthogonalised impulse response of 
the retail price in US$ in response to a standard deviation US$ change in wholesale price. Changes in 
wholesale prices are split into two impulses: increase (black) and decrease (grey) and the corresponding 
responses are also shown with their 95% CI (dark grey for the positive impulse and light grey for the 
negative impulse). The underlying VECM with either 2 or 3 lags implies that robust conclusions can only 
be drawn from the graphs from week 1 to week 3 since the change. The significant asymmetries are only 
visible when there is a white area between the dark grey (positive impulse) and the light grey (negative 
impulse) confidence intervals. 
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3.4 Evidence supporting the collusion theory 

Figure 3.3 below shows three graphs suggesting a relationship between market concentration 

measures and the degree of asymmetry as measured by the AI. The three graphs suggest that the 

degree of asymmetry in any given market in positively related to its concentration as measured 

by the HHI (3.3.a), the market share of the dominant 3 firms (MSTOP3 shown in 3.3.b) and the 

market share of the leading firm (MS Leader shown in 3.3.c).  

In figure 3.3 below, the horizontal axis represents the corresponding concentration measure (and 

the corresponding scale) whilst the vertical axis represents the Asymmetry Index (AI) defined in 

section 3.2.4. The graphs show that the AI is higher in countries with higher concentration, 

namely Germany, Italy, France and Spain than in countries where AI is close to zero, namely 

the Netherlands and the UK.  
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Figure 3.3 - Asymmetry index and concentration measures 

 

3.5 Discussion 

According to my results, asymmetric pricing is predominant in France, Germany, Italy and 

Spain; it is not statistically significant in the Dutch gasoline and the UK. This indicates that 

countries with higher market concentration in retail fuel markets such as France, Germany, Italy 

and Spain exhibit more asymmetries than countries with less concentration such as the 

Netherlands and the UK. For instance, the Spanish market (HHI= 2219 in 2008) is 

approximately twice as concentrated as the Dutch market (HHI= 1096 in 2008)26 and about 

thrice as asymmetric when I consider the Asymmetry Index which takes into account both fuels. 

In fact, the cross-country comparison points out the importance of considering both fuels, to my 

knowledge only Johnson (2002) attempted to compare asymmetries between both fuels and 

found asymmetries in both cases with opposite conclusions to ours.  

  As far as the European Union is concerned, the Competition Commission is the regulatory 

body which intervenes in case of barriers to entry or oligopolistic behaviour. The lack of 

European studies utilising a robust methodology might explain the absence of regulatory 

intervention although asymmetries are certainly felt by diesel-intensive companies, especially 

                                                   
26 The HHI of each country varies only marginally over time if I take the available data from 2000 to 
2010, I intentionally omit this factor. 
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when I consider that diesel prices are more asymmetric than gasoline. While the phenomenon 

has been often denounced by motorists’ organization and by the press; it is often considered as a 

secondary issue with the constant rise in fuel prices and the high taxation rate having much 

more impact on the average European driver. 

  Furthermore, I remark that the pass-through of gasoline prices is faster than that of diesel 

prices. I also note that cost decreases are passed-through to the retail market more slowly than in 

the gasoline case for all countries. This translates into more asymmetry in the diesel case than in 

the gasoline case in France, Italy, the Netherlands, Spain and the UK.  

 Overall, the slower pass-through in all diesel markets and more pronounced asymmetries in 

most diesel markets show that market concentration is not the only variable explaining 

asymmetries. Indeed all gasoline stations in these countries provide diesel as well as unleaded 

gasoline; in turn the same concentration measures apply in both cases. Some recent rockets and 

feathers studies examined consumer search and found that consumers search more when prices 

are rising than when they are falling.  

 Interestingly my findings show little support for the empirical evidence and the assumptions 

made by Johnson (2002) regarding search costs. It might be that although their search costs are 

lower, diesel car drivers search less because they consider their savings sufficient compared to 

petrol cars drivers who have more incentive to search.  

 In addition there are now websites that provide a price comparison in most EU countries and 

finding the cheapest retailer around has become free and much easier. For instance 

petrolprices.com in the UK compares all stations in a given city or region, an application for 

smart phones exists and provides real time prices for the cheapest petrol stations by postcode. In 

this spirit Lewis and Marvel (2011) used these web sites’ statistics and showed empirically that 

consumers search more when prices rise than when they fall. This version of the consumer 

search theory or that of Lewis (2011) seems compatible with my conclusions as several factors 

are likely to explain the presence of asymmetries. This methodology could be extended and 
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further conclusions could be drawn from comparing search for diesel and gasoline prices; this 

seems essential in the EU where the proportion of diesel vehicles is much higher than in the 

U.S. or Canada. 

 I also note that asymmetries are not necessarily caused by a particular type of dominant firm at 

the retail level as it has been assumed in newspapers. BBC (2011) and recent press articles have 

directed accusations towards vertically-integrated major companies; these accusations may be 

justified by the increased scrutiny after the wave of mergers in the late 1990s. In fact a similar 

level of asymmetry is found in France, Germany and Italy; three countries with different market 

structure. The French petroleum retail market is dominated by hypermarkets (in volume) and 

majors (in number of sites) whilst the Italian market is dominated by NOCs and the German 

market by independent dealers.  

 The following section tests the robustness of these results with an updated dataset (until 2013) 

and more countries studied (twelve). At the start of this thesis, only Experian Catalist reports 

were available and covered only five countries. With recent market reports from other 

consulting firms such as CBRE (2012, 2013), I have been able to extend the analysis to include 

vertical integration in the analysis. 

 

3.6 APT and market structure: investigation across 12 EU countries 

3.6.1 APT, margins and vertical concentration 

 In this section, I further investigate the relationship between APT and market structure. In 

addition to the HHI used in the previous sections of the chapter, I also include vertical 

integration and margins as possible explanatory variables.  

 Few studied have empirically studied the relationship between market concentration and 

asymmetries. Balmaceda and Soruco (2008) and Verlinda (2008) used average retail margins as 
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a proxy for local market power and found that margins partly explained asymmetric pricing 

respectively in Santiago (Chile) and in Southern California. 

  Deltas (2008) modified the mainstream model to allow for an asymmetric adjustment that 

depends on average margins and found a positive correlation between asymmetries and average 

margins for 48 US states. Both the speed of adjustment and the degree of asymmetry were 

found to be dependent on average margins; suggesting that market power at least partly explains 

asymmetries. Although monthly data does not realistically capture the frequency of price 

changes, the results are plausible when linked to previous research.  

An important econometric issue with the findings of Balmaceda and Soruco (2008), Deltas 

(2008) and Verlinda (2008); is that the average margin included in the ECM contains the current 

period poses the problem of correlation. However, Deltas (200) shows that by computing the 

average margins for one set of years and estimating the model from another set of years would 

completely eradicate the problem. Additionally, Deltas (2008) notes that if some US states 

(countries in the present case) were characterised by higher APT than others, the average 

margin in those states would be higher due to the welfare benefits generated by APT. This does 

not represent an issue for studies using an ECM or a VECM as the adjustment speed coefficient 

is always negative; hence within the ECM framework margins cannot be primarily generated by 

APT. Deltas (2008) and the above-cited studies actually measured the effect and found it to be 

insignificant. As cited in chapter 1, Geweke (2004) argues that amount asymmetry in the long-

term is implausible in the context of cointegrated series as it would imply that input and output 

prices drift apart. In the literature the papers testing for possible asymmetries in the long-run 

coefficients never rejected the hypothesis of symmetry; this further confirms that margins in the 

most used model cannot be a result of APT. 

Whilst the use of retail margins as a proxy for market power is appropriate with an ECM, this 

does not necessarily mean that margins are the best proxy for market power. Rather, other 

measures that were not applied to the petroleum industry seem more suitable. For instance, 

Neumark and Sharpe (1992) provided evidence suggesting that market concentration explained 
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asymmetries in the consumer bank deposit sector. In addition, Hastings (2004) showed that 

when independent retailers were replaced by vertically integrated petroleum firms, local prices 

systematically rose. Combining the evidence from these two studies, asymmetries in fuel 

markets might not be explained by retail margins as well as by retail market concentration. The 

evidence from the banking industry on market concentration has not been applied to the 

petroleum industry whereas Hastings (2004) did not discuss the issue of asymmetric pricing. 

In the present subsection, I provide evidence suggesting that horizontal and vertical 

concentration explain asymmetries better than retail margins. My findings are consistent with 

the collusion theory and call for further research across different industries, in the spirit of the 

work of Neumark and Sharpe (1992) for the banking industry. 

 

3.6.2 EU 12 data 

  I use weekly data from Thomson-DataStream for 12 European markets: Austria, Belgium, 

Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden and the 

UK from Tuesday 3/01/1995 to Tuesday 30/04/2013. The reference wholesale price used is the 

NWE31 (North West Europe): S for gasoline markets and W for diesel markets. The retail prices 

considered are net of taxes to remove the effects of different taxations between countries and 

over time: G for Gasoline and P for diesel Price. Both are labelled in Euros/litre and then 

converted to US$/barrel using the WMR&DS exchange rate. The retail margins are the average 

difference between retail and wholesale prices:  

Retail Gasoline Margin: RGM = Av (Gt - St)     (3.9) 

Retail Diesel Margin: RDM= Av (Pt - Wt)       (3.10) 

  The average retail margin (ARM) for each country is: 

                                                   
31 Diesel: Gas Oil-European Economic Community Cost, Insurance and Freight Cargos NWE in U$/MT; 
Gasoline: Unleaded Regular Cost Insurance and Freight NWE in U$/MT. They are converted in 
US$/barrel using the conventional formulas in the industry. 
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ARM= (RGM + RDM)/2       (3.11) 

As far as market structure data is concerned, only Swedish reports dated back to 1995. Based on 

data available from 2000 onwards for Germany, Italy, the Netherlands, Spain and the UK I 

observe the same trend of replacement of IOCs by NOCs in retail markets. Although some 

consolidation is observed in all countries, the data showed no change in positions between 

countries. As observed in the previous sections, The HHI of each country varies only marginally 

over time from 2010 to 2013. Once again, I intentionally omit the variation of HHI over time 

and I chose the year 2012 for the availability of Austrian and Belgian data. Table 3.3 below 

shows the market structure data for 2012. 

  HHI (MS)  HHI (VS) MSTOP3 VSTOP3 VI 
MSTOP3 

and VI 
VSTOP3 
and VI 

AUT  1150 1550 0.45 0.51 0.67 1.12 1.18 
BEL 1050 1100 0.4 0.46 0.82 1.22 1.28 
DEU 900 1300 0.39 0.58 0.79 1.18 1.37 
DNK 2005 1853 0.65 0.67 0.61 1.26 1.28 
ESP 2200 2188 0.64 0.69 0.75 1.39 1.44 
FIN 2149 2503 0.72 0.7 0.55 1.27 1.25 
FRA 1700 1500 0.61 0.51 0.3 0.91 0.81 
ITA 1550 1600 0.56 0.56 0.75 1.31 1.31 
NLD 905 1162 0.32 0.45 0.64 0.96 1.09 
PRT  1975 1950 0.71 0.69 0.66 1.37 1.35 
SWE 1470 1450 0.6 0.6 0.47 1.07 1.07 
 UK  710 1035 0.37 0.41 0.12 0.49 0.53 

 
Table 3.3 - Market structure data (2012) 

 

Notes for Table 3.3: Data come from a variety of resources such as Experian Catalist reports, the 
Finnish and Swedish Petroleum Institute and consulting firms Poyry and CBRE.  Abbreviations: HHI-MS 
is the HHI computed by market share (number of sites); HHI-VS is the HHI computed by volume share. 
MSTOP3 represents the market share of the 3 leading firms whilst VSTOP3 is the volume share of the 3 
leading firms. VI is the volume of fuel sold in the retail market by companies having refining activities in 
the country or refining and selling from a bordering country. DEU stands for Germany and ESP stands for 

Spain. 
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3.6.3 Results 

The detailed results are in Appendices: A1 to A25. The results for France, Germany, Italy, the 

Netherlands and the UK are similar to those of the previous subsection as there is only an 

extension of the sample. For brevity I did not report those very similar results in the appendices. 

Based on the lag length criteria the best model is then estimated for each market. Given the very 

high number of estimates required for the 24 VECMs I present the results in the form of impulse 

responses. Tables 3.4 and 3.5 below show the Cumulative Response Functions (CRFs) of retail 

prices to a one U$ positive and negative change in wholesale price. The measure of asymmetry I 

use corresponds to the maximum significant (within the 90% confidence bands) cost to the 

consumer at the pump; for both diesel and gasoline fuels. 

 The phenomenon of APT from wholesale to retail prices is predominant and in general 

relatively important in the EU. This is particularly obvious in diesel markets, in which margins 

are otherwise smaller. Retail diesel prices often respond to a wholesale price increase twice as 

fast as they do after a similar decrease. Gasoline prices are passed-through more quickly with 

less asymmetry observed. The results show that diesel prices must be considered in the analysis 

of the determinants of price transmission asymmetry in the EU. 
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Diesel price impulse response ΔD in US$ to a US$ change in wholesale price at τ a 

  AUT BEL DEU DNK ESP FIN 

ΔDτ+1
+ 1.02** 0.96* 1.12* 1.37* 0.87** 0.92** 

ΔDτ+1
- 0.58** 0.54* 0.75* 0.98* 0.46** 0.38** 

ΔDτ+2
+ 1.45* 1.66** 1.7* 1.81 1.48** 1.08* 

ΔDτ+2
-  1* 0.77** 1.13* 1.38 0.89** 0.54* 

ΔDτ+3
+ 1.82** 1.96 2.07** 2.01* 1.86** 1.03 

ΔDτ+3
-  1.17** 1.29 1.16** 1.27* 1.06** 0.49 

ΔDτ+4
+ 1.94* 2.25 2.17* 2.04 2* 1.15 

ΔDτ+4
- 1.26* 1.45 1.26* 1.47 1.21* 0.65 

ΔDτ+5
+ 2.15** 2.23 2.22 2.1 2.14 1.56 

ΔDτ+5
- 1.28** 1.3 1.33 1.36 1.28 0.56 

Max(ΔDτ+i
+ - ΔDτ+i

-)*b 0.87 0.89 0.91 0.74 0.80 0.54 

Mean diesel retail margin in U$/brl  23.10 23.50 23.50 22.90 22.90 26.70 
 

 Gasoline price impulse response ΔG in US$ to a US$ change in wholesale price at τ a 

  AUT BEL DEU DNK ESP FIN 

ΔGτ+1
+ 0.99 1.04* 1.08 1.61* 0.92* 0.75** 

ΔGτ+1
- 0.78 0.58* 0.7 1.23* 0.66* 0.3** 

ΔGτ+2
+ 1.44 1.76 1.5 1.67 1.41 0.75 

ΔGτ+2
- 1.16 1.42 1.34 1.49 1.18 0.43 

ΔGτ+3
+ 1.85 2.36 1.95 1.85 1.77 0.81 

ΔGτ+3
- 1.41 1.67 1.32 1.54 1.46 0.35 

Max(ΔGτ+i
+ - ΔGτ+i

-)*b 0.00 0.46 0.00 0.38 0.26 0.45 

Mean gasoline retail margin in U$/brl 26.70 26.30 26.30 29.60 26.80 26.30 

Mean gasoline retail margin in eurocent /l 13.32 13.12 13.12 14.76 13.37 13.12 

Total pump asymmetry cost in U$ /brl 0.87 1.35 0.91 1.12 1.06 0.99 

Total pump asymmetry cost in €/brl 0.73 1.14 0.77 0.94 0.89 0.83 

Pump average retail margin in eurocent/l 12.42 12.42 12.42 13.09 12.40 13.22 
 

Table 3.4 - Austria, Belgium, Germany, Denmark, Spain and Finland 

Notes for table 3.4:  a. Cumulative Orthogonalised Impulse Response Functions derived from the VECM. 
They show the response of retail prices after a change in wholesale prices at time τ. The lags are chosen 
according to the Schwarz criterion.  b. Indicates the maximum value of asymmetry within the 90% 
confidence interval. ** indicates values significant within the 95% confidence interval.  
* indicates values significant within the 90% confidence interval. 
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Diesel price impulse response ΔD in US$ to a US$ change in wholesale price at τ a 

  FRA ITA NLD PRT  SWE UK 

ΔDτ+1
+ 0.99** 0.73* 0.96* 0.26 1.39** 0.11 

ΔDτ+1
- 0.59** 0.49* 0.6* 0.17 0.84** 0.08 

ΔDτ+2
+ 1.71** 1.32* 1.36 0.97 1.66* 0.43 

ΔDτ+2
- 1.04** 0.89* 0.91 0.62 1.11* 0.31 

ΔDτ+3
+ 2.11** 1.71** 1.49 1.44** 1.85* 0.59 

ΔDτ+3
- 1.28** 1.05** 1.05 0.83** 1.16* 0.43 

ΔDτ+4
+ 2.3 1.93* 1.62 1.69** 1.83 0.64 

ΔDτ+4
- 1.44 1.18* 1.22 0.94** 1.28 0.48 

ΔDτ+5
+ 2.52 2.14* 1.7 1.90** 1.9* 0.72 

ΔDτ+5
- 1.55 1.32* 1.17 1.07** 1.18* 0.53 

Max(ΔDτ+i
+ - ΔDτ+i

-)*b 0.83 0.82 0.36 0.83 0.72 0.00 

Mean diesel retail margin inU$/brl 16.20 26.70 24.40 23.60 25.40 17.40 

 Gasoline price impulse response ΔG in US$ to a US$ change in wholesale price at τ a 

  FRA ITA NLD PRT  SWE UK 

ΔGτ+1
+ 1.15** 0.67* 1.08 0.38 1.33 0.17 

ΔGτ+1
- 0.79** 0.5* 0.94 0.37 1.2 0.04 

ΔGτ+2
+ 1.89* 1.16 1.43 1.25 1.35 0.52 

ΔGτ+2
- 1.44* 0.97 1.37 1.05 1.35 0.32 

ΔGτ+3
+ 2.21 1.57 1.62 1.71* 1.43 0.62 

ΔGτ+3
- 1.71 1.22 1.56 1.32* 1.39 0.38 

Max(ΔGτ+i
+ - ΔGτ+i

-)*b 0.45 0.17 0.00 0.39 0.00 0.00 

Mean gasoline retail margin in U$/brl 19.70 31.10 31.40 29.90 23.10 18.00 

Mean gasoline retail margin in euro-cent /l 9.83 15.51 15.66 14.91 11.52 8.98 

Total asymmetry cost in U$/brl 1.28 0.99 0.36 1.22 0.72 0.00 

Average asymmetry cost in €/brl 1.08 0.83 0.30 1.03 0.61 0.00 

Pump average retail margin in euro-cent/l 8.95 14.42 13.92 13.34 12.10 8.83 
 

Table 3.5 - France, Italy, the Netherlands, Portugal, Sweden and the UK. 

 

Notes for table 3.5: a. Cumulative Orthogonalised Impulse Response Functions derived from the VECM. 
They show the response of retail prices after a change in wholesale prices at time τ. The lags are chosen 
according to the Schwarz criterion.  b. Indicates the maximum value of asymmetry within the 90% 
confidence interval.  ** indicates values significant within the 95% confidence interval.  
* indicates values significant within the 90% confidence interval. 
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Furthermore the investigation on the determinants of the degree of price transmission 

asymmetry is based on a graphical analysis. In figures 3.4 to 3.7 below, the horizontal axis 

represents the corresponding concentration measure or proxy whilst the vertical axis represents 

the cost of asymmetry computed in the above-mentioned tables 3.4 and 3.5. The graphs show 

that the AI is higher in countries with higher concentration, namely Germany, Italy, France and 

Spain than in countries where AI is close to zero, namely the Netherlands and the UK.  

Figure 3.4 shows that in 9 out of the 12 countries the cost of asymmetry at the pump and the 

retail margins are both high. Although figure 3.4 seems to confirm the findings of Deltas (2008), 

it also suggests looking at other variables. Instead of a clear-cut positive relationship between 

margins and asymmetries, I observe a clustering of 9 countries where both asymmetries and 

margins are high. These countries are mainly dominated by National Oil Companies (NOCs) or 

majors. NOCs are well-established companies involved in the refining as well as in the 

wholesale and retailing sectors such as Eni in Italy, Repsol in Spain, Galp in Portugal or Nestle 

Oil in Finland. 

  In all the countries but France and the UK, the retail margins can be considered as high. 

Vertically integrated firms generated higher prices than independent dealers in Hastings’ (2004) 

study of the petroleum industry. In France and the UK hypermarkets and supermarkets play the 

price-cutting role of independent dealers in the study of Hastings (2004).  

   Nevertheless figure 3.4 does not explain why asymmetries are higher in France than in the 

UK. This suggests that the findings of Neumark and Sharpe (1992) regarding the banking 

industry could be generalized to the petroleum industry. Market concentration rather than 

margins could better explain differences in the degree of APT. Figure 3.5 shows the relationship 

between asymmetries and the market share of the three largest retailers. Although there seems to 

be a positive correlation, the dispersion remains too high and other market structure variables 

could be considered.  
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Similar to the finding of Hastings (2004) I provide evidence suggesting that vertical 

concentration is a major determinant of price-setting strategies. Figure 3.6 suggests a positive 

relationship between vertical concentration and the cost of asymmetries. Hastings (2004) 

concludes that the acquisition of an independent gasoline retailer by a vertically integrated firm 

is associated with significant price increases at competing stations. The effect is attributed to a 

combination of vertical integration and rebranding of the retail stations. The present findings on 

APT corroborate this hypothesis. 

 Furthermore if I combine the variables used in figures 3.5 and 3.6, I can test an index of market 

concentration which combines horizontal concentration in sites share and vertical concentration 

in volume share. Figure 3.7 shows the relationship between this constructed index and the 

degree of asymmetry. Except from Belgium, France and the Netherlands; the degree of 

asymmetry seems to increase proportionately with the market concentration index. For Belgium 

and France the degree of asymmetry seems higher than average whilst the Dutch market is 

characterized by high vertical concentration and relatively smaller asymmetries.   

  Both the French and Belgian markets are dominated by Total in both the retail and the refining 

sector. As far as the Dutch market is concerned, it is characterized by the presence of the five 

Big Oil companies as the five most important retailers. The absence of significant asymmetries 

in the UK also confirms that the Big Oil companies generate less asymmetry than NOCs, is we 

assume that Total plays a role of NOC in France and in Belgium.  



 
 

115 
 

 

Figure 3.4 - Asymmetry cost and average retail margins 

 

Figure 3.5 - Asymmetry cost and MSTOP3 
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Figure 3.6 - Asymmetry Cost and Vertical Integration 

 

 

Figure 3.7 - Asymmetry cost and MSTOP3 +VI 
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3.7 Conclusion 

  In this additional investigation I provided evidence suggesting that asymmetric pricing is 

predominant in Europe and that its main determinant is market concentration. Whilst previous 

studies suggested a relationship between the degree of asymmetry and retail margins, my results 

do not support this. However my graphical analysis suggests that both horizontal and vertical 

concentration explain rather closely the level of asymmetry. This confirms that the choice of an 

inappropriate measure of concentration can flaw the results, as noted in Peltzman (2000) 

 NOCs benefit from high retail margins and important profits from asymmetries whilst major oil 

companies seem less involved in the rockets and feathers phenomenon. All the countries 

dominated by NOCs present these features of high margins and level of APT. In contrast, 

margins are much smaller in countries where supermarkets are important (France and the UK) 

and asymmetries are smaller in countries dominated by international majors (the Netherlands 

and the UK).  

I conclude that APT is likely to increase in retail petroleum markets characterised by 

vertical integration. As discussed at length in Hastings (2004), any acquisition of 

unbranded retailer by a large refiner is likely to increase average retail prices. 
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4. APT in the UK petroleum industry 

Although Bacon (1991) conducted the first APT investigation on the British gasoline market; 

there has been little evidence of significant asymmetries in the UK. Manning (1991) used an 

error-correction model (ECM) to analyse the transmission of monthly crude oil prices to retail 

prices in the UK from 1973 to 1988. The results showed once again little evidence of significant 

asymmetry. Reilly and Witt (1998) also used an ECM and monthly data from 1982 to 1995 and 

found some evidence of asymmetries. Looking at both upstream (crude to wholesale) and 

downstream (wholesale to retail) price transmission, Galeotti et al (2003) also used monthly 

data for the UK as well as for France, Germany, Italy and Spain. They found some marginal 

evidence of asymmetries in the UK retail market as well as in other markets. The Office of Fair 

Trading (OFT, 2013) delivered a thorough report on the petroleum sector in the UK. Using 

weekly data from 2000 to 2012 they found no statistical evidence of asymmetries in neither the 

petrol nor the diesel market.  

 These mixed findings raise the question of the appropriateness of the methodology and the 

frequency used. Whilst oil price volatility has increased over the past twenty years due to 

increased speculation, utilising the appropriate data frequency is crucial. According to Eckert 

(2011), only the higher frequency (daily) data can capture the price volatility observed in recent 

years in the US. Geweke (1978, 2004) showed that aggregation over time can create a type of 

omitted variables bias problem and this represented a major issue for many studies in the 

literature due to the non-availability of daily data until recently. For instance, Bachmeier and 

Griffin (2003) used the methodology and data of Borenstein et al (1997) with daily data and 

found little evidence of APT in the US.  

This chapter contributes to the literature on several counts. First, I provide evidence 

suggesting that previous UK studies may have suffered from the use of over-aggregated data. 

The weekly model confirmed most of the UK literature’s reported results (no asymmetries), 

whilst the daily model contradicted them (significant asymmetries). Secondly, I take into 
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consideration the endogeneity of wholesale spot prices and the feedback from retail prices onto 

spot prices; unlike most previous studies. In turn a VECM is used and orthogonalised impulse 

response functions are drawn in order to interpret the results; meanwhile technical issues such as 

contemporaneously correlated residuals and Cholesky ordering of variables are considered. 

Third, I identify structural breaks which allow us to allow me to link the empirical results to 

economic theory.  

Particularly, I observe significant asymmetries in periods of rising price and demand and no 

asymmetries in periods of declining price and demand; this provides support for the collusion 

hypothesis. Haltiwanger and Harrington (1991) showed that firms find it more difficult to 

collude during recessions than during booms. Holding constant the level of current demand, 

they show that firms’ incentives to deviate are strengthened when future demand is falling; 

given that the value of the forgone collusive profits is smaller as compared to when demand is 

rising. Fabra (2006) found that this prediction can be overturned when firms’ capacities are 

sufficiently small. I analyse and discuss the significance of APT in periods of booms and 

recessions and I draw important conclusions taking into consideration market characteristics.   

My results are then compared to the findings of Peltzman (2000) and Radchenko (2005) with 

regards to the role of oil price volatility. Finally the UK results reveal more asymmetric pricing 

in the gasoline than in the diesel case; this finding is consistent with the search costs explanation 

developed by Johnson (2002). 

 

4.1 Methodology 

The initial methodology is similar to the previous chapters: unit root tests, cointegration tests, 

Granger causality and exogeneity tests. The tests call for the use of a vector error-correction 

model (VECM) whilst most studies in the literature used a simple ECM. The break detection 

tests allow me to split the sample into 5 segments for each fuel. Then the VECM is replicated 

for each segment and the results per segment are presented. 
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The VECM used is similar to the previous chapters and includes the error-correction matrix Yt-1: 

ΔYt = Yt-1 + 1 ΔYt-1 + 2ΔYt-2 + ... + q ΔYt-q+ t         (4.1) 

Where Yt  is x×1 vector of the retail and wholesale variables of interest: respectively Gt and St for 

the gasoline market; and Pt and Wt for the diesel  market. t  is  x×1 vector of errors terms, 1,…, 

q  are n×n coefficient matrices, and  is the long run coefficient matrix, which could be 

decomposed into product of matrices α and γ (matrix of r cointegrating vectors): 

 = αn×r γʹr×n                                                                                           (4.2) 

In order to include asymmetric price transmission into the model, I modify (6) and split the 

vector into positive and negative prices changes: 

               ΔYt =  Yt-1 + 1
+Δ+Yt-1 +1

-Δ-Yt-1 +... + q
+ Δ+Yt-q+ q

- Δ-Yt-q +         (4.3) 

The model based on equation (4.3) is estimated for both the daily and weekly datasets.  

 

4.2 Structural break detection 

In order to identify the determinants of asymmetric pricing in the UK petroleum markets, I 

chose to split the sample into different segments through structural breaks detection. I use the 

Awarding-Nominating procedure of Karoglou (2010). This procedure involves two stages: the 

“Nominating breakdates” stage and the “Awarding breakdates” stage. I perform the tests on 

both wholesale and retail prices for both the diesel and gasoline markets. 

 

4.2.1 Nominating breakdates 

This first step involves defining a procedure based on one or more statistical tests to identify 

some dates as potential breakdates. A number of statistical tests with various properties (for 

example, Sansó et al., 2003) have been developed for that reason although the empirical 
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literature is still persistently using only one (predominantly the test of Inclàn and Tiao, 1994). 

The procedure presents the advantage of using a battery of these tests in order to take advantage 

of the special properties of each test and particularly the trade-off between size distortions and 

low power. For this empirical investigation I use the following break tests: 

(a) I&T (Inclàn and Tiao, 1994) 

(b) SAC1 (The first test of Sansó et al., 2003) 

(c) SAC2
BT, SAC2

QS, SAC2
VH (The second test of Sansó et al., 2003, with the Bartlett 

kernel, the Quadratic Spectral kernel, and the Vector Autoregressive HAC or VARHAC 

kernel of den Haan and Levin, 1998 correspondingly) 

(d) K&LBT, K&LQS, K&LVH (The refined by Andreou and Ghysels, 2002 version of the 

Kokoszka and Leipus, 2000 test with the Bartlett kernel, the Quadratic Spectral kernel, 

and the VARHAC kernel correspondingly). 

The above tests can also be used to discover multiple breaks in a series. I incorporate the breaks 

in an algorithm and apply these breaks to sub-samples of the series. The employed algorithm 

consists in the subsequent six steps: 

1. Calculate the test statistic under consideration using the available data. 

2. If the statistic is above the critical value split the particular sample into two parts at the 

date at which the value of a test statistic is maximized. 

3. Repeat steps 1 and 2 for the first segment until no more (earlier) change-points are 

found. 

4. Mark this point as an estimated change-point of the whole series. 

5. Remove the observations that precede this point (i.e. those that constitute the first 

segment). 

6. Consider the remaining observations as the new sample and repeat steps 1 to 5 until no 

more change-points are found. 
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This procedure is used with each of the above-mentioned test statistics and is applied to each 

series. The most important characteristic of the algorithm that differentiates it from a simple 

binary division procedure such as the procedure of ICSS algorithm is that it detects the breaks in 

a time-orderly mode. As a consequence the first break suggested by the algorithm is also the 

earliest break in the series, the second break proposed is the second earliest break, and so forth.  

This is particularly important when transitional periods exist (e.g. a year of falling demand for 

oil) in which case a simple binary division process is expected to generate more breaks in this 

temporary period. Without such transitional periods both procedures will produce the same 

breaks. The nominated breakdates for each series are all those which have been detected in each 

case. At this stage I am not really concerned with detecting more breaks than those that actually 

exist because whichever is not an actual breakdate will be disqualified in the “awarding 

breakdates” phase. 

 

4.2.2 Awarding breakdates 

 As far as this model is concerned, a final selection stage is required in order to eliminate any 

breakdates that over-segmented the sample. To this aim I adopt two criteria. First, a breakdate 

needs to be associated with the timing of a substantial political or economic event. This criterion 

effectively capitalises on the stylised fact that the crude oil price is an international and 

politically sensitive issue. Second, a breakdate must generate segments that are not too small in 

size; each segment should at least cover 120 observations or 6 months34. This criterion is based 

on the fact that two segments can be merged is the data characteristics are identical before and 

after the breakdate. 

 

                                                   
34 Each segment should at least cover 6 months to be plausible. 
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4.3 Data 

 I focus on the transmission of spot prices to retail prices for both the diesel and the gasoline 

markets. I use the same series for both the daily and the weekly model for comparison. The 

sample period starts on Tuesday 4/01/2000 and ends on Tuesday 28/12/201035. The total 

number of observations for each series is 574 for the weekly model.  

As far as the daily model is concerned, the sample period covers 2777 non-consecutive days 

from 3/01/2000 to 30/12/2010 as Saturdays, Sundays and bank holidays are not included.  Due 

to the non-availability of UK-specific contract prices, the closest proxy for wholesale prices is 

the cost insurance and freight-North-West Europe (CIF-NWE) price. This spot price is a close 

substitute to the Amsterdam-Rotterdam-Antwerp (ARA) price. The two spot prices use a 

slightly different definition as follows36:  

 S: Gasoline, Unleaded Regular CIF-NWE published in U$/Metric Ton. 

 W: Gas Oil-European Economic Community-CIF Cargos NWE also published 

in U$/Metric Ton.  

  

According to the oil industry’s common conversions, in order to obtain the price in U$/barrel I 

divide the MT price by 8.92 for regular gasoline and by 7.41 for gas oil.  

The retail prices obtained in GBP/barrel include the duty and the VAT.  For consistency with 

the weekly prices, the duty and the VAT are removed37. This presents the advantage of 

removing the effects of different duty rates over time. Using retail prices including VAT would 

not have any effect as the VAT rate remained at 17.5% over the sample period. It only went up 

to 20% on the 4th of January 2011 which occurred shortly after the last day of my sample. 

                                                   
35 Tuesdays are the best choice for the weekly model as wholesale prices are not published on Saturdays 
and Sundays; hence the main adjustment for the week occurs on Tuesday. 
36 The two wholesale prices are obtained from Datastream.  
37 Using retail prices including VAT would not have any effect as the VAT rate remained at 17.5% over 
the sample period. It only went up to 20% on the 4th of January 2011 which occurred shortly after the last 
day of my sample. Meanwhile the duty on fuel price went up from 47.21 pence per liter on the 9th March 
1999 to 58.19 pence per liter on the 1st October 2010. 
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Meanwhile the duty on fuel price went up from 47.21 pence per litre on the 9th March 1999 to 

58.19 pence per litre on the 1st October 2010. 

 G, for unleaded Gasoline price: the retail unleaded gasoline prices are published 

in pence per litre and they are then converted into GBP/barrel. 

 P, for diesel Price: the retail diesel prices are published in pence per litre and 

they are then converted into GBP per barrel. 

 

In table 4.1 and table 4.2 below, the retail prices are shown in USD for comparison with their 

corresponding upstream price. 

  W P S G X  P (£) G (£) 
 Mean 63.6 81.7 55.5 73.8 1.7 47.7 43.1 

 Std. Dev. 32.3 33.6 25.3 29.5 0.2 16.9 15.0 
 Skewness 0.9 0.9 0.6 0.6 0.2 0.8 0.6 
 Kurtosis 3.9 3.8 2.6 2.6 1.7 3.0 2.2 

 Jarque-Bera 101.7 93.9 36.9 37.3 43.3 58.7 47.4 

  ΔW ΔP ΔS ΔG ΔX ΔP (£) ΔG (£) 
 Mean 13.1% 12.5% 11.5% 11.9% 0.0% 8.4% 8.0% 

 Std. Dev. 329.3% 228.0% 316.6% 222.6% 2.3% 96.5% 101.4% 
 Skewness -0.3 -1.4 -0.3 -1.3 -0.3 -1.0 -1.0 
 Kurtosis 5.1 13.4 4.9 12.2 5.3 9.7 8.6 

 Jarque-Bera 112.9 2757.7 93.7 2191.1 137.9 1170.0 856.2 
 

Table 4.1 - Weekly data descriptive stats 
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  W P S G X  P (£) G (£) 
 Mean 63.7 69.9 55.5 64.6 1.7 47.8 43.4 

 Std. Dev. 32.2 20.4 25.3 18.2 0.2 16.9 14.9 
 Skewness 0.9 0.8 0.6 0.6 0.2 0.8 0.6 
 Kurtosis 3.8 2.9 2.5 2.3 1.8 3.1 2.3 

 Jarque-Bera 465.7 294.2 175.7 237.1 206.3 317.9 230.6 

  ΔW ΔP ΔS ΔG ΔX ΔP (£) ΔG (£) 
 Mean 2.7% 2.3% 2.3% 2.2% 0.0% 1.8% 1.7% 

 Std. Dev. 150.6% 36.7% 134.5% 34.5% 1.0% 33.0% 30.2% 
 Skewness 0.2 -2.2 0.0 -1.6 -0.1 -1.7 -1.9 
 Kurtosis 9.0 30.9 7.8 31.5 6.1 45.8 34.4 

 Jarque-Bera 4140.6 92578.6 2635.1 95246.8 1120.8 213065.5 115357.5 
 

Table 4.2 - Daily data descriptive statistics  

Table 4.3 and table 4.4 show the descriptive statistics for respectively the five segments of the 

diesel market and the five segments for the gasoline markets. 

 

  Mean Standard Deviation Skewness Kurtosis 
  W X P(£) W X P(£) W X P(£) W X P(£) 

D1 34.5 1.5 33.5 5.0 0.1 2.2 0.9 0.6 0.5 2.4 2.2 2.6 
D2 33.4 1.6 31.7 7.0 0.1 2.5 0.7 0.5 1.0 3.3 2.0 3.5 
D3 74.0 1.9 50.3 10.5 0.1 5.9 -0.3 0.1 -0.4 2.4 1.9 2.2 
D4 121.3 1.9 75.4 30.6 0.2 14.1 -0.1 -1.3 0.2 2.4 3.3 1.9 
D5 81.1 1.6 62.9 13.7 0.1 8.6 -0.6 -0.4 0.2 2.6 2.2 1.5 
  Mean Standard Deviation Skewness Kurtosis 
  ΔW ΔX ΔP(£) ΔW ΔX ΔP(£) ΔW ΔX ΔP(£) ΔW ΔX ΔP(£) 

D1 -0.1% -0.1% 0.8% 81.1% 0.8% 43.5% -0.2 0.4 3.1 3.9 4.0 52.4 
D2 2.4% 0.0% 0.6% 78.3% 0.8% 13.5% -0.4 -0.1 -3.5 6.3 4.2 65.9 
D3 5.6% 0.0% 1.8% 145.7% 0.9% 28.1% -0.1 0.0 -2.4 4 3.6 32.4 

D4 -8.8% -0.2% -0.9% 282.6% 1.5% 57.4% 0.4 -0.1 -2.5 5 5.4 14.6 

D5 6.5% 0.0% 6.2% 163.1% 1.2% 35.3% 0.0 0.1 -1.9 3.0 5.2 34.2 
 

Table 4.3 - Descriptive statistics for the five segments detected for diesel prices. 

 * Spot gas oil price W in $ and the retail diesel price P in £. 
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  Mean Standard Deviation Skewness Kurtosis 
  S X G(£) S X G(£) S X G(£) S X G(£) 

G1 29.5 1.5 29.4 5.4 0.1 3.8 -0.5 0.5 -0.2 3.0 2.0 2.9 
G2 43.8 1.8 34.2 10.6 0.1 5.3 0.5 -0.6 0.7 2.5 2.1 2.8 
G3 75.6 1.9 51.7 14.4 0.1 7.1 0.3 -0.4 0.3 2.4 1.9 2.5 
G4 90.3 1.8 65.1 34.5 0.2 15.3 -0.5 -0.4 -0.8 1.6 1.7 2.1 
G5 73.1 1.6 58.6 13.0 0.1 10.9 -1.0 -0.4 -0.5 -1.0 -0.4 -0.5 
  Mean Standard Deviation Skewness Kurtosis 
  ΔS ΔX ΔG(£) ΔS ΔX ΔG(£) ΔS ΔX ΔG(£) ΔS ΔX ΔG(£) 

G1 0.8% 0.0% 0.8% 71.0% 0.7% 25.2% 0.3 0.2 0.0 8.9 4.2 28.0 
G2 6.1% 0.0% 2.4% 106.6% 1.0% 19.7% -0.2 -0.2 -0.9 4.3 3.4 16.2 
G3 6.6% 0.0% 3.1% 161.0% 1.0% 28.4% 0.3 -0.1 0.7 5.6 3.8 28.0 
G4 -45.5% -0.3% -23.3% 255.0% 1.8% 62.0% 0.0 0.1 -2.5 4.5 5.1 11.7 
G5 9.5% 0.0% 8.5% 143.3% 1.2% 30.5% -0.2 0.1 -1.2 3.5 5.2 37.6 

 
Table 4.4 - Descriptive statistics for the five segments detected for gasoline prices. 

*Spot gasoline price S in $ and the retail gasoline price G in £. 
 

 

Finally, table 4.5 exhibit the four final segments. Whilst the breakdate methodology is explained 

in the previous sections, the rationale behind the use of four final segments is further explained 

in subsection 4.4.2.  
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S1 W S X P (£) G (£) 
 Mean 34.5 32.0 1.5 33.5 31.5 

 Std. Dev. 5.0 3.6 0.1 2.2 3.1 
 Skewness 0.9 0.2 0.6 0.5 0.3 
 Kurtosis 2.5 2.6 2.2 2.6 2.2 

S1 ΔW ΔS ΔX ΔP (£) ΔG (£) 
 Mean -0.1% 0.6% -0.1% 0.8% 0.5% 

 Std. Dev. 80.9% 68.1% 0.8% 43.5% 35.2% 
 Skewness -0.2 -0.2 0.4 3.1 0.0 
 Kurtosis 3.9 5.1 4.0 52.4 18.7 

S2 W S X P (£) G (£) 
 Mean 58.3 51.5 1.7 42.8 39.2 

 Std. Dev. 28.5 22.9 0.2 12.7 11.6 
 Skewness 0.8 0.5 -0.3 0.7 0.5 
 Kurtosis 3.1 2.3 1.9 2.8 2.2 

 S2 ΔW ΔS ΔX ΔP (£) ΔG (£) 
 Mean 7.2% 4.9% 0.0% 2.9% 2.3% 

 Std. Dev. 128.9% 123.3% 0.9% 22.6% 22.7% 
 Skewness 0.1 0.3 -0.2 -2.2 0.3 
 Kurtosis 6.2 7.3 3.9 39.8 30.1 

S3 W S X P (£) G (£) 
 Mean 123.9 90.3 1.8 82.5 65.1 

 Std. Dev. 39.6 34.5 0.2 15.0 15.3 
 Skewness -0.3 -0.5 -0.4 -0.7 -0.8 
 Kurtosis 1.7 1.6 1.7 2.2 2.1 

S3  ΔW ΔS ΔX ΔP (£) ΔG (£) 
 Mean -59.3% -45.5% -0.3% -21.9% -23.3% 

 Std. Dev. 318.7% 255.0% 1.8% 70.7% 62.0% 
 Skewness 0.8 0.0 0.1 -1.9 -2.5 
 Kurtosis 5.5 4.5 5.1 9.5 11.7 

S4 W S X P (£) G (£) 
 Mean 81.1 73.1 1.6 62.9 58.6 

 Median 83.9 76.6 1.6 60.7 59.5 
 Skewness -0.6 -1.0 -0.4 0.2 -0.5 
 Kurtosis 2.6 3.3 2.2 1.5 2.3 

 S4 ΔW ΔS ΔX ΔP (£) ΔG (£) 
 Mean 6.5% 9.5% 0.0% 6.2% 8.5% 

 Median 10.1% 16.8% 0.0% 8.1% 8.1% 
 Skewness 0.0 -0.2 0.1 -1.9 -1.2 
 Kurtosis 3.0 3.5 5.2 34.2 37.6 

 
Table 4.5 - Descriptive statistics for the 4 final segments 
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In the next section, I present the results of the comparison between the weekly and the daily 

models for the full sample (2000-2010). Then I segment the sample using the breakdates and 

compare APT across segments. 

 

4.4 Results 

All the detailed results are in Appendix B. 

4.4.1 Comparison between weekly and daily models 2000-2010 

Figures 4.1 to 4.4 show the CRFs of retail prices (in GBP for figures 4.1 and 4.3 and in US$ for 

figures 4.2 and 4.4) to a one-unit (positive and negative) change in the corresponding wholesale 

price for both weekly and daily models and both fuels. Asymmetries are defined as the faster 

response of retail prices in the case of a cost increase than in the case of a decrease.  

Reading on the graphs, significant asymmetries are represented by the white area between the 

95% confidence band of the response to an “increase” and the 95% confidence band to a 

“decrease” impulse. If the response to an increase is faster to the response to a decrease, the 

COIRF “increase” will be above the COIRF “decrease”, however the difference is only 

significant where the two confidence bands are separated by a white “empty” area (Figures 4.3 

and 4.4).  

As far as the weekly response in GBP is concerned, asymmetric price transmission is observed 

for both fuels in figure 4.1 but the phenomenon is not significant at the chosen confidence 

interval. On the other hand figure 4.2 exhibits no evidence of asymmetric response in US$, or at 

least in commonly accepted definition of asymmetries. The response to a decrease is faster than 

the response to a similar increase although in definitive the phenomenon is not significant.  
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4.4.2 Segmented daily model 

  IT ASC1 ASC2
BT ASC2

QS ASC2
VH KLBT KLQS KLVH LMT Adopted 

ΔP
 

3/14/2001 3/14/2001 3/14/2001 3/14/2001 9/30/2007 9/30/2007 3/14/2001 9/30/2007 3/14/2001 3/14/2001 

1/10/2007 1/10/2007 1/10/2007 1/10/2007 - 6/1/2009 1/10/2007 - 1/10/2007 1/10/2007 

6/1/2009 6/1/2009 6/1/2009 6/1/2009 - - 6/1/2009 - 6/1/2009 6/1/2009 

7/4/2010 - - - - - - - - - 

ΔG
 

9/4/2001 12/5/2008 12/5/2008 12/5/2008 - 12/5/2008 12/5/2008 - 12/5/2008 12/5/2008 

5/13/2008 5/1/2009 5/1/2009 5/1/2009 - 5/1/2009 5/1/2009 - 5/1/2009 5/1/2009 

5/1/2009 - - - - - - - - - 

11/1/2010 - - - - - - - - - 

ΔW
 

8/26/2004 8/26/2004 8/26/2004 8/26/2004 8/26/2004 8/26/2004 8/26/2004 8/26/2004 8/26/2004 8/26/2004 

11/13/2007 11/13/2007 11/13/2007 11/13/2007 11/13/2007 11/13/2007 11/13/2007 11/13/2007 11/13/2007 11/13/2007 

3/2/2009 3/2/2009 3/2/2009 3/2/2009 3/2/2009 3/2/2009 3/2/2009 3/2/2009 3/2/2009 3/2/2009 

4/7/2010 4/7/2010 4/7/2010 4/7/2010 4/7/2010 4/7/2010 4/7/2010 4/7/2010 4/7/2010 4/7/2010 

ΔS
 

3/16/2003 3/16/2003 3/16/2003 3/16/2003 3/16/2003 3/16/2003 3/16/2003 3/16/2003 3/16/2003 3/16/2003 

8/24/2005 8/24/2005 8/24/2005 8/24/2005 8/24/2005 8/24/2005 8/24/2005 8/24/2005 8/24/2005 8/24/2005 

2/9/2009 2/9/2009 - 2/9/2009 - - 2/9/2009 - 2/9/2009 2/9/2009 

 

Table 4.6 - Structural break detection - Nominating and awarding breakdates. 

 

Table 4.6 above shows that the break tests awarded up to 3 breakdates for the retail diesel price 

and 2 for the gasoline retail price. As far as the NWE wholesale spot prices are concerned 4 

dates were awarded for the diesel market and 3 dates for the gasoline market. 

Table 4.7 below details the probable causes and the characteristics of the data after the 

breakdate. Causes for changes in ΔP are to be found at the UK level whilst any global political 

or economic event could cause a break in ΔW as W is published in US dollars by default and 

closely follows the trend of crude oil prices. 
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 Break points Probable causes Aftermath characteristics 
ΔP

 
14/03/2001 Change in UK duty one-3p Steady increase and less volatile 

01/10/2007 Change in UK duty +2 p More volatility and important falls 

06/01/2009 Cold weather/snow (UK) /exit of recession Less volatility clustering and higher rises 

ΔW
 

26/08/2004 World oil demand rise /Iraq /Venezuela Increasing volatility 

13/11/2007 Pessimistic predictions for oil industry brutal rises and falls / extreme volatility 

03/02/2009 Iraq elections/economic recovery No change from previous period 

04/07/2010 Gaza Strip events No change from previous period 

ΔG
 12/05/2008 China earthquake and US tornados Down period with uniquely high volatility 

05/01/2009 Cold weather (UK)/ economic recovery Up period with less volatility 

ΔS
 

16/03/2003 Iraq invasion Increasing volatility 

24/08/2005 Hurricane Katrina Brutal increase and then higher volatility 

02/09/2009 Indonesia earthquake No change from previous period 

 
Table 4.7 - Probable causes of the breakdates and characteristics of the series afterwards 

Tables 4.8 and 4.9 below present the final selection process based on the plausibility of the 

event and the size of the contiguous segments. 

 Break points Probable 
causes 

Aftermath 
characteristics Decision 

ΔP 14/03/2001 UK duty -3p/ 
growth recovery 

Up period and 
less volatile Y 

ΔW 26/08/2004 World oil demand rise / 
Iraq 

Up and down with 
increased volatility Y 

ΔP 01/10/2007 UK duty +2 p/ Down period and 
higher volatility Y 

ΔW 13/11/2007 Negative forecasts 
in oil demand 

No real change 
from previous N 

ΔP 06/01/2009 Cold weather (UK)/ 
recovery 

Up period / 
High rises Y 

ΔW 03/02/2009 Iraq elections/ 
exit of  recession 

No real change 
from previous N 

ΔW 04/07/2010 Gaza strip events No real change 
from previous N 

 
Table 4.8 - Diesel market: final selection of breakdates 

 

 



 
 

131 
 

 Break points Probable 
causes 

Aftermath 
characteristics Decision 

ΔS 3/16/2003 Iraq invasion Increased 
volatility Y 

ΔS 8/24/2005 Hurricane Katrina Brutal increase and 
increased volatility Y 

ΔG 5/12/2008 China earthquake, 
US tornados 

Down period with 
sky-high volatility Y 

ΔG 1/5/2009 Weather (UK)/ 
recovery 

Up period  with 
less volatility Y 

ΔS 9/2/2009 Indonesia 
earthquake 

No real change 
from previous N 

 
Table 4.9 - Gasoline market: final selection of breakdates 

 
Note for tables 4.8 and 4.9: the final selection process is based on the comparison of the series before and 
after the awarded breakdate. If a significant change is observed in the data characteristics and the segment 
lasts at least 6 months, I decide to keep the breakdate (Y). Otherwise, the breakdate is dropped (N). This 

approach is coupled to the plausibility of the segment’s length. E.g. the break in ΔP (retail) is observed on 
the 1st October 2007, and on the 13th November 2007 for ΔW (spot), either date could be selected as the 

breakdate.  

 

The detected structural breaks are used to split the sample for each fuel into five 

segments. The resulting five segments are presented in table 4.10 below: 

 
Diesel Gasoline 

Segment 1 4/1/2000 to 14/03/2001 (D1) 4/1/2000 to 16/3/2003 (G1) 
Segment 2 14/3/2001 to 26/8/2004 (D2) 16/3/2003 to 24/8/2005 (G2) 
Segment 3 26/8/2004 to 1/10/2007 (D3) 24/8/2005 to 12/5/2008 (G3) 
Segment 4 1/10/2007 to 06/1/2009 (D4) 12/5/2008 to 5/1/2009 (G4) 
Segment 5 6/1/2009 to 31/12/2010 (D5) 5/1/2009 to 31/12/2010 (G5) 

 
Table 4.10 - The five segments for the diesel and gasoline markets. 

 

 The methodology used for the full sample is then replicated for the 5 segments of each market. 

Figure 4.5 presents the COIRFS of retail diesel price response in GBP based of the VECM 

applied to each segment whilst figure 4.6 exhibits the results for gasoline prices. The graphs 

show that asymmetries are predominant in the period 2000-2010 although the degree of 

asymmetries is marginal compared to what was found in other European countries. The two 

segments showing no asymmetries at all (D1 and G4) correspond to two periods of recession 

characterised by an important fall in oil price and demand. I find that although asymmetries are 
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only significant in two of the 10 segments studies (G3 and G5), 8 segments do exhibit some 

degree of asymmetric price transmission. The fact that they are not significant might be due to 

the fact that the segment’s sample size is too small.  

 In order to average out the impact of breaks, I merged segments with similar data 

characteristics as well as similar price transmission. As well as increasing substantially the 

samples’ size, merging those segment enables us to compare diesel and gasoline price 

transmissions. The resulting merged segments are presented as presented in table 4.11 below: 

  Harmonised segments 
S1 4/1/2000 to 14/03/2001 
S2 14/3/2001 to 12/5/2008 
S3 12/5/2008 to 5/1/2009 
S4 5/1/2009 to 31/12/2010 

 
Table 4.11 - The final four segments 

 

Figure 4.5 shows the comparison between diesel and gasoline price response in GBP for S1, S2 

and S3. The segment S4 is shown in figure 5 for the diesel market (D5) and figure 6 for the 

gasoline market (G5). 
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Figure 4.1 - Diesel COIRFS based on the VECM applied on each segment. 

 

Note: The horizontal axis represents the number of days since a wholesale price change, the vertical axis 
represents the cumulative orthogonalised impulse response of the retail price in USD in response to a one 
standard deviation change in wholesale price (US$). Changes in wholesale prices are split into two 
impulses: increase (black) and decrease (grey) and the corresponding responses are also shown with their 
95% CI. The underlying daily VECM with 17 (diesel) or 15 (gasoline) lags implies that robust 
conclusions can only be drawn from the graphs from day 1 to day 18 or 16 since the change. 
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Figure 4.2 - Gasoline COIRFS based on the VECM applied on each segment. 

 

 

Note: The horizontal axis represents the number of days since a wholesale price change, the vertical axis 
represents the cumulative orthogonalised impulse response of the retail price in USD in response to a one 
standard deviation change in wholesale price (US$). Changes in wholesale prices are split into two 
impulses: increase (black) and decrease (grey) and the corresponding responses are also shown with their 
95% CI. The underlying daily VECM with 17 (diesel) or 15 (gasoline) lags implies that robust 
conclusions can only be drawn from the graphs from day 1 to day 18 or 16 since the change. 
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Figure 4.3 - COIRFS based on the asymmetric VECM applied on the harmonised segments. 

Note: The horizontal axis represents the number of days since a wholesale price change, the vertical axis 
represents the cumulative orthogonalised impulse response of the retail price in USD in response to a one 
standard deviation change in wholesale price (US$). Changes in wholesale prices are split into two 
impulses: increase (black) and decrease (grey) and the corresponding responses are also shown with their 
95% CI. The underlying daily VECM with 17 (diesel) or 15 (gasoline) lags implies that robust 
conclusions can only be drawn from the graphs from day 1 to day 18 or 16 since the change. 
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 Figure 4.7 above shows that the long period from 2001 to 2008 (S2) is where significant 

asymmetric price transmission is observed. In this period whilst the retail gasoline price increase 

15 days after the $1 spot price increase is £0.5/barrel the retail gasoline price decrease 15 days 

after a $1 spot price decrease is only £0.25/barrel. In turn in a period of high volatility, a 

$10/barrel increase in spot gasoline price would generate a retail positive response of £5/barrel 

whilst a similar decrease would decrease the retail gasoline price by only £2.5/barrel. In such 

conditions of high volatility, the welfare transfer of £2.5/barrel would correspond to a mere 1.6 

pence per litre. For an average driver using 100 litres of gasoline per month, the cost of 

asymmetries would be £1.6. In the diesel market the cost of asymmetric pricing is much lower 

at £0.11 /barrel or 0.7 pence per litre.  

 This confirms the results of Johnson (2002) who stated that  the greater asymmetries in the 

gasoline US daily price response were probably due to the fact that drivers of diesel cars have 

lower search costs than drivers owning gasoline cars. Table 4.12 below shows the welfare 

transfer generated by APT for the segment 2001-2008. Even in a case of extreme oil volatility 

($10 change in spot price), the welfare transfer could be considered negligible for the average 

driver utilising 100 litres of diesel (70 pence) or gasoline (£1.6) every month. 

Standard 
deviation in Spot 

Price 

COIRF 15-17 days 
after a standard  
impulse  (£/brl) 

Standard welfare 
gain for the 

retailer in £/brl 

Welfare gain 
for the retailer 
in £/brl: $10 

change 

Welfare gain for 
the retailer in 

pence/litre: $10 
change 

ΔS+ = 0.79 0.39 +0.21 +2.5 +1.6 
ΔS- = 0.72 0.18    

ΔW+ = 0.82 0.29 +0.11 +1.1 +0.7 
ΔW- = 0.76 0.18    

 

Total welfare gain for 
both fuels +0.32 +3.6 +2.3 

 
Table 4.12 - Estimated welfare transfer from the end user to the retailer based on the VECM. 
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 Table 4.13 below shows that although the welfare transfer could be considered marginal for the 

end user, it is generated important additional profits for the main fuel retailers. In one year of 

rising price such as the year 2005, my model predicts that British Petroleum (BP) have gained 

£11.8M from APT; in other words by responding to price increases faster than to price 

decreases. For the following three fuel retailing companies in terms of volume delivered (Tesco, 

Esso and Shell), the gains are similar and range between £8.5M and £8.7M. Table 4.12 and 

table 4.13 demonstrate that APT are also the result of the consequent difference in size between 

the average driver and the Big Oil companies that also benefits from being vertically-integrated 

(BP, Shell and Esso which is the retail brand of the giant Exxon-Mobil). Whilst the retail price 

data considered in this study only accounts for fuel delivered in ‘normal’ petrol stations, it 

would be an interesting extension to consider contract prices in the commercial sector (Heavy 

Goods Vehicle) in which the size of the consumer (transports companies) is considerably more 

important. 

2005 data Volume delivered in kl* Estimated welfare gains from APT 
BP 5,877,872 £                                   11,829,679 

Tesco 4,347,640 £                                     8,749,967 
Esso 4,255,992 £                                     8,565,518 
Shell 4,252,424 £                                     8,558,338 

 
Table 4.13 - Estimated profit generated from APT for the top 4 fuel retailers in the UK in 2005.  

*kilolitres: volume data obtained from Experian Catalist reports. 

 

4.5 Discussion 

In this chapter, the results confirm the importance of the choice of data frequency. Whilst the 

weekly model does not uncover any evidence of asymmetric pricing, the daily model provides 

evidence of significant asymmetries in both diesel and gasoline markets.  Furthermore, the tests 

conducted on the daily price data unveiled the presence of four structural breaks for the pair of 
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diesel prices and four other breaks for the gasoline prices. The sample (for diesel and gasoline 

series) is then split into five segments and the model (VECM) is replicated for each segment. In 

order to draw comparisons between diesel and gasoline prices, four final harmonised segments 

are chosen based on the plausibleness of the break dates. This fastidious testing procedure is a 

key contribution as it enables us to separate four periods with alternating pricing regimes:  

January 2000 to March 2001 is a period of recession and/or declining price, March 2001 to May 

2008 a period of constantly rising price; thereafter May 2008 to January 2009 prices are 

declining rapidly and finally price increase rapidly until the end of 2010.  

  There are significant asymmetries in long periods of rising demand (2001-2008 and 2009-

2010) whilst periods of recession (2000 and 2008) do not exhibit any significant asymmetries. I 

find that asymmetries are compatible with periods of high volatility (2005-2007 and 2009-2010) 

and moderate volatility (2001-2004). The results somewhat contradict the findings of Peltzman 

(2000) and Radchenko (2005), who stated that asymmetries are reduced in periods of high 

volatility in the United States; they attributed it to coordination failure in periods of higher price 

volatility. The descriptive statistics for 2008 show at the same time very high volatility and 

plummeting oil price whilst the recession of 2000 exhibited less volatility and a marginal fall in 

oil price. Meanwhile both periods did not reveal any presence of APT in retail price response; 

the common factor for the two periods is rather the presence of a recession. 

 Whilst the actual effect of asymmetries on the average driver’s budget can seem marginal, the 

combination of these asymmetries with high taxation and regularly rising price may explain the 

mounting controversy over this particular topic. In fact, I provide evidence that the welfare 

gains for the major fuel retailers are not negligible. Whilst the previous studies on the UK fuel 

markets frequently rejected the hypothesis of asymmetric price transmission, why should the 

present study’s results be more trusted? The response mainly lies in the unique daily dataset and 

the rigorous methodology. 

   First as far as the pass-through of EU spot prices to UK retail prices is concerned, I find that 

the spot prices are endogenous and in turn a VEC model should be used rather than the classical 
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ECM. This finding confirms the proposition of Geweke (2004) who stated that endogeneity and 

feedback were often neglected in the literature.  

 Second, I confirm the importance of utilising datasets where the sample frequency at least 

matches that of price adjustments. When comparing the weekly and the daily model, it is 

obvious that the daily dataset is more appropriate to capture the recent volatility of fuel prices. 

This issue was raised and confirmed in the study of Asplund et al (2000) for the Swedish 

gasoline market and the most recent North American studies utilised daily or even twice-daily 

data.  

 Third, the availability of daily data allows addressing the issue of aggregation over time for 

long sample periods. Structural break detection tests are performed on diesel and gasoline spot 

and retail prices, uncovering different pricing regimes depending on the period studied. The 

tests resulted in splitting the sample into five segments for each fuel’s sample (diesel and 

gasoline). Whilst most of the segments exhibited some degree of asymmetric price transmission, 

the smaller samples resulted in loss of statistical significance, obvious in the confidence 

intervals of the COIRFs.  

 Nevertheless, the results suggested that asymmetries generally arise in periods of rising price, 

regardless of the level of volatility. In turn, by isolating the segments of recession and 

harmonising the segments for both fuels; the results for the period 2001-2008 were statistically 

more significant and provided a clearer picture on the level of asymmetries.  

  Why are asymmetries more significant in periods of rising oil price? Whilst the pass-through 

of spot prices into UK retail prices is only partial, the response to a spot increase is generally 

twice as important as in the case of a spot decrease. In turn asymmetries can be presented as a 

mechanism of welfare transfer from the small end user to the bigger fuel retailer.  

 The literature often states than it is the result of collusion between retailers and my results 

corroborate this hypothesis. In periods of rising oil price, fuel retailers are well-aware that 

demand for oil is increasing worldwide and that spot price is rising in the long-run. Although 
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the retail chains also respond to spot decreases by decreasing their retail prices, they do so with 

less eagerness as they consider the decrease as a short-term adjustment and anticipate the next 

period of rising price. This is evident in the first 10 days after a spot change in segment 2 

(Figure 4.7) as the response to an increase is twice as important as that to a decrease. In periods 

of recession, the picture is different as the response to both positive and negative impulses is 

almost symmetric with variations across segments.  

Haltiwanger and Harrington (1991) showed that deviation from collusion (they call cheating) is 

easier when future demand is falling, given that the value of the forgone collusive profits is 

smaller as compared to when demand is on the rise. Though, Fabra (2006) showed that the 

incentive to cheat is linked to the value of firms’ capacities. When capacity constrains are tight 

enough, collusive firms find it harder to collude during booms whereas they find it easier with 

large capacities. In the context of the present study Borenstein and Shepard (1996) note that the 

petroleum industry is characterised by cyclical cost movements rather than tight capacity 

constraints. Throughout the literature review, there was no evidence that retail petroleum 

markets can be characterised by tight capacity constraints. Consequently, it can be confidently 

stated that the present results support the model of Haltiwanger and Harrington (1991) without 

contradicting the important theoretical contribution of Fabra (2006). 

Although Peltzman (2000) and Radchenko (2005b) associated volatility to a lesser degree of 

price asymmetry; it is rather due to the fact that volatility in oil price is often coupled with 

recession due to increased speculation in crude markets. Kohl (2002) argued that although 

OPEC is often accused of causing volatility by not adjusting to changing demand in oil, the oil 

futures market is playing an even greater role in oil price volatility through the actions of 

speculators, hedge funds and commercial traders. By being more active when prices fall, 

speculators actively increase the level of volatility in spot prices as observed recently in 2008. 

As explained in detail in the first two chapter of this thesis, such reduction (or disappearance) in 

the degree of asymmetry would support the oligopolistic coordination theory. My results do not 

clearly support the arguments of Peltzman and Radchenko (2005). Nonetheless, further 
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evidence from other countries is needed in order to check whether volatility appears mainly in 

periods of recession and reduces the degree of asymmetry. 

  As far as the comparison between diesel and gasoline markets is concerned, Johnson (2002) is 

the unique study known to have discussed this particular topic. He found greater asymmetries in 

the gasoline markets and he argued that this result is consistent with a search costs explanation. 

The diesel users drive cars that are more fuel-efficient and the cost of searching for cheaper 

price is lower. Diesel drivers are assumed to search more for the cheapest pump prices while 

drivers of petrol cars are more likely to buy smaller volumes of fuel.  Finally the choice of a 

diesel car is often based on economy rather than performance, a choice that suggests a more 

economical behaviour. Our results also provide support for this explanation, especially when the 

segment 2001-2008 is isolated. The difference between the costs of asymmetry between the two 

fuels is quite substantial and supports the findings of Johnson (2002). 
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5. Price Stickiness in a Competitive Petroleum Retail Market 

5.1 Introduction 

The final empirical investigation focuses on a local market: the data includes all the daily diesel 

and gasoline prices of petrol stations with ‘B’ postcodes, in other words all the stations in the 

Birmingham (UK) area for the year 2008. In the APT literature, studies using regional data were 

limited to North American markets and this represents the first opportunity to study a local 

market within a European country. Although the petroleum markets are international by nature, 

station level data are necessary in order to understand the pricing mechanisms behind APT. 

  While I know from the previous chapter that in 2008 there is no evidence of APT at the 

national UK level, the Birmingham data allow us to test the robustness of the result at a more 

local level. Apart from the presence or not of APT, I am interested in the pricing mechanisms at 

the local level: do retailers with market power adjust prices more slowly than competitive firms? 

What are the characteristics of retail petroleum pricing in the Birmingham area? Can these 

characteristics be associated to the level of competitiveness in this area? 

  Out of the existing 222 stations in the B postcode area, the Experian Catalist data covers a 

satisfying number of observations for 191 outlets. Whilst the spot gasoline and diesel prices 

fluctuate on a daily basis from Monday to Friday, they are not published for Saturdays and 

Sundays.  

 At the level station, I observe that retail prices are held constant in the short run as in figure 5.1. 

In the short run and at the station level, the price remains constant for several days despite the 

frequent fluctuations in spot price. 

  To explain this point, I take the following example; I randomly chose two stations in Northern 

Birmingham. One is a supermarket service station (ASDA) and one belonging to a major oil 

company (BP). The pricing pattern is similar for both stations with long periods of price 

stability and upward price adjustment triggered by a one penny per litre increase in cost. Smaller 

changes in cost do not appear to trigger any price adjustment. In all previous chapters, I have 

observed a clear pattern of APT. Looking at station-level data uncovers one characteristic which 
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has been impossible to study at the aggregated national level: price stickiness for both upwards 

and downwards cost changes. In contrast, the aggregated data uncovered downward price 

stickiness although not for this particular period of study. 

 Price stickiness is the topic of a well-developed literature, slightly distinct from but linked to 

the topic of APT. Here I only succinctly list some references in order to understand the 

theoretical background. In fact the sticky prices literature is often linked to the menu cost 

explanation. 

  Rotenberg (1982) presented robust evidence suggesting that US prices are in fact sticky. He 

presented a formal model explaining price stickiness by the fact that firms fearing to upset their 

customers attribute a cost to price changes. The model developed is tested empirically with US 

post-war data and the results strongly support this theory.  

  Ball and Romer (1991) argue that sticky prices are the result of coordination failure rather than 

menu costs adjustments. Borsenstein and Shepard (2002) develop a model of price adjustments 

where futures prices of gasoline adjust incompletely to crude oil price shocks that occur close to 

the expiration date of the futures contract. They examine wholesale price responses in 188 

gasoline markets and find that firms with market power adjust prices more slowly than do 

competitive firms, consistent with the model.  

 

Figure 5.1. Spot and retail gasoline prices for 2 stations in the Northern suburbs of Birmingham.  
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 According to Davis and Hamilton (2004), the menu-cost interpretation of sticky prices implies 

that the probability of a price change should depend on the past history of prices only through 

the gap between the current price and the frictionless price. They find that this prediction is 

broadly consistent with the behaviour of 9 Philadelphia gasoline wholesalers. They nevertheless 

reject the menu-cost model as a literal description of these firms' behaviour, arguing instead that 

price stickiness arises from strategic considerations of how customers and competitors will react 

to price changes. 

  As far as the EU is concerned, Alvarez et al. (2006) observe that prices in the Euro area are in 

general stickier than in the US. Furthermore, some asymmetries are observed: downward price 

rigidity is only slightly more marked than upward price rigidity. The relevance of theories that 

explain price stickiness, such as implicit or explicit contracts, marginal costs, and coordination 

failure, is confirmed, whereas menu costs, pricing thresholds, and costly information 

explanations are judged less relevant by firms. 

 Why have sticky prices raised less interest than APT in the EU petroleum markets? The main 

reason is the higher cost of stations-level data and the fact that aggregated data do not uncover 

the existence of price stickiness. When average retail diesel and gasoline prices are considered 

for the 191 stations in the Birmingham area, they seem to closely follow spot prices movements. 

Figure 5.2 and figure 5.3 below clearly show this pattern. Although the year 2008 is market with 

extremely high volatility in upstream prices, Birmingham retail prices seem to closely follow 

the pattern of spot prices. 

  In this study, I observe a high level of price stickiness in the Birmingham area which is a 

highly competitive area. I investigate the price transmission mechanism and do not find 

evidence of asymmetries. Whilst price stickiness has often been associated to market power and 

coordination failures, I observe at the same time symmetric price transmission and only partial 

pass-through in a rather competitive environment. 
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Figure 5.2 - Spot and average retail gasoline price for all 191 petrol stations 

 

 

 

Figure 5.3 - Spot gas oil price and average diesel price for all 191 petrol stations 
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5.2 Market and data description 

5.2.1 Further details on the UK petroleum retail market 

 
Table 5.1 - Volume share (VS) and Market share in number of sites (MS) in the UK (2008).  

 
Note for table 5.1: Effectiveness is a measure of the total volume delivered in comparison with the total 

number of sites: VS divided by MS.  

Source: Experian Catalist UK V4 2008. 

 

 

The data for 2008 show that the UK retail petroleum market is the least concentrated in the EU 

with a fierce competition between the “Big Five” major oil companies (BP, Shell, Esso, Total 

and Texaco) sharing around 56% of the number of sites and the volume delivered and four 

highly-effective supermarkets (Tesco, Morrison’s, Sainsbury’s and Asda) using a very 

aggressive pricing strategy. The supermarkets represent 35% of the volume of fuel delivered in 
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the UK whilst their site share does not exceed 12.5%. However table 5.2 below provides further 

evidence on the real type of ownership. In fact out of 9264 petrol stations in the UK 2180 only 

are managed directly by British and international oil companies whilst 5869 are dealer-owned 

although they are branded by the “majors”. 

   These ‘Dealer’ outlets are independent from the management of the major oil companies 

although they benefit from their marketing.  The term “company” as provided by Experian 

Catalist covers all types of oil companies present in the UK petroleum retail market (majors, 

International oil companies and smaller British oil companies). The data show that supermarkets 

with only 13% share of the total sites deliver 36% of the total volume of fuel sold to the end 

users. This exceeds the 35% share of the dealers and 28.8% of the other oil companies.  

 

  
Table 5.2 - The UK retail petroleum markets by type of ownership.  

 
Source: Experian Catalist UK V4 2008. 

 

One could argue that dealer-owned and company-owned stations could have different pricing 

strategies at the local level. Nevertheless, the data treats petrol stations according to brand rather 

than ownership. An overview of the data suggests that the brand and the location rather than the 

type of ownership causes prices to be more or less competitive. In fact, it is obvious from the 

data that independent petrol stations follow the pricing strategy of the company which brands 

them. 
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5.2.2 The Birmingham petroleum retail market 

The data comes from Experian Catalist and covers all the 222 stations with “B” or 

“Birmingham” postcodes for the year 2008. The Birmingham map (figure 5.4) shows the full 

area covered by this chapter. Whilst the richness of the data is unique, there are an important 

number of missing observations, especially for Saturdays and Sundays. I therefore exclude 31 

stations with little or no observations at all. For the purpose of this study, I divide the studied 

area into 6 areas: 

 Northern Towns: Sutton Coldfield (B72 to B76) and Tamworth (B77 to B79). 

 North Birmingham suburbs: including Aston, Erdington and Kingstanding: B6, B7, 

B20, B21, B23, B24, B35, B42, B43 and B44. 

 East Birmingham: B8, B9, B10, B25, B26, B33, B34, B36, B37, B40 and B46. 

 West Birmingham: Edgbaston and Harborne (B15, B16, B17 and B32), and the Western 

towns from Halesowen to West Bromwich (B62 to B71). 

 South Birmingham: Sparkhill to Kings Heath (B11 to B14), Acocks Green B27 to B31, 

B38, B45, B47 and B48. 

.Southern Towns: Alcester, Bromsgrove, Henley-in-Arden, Redditch and Solihull  

The NWE spot prices used are reference prices similar to that used in the major EU refinery 

hub: the ARA (Amsterdam-Rotterdam-Antwerp).  As far as the diesel market is concerned I use 

the ‘Gas Oil-European Economic Community Cost, Insurance and Freight Cargos NEW’ in 

U$/MT. For the gasoline market I use the ‘Unleaded Regular Cost Insurance and Freight NWE’ 

in U$/MT. They are converted in US$/barrel using the conventional formulas in the industry.   

 As far as the retail prices are concerned, the data provided by Experian Catalist represent the 

pump prices in pence per litre including duty and VAT. I convert the retail prices into net of 

duty and net of VAT prices. Subsequently I convert the net prices in pence per litre into 

US$/barrel price using the sterling pounds into US$ WMR&DS exchange rate. 

The resulting data is represented below in table 5.3 for gasoline prices and table 5.4 for diesel 

prices. 
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Figure 5.4 - Map of Birmingham “B” postcodes. 

Source: Wikipedia (n.d) 
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G S ΔG ΔG>0 ΔG<0 ΔG=0 ΔS ΔS>0 ΔS<0 

Mean 40.2 31.2 -0.1 0.1 -0.2 0.0 -0.1 0.2 -0.3 
Std. Dev. 7.5 7.6 0.5 0.3 0.4 0.0 0.7 0.4 0.5 
Skewness -0.8 -0.7 -0.6 3.2 -2.9 0.0 -0.4 2.2 -2.5 
Kurtosis 3.0 2.5 7.3 15.8 13.9 0.0 5.3 9.1 13.0 

Observations 254 254 253 96 109 48 253 121 132 
 

Table 5.3 - Descriptive statistics for the gasoline market in the Birmingham area. 
 

Note:  *G for average retail gasoline price. **S for spot gasoline oil price. 
 

 
 

  P* W** ΔP ΔP>0 ΔP<0 ΔP=0 ΔW ΔW>0 ΔW<0 
 Mean 49.5 41.7 0.0 0.1 -0.1 0.0 0.0 0.3 -0.4 

 Std. Dev. 8.1 8.5 0.4 0.2 0.3 0.0 0.9 0.6 0.5 
 Skewness -0.1 -0.2 -1.7 3.1 -3.7 0.0 0.4 2.7 -1.6 
 Kurtosis 2.1 2.1 10.6 16.6 19.8 0.0 4.5 12.3 5.6 

Observations 254 254 253 126 120 7 253 126 127 
 

Table 5.4 - Descriptive statistics for the diesel market in the Birmingham area.  
 

Note: *P for average retail diesel price. **W for spot gas oil price. 
 

Table 5.3 shows that the average retail margins for gasoline amounts to $26 per barrel whilst the 

mean retail gasoline price is $120 per barrel. Conversely, table 4 shows that whilst the net-of-

taxes average retail diesel price is higher at $146 per barrel, the average retail margins does not 

exceed $21 per barrel. The gross retail margins are consequently higher in the Birmingham 

gasoline market (22%) than in the Birmingham diesel market (14%). The margins are also 

higher than reported in chapter 3 for the UK for the period 1994-2013. 

  The average retail gasoline margins were at $18 and the average retail diesel margins were at 

$17.40. In addition, the difference between gasoline and diesel margins was reported to be $0.60 

in 1994-2013 whilst it reaches $5 in 2008 in Birmingham. The UK petroleum sector benefited 

from relatively high margins in 2008 thanks to the sharp decrease after the peak in the summer. 

 

 Table 5.5 below shows that Texaco is the market leader in the Birmingham retail market with 

market share of 24.1%. The domination of the major oil companies is confirmed as Texaco, 
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Total and BP control nearly 58% of the retail sector. Esso and Shell only control less than 10% 

of the retail stations in the Birmingham area. Although they control only 22 stations out of 191 

in the Birmingham area, supermarkets deliver up to 3 times more volume of fuel than most 

company-owned stations as reported in table 5.1 above. Table 5.5 also shows that IOCs only 

control 21 stations out of 191 in the Birmingham area although their market share is slightly 

above the national average.  

 
BRAND COUNT MS 

TEX 46 24.1% 
TOT 32 16.8% 
BP 32 16.8% 
ESS 19 9.9% 
SHE 16 8.4% 
JET 11 5.8% 

MUR 8 4.2% 
MOR 6 3.1% 
SAI 6 3.1% 
TES 6 3.1% 
ASD 4 2.1% 
UNB 2 1.0% 
GUL 2 1.0% 
POW 1 0.5% 
All 191 100% 

 
Table 5.5 - All petrol stations with B postcodes 

 
 

In Birmingham the market concentration is higher than the national average: the Herfindhal-

Hirschmann index in number of sites for the Birmingham area is 1150 whilst it is only 853 at 

the UK level in 2008. Indeed, three of the five major oil companies have much more market 

share in the Birmingham area than at the national level. Texaco controls 24.1% of the petrol 

stations in the Birmingham area instead of 12.5% at the UK level; Total 16.8% instead of 10.6% 

and BP 16.8% instead of 13%. As far as Esso is concerned, the market share is 9.4% instead of 

9.9% at the national level. Only Shell loses with a market share of 8.4% instead of 10.8% at the 

national level. 
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 The following tables (table 5.6 to table 5.11) summarise the retail market shares by area. There 

are no major differences in market structure across areas although I note that Texaco and BP 

have a relatively weaker presence in the North Birmingham suburbs whilst Total has a leader 

position in this area only. 

 

BRAND COUNT MS 
TEX 7 31.8% 
BP 4 18.2% 

SHE 3 13.6% 
MUR 2 9.1% 
TOT 2 9.1% 
ASD 1 4.5% 
JET 1 4.5% 

MOR 1 4.5% 
POW 1 4.5% 
All 22 100.0% 

 
Table 5.6 - East Birmingham 

 
 

 
BRAND COUNT PERCENT 

TOT 11 34.4% 
MUR 4 12.5% 
TEX 4 12.5% 
BP 3 9.4% 

SHE 3 9.4% 
ESS 2 6.3% 
ASD 1 3.1% 
JET 1 3.1% 

MOR 1 3.1% 
SAI 1 3.1% 
UNB 1 3.1% 
All 32 100.0% 

 
Table 5.7 - North Birmingham 
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BRAND COUNT MS 
TEX 7 31.8% 
BP 4 18.2% 

SHE 3 13.6% 
MUR 2 9.1% 
TOT 2 9.1% 
ASD 1 4.5% 
JET 1 4.5% 

MOR 1 4.5% 
POW 1 4.5% 
All 22 100.0% 

 
Table 5.8 - Northern Towns 

 
 

BRAND COUNT MS 
TEX 12 36.4% 
BP 5 15.2% 
ESS 4 12.1% 
TOT 4 12.1% 
SHE 3 9.1% 
MUR 2 6.1% 
JET 1 3.0% 

MOR 1 3.0% 
UNB 1 3.0% 
All 33 100.0% 

 
Table 5.9 - South Birmingham 

 
 

BRAND COUNT MS 
BP 8 22.9% 
ESS 6 17.1% 
TEX 5 14.3% 
TOT 5 14.3% 
JET 2 5.7% 

MOR 2 5.7% 
SAI 2 5.7% 
SHE 2 5.7% 
TES 2 5.7% 
GUL 1 2.9% 
All 35 100.0% 

 
Table 5.10 - Southern Towns 
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BRAND COUNT MS 
TEX 14 33.3% 
BP 8 19.0% 

TOT 6 14.3% 
JET 4 9.5% 
SHE 3 7.1% 
TES 3 7.1% 
SAI 2 4.8% 
ESS 2 4.8% 
All 42 100.0% 

 
Table 5.11 West Birmingham 

 

Table 5.12 and table 5.13 provide price comparison across areas and types of petrol stations. 

Supermarkets’ petrol stations charge lower gasoline prices than major oil companies and IOCs. 

However the average diesel price of major oil companies is lower than supermarkets’ average 

diesel price. Price dispersion between different types of stations is greater in the gasoline market 

than in the diesel market; it seems that retail stations anticipate the fact that diesel users face 

smaller search costs due to the greater fuel efficiency of the cars they drive.   

   As far as the geographical patterns are concerned, I note that petrol stations in the Northern 

towns and Northern suburbs of Birmingham charge the lower prices of all. In contradiction with 

the findings according to the category of fuel station, price dispersion across suburbs and towns 

is greater in the diesel market than in the gasoline market. Diesel is almost $7 per barrel cheaper 

in Northern Birmingham suburbs than it is in Easters Birmingham suburbs. It seems likely that 

this corresponds to a deliberate strategy by the dominant actor in this area: Total. The French 

major company is indeed most likely to reduce the price of diesel as it benefits form the greatest 

number of refineries across the EU; this also seems to reduce the prices of diesel in the northern 

towns of Sutton Coldfield and Tamworth. 

  SouthB SouthT EastB WestB NorthT NorthB MAJ IOC SUP 
 Mean 120.84 121.84 121.17 120.01 118.03 119.82 120.81 123.09 116.81 

 Std. Dev. 29.68 29.63 29.79 29.93 29.28 29.43 29.85 29.97 29.14 
 Skewness -0.91 -0.92 -0.90 -0.89 -0.89 -0.90 -0.90 -0.87 -0.87 
 Kurtosis 3.02 3.17 3.01 2.97 3.02 3.01 3.00 3.03 3.02 

Observations 364 337 356 366 364 363 365 361 356 
 

Table 5.12 - Descriptive statistics for retail gasoline prices by area and type of station 
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  SouthB SouthT EastB WestB NorthT NorthB MAJ IOC SUP 

 Mean 147.2 147.8 148.9 146.1 144.3 142.3 145.4 149.7 147.0 
 Std. Dev. 32.9 32.4 33.0 32.8 32.4 32.3 40.0 32.9 32.3 
 Skewness -0.4 -0.4 -0.4 -0.4 -0.4 -0.3 -2.6 -0.4 -0.4 
 Kurtosis 2.4 2.5 2.5 2.5 2.5 2.5 19.6 2.5 2.5 

Observations 361 328 341 365 363 356 365 347 363 
 

Table 5.13  Descriptive statistics for retail diesel prices by area and type of station 
 
Notes for tables 5.12 and 5.13: B stands for the city of Birmingham whilst T stands for the towns within 

the “B” area as defined in the previous subsection. 
MAJ= major oil companies; IOC= International Oil Companies, SUP= Supermarkets 

 

 

5.3  Price Transmission in the Birmingham area 

The detailed results are in Appendix C. 

5.3.1 Methodology 

I consider the price transmission from spot prices as defined above to the average retail 

price for all 191 petrol stations with B postcodes. The preliminary regressions did not 

reveal any major difference across the towns and suburbs studied. Similar to the 

previous chapters, the standard Johansen procedure is used. 

 However the results of the cointegration test are mixed and the pattern of price 

stickiness observed with the raw data is lost with the VECM. In contrast the VAR 

without the error-correction term best captures the price stickiness as observed in 

Borenstein and Shepard (2002).  As a result I use a bivariate VAR in first differences 

with q lags: 

ΔYt = 1 ΔYt-1 + 2ΔYt-2 + ... + q ΔYt-q+ t                    (5.1) 
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Where Yt  is x×1 vector of the retail and wholesale variables of interest: respectively Gt 

and St for the gasoline market; and Pt and Wt for the diesel  market. t  is  x×1 vector of 

errors terms, 1,…, q  are n×n coefficient matrices. 

In order to include asymmetric price transmission into the model, I modify (5.1) and 

split the vector into positive and negative prices changes: 

ΔYt = 1
+Δ+Yt-1 +1

-Δ-Yt-1 +... + q
+ Δ+Yt-q+ q

- Δ-Yt-q + t      (5.2) 

I use lag tests and preliminary regressions and find that 7 lags are sufficient to capture 

the dynamics of price transmission for both diesel and gasoline markets. Although the 

Schwarz criterion (SBIC) is the most used in the literature with single-equation models, 

my tests with different lag orders and different versions of the models show that the 

SBIC advocated the use of a single lag in the model. This finding demonstrates the 

exaggerated penalty often imposed by this criterion with volatile daily data. I use the 

Akaike and Hannan-Quinn criteria to overcome this problem, and 7 lags are sufficient 

for both fuels.  

 Based on model (5.2) with 7 lags, I consequently use the cumulative orthogonalised 

impulse response functions (COIRFs) of the VAR as defined in Hamilton (1994). Here 

the recursive ordering of the variables is straightforward as I am primarily interested in 

the pass-through of the wholesale to the retail price; although I take into consideration 

the feedback in the underlying model.  

5.3.2 Overall results  

Figure 5.5 and figure 5.6 below show the COIRFs resulting from the model respectively for the 

gasoline and the diesel markets. 
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Figure 5.5 - COIRF of gasoline prices in the Birmingham area 
 

 

  
Figure 5.6 - COIRF of diesel price in the Birmingham area  

 
Note:  The horizontal axis represents the time in weeks since a spot  price change, the vertical axis 
represents the cumulative orthogonalized impulse response of the retail price in US$ in response to a one 
US$ change in spot price. Changes in spot prices are split into two impulses: increase (black) and 
decrease (grey) and the corresponding responses are also shown with their 95% CI. The underlying 
VECM with 7 lags implies that robust conclusions can only be drawn from the graphs from day 1 to day 8 
since the change. 

 
  

Although both figures above indicate no evidence of significant APT, I can draw several 

conclusions on the nature of petroleum pricing in the Birmingham market. Firstly, 7 days after 
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the impulse the pass-through is symmetric for both fuels. Secondly, the price transmission is far 

from complete. As far as gasoline price transmission is concerned, 37% ($0.37 out of $1.09) of 

the standard deviation increase is passed through and nearly 31% ($0.37 out of $1.30) of the 

standard deviation decrease is passed through. As far as diesel price transmission is concerned, 

22% 1) of the standard deviation is passed through for both increases ($0.35 of $1.61) and 

decreases ($0.25 of $1.56). These findings confirm the sticky prices hypothesis.   

 

5.3.3 Results by type of petrol station 

I use the same model and analyse the behaviour of petroleum retailers by type of ownership: 

majors, IOCs and supermarkets. Price stickiness is confirmed for all types of companies 

although IOCs respond to cost decreases more quickly than to increases.  

Overall, I observe that retailers try not to upset customers by passing cost increases too quickly 

with some exceptions. Firstly, supermarkets increase their diesel prices in reaction to cost 

increases more quickly than they do for decreases. As supermarkets are committed to having the 

lowest prices in the UK, they seem to compensate with little response to cost decreases. 

Secondly, IOCs pass-through prices more fully than majors and supermarkets, especially in the 

case of cost decreases. This suggests that retailers with market power adjust their prices more 

slowly than competitive firms. Thirdly, supermarkets adjust their prices downwards and 

upwards more consistently than majors and IOCs with a clear stability of decision throughout 

the days. This is consistent with the fact that supermarkets act as leaders in the petroleum 

markets with high volumes delivered and lower prices. Supermarkets follow a clear pricing 

strategy whilst majors and IOCs seem to alternate increases and decreases in pursue of market 

share and margins. 

 Finally, I do not show the COIRFs by area of interest as the behaviour is similar for all six 

areas. There is no evidence of significant APT and the price stickiness is only more pronounced 

in the East Birmingham area. 
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Figure 5.7 - Major oil companies 
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Figure 5.8 - IOCs 
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Figure 5.9 - Supermarkets 

Note for figures 5.7, 5.8 and 5.9:  The horizontal axis represents the time in weeks since a spot  price 
change, the vertical axis represents the cumulative orthogonalized impulse response of the retail price in 
US$ in response to a one US$ change in spot price. Changes in spot prices are split into two impulses: 
increase (black) and decrease (grey) and the corresponding responses are also shown with their 95% CI. 
The underlying VECM with 7 lags implies that robust conclusions can only be drawn from the graphs 
from day 1 to day 8 since the change. 
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5.4  Discussion 

  I investigate the characteristics of retail petroleum pricing in the Birmingham area, using a 

unique panel of daily diesel and gasoline prices for 191 stations. Although the data dates back to 

2008, I can draw several conclusions. The Birmingham data suggests a strong pattern of price 

stickiness although the hypothesis of symmetric price transmission cannot be rejected.  This 

result also confirms the findings of chapter 4 regarding the absence of APT in the UK in the 

recession period of 2008.  

  There have been several contradicting explanations on the relationship between market power 

and price stickiness. First, my results are consistent with the model of Rotenberg (1982) which 

describes the sticky prices phenomenon as the willingness of retailers to try to avoid upsetting 

their customers.  Often less than 30% of cost increases are passed-through with a clear-cut 

period of ‘wait and see’ of 2 to 4 days. Notwithstanding, petroleum retailers react similarly to 

cost decreases. This pattern of price stickiness for both upwards and downwards changes 

provide supports to the main assumption of the model: firms attribute a cost to price changes. 

The cost in the petroleum retailing case is the fear to lose customers over 1 or 2 pence per litre. 

   

 Secondly, the behaviour of petroleum retailers in the Birmingham area provides support to the 

findings of Borenstein & Shepard (2002). Although their results were limited to the wholesale 

market, I also find that firms with market power adjust prices more slowly than competitive 

firms. The actors with the greatest market power in the UK petroleum industry are the 

supermarkets and the majors. Whilst the former have a competitive advantage due to the huge 

scale of their mainstream retailing activities, the latter benefit from their vertical integration and 

their strong implantation in the refining business. On the other hand, IOCs and independents 

suffer from their absence in the refining activities and from their small scale. IOCs are therefore 

the competitive agents in the model of Borenstein & Shepard (2002); although their analysis 

included future prices. Our results seem to indicate that spot prices only partly explain retail 

prices and the use of future prices may have been useful in my analysis. 
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  Moreover, British petroleum prices are stickier than in the US as argued in Alvarez et al 

(2006); and even stickier than in other EU countries. However, in contradiction with Alvarez et 

al (2006) I do not observe positive APT in the usual sense. Rather, the observed greater upward 

rigidity backs the model of Rotenberg (1982) and rejects the idea of APT in the Birmingham 

area in the year 2008. 

  Some APT authors argued that APT might be generated by the costs of the actual pricing 

process. If changing retail petroleum prices involves incurring substantial costs, retailers are 

more likely to do so when midstream prices rise, rather than when they decline. My results do 

not support this version as no asymmetry is observed. As Eckert (2002) and Noel (2007b) 

argues, in recent years we can assume the actual pricing process costs very little. 

  Rather, this investigation seems to provide support to the menu costs explanation in the wider 

sense; fuel retailers avoid upsetting their customers by avoiding changing their prices too often. 

As Slade (1998) points out, the costs related to small price changes might actually involve costs 

of losing the reputation gained by keeping the prices stable. This translates into upwards and 

downwards stickiness as observed in this analysis rather than APT as observed in the previous 

chapters. 

 Finally, the main limitation of this investigation is that it is limited to one year of data. In this 

respect, I do not present sufficient evidence on the presence or not of APT in the Birmingham 

area throughout the recent years. There is certainly evidence of market power and menu costs 

behaviour in the Birmingham area, as the analysis revealed. Nevertheless, the previous chapter 

revealed that price coordination may fail in periods of decreasing oil prices and high volatility; 

one of the characteristics of the data in 2008. Consequently the lack of data has limited the 

analysis to sticky pricing rather than APT. 
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6. Conclusions 

In this chapter I first summarise the contributions and the limitations attached to the present 

thesis. Second, I discuss the potential impact of the link between asymmetries and market power 

for policy-makers in the EU. 

 

6.1 Contributions and limitations  

6.1.1 Empirical evidence on the presence of APT in EU markets 

Although the key objective of this research was to advance further in linking APT to economic 

theory, the question of the presence or not of APT in the EU was only rarely answered. 

Throughout this thesis, I have used robust and consistent VEC methodology taking into account 

the endogeneity of wholesale prices. The EU retail prices are cointegrated with the causing 

upstream price which is generally the Rotterdam spot price. The results point at feedback from 

retail prices to Rotterdam spot prices even when the national data used is for tiny countries such 

as Luxembourg. The two EU studies with weekly data in chapter 3 and chapter 4 show that APT 

are found in all 12 countries studied except the United Kingdom; namely: Austria, Belgium, 

Denmark, Finland, France, Germany, Italy,  the Netherlands (in the diesel market only), 

Portugal, Spain and Sweden. When using daily data for the UK, I nevertheless find significant 

APT for both diesel and gasoline markets. 

 I use COIRFS in the form of graphs to illustrate the adjustment of retail diesel and gasoline 

prices to cost changes. Overall, the degree of asymmetric pricing seems to have little effect on 

the consumers’ welfare. For vertically-integrated oil companies such as the Big Five with 

weekly EU sales of millions of litres, the welfare gains from APT are far from negligible. Even 

for one station selling tens of thousands of litres each month, the welfare gains can be 

consequent. 
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 One limitation from the empirical point of view is the non-availability of daily data for most 

EU countries. The fact that I found different results in the UK with daily and weekly data points 

at the necessity to use data with the highest frequency available. Nevertheless, the EU and UK 

studies all show that the pass-through of wholesale to retail prices takes 2 weeks on average. 

The results appear robust and the relationship with market concentration is a consistent pattern. 

The relatively slow pass-through in EU petroleum markets attenuates the possible problems 

caused by data aggregation over time.     Furthermore, the need for daily data is mainly justified 

for the UK where the degree of asymmetric pricing is the lowest in my research. Indeed, 

significant APT was uncovered with weekly data in all cases but the UK. This could also be 

explained by the fact that the UK has the lowest rate of transmission from all the countries 

investigated. I find the pass-through rate depends on the geographical position as compared to 

the ARA (Rotterdam) hub whereas the literature generally assumes that the cost changes are 

fully passed-through. It seems that the ARA or NWE (North West Europe) references spot 

prices are close to pass-through in Belgium, France, Germany and the Netherlands; whereas 

retailers in Italy, Spain and Portugal rather use the MED reference price. Danish, Finnish and 

Swedish are caused by CEE and ARA references prices. Because the different references prices 

are strongly correlated, using MED or ARA for Mediterranean countries does not change the 

results but slightly affects their significance. It is likely that the UK exception comes from the 

non-availability of a more adequate reference price rather than from a data aggregation problem. 

  

6.1.2 Explaining asymmetries: the link between empirics and theory 

One key contribution of this research is the use of rich market structure data for 5 EU countries 

(Germany, Italy, the Netherlands, Spain and the UK) from Experian Catalist as well as market 

reports for 7 additional countries (Austria, Belgium, Denmark Finland, France, Portugal and 

Sweden) such as the CBRE market reports available online and based on the Datamonitor 

database. I compute consistent measures of asymmetries and I use the market share data to 

compute the well-known HHI to measure horizontal concentration. In order to measure vertical 
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concentration I use the volume share of the retailing companies operating in upstream activities; 

in other words the companies retailing and refining in the same given country. Although the 

relationship between horizontal and vertical concentration and APT is appears clearly in the 

cross-country comparison, there is a lack of consistent market share data over time. For 3 of the 

5 countries studied by Catalist reports, the data is only available from 2003 onwards. For the 

UK and the Netherlands it is available from 2000 onwards. For all other countries, market 

reports are only available from 2008 onwards. This clearly limits the analysis to a graphical 

overview of the relationship between APT and market concentration. This major data limitation 

is overcome by the fact that relative national market concentration is quite stable over time and 

across the countries studied. For instance, the data from 2000 onwards the UK is always by far 

the least concentrated market, followed by the Netherlands, which are then followed by the 

group composed Germany, Italy and France and finally Spain. The positions are stable as the 

rate of change in HHI hardly surpassed 1 or 2% per year. Nevertheless, the rockets and feathers 

literature still lacks a model to formalise this relation between APT and a measure of 

concentration such as the HHI. The main obstacle is that the APT data is weekly or daily whilst 

the HHI is only available on a yearly basis.  

Moreover, I note that APT is more significant in diesel markets than in gasoline markets, with 

the exception of the UK. Apart from the UK market, in all the countries studied the retail diesel 

price is less taxed than the retail gasoline price and hence cheaper at the pump. The fact that 

Johnson (2002) found more APT in US gasoline than in diesel prices is consistent with what I 

found for the UK market and different from what I observed in the other 11 countries studied in 

this study. Our results do not support the search costs theory and if I except the UK case. Our 

results rather suggest that diesel users have less incentive to engage in time-consuming search 

given the significant savings they make from the more economical car they drive and the less-

taxed fuel they purchase. 

In conclusion, my cross-country comparisons suggest that horizontal and vertical market 

concentration are the main causes of asymmetry and that asymmetry are more important in 
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periods of rising oil prices than in periods of recession. Deltas (2008) and Verlinda (2008) have 

also shown that local market power as measured by retail margins is strongly correlated with the 

degree of APT. Our limited graphical cross-country analysis could not formally support this 

(US) finding.  The use of station-level data has been extensively used in recent years to uncover 

the presence of Edgeworth price cycles principally located in Canada and Midwestern states in 

the US. In the absence of sufficient panel data and a formal model encompassing APT and 

market concentration, this study has not provided a formal framework for explaining 

asymmetries. Consequently, the rockets and feathers literature is expected to continue to suffer 

from the lack of link between theory and empirics as long as no formal model is developed. Our 

view is that even the increasing availability of station-level data will not resolve this gap in 

economic theory. Important resources in terms of economists, econometricians and funds should 

be allocated by leading universities in the world in order to close this gap. This research has 

confirmed the necessity of daily panel data and rich market structure data as well as rigorous 

econometrics such as testing for causality and structural breaks. 

 

6.2 Implications for policy-makers 

 One of the main findings of this research is that asymmetries are quite marginal from the end 

users’ point of view but quite significant at the scale of the vertically-integrated oil companies. 

The ‘majors’ (BP, Chevron, ExxonMobil, Royal Dutch Shell and Total) and NOCs (Repsol in 

Spain for instance) compete in both the refining and the retailing tiers of the petroleum industry. 

I have provided evidence that the welfare transfer from the small end user to the ‘big oil’ 

company is quite substantial even though consumers are aware of this phenomenon. Indeed, 

numerous press articles have reported complaints from motorists’ organisations such as the FIA 

in 2011. The Fédération Internationale de l’Automobile (FIA) which represents 35 million 

European drivers has sent a letter to call an investigation by the European Union (BBC website, 

2011). The FIA stated:  “the price of fuel in the UK reached record levels in April as the cost of 

Brent crude rose above $125 a barrel. Although the price of crude has fallen $10 since then, 
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motoring groups say the wholesale price of petrol has not fallen as fast” (BBC website, 2011). 

To my knowledge and to date, no subsequent was taken by the European Competition 

Commission (ECC). Any EU citizen can observe that the ECC is mainly concerned with 

scrutiny over mergers and acquisition and the ECC website does not exhibit any concern with 

price transmission mechanisms.  

On the other hand, the (British) Office of Fair Trading (OFT, 2013) delivered a 

thorough report on the petroleum sector in the UK. Using weekly data from 2000 to 2012 they 

found no statistical evidence of asymmetries in neither the petrol nor the diesel markets. The 

OFT then further updated the report with local daily data and found no evidence of APT in the 

UK. The ECM methodology used does not take into account the two-way causality I observe in 

my UK data. Even though the asymmetries in the UK are the least significant, I did observe 

some evidence of APT with daily data. To my knowledge the only EU comparison is the recent 

work of Meyler (2009) who found only little evidence of statistically significant asymmetries. 

Although he found some bi-directional causality he used a single-equation ECM which does not 

take into account the feedback from retail prices to wholesale prices. He also observed that in 

the countries where he found significant asymmetries, they were generally not economically 

significant. I made the same observation about the relatively small impact of APT on the single 

end user; nevertheless a policy-maker might be interested in the possible hundreds of million 

euros of welfare transferred from of EU drivers to vertically-integrated oil majors and NOCs. 

  Furthermore, chapter 4 of this thesis has shown that whilst gasoline retail margins are 

generally far more significant in the gasoline than in the diesel markets, asymmetries are in 

general more significant in the diesel markets. This might be due to the fact that the diesel 

market is more competitive with regards to the high number of large transport companies at the 

downstream level. On the other hand the relatively higher asymmetries in the diesel markets 

might be due to a compensation effect. As EU diesel users benefit from this more economical 

(due to lower duties) fuel coupled with more efficient cars, they are likely to be less concerned 

with the phenomenon of APT than gasoline users. Additionally, the retail diesel data does not 
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take into consideration the price difference between the diesel fuel sold to the general public (in 

the normal forecourts) and the diesel sold in Heavy Good Vehicles (HGVs) stations. Due to the 

non-availability of data, I was unable to conduct two different studies. However it is likely that 

the story might have been different and could have different policy implications for the transport 

industry. 
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APPENDICES A: Chapter 3. The relationship between 
market concentration and APT 

 

NOMENCLATURE FOR APPENDICES A: 

DP= RETAIL DIESEL PRICE 

DDP= FIRST DIFFERENCE OF DP 

DGP= FIRST DIFFERENCE OF RETAIL GP 

DSP= FIRST DIFFERENCE OF SP 

DWP= FIRST DIFFERENCE OF WP 

GP= RETAIL GASOLINE PRICE 

NSP= NEGATIVE CHANGE IN SP 

NWP= NEGATIVE CHANGE IN WP 

PSP= POSITIVE CHANGE IN SP 

NSP= NEGATIVE CHANGE IN WP 

RD= ERROR-CORRECTION TERM FOR DIESEL VECM (-1 FOR 1ST LAG) 

RG= ERROR-CORRECTION TERM FOR GASOLINE VECM (-1 FOR 1ST LAG) 

SP= WHOLESALE GASOLINE PRICE (one unique used for all countries) 

WP= WHOLESALE DIESEL PRICE (one unique used for all countries) 

Note: To simplify the estimation process, the same denominations of variables are used 

for every country. E.g. DP for the UK is in fact different from DP in Spain. 
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A1: WHOLESALE PRICE  

 

A1-1 WHOLESALE DIESEL UNIT ROOT TESTS  

 
Null Hypothesis: WP has a unit root  
Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=20) 
     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -0.805238 0.8167 

Test critical values: 1% level  -3.437508  
 5% level  -2.864589  
 10% level  -2.568447  
     
     *MacKinnon (1996) one-sided p-values.  
     
     
Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(WP)   
Method: Least Squares   

   
Sample (adjusted): 2 887   

Included observations: 886 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     WP(-1) -0.002276 0.002827 -0.805238 0.4209 

C 0.207167 0.165835 1.249234 0.2119 
     
     R-squared 0.000733 Mean dependent var 0.096493 

Adjusted R-squared -0.000397 S.D. dependent var 2.761548 
S.E. of regression 2.762096 Akaike info criterion 4.872112 
Sum squared resid 6744.192 Schwarz criterion 4.882917 

Log likelihood -2156.346 Hannan-Quinn criter. 4.876243 
F-statistic 0.648408 Durbin-Watson stat 1.927680 

Prob(F-statistic) 0.420899    
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Null Hypothesis: D(WP) has a unit root  
Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=20) 
     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -28.70234 0.0000 

Test critical values: 1% level  -3.437516  
 5% level  -2.864593  
 10% level  -2.568449  
     
     *MacKinnon (1996) one-sided p-values.  
     
     
Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(WP,2)   
Method: Least Squares   

   
Sample (adjusted): 3 887   

Included observations: 885 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     D(WP(-1)) -0.965332 0.033633 -28.70234 0.0000 

C 0.093036 0.092934 1.001098 0.3171 
     
     R-squared 0.482665 Mean dependent var 0.000114 

Adjusted R-squared 0.482079 S.D. dependent var 3.839287 
S.E. of regression 2.763009 Akaike info criterion 4.872775 
Sum squared resid 6741.016 Schwarz criterion 4.883590 

Log likelihood -2154.203 Hannan-Quinn criter. 4.876910 
F-statistic 823.8245 Durbin-Watson stat 2.001352 

Prob(F-statistic) 0.000000    
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A1-2 WHOLESALE SPOT GASOLINE UNIT ROOT TESTS 

 
 

Null Hypothesis: SP has a unit root  
Exogenous: Constant   

Lag Length: 3 (Automatic - based on SIC, maxlag=20) 
     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.571196 0.4969 

Test critical values: 1% level  -3.437533  
 5% level  -2.864600  
 10% level  -2.568453  
     
     *MacKinnon (1996) one-sided p-values.  
     
     
Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(SP)   

Method: Least Squares   
   

Sample (adjusted): 5 887   
Included observations: 883 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     SP(-1) -0.005166 0.003288 -1.571196 0.1165 

D(SP(-1)) 0.022843 0.033560 0.680656 0.4963 
D(SP(-2)) 0.119818 0.033356 3.592059 0.0003 
D(SP(-3)) 0.109417 0.033618 3.254706 0.0012 

C 0.286803 0.165041 1.737771 0.0826 
     
     R-squared 0.029499 Mean dependent var 0.087477 

Adjusted R-squared 0.025078 S.D. dependent var 2.610080 
S.E. of regression 2.577144 Akaike info criterion 4.736887 
Sum squared resid 5831.389 Schwarz criterion 4.763973 

Log likelihood -2086.336 Hannan-Quinn criter. 4.747244 
F-statistic 6.671894 Durbin-Watson stat 2.001806 

Prob(F-statistic) 0.000027    
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Null Hypothesis: D(SP) has a unit root  
Exogenous: Constant   

Lag Length: 2 (Automatic - based on SIC, maxlag=20) 
     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -13.96652 0.0000 

Test critical values: 1% level  -3.437533  
 5% level  -2.864600  
 10% level  -2.568453  
     
     *MacKinnon (1996) one-sided p-values.  
     
     
Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(SP,2)   
Method: Least Squares   

   
Sample (adjusted): 5 887   

Included observations: 883 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     D(SP(-1)) -0.757621 0.054246 -13.96652 0.0000 

D(SP(-1),2) -0.222289 0.046496 -4.780799 0.0000 
D(SP(-2),2) -0.105689 0.033562 -3.149054 0.0017 

C 0.066307 0.086929 0.762767 0.4458 
     
     R-squared 0.494542 Mean dependent var 0.000381 

Adjusted R-squared 0.492817 S.D. dependent var 3.621752 
S.E. of regression 2.579296 Akaike info criterion 4.737430 
Sum squared resid 5847.785 Schwarz criterion 4.759099 

Log likelihood -2087.575 Hannan-Quinn criter. 4.745715 
F-statistic 286.6719 Durbin-Watson stat 2.000962 

Prob(F-statistic) 0.000000    
     
      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

182 
 

A2 FRANCE DIESEL 

A2-1 UNIT ROOT TEST  

 
Null Hypothesis: DP has a unit root  

Exogenous: Constant   
Lag Length: 1 (Automatic - based on SIC, maxlag=20) 

     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -0.930018 0.7788 

Test critical values: 1% level  -3.437516  
 5% level  -2.864593  
 10% level  -2.568449  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(DP)   

Method: Least Squares   
   

Sample (adjusted): 3 887   
Included observations: 885 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     DP(-1) -0.001887 0.002029 -0.930018 0.3526 

D(DP(-1)) 0.312311 0.032026 9.751781 0.0000 
C 0.191440 0.148843 1.286191 0.1987 
     
     R-squared 0.097514 Mean dependent var 0.103125 

Adjusted R-squared 0.095467 S.D. dependent var 2.304073 
S.E. of regression 2.191333 Akaike info criterion 4.410281 
Sum squared resid 4235.311 Schwarz criterion 4.426503 

Log likelihood -1948.549 Hannan-Quinn criter. 4.416483 
F-statistic 47.65012 Durbin-Watson stat 2.008584 

Prob(F-statistic) 0.000000    
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A2-2 COINTEGRATION TEST 

   
Sample (adjusted): 6 887   

Included observations: 882 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 

Series: DP WP    
Lags interval (in first differences): 1 to 4  

     
Unrestricted Cointegration Rank Test (Trace)  

     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.052542 49.66839 20.26184 0.0000 

At most 1 0.002338 2.064894 9.164546 0.7648 
     
     Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.052542 47.60349 15.89210 0.0000 

At most 1 0.002338 2.064894 9.164546 0.7648 
     
     Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I): 
     
     DP WP C   

-0.423836 0.471624 4.113244   
0.032307 -0.011146 -2.110921   

     
          

Unrestricted Adjustment Coefficients (alpha):  
     
     D(DP) 0.226389 -0.059560   

D(WP) -0.316668 -0.114331   
     
          

1 Cointegrating Equation(s): Log likelihood -3709.964  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

DP WP C   
1.000000 -1.112751 -9.704792   

 (0.01041) (0.60824)   
     

Adjustment coefficients (standard error in parentheses)  
D(DP) -0.095952    

 (0.02241)    
D(WP) 0.134215    

 (0.03902)    
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A2-3 CAUSALITY 

 
 

VAR Granger Causality/Block Exogeneity Wald Tests 
  
Sample: 1 887   
Included observations: 882  

    
        

Dependent variable: DDP  
    
    Excluded Chi-sq df Prob. 
    
    DWP  265.9126 4  0.0000 
    
    All  265.9126 4  0.0000 
    
        

Dependent variable: DWP  
    
    Excluded Chi-sq df Prob. 
    
    DDP  13.17215 4  0.0105 
    
    All  13.17215 4  0.0105 
    
        

 
 

 
Pairwise Granger Causality Tests 
 
Sample: 1 887  
Lags: 4   

    
     Null Hypothesis: Obs F-Statistic Prob.  
    
     WP does not Granger Cause DP  883  207.276 5E-125 

 DP does not Granger Cause WP  3.26234 0.0114 
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A2-4 LAG LENGTH  

 
VAR Lag Order Selection Criteria     
Endogenous variables: DDP DWP     

Exogenous variables:  RD(-1)     
     

Sample: 1 887      
Included observations: 878     

       
       Lag LogL LR FPE AIC SC HQ 
       
       0 -3855.708 NA 22.46002 8.787491 8.798374 8.791653 

1 -3761.317 188.1378 18.28048 8.581588 8.614237 8.594075 
2 -3723.020 76.15742 16.90668 8.503463 8.557878 8.524275 
3 -3703.743 38.24629 16.32847 8.468664 8.544845* 8.497800* 
4 -3697.345 12.66523 16.23953 8.463201 8.561148 8.500662 
5 -3692.859 8.860577 16.22156 8.462093 8.581806 8.507878 
6 -3685.673 14.15781* 16.10431* 8.454837* 8.596316 8.508947 
7 -3682.578 6.084488 16.13758 8.456898 8.620143 8.519333 
8 -3678.330 8.332069 16.12850 8.456333 8.641344 8.527092 
       
       * indicates lag order selected by the criterion    

LR: sequential modified LR test statistic (each test at 5% level)   
FPE: Final prediction error     

AIC: Akaike information criterion     
SC: Schwarz information criterion     

HQ: Hannan-Quinn information criterion    
       

 
 
 

VAR Lag Order Selection Criteria     
Endogenous variables: DDP PWP NWP     

Exogenous variables: RD(-1)     
     

Sample: 1 887      
Included observations: 878     

       
       Lag LogL LR FPE AIC SC HQ 
       
       0 -5383.372 NA  42.77733  12.26964  12.28596  12.27588 

1 -4969.120 824.7298  16.99438  11.34651  11.41181  11.37149 
2 -4834.507 267.0794  12.76554  11.06038  11.17465  11.10408 
3 -4789.767 88.46110  11.76747  10.97897  11.14221  11.04140 
4 -4764.583 49.62232  11.34159  10.94210  11.15432  11.02327 
5 -4724.226 79.24150  10.55982  10.87068   11.13187*  10.97057 
6 -4705.890 35.87861  10.33770  10.84941  11.15957  10.96803 
7 -4691.391 28.27116  10.20913  10.83688  11.19602  10.97424 
8 -4664.698 51.86726*   9.805985*   10.79658*  11.20469   10.95266* 
       
       * indicates lag order selected by the criterion    

LR: sequential modified LR test statistic (each test at 5% level)   
FPE: Final prediction error     

AIC: Akaike information criterion     
SC: Schwarz information criterion     

HQ: Hannan-Quinn information criterion    
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A2-5 VECM  

 Vector Autoregression Estimates  
   
 Sample (adjusted): 6 887  
 Included observations: 882 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     DDP PWP NWP 
    
    DDP(-1) -0.176442 -0.039714 -0.100886 
  (0.03889)  (0.04141)  (0.03781) 
 [-4.53691] [-0.95907] [-2.66797] 
    

DDP(-2) -0.175121 -0.078837 -0.124132 
  (0.03765)  (0.04008)  (0.03660) 
 [-4.65165] [-1.96677] [-3.39115] 
    

DDP(-3) -0.047129  0.005380 -0.048490 
  (0.03386)  (0.03605)  (0.03292) 
 [-1.39201] [ 0.14923] [-1.47299] 
    

DDP(-4)  0.028187  0.048847  0.047578 
  (0.02494)  (0.02655)  (0.02425) 
 [ 1.13018] [ 1.83949] [ 1.96200] 
    

PWP(-1)  0.487274  0.126933 -0.109391 
  (0.04120)  (0.04386)  (0.04006) 
 [ 11.8279] [ 2.89375] [-2.73091] 
    

PWP(-2)  0.311868  0.176443 -0.059525 
  (0.04499)  (0.04790)  (0.04374) 
 [ 6.93238] [ 3.68356] [-1.36082] 
    

PWP(-3)  0.243783  0.212001  0.069113 
  (0.04473)  (0.04763)  (0.04350) 
 [ 5.44953] [ 4.45088] [ 1.58895] 
    

PWP(-4)  0.079106  0.195774  0.012332 
  (0.04328)  (0.04608)  (0.04208) 
 [ 1.82783] [ 4.24847] [ 0.29305] 
    

NWP(-1)  0.444453  0.038554  0.270518 
  (0.04545)  (0.04840)  (0.04419) 
 [ 9.77828] [ 0.79663] [ 6.12102] 
    

NWP(-2)  0.390225 -0.053229  0.292999 
  (0.04771)  (0.05080)  (0.04639) 
 [ 8.17844] [-1.04775] [ 6.31557] 
    

NWP(-3)  0.182989  0.000409  0.203214 
  (0.04790)  (0.05101)  (0.04658) 
 [ 3.81996] [ 0.00801] [ 4.36293] 
    

NWP(-4)  0.071175 -0.114825  0.103313 
  (0.04326)  (0.04606)  (0.04206) 
 [ 1.64519] [-2.49276] [ 2.45605] 
    

RD(-1) -0.099699  0.069093  0.060417 
  (0.02262)  (0.02408)  (0.02199) 
 [-4.40796] [ 2.86903] [ 2.74729] 
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     R-squared  0.543032  0.079006  0.227330 
 Adj. R-squared  0.536721  0.066288  0.216660 
 Sum sq. resids  2144.508  2431.204  2027.421 
 S.E. equation  1.570919  1.672633  1.527433 
 F-statistic  86.05531  6.212118  21.30597 
 Log likelihood -1643.321 -1698.656 -1618.560 
 Akaike AIC  3.755829  3.881305  3.699683 
 Schwarz SC  3.826315  3.951791  3.770169 
 Mean dependent  0.103416  0.967238 -0.870308 
 S.D. dependent  2.307984  1.730989  1.725786 

    
     Determinant resid covariance (dof adj.)  10.71450  

 Determinant resid covariance  10.24768  
 Log likelihood -4780.741  
 Akaike information criterion  10.92912  
 Schwarz criterion  11.14058  

    
     

A2-6 COIRFS TABLE AND GRAPH 

 
 
 
 
 

 

(2) irfname = diesel, impulse = nwp, and response = ddp
(1) irfname = diesel, impulse = pwp, and response = ddp
95% lower and upper bounds reported
                                                                                  
 8         2.53864     1.8188      3.25848     2.13648     1.46896     2.804      
 7         2.48812     1.82239     3.15386     2.05131     1.44641     2.65621    
 6         2.40562     1.79972     3.01151     1.9505      1.4129      2.4881     
 5         2.30153     1.7612      2.84186     1.82614     1.36011     2.29216    
 4         2.16301     1.69716     2.62886     1.71287     1.32269     2.10305    
 3         1.9893      1.61807     2.36053     1.47583     1.16922     1.78244    
 2         1.64603     1.38324     1.90882     1.14659     .936063     1.35712    
 1         1.02019     .872775     1.16761     .569216     .452893     .68554     
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (diesel pwp ddp coirf, ci) (diesel nwp ddp coirf, ci)

0
1

2
3

4

0 2 4 6 8
Weeks since change

95% CI of coirf of pwp -> ddp 95% CI of coirf of nwp -> ddp
coirf of pwp -> ddp coirf of nwp -> ddp

1.a. France diesel
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A3: FRANCE GASOLINE ESTIMATIONS: 

A3-1 UNIT ROOT TESTS 

 
 

Null Hypothesis: GP has a unit root  
Exogenous: Constant   

Lag Length: 1 (Automatic - based on SIC, maxlag=20) 
     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -0.959144 0.7691 

Test critical values: 1% level  -3.437516  
 5% level  -2.864593  
 10% level  -2.568449  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GP)   

Method: Least Squares   
   

Sample (adjusted): 3 887   
Included observations: 885 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     GP(-1) -0.002261 0.002357 -0.959144 0.3377 

D(GP(-1)) 0.268244 0.032489 8.256351 0.0000 
C 0.211471 0.160700 1.315939 0.1885 
     
     R-squared 0.071976 Mean dependent var 0.101562 

Adjusted R-squared 0.069872 S.D. dependent var 2.277374 
S.E. of regression 2.196372 Akaike info criterion 4.414875 
Sum squared resid 4254.811 Schwarz criterion 4.431097 

Log likelihood -1950.582 Hannan-Quinn criter. 4.421077 
F-statistic 34.20340 Durbin-Watson stat 2.036921 

Prob(F-statistic) 0.000000    
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A3-2 COINTEGRATION TEST 

   
Sample (adjusted): 5 887   

Included observations: 883 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: GP SP    

Lags interval (in first differences): 1 to 3  
     

Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.040430 38.55709 20.26184 0.0001 

At most 1 0.002393 2.115636 9.164546 0.7546 
     
     Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.040430 36.44146 15.89210 0.0000 

At most 1 0.002393 2.115636 9.164546 0.7546 
     
     Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I): 
     
     GP SP C   

-0.294573 0.354956 2.698448   
0.047910 -0.027596 -2.355694   

     
          

Unrestricted Adjustment Coefficients (alpha):  
     
     D(GP) 0.194473 -0.059773   

D(SP) -0.306780 -0.101414   
     
          

1 Cointegrating Equation(s): Log likelihood -3682.388  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

GP SP C   
1.000000 -1.204983 -9.160543   

 (0.02126) (1.06475)   
     

Adjustment coefficients (standard error in parentheses)  
D(GP) -0.057286    

 (0.01539)    
D(SP) 0.090369    

 (0.02544)    
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A3-3 GRANGER CAUSALITY/BLOCK EXOGENEITY TEST 

 
VAR Granger Causality/Block Exogeneity Wald Tests 

  
Sample: 1 887   

Included observations: 885  
    
        

Dependent variable: DGP  
    
    Excluded Chi-sq df Prob. 
    
    DSP 232.6697 1 0.0000 
    
    All 232.6697 1 0.0000 
    
        

Dependent variable: DSP  
    
    Excluded Chi-sq df Prob. 
    
    DGP 10.69792 1 0.0011 
    
    All 10.69792 1 0.0011 
    
        

 
 

Pairwise Granger Causality Tests 
 
Sample: 1 887  
Lags: 3   

    
     Null Hypothesis: Obs F-Statistic Prob.  
    
     SP does not Granger Cause GP  884  266.221 8E-123 

 GP does not Granger Cause SP  3.99205 0.0077 
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A3-4 LAG LENGTH TESTS 

VAR Lag Order Selection Criteria     
Endogenous variables: DGP DSP     

Exogenous variables:  RG(-1)     
     

Sample: 1 887      
Included observations: 878     

       
       Lag LogL LR FPE AIC SC HQ 
       
       0 -3873.904 NA 23.41049 8.828938 8.839821 8.833101 

1 -3744.743 257.4397 17.60317 8.543833 8.576482 8.556320 
2 -3690.069 108.7256 15.68411 8.428402 8.482817 8.449214 
3 -3667.241 45.29203 15.02567 8.385514 8.461695* 8.414650 
4 -3658.387 17.52618 14.86047 8.374457 8.472404 8.411918* 
5 -3653.955 8.752132 14.84588 8.373474 8.493187 8.419260 
6 -3649.531 8.718090 14.83156 8.372507 8.513986 8.426617 
7 -3644.407 10.07153* 14.79369* 8.369948* 8.533194 8.432383 
8 -3643.844 1.104331 14.91001 8.377777 8.562789 8.448537 
       
       * indicates lag order selected by the criterion    

LR: sequential modified LR test statistic (each test at 5% level)   
FPE: Final prediction error     

AIC: Akaike information criterion     
SC: Schwarz information criterion     

HQ: Hannan-Quinn information criterion    
       

 
 
 
 
 
 

A3-5 VECM  

Vector Autoregression Estimates  
  

Sample (adjusted): 5 887  
Included observations: 883 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DGP PSP NSP 
    
    DGP(-1) -0.202575 0.002171 -0.059105 
 (0.03484) (0.03547) (0.03420) 
 [-5.81473] [ 0.06119] [-1.72797] 
    

DGP(-2) -0.150178 -0.007447 -0.016416 
 (0.03190) (0.03248) (0.03132) 
 [-4.70751] [-0.22927] [-0.52411] 
    

DGP(-3) 0.015837 0.014087 0.007512 
 (0.02409) (0.02453) (0.02365) 
 [ 0.65735] [ 0.57430] [ 0.31759] 
    

PSP(-1) 0.550601 0.126403 -0.127469 
 (0.03887) (0.03958) (0.03817) 
 [ 14.1640] [ 3.19369] [-3.33982] 
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PSP(-2) 0.315223 0.308561 -0.097743 

 (0.04119) (0.04194) (0.04044) 
 [ 7.65225] [ 7.35696] [-2.41673] 
    

PSP(-3) 0.236322 0.157554 0.007636 
 (0.04185) (0.04261) (0.04109) 
 [ 5.64650] [ 3.69737] [ 0.18583] 
    

NSP(-1) 0.472262 -0.003502 0.217450 
 (0.04048) (0.04121) (0.03974) 
 [ 11.6677] [-0.08498] [ 5.47183] 
    

NSP(-2) 0.448057 -0.176125 0.331174 
 (0.04122) (0.04197) (0.04047) 
 [ 10.8694] [-4.19645] [ 8.18275] 
    

NSP(-3) 0.158111 -0.021575 0.131824 
 (0.04217) (0.04293) (0.04140) 
 [ 3.74964] [-0.50254] [ 3.18414] 
    

RG(-1) -0.059329 0.042968 0.041107 
 (0.01567) (0.01596) (0.01539) 
 [-3.78597] [ 2.69303] [ 2.67176] 
    
    R-squared 0.543708 0.043683 0.165343 

Adj. R-squared 0.539004 0.033824 0.156738 
Sum sq. resids 2091.602 2168.230 2016.226 
S.E. equation 1.547862 1.575961 1.519716 

F-statistic 115.5832 4.430761 19.21534 
Log likelihood -1633.655 -1649.540 -1617.450 

Akaike AIC 3.722887 3.758868 3.686184 
Schwarz SC 3.777059 3.813040 3.740356 

Mean dependent 0.102767 0.911271 -0.823794 
S.D. dependent 2.279732 1.603309 1.654936 

    
    Determinant resid covariance (dof adj.) 10.80568  

Determinant resid covariance 10.44269  
Log likelihood -4794.484  

Akaike information criterion 10.92748  
Schwarz criterion 11.09000  
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A3-6 COIRFS TABLE AND CORRESPONDING GRAPH 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(2) irfname = gas, impulse = nsp, and response = dgp
(1) irfname = gas, impulse = psp, and response = dgp
95% lower and upper bounds reported
                                                                                  
 8         2.37897     1.76896     2.98899     1.99834     1.42392     2.57276    
 7         2.35981     1.79358     2.92603     1.9482      1.42682     2.46958    
 6         2.32902     1.81477     2.84328     1.88309     1.42118     2.34501    
 5         2.24877     1.79508     2.70246     1.78561     1.38727     2.18394    
 4         2.12277     1.7367      2.50883     1.65297     1.32273     1.9832     
 3         1.9954      1.68484     2.30595     1.48718     1.2289      1.74545    
 2         1.62459     1.39937     1.84981     1.26748     1.07837     1.4566     
 1         1.07569     .941296     1.21008     .646828     .534657     .758999    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (gas psp dgp coirf, ci) (gas nsp dgp coirf, ci)
0

1
2

3

0 1 2 3 4 5 6 7 8
Weeks since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

1.b. France gasoline
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A4: GERMANY DIESEL 

A4-1 UNIT ROOT TESTS FOR DP 

 
Null Hypothesis: DP has a unit root  

Exogenous: Constant   
Lag Length: 0 (Automatic - based on SIC, maxlag=20) 

     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -0.854166 0.8025 

Test critical values: 1% level  -3.437508  
 5% level  -2.864589  
 10% level  -2.568447  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(DP)   

Method: Least Squares   
   

Sample (adjusted): 2 887   
Included observations: 886 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     DP(-1) -0.002572 0.003011 -0.854166 0.3932 

C 0.281412 0.228262 1.232849 0.2180 
     
     R-squared 0.000825 Mean dependent var 0.109393 

Adjusted R-squared -0.000306 S.D. dependent var 3.197925 
S.E. of regression 3.198414 Akaike info criterion 5.165442 
Sum squared resid 9043.190 Schwarz criterion 5.176247 

Log likelihood -2286.291 Hannan-Quinn criter. 5.169573 
F-statistic 0.729600 Durbin-Watson stat 2.012867 

Prob(F-statistic) 0.393244    
     
      

 

A4-2 COINTEGRATION TEST 

 
   

Sample (adjusted): 6 887   
Included observations: 882 after adjustments  

Trend assumption: No deterministic trend (restricted constant) 
Series: DP WP    

Lags interval (in first differences): 1 to 4  
     

Unrestricted Cointegration Rank Test (Trace)  
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Hypothesized  Trace 0.05  
No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

     
     None * 0.037281 35.50788 20.26184 0.0002 

At most 1 0.002262 1.997239 9.164546 0.7783 
     
     Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.037281 33.51064 15.89210 0.0000 

At most 1 0.002262 1.997239 9.164546 0.7783 
     
     Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I): 
     
     DP WP C   

-0.286357 0.312030 3.986928   
0.018016 0.004051 -2.038976   

     
          

Unrestricted Adjustment Coefficients (alpha):  
     
     D(DP) 0.385183 -0.077841   

D(WP) -0.186254 -0.122075   
     
          

1 Cointegrating Equation(s): Log likelihood -4163.823  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

DP WP C   
1.000000 -1.089655 -13.92294   

 (0.01842) (1.07700)   
     

Adjustment coefficients (standard error in parentheses)  
D(DP) -0.110300    

 (0.02473)    
D(WP) 0.053335    

 (0.02651)    
     
      

 

A4-3 GRANGER CAUSALITY/BLOCK EXOGENEITY TESTS 

 
VAR Granger Causality/Block Exogeneity Wald Tests 
  
Sample: 1 887   
Included observations: 880  

    
        

Dependent variable: DDP  
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Excluded Chi-sq df Prob. 
    
    DWP  227.6202 6  0.0000 
    
    All  227.6202 6  0.0000 
    
        

Dependent variable: DWP  
    
    Excluded Chi-sq df Prob. 
    
    DDP  18.92007 6  0.0043 
    
    All  18.92007 6  0.0043 
    
        

    

A4-4 LAG LENGTH TESTS 

VAR Lag Order Selection Criteria     
Endogenous variables: DDP DWP     

Exogenous variables:  RD(-1)     
     

Sample: 1 887      
Included observations: 878     

       
       Lag LogL LR FPE AIC SC HQ 
       
       0 -4257.787 NA 56.12793 9.703388 9.714271 9.707550 

1 -4208.684 97.87017 50.64769 9.600648 9.633297 9.613135 
2 -4174.253 68.46995 47.25577 9.531329 9.585744 9.552140 
3 -4159.604 29.06559 46.12322 9.507070 9.583251* 9.536206 
4 -4148.831 21.32505 45.41712 9.491642 9.589589 9.529103 
5 -4143.446 10.63425 45.27416 9.488488 9.608201 9.534273 
6 -4133.500 19.59823* 44.66512* 9.474943* 9.616422 9.529053* 
7 -4132.484 1.997085 44.96987 9.481740 9.644985 9.544175 
8 -4128.763 7.297851 44.99859 9.482376 9.667387 9.553135 
       
       * indicates lag order selected by the criterion    

LR: sequential modified LR test statistic (each test at 5% level)   
FPE: Final prediction error     

AIC: Akaike information criterion     
SC: Schwarz information criterion     

HQ: Hannan-Quinn information criterion    
       

 
 
 

A4-5 VECM  

Vector Autoregression Estimates  
  

Sample (adjusted): 5 887  
Included observations: 883 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DDP PWP NWP 
    
    DDP(-1) -0.300717 -0.000114 -0.007396 
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 (0.03794) (0.02502) (0.02265) 
 [-7.92622] [-0.00454] [-0.32648] 
    

DDP(-2) -0.175625 -0.032962 -0.020909 
 (0.03561) (0.02349) (0.02126) 
 [-4.93156] [-1.40339] [-0.98335] 
    

DDP(-3) -0.040067 0.000536 -0.029544 
 (0.02943) (0.01941) (0.01757) 
 [-1.36124] [ 0.02762] [-1.68110] 
    

PWP(-1) 0.522972 0.123618 -0.163402 
 (0.06087) (0.04014) (0.03634) 
 [ 8.59209] [ 3.07938] [-4.49632] 
    

PWP(-2) 0.283945 0.192663 -0.150713 
 (0.06239) (0.04115) (0.03725) 
 [ 4.55093] [ 4.68195] [-4.04571] 
    

PWP(-3) 0.333686 0.209239 -0.023008 
 (0.06257) (0.04127) (0.03736) 
 [ 5.33313] [ 5.07049] [-0.61590] 
    

NWP(-1) 0.494365 -0.039470 0.227846 
 (0.06699) (0.04418) (0.04000) 
 [ 7.38003] [-0.89340] [ 5.69682] 
    

NWP(-2) 0.523967 -0.162798 0.224626 
 (0.06634) (0.04375) (0.03961) 
 [ 7.89848] [-3.72093] [ 5.67126] 
    

NWP(-3) 0.090015 -0.085555 0.143817 
 (0.06655) (0.04389) (0.03973) 
 [ 1.35265] [-1.94931] [ 3.61961] 
    

RD(-1) -0.128315 0.022246 0.022011 
 (0.02440) (0.01609) (0.01457) 
 [-5.25883] [ 1.38237] [ 1.51087] 
    
    R-squared 0.357324 0.042011 0.210240 

Adj. R-squared 0.350698 0.032135 0.202099 
Sum sq. resids 5814.730 2529.327 2072.860 
S.E. equation 2.580820 1.702140 1.540912 

F-statistic 53.93140 4.253745 25.82220 
Log likelihood -2085.073 -1717.550 -1629.681 

Akaike AIC 4.745352 3.912910 3.713886 
Schwarz SC 4.799523 3.967082 3.768058 

Mean dependent 0.110051 0.966448 -0.869322 
S.D. dependent 3.202834 1.730166 1.725056 

    
    Determinant resid covariance (dof adj.) 32.54857  

Determinant resid covariance 31.45521  
Log likelihood -5281.309  

Akaike information criterion 12.03015  
Schwarz criterion 12.19266  
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A4-6 COIRFS TABLES WITH 95% CI AND CORRESPONDING 

GRAPH: 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(2) irfname = diesel, impulse = nwp, and response = ddp
(1) irfname = diesel, impulse = pwp, and response = ddp
95% lower and upper bounds reported
                                                                                  
 8         1.77582     1.28832     2.26333     1.46882     .992345     1.94529    
 7         1.78681     1.31729     2.25633     1.45264     1.0083      1.89699    
 6         1.81448     1.363       2.26596     1.43274     1.02303     1.84246    
 5         1.80434     1.37765     2.23103     1.4238      1.04886     1.79875    
 4         1.78201     1.38755     2.17647     1.36861     1.03281     1.70441    
 3         1.84775     1.48721     2.20828     1.31345     1.02518     1.60173    
 2         1.56935     1.27711     1.8616      1.29128     1.04096     1.5416     
 1         1.1279      .923842     1.33195     .663809     .485805     .841813    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (diesel pwp ddp coirf, ci) (diesel nwp ddp coirf, ci)

0
.5

1
1.

5
2

2.
5

0 1 2 3 4 5 6 7 8
Weeks since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

1.c. Germany diesel
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A5: GERMANY GASOLINE 

A5-1 UNIT ROOT TESTS FOR GP 

 
Null Hypothesis: GP has a unit root  

Exogenous: Constant   
Lag Length: 0 (Automatic - based on SIC, maxlag=20) 

     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.306398 0.6284 

Test critical values: 1% level  -3.437508  
 5% level  -2.864589  
 10% level  -2.568447  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GP)   

Method: Least Squares   
   

Sample (adjusted): 2 887   
Included observations: 886 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     GP(-1) -0.005034 0.003853 -1.306398 0.1918 

C 0.418275 0.268652 1.556942 0.1198 
     
     R-squared 0.001927 Mean dependent var 0.100753 

Adjusted R-squared 0.000798 S.D. dependent var 3.408158 
S.E. of regression 3.406798 Akaike info criterion 5.291677 
Sum squared resid 10259.94 Schwarz criterion 5.302483 

Log likelihood -2342.213 Hannan-Quinn criter. 5.295808 
F-statistic 1.706676 Durbin-Watson stat 2.066100 

Prob(F-statistic) 0.191757    
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A5-2 COINTEGRATION TEST 

   
Sample (adjusted): 6 887   

Included observations: 882 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: GP SP    

Lags interval (in first differences): 1 to 4  
     

Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.038348 37.24224 20.26184 0.0001 

At most 1 0.003117 2.753367 9.164546 0.6277 
     
     Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.038348 34.48887 15.89210 0.0000 

At most 1 0.003117 2.753367 9.164546 0.6277 
     
     Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I): 
     
     GP SP C   

-0.284669 0.319357 4.312122   
0.022912 0.007551 -2.258743   

     
          

Unrestricted Adjustment Coefficients (alpha):  
     
     D(GP) 0.443730 -0.082135   

D(SP) -0.152635 -0.136846   
     
          

1 Cointegrating Equation(s): Log likelihood -4163.535  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

GP SP C   
1.000000 -1.121853 -15.14784   

 (0.02265) (1.13540)   
     

Adjustment coefficients (standard error in parentheses)  
D(GP) -0.126316    

 (0.02568)    
D(SP) 0.043450    

 (0.02474)    
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A5-3 GRANGER CAUSALITY/BLOCK EXOGENEITY TESTS: 

VAR Granger Causality/Block Exogeneity Wald Tests 
  
Sample: 1 887   
Included observations: 885  

    
        

Dependent variable: DGP  
    
    Excluded Chi-sq df Prob. 
    
    DSP  103.9801 1  0.0000 
    
    All  103.9801 1  0.0000 
    
        

Dependent variable: DSP  
    
    Excluded Chi-sq df Prob. 
    
    DGP  4.066856 1  0.0437 
    
    All  4.066856 1  0.0437 
    
        

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

A5-4 LAG LENGTH TEST 

 
VAR Lag Order Selection Criteria     
Endogenous variables: DGP PSP NSP      
Exogenous variables: RG(-1)      
     
Sample: 1 887      
Included observations: 878     

       
        Lag LogL LR FPE AIC SC HQ 
       
       0 -5742.944 NA   97.03580  13.08871  13.10504  13.09495 

1 -5458.625  566.0482  51.82791  12.46156  12.52686  12.48653 
2 -5288.026  338.4774  35.86719  12.09345   12.20772*  12.13716 
3 -5261.327  52.78941  34.44999  12.05314  12.21638  12.11557 
4 -5238.041  45.88372  33.34703  12.02059  12.23281  12.10176 
5 -5207.011  60.92762  31.71513  11.97041  12.23161  12.07031 
6 -5182.758  47.45640  30.63236  11.93567  12.24583  12.05429 
7 -5164.827   34.96394*   30.01579*   11.91532*  12.27446   12.05268* 
8 -5159.662  10.03574  30.27960  11.92406  12.33217  12.08015 
       
        * indicates lag order selected by the criterion    

 LR: sequential modified LR test statistic (each test at 5% level)   
 FPE: Final prediction error     
 AIC: Akaike information criterion     
 SC: Schwarz information criterion     
 HQ: Hannan-Quinn information criterion    
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A5-5 ASYMMETRIC VECM ESTIMATION 

Vector Autoregression Estimates  
  

Sample (adjusted): 4 887  
Included observations: 884 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DGP PSP NSP 
    
    DGP(-1) -0.248566 0.009982 0.003484 
 (0.03479) (0.02040) (0.01955) 
 [-7.14404] [ 0.48938] [ 0.17827] 
    

DGP(-2) -0.085942 0.019358 0.028711 
 (0.02895) (0.01697) (0.01627) 
 [-2.96813] [ 1.14043] [ 1.76516] 
    

PSP(-1) 0.601358 0.139008 -0.197798 
 (0.06145) (0.03603) (0.03452) 
 [ 9.78553] [ 3.85857] [-5.72963] 
    

PSP(-2) 0.323007 0.313977 -0.167112 
 (0.06438) (0.03774) (0.03617) 
 [ 5.01694] [ 8.31882] [-4.62050] 
    

NSP(-1) 0.477331 -0.074352 0.209456 
 (0.06464) (0.03790) (0.03631) 
 [ 7.38389] [-1.96197] [ 5.76782] 
    

NSP(-2) 0.442015 -0.241416 0.292622 
 (0.06254) (0.03666) (0.03513) 
 [ 7.06816] [-6.58524] [ 8.32971] 
    

RG(-1) -0.172839 0.005318 0.007536 
 (0.02471) (0.01449) (0.01388) 
 [-6.99412] [ 0.36706] [ 0.54284] 
    
    R-squared 0.369096 0.017461 0.153251 

Adj. R-squared 0.364779 0.010739 0.147458 
Sum sq. resids 6483.583 2228.145 2046.008 
S.E. equation 2.718991 1.593940 1.527404 

F-statistic 85.51141 2.597585 26.45437 
Log likelihood -2135.058 -1662.956 -1625.263 

Akaike AIC 4.846286 3.778182 3.692903 
Schwarz SC 4.884172 3.816068 3.730789 

Mean dependent 0.099870 0.910494 -0.822862 
S.D. dependent 3.411501 1.602568 1.654230 

    
    Determinant resid covariance (dof adj.) 34.33803  

Determinant resid covariance 33.52875  
Log likelihood -5315.507  

Akaike information criterion 12.07355  
Schwarz criterion 12.18720  
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A5-6 COIRFS TABLES WITH 95% INDEX AND CORRESPONDING 

GRAPH: 

 

 
 
 

 
 
 

. 

(2) irfname = ger_g, impulse = nsp, and response = dgp
(1) irfname = ger_g, impulse = psp, and response = dgp
95% lower and upper bounds reported
                                              
 8         1.32727     .827486     1.82705    
 7         1.30521     .84075      1.76966    
 6         1.28706     .861888     1.71223    
 5         1.25647     .87509      1.63785    
 4         1.2131      .881514     1.54468    
 3         1.10201     .821628     1.3824     
 2         1.1792      .953057     1.40535    
 1         .657586     .481048     .834123    
 0         0           0           0          
                                              
   step     coirf       Lower       Upper     
              (2)         (2)         (2)     
                                              

                                              
 8         1.5829      1.10343     2.06237    
 7         1.59234     1.13476     2.04993    
 6         1.60163     1.16786     2.03539    
 5         1.61572     1.2124      2.01905    
 4         1.594       1.22459     1.9634     
 3         1.52192     1.19925     1.84458    
 2         1.60099     1.31746     1.88451    
 1         1.16482     .958988     1.37066    
 0         0           0           0          
                                              
   step     coirf       Lower       Upper     
              (1)         (1)         (1)     
                                              

. irf ctable (ger_g psp dgp coirf, ci) (ger_g nsp dgp coirf, ci)
0

.5
1

1.
5

2

0 1 2 3 4 5 6 7 8
Weeks since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

1.d. Germany gasoline
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A6: ITALY DIESEL 

 

A6-1 UNIT ROOT TESTS  

 
 
 

Null Hypothesis: DP has a unit root  
Exogenous: Constant   

Lag Length: 1 (Automatic - based on SIC, maxlag=20) 
     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -0.802304 0.8175 

Test critical values: 1% level  -3.437516  
 5% level  -2.864593  
 10% level  -2.568449  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(DP)   

Method: Least Squares   
   

Sample (adjusted): 3 887   
Included observations: 885 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     DP(-1) -0.001389 0.001731 -0.802304 0.4226 

D(DP(-1)) 0.327939 0.031840 10.29942 0.0000 
C 0.180144 0.144369 1.247802 0.2124 
     
     R-squared 0.107473 Mean dependent var 0.116159 

Adjusted R-squared 0.105449 S.D. dependent var 2.156425 
S.E. of regression 2.039561 Akaike info criterion 4.266731 
Sum squared resid 3668.953 Schwarz criterion 4.282953 

Log likelihood -1885.028 Hannan-Quinn criter. 4.272933 
F-statistic 53.10278 Durbin-Watson stat 2.039004 

Prob(F-statistic) 0.000000    
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A6-2 COINTEGRATION TEST 

 

 
 

  
 

   
Sample (adjusted): 6 887   

Included observations: 882 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 

Series: DP WP    
Lags interval (in first differences): 1 to 4  

     
Unrestricted Cointegration Rank Test (Trace)  

     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.044189 42.05297 20.26184 0.0000 

At most 1 0.002481 2.190872 9.164546 0.7395 
     
     Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.044189 39.86209 15.89210 0.0000 

At most 1 0.002481 2.190872 9.164546 0.7395 
     
     Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I): 
     
     DP WP C   

-0.256697 0.312379 3.652249   
0.025078 -0.006968 -2.148405   

     
          

Unrestricted Adjustment Coefficients (alpha):  
     
     D(DP) 0.121073 -0.081252   

D(WP) -0.428465 -0.091474   
     
          

1 Cointegrating Equation(s): Log likelihood -3786.385  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

DP WP C   
1.000000 -1.216914 -14.22784   

 (0.01882) (1.09980)   
     

Adjustment coefficients (standard error in parentheses)  
D(DP) -0.031079    

 (0.01499)    
D(WP) 0.109986    

 (0.02354)    
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A6-3 CAUSALITY 

 
VAR Granger Causality/Block Exogeneity Wald Tests 

  
Sample: 1 887   

Included observations: 884  
    
        

Dependent variable: DDP  
    
    Excluded Chi-sq df Prob. 
    
    DWP 170.5205 2 0.0000 
    
    All 170.5205 2 0.0000 
    
        

Dependent variable: DWP  
    
    Excluded Chi-sq df Prob. 
    
    DDP 4.611584 2 0.0997 
    
    All 4.611584 2 0.0997 
    
        

 

A6-4 LAG LENGTH TEST 

VAR Lag Order Selection Criteria     
Endogenous variables: DDP DWP     

Exogenous variables:  RD(-1)     
     

Sample: 1 887      
Included observations: 878     

       
       Lag LogL LR FPE AIC SC HQ 
       
       0 -3915.416 NA 25.73223 8.923499 8.934382 8.927661 

1 -3827.296 175.6381 21.24511 8.731881 8.764530 8.744368 
2 -3788.402 77.34533 19.62180 8.652395 8.706810* 8.673207 
3 -3780.333 16.00815 19.44081 8.643128 8.719309 8.672264* 
4 -3773.268 13.98447 19.30558 8.636147 8.734094 8.673608 
5 -3769.490 7.462225 19.31535 8.636652 8.756365 8.682437 
6 -3762.912 12.96092 19.20229 8.630779 8.772259 8.684890 
7 -3756.009 13.57118* 19.07575* 8.624165* 8.787411 8.686600 
8 -3752.933 6.032072 19.11602 8.626271 8.811283 8.697031 
       
       * indicates lag order selected by the criterion    

LR: sequential modified LR test statistic (each test at 5% level)   
FPE: Final prediction error     

AIC: Akaike information criterion     
SC: Schwarz information criterion     

HQ: Hannan-Quinn information criterion    
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A6-5 VECM  

 Vector Autoregression Estimates  
  
 Sample (adjusted): 4 887  
 Included observations: 884 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     DDP PWP NWP 
    
    DDP(-1)  0.040257  0.038404  0.022601 
  (0.03469)  (0.03381)  (0.03036) 
 [ 1.16032] [ 1.13596] [ 0.74445] 
    

DDP(-2)  0.013134  0.038539  0.030769 
  (0.02989)  (0.02912)  (0.02615) 
 [ 0.43946] [ 1.32335] [ 1.17655] 
    

PWP(-1)  0.331503  0.193483 -0.188686 
  (0.03772)  (0.03675)  (0.03300) 
 [ 8.78911] [ 5.26440] [-5.71699] 
    

PWP(-2)  0.188424  0.219618 -0.189959 
  (0.03975)  (0.03874)  (0.03479) 
 [ 4.73981] [ 5.66943] [-5.46077] 
    

NWP(-1)  0.290779 -0.105587  0.272270 
  (0.04236)  (0.04128)  (0.03707) 
 [ 6.86404] [-2.55784] [ 7.34491] 
    

NWP(-2)  0.238589 -0.250597  0.249699 
  (0.04086)  (0.03982)  (0.03576) 
 [ 5.83874] [-6.29351] [ 6.98323] 
    

RD(-1) -0.051971  0.044111  0.043740 
  (0.01443)  (0.01406)  (0.01262) 
 [-3.60231] [ 3.13777] [ 3.46474] 
    
     R-squared  0.341011  0.026235  0.209831 

 Adj. R-squared  0.336502  0.019573  0.204425 
 Sum sq. resids  2708.609  2571.887  2073.988 
 S.E. equation  1.757411  1.712483  1.537812 
 F-statistic  75.63769  3.937983  38.81493 
 Log likelihood -1749.264 -1726.370 -1631.267 
 Akaike AIC  3.973448  3.921652  3.706486 
 Schwarz SC  4.011334  3.959538  3.744372 
 Mean dependent  0.115359  0.965355 -0.869026 
 S.D. dependent  2.157514  1.729492  1.724102 

    
     Determinant resid covariance (dof adj.)  14.60666  

 Determinant resid covariance  14.26241  
 Log likelihood -4937.696  
 Akaike information criterion  11.21877  
 Schwarz criterion  11.33243  
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A6- COIRFS TABLE AND GRAPH 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(2) irfname = diesel, impulse = nwp, and response = ddp
(1) irfname = diesel, impulse = pwp, and response = ddp
95% lower and upper bounds reported
                                                                                  
 8         1.22258     .803922     1.64124     1.09001     .638795     1.54122    
 7         1.23858     .841443     1.63572     1.06269     .647671     1.47772    
 6         1.25319     .880606     1.62578     1.03114     .656408     1.40586    
 5         1.26043     .917042     1.60382     .988577     .658024     1.31913    
 4         1.24866     .938389     1.55892     .933447     .651524     1.21537    
 3         1.22184     .956271     1.4874      .859669     .628941     1.0904     
 2         1.15579     .946443     1.36513     .770467     .603885     .937049    
 1         .674493     .548736     .800251     .382547     .270486     .494607    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (diesel pwp ddp coirf, ci) (diesel nwp ddp coirf, ci)

0
.5

1
1.

5
2

0 1 2 3 4 5 6 7 8
Weeks since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

1.e. Italy diesel
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A7: ITALY GASOLINE 

A7-1 UNIT ROOT TESTS ON GP 

 
 

Null Hypothesis: GP has a unit root  
Exogenous: Constant   

Lag Length: 2 (Automatic - based on SIC, maxlag=20) 
     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.195001 0.6785 

Test critical values: 1% level  -3.437524  
 5% level  -2.864596  
 10% level  -2.568451  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GP)   

Method: Least Squares   
   

Sample (adjusted): 4 887   
Included observations: 884 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     GP(-1) -0.002452 0.002052 -1.195001 0.2324 

D(GP(-1)) 0.303551 0.033533 9.052297 0.0000 
D(GP(-2)) 0.100420 0.033617 2.987152 0.0029 

C 0.237513 0.162071 1.465494 0.1431 
     
     R-squared 0.122423 Mean dependent var 0.103168 

Adjusted R-squared 0.119431 S.D. dependent var 2.117033 
S.E. of regression 1.986595 Akaike info criterion 4.215236 
Sum squared resid 3472.972 Schwarz criterion 4.236885 

Log likelihood -1859.134 Hannan-Quinn criter. 4.223513 
F-statistic 40.92022 Durbin-Watson stat 2.008672 

Prob(F-statistic) 0.000000    
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A7-2 COINTEGRATION TEST 

   
Sample (adjusted): 6 887   

Included observations: 882 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: GP SP    

Lags interval (in first differences): 1 to 4  
     

Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.047003 44.83487 20.26184 0.0000 

At most 1 0.002686 2.372101 9.164546 0.7031 
     
     Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.047003 42.46277 15.89210 0.0000 

At most 1 0.002686 2.372101 9.164546 0.7031 
     
     Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I): 
     
     GP SP C   

-0.259592 0.324701 4.840717   
0.034011 -0.011214 -2.554795   

     
          

Unrestricted Adjustment Coefficients (alpha):  
     
     D(GP) 0.206498 -0.069871   

D(SP) -0.348199 -0.103623   
     
          

1 Cointegrating Equation(s): Log likelihood -3719.736  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

GP SP C   
1.000000 -1.250815 -18.64742   

 (0.02239) (1.12035)   
     

Adjustment coefficients (standard error in parentheses)  
D(GP) -0.053605    

 (0.01439)    
D(SP) 0.090389    

 (0.02232)    
     
      

 
 



 
 

211 
 

A7-3 GRANGER CAUSALITY/BLOCK EXOGENEITY TESTS 

 
Pairwise Granger Causality Tests 
 
Sample: 1 887  
Lags: 2   

    
     Null Hypothesis: Obs F-Statistic Prob.  
    
     SP does not Granger Cause GP  885  162.759 7.E-61 

 GP does not Granger Cause SP  15.6909 2.E-07 
    
     

 
 
 

VAR Granger Causality/Block Exogeneity Wald Tests 
  
Sample: 1 887   
Included observations: 884  

    
        

Dependent variable: DGP  
    
    Excluded Chi-sq df Prob. 
    
    DSP  166.6011 2  0.0000 
    
    All  166.6011 2  0.0000 
    
        

Dependent variable: DSP  
    
    Excluded Chi-sq df Prob. 
    
    DGP  13.11863 2  0.0014 
    
    All  13.11863 2  0.0014 
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A7-4 LAG LENGTH TESTS 

 
 

VAR Lag Order Selection Criteria     
Endogenous variables: DGP PSP NSP      
Exogenous variables: RG(-1)      
     
Sample: 1 887      
Included observations: 878     

       
        Lag LogL LR FPE AIC SC HQ 
       
       0 -5322.613 NA   37.24824  12.13124  12.14756  12.13748 

1 -4998.834  644.6075  18.18449  11.41420  11.47950  11.43917 
2 -4842.419  310.3355  12.99770  11.07840   11.19267*  11.12211 
3 -4817.135  49.99210  12.52443  11.04131  11.20455  11.10374 
4 -4799.659  34.43511  12.28497  11.02200  11.23422  11.10317 
5 -4773.086  52.17664  11.80300  10.98197  11.24317  11.08187 
6 -4755.398  34.61118  11.57179  10.96218  11.27235  11.08081 
7 -4733.767  42.17734  11.24373  10.93341  11.29255   11.07077* 
8 -4723.878   19.21410*   11.22115*   10.93139*  11.33950  11.08747 
       
        * indicates lag order selected by the criterion    

 LR: sequential modified LR test statistic (each test at 5% level)   
 FPE: Final prediction error     
 AIC: Akaike information criterion     
 SC: Schwarz information criterion     
 HQ: Hannan-Quinn information criterion    

       
 
 

VAR Lag Exclusion Wald Tests   
   
Sample: 1 887    
Included observations: 882   

     
     Chi-squared test statistics for lag exclusion:  

Numbers in [ ] are p-values   
     
      DGP PSP NSP Joint 
     
     Lag 1  196.2966  11.45736  34.18509  250.4207 
 [ 0.000000] [ 0.009493] [ 1.81e-07] [ 0.000000] 
     

Lag 2  73.99398  38.63978  56.91584  204.9258 
 [ 5.55e-16] [ 2.07e-08] [ 2.68e-12] [ 0.000000] 
     

Lag 3  30.40626  8.060038  10.32153  47.19605 
 [ 1.13e-06] [ 0.044787] [ 0.016022] [ 3.61e-07] 
     

Lag 4  5.580230  20.69997  2.988236  35.12864 
 [ 0.133918] [ 0.000122] [ 0.393443] [ 5.65e-05] 
     
     df 3 3 3 9 
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A7-5 VECM  

 
 Vector Autoregression Estimates  
  
 Sample (adjusted): 4 887  
 Included observations: 884 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     DGP PSP NSP 
    
    DGP(-1)  0.069747  0.083839  0.049706 
  (0.03327)  (0.03147)  (0.03044) 
 [ 2.09632] [ 2.66409] [ 1.63278] 
    

DGP(-2)  0.017318  0.060161  0.019162 
  (0.02853)  (0.02698)  (0.02610) 
 [ 0.60710] [ 2.22965] [ 0.73415] 
    

PSP(-1)  0.348862  0.149169 -0.184131 
  (0.03673)  (0.03474)  (0.03360) 
 [ 9.49890] [ 4.29404] [-5.47941] 
    

PSP(-2)  0.141269  0.292402 -0.171761 
  (0.03863)  (0.03653)  (0.03534) 
 [ 3.65737] [ 8.00336] [-4.85998] 
    

NSP(-1)  0.291411 -0.065710  0.219740 
  (0.03940)  (0.03727)  (0.03605) 
 [ 7.39583] [-1.76312] [ 6.09506] 
    

NSP(-2)  0.221508 -0.254513  0.298873 
  (0.03858)  (0.03649)  (0.03530) 
 [ 5.74223] [-6.97542] [ 8.46771] 
    

RG(-1) -0.078005  0.038868  0.031023 
  (0.01386)  (0.01311)  (0.01268) 
 [-5.63001] [ 2.96588] [ 2.44712] 
    
     R-squared  0.387158  0.043175  0.159699 

 Adj. R-squared  0.382965  0.036629  0.153950 
 Sum sq. resids  2425.294  2169.832  2030.428 
 S.E. equation  1.662962  1.572944  1.521577 
 F-statistic  92.33964  6.595544  27.77890 
 Log likelihood -1700.431 -1651.235 -1621.885 
 Akaike AIC  3.862965  3.751662  3.685259 
 Schwarz SC  3.900851  3.789548  3.723145 
 Mean dependent  0.103168  0.910494 -0.822862 
 S.D. dependent  2.117033  1.602568  1.654230 

    
     Determinant resid covariance (dof adj.)  12.45266  

 Determinant resid covariance  12.15918  
 Log likelihood -4867.178  
 Akaike information criterion  11.05923  
 Schwarz criterion  11.17288  
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A7-6 COIRFS TABLE AND GRAPH 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

(2) irfname = gas, impulse = nsp, and response = dgp
(1) irfname = gas, impulse = psp, and response = dgp
95% lower and upper bounds reported
                                                                                  
 8         1.78417     1.23488     2.33346     1.61284     1.07937     2.14632    
 7         1.76992     1.25698     2.28286     1.57794     1.09021     2.06567    
 6         1.7414      1.2712      2.2116      1.52765     1.09158     1.96373    
 5         1.67827     1.26055     2.09598     1.45235     1.07378     1.83093    
 4         1.57294     1.21614     1.92974     1.35441     1.03853     1.6703     
 3         1.44141     1.14997     1.73284     1.17379     .925925     1.42166    
 2         1.05997     .847405     1.27254     .984611     .796059     1.17316    
 1         .660156     .534502     .78581      .476507     .362175     .590838    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (gas psp dgp coirf, ci) (gas nsp dgp coirf, ci)

0
.5

1
1.

5
2

0 1 2 3 4 5 6 7 8
Weeks since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

1.f. Italy gasoline
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A8: THE NETHERLANDS DIESEL 

A8-1 UNIT ROOT TESTS ON DP 

 
Null Hypothesis: DP has a unit root  

Exogenous: Constant   
Lag Length: 1 (Automatic - based on SIC, maxlag=20) 

     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -0.968535 0.7659 

Test critical values: 1% level  -3.437516  
 5% level  -2.864593  
 10% level  -2.568449  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(DP)   

Method: Least Squares   
   

Sample (adjusted): 3 887   
Included observations: 885 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     DP(-1) -0.002462 0.002542 -0.968535 0.3330 

D(DP(-1)) 0.181441 0.033156 5.472413 0.0000 
C 0.268566 0.205855 1.304638 0.1924 
     
     R-squared 0.033315 Mean dependent var 0.111007 

Adjusted R-squared 0.031123 S.D. dependent var 2.831529 
S.E. of regression 2.787117 Akaike info criterion 4.891277 
Sum squared resid 6851.394 Schwarz criterion 4.907499 

Log likelihood -2161.390 Hannan-Quinn criter. 4.897479 
F-statistic 15.19847 Durbin-Watson stat 2.012398 

Prob(F-statistic) 0.000000    
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A8-2 COINTEGRATION TEST 

   
Sample (adjusted): 5 887   

Included observations: 883 after adjustments  
Trend assumption: Linear deterministic trend (restricted) 

Series: DP WP    
Lags interval (in first differences): 1 to 3  

     
Unrestricted Cointegration Rank Test (Trace)  

     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.038097 41.20332 25.87211 0.0003 

At most 1 0.007791 6.906005 12.51798 0.3544 
     
     Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.038097 34.29731 19.38704 0.0002 

At most 1 0.007791 6.906005 12.51798 0.3544 
     
     Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I): 
     
     DP WP @TREND(2)   

0.284193 -0.345019 0.003803   
0.050013 -0.006164 -0.005861   

     
          

Unrestricted Adjustment Coefficients (alpha):  
     
     D(DP) -0.267584 -0.181208   

D(WP) 0.177746 -0.228671   
     
          

1 Cointegrating Equation(s): Log likelihood -3981.268  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

DP WP @TREND(2)   
1.000000 -1.214030 0.013381   

 (0.03268) (0.00419)   
     

Adjustment coefficients (standard error in parentheses)  
D(DP) -0.076045    

 (0.02358)    
D(WP) 0.050514    

 (0.02633)    
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A8-3 CAUSALITY 

 
Pairwise Granger Causality Tests 
 
Sample: 1 887  
Lags: 3   

    
     Null Hypothesis: Obs F-Statistic Prob.  
    
     WP does not Granger Cause DP  884  81.2144 2.E-46 

 DP does not Granger Cause WP  2.56569 0.0534 
    
     

 
 

VAR Granger Causality/Block Exogeneity Wald Tests 
  

Sample: 1 887   
Included observations: 884  

    
        

Dependent variable: DDP  
    
    Excluded Chi-sq df Prob. 
    
    DWP 128.8540 2 0.0000 
    
    All 128.8540 2 0.0000 
    
        

Dependent variable: DWP  
    
    Excluded Chi-sq df Prob. 
    
    DDP 6.564028 2 0.0376 
    
    All 6.564028 2 0.0376 
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A8-4 LAG LENGTH  

 
VAR Lag Order Selection Criteria     
Endogenous variables: DDP DWP     

Exogenous variables:  RD(-1)     
     

Sample: 1 887      
Included observations: 878     

       
       Lag LogL LR FPE AIC SC HQ 
       
       0 -4086.103 NA 37.96077 9.312307 9.323190 9.316470 

1 -4006.286 159.0882 31.93970 9.139604 9.172253 9.152091 
2 -3974.565 63.08105 29.98520 9.076458 9.130873* 9.097269* 
3 -3967.570 13.87902 29.78132 9.069635 9.145816 9.098771 
4 -3960.966 13.07299 29.60520 9.063703 9.161650 9.101164 
5 -3954.480 12.80822 29.43810 9.058041 9.177755 9.103827 
6 -3951.603 5.669313 29.51354 9.060599 9.202078 9.114709 
7 -3938.260 26.23059 28.89210 9.039316 9.202561 9.101751 
8 -3931.434 13.38654* 28.70684* 9.032880* 9.217891 9.103639 
       
       * indicates lag order selected by the criterion    

LR: sequential modified LR test statistic (each test at 5% level)   
FPE: Final prediction error     

AIC: Akaike information criterion     
SC: Schwarz information criterion     

HQ: Hannan-Quinn information criterion    
       

 
 
 

VAR Lag Exclusion Wald Tests   
   
Sample: 1 887    
Included observations: 882   

     
     Chi-squared test statistics for lag exclusion:  

Numbers in [ ] are p-values   
     
      DDP PWP NWP Joint 
     
     Lag 1  159.2566  7.045845  35.06856  314.7759 
 [ 0.000000] [ 0.070451] [ 1.18e-07] [ 0.000000] 
     

Lag 2  50.32903  15.84296  27.23188  155.3246 
 [ 6.80e-11] [ 0.001221] [ 5.26e-06] [ 0.000000] 
     

Lag 3  18.06147  11.20835  7.535959  46.38543 
 [ 0.000427] [ 0.010651] [ 0.056642] [ 5.11e-07] 
     

Lag 4  12.64126  22.12409  5.257992  54.17927 
 [ 0.005480] [ 6.15e-05] [ 0.153852] [ 1.75e-08] 
     
     df 3 3 3 9 
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A8-5 VECM  

Vector Autoregression Estimates  
  

Sample (adjusted): 4 887  
Included observations: 884 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DDP PWP NWP 
    
    DDP(-1) -0.146897 0.055843 0.000550 
 (0.04176) (0.02896) (0.02622) 
 [-3.51724] [ 1.92844] [ 0.02099] 
    

DDP(-2) -0.050861 0.075105 0.016383 
 (0.03555) (0.02465) (0.02231) 
 [-1.43082] [ 3.04726] [ 0.73416] 
    

PWP(-1) 0.468697 0.141314 -0.221588 
 (0.05473) (0.03795) (0.03436) 
 [ 8.56354] [ 3.72387] [-6.44935] 
    

PWP(-2) 0.190569 0.167868 -0.196016 
 (0.05836) (0.04046) (0.03663) 
 [ 3.26552] [ 4.14874] [-5.35056] 
    

NWP(-1) 0.445712 -0.148965 0.251699 
 (0.06438) (0.04464) (0.04041) 
 [ 6.92330] [-3.33725] [ 6.22799] 
    

NWP(-2) 0.262904 -0.312995 0.233196 
 (0.06127) (0.04248) (0.03846) 
 [ 4.29094] [-7.36781] [ 6.06295] 
    

RD(-1) -0.097060 0.011399 -0.000978 
 (0.02193) (0.01520) (0.01377) 
 [-4.42602] [ 0.74971] [-0.07107] 
    
    R-squared 0.244468 0.025349 0.196035 

Adj. R-squared 0.239300 0.018681 0.190534 
Sum sq. resids 5354.764 2574.227 2110.200 
S.E. equation 2.470986 1.713261 1.551179 

F-statistic 47.29537 3.801562 35.64051 
Log likelihood -2050.510 -1726.772 -1638.918 

Akaike AIC 4.654999 3.922562 3.723795 
Schwarz SC 4.692885 3.960448 3.761681 

Mean dependent 0.111374 0.965355 -0.869026 
S.D. dependent 2.833111 1.729492 1.724102 

    
    Determinant resid covariance (dof adj.) 22.03461  

Determinant resid covariance 21.51530  
Log likelihood -5119.419  

Akaike information criterion 11.62991  
Schwarz criterion 11.74356  
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A8-6 COIRFS TABLES WITH 95% CI AND CORRESPONDING GRAPH 

 
 

 

 
 
 
 
 
 
 
 

(2) irfname = ned_d, impulse = nwp, and response = ddp
(1) irfname = ned_d, impulse = pwp, and response = ddp
95% lower and upper bounds reported
                                              
 8         1.03063     .558901     1.50237    
 7         1.00171     .564715     1.43871    
 6         .974042     .575312     1.37277    
 5         .943853     .587193     1.30051    
 4         .886819     .577016     1.19662    
 3         .817932     .549347     1.08652    
 2         .862719     .643815     1.08162    
 1         .560932     .400618     .721247    
 0         0           0           0          
                                              
   step     coirf       Lower       Upper     
              (2)         (2)         (2)     
                                              

                                              
 8         .813366     .392519     1.23421    
 7         .833611     .438408     1.22881    
 6         .859305     .491382     1.22723    
 5         .895568     .558229     1.23291    
 4         .897987     .593076     1.2029     
 3         .897495     .623171     1.17182    
 2         1.02497     .77518      1.27477    
 1         .825114     .653883     .996345    
 0         0           0           0          
                                              
   step     coirf       Lower       Upper     
              (1)         (1)         (1)     
                                              

. irf ctable (ned_d pwp ddp coirf, ci) (ned_d nwp ddp coirf, ci)

0
.5

1
1.

5

0 1 2 3 4 5 6 7 8
Weeks since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

1.g. The Netherlands diesel
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A9: THE NETHERLANDS GASOLINE 

A9-1 UNIT ROOT TESTS  

 
 

Null Hypothesis: GP has a unit root  
Exogenous: Constant   

Lag Length: 2 (Automatic - based on SIC, maxlag=20) 
     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.536181 0.5149 

Test critical values: 1% level  -3.437524  
 5% level  -2.864596  
 10% level  -2.568451  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GP)   

Method: Least Squares   
   

Sample (adjusted): 4 887   
Included observations: 884 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     GP(-1) -0.004644 0.003023 -1.536181 0.1249 

D(GP(-1)) 0.051952 0.033255 1.562229 0.1186 
D(GP(-2)) 0.165927 0.033280 4.985766 0.0000 

C 0.417685 0.243597 1.714654 0.0868 
     
     R-squared 0.032552 Mean dependent var 0.098155 

Adjusted R-squared 0.029253 S.D. dependent var 3.034688 
S.E. of regression 2.989971 Akaike info criterion 5.032919 
Sum squared resid 7867.137 Schwarz criterion 5.054568 

Log likelihood -2220.550 Hannan-Quinn criter. 5.041197 
F-statistic 9.869718 Durbin-Watson stat 2.013353 

Prob(F-statistic) 0.000002    
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A9-2 COINTEGRATION TEST 

   
Sample (adjusted): 5 887   

Included observations: 883 after adjustments  
Trend assumption: Linear deterministic trend (restricted) 

Series: GP SP    
Lags interval (in first differences): 1 to 3  

     
Unrestricted Cointegration Rank Test (Trace)  

     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.032164 36.72501 25.87211 0.0015 

At most 1 0.008859 7.857164 12.51798 0.2636 
     
     Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.032164 28.86784 19.38704 0.0016 

At most 1 0.008859 7.857164 12.51798 0.2636 
     
     Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I): 
     
     GP SP @TREND(2)   

0.194821 -0.303598 0.006486   
0.132852 -0.119336 -0.003428   

     
          

Unrestricted Adjustment Coefficients (alpha):  
     
     D(GP) 0.011747 -0.245436   

D(SP) 0.380364 -0.133675   
     
          

1 Cointegrating Equation(s): Log likelihood -3986.606  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

GP SP @TREND(2)   
1.000000 -1.558345 0.033292   

 (0.06899) (0.00714)   
     

Adjustment coefficients (standard error in parentheses)  
D(GP) 0.002289    

 (0.01718)    
D(SP) 0.074103    

 (0.01662)    
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A9-3 CAUSALITY 

 
VAR Granger Causality/Block Exogeneity Wald Tests 

  
Sample: 1 887   

Included observations: 884  
    
        

Dependent variable: DGP  
    
    Excluded Chi-sq df Prob. 
    
    DSP 176.8929 2 0.0000 
    
    All 176.8929 2 0.0000 
    
        

Dependent variable: DSP  
    
    Excluded Chi-sq df Prob. 
    
    DGP 15.95607 2 0.0003 
    
    All 15.95607 2 0.0003 
    
        

A9-4 LAG LENGTH 

 
 

VAR Lag Order Selection Criteria     
Endogenous variables: DGP PSP NSP     

Exogenous variables:  RG(-1)     
     

Sample: 1 887      
Included observations: 878     

       
       Lag LogL LR FPE AIC SC HQ 
       
       0 -5618.143 NA 73.02445 12.80443 12.82075 12.81067 

1 -5291.134 651.0383 35.38898 12.08003 12.14533 12.10501 
2 -5116.856 345.7767 24.28635 11.70354 11.81782* 11.74725 
3 -5088.431 56.20243 23.23519 11.65930 11.82254 11.72173 
4 -5062.677 50.74596 22.36522 11.62113 11.83335 11.70230 
5 -5025.878 72.25724 20.99299 11.55781 11.81900 11.65770 
6 -5009.099 32.83153 20.62445 11.54009 11.85025 11.65871 
7 -4985.139 46.71881 19.93370 11.50601 11.86515 11.64337* 
8 -4971.434 26.62862* 19.72151* 11.49529* 11.90341 11.65138 
       
       * indicates lag order selected by the criterion    

LR: sequential modified LR test statistic (each test at 5% level)   
FPE: Final prediction error     

AIC: Akaike information criterion     
SC: Schwarz information criterion     

HQ: Hannan-Quinn information criterion    
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A9-5 VECM  

Vector Autoregression Estimates  
  

Sample (adjusted): 4 887  
Included observations: 884 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DGP PSP NSP 
    
    DGP(-1) -0.297472 0.067202 0.052642 
 (0.04055) (0.02431) (0.02341) 
 [-7.33523] [ 2.76425] [ 2.24847] 
    

DGP(-2) -0.026395 0.061204 0.051178 
 (0.03572) (0.02141) (0.02062) 
 [-0.73897] [ 2.85839] [ 2.48185] 
    

PSP(-1) 0.552750 0.106930 -0.227851 
 (0.06047) (0.03625) (0.03491) 
 [ 9.14083] [ 2.94976] [-6.52667] 
    

PSP(-2) 0.300286 0.262766 -0.209735 
 (0.06380) (0.03825) (0.03684) 
 [ 4.70634] [ 6.86986] [-5.69382] 
    

NSP(-1) 0.625165 -0.115066 0.170793 
 (0.06543) (0.03922) (0.03777) 
 [ 9.55473] [-2.93361] [ 4.52145] 
    

NSP(-2) 0.343834 -0.292166 0.253036 
 (0.06401) (0.03837) (0.03695) 
 [ 5.37154] [-7.61396] [ 6.84724] 
    

RG(-1) -0.055059 0.015778 0.007672 
 (0.01931) (0.01158) (0.01115) 
 [-2.85076] [ 1.36275] [ 0.68810] 
    
    R-squared 0.250883 0.034652 0.159732 

Adj. R-squared 0.245758 0.028048 0.153983 
Sum sq. resids 6091.702 2189.159 2030.349 
S.E. equation 2.635540 1.579934 1.521548 

F-statistic 48.95188 5.246823 27.78567 
Log likelihood -2107.501 -1655.154 -1621.867 

Akaike AIC 4.783940 3.760530 3.685220 
Schwarz SC 4.821826 3.798416 3.723106 

Mean dependent 0.098155 0.910494 -0.822862 
S.D. dependent 3.034688 1.602568 1.654230 

    
    Determinant resid covariance (dof adj.) 23.24435  

Determinant resid covariance 22.69653  
Log likelihood -5143.043  

Akaike information criterion 11.68335  
Schwarz criterion 11.79701  
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A9-6 COIRFS TABLE AND GRAPH 

 

 
 
 
 

 

(2) irfname = ned_g, impulse = nsp, and response = dgp
(1) irfname = ned_g, impulse = psp, and response = dgp
95% lower and upper bounds reported
                                              
 8         1.4028      .892769     1.91284    
 7         1.37022     .898472     1.84197    
 6         1.32739     .898428     1.75636    
 5         1.28575     .903389     1.66811    
 4         1.23087     .902767     1.55897    
 3         1.07898     .8036       1.35436    
 2         1.07208     .851666     1.29249    
 1         .811213     .64121      .981216    
 0         0           0           0          
                                              
   step     coirf       Lower       Upper     
              (2)         (2)         (2)     
                                              

                                              
 8         .953977     .46202      1.44593    
 7         .979253     .519599     1.43891    
 6         .999236     .574663     1.42381    
 5         1.02903     .64507      1.41299    
 4         1.05378     .714001     1.39356    
 3         .981208     .694532     1.26788    
 2         1.03919     .793162     1.28522    
 1         .91886      .736902     1.10082    
 0         0           0           0          
                                              
   step     coirf       Lower       Upper     
              (1)         (1)         (1)     
                                              

. irf ctable (ned_g psp dgp coirf, ci) (ned_g nsp dgp coirf, ci)
0

.5
1

1.
5

2

0 1 2 3 4 5 6 7 8
Weeks since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

1.h. The Netherlands gasoline
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A10: SPAIN DIESEL 

 

A10-1 UNIT ROOT TESTS ON DP 

 
 

Null Hypothesis: DP has a unit root  
Exogenous: Constant   

Lag Length: 1 (Automatic - based on SIC, maxlag=20) 
     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -0.747794 0.8324 

Test critical values: 1% level  -3.437516  
 5% level  -2.864593  
 10% level  -2.568449  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(DP)   

Method: Least Squares   
   

Sample (adjusted): 3 887   
Included observations: 885 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     DP(-1) -0.001352 0.001807 -0.747794 0.4548 

D(DP(-1)) 0.323008 0.031908 10.12317 0.0000 
C 0.170065 0.143894 1.181877 0.2376 
     
     R-squared 0.104153 Mean dependent var 0.111622 

Adjusted R-squared 0.102122 S.D. dependent var 2.169808 
S.E. of regression 2.056033 Akaike info criterion 4.282818 
Sum squared resid 3728.453 Schwarz criterion 4.299040 

Log likelihood -1892.147 Hannan-Quinn criter. 4.289020 
F-statistic 51.27172 Durbin-Watson stat 2.051031 

Prob(F-statistic) 0.000000    
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A10-2 COINTEGRATION TEST 

   
Sample (adjusted): 7 887   

Included observations: 881 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 

Series: DP WP    
Lags interval (in first differences): 1 to 5  

     
Unrestricted Cointegration Rank Test (Trace)  

     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.035519 33.67128 20.26184 0.0004 

At most 1 0.002052 1.809754 9.164546 0.8152 
     
     Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.035519 31.86153 15.89210 0.0001 

At most 1 0.002052 1.809754 9.164546 0.8152 
     
     Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I): 
     
     DP WP C   

-0.284885 0.336710 3.525682   
0.038624 -0.023975 -2.252115   

     
          

Unrestricted Adjustment Coefficients (alpha):  
     
     D(DP) 0.101556 -0.073406   

D(WP) -0.376606 -0.084975   
     
          

1 Cointegrating Equation(s): Log likelihood -3758.746  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

DP WP C   
1.000000 -1.181915 -12.37583   

 (0.01908) (1.11346)   
     

Adjustment coefficients (standard error in parentheses)  
D(DP) -0.028932    

 (0.01646)    
D(WP) 0.107289    

 (0.02622)    
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A10-3 CAUSALITY 

 
VAR Granger Causality/Block Exogeneity Wald Tests 

  
Sample: 1 887   

Included observations: 883  
    
        

Dependent variable: DDP  
    
    Excluded Chi-sq df Prob. 
    
    PWP 157.9317 3 0.0000 

NWP 136.7522 3 0.0000 
    
    All 199.8999 6 0.0000 
    
        

Dependent variable: PWP  
    
    Excluded Chi-sq df Prob. 
    
    DDP 7.584467 3 0.0554 

NWP 26.02100 3 0.0000 
    
    All 46.26882 6 0.0000 
    
        

Dependent variable: NWP  
    
    Excluded Chi-sq df Prob. 
    
    DDP 7.208425 3 0.0655 

PWP 34.42586 3 0.0000 
    
    All 82.56965 6 0.0000 
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A10-4 LAG LENGTH  

VAR Lag Exclusion Wald Tests   
   

Sample: 1 887    
Included observations: 881   

     
     Chi-squared test statistics for lag exclusion:  

Numbers in [ ] are p-values   
     
      DDP PWP NWP Joint 
     
     Lag 1 189.5443 6.268690 28.66355 256.0681 
 [ 0.000000] [ 0.099245] [ 2.64e-06] [ 0.000000] 
     

Lag 2 117.5981 10.94921 34.65258 188.8836 
 [ 0.000000] [ 0.012004] [ 1.44e-07] [ 0.000000] 
     

Lag 3 43.71136 14.65749 12.33156 56.98152 
 [ 1.74e-09] [ 0.002134] [ 0.006330] [ 5.09e-09] 
     

Lag 4 13.82947 16.50891 4.983457 37.71149 
 [ 0.003147] [ 0.000892] [ 0.173012] [ 1.96e-05] 
     

Lag 5 9.677311 4.185095 37.19785 83.86980 
 [ 0.021518] [ 0.242158] [ 4.18e-08] [ 2.74e-14] 
     
     df 3 3 3 9 
     
      

 
 

VAR Lag Order Selection Criteria     
Endogenous variables: DDP PWP NWP     

Exogenous variables:  RD(-1)     
     

Sample: 1 887      
Included observations: 878     

       
       Lag LogL LR FPE AIC SC HQ 
       
       0 -5426.006 NA 47.14016 12.36676 12.38308 12.37300 

1 -5028.772 790.8497 19.46785 11.48240 11.54769 11.50737 
2 -4883.475 288.2767 14.27192 11.17192 11.28620 11.21563 
3 -4843.172 79.68727 13.28973 11.10062 11.26387 11.16305 
4 -4818.727 48.16557 12.83035 11.06544 11.27766 11.14660 
5 -4777.629 80.69796 11.92579 10.99232 11.25351* 11.09222 
6 -4761.814 30.94622 11.74217 10.97680 11.28696 11.09542 
7 -4740.615 41.33582 11.42049 10.94901 11.30815 11.08637 
8 -4712.043 55.51714* 10.92267* 10.90443* 11.31254 11.06051* 
       
       * indicates lag order selected by the criterion    

LR: sequential modified LR test statistic (each test at 5% level)   
FPE: Final prediction error     

AIC: Akaike information criterion     
SC: Schwarz information criterion     

HQ: Hannan-Quinn information criterion    
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A10-5 ASYMMETRIC VECM ESTIMATION 

Vector Autoregression Estimates  
  

Sample (adjusted): 5 887  
Included observations: 883 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DDP PWP NWP 
    
    DDP(-1) -0.056519 0.018845 -0.000112 
 (0.03780) (0.03699) (0.03361) 
 [-1.49533] [ 0.50944] [-0.00332] 
    

DDP(-2) -0.084618 -0.016823 -0.082808 
 (0.03475) (0.03401) (0.03090) 
 [-2.43534] [-0.49470] [-2.68027] 
    

DDP(-3) 0.024651 0.078476 0.013852 
 (0.02974) (0.02911) (0.02644) 
 [ 0.82894] [ 2.69629] [ 0.52385] 
    

PWP(-1) 0.381796 0.134797 -0.145645 
 (0.04042) (0.03956) (0.03594) 
 [ 9.44576] [ 3.40747] [-4.05236] 
    

PWP(-2) 0.213079 0.184686 -0.143585 
 (0.04226) (0.04136) (0.03758) 
 [ 5.04186] [ 4.46508] [-3.82092] 
    

PWP(-3) 0.177188 0.185805 -0.003637 
 (0.04279) (0.04188) (0.03805) 
 [ 4.14112] [ 4.43698] [-0.09560] 
    

NWP(-1) 0.299381 -0.022088 0.239247 
 (0.04663) (0.04564) (0.04147) 
 [ 6.41982] [-0.48395] [ 5.76968] 
    

NWP(-2) 0.356467 -0.157815 0.262583 
 (0.04543) (0.04446) (0.04039) 
 [ 7.84670] [-3.54945] [ 6.50044] 
    

NWP(-3) 0.100526 -0.123266 0.144441 
 (0.04483) (0.04387) (0.03986) 
 [ 2.24261] [-2.80972] [ 3.62388] 
    

RD(-1) -0.050764 0.049775 0.040959 
 (0.01612) (0.01577) (0.01433) 
 [-3.14953] [ 3.15534] [ 2.85789] 
    
    R-squared 0.376367 0.058707 0.218426 

Adj. R-squared 0.369938 0.049003 0.210369 
Sum sq. resids 2594.536 2485.245 2051.374 
S.E. equation 1.723942 1.687242 1.532905 

F-statistic 58.54020 6.049705 27.10859 
Log likelihood -1728.788 -1709.788 -1625.081 

Akaike AIC 3.938365 3.895329 3.703467 
Schwarz SC 3.992536 3.949500 3.757638 

Mean dependent 0.110214 0.966448 -0.869322 
S.D. dependent 2.171856 1.730166 1.725056 
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Determinant resid covariance (dof adj.) 12.64755  
Determinant resid covariance 12.22270  

Log likelihood -4863.973  
Akaike information criterion 11.08488  

Schwarz criterion 11.24739  
    
     

 

A10-6 COIRFS AND GRAPH 

 

 

 
 

 

. 

(2) irfname = spa_d, impulse = nwp, and response = ddp
(1) irfname = spa_d, impulse = pwp, and response = ddp
95% lower and upper bounds reported
                                              
 8         1.4431      .952046     1.93415    
 7         1.40635     .954669     1.85804    
 6         1.35708     .948784     1.76538    
 5         1.29961     .936961     1.66226    
 4         1.20896     .896879     1.52103    
 3         1.1101      .859907     1.36029    
 2         .895295     .703412     1.08718    
 1         .38175      .264505     .498996    
 0         0           0           0          
                                              
   step     coirf       Lower       Upper     
              (2)         (2)         (2)     
                                              

                                              
 8         1.73664     1.22219     2.25109    
 7         1.73496     1.25174     2.21818    
 6         1.72496     1.27639     2.17353    
 5         1.68528     1.27728     2.09327    
 4         1.62424     1.26464     1.98383    
 3         1.55734     1.25465     1.86002    
 2         1.26489     1.04229     1.4875     
 1         .753665     .62158      .88575     
 0         0           0           0          
                                              
   step     coirf       Lower       Upper     
              (1)         (1)         (1)     
                                              

. irf ctable (spa_d pwp ddp coirf, ci) (spa_d nwp ddp coirf, ci)

0
.5

1
1.

5
2

2.
5

0 1 2 3 4 5 6 7 8
Weeks since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

1.i. Spain diesel
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A11: SPAIN GASOLINE 

 

A11-1 UNIT ROOT TEST 

Null Hypothesis: GP has a unit root  
Exogenous: Constant   

Lag Length: 2 (Automatic - based on SIC, maxlag=20) 
     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.120408 0.7095 

Test critical values: 1% level  -3.437524  
 5% level  -2.864596  
 10% level  -2.568451  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GP)   

Method: Least Squares   
   

Sample (adjusted): 4 887   
Included observations: 884 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     GP(-1) -0.002323 0.002073 -1.120408 0.2628 

D(GP(-1)) 0.273476 0.033419 8.183169 0.0000 
D(GP(-2)) 0.131627 0.033533 3.925270 0.0001 

C 0.215813 0.155492 1.387933 0.1655 
     
     R-squared 0.114052 Mean dependent var 0.098700 

Adjusted R-squared 0.111032 S.D. dependent var 2.079133 
S.E. of regression 1.960312 Akaike info criterion 4.188599 
Sum squared resid 3381.686 Schwarz criterion 4.210248 

Log likelihood -1847.361 Hannan-Quinn criter. 4.196877 
F-statistic 37.76216 Durbin-Watson stat 2.014468 

Prob(F-statistic) 0.000000    
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A11-2 COINTEGRATION TEST 

   
Sample (adjusted): 6 887   

Included observations: 882 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: GP SP    

Lags interval (in first differences): 1 to 4  
     

Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.032993 31.45701 20.26184 0.0010 

At most 1 0.002114 1.866123 9.164546 0.8042 
     
     Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.032993 29.59088 15.89210 0.0002 

At most 1 0.002114 1.866123 9.164546 0.8042 
     
     Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I): 
     
     GP SP C   

-0.238978 0.295521 3.610453   
0.051247 -0.032260 -2.717996   

     
          

Unrestricted Adjustment Coefficients (alpha):  
     
     D(GP) 0.137062 -0.064978   

D(SP) -0.309169 -0.088631   
     
          

1 Cointegrating Equation(s): Log likelihood -3679.601  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

GP SP C   
1.000000 -1.236602 -15.10787   

 (0.02927) (1.46389)   
     

Adjustment coefficients (standard error in parentheses)  
D(GP) -0.032755    

 (0.01291)    
D(SP) 0.073885    

 (0.02065)    
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A11-3 GRANGER CAUSALITY/BLOCK EXOGENEITY TESTS 

 
 

VAR Granger Causality/Block Exogeneity Wald Tests 
  

Sample: 1 887   
Included observations: 884  

    
        

Dependent variable: DGP  
    
    Excluded Chi-sq df Prob. 
    
    DSP 204.2335 2 0.0000 
    
    All 204.2335 2 0.0000 
    
        

Dependent variable: DSP  
    
    Excluded Chi-sq df Prob. 
    
    DGP 6.535797 2 0.0381 
    
    All 6.535797 2 0.0381 
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A11-4 LAG LENGTH TESTS: 

 
VAR Lag Order Selection Criteria     
Endogenous variables: DGP DSP     

Exogenous variables: RG(-1)     

1.4.3  
    

Sample: 1 887      
Included observations: 878     

       
       Lag LogL LR FPE AIC SC HQ 
       
       0 -3826.192 NA 20.99956 8.720255 8.731139 8.724418 

1 -3732.717 186.3116 17.12750 8.516440 8.549089 8.528926 
2 -3692.236 80.50092 15.76174 8.433339 8.487754 8.454151 
3 -3674.703 34.78679 15.28327 8.402512 8.478693* 8.431648 
4 -3667.830 13.60508 15.18359 8.395968 8.493915 8.433429 
5 -3659.877 15.70600 15.04751 8.386964 8.506677 8.432749 
6 -3652.863 13.81965 14.94459 8.380099 8.521578 8.434209 
7 -3641.840 21.67097* 14.70742* 8.364099* 8.527345 8.426534* 
8 -3640.872 1.898633 14.80939 8.371006 8.556017 8.441765 
       
       * indicates lag order selected by the criterion    

LR: sequential modified LR test statistic (each test at 5% level)   
FPE: Final prediction error     

AIC: Akaike information criterion     
SC: Schwarz information criterion     

HQ: Hannan-Quinn information criterion    
       

 
VAR Lag Exclusion Wald Tests  
  
Sample: 1 887   
Included observations: 882  

    
    Chi-squared test statistics for lag exclusion: 

Numbers in [ ] are p-values  
    
     DGP DSP Joint 
    
    Lag 1  223.2831  4.769412  239.8419 
 [ 0.000000] [ 0.092116] [ 0.000000] 
    

Lag 2  118.0941  9.541858  118.9877 
 [ 0.000000] [ 0.008473] [ 0.000000] 
    

Lag 3  44.56438  7.931334  44.78654 
 [ 2.10e-10] [ 0.018955] [ 4.40e-09] 
    

Lag 4  13.03095  0.982045  13.83572 
 [ 0.001480] [ 0.612000] [ 0.007838] 
    
    df 2 2 4 
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A11-5 ASYMMETRIC VECM ESTIMATION: 

Vector Autoregression Estimates  
  

Sample (adjusted): 5 887  
Included observations: 883 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DGP PSP NSP 
    
    DGP(-1) -0.080257 0.042482 0.005178 
 (0.03552) (0.03487) (0.03366) 
 [-2.25919] [ 1.21828] [ 0.15384] 
    

DGP(-2) -0.073002 0.023801 -0.046245 
 (0.03320) (0.03258) (0.03145) 
 [-2.19909] [ 0.73045] [-1.47023] 
    

DGP(-3) 0.022355 -0.001406 0.011109 
 (0.02837) (0.02785) (0.02689) 
 [ 0.78786] [-0.05049] [ 0.41321] 
    

PSP(-1) 0.389454 0.105477 -0.144886 
 (0.03932) (0.03860) (0.03726) 
 [ 9.90355] [ 2.73256] [-3.88838] 
    

PSP(-2) 0.187627 0.287119 -0.130408 
 (0.03973) (0.03900) (0.03765) 
 [ 4.72251] [ 7.36237] [-3.46410] 
    

PSP(-3) 0.221626 0.142144 0.008751 
 (0.04071) (0.03996) (0.03857) 
 [ 5.44420] [ 3.55729] [ 0.22687] 
    

NSP(-1) 0.328583 -0.024776 0.195431 
 (0.04103) (0.04027) (0.03888) 
 [ 8.00843] [-0.61519] [ 5.02695] 
    

NSP(-2) 0.385689 -0.198671 0.312504 
 (0.04020) (0.03946) (0.03810) 
 [ 9.59313] [-5.03425] [ 8.20327] 
    

NSP(-3) 0.088639 -0.040008 0.119236 
 (0.04206) (0.04128) (0.03985) 
 [ 2.10753] [-0.96912] [ 2.99202] 
    

RG(-1) -0.043863 0.032841 0.031796 
 (0.01304) (0.01280) (0.01235) 
 [-3.36468] [ 2.56645] [ 2.57408] 
    
    R-squared 0.411803 0.045917 0.165557 

Adj. R-squared 0.405739 0.036081 0.156954 
Sum sq. resids 2245.153 2163.164 2015.708 
S.E. equation 1.603673 1.574119 1.519521 

F-statistic 67.91065 4.668313 19.24516 
Log likelihood -1664.932 -1648.508 -1617.337 

Akaike AIC 3.793731 3.756529 3.685928 
Schwarz SC 3.847902 3.810700 3.740099 

Mean dependent 0.098542 0.911271 -0.823794 
S.D. dependent 2.080306 1.603309 1.654936 
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Determinant resid covariance (dof adj.) 10.91073  
Determinant resid covariance 10.54422  

Log likelihood -4798.756  
Akaike information criterion 10.93716  

Schwarz criterion 11.09967  
    
     

 

A11-6 COIRFS AND GRAPH 

 

 

 

(2) irfname = spa_g, impulse = nsp, and response = dgp
(1) irfname = spa_g, impulse = psp, and response = dgp
95% lower and upper bounds reported
                                              
 8         1.66583     1.15308     2.17857    
 7         1.62662     1.15954     2.09369    
 6         1.57114     1.15475     1.98754    
 5         1.49062     1.12929     1.85194    
 4         1.38339     1.08107     1.68571    
 3         1.20444     .96817      1.44072    
 2         1.00846     .82908      1.18784    
 1         .446298     .335716     .556881    
 0         0           0           0          
                                              
   step     coirf       Lower       Upper     
              (2)         (2)         (2)     
                                              

                                              
 8         1.83649     1.30942     2.36356    
 7         1.82151     1.33136     2.31166    
 6         1.79974     1.35167     2.24782    
 5         1.73524     1.33782     2.13265    
 4         1.63114     1.29215     1.97014    
 3         1.51969     1.24421     1.79517    
 2         1.13714     .935635     1.33865    
 1         .72932      .607279     .851361    
 0         0           0           0          
                                              
   step     coirf       Lower       Upper     
              (1)         (1)         (1)     
                                              

. irf ctable (spa_g psp dgp coirf, ci) (spa_g nsp dgp coirf, ci)

0
.5

1
1.

5
2

2.
5

0 1 2 3 4 5 6 7 8
Weeks since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

1.j. Spain gasoline
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A12: UK DIESEL 

 

A12-1 UNIT ROOT TESTS ON DP: 

 
 

Null Hypothesis: DP has a unit root  
Exogenous: Constant   

Lag Length: 2 (Automatic - based on SIC, maxlag=20) 
     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.257551 0.6509 

Test critical values: 1% level  -3.437524  
 5% level  -2.864596  
 10% level  -2.568451  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(DP)   

Method: Least Squares   
   

Sample (adjusted): 4 887   
Included observations: 884 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     DP(-1) -0.002097 0.001668 -1.257551 0.2089 

D(DP(-1)) 0.363348 0.033194 10.94621 0.0000 
D(DP(-2)) 0.171870 0.033249 5.169135 0.0000 

C 0.179912 0.123561 1.456062 0.1457 
     
     R-squared 0.215232 Mean dependent var 0.093074 

Adjusted R-squared 0.212557 S.D. dependent var 1.942409 
S.E. of regression 1.723655 Akaike info criterion 3.931286 
Sum squared resid 2614.469 Schwarz criterion 3.952935 

Log likelihood -1733.628 Hannan-Quinn criter. 3.939563 
F-statistic 80.45016 Durbin-Watson stat 2.017452 

Prob(F-statistic) 0.000000    
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12-2 COINTEGRATION TEST 

   
Sample (adjusted): 6 887   

Included observations: 882 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 

Series: DP WP    
Lags interval (in first differences): 1 to 4  

     
Unrestricted Cointegration Rank Test (Trace)  

     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.056718 53.81143 20.26184 0.0000 

At most 1 0.002618 2.311721 9.164546 0.7152 
     
     Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.056718 51.49971 15.89210 0.0000 

At most 1 0.002618 2.311721 9.164546 0.7152 
     
     Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I): 
     
     DP WP C   

-0.274039 0.291320 3.808033   
0.009800 0.015863 -1.930520   

     
          

Unrestricted Adjustment Coefficients (alpha):  
     
     D(DP) 0.320426 -0.037653   

D(WP) -0.117468 -0.138106   
     
          

1 Cointegrating Equation(s): Log likelihood -3698.840  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

DP WP C   
1.000000 -1.063058 -13.89594   

 (0.01549) (0.90410)   
     

Adjustment coefficients (standard error in parentheses)  
D(DP) -0.087809    

 (0.01391)    
D(WP) 0.032191    

 (0.02543)    
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12-3 CAUSALITY 

VAR Granger Causality/Block Exogeneity Wald Tests 
  

Sample: 1 887   
Included observations: 884  

    
        

Dependent variable: DDP  
    
    Excluded Chi-sq df Prob. 
    
    DWP 45.05930 2 0.0000 
    
    All 45.05930 2 0.0000 
    
        

Dependent variable: DWP  
    
    Excluded Chi-sq df Prob. 
    
    DDP 5.421314 2 0.0665 
    
    All 5.421314 2 0.0665 
    
        

12-4 LAG LENGTH 

VAR Lag Order Selection Criteria     
Endogenous variables: DDP PWP NWP     

Exogenous variables: RD(-1)     
     

Sample: 1 887      
Included observations: 876     

       
       Lag LogL LR FPE AIC SC HQ 
       
       0 -5331.619 NA 39.08992 12.17950 12.19585 12.18575 

1 -4960.275 739.2970 17.09174 11.35223 11.41764 11.37725 
2 -4820.909 276.5044 12.69181 11.05459 11.16907 11.09838 
3 -4782.200 76.53453 11.85951 10.98676 11.15030* 11.04931 
4 -4758.053 47.57720 11.45643 10.95218 11.16478 11.03350 
5 -4726.448 62.05476 10.88024 10.90057 11.16223 11.00065 
6 -4701.971 47.89223 10.50258 10.86523 11.17596 10.98408 
7 -4684.660 33.75327 10.30528 10.84626 11.20604 10.98388 
8 -4663.658 40.80627 10.02687 10.81885 11.22770 10.97524* 
9 -4649.781 26.86555 9.916042 10.80772 11.26563 10.98287 
10 -4636.845 24.95605* 9.827567* 10.79873* 11.30571 10.99265 
       
       * indicates lag order selected by the criterion    

LR: sequential modified LR test statistic (each test at 5% level)   
FPE: Final prediction error     

AIC: Akaike information criterion     
SC: Schwarz information criterion     

HQ: Hannan-Quinn information criterion    
       

 
 
 



 
 

241 
 

12-5 ASYMMETRIC VECM ESTIMATION 

Vector Autoregression Estimates  
  

Sample (adjusted): 5 887  
Included observations: 883 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DDP PWP NWP 
    
    DDP(-1) 0.148675 0.045573 -0.039835 
 (0.03398) (0.03824) (0.03472) 
 [ 4.37518] [ 1.19162] [-1.14735] 
    

DDP(-2) 0.074312 0.038125 0.002387 
 (0.03224) (0.03629) (0.03294) 
 [ 2.30482] [ 1.05064] [ 0.07247] 
    

DDP(-3) 0.074476 0.015500 0.039494 
 (0.03020) (0.03399) (0.03086) 
 [ 2.46583] [ 0.45598] [ 1.27983] 
    

PWP(-1) 0.080401 0.108158 -0.172486 
 (0.03502) (0.03941) (0.03578) 
 [ 2.29592] [ 2.74422] [-4.82080] 
    

PWP(-2) 0.157254 0.178358 -0.154693 
 (0.03414) (0.03842) (0.03488) 
 [ 4.60632] [ 4.64206] [-4.43501] 
    

PWP(-3) 0.107743 0.175980 -0.035325 
 (0.03497) (0.03936) (0.03573) 
 [ 3.08070] [ 4.47087] [-0.98858] 
    

NWP(-1) 0.093521 -0.047231 0.226593 
 (0.03902) (0.04391) (0.03986) 
 [ 2.39688] [-1.07555] [ 5.68404] 
    

NWP(-2) 0.192063 -0.188720 0.218575 
 (0.03797) (0.04273) (0.03879) 
 [ 5.05838] [-4.41626] [ 5.63434] 
    

NWP(-3) 0.088779 -0.118360 0.123771 
 (0.03816) (0.04295) (0.03899) 
 [ 2.32618] [-2.75554] [ 3.17413] 
    

RD(-1) -0.092457 0.019752 0.008904 
 (0.01344) (0.01513) (0.01373) 
 [-6.87844] [ 1.30567] [ 0.64838] 
    
    R-squared 0.402744 0.045434 0.208656 

Adj. R-squared 0.396587 0.035593 0.200498 
Sum sq. resids 1989.696 2520.289 2077.019 
S.E. equation 1.509685 1.699096 1.542457 

F-statistic 65.40937 4.616847 25.57623 
Log likelihood -1611.603 -1715.969 -1630.566 

Akaike AIC 3.672939 3.909331 3.715891 
Schwarz SC 3.727110 3.963502 3.770062 

Mean dependent 0.093472 0.966448 -0.869322 
S.D. dependent 1.943474 1.730166 1.725056 
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Determinant resid covariance (dof adj.) 11.21229  
Determinant resid covariance 10.83565  

Log likelihood -4810.793  
Akaike information criterion 10.96442  

Schwarz criterion 11.12694  
    
     

12-6 COIRFS and GRAPH 

 

 

 
 
 
 
 
 
 
 
 

(2) irfname = diesel, impulse = nwp, and response = ddp
(1) irfname = diesel, impulse = pwp, and response = ddp
95% lower and upper bounds reported
                                                                                  
 8         1.15946     .695836     1.62309     1.08234     .637435     1.52724    
 7         1.14436     .709081     1.57965     1.03464     .628605     1.44068    
 6         1.12102     .717053     1.52498     .973704     .610196     1.33721    
 5         1.06177     .698745     1.42479     .89296      .57479      1.21113    
 4         .967353     .653195     1.28151     .78948      .519279     1.05968    
 3         .868404     .609823     1.12698     .660965     .450725     .871205    
 2         .576437     .390833     .76204      .426169     .26399      .588349    
 1         .184682     .074535     .294828     .125775     .023343     .228207    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (diesel pwp ddp coirf, ci) (diesel nwp ddp coirf, ci)

0
.5

1
1.

5

0 1 2 3 4 5 6 7 8
Weeks since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

1.k. The Uk diesel
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A13: THE UK GASOLINE 

A13-1 UNIT ROOT TEST  

 

Null Hypothesis: GP has a unit root  
Exogenous: Constant   

Lag Length: 2 (Automatic - based on SIC, maxlag=20) 
     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.499433 0.5337 

Test critical values: 1% level  -3.437524  
 5% level  -2.864596  
 10% level  -2.568451  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GP)   

Method: Least Squares   
   

Sample (adjusted): 4 887   
Included observations: 884 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     GP(-1) -0.002747 0.001832 -1.499433 0.1341 

D(GP(-1)) 0.388483 0.033183 11.70726 0.0000 
D(GP(-2)) 0.172365 0.033257 5.182850 0.0000 

C 0.202096 0.122862 1.644903 0.1003 
     
     R-squared 0.241964 Mean dependent var 0.086532 

Adjusted R-squared 0.239380 S.D. dependent var 1.882619 
S.E. of regression 1.641899 Akaike info criterion 3.834099 
Sum squared resid 2372.332 Schwarz criterion 3.855748 

Log likelihood -1690.672 Hannan-Quinn criter. 3.842376 
F-statistic 93.63159 Durbin-Watson stat 2.013719 

Prob(F-statistic) 0.000000    
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A13-2 COINTEGRATION TEST 

 
   

Sample (adjusted): 6 887   
Included observations: 882 after adjustments  

Trend assumption: No deterministic trend (restricted constant) 
Series: GP SP    

Lags interval (in first differences): 1 to 4  
     

Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.060595 57.90848 20.26184 0.0000 

At most 1 0.003142 2.775453 9.164546 0.6235 
     
     Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.060595 55.13302 15.89210 0.0000 

At most 1 0.003142 2.775453 9.164546 0.6235 
     
     Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I): 
     
     GP SP C   

-0.292614 0.336695 3.174932   
0.026069 0.004512 -2.194060   

     
          

Unrestricted Adjustment Coefficients (alpha):  
     
     D(GP) 0.298001 -0.039503   

D(SP) -0.175135 -0.138644   
     
          

1 Cointegrating Equation(s): Log likelihood -3579.317  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

GP SP C   
1.000000 -1.150644 -10.85023   

 (0.01743) (0.87099)   
     

Adjustment coefficients (standard error in parentheses)  
D(GP) -0.087199    

 (0.01356)    
D(SP) 0.051247    

 (0.02543)    
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A13-3 GRANGER CAUSALITY/BLOCK EXOGENEITY TESTS 

 
VAR Granger Causality/Block Exogeneity Wald Tests 

  
Sample: 1 887   

Included observations: 884  
    
        

Dependent variable: DGP  
    
    Excluded Chi-sq df Prob. 
    
    PSP 35.79876 2 0.0000 

NSP 53.89314 2 0.0000 
    
    All 64.34137 4 0.0000 
    
        

Dependent variable: PSP  
    
    Excluded Chi-sq df Prob. 
    
    DGP 6.053127 2 0.0485 

NSP 57.65532 2 0.0000 
    
    All 59.92264 4 0.0000 
    
        

Dependent variable: NSP  
    
    Excluded Chi-sq df Prob. 
    
    DGP 1.665000 2 0.4350 

PSP 62.98043 2 0.0000 
    
    All 67.79878 4 0.0000 
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A13-4 LAG LENGTH TESTS 

 
VAR Lag Exclusion Wald Tests   

   
Sample: 1 887    

Included observations: 882   
     
     Chi-squared test statistics for lag exclusion:  

Numbers in [ ] are p-values   
     
      DGP PSP NSP Joint 
     
     Lag 1 52.28595 4.738778 33.86395 102.2153 
 [ 2.60e-11] [ 0.191955] [ 2.12e-07] [ 0.000000] 
     

Lag 2 94.67238 43.13567 58.86129 227.8097 
 [ 0.000000] [ 2.30e-09] [ 1.03e-12] [ 0.000000] 
     

Lag 3 29.36901 11.17377 9.845545 45.83146 
 [ 1.87e-06] [ 0.010822] [ 0.019926] [ 6.47e-07] 
     

Lag 4 10.45596 24.03323 0.887012 42.04138 
 [ 0.015063] [ 2.46e-05] [ 0.828561] [ 3.23e-06] 
     
     df 3 3 3 9 
     
      

 
 

 
 

VAR Lag Order Selection Criteria     
Endogenous variables: DGP PSP NSP     

Exogenous variables: RG(-1)     
     

Sample: 1 887      
Included observations: 878     

       
       Lag LogL LR FPE AIC SC HQ 
       
       0 -5165.215 NA 26.02530 11.77270 11.78902 11.77894 

1 -4880.350 567.1352 13.88313 11.14431 11.20960 11.16928 
2 -4708.655 340.6519 9.583777 10.77370 10.88797* 10.81741 
3 -4684.102 48.54697 9.250200 10.73827 10.90152 10.80071 
4 -4663.189 41.20753 9.002579 10.71114 10.92335 10.79230 
5 -4644.093 37.49446 8.797968 10.68814 10.94933 10.78804 
6 -4624.758 37.83321 8.593334 10.66460 10.97476 10.78322 
7 -4606.657 35.29542 8.417107* 10.64387* 11.00301 10.78122* 
8 -4597.838 17.13632* 8.420696 10.64428 11.05239 10.80036 
       
       * indicates lag order selected by the criterion    

LR: sequential modified LR test statistic (each test at 5% level)   
FPE: Final prediction error     

AIC: Akaike information criterion     
SC: Schwarz information criterion     

HQ: Hannan-Quinn information criterion    
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A13-5 VECM  

Vector Autoregression Estimates  
  

Sample (adjusted): 5 887  
Included observations: 883 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DGP PSP NSP 
    
    DGP(-1) 0.123265 0.001247 -0.038197 
 (0.03306) (0.03785) (0.03651) 
 [ 3.72800] [ 0.03295] [-1.04621] 
    

DGP(-2) 0.076120 0.033116 0.032304 
 (0.03097) (0.03545) (0.03420) 
 [ 2.45767] [ 0.93415] [ 0.94457] 
    

DGP(-3) 0.052539 0.013896 -0.026024 
 (0.02854) (0.03267) (0.03152) 
 [ 1.84073] [ 0.42537] [-0.82574] 
    

PSP(-1) 0.098193 0.105441 -0.147991 
 (0.03430) (0.03926) (0.03788) 
 [ 2.86244] [ 2.68549] [-3.90701] 
    

PSP(-2) 0.151736 0.308444 -0.127705 
 (0.03244) (0.03714) (0.03583) 
 [ 4.67677] [ 8.30595] [-3.56468] 
    

PSP(-3) 0.136752 0.152042 -0.002148 
 (0.03379) (0.03868) (0.03732) 
 [ 4.04654] [ 3.93069] [-0.05756] 
    

NSP(-1) 0.138962 -0.016622 0.193190 
 (0.03545) (0.04057) (0.03914) 
 [ 3.92038] [-0.40970] [ 4.93596] 
    

NSP(-2) 0.236534 -0.186686 0.300289 
 (0.03387) (0.03877) (0.03740) 
 [ 6.98337] [-4.81547] [ 8.02905] 
    

NSP(-3) 0.040964 -0.031994 0.119592 
 (0.03538) (0.04049) (0.03906) 
 [ 1.15794] [-0.79014] [ 3.06154] 
    

RG(-1) -0.096188 0.022590 0.018557 
 (0.01302) (0.01491) (0.01438) 
 [-7.38502] [ 1.51534] [ 1.29033] 
    
    R-squared 0.468757 0.039398 0.160891 

Adj. R-squared 0.463280 0.029495 0.152240 
Sum sq. resids 1662.486 2177.945 2026.979 
S.E. equation 1.379977 1.579488 1.523763 

F-statistic 85.59057 3.978338 18.59881 
Log likelihood -1532.279 -1651.514 -1619.799 

Akaike AIC 3.493271 3.763339 3.691504 
Schwarz SC 3.547442 3.817510 3.745675 

Mean dependent 0.086974 0.911271 -0.823794 
S.D. dependent 1.883640 1.603309 1.654936 
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Determinant resid covariance (dof adj.) 8.807638  
Determinant resid covariance 8.511774  

Log likelihood -4704.219  
Akaike information criterion 10.72303  

Schwarz criterion 10.88555  
    
    

 

A13-6 COIRFS TABLES WITH 95% CI AND GRAPH 

 

 

 

 
 

 

 

(2) irfname = gas, impulse = nsp, and response = dgp
(1) irfname = gas, impulse = psp, and response = dgp
95% lower and upper bounds reported
                                                                                  
 8         1.36658     .846116     1.88704     1.33749     .858285     1.81669    
 7         1.33697     .854682     1.81926     1.28515     .849444     1.72086    
 6         1.2899      .851997     1.7278      1.2156      .828354     1.60284    
 5         1.20653     .822857     1.59019     1.11587     .783244     1.44851    
 4         1.06426     .744188     1.38433     .982789     .707143     1.25843    
 3         .911256     .656911     1.1656      .799838     .588803     1.01087    
 2         .599418     .421963     .776872     .581579     .425175     .737983    
 1         .221415     .117825     .325004     .193417     .096847     .289988    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (gas psp dgp coirf, ci) (gas nsp dgp coirf, ci)

0
.5

1
1.

5
2

0 1 2 3 4 5 6 7 8
Weeks since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

1.l. The UK gasoline
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A14: AUSTRIA DIESEL 

A14-1 UNIT ROOT TESTS ON DP 

Null Hypothesis: DP has a unit root  
Exogenous: Constant   

Lag Length: 2 (Automatic - based on SIC, maxlag=21) 
     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.062524 0.7322 

Test critical values: 1% level  -3.436984  
 5% level  -2.864357  
 10% level  -2.568323  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(DP)   

Method: Least Squares   
Date: 05/02/13   Time: 15:38   

Sample (adjusted): 4 957   
Included observations: 954 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     DP(-1) -0.002273 0.002139 -1.062524 0.2883 

D(DP(-1)) 0.132673 0.032333 4.103300 0.0000 
D(DP(-2)) 0.090001 0.032429 2.775309 0.0056 

C 0.260862 0.197693 1.319535 0.1873 
     
     R-squared 0.029575 Mean dependent var 0.091973 

Adjusted R-squared 0.026511 S.D. dependent var 2.675029 
S.E. of regression 2.639332 Akaike info criterion 4.783113 
Sum squared resid 6617.772 Schwarz criterion 4.803493 

Log likelihood -2277.545 Hannan-Quinn criter. 4.790877 
F-statistic 9.650971 Durbin-Watson stat 2.010488 

Prob(F-statistic) 0.000003    
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A14-2 COINTEGRATION TEST 

   
Sample (adjusted): 6 957   

Included observations: 952 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 

Series: DP WP    
Lags interval (in first differences): 1 to 4  

     
Unrestricted Cointegration Rank Test (Trace)  

     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.028691 29.97213 20.26184 0.0017 

At most 1 0.002370 2.259057 9.164546 0.7258 
     
     Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.028691 27.71308 15.89210 0.0005 

At most 1 0.002370 2.259057 9.164546 0.7258 
     
     Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I): 
     
     DP WP C   

-0.221744 0.219864 5.218280   
0.011257 0.009321 -2.071321   

     
          

Unrestricted Adjustment Coefficients (alpha):  
     
     D(DP) 0.342386 -0.039221   

D(WP) -0.022761 -0.145448   
     
          

1 Cointegrating Equation(s): Log likelihood -4416.640  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

DP WP C   
1.000000 -0.991520 -23.53290   

 (0.02132) (1.54186)   
     

Adjustment coefficients (standard error in parentheses)  
D(DP) -0.075922    

 (0.01552)    
D(WP) 0.005047    

 (0.02159)    
     
     



 
 

251 
 

 

A14-3 GRANGER CAUSALITY/BLOCK EXOGENEITY TESTS 

VAR Granger Causality/Block Exogeneity Wald Tests 
  

Sample: 1 957   
Included observations: 953  

    
    
 

 
   

Dependent variable: DDP  
    
    Excluded Chi-sq df Prob. 
    
    DWP 237.1085 3 0.0000 
    
    All 237.1085 3 0.0000 
    
        

Dependent variable: DWP  
    
    Excluded Chi-sq df Prob. 
    
    DDP 2.460947 3 0.4824 
    
    All 2.460947 3 0.4824 
    
        

 

A14-4 LAG LENGTH TESTS 

 
VAR Lag Order Selection Criteria     

Endogenous variables: DDP PWP NWP     
Exogenous variables:  RD(-1)     

     
Sample: 1 957      

Included observations: 948     
       
       Lag LogL LR FPE AIC SC HQ 
       
       0 -6269.169 NA 112.0329 13.23242 13.24779 13.23828 

1 -5886.481 762.1453 50.92848 12.44405 12.50550 12.46747 
2 -5771.157 228.9461 40.69517 12.21974 12.32727 12.26072 
3 -5711.760 117.5405 36.59050 12.11342 12.26704 12.17195 
4 -5680.401 61.85779 34.90468 12.06625 12.26595 12.14234 
5 -5645.622 68.38377 33.05720 12.01186 12.25765* 12.10552 
6 -5622.394 45.52514 32.07987 11.98184 12.27372 12.09306 
7 -5602.793 38.29228 31.37065 11.95948 12.29744 12.08826 
8 -5574.496 55.10177* 30.11951* 11.91877* 12.30281 12.06511* 
       
       * indicates lag order selected by the criterion    

LR: sequential modified LR test statistic (each test at 5% level)   
FPE: Final prediction error     

AIC: Akaike information criterion     
SC: Schwarz information criterion     

HQ: Hannan-Quinn information criterion    
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A14-5 ASYMMETRIC VECM ESTIMATION 

Vector Autoregression Estimates  
  

Sample (adjusted): 7 957  
Included observations: 951 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DDP PWP NWP 
    
    DDP(-1) -0.200932 -0.008359 -0.021645 
 (0.03575) (0.02996) (0.02844) 
 [-5.61982] [-0.27900] [-0.76105] 
    

DDP(-2) -0.110878 0.003609 -0.003872 
 (0.03606) (0.03021) (0.02868) 
 [-3.07508] [ 0.11944] [-0.13501] 
    

DDP(-3) -0.014768 0.052838 -0.009576 
 (0.03478) (0.02914) (0.02767) 
 [-0.42459] [ 1.81294] [-0.34612] 
    

DDP(-4) -0.019015 0.007771 0.031838 
 (0.03280) (0.02749) (0.02609) 
 [-0.57970] [ 0.28274] [ 1.22022] 
    

DDP(-5) -0.031298 0.003703 4.98E-05 
 (0.02819) (0.02362) (0.02242) 
 [-1.11034] [ 0.15675] [ 0.00222] 
    

PWP(-1) 0.436989 0.042633 -0.120213 
 (0.04565) (0.03825) (0.03631) 
 [ 9.57330] [ 1.11457] [-3.31072] 
    

PWP(-2) 0.250093 0.121909 -0.055361 
 (0.04867) (0.04078) (0.03872) 
 [ 5.13851] [ 2.98914] [-1.42996] 
    

PWP(-3) 0.252174 0.138832 0.009307 
 (0.04933) (0.04134) (0.03924) 
 [ 5.11164] [ 3.35834] [ 0.23717] 
    

PWP(-4) 0.050100 0.101464 -0.082244 
 (0.04895) (0.04101) (0.03893) 
 [ 1.02358] [ 2.47385] [-2.11237] 
    

PWP(-5) 0.096622 0.087301 -0.145232 
 (0.04757) (0.03986) (0.03784) 
 [ 2.03128] [ 2.19021] [-3.83826] 
    

NWP(-1) 0.392448 -0.047468 0.173850 
 (0.04850) (0.04064) (0.03858) 
 [ 8.09146] [-1.16795] [ 4.50609] 
    

NWP(-2) 0.320190 -0.126323 0.063293 
 (0.04991) (0.04183) (0.03971) 
 [ 6.41475] [-3.02015] [ 1.59407] 
    

NWP(-3) 0.198399 -0.058857 0.065122 
 (0.05114) (0.04286) (0.04068) 
 [ 3.87933] [-1.37338] [ 1.60075] 
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NWP(-4) 0.107555 -0.094017 0.082126 

 (0.05080) (0.04257) (0.04041) 
 [ 2.11720] [-2.20857] [ 2.03232] 
    

NWP(-5) 0.045319 -0.063651 0.177645 
 (0.04916) (0.04119) (0.03910) 
 [ 0.92186] [-1.54514] [ 4.54279] 
    

RD(-1) -0.070252 0.003561 0.000913 
 (0.01576) (0.01320) (0.01253) 
 [-4.45839] [ 0.26972] [ 0.07284] 
    
    R-squared 0.361328 0.048095 0.173867 

Adj. R-squared 0.351082 0.032824 0.160613 
Sum sq. resids 4354.851 3057.901 2755.579 
S.E. equation 2.158146 1.808447 1.716725 

F-statistic 35.26501 3.149403 13.11857 
Log likelihood -2072.899 -1904.780 -1855.280 

Akaike AIC 4.393058 4.039496 3.935395 
Schwarz SC 4.474782 4.121220 4.017119 

Mean dependent 0.092281 1.089946 -0.989760 
S.D. dependent 2.679081 1.838879 1.873784 

    
    Determinant resid covariance (dof adj.) 31.18658  

Determinant resid covariance 29.63883  
Log likelihood -5659.742  

Akaike information criterion 12.00366  
Schwarz criterion 12.24884  
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A14-6 COIRFS TABLE AND GRAPH 

 
 

 

 

 

 

 

 

(2) irfname = aut_d, impulse = nwp, and response = ddp
(1) irfname = aut_d, impulse = pwp, and response = ddp
95% lower and upper bounds reported
                                                                                  
 8         2.1643      1.63416     2.69444     1.39748     .975201     1.81976    
 7         2.1252      1.62487     2.62553     1.36009     .968845     1.75133    
 6         2.10779     1.63812     2.57746     1.30686     .946568     1.66716    
 5         2.1276      1.68774     2.56746     1.2658      .931337     1.60025    
 4         1.92159     1.53397     2.3092      1.24962     .933196     1.56604    
 3         1.80515     1.48427     2.12604     1.16062     .892246     1.42899    
 2         1.43685     1.19        1.6837      .99284      .782391     1.20329    
 1         1.01662     .854919     1.17832     .571932     .432181     .711682    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (aut_d pwp ddp coirf, ci) (aut_d nwp ddp coirf, ci)

0
1

2
3

0 1 2 3 4 5 6 7 8
Weeks since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

1.a Austria Diesel
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A15. AUSTRIA GASOLINE 

A15-1 UNIT ROOT TESTS ON GP 

Null Hypothesis: GP has a unit root  
Exogenous: Constant   

Lag Length: 2 (Automatic - based on SIC, maxlag=21) 
     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.328102 0.6182 

Test critical values: 1% level  -3.436984  
 5% level  -2.864357  
 10% level  -2.568323  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GP)   

Method: Least Squares   
   

Sample (adjusted): 4 957   
Included observations: 954 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     GP(-1) -0.003317 0.002498 -1.328102 0.1845 

D(GP(-1)) 0.137099 0.032233 4.253309 0.0000 
D(GP(-2)) 0.117507 0.032334 3.634177 0.0003 

C 0.321184 0.215430 1.490898 0.1363 
     
     R-squared 0.038120 Mean dependent var 0.076851 

Adjusted R-squared 0.035083 S.D. dependent var 2.593161 
S.E. of regression 2.547267 Akaike info criterion 4.712103 
Sum squared resid 6164.142 Schwarz criterion 4.732483 

Log likelihood -2243.673 Hannan-Quinn criter. 4.719867 
F-statistic 12.54983 Durbin-Watson stat 2.016961 

Prob(F-statistic) 0.000000    
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A15-2 COINTEGRATION TEST 

 
  
Sample (adjusted): 6 957  
Included observations: 952 after adjustments 
Trend assumption: No deterministic trend (restricted constant) 
Series: GP SP    
Lags interval (in first differences): 1 to 4 

    
Unrestricted Cointegration Rank Test (Trace) 
    
    Hypothesized  Trace 0.05 

No. of CE(s) Eigenvalue Statistic Critical Value 
    
    None *  0.019879  22.01598  20.26184 

At most 1  0.003042  2.900845  9.164546 
    
     Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values 

    
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
    
    Hypothesized  Max-Eigen 0.05 

No. of CE(s) Eigenvalue Statistic Critical Value 
    
    None *  0.019879  19.11513  15.89210 

At most 1  0.003042  2.900845  9.164546 
    
     Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values 

    
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  
    
    GP SP C  

-0.181513  0.177461  5.023329  
 0.018560  0.008505 -2.379385  

    
        
 Unrestricted Adjustment Coefficients (alpha):  
    
    D(GP)  0.273224 -0.028667  

D(SP) -0.026268 -0.160736  
    
        
1 Cointegrating Equation(s):  Log likelihood -4356.336 
    
    Normalized cointegrating coefficients (standard error in parentheses) 

GP SP C  
 1.000000 -0.977676 -27.67480  

  (0.03745)  (2.34935)  
    

Adjustment coefficients (standard error in parentheses) 
D(GP) -0.049594   

  (0.01175)   
D(SP)  0.004768   

  (0.01726)   
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A15-3 CAUSALITY 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Pairwise Granger Causality Tests 
 

Sample: 1 957  
Lags: 2   

    
    Null Hypothesis: Obs F-Statistic Prob. 
    
    SP does not Granger Cause GP 955 219.847 3.E-79 

GP does not Granger Cause SP 3.47648 0.0313 
    
     

 

A15-4 LAG LENGTH TESTS 

 
VAR Lag Order Selection Criteria     

Endogenous variables: DGP PSP NSP     
Exogenous variables: RG(-1)     

     
Sample: 1 957      

Included observations: 948     
       
       Lag LogL LR FPE AIC SC HQ 
       
       0 -6230.187 NA 103.1880 13.15018 13.16555 13.15604 

1 -5892.893 671.7415 51.62206 12.45758 12.51903 12.48099 
2 -5746.456 290.7112 38.62882 12.16763 12.27516 12.20860 
3 -5700.183 91.57085 35.70761 12.08899 12.24261* 12.14753 
4 -5674.060 51.52968 34.44081 12.05287 12.25257 12.12897 
5 -5648.876 49.51621 33.28494 12.01873 12.26452 12.11239 
6 -5619.920 56.75207 31.91287 11.97662 12.26850 12.08784 
7 -5600.396 38.14239 31.21239 11.95442 12.29238 12.08320* 
8 -5591.130 18.04261* 31.19527* 11.95386* 12.33791 12.10020 
       
       * indicates lag order selected by the criterion    

LR: sequential modified LR test statistic (each test at 5% level)   
FPE: Final prediction error     

AIC: Akaike information criterion     
SC: Schwarz information criterion     

HQ: Hannan-Quinn information criterion    
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A15-5 THE VECM 

Vector Autoregression Estimates  
  

Sample (adjusted): 5 957  
Included observations: 953 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DGP PSP NSP 
    
    DGP(-1) -0.163402 0.007124 0.042102 
 (0.03234) (0.02806) (0.02957) 
 [-5.05313] [ 0.25388] [ 1.42382] 
    

DGP(-2) -0.071788 0.014284 0.027994 
 (0.03093) (0.02684) (0.02828) 
 [-2.32095] [ 0.53220] [ 0.98976] 
    

DGP(-3) 0.029226 0.018566 -0.016330 
 (0.02579) (0.02238) (0.02358) 
 [ 1.13326] [ 0.82963] [-0.69250] 
    

PSP(-1) 0.415104 0.095951 -0.118660 
 (0.04139) (0.03592) (0.03785) 
 [ 10.0290] [ 2.67147] [-3.13516] 
    

PSP(-2) 0.265904 0.266290 -0.189863 
 (0.04187) (0.03633) (0.03829) 
 [ 6.35060] [ 7.32899] [-4.95890] 
    

PSP(-3) 0.227216 0.142626 -0.103601 
 (0.04311) (0.03741) (0.03942) 
 [ 5.27008] [ 3.81221] [-2.62783] 
    

NSP(-1) 0.459624 -0.095558 0.171118 
 (0.03898) (0.03382) (0.03564) 
 [ 11.7917] [-2.82515] [ 4.80091] 
    

NSP(-2) 0.257930 -0.164179 0.177115 
 (0.04034) (0.03500) (0.03688) 
 [ 6.39463] [-4.69064] [ 4.80202] 
    

NSP(-3) 0.165418 -0.042935 0.092591 
 (0.04147) (0.03599) (0.03792) 
 [ 3.98897] [-1.19313] [ 2.44176] 
    

RG(-1) -0.052863 -0.003949 0.004191 
 (0.01172) (0.01017) (0.01072) 
 [-4.50860] [-0.38813] [ 0.39085] 
    
    R-squared 0.410343 0.015157 0.090128 

Adj. R-squared 0.404715 0.005758 0.081444 
Sum sq. resids 3778.509 2845.264 3159.442 
S.E. equation 2.001725 1.737023 1.830414 

F-statistic 72.91497 1.612584 10.37880 
Log likelihood -2008.613 -1873.442 -1923.351 

Akaike AIC 4.236333 3.952660 4.057399 
Schwarz SC 4.287326 4.003653 4.108392 

Mean dependent 0.076143 1.038539 -0.947135 
S.D. dependent 2.594430 1.742045 1.909838 
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Determinant resid covariance (dof adj.) 34.11346  
Determinant resid covariance 33.05081  

Log likelihood -5723.564  
Akaike information criterion 12.07464  

Schwarz criterion 12.22761  
    
     

 

A15-6 COIRFS AND GRAPH 

 

 

 

(2) irfname = aut_g, impulse = nsp, and response = dgp
(1) irfname = aut_g, impulse = psp, and response = dgp
95% lower and upper bounds reported
                                                                                  
 8         2.03404     1.53591     2.53218     1.59093     1.13202     2.04984    
 7         2.02234     1.55493     2.48975     1.5813      1.15808     2.00453    
 6         2.01233     1.57921     2.44546     1.56655     1.18335     1.94974    
 5         1.95593     1.56468     2.34717     1.52075     1.18134     1.86015    
 4         1.87582     1.53171     2.21994     1.46986     1.1775      1.76223    
 3         1.83939     1.54902     2.12976     1.39874     1.15974     1.63775    
 2         1.42926     1.20442     1.65409     1.15125     .956802     1.34571    
 1         .983576     .833096     1.13406     .776517     .643478     .909556    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (aut_g psp dgp coirf, ci) (aut_g nsp dgp coirf, ci)

0
.5

1
1.

5
2

2.
5

0 1 2 3 4 5 6 7 8
Weeks since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

1.b Austria gasoline
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A16: BELGIUM DIESEL 

A16-1 UNIT ROOT TESTS 

 
Null Hypothesis: DP has a unit root  

Exogenous: Constant   
Lag Length: 0 (Automatic - based on SIC, maxlag=21) 

     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.184202 0.6832 

Test critical values: 1% level  -3.436969  
 5% level  -2.864351  
 10% level  -2.568319  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(DP)   

Method: Least Squares   
Date: 05/02/13   Time: 16:08   

Sample (adjusted): 2 957   
Included observations: 956 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     DP(-1) -0.003358 0.002836 -1.184202 0.2366 

C 0.388259 0.269120 1.442699 0.1494 
     
     R-squared 0.001468 Mean dependent var 0.106959 

Adjusted R-squared 0.000421 S.D. dependent var 3.911658 
S.E. of regression 3.910834 Akaike info criterion 5.567468 
Sum squared resid 14591.07 Schwarz criterion 5.577642 

Log likelihood -2659.250 Hannan-Quinn criter. 5.571343 
F-statistic 1.402335 Durbin-Watson stat 2.129504 

Prob(F-statistic) 0.236628    
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A16-2 COINTEGRATION TEST 

Sample (adjusted): 6 957   
Included observations: 952 after adjustments  

Trend assumption: No deterministic trend (restricted constant) 
Series: DP WP    

Lags interval (in first differences): 1 to 4  
     

Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.056589 57.64719 20.26184 0.0000 

At most 1 0.002297 2.189594 9.164546 0.7397 
     
     Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.056589 55.45760 15.89210 0.0000 

At most 1 0.002297 2.189594 9.164546 0.7397 
     
     Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I): 
     
     DP WP C   

-0.278274 0.307839 4.772040   
0.010403 0.008802 -1.982711   

     
          

Unrestricted Adjustment Coefficients (alpha):  
     
     D(DP) 0.719737 -0.059264   

D(WP) -0.127024 -0.140812   
     
          

1 Cointegrating Equation(s): Log likelihood -4822.035  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

DP WP C   
1.000000 -1.106243 -17.14869   

 (0.01191) (0.86191)   
     

Adjustment coefficients (standard error in parentheses)  
D(DP) -0.200284    

 (0.02889)    
D(WP) 0.035347    

 (0.02703)    
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A16-3 CAUSALITY 

 
VAR Granger Causality/Block Exogeneity Wald Tests 

  
Sample: 1 957   

Included observations: 952  
    
        

Dependent variable: DDP  
    
    Excluded Chi-sq df Prob. 
    
    DWP 96.17939 4 0.0000 
    
    All 96.17939 4 0.0000 
    
        

Dependent variable: DWP  
    
    Excluded Chi-sq df Prob. 
    
    DDP 6.624620 4 0.1571 
    
    All 6.624620 4 0.1571 
    
        

 

16-4 LAG LENGTH  

 
VAR Lag Order Selection Criteria     

Endogenous variables: DDP PWP NWP     
Exogenous variables: RD(-1)     

     
Sample: 1 957      

Included observations: 826     
       
       Lag LogL LR FPE AIC SC HQ 
       
       0 -5548.507 NA 138.1410 13.44191 13.45904 13.44848 

1 -5226.042 641.8080 64.66877 12.68291 12.75143 12.70919 
2 -5123.661 203.0255 51.58221 12.45681 12.57672 12.50280 
3 -5083.922 78.51625 47.88250 12.38238 12.55368 12.44809 
4 -5057.452 52.10712 45.89947 12.34008 12.56277 12.42550 
5 -5023.109 67.35533 43.16791 12.27871 12.55280* 12.38385 
6 -5013.617 18.54656 43.11698 12.27752 12.60300 12.40237 
7 -4995.004 36.23516 42.12551 12.25425 12.63112 12.39880 
8 -4970.005 48.48467* 40.52556* 12.21551* 12.64377 12.37978* 
       
       * indicates lag order selected by the criterion    

LR: sequential modified LR test statistic (each test at 5% level)   
FPE: Final prediction error     

AIC: Akaike information criterion     
SC: Schwarz information criterion     

HQ: Hannan-Quinn information criterion    
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A16-5 VECM 

 
Vector Autoregression Estimates  

  
Sample (adjusted): 7 957  

Included observations: 951 after adjustments 
Standard errors in ( ) & t-statistics in [ ] 

    
     DDP PWP NWP 
    
    DDP(-1) -0.253700 0.001637 -0.049996 
 (0.03944) (0.02217) (0.02109) 
 [-6.43179] [ 0.07384] [-2.37072] 
    

DDP(-2) -0.164056 0.027901 -0.045175 
 (0.03859) (0.02169) (0.02063) 
 [-4.25111] [ 1.28616] [-2.18949] 
    

DDP(-3) -0.126421 0.044546 -0.028485 
 (0.03623) (0.02036) (0.01937) 
 [-3.48964] [ 2.18746] [-1.47066] 
    

DDP(-4) -0.055761 0.056059 0.001907 
 (0.03325) (0.01869) (0.01778) 
 [-1.67683] [ 2.99893] [ 0.10724] 
    

DDP(-5) -0.022952 0.021628 0.011708 
 (0.02877) (0.01617) (0.01538) 
 [-0.79765] [ 1.33717] [ 0.76105] 
    

PWP(-1) 0.395087 0.033768 -0.099664 
 (0.07144) (0.04016) (0.03820) 
 [ 5.52999] [ 0.84082] [-2.60917] 
    

PWP(-2) 0.448484 0.112111 -0.032498 
 (0.07169) (0.04030) (0.03833) 
 [ 6.25629] [ 2.78218] [-0.84793] 
    

PWP(-3) 0.163041 0.126545 0.046592 
 (0.07234) (0.04066) (0.03867) 
 [ 2.25391] [ 3.11209] [ 1.20472] 
    

PWP(-4) 0.178300 0.096271 -0.054969 
 (0.07012) (0.03941) (0.03749) 
 [ 2.54294] [ 2.44256] [-1.46635] 
    

PWP(-5) 0.064691 0.057697 -0.120205 
 (0.06883) (0.03869) (0.03680) 
 [ 0.93986] [ 1.49122] [-3.26647] 
    

NWP(-1) 0.361278 -0.032639 0.196068 
 (0.07347) (0.04130) (0.03928) 
 [ 4.91704] [-0.79026] [ 4.99120] 
    

NWP(-2) 0.190525 -0.130728 0.101864 
 (0.07439) (0.04182) (0.03977) 
 [ 2.56125] [-3.12634] [ 2.56126] 
    

NWP(-3) 0.435438 -0.067395 0.094891 
 (0.07520) (0.04227) (0.04021) 
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 [ 5.79030] [-1.59429] [ 2.36012] 
    

NWP(-4) 0.207731 -0.124720 0.116682 
 (0.07530) (0.04233) (0.04026) 
 [ 2.75861] [-2.94640] [ 2.89819] 
    

NWP(-5) -0.012830 -0.095522 0.193248 
 (0.07361) (0.04138) (0.03936) 
 [-0.17430] [-2.30851] [ 4.91032] 
    

RD(-1) -0.195697 0.011566 0.021593 
 (0.02991) (0.01681) (0.01599) 
 [-6.54268] [ 0.68792] [ 1.35026] 
    
    R-squared 0.345391 0.059132 0.180287 

Adj. R-squared 0.334889 0.044037 0.167137 
Sum sq. resids 9565.180 3022.447 2734.163 
S.E. equation 3.198459 1.797933 1.710040 

F-statistic 32.88884 3.917517 13.70957 
Log likelihood -2447.041 -1899.235 -1851.570 

Akaike AIC 5.179897 4.027834 3.927592 
Schwarz SC 5.261621 4.109559 4.009317 

Mean dependent 0.107010 1.089946 -0.989760 
S.D. dependent 3.921874 1.838879 1.873784 

    
    Determinant resid covariance (dof adj.) 72.05740  

Determinant resid covariance 68.48128  
Log likelihood -6057.961  

Akaike information criterion 12.84114  
Schwarz criterion 13.08631  
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A16-6 COIRFS AND GRAPH 

 

 

 

 

 

 

 

 

(2) irfname = bel_d, impulse = nwp, and response = ddp
(1) irfname = bel_d, impulse = pwp, and response = ddp
95% lower and upper bounds reported
                                                                                  
 8         2.29956     1.67569     2.92343     1.41308     .883333     1.94284    
 7         2.26598     1.67532     2.85663     1.29799     .809132     1.78684    
 6         2.20684     1.64732     2.76637     1.2555      .803433     1.70757    
 5         2.20905     1.66004     2.75805     1.2903      .86726      1.71333    
 4         2.23312     1.73975     2.72648     1.43062     1.02726     1.83398    
 3         1.94683     1.52162     2.37205     1.28393     .926003     1.64186    
 2         1.64198     1.29038     1.99358     .766212     .474783     1.05764    
 1         .955406     .701704     1.20911     .534303     .321765     .746841    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (bel_d pwp ddp coirf, ci) (bel_d nwp ddp coirf, ci)

0
1

2
3

0 1 2 3 4 5 6 7 8
Weeks since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

1.c Belgium Diesel
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A17: BELGIUM GASOLINE 

A17-1 UNIT ROOT TEST 

 

Null Hypothesis: GP has a unit root  
Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=21) 
     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.366319 0.6000 

Test critical values: 1% level  -3.436969  
 5% level  -2.864351  
 10% level  -2.568319  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GP)   

Method: Least Squares   
   

Sample (adjusted): 2 957   
Included observations: 956 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     GP(-1) -0.004567 0.003342 -1.366319 0.1722 

C 0.463469 0.296463 1.563328 0.1183 
     
     R-squared 0.001953 Mean dependent var 0.101257 

Adjusted R-squared 0.000907 S.D. dependent var 4.105157 
S.E. of regression 4.103295 Akaike info criterion 5.663548 
Sum squared resid 16062.53 Schwarz criterion 5.673721 

Log likelihood -2705.176 Hannan-Quinn criter. 5.667423 
F-statistic 1.866828 Durbin-Watson stat 2.137911 

Prob(F-statistic) 0.172161    
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A17-2 COINTEGRATION TEST 

 
   

Sample (adjusted): 6 957   
Included observations: 952 after adjustments  

Trend assumption: No deterministic trend (restricted constant) 
Series: GP SP    

Lags interval (in first differences): 1 to 4  
     

Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.044476 45.95751 20.26184 0.0000 

At most 1 0.002775 2.645745 9.164546 0.6487 
     
     Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.044476 43.31177 15.89210 0.0000 

At most 1 0.002775 2.645745 9.164546 0.6487 
     
     Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I): 
     
     GP SP C   

-0.250866 0.294934 4.277034   
0.022546 -0.000272 -2.250624   

     
          

Unrestricted Adjustment Coefficients (alpha):  
     
     D(GP) 0.647723 -0.060610   

D(SP) -0.130433 -0.150399   
     
          

1 Cointegrating Equation(s): Log likelihood -4821.219  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

GP SP C   
1.000000 -1.175661 -17.04906   

 (0.01787) (1.12129)   
     

Adjustment coefficients (standard error in parentheses)  
D(GP) -0.162492    

 (0.02627)    
D(SP) 0.032721    

 (0.02384)    
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A17-3 CAUSALITY 

 
VAR Granger Causality/Block Exogeneity Wald Tests 

  
Sample: 1 957   

Included observations: 955  
    
        

Dependent variable: DGP  
    
    Excluded Chi-sq df Prob. 
    
    DSP 180.9532 1 0.0000 
    
    All 180.9532 1 0.0000 
    
        

Dependent variable: DSP  
    
    Excluded Chi-sq df Prob. 
    
    DGP 3.770984 1 0.0521 
    
    All 3.770984 1 0.0521 
    
     

 
 

A17-4 LAG LENGTH 

 
VAR Lag Order Selection Criteria     

Endogenous variables: DGP PSP NSP     
Exogenous variables:  RG(-1)     

     
Sample: 1 957      

Included observations: 948     
       
       Lag LogL LR FPE AIC SC HQ 
       
       0 -6593.174 NA 221.9267 13.91598 13.93134 13.92183 

1 -6344.916 494.4200 133.9658 13.41122 13.47266 13.43463 
2 -6207.664 272.4772 102.2081 13.14064 13.24817 13.18162 
3 -6161.206 91.93596 94.44215 13.06162 13.21524 13.12015 
4 -6128.741 64.04005 89.88091 13.01211 13.21182* 13.08821 
5 -6108.062 40.66048 87.69372 12.98747 13.23326 13.08113 
6 -6085.057 45.08818 85.14111 12.95793 13.24980 13.06915 
7 -6058.400 52.07649 82.02861 12.92067 13.25864 13.04946* 
8 -6046.376 23.41310* 81.50798* 12.91430* 13.29834 13.06064 
       
       * indicates lag order selected by the criterion    

LR: sequential modified LR test statistic (each test at 5% level)   
FPE: Final prediction error     

AIC: Akaike information criterion     
SC: Schwarz information criterion     

HQ: Hannan-Quinn information criterion    
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A17-5 VECM 

Vector Autoregression Estimates  
  

Sample (adjusted): 6 957  
Included observations: 952 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DGP PSP NSP 
    
    DGP(-1) -0.319082 0.020082 -0.023999 
 (0.03668) (0.01944) (0.02086) 
 [-8.69925] [ 1.03293] [-1.15060] 
    

DGP(-2) -0.249566 0.012800 -0.001921 
 (0.03511) (0.01861) (0.01997) 
 [-7.10799] [ 0.68782] [-0.09623] 
    

DGP(-3) -0.168996 0.017782 -0.014413 
 (0.03147) (0.01668) (0.01790) 
 [-5.36995] [ 1.06600] [-0.80537] 
    

DGP(-4) -0.054590 0.015386 0.008304 
 (0.02744) (0.01454) (0.01560) 
 [-1.98977] [ 1.05803] [ 0.53229] 
    

PSP(-1) 0.480935 0.085961 -0.102485 
 (0.07059) (0.03742) (0.04014) 
 [ 6.81313] [ 2.29749] [-2.55308] 
    

PSP(-2) 0.380065 0.199126 -0.128234 
 (0.07212) (0.03823) (0.04101) 
 [ 5.26968] [ 5.20890] [-3.12664] 
    

PSP(-3) 0.465746 0.107430 -0.070356 
 (0.07241) (0.03838) (0.04118) 
 [ 6.43217] [ 2.79914] [-1.70865] 
    

PSP(-4) 0.168083 0.149596 -0.026256 
 (0.07072) (0.03748) (0.04021) 
 [ 2.37686] [ 3.99107] [-0.65290] 
    

NSP(-1) 0.347257 -0.053206 0.185471 
 (0.06810) (0.03609) (0.03872) 
 [ 5.09933] [-1.47406] [ 4.78943] 
    

NSP(-2) 0.571508 -0.104610 0.193599 
 (0.06882) (0.03648) (0.03913) 
 [ 8.30482] [-2.86794] [ 4.94718] 
    

NSP(-3) 0.284627 -0.014270 0.117650 
 (0.06968) (0.03693) (0.03962) 
 [ 4.08501] [-0.38639] [ 2.96932] 
    

NSP(-4) 0.269732 -0.146285 0.044284 
 (0.06803) (0.03606) (0.03869) 
 [ 3.96465] [-4.05661] [ 1.14462] 
    

RG(-1) -0.162050 0.017070 0.009607 
 (0.02631) (0.01395) (0.01496) 
 [-6.15877] [ 1.22396] [ 0.64204] 
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    R-squared 0.393649 0.050700 0.091198 
Adj. R-squared 0.385900 0.038568 0.079584 
Sum sq. resids 9758.416 2741.555 3155.626 
S.E. equation 3.223717 1.708700 1.833201 

F-statistic 50.80067 4.179131 7.852352 
Log likelihood -2458.634 -1854.302 -1921.257 

Akaike AIC 5.192508 3.922904 4.063565 
Schwarz SC 5.258854 3.989250 4.129911 

Mean dependent 0.100762 1.039630 -0.947483 
S.D. dependent 4.113745 1.742635 1.910812 

    
    Determinant resid covariance (dof adj.) 85.22867  

Determinant resid covariance 81.78462  
Log likelihood -6148.835  

Akaike information criterion 12.99965  
Schwarz criterion 13.19869  
    
     

 

A17-6 COIRFS AND GRAPH 

 (2) irfname = bel_g, impulse = nsp, and response = dgp
(1) irfname = bel_g, impulse = psp, and response = dgp
95% lower and upper bounds reported
                                                                                  
 8         2.45468     1.83284     3.07652     1.92131     1.33949     2.50314    
 7         2.41089     1.82072     3.00107     1.87806     1.33094     2.42517    
 6         2.30816     1.755       2.86133     1.8711      1.36219     2.38001    
 5         2.27322     1.76338     2.78307     1.83257     1.36935     2.29579    
 4         2.40626     1.93475     2.87777     1.99246     1.57528     2.40965    
 3         2.3435      1.93654     2.75046     1.66176     1.30191     2.0216     
 2         1.75052     1.41705     2.084       1.41364     1.11167     1.71561    
 1         1.03668     .792846     1.28051     .579722     .356901     .802543    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (bel_g psp dgp coirf, ci) (bel_g nsp dgp coirf, ci)
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A18: DENMARK DIESEL 

A18-1 UNIT ROOT TEST 

 
Null Hypothesis: DP has a unit root  
Exogenous: Constant   
Lag Length: 0 (Automatic - based on SIC, maxlag=21) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -0.891138  0.7913 

Test critical values: 1% level  -3.436969  
 5% level  -2.864351  
 10% level  -2.568319  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(DP)   
Method: Least Squares   
   
Sample (adjusted): 2 957   
Included observations: 956 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     DP(-1) -0.002090 0.002346 -0.891138 0.3731 

C 0.285783 0.222987 1.281614 0.2003 
     
     R-squared 0.000832     Mean dependent var 0.111915 

Adjusted R-squared -0.000216     S.D. dependent var 3.337757 
S.E. of regression 3.338117     Akaike info criterion 5.250781 
Sum squared resid 10630.45     Schwarz criterion 5.260954 
Log likelihood -2507.873     Hannan-Quinn criter. 5.254656 
F-statistic 0.794127     Durbin-Watson stat 1.830618 
Prob(F-statistic) 0.373080    

0
1

2
3

0 1 2 3 4 5 6 7 8
Weeks since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

1.d Belgium Gasoline
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A18-2 COINTEGRATION TEST 

   
Sample (adjusted): 6 957   
Included observations: 952 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: DP WP     
Lags interval (in first differences): 1 to 4  

     
Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.033634  34.51213  20.26184  0.0003 

At most 1  0.002037  1.941512  9.164546  0.7893 
     
      Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.033634  32.57062  15.89210  0.0001 

At most 1  0.002037  1.941512  9.164546  0.7893 
     
      Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  
     
     DP WP C   

-0.266732  0.305728  3.705550   
 0.027627 -0.011865 -2.192767   

     
          
 Unrestricted Adjustment Coefficients (alpha):   
     
     D(DP)  0.221208 -0.111525   

D(WP) -0.303127 -0.112243   
     
          
1 Cointegrating Equation(s):  Log likelihood -4549.147  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

DP WP C   
 1.000000 -1.146200 -13.89243   

  (0.01631)  (1.18041)   
     

Adjustment coefficients (standard error in parentheses)  
D(DP) -0.059003    

  (0.02380)    
D(WP)  0.080853    

  (0.02580)    
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A18-3 CAUSALITY 

 
Pairwise Granger Causality Tests 
 
Sample: 1 957  
Lags: 5   

    
     Null Hypothesis: Obs F-Statistic Prob.  
    
     WP does not Granger Cause DP  952  89.5797 4.E-77 

 DP does not Granger Cause WP  3.02916 0.0102 
    
     

 

A18-4 LAG LENGTH 

 
VAR Lag Order Selection Criteria     
Endogenous variables: DDP PWP NWP      
Exogenous variables:  RD(-1)      
     
Sample: 1 957      
Included observations: 948     

       
        Lag LogL LR FPE AIC SC HQ 
       
       0 -6423.450 NA   155.1326  13.55791  13.57327  13.56376 

1 -6011.969  819.4891  66.36466  12.70880  12.77024  12.73221 
2 -5890.576  240.9940  52.35506  12.47168  12.57921  12.51265 
3 -5842.950  94.24783  48.25792  12.39019  12.54381  12.44873 
4 -5804.941  74.97448  45.39326  12.32899  12.52869  12.40509 
5 -5770.350  68.01359  43.00771  12.27500   12.52079*  12.36866 
6 -5749.255  41.34616  41.92436  12.24948  12.54136  12.36070 
7 -5732.352  33.02063  41.23156  12.23281  12.57077  12.36159 
8 -5699.312   64.33642*   39.19305*   12.18209*  12.56614   12.32844* 
       
        * indicates lag order selected by the criterion    

 LR: sequential modified LR test statistic (each test at 5% level)   
 FPE: Final prediction error     
 AIC: Akaike information criterion     
 SC: Schwarz information criterion     
 HQ: Hannan-Quinn information criterion    
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A18-5 VECM 

 Vector Autoregression Estimates  
  
 Sample (adjusted): 7 957  
 Included observations: 951 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     DDP PWP NWP 
    
    DDP(-1) -0.331702 -0.004663 -0.021501 
  (0.04212)  (0.02763)  (0.02612) 
 [-7.87448] [-0.16880] [-0.82306] 
    

DDP(-2) -0.267478 -0.002761 -0.062794 
  (0.04306)  (0.02824)  (0.02671) 
 [-6.21137] [-0.09775] [-2.35138] 
    

DDP(-3) -0.116616  0.019428 -0.078243 
  (0.04289)  (0.02813)  (0.02660) 
 [-2.71892] [ 0.69068] [-2.94161] 
    

DDP(-4) -0.090899  0.049590 -0.021509 
  (0.03995)  (0.02620)  (0.02478) 
 [-2.27504] [ 1.89253] [-0.86808] 
    

DDP(-5) -0.047306  0.023488 -0.019387 
  (0.03160)  (0.02073)  (0.01960) 
 [-1.49690] [ 1.13329] [-0.98921] 
    

PWP(-1)  0.629920  0.055436 -0.077357 
  (0.06112)  (0.04009)  (0.03791) 
 [ 10.3056] [ 1.38293] [-2.04076] 
    

PWP(-2)  0.410458  0.118778 -0.032206 
  (0.06538)  (0.04288)  (0.04054) 
 [ 6.27823] [ 2.77027] [-0.79433] 
    

PWP(-3)  0.347730  0.139100  0.064910 
  (0.06643)  (0.04356)  (0.04119) 
 [ 5.23489] [ 3.19308] [ 1.57571] 
    

PWP(-4)  0.017906  0.099778 -0.029808 
  (0.06585)  (0.04318)  (0.04084) 
 [ 0.27193] [ 2.31052] [-0.72994] 
    

PWP(-5)  0.079585  0.060199 -0.104072 
  (0.06308)  (0.04137)  (0.03912) 
 [ 1.26158] [ 1.45509] [-2.66023] 
    

NWP(-1)  0.702558 -0.028916  0.191684 
  (0.06514)  (0.04272)  (0.04040) 
 [ 10.7850] [-0.67686] [ 4.74487] 
    

NWP(-2)  0.404857 -0.121166  0.106935 
  (0.06912)  (0.04533)  (0.04286) 
 [ 5.85736] [-2.67300] [ 2.49473] 
    

NWP(-3)  0.123995 -0.058370  0.128775 
  (0.07100)  (0.04656)  (0.04403) 
 [ 1.74635] [-1.25353] [ 2.92457] 



 
 

275 
 

    
NWP(-4)  0.232691 -0.116804  0.141692 

  (0.06930)  (0.04545)  (0.04298) 
 [ 3.35765] [-2.56999] [ 3.29690] 
    

NWP(-5)  0.012657 -0.085248  0.205857 
  (0.06541)  (0.04290)  (0.04056) 
 [ 0.19350] [-1.98727] [ 5.07482] 
    

RD(-1) -0.055710  0.031874  0.045477 
  (0.02430)  (0.01594)  (0.01507) 
 [-2.29224] [ 1.99976] [ 3.01733] 
    
     R-squared  0.336395  0.055129  0.186287 

 Adj. R-squared  0.325749  0.039971  0.173233 
 Sum sq. resids  7057.289  3035.304  2714.151 
 S.E. equation  2.747345  1.801753  1.703771 
 F-statistic  31.59803  3.636890  14.27025 
 Log likelihood -2302.456 -1901.253 -1848.077 
 Akaike AIC  4.875828  4.032079  3.920246 
 Schwarz SC  4.957553  4.113804  4.001971 
 Mean dependent  0.112118  1.089946 -0.989760 
 S.D. dependent  3.345818  1.838879  1.873784 

    
     Determinant resid covariance (dof adj.)  40.55888  

 Determinant resid covariance  38.54599  
 Log likelihood -5784.687  
 Akaike information criterion  12.26643  
 Schwarz criterion  12.51160  
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A18-6 COIRFS AND GRAPH 

 
 

 

 
 

 

 

 

(2) irfname = dnk_d, impulse = nwp, and response = ddp
(1) irfname = dnk_d, impulse = pwp, and response = ddp
95% lower and upper bounds reported
                                                                                  
 8         2.10211     1.54084     2.66338     1.49166     1.01543     1.96788    
 7         2.05924     1.5284      2.59008     1.4832      1.04131     1.92509    
 6         2.01025     1.50193     2.51857     1.40267     .992811     1.81253    
 5         2.07898     1.58005     2.57791     1.34622     .950515     1.74193    
 4         2.01861     1.55571     2.48151     1.45846     1.06597     1.85094    
 3         1.9894      1.58442     2.39439     1.25512     .90588      1.60437    
 2         1.79684     1.46993     2.12375     1.37259     1.09157     1.65361    
 1         1.36317     1.14929     1.57705     .97325      .792503     1.154      
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (dnk_d pwp ddp coirf, ci) (dnk_d nwp ddp coirf, ci)
0

.5
1

1.
5

2
2.

5

0 1 2 3 4 5 6 7 8
Weeks since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

1.g Denmark Diesel
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A19: DENMARK GASOLINE 

A19-1 UNIT ROOT TEST 

 
Null Hypothesis: GP has a unit root  
Exogenous: Constant   
Lag Length: 0 (Automatic - based on SIC, maxlag=21) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.035829  0.7421 

Test critical values: 1% level  -3.436969  
 5% level  -2.864351  
 10% level  -2.568319  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GP)   
Method: Least Squares   
Date: 07/10/14   Time: 15:24   
Sample (adjusted): 2 957   
Included observations: 956 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     GP(-1) -0.002884 0.002784 -1.035829 0.3005 

C 0.348887 0.257613 1.354306 0.1760 
     
     R-squared 0.001123     Mean dependent var 0.110727 

Adjusted R-squared 0.000076     S.D. dependent var 3.592669 
S.E. of regression 3.592532     Akaike info criterion 5.397681 
Sum squared resid 12312.60     Schwarz criterion 5.407855 
Log likelihood -2578.092     Hannan-Quinn criter. 5.401556 
F-statistic 1.072942     Durbin-Watson stat 2.108250 
Prob(F-statistic) 0.300544    
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A19-2 COINTEGRATION TEST 

Sample (adjusted): 5 957   
Included observations: 953 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: GP SP     
Lags interval (in first differences): 1 to 3  

     
Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.023434  24.65234  20.26184  0.0116 

At most 1  0.002153  2.053891  9.164546  0.7670 
     
      Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.023434  22.59845  15.89210  0.0038 

At most 1  0.002153  2.053891  9.164546  0.7670 
     
      Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  
     
     GP SP C   

-0.209170  0.261408  3.374623   
 0.039003 -0.024023 -2.520242   

     
          
 Unrestricted Adjustment Coefficients (alpha):   
     
     D(GP)  0.148191 -0.123787   

D(SP) -0.297312 -0.100453   
     
          
1 Cointegrating Equation(s):  Log likelihood -4584.674  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

GP SP C   
 1.000000 -1.249738 -16.13340   

  (0.02971)  (1.86674)   
     

Adjustment coefficients (standard error in parentheses)  
D(GP) -0.030997    

  (0.01927)    
D(SP)  0.062189    

  (0.01968)    
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A19-3 CAUSALITY 

Pairwise Granger Causality Tests 
Sample: 1 957  
Lags: 5   

    
     Null Hypothesis: Obs F-Statistic Prob.  
    
     SP does not Granger Cause GP  952  112.107 6.E-93 

 GP does not Granger Cause SP  3.87348 0.0018 
    
     

 
VAR Granger Causality/Block Exogeneity Wald Tests 
  
Sample: 1 957   
Included observations: 954  

    
        

Dependent variable: DGP  
    
    Excluded Chi-sq df Prob. 
    
    DSP  504.7339 2  0.0000 
    
    All  504.7339 2  0.0000 
    
        

Dependent variable: DSP  
    
    Excluded Chi-sq df Prob. 
    
    DGP  11.95741 2  0.0025 
    
    All  11.95741 2  0.0025 
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A19-4 LAG LENGTH 

 
VAR Lag Order Selection Criteria     
Endogenous variables: DGP PSP NSP      
Exogenous variables: RG(-1)      
     
Sample: 1 957      
Included observations: 948     

       
        Lag LogL LR FPE AIC SC HQ 
       
       0 -6490.206 NA   178.5943  13.69875  13.71411  13.70460 

1 -6116.735  743.7920  82.78019  12.92982  12.99127  12.95323 
2 -5962.238  306.7118  60.90007  12.62286  12.73040  12.66384 
3 -5918.913  85.73589  56.64594  12.55045   12.70407*  12.60899 
4 -5889.833  57.36220  54.29654  12.50809  12.70779  12.58418 
5 -5865.204  48.42593  52.53572  12.47511  12.72090  12.56877 
6 -5838.586  52.16960  50.61917  12.43795  12.72982   12.54917* 
7 -5821.867  32.66256  49.80194  12.42166  12.75962  12.55044 
8 -5807.915   27.16756*   49.28496*   12.41121*  12.79526  12.55756 
       
        * indicates lag order selected by the criterion    

 LR: sequential modified LR test statistic (each test at 5% level)   
 FPE: Final prediction error     
 AIC: Akaike information criterion     
 SC: Schwarz information criterion     
 HQ: Hannan-Quinn information criterion    

       

A19-5 VECM 

 
 Vector Autoregression Estimates  
  
 Sample (adjusted): 5 957  
 Included observations: 953 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     DGP PSP NSP 
    
    DGP(-1) -0.480640  0.038484  0.021116 
  (0.03866)  (0.02345)  (0.02474) 
 [-12.4326] [ 1.64142] [ 0.85366] 
    

DGP(-2) -0.289961  0.024762  0.031083 
  (0.03959)  (0.02401)  (0.02533) 
 [-7.32374] [ 1.03130] [ 1.22703] 
    

DGP(-3) -0.072158  0.030075 -0.011872 
  (0.03075)  (0.01865)  (0.01968) 
 [-2.34624] [ 1.61248] [-0.60332] 
    

PSP(-1)  0.826831  0.100021 -0.105846 
  (0.06142)  (0.03725)  (0.03930) 
 [ 13.4622] [ 2.68528] [-2.69345] 
    

PSP(-2)  0.397086  0.234536 -0.190959 
  (0.06509)  (0.03948)  (0.04165) 
 [ 6.10017] [ 5.94108] [-4.58494] 
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PSP(-3)  0.271738  0.131939 -0.098279 
  (0.06387)  (0.03874)  (0.04087) 
 [ 4.25431] [ 3.40605] [-2.40478] 
    

NSP(-1)  0.762552 -0.097624  0.181893 
  (0.05903)  (0.03580)  (0.03777) 
 [ 12.9174] [-2.72683] [ 4.81569] 
    

NSP(-2)  0.471082 -0.186023  0.174823 
  (0.06205)  (0.03763)  (0.03970) 
 [ 7.59190] [-4.94332] [ 4.40342] 
    

NSP(-3)  0.257674 -0.060636  0.100250 
  (0.06229)  (0.03777)  (0.03985) 
 [ 4.13690] [-1.60521] [ 2.51551] 
    

RG(-1) -0.035925  0.025187  0.032117 
  (0.01968)  (0.01194)  (0.01259) 
 [-1.82537] [ 2.11021] [ 2.55050] 
    
     R-squared  0.380112  0.027271  0.099173 

 Adj. R-squared  0.374196  0.017987  0.090576 
 Sum sq. resids  7640.890  2810.268  3128.032 
 S.E. equation  2.846532  1.726307  1.821293 
 F-statistic  64.24927  2.937462  11.53512 
 Log likelihood -2344.157 -1867.545 -1918.590 
 Akaike AIC  4.940518  3.940284  4.047408 
 Schwarz SC  4.991511  3.991276  4.098401 
 Mean dependent  0.110084  1.038539 -0.947135 
 S.D. dependent  3.598297  1.742045  1.909838 

    
     Determinant resid covariance (dof adj.)  54.11933  

 Determinant resid covariance  52.43349  
 Log likelihood -5943.469  
 Akaike information criterion  12.53614  
 Schwarz criterion  12.68911  
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A19-6 COIRFS AND GRAPH 

 

 

 

 

 

. 

(2) irfname = dnk_g, impulse = nsp, and response = dgp
(1) irfname = dnk_g, impulse = psp, and response = dgp
95% lower and upper bounds reported
                                                                                  
 8         1.90359     1.34985     2.45733     1.70594     1.17508     2.23679    
 7         1.90423     1.38455     2.42392     1.69162     1.19724     2.18599    
 6         1.91841     1.43478     2.40205     1.68809     1.23341     2.14278    
 5         1.90355     1.4637      2.3434      1.66019     1.25118     2.0692     
 4         1.80304     1.40755     2.19853     1.55522     1.19229     1.91815    
 3         1.83847     1.48471     2.19223     1.53479     1.21629     1.85328    
 2         1.66248     1.36017     1.96478     1.48385     1.20678     1.76093    
 1         1.5998      1.38119     1.81842     1.22312     1.03052     1.41572    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (dnk_g psp dgp coirf, ci) (dnk_g nsp dgp coirf, ci)
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1.h Denmark Gasoline
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A20: FINLAND DIESEL 

A20-1 UNIT ROOT TEST 

 
Null Hypothesis: DP has a unit root  
Exogenous: Constant   
Lag Length: 0 (Automatic - based on SIC, maxlag=21) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -0.739069  0.8347 

Test critical values: 1% level  -3.436969  
 5% level  -2.864351  
 10% level  -2.568319  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(DP)   
Method: Least Squares   
   
Sample (adjusted): 2 957   
Included observations: 956 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     DP(-1) -0.001818 0.002460 -0.739069 0.4600 

C 0.283961 0.242207 1.172387 0.2413 
     
     R-squared 0.000572     Mean dependent var 0.125776 

Adjusted R-squared -0.000475     S.D. dependent var 3.504756 
S.E. of regression 3.505589     Akaike info criterion 5.348684 
Sum squared resid 11723.85     Schwarz criterion 5.358857 
Log likelihood -2554.671     Hannan-Quinn criter. 5.352559 
F-statistic 0.546223     Durbin-Watson stat 2.093996 
Prob(F-statistic) 0.460047    
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A20-2 COINTEGRATION TEST 

   
Sample (adjusted): 6 957   
Included observations: 952 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: DP WP     
Lags interval (in first differences): 1 to 4  

     
Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.056668  57.70906  20.26184  0.0000 

At most 1  0.002279  2.171863  9.164546  0.7433 
     
      Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.056668  55.53720  15.89210  0.0000 

At most 1  0.002279  2.171863  9.164546  0.7433 
     
      Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  
     
     DP WP C   

-0.174063  0.202458  3.050788   
 0.018132 -0.000792 -2.130994   

     
          
 Unrestricted Adjustment Coefficients (alpha):   
     
     D(DP)  0.704235 -0.055456   

D(WP) -0.047034 -0.141129   
     
          
1 Cointegrating Equation(s):  Log likelihood -4763.068  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

DP WP C   
 1.000000 -1.163131 -17.52691   

  (0.01907)  (1.37772)   
     

Adjustment coefficients (standard error in parentheses)  
D(DP) -0.122581    

  (0.01757)    
D(WP)  0.008187    

  (0.01679)    



 
 

285 
 

A20-3 CAUSALITY 

 
Pairwise Granger Causality Tests 
 
Sample: 1 957  
Lags: 5   

    
     Null Hypothesis: Obs F-Statistic Prob.  
    
     WP does not Granger Cause DP  952  51.5729 3.E-47 

 DP does not Granger Cause WP  4.20639 0.0009 
    
     

 
 

VAR Granger Causality/Block Exogeneity Wald Tests 
  
Sample: 1 957   
Included observations: 952  

    
        

Dependent variable: DDP  
    
    Excluded Chi-sq df Prob. 
    
    DWP  81.17408 4  0.0000 
    
    All  81.17408 4  0.0000 
    
        

Dependent variable: DWP  
    
    Excluded Chi-sq df Prob. 
    
    DDP  20.88745 4  0.0003 
    
    All  20.88745 4  0.0003 
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A20-4 LAG LENGTH 

 
VAR Lag Order Selection Criteria     
Endogenous variables: DDP PWP NWP      
Exogenous variables: RD(-1)     
     
Sample: 1 957      
Included observations: 948     

       
        Lag LogL LR FPE AIC SC HQ 
       
       0 -6540.347 NA   198.5217  13.80453  13.81989  13.81038 

1 -6202.767  672.3114  99.25493  13.11132  13.17277  13.13474 
2 -6109.329  185.4964  83.05912  12.93318  13.04072  12.97416 
3 -6073.026  71.84057  78.41008  12.87558  13.02920  12.93412 
4 -6028.786  87.26604  72.79228  12.80124  13.00094  12.87733 
5 -5997.749  61.02542  69.48590  12.75475   13.00054*  12.84840 
6 -5983.297  28.32544  68.69163  12.74324  13.03512  12.85446 
7 -5965.152  35.44711  67.37970  12.72395  13.06191  12.85273 
8 -5936.727   55.35208*   64.67489*   12.68297*  13.06701   12.82931* 
       
        * indicates lag order selected by the criterion    

 LR: sequential modified LR test statistic (each test at 5% level)   
 FPE: Final prediction error     
 AIC: Akaike information criterion     
 SC: Schwarz information criterion     
 HQ: Hannan-Quinn information criterion    

       

A20-5 VECM 

 
 Vector Autoregression Estimates  
   
 Sample (adjusted): 7 957  
 Included observations: 951 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     DDP PWP NWP 
    
    DDP(-1) -0.179124 -0.003352 -0.035703 
  (0.03521)  (0.02029)  (0.01915) 
 [-5.08735] [-0.16522] [-1.86469] 
    

DDP(-2) -0.115457  0.001466 -0.060814 
  (0.03520)  (0.02028)  (0.01914) 
 [-3.28026] [ 0.07227] [-3.17724] 
    

DDP(-3) -0.029615  0.029232 -0.014562 
  (0.03528)  (0.02033)  (0.01919) 
 [-0.83942] [ 1.43770] [-0.75899] 
    

DDP(-4) -0.039826  0.070324  0.053342 
  (0.03438)  (0.01981)  (0.01869) 
 [-1.15846] [ 3.54951] [ 2.85330] 
    

DDP(-5)  0.018489  0.010878  0.009525 
  (0.03144)  (0.01812)  (0.01710) 
 [ 0.58805] [ 0.60036] [ 0.55711] 
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PWP(-1)  0.433157  0.033209 -0.108674 
  (0.06605)  (0.03806)  (0.03592) 
 [ 6.55839] [ 0.87248] [-3.02580] 
    

PWP(-2)  0.142537  0.117258 -0.033553 
  (0.06733)  (0.03880)  (0.03661) 
 [ 2.11708] [ 3.02202] [-0.91644] 
    

PWP(-3)  0.017815  0.142691  0.044494 
  (0.06713)  (0.03869)  (0.03650) 
 [ 0.26539] [ 3.68843] [ 1.21889] 
    

PWP(-4) -0.028440  0.102442 -0.086858 
  (0.06597)  (0.03802)  (0.03588) 
 [-0.43108] [ 2.69435] [-2.42104] 
    

PWP(-5)  0.005585  0.066303 -0.160212 
  (0.06544)  (0.03771)  (0.03559) 
 [ 0.08535] [ 1.75804] [-4.50196] 
    

NWP(-1)  0.254432 -0.044662  0.178179 
  (0.06857)  (0.03952)  (0.03729) 
 [ 3.71049] [-1.13018] [ 4.77835] 
    

NWP(-2)  0.124338 -0.117991  0.102865 
  (0.06940)  (0.04000)  (0.03774) 
 [ 1.79151] [-2.94992] [ 2.72547] 
    

NWP(-3)  0.023010 -0.054001  0.083605 
  (0.07061)  (0.04069)  (0.03840) 
 [ 0.32588] [-1.32703] [ 2.17731] 
    

NWP(-4)  0.128977 -0.118817  0.078460 
  (0.07067)  (0.04073)  (0.03843) 
 [ 1.82494] [-2.91717] [ 2.04147] 
    

NWP(-5) -0.020550 -0.078869  0.173210 
  (0.07007)  (0.04038)  (0.03811) 
 [-0.29327] [-1.95295] [ 4.54544] 
    

RD(-1) -0.123216 -0.000132  0.006939 
  (0.01865)  (0.01075)  (0.01014) 
 [-6.60848] [-0.01226] [ 0.68438] 
    
     R-squared  0.222598  0.057792  0.192046 

 Adj. R-squared  0.210127  0.042676  0.179085 
 Sum sq. resids  9113.184  3026.750  2694.940 
 S.E. equation  3.121974  1.799213  1.697730 
 F-statistic  17.84831  3.823334  14.81631 
 Log likelihood -2424.023 -1899.911 -1844.699 
 Akaike AIC  5.131489  4.029257  3.913143 
 Schwarz SC  5.213214  4.110981  3.994868 
 Mean dependent  0.123793  1.089946 -0.989760 
 S.D. dependent  3.512777  1.838879  1.873784 

    
     Determinant resid covariance (dof adj.)  65.50305  

 Determinant resid covariance  62.25221  
 Log likelihood -6012.614  
 Akaike information criterion  12.74577  
 Schwarz criterion  12.99095  
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A20-6 COIRFS AND GRAPH 

 

 
 
 
 
 

 
 
 
 
 
 
 

(2) irfname = fin_d, impulse = nwp, and response = ddp
(1) irfname = fin_d, impulse = pwp, and response = ddp
95% lower and upper bounds reported
                                                                                  
 8         1.19627     .667372     1.72518     .597672     .135921     1.05942    
 7         1.20672     .699575     1.71387     .605263     .174395     1.03613    
 6         1.17301     .690075     1.65595     .570588     .171319     .969858    
 5         1.13135     .66269      1.60001     .549481     .179942     .919021    
 4         1.13253     .706918     1.55815     .640401     .274686     1.00612    
 3         1.01464     .642962     1.38632     .481875     .150341     .813409    
 2         1.06399     .754508     1.37347     .530017     .251157     .808877    
 1         .909645     .689466     1.12982     .375738     .176615     .574861    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (fin_d pwp ddp coirf, ci) (fin_d nwp ddp coirf, ci)
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2.a Finland Diesel
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A1: FINLAND GASOLINE 

 

A21-1 UNIT ROOT TEST 

 
Null Hypothesis: GP has a unit root  
Exogenous: Constant   
Lag Length: 1 (Automatic - based on SIC, maxlag=21) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -0.846338  0.8049 

Test critical values: 1% level  -3.436977  
 5% level  -2.864354  
 10% level  -2.568321  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GP)   
Method: Least Squares   
Date: 07/10/14   Time: 15:39   
Sample (adjusted): 3 957   
Included observations: 955 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     GP(-1) -0.002667 0.003152 -0.846338 0.3976 

D(GP(-1)) -0.127514 0.032188 -3.961578 0.0001 
C 0.334427 0.279018 1.198585 0.2310 
     
     R-squared 0.017429     Mean dependent var 0.108850 

Adjusted R-squared 0.015365     S.D. dependent var 3.862012 
S.E. of regression 3.832228     Akaike info criterion 5.527906 
Sum squared resid 13981.04     Schwarz criterion 5.543178 
Log likelihood -2636.575     Hannan-Quinn criter. 5.533724 
F-statistic 8.443448     Durbin-Watson stat 2.004213 
Prob(F-statistic) 0.000232    
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A21-2 COINTEGRATION TEST 

   
Sample (adjusted): 6 957   
Included observations: 952 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: GP SP     
Lags interval (in first differences): 1 to 4  

     
Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.077957  80.09633  20.26184  0.0000 

At most 1  0.002967  2.829190  9.164546  0.6131 
     
      Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.077957  77.26714  15.89210  0.0000 

At most 1  0.002967  2.829190  9.164546  0.6131 
     
      Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  
     
     GP SP C   

-0.199875  0.235665  3.437803   
 0.025744 -0.003608 -2.315452   

     
          
 Unrestricted Adjustment Coefficients (alpha):   
     
     D(GP)  0.924848 -0.055146   

D(SP) -0.056371 -0.158697   
     
          
1 Cointegrating Equation(s):  Log likelihood -4841.110  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

GP SP C   
 1.000000 -1.179060 -17.19974   

  (0.01669)  (1.04544)   
     

Adjustment coefficients (standard error in parentheses)  
D(GP) -0.184854    

  (0.02173)    
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D(SP)  0.011267    
  (0.01900)    

     
 
 

A21-3 CAUSALITY  

 

Pairwise Granger Causality Tests 
 
Sample: 1 957  
Lags: 1   

    
     Null Hypothesis: Obs F-Statistic Prob.  
    
     SP does not Granger Cause GP  956  234.946 1.E-47 

 GP does not Granger Cause SP  2.05659 0.1519 
    
     

 
 
 

VAR Granger Causality/Block Exogeneity Wald Tests 
  
Sample: 1 957   
Included observations: 954  

    
        

Dependent variable: DGP  
    
    Excluded Chi-sq df Prob. 
    
    DSP  39.96444 2  0.0000 
    
    All  39.96444 2  0.0000 
    
        

Dependent variable: DSP  
    
    Excluded Chi-sq df Prob. 
    
    DGP  2.253838 2  0.3240 
    
    All  2.253838 2  0.3240 
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A21-4 LAG LENGTH 

 
VAR Lag Order Selection Criteria     
Endogenous variables: DGP PSP NSP      
Exogenous variables: RG(-1)     
     
Sample: 1 957      
Included observations: 948     

       
        Lag LogL LR FPE AIC SC HQ 
       
       0 -6576.840 NA   214.4094  13.88152  13.89688  13.88737 

1 -6328.511  494.5624  129.4085  13.37660  13.43805  13.40002 
2 -6205.960  243.2916  101.8413  13.13705   13.24458*  13.17802 
3 -6184.508  42.45163  99.20092  13.11078  13.26439  13.16931 
4 -6155.740  56.74747  95.14909  13.06907  13.26878  13.14517 
5 -6136.787  37.26523  93.17250  13.04807  13.29386  13.14173 
6 -6112.338  47.91900  90.18519  13.01548  13.30736  13.12670 
7 -6087.666  48.19788  87.25300  12.98242  13.32038   13.11120* 
8 -6075.680   23.33966*   86.70610*   12.97612*  13.36017  13.12246 
       
        * indicates lag order selected by the criterion    

 LR: sequential modified LR test statistic (each test at 5% level)   
 FPE: Final prediction error     
 AIC: Akaike information criterion     
 SC: Schwarz information criterion     
 HQ: Hannan-Quinn information criterion    
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A21-5 VECM 

 Vector Autoregression Estimates  
  
 Sample (adjusted): 4 957  
 Included observations: 954 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     DGP PSP NSP 
    
    DGP(-1) -0.191580  0.010898  0.002678 
  (0.03231)  (0.01684)  (0.01770) 
 [-5.92907] [ 0.64725] [ 0.15133] 
    

DGP(-2) -0.066724  0.021992  0.017855 
  (0.02975)  (0.01550)  (0.01630) 
 [-2.24255] [ 1.41846] [ 1.09553] 
    

PSP(-1)  0.384022  0.142388 -0.162666 
  (0.06490)  (0.03382)  (0.03555) 
 [ 5.91687] [ 4.21026] [-4.57541] 
    

PSP(-2)  0.023155  0.288810 -0.205873 
  (0.06400)  (0.03335)  (0.03506) 
 [ 0.36179] [ 8.66021] [-5.87238] 
    

NSP(-1)  0.171486 -0.140543  0.219087 
  (0.06279)  (0.03272)  (0.03439) 
 [ 2.73131] [-4.29587] [ 6.37025] 
    

NSP(-2)  0.125319 -0.197230  0.227316 
  (0.06375)  (0.03322)  (0.03492) 
 [ 1.96575] [-5.93721] [ 6.50935] 
    

RG(-1) -0.201192 -0.009247  0.002662 
  (0.01999)  (0.01042)  (0.01095) 
 [-10.0638] [-0.88763] [ 0.24311] 
    
     R-squared  0.248713 -0.004308  0.076428 

 Adj. R-squared  0.243953 -0.010671  0.070576 
 Sum sq. resids  10690.09  2902.583  3207.656 
 S.E. equation  3.359818  1.750723  1.840428 
 F-statistic  52.25055 -0.677050  13.06111 
 Log likelihood -2506.294 -1884.422 -1932.093 
 Akaike AIC  5.268961  3.965245  4.065184 
 Schwarz SC  5.304626  4.000910  4.100849 
 Mean dependent  0.108755  1.037450 -0.946260 
 S.D. dependent  3.864037  1.741455  1.909027 

    
     Determinant resid covariance (dof adj.)  97.96646  

 Determinant resid covariance  95.82575  
 Log likelihood -6237.330  
 Akaike information criterion  13.12019  
 Schwarz criterion  13.22718  
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A21-6 COIRFS AND GRAPH 

 

 
 

 

 

 

(2) irfname = fin_g, impulse = nsp, and response = dgp
(1) irfname = fin_g, impulse = psp, and response = dgp
95% lower and upper bounds reported
                                                                                  
 8         .862911     .466326     1.2595      .300415     -.175243    .776074    
 7         .856703     .474978     1.23843     .309884     -.138954    .758723    
 6         .843368     .477891     1.20884     .325948     -.092877    .744772    
 5         .839623     .491627     1.18762     .335483     -.049505    .720472    
 4         .81169      .485659     1.13772     .360759     .015127     .706391    
 3         .803839     .504083     1.10359     .34829      .046806     .649775    
 2         .752223     .461579     1.04287     .426314     .158512     .694116    
 1         .74802      .522762     .973277     .294649     .082531     .506766    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (fin_g psp dgp coirf, ci) (fin_g nsp dgp coirf, ci)

-.5
0

.5
1

1.
5

0 1 2 3 4 5 6 7 8
Weeks since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

2.b Finland Gasoline
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A22: PORTUGAL DIESEL 

A22-1 UNIT ROOT TEST 

 
Null Hypothesis: DP has a unit root  
Exogenous: Constant   
Lag Length: 1 (Automatic - based on SIC, maxlag=21) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -0.684490  0.8484 

Test critical values: 1% level  -3.436977  
 5% level  -2.864354  
 10% level  -2.568321  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(DP)   
Method: Least Squares   
   
Sample (adjusted): 3 957   
Included observations: 955 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     DP(-1) -0.001083 0.001582 -0.684490 0.4938 

D(DP(-1)) 0.239726 0.031494 7.611738 0.0000 
C 0.182380 0.153084 1.191370 0.2338 
     
     R-squared 0.057525     Mean dependent var 0.119839 

Adjusted R-squared 0.055545     S.D. dependent var 2.431224 
S.E. of regression 2.362739     Akaike info criterion 4.560656 
Sum squared resid 5314.573     Schwarz criterion 4.575929 
Log likelihood -2174.713     Hannan-Quinn criter. 4.566474 
F-statistic 29.05306     Durbin-Watson stat 2.035343 
Prob(F-statistic) 0.000000    
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A22-2 COINTEGRATION TEST 

   
Sample (adjusted): 6 957   
Included observations: 952 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: DP WP     
Lags interval (in first differences): 1 to 4  

     
Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.035645  36.47410  20.26184  0.0001 

At most 1  0.002015  1.920615  9.164546  0.7934 
     
      Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.035645  34.55349  15.89210  0.0000 

At most 1  0.002015  1.920615  9.164546  0.7934 
     
      Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  
     
     DP WP C   

-0.168577  0.204938  1.825458   
 0.016227 -0.001812 -1.957257   

     
          
 Unrestricted Adjustment Coefficients (alpha):   
     
     D(DP)  0.279187 -0.068059   

D(WP) -0.280238 -0.116296   
     
          
1 Cointegrating Equation(s):  Log likelihood -4402.895  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

DP WP C   
 1.000000 -1.215692 -10.82863   

  (0.02508)  (1.81277)   
     

Adjustment coefficients (standard error in parentheses)  
D(DP) -0.047064    

  (0.01152)    
D(WP)  0.047242    

  (0.01632)    
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A22-3 CAUSALITY 

Pairwise Granger Causality Tests 
 
Sample: 1 957  
Lags: 2   

    
     Null Hypothesis: Obs F-Statistic Prob.  
    
     WP does not Granger Cause DP  955  52.0175 4.E-22 

 DP does not Granger Cause WP  5.06574 0.0065 
    
     

 
 

VAR Granger Causality/Block Exogeneity Wald Tests 
  
Sample: 1 957   
Included observations: 954  

    
        

Dependent variable: DDP  
    
    Excluded Chi-sq df Prob. 
    
    DWP  163.6251 2  0.0000 
    
    All  163.6251 2  0.0000 
    
        

Dependent variable: DWP  
    
    Excluded Chi-sq df Prob. 
    
    DDP  5.112715 2  0.0776 
    
    All  5.112715 2  0.0776 
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A22-4 LAG LENGTH 

VAR Lag Order Selection Criteria     
Endogenous variables: DDP PWP NWP      
Exogenous variables:  RD(-1)      
Date: 05/04/13   Time: 11:45     
Sample: 1 957      
Included observations: 948     

       
 Lag LogL LR FPE AIC SC HQ 

       
0 -6213.062 NA   99.52645  13.11405  13.12942  13.11991 
1 -5880.119  663.0755  50.24950  12.43063  12.49208  12.45405 
2 -5740.513  277.1502  38.14754  12.15509  12.26262  12.19607 
3 -5692.296  95.41774  35.11841  12.07235  12.22597  12.13089 
4 -5657.108  69.41077  33.23088  12.01711  12.21681  12.09320 
5 -5625.887  61.38722  31.70915  11.97023   12.21602*  12.06389 
6 -5595.307  59.93487  30.29806  11.92470  12.21657  12.03592 
7 -5578.155  33.50831  29.78169  11.90750  12.24546  12.03628 
8 -5549.085   56.60671*   28.54734*   11.86516*  12.24921   12.01150* 
       

 * indicates lag order selected by the criterion    
 LR: sequential modified LR test statistic (each test at 5% level)   
 FPE: Final prediction error     
 AIC: Akaike information criterion     
 SC: Schwarz information criterion     
 HQ: Hannan-Quinn information criterion    
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A22-5 VECM 

 Vector Autoregression Estimates  
   
 Sample (adjusted): 7 957  
 Included observations: 951 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     DDP PWP NWP 
    
    DDP(-1)  0.040479  0.008069  0.007144 
  (0.03474)  (0.02966)  (0.02813) 
 [ 1.16506] [ 0.27204] [ 0.25401] 
    

DDP(-2) -0.074246  0.007719 -0.060611 
  (0.03453)  (0.02948)  (0.02795) 
 [-2.15010] [ 0.26185] [-2.16824] 
    

DDP(-3)  0.022249  0.043145  0.003909 
  (0.03380)  (0.02885)  (0.02736) 
 [ 0.65827] [ 1.49536] [ 0.14286] 
    

DDP(-4) -0.046030  0.034002  0.010302 
  (0.03136)  (0.02677)  (0.02539) 
 [-1.46783] [ 1.27014] [ 0.40580] 
    

DDP(-5) -0.004661 -0.010375  0.021415 
  (0.03064)  (0.02616)  (0.02480) 
 [-0.15212] [-0.39662] [ 0.86335] 
    

PWP(-1)  0.101347  0.055032 -0.097086 
  (0.04387)  (0.03745)  (0.03551) 
 [ 2.31027] [ 1.46953] [-2.73386] 
    

PWP(-2)  0.284549  0.129030 -0.053280 
  (0.04392)  (0.03749)  (0.03555) 
 [ 6.47876] [ 3.44142] [-1.49856] 
    

PWP(-3)  0.208785  0.148670  0.018694 
  (0.04524)  (0.03862)  (0.03662) 
 [ 4.61496] [ 3.84949] [ 0.51043] 
    

PWP(-4)  0.088277  0.119583 -0.066758 
  (0.04515)  (0.03854)  (0.03655) 
 [ 1.95542] [ 3.10291] [-1.82670] 
    

PWP(-5)  0.027677  0.077244 -0.123055 
  (0.04481)  (0.03825)  (0.03627) 
 [ 0.61766] [ 2.01935] [-3.39242] 
    

NWP(-1)  0.117783 -0.035794  0.179128 
  (0.04691)  (0.04004)  (0.03797) 
 [ 2.51094] [-0.89387] [ 4.71723] 
    

NWP(-2)  0.288996 -0.116878  0.096923 
  (0.04727)  (0.04035)  (0.03826) 
 [ 6.11432] [-2.89669] [ 2.53311] 
    

NWP(-3)  0.092796 -0.054549  0.067729 
  (0.04845)  (0.04136)  (0.03922) 
 [ 1.91529] [-1.31886] [ 1.72683] 
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NWP(-4)  0.075328 -0.088726  0.107192 

  (0.04768)  (0.04071)  (0.03860) 
 [ 1.57972] [-2.17965] [ 2.77687] 
    

NWP(-5)  0.084503 -0.050366  0.188941 
  (0.04727)  (0.04035)  (0.03826) 
 [ 1.78775] [-1.24821] [ 4.93779] 
    

RD(-1) -0.043622  0.023406  0.026162 
  (0.01188)  (0.01014)  (0.00962) 
 [-3.67213] [ 2.30811] [ 2.72051] 
    
     R-squared  0.262272  0.056360  0.182754 

 Adj. R-squared  0.250436  0.041221  0.169644 
 Sum sq. resids  4159.674  3031.351  2725.933 
 S.E. equation  2.109230  1.800579  1.707465 
 F-statistic  22.16027  3.722932  13.93913 
 Log likelihood -2051.095 -1900.634 -1850.137 
 Akaike AIC  4.347204  4.030775  3.924578 
 Schwarz SC  4.428929  4.112500  4.006303 
 Mean dependent  0.120326  1.089946 -0.989760 
 S.D. dependent  2.436237  1.838879  1.873784 

    
     Determinant resid covariance (dof adj.)  29.87826  

 Determinant resid covariance  28.39544  
 Log likelihood -5639.363  
 Akaike information criterion  11.96081  
 Schwarz criterion  12.20598  
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A22-6 COIRFS AND GRAPH 

 

 

 

 

 

 

 

(1) irfname = prt_d, impulse = pwp, and response = ddp
95% lower and upper bounds reported
                                                                                  
 8         2.06817     1.48683     2.64951     1.17863     .7285       1.62876    
 7         2.00169     1.46116     2.54222     1.13929     .727444     1.55114    
 6         1.9501      1.45397     2.44622     1.08812     .712418     1.46382    
 5         1.88552     1.43479     2.33626     1.06425     .731069     1.39743    
 4         1.67537     1.28891     2.06183     .93658      .630098     1.24306    
 3         1.42404     1.11344     1.73464     .82413      .567672     1.08059    
 2         .966761     .735127     1.19839     .619906     .421436     .818376    
 1         .258159     .114738     .401581     .17019      .038245     .302135    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (prt_d pwp ddp coirf, ci) (prt_d nwp ddp coirf, ci)

0
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1
1.

5
2

2.
5

0 1 2 3 4 5 6 7 8
Weeks since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

3.c Portugal Diesel
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A23: PORTUGAL GASOLINE 

A23-1 UNIT ROOT TEST 

 
Null Hypothesis: GP has a unit root  
Exogenous: Constant   
Lag Length: 1 (Automatic - based on SIC, maxlag=21) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.060255  0.7330 

Test critical values: 1% level  -3.436977  
 5% level  -2.864354  
 10% level  -2.568321  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GP)   
Method: Least Squares   
   
Sample (adjusted): 3 957   
Included observations: 955 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     GP(-1) -0.002313 0.002182 -1.060255 0.2893 

D(GP(-1)) 0.224258 0.031615 7.093319 0.0000 
C 0.271837 0.200147 1.358186 0.1747 
     
     R-squared 0.050726     Mean dependent var 0.102506 

Adjusted R-squared 0.048732     S.D. dependent var 2.711405 
S.E. of regression 2.644514     Akaike info criterion 4.785988 
Sum squared resid 6657.766     Schwarz criterion 4.801260 
Log likelihood -2282.309     Hannan-Quinn criter. 4.791805 
F-statistic 25.43596     Durbin-Watson stat 2.017567 
Prob(F-statistic) 0.000000    
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A23-2 COINTEGRATION TEST 

   
Sample (adjusted): 6 957   
Included observations: 952 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: GP SP     
Lags interval (in first differences): 1 to 4  

     
Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.035693  37.21664  20.26184  0.0001 

At most 1  0.002744  2.615716  9.164546  0.6546 
     
      Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.035693  34.60093  15.89210  0.0000 

At most 1  0.002744  2.615716  9.164546  0.6546 
     
      Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  
     
     GP SP C   

-0.162165  0.189837  3.425753   
 0.018275  0.004744 -2.259702   

     
          
 Unrestricted Adjustment Coefficients (alpha):   
     
     D(GP)  0.400026 -0.046932   

D(SP) -0.124647 -0.148959   
     
          
1 Cointegrating Equation(s):  Log likelihood -4482.630  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

GP SP C   
 1.000000 -1.170642 -21.12510   

  (0.03107)  (1.94654)   
     

Adjustment coefficients (standard error in parentheses)  
D(GP) -0.064870    
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  (0.01196)    
D(SP)  0.020213    

  (0.01540)    

A23-3 CAUSALITY 

Pairwise Granger Causality Tests 
 
Sample: 1 957  
Lags: 2   

    
     Null Hypothesis: Obs F-Statistic Prob.  
    
     SP does not Granger Cause GP  955  86.9087 2.E-35 

 GP does not Granger Cause SP  1.40681 0.2454 
    
     

 
 

VAR Granger Causality/Block Exogeneity Wald Tests 
  
Sample: 1 957   
Included observations: 955  

    
        

Dependent variable: DGP  
    
    Excluded Chi-sq df Prob. 
    
    DSP  47.22579 1  0.0000 
    
    All  47.22579 1  0.0000 
    
        

Dependent variable: DSP  
    
    Excluded Chi-sq df Prob. 
    
    DGP  2.585997 1  0.1078 
    
    All  2.585997 1  0.1078 
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A23-4 LAG LENGTH 

VAR Lag Order Selection Criteria     
Endogenous variables: DGP PSP NSP      
Exogenous variables:  RG(-1)      
D     
Sample: 1 957      
Included observations: 948     

       
        Lag LogL LR FPE AIC SC HQ 
       
       0 -6327.819 NA   126.7894  13.35616  13.37152  13.36201 

1 -6072.479  508.5266  75.40110  12.83645  12.89790  12.85987 
2 -5883.422  375.3207  51.57087  12.45659  12.56412  12.49756 
3 -5841.860  82.24832  48.14711  12.38789   12.54151*  12.44643 
4 -5811.033  60.80839  45.98041  12.34184  12.54155  12.41794 
5 -5792.029  37.36718  45.02031  12.32074  12.56653  12.41439 
6 -5768.685  45.75214  43.67862  12.29047  12.58235   12.40169* 
7 -5752.465  31.68611  43.01878  12.27524  12.61320  12.40402 
8 -5739.642   24.96987*   42.67370*   12.26718*  12.65122  12.41352 
       
        * indicates lag order selected by the criterion    

 LR: sequential modified LR test statistic (each test at 5% level)   
 FPE: Final prediction error     
 AIC: Akaike information criterion     
 SC: Schwarz information criterion     
 HQ: Hannan-Quinn information criterion    
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A23-5 VECM 

 Vector Autoregression Estimates  
   
 Sample (adjusted): 5 957  
 Included observations: 953 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     DGP PSP NSP 
    
    DGP(-1)  0.011587  0.017318 -0.015505 
  (0.03261)  (0.02437)  (0.02570) 
 [ 0.35538] [ 0.71071] [-0.60336] 
    

DGP(-2) -0.063433  0.012360 -0.019469 
  (0.02999)  (0.02241)  (0.02364) 
 [-2.11501] [ 0.55145] [-0.82365] 
    

DGP(-3)  0.062255  0.021601 -0.024370 
  (0.02909)  (0.02174)  (0.02293) 
 [ 2.13992] [ 0.99351] [-1.06287] 
    

PSP(-1)  0.141977  0.094033 -0.103460 
  (0.04764)  (0.03560)  (0.03755) 
 [ 2.98011] [ 2.64108] [-2.75547] 
    

PSP(-2)  0.367769  0.265745 -0.155553 
  (0.04481)  (0.03349)  (0.03532) 
 [ 8.20725] [ 7.93547] [-4.40463] 
    

PSP(-3)  0.216073  0.142414 -0.072307 
  (0.04806)  (0.03591)  (0.03787) 
 [ 4.49621] [ 3.96538] [-1.90913] 
    

NSP(-1)  0.221316 -0.095320  0.182211 
  (0.04531)  (0.03386)  (0.03571) 
 [ 4.88434] [-2.81489] [ 5.10243] 
    

NSP(-2)  0.372088 -0.163912  0.207472 
  (0.04372)  (0.03267)  (0.03446) 
 [ 8.51069] [-5.01665] [ 6.02126] 
    

NSP(-3)  0.112023 -0.046475  0.128658 
  (0.04620)  (0.03452)  (0.03641) 
 [ 2.42493] [-1.34616] [ 3.53377] 
    

RG(-1) -0.023802 -0.004118  0.009040 
  (0.01342)  (0.01003)  (0.01058) 
 [-1.77331] [-0.41055] [ 0.85452] 
    
     R-squared  0.274407  0.016239  0.089737 

 Adj. R-squared  0.267482  0.006850  0.081049 
 Sum sq. resids  5088.802  2842.138  3160.799 
 S.E. equation  2.323015  1.736068  1.830807 
 F-statistic  39.62527  1.729604  10.32934 
 Log likelihood -2150.473 -1872.919 -1923.555 
 Akaike AIC  4.534046  3.951560  4.057829 
 Schwarz SC  4.585039  4.002553  4.108821 
 Mean dependent  0.102068  1.038539 -0.947135 
 S.D. dependent  2.714207  1.742045  1.909838 
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 Determinant resid covariance (dof adj.)  45.95033  
 Determinant resid covariance  44.51896  
 Log likelihood -5865.499  
 Akaike information criterion  12.37251  
 Schwarz criterion  12.52548  

    
     

 

A23-6 COIRFS AND GRAPH 

 

 

 

. 

(2) irfname = prt_g, impulse = nsp, and response = dgp
(1) irfname = prt_g, impulse = psp, and response = dgp
95% lower and upper bounds reported
                                                                                  
 8         1.9983      1.46252     2.53408     1.55494     1.05615     2.05374    
 7         1.98356     1.48095     2.48618     1.54495     1.08408     2.00583    
 6         1.97342     1.50665     2.44019     1.53522     1.11649     1.95395    
 5         1.90843     1.48652     2.33034     1.49186     1.12091     1.86281    
 4         1.77616     1.40705     2.14528     1.39864     1.07786     1.71941    
 3         1.70108     1.39126     2.01089     1.32048     1.06342     1.57754    
 2         1.24506     1.00449     1.48563     1.04576     .832868     1.25864    
 1         .379933     .221561     .538306     .371639     .222359     .520919    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (prt_g psp dgp coirf, ci) (prt_g nsp dgp coirf, ci)

0
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1
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5
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5
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Weeks since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

3.d Portugal Gasoline
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A24: SWEDEN DIESEL 

A24-1 UNIT ROOT TEST 

Null Hypothesis: DP has a unit root  
Exogenous: Constant   
Lag Length: 0 (Automatic - based on SIC, maxlag=21) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -0.879822  0.7948 

Test critical values: 1% level  -3.436969  
 5% level  -2.864351  
 10% level  -2.568319  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(DP)   
Method: Least Squares   
Date: 07/10/14   Time: 16:22   
Sample (adjusted): 2 957   
Included observations: 956 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     DP(-1) -0.002401 0.002729 -0.879822 0.3792 

C 0.287383 0.259578 1.107117 0.2685 
     
     R-squared 0.000811     Mean dependent var 0.081742 

Adjusted R-squared -0.000237     S.D. dependent var 3.490955 
S.E. of regression 3.491368     Akaike info criterion 5.340554 
Sum squared resid 11628.93     Schwarz criterion 5.350728 
Log likelihood -2550.785     Hannan-Quinn criter. 5.344429 
F-statistic 0.774087     Durbin-Watson stat 1.888998 
Prob(F-statistic) 0.379177    
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A24-2 COINTEGRATION TEST 

   
Sample (adjusted): 6 957   
Included observations: 952 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: DP WP     
Lags interval (in first differences): 1 to 4  

     
Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.029615  30.46952  20.26184  0.0014 

At most 1  0.001941  1.849818  9.164546  0.8074 
     
      Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.029615  28.61970  15.89210  0.0003 

At most 1  0.001941  1.849818  9.164546  0.8074 
     
      Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  
     
     DP WP C   

-0.162373  0.168660  3.638374   
 0.029753 -0.010604 -2.498956   

     
          
 Unrestricted Adjustment Coefficients (alpha):   
     
     D(DP)  0.404661 -0.080865   

D(WP) -0.128479 -0.127345   
     
          
1 Cointegrating Equation(s):  Log likelihood -4686.605  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

DP WP C   
 1.000000 -1.038719 -22.40744   

  (0.02863)  (2.07193)   
     

Adjustment coefficients (standard error in parentheses)  
D(DP) -0.065706    

  (0.01563)    
D(WP)  0.020862    

  (0.01577)    
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A24-3 CAUSALITY 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

VAR Granger Causality/Block Exogeneity Wald Tests 
  
Sample: 1 957   
Included observations: 954  

    
        

Dependent variable: DDP  
    
    Excluded Chi-sq df Prob. 
    
    DWP  306.7358 2  0.0000 
    
    All  306.7358 2  0.0000 
    
        

Dependent variable: DWP  
    
    Excluded Chi-sq df Prob. 
    
    DDP  4.445019 2  0.1083 
    
    All  4.445019 2  0.1083 
    
        

 

A24-4 LAG LENGTH 

VAR Lag Order Selection Criteria     
Endogenous variables: DDP PWP NWP      
Exogenous variables:  RD(-1)      
     
Sample: 1 957      
Included observations: 948     

       
        Lag LogL LR FPE AIC SC HQ 
       
       0 -6533.577 NA   195.7063  13.79025  13.80561  13.79610 

1 -6124.213  815.2733  84.09654  12.94560  13.00704  12.96901 
2 -6020.794  205.3099  68.90790  12.74640  12.85393  12.78738 
3 -5974.910  90.79987  63.74929  12.66859  12.82221  12.72712 
4 -5938.680  71.46699  60.19041  12.61114  12.81084  12.68724 
5 -5906.851  62.58253  57.36051  12.56298   12.80877*  12.65664 
6 -5891.425  30.23540  56.58839  12.54942  12.84129  12.66064 
7 -5877.028  28.12463  55.94829  12.53803  12.87600  12.66682 
8 -5854.080   44.68549*   54.32658*   12.50861*  12.89266   12.65495* 
       
        * indicates lag order selected by the criterion    

 LR: sequential modified LR test statistic (each test at 5% level)   
 FPE: Final prediction error     
 AIC: Akaike information criterion     
 SC: Schwarz information criterion     
 HQ: Hannan-Quinn information criterion    
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A24-5 VECM 

 Vector Autoregression Estimates  
   
 Sample (adjusted): 7 957  
 Included observations: 951 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     DDP PWP NWP 
    
    DDP(-1) -0.217241  0.020536  0.018957 
  (0.03688)  (0.02239)  (0.02127) 
 [-5.89041] [ 0.91719] [ 0.89120] 
    

DDP(-2) -0.172777  0.023070 -0.019867 
  (0.03762)  (0.02284)  (0.02170) 
 [-4.59231] [ 1.01004] [-0.91554] 
    

DDP(-3) -0.147832  0.038529 -0.030775 
  (0.03737)  (0.02269)  (0.02155) 
 [-3.95615] [ 1.69835] [-1.42790] 
    

DDP(-4) -0.046239  0.057367  0.006573 
  (0.03671)  (0.02229)  (0.02117) 
 [-1.25950] [ 2.57389] [ 0.31041] 
    

DDP(-5) -0.050154  0.007867 -0.002801 
  (0.03111)  (0.01889)  (0.01794) 
 [-1.61228] [ 0.41658] [-0.15609] 
    

PWP(-1)  0.605537  0.029428 -0.117473 
  (0.06210)  (0.03770)  (0.03582) 
 [ 9.75025] [ 0.78052] [-3.27947] 
    

PWP(-2)  0.277180  0.096654 -0.076130 
  (0.06616)  (0.04016)  (0.03816) 
 [ 4.18965] [ 2.40644] [-1.99508] 
    

PWP(-3)  0.223605  0.121696  0.020146 
  (0.06670)  (0.04050)  (0.03847) 
 [ 3.35217] [ 3.00511] [ 0.52362] 
    

PWP(-4)  0.010629  0.089617 -0.068213 
  (0.06597)  (0.04005)  (0.03805) 
 [ 0.16113] [ 2.23772] [-1.79279] 
    

PWP(-5)  0.068758  0.060246 -0.130044 
  (0.06508)  (0.03951)  (0.03754) 
 [ 1.05655] [ 1.52489] [-3.46457] 
    

NWP(-1)  0.581003 -0.054562  0.157173 
  (0.06591)  (0.04001)  (0.03802) 
 [ 8.81520] [-1.36360] [ 4.13448] 
    

NWP(-2)  0.250108 -0.151006  0.063306 
  (0.06860)  (0.04165)  (0.03957) 
 [ 3.64600] [-3.62599] [ 1.60001] 
    

NWP(-3)  0.179861 -0.080061  0.077362 
  (0.06994)  (0.04246)  (0.04034) 
 [ 2.57151] [-1.88544] [ 1.91765] 
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NWP(-4)  0.200399 -0.126280  0.097923 

  (0.06954)  (0.04222)  (0.04011) 
 [ 2.88185] [-2.99124] [ 2.44146] 
    

NWP(-5)  0.008693 -0.076019  0.182740 
  (0.06751)  (0.04099)  (0.03894) 
 [ 0.12876] [-1.85473] [ 4.69288] 
    

RD(-1) -0.067705  0.004853  0.009151 
  (0.01626)  (0.00987)  (0.00938) 
 [-4.16399] [ 0.49160] [ 0.97574] 
    
     R-squared  0.290819  0.053131  0.176886 

 Adj. R-squared  0.279442  0.037941  0.163680 
 Sum sq. resids  8252.830  3041.723  2745.509 
 S.E. equation  2.970952  1.803657  1.713585 
 F-statistic  25.56152  3.497686  13.39530 
 Log likelihood -2376.870 -1902.258 -1853.539 
 Akaike AIC  5.032323  4.034191  3.931734 
 Schwarz SC  5.114048  4.115916  4.013458 
 Mean dependent  0.081222  1.089946 -0.989760 
 S.D. dependent  3.499945  1.838879  1.873784 

    
     Determinant resid covariance (dof adj.)  54.97459  

 Determinant resid covariance  52.24627  
 Log likelihood -5929.295  
 Akaike information criterion  12.57055  
 Schwarz criterion  12.81572  

    
     

A24-6 COIRFS AND GRAPH 

 

(2) irfname = swe_d, impulse = nwp, and response = ddp
(1) irfname = swe_d, impulse = pwp, and response = ddp
95% lower and upper bounds reported
                                                                                  
 8         1.88716     1.35867     2.41565     1.31469     .868363     1.76102    
 7         1.87695     1.37748     2.37641     1.27141     .858038     1.68478    
 6         1.83763     1.36134     2.31392     1.22698     .845239     1.60872    
 5         1.8881      1.42181     2.35439     1.16926     .802559     1.53596    
 4         1.8188      1.38712     2.25048     1.26678     .893565     1.64       
 3         1.83048     1.44646     2.2145      1.14751     .806016     1.48901    
 2         1.64399     1.32972     1.95827     1.09724     .815871     1.37861    
 1         1.37456     1.16189     1.58723     .835331     .647386     1.02328    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (swe_d pwp ddp coirf, ci) (swe_d nwp ddp coirf, ci)
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A25: SWEDEN GASOLINE 

A25-1 UNIT ROOT TEST 

 
Null Hypothesis: GP has a unit root  
Exogenous: Constant   
Lag Length: 0 (Automatic - based on SIC, maxlag=21) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.030283  0.7442 

Test critical values: 1% level  -3.436969  
 5% level  -2.864351  
 10% level  -2.568319  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GP)   
Method: Least Squares   
Date: 07/10/14   Time: 16:31   
Sample (adjusted): 2 957   
Included observations: 956 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     GP(-1) -0.003059 0.002969 -1.030283 0.3031 

C 0.334699 0.249232 1.342919 0.1796 
     
     R-squared 0.001111     Mean dependent var 0.101839 

Adjusted R-squared 0.000064     S.D. dependent var 3.247937 
S.E. of regression 3.247833     Akaike info criterion 5.195943 
Sum squared resid 10063.19     Schwarz criterion 5.206116 
Log likelihood -2481.661     Hannan-Quinn criter. 5.199818 
F-statistic 1.061483     Durbin-Watson stat 1.947462 
Prob(F-statistic) 0.303138    
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3.e Sweden Diesel
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A25-2 COINTEGRATION TEST 

   
Sample (adjusted): 6 957   
Included observations: 952 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: DP WP     
Lags interval (in first differences): 1 to 4  

     
Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.029615  30.46952  20.26184  0.0014 

At most 1  0.001941  1.849818  9.164546  0.8074 
     
      Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.029615  28.61970  15.89210  0.0003 

At most 1  0.001941  1.849818  9.164546  0.8074 
     
      Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  
     
     DP WP C   

-0.162373  0.168660  3.638374   
 0.029753 -0.010604 -2.498956   

     
          
 Unrestricted Adjustment Coefficients (alpha):   
     
     D(DP)  0.404661 -0.080865   

D(WP) -0.128479 -0.127345   
     
          
1 Cointegrating Equation(s):  Log likelihood -4686.605  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

DP WP C   
 1.000000 -1.038719 -22.40744   

  (0.02863)  (2.07193)   
     

Adjustment coefficients (standard error in parentheses)  
D(DP) -0.065706    

  (0.01563)    
D(WP)  0.020862    

  (0.01577)    
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A25-3 CAUSALITY 

 

 
 

A25-4 LAG LENGTH 

 
 

VAR Lag Order Selection Criteria     
Endogenous variables: DGP PSP NSP      
Exogenous variables:  RG(-1)      
     
Sample: 1 957      
Included observations: 948     

       
        Lag LogL LR FPE AIC SC HQ 
       
       0 -6367.936 NA   137.9873  13.44079  13.45616  13.44665 

1 -5980.193  772.2148  62.06147  12.64176  12.70320  12.66517 
2 -5826.814  304.4914  45.76550  12.33716  12.44469  12.37814 
3 -5789.959  72.93383  43.15355  12.27839  12.43201  12.33693 
4 -5755.789  67.40240  40.92196  12.22529   12.42500*  12.30139 
5 -5732.849  45.10607  39.73616  12.19588  12.44167  12.28954 
6 -5699.446  65.46589  37.74248  12.14440  12.43628  12.25562 
7 -5680.026  37.93936  36.92213  12.12242  12.46038   12.25120* 
8 -5669.859   19.79746*   36.83178*   12.11996*  12.50400  12.26630 
       
        * indicates lag order selected by the criterion    

 LR: sequential modified LR test statistic (each test at 5% level)   
 FPE: Final prediction error     
 AIC: Akaike information criterion     
 SC: Schwarz information criterion     
 HQ: Hannan-Quinn information criterion    

       
 

VAR Granger Causality/Block Exogeneity Wald Tests 
  
Sample: 1 957   
Included observations: 954  

    
        

Dependent variable: DGP  
    
    Excluded Chi-sq df Prob. 
    
    DSP  500.3359 2  0.0000 
    
    All  500.3359 2  0.0000 
    
        

Dependent variable: DSP  
    
    Excluded Chi-sq df Prob. 
    
    DGP  34.59837 2  0.0000 
    
    All  34.59837 2  0.0000 
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A25-5 VECM 

 Vector Autoregression Estimates  
   
 Sample (adjusted): 6 957  
 Included observations: 952 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     DGP PSP NSP 
    
    DGP(-1) -0.398223  0.108006  0.124741 
  (0.04169)  (0.02743)  (0.02930) 
 [-9.55156] [ 3.93745] [ 4.25763] 
    

DGP(-2) -0.254267  0.066441  0.081654 
  (0.04491)  (0.02954)  (0.03156) 
 [-5.66227] [ 2.24883] [ 2.58754] 
    

DGP(-3) -0.172608  0.078118  0.008321 
  (0.04276)  (0.02813)  (0.03005) 
 [-4.03686] [ 2.77687] [ 0.27692] 
    

DGP(-4) -0.085502  0.031201  0.016674 
  (0.03155)  (0.02076)  (0.02217) 
 [-2.70987] [ 1.50301] [ 0.75201] 
    

PSP(-1)  0.695718  0.028173 -0.155341 
  (0.05808)  (0.03821)  (0.04082) 
 [ 11.9782] [ 0.73726] [-3.80589] 
    

PSP(-2)  0.367753  0.111784 -0.253045 
  (0.06423)  (0.04226)  (0.04514) 
 [ 5.72548] [ 2.64518] [-5.60613] 
    

PSP(-3)  0.277281  0.046567 -0.134046 
  (0.06555)  (0.04312)  (0.04606) 
 [ 4.23032] [ 1.07983] [-2.91017] 
    

PSP(-4)  0.171475  0.106130 -0.057803 
  (0.06128)  (0.04032)  (0.04307) 
 [ 2.79804] [ 2.63216] [-1.34218] 
    

NSP(-1)  0.776008 -0.124508  0.100086 
  (0.05728)  (0.03768)  (0.04025) 
 [ 13.5487] [-3.30406] [ 2.48664] 
    

NSP(-2)  0.411881 -0.201550  0.076484 
  (0.06365)  (0.04188)  (0.04473) 
 [ 6.47116] [-4.81298] [ 1.70997] 
    

NSP(-3)  0.198350 -0.069851  0.051212 
  (0.06234)  (0.04101)  (0.04381) 
 [ 3.18182] [-1.70310] [ 1.16902] 
    

NSP(-4)  0.132113 -0.173302  0.038031 
  (0.05734)  (0.03773)  (0.04030) 
 [ 2.30400] [-4.59368] [ 0.94381] 
    

RG(-1) -0.066209  0.000162  0.006536 
  (0.02295)  (0.01510)  (0.01613) 
 [-2.88500] [ 0.01070] [ 0.40527] 
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     R-squared  0.380965  0.066082  0.113848 
 Adj. R-squared  0.373054  0.054147  0.102524 
 Sum sq. resids  6230.790  2697.131  3076.977 
 S.E. equation  2.575958  1.694799  1.810211 
 F-statistic  48.15646  5.536805  10.05318 
 Log likelihood -2245.088 -1846.526 -1909.243 
 Akaike AIC  4.743881  3.906567  4.038326 
 Schwarz SC  4.810227  3.972913  4.104672 
 Mean dependent  0.098938  1.039630 -0.947483 
 S.D. dependent  3.253297  1.742635  1.910812 

    
     Determinant resid covariance (dof adj.)  38.81857  

 Determinant resid covariance  37.24993  
 Log likelihood -5774.490  
 Akaike information criterion  12.21321  
 Schwarz criterion  12.41225  

    
     

A25-6 COIRFS AND GRAPH 

 

 

. 

(2) irfname = swe_g, impulse = nsp, and response = dgp
(1) irfname = swe_g, impulse = psp, and response = dgp
95% lower and upper bounds reported
                                                                                  
 8         1.51855     1.00968     2.02742     1.48444     1.0002      1.96867    
 7         1.5151      1.03985     1.99034     1.4915      1.03784     1.94516    
 6         1.50542     1.06892     1.94192     1.49883     1.0814      1.91626    
 5         1.40331     .999884     1.80673     1.38643     1.00346     1.7694     
 4         1.45752     1.06874     1.84629     1.52415     1.16356     1.88475    
 3         1.42226     1.06578     1.77875     1.37719     1.0411      1.71329    
 2         1.33685     1.04431     1.6294      1.34125     1.0662      1.61631    
 1         1.32289     1.12127     1.5245      1.19647     1.01637     1.37658    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (swe_g psp dgp coirf, ci) (swe_g nsp dgp coirf, ci)

0
.5

1
1.

5
2

0 1 2 3 4 5 6 7 8
Weeks since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

3.f Sweden Gasoline
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APPENDIX B: APT in the UK petroleum industry 

 

NOMENCLATURE: 

DP= RETAIL DIESEL PRICE 

DDP= FIRST DIFFERENCE OF DP 

DGP= FIRST DIFFERENCE OF RETAIL GP 

DSP= FIRST DIFFERENCE OF SP 

DWP= FIRST DIFFERENCE OF WP 

GP= RETAIL GASOLINE PRICE 

NSP= NEGATIVE CHANGE IN SP 

NWP= NEGATIVE CHANGE IN WP 

PSP= POSITIVE CHANGE IN SP 

NSP= NEGATIVE CHANGE IN WP 

RD= ERROR-CORRECTION TERM FOR DIESEL VECM (-1 FOR 1ST LAG) 

RG= ERROR-CORRECTION TERM FOR GASOLINE VECM (-1 FOR 1ST LAG) 

SP= WHOLESALE GASOLINE PRICE  

WP= WHOLESALE DIESEL PRICE  
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B1: WEEKLY DIESEL IN GBP 

Unit root test 

 
Null Hypothesis: DP has a unit root  
Exogenous: Constant   
Lag Length: 2 (Automatic - based on SIC, maxlag=18) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.076328  0.7266 

Test critical values: 1% level  -3.441573  
 5% level  -2.866383  
 10% level  -2.569409  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(DP)   
Method: Least Squares   
   
Sample (adjusted): 4 574   
Included observations: 571 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     DP(-1) -0.002130 0.001979 -1.076328 0.2822 

D(DP(-1)) 0.506678 0.041719 12.14505 0.0000 
D(DP(-2)) 0.114299 0.041852 2.731026 0.0065 

C 0.134063 0.099848 1.342677 0.1799 
     
     R-squared 0.333906     Mean dependent var 0.084667 

Adjusted R-squared 0.330382     S.D. dependent var 0.966694 
S.E. of regression 0.791048     Akaike info criterion 2.376064 
Sum squared resid 354.8039     Schwarz criterion 2.406518 
Log likelihood -674.3662     Hannan-Quinn criter. 2.387945 
F-statistic 94.74369     Durbin-Watson stat 2.020350 
Prob(F-statistic) 0.000000    
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Cointegration test: (DP, WP) 

   
Sample (adjusted): 3 574   
Included observations: 572 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: DP WP     
Lags interval (in first differences): 1 to 1  

     
Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.044739  29.74700  20.26184  0.0018 

At most 1  0.006215  3.565916  9.164546  0.4806 
     
      Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.044739  26.18108  15.89210  0.0009 

At most 1  0.006215  3.565916  9.164546  0.4806 
     
      Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  
     
     DP WP C   

-0.194192  0.106249  2.721143   
 0.040927  0.008143 -2.817075   

     
          
 Unrestricted Adjustment Coefficients (alpha):   
     
     D(DP)  0.150133 -0.002639   

D(WP)  0.060530 -0.256940   
     
          
1 Cointegrating Equation(s):  Log likelihood -2087.552  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

DP WP C   
 1.000000 -0.547135 -14.01262   

  (0.03133)  (2.21661)   
     

Adjustment coefficients (standard error in parentheses)  
D(DP) -0.029155    

  (0.00565)    
D(WP) -0.011754    

  (0.02663)    
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Granger Causality/Block Exogeneity tests 

 
VAR Granger Causality/Block Exogeneity Wald Tests 
  
Sample: 1 574   
Included observations: 570  

    
        

Dependent variable: DDP  
    
    Excluded Chi-sq df Prob. 
    
    PWP  125.2658 3  0.0000 

NWP  142.3419 3  0.0000 
    
    All  214.4974 6  0.0000 
    
        

Dependent variable: PWP  
    
    Excluded Chi-sq df Prob. 
    
    DDP  13.57602 3  0.0035 

NWP  40.63648 3  0.0000 
    
    All  47.24564 6  0.0000 
    
        

Dependent variable: NWP  
    
    Excluded Chi-sq df Prob. 
    
    DDP  0.874919 3  0.8315 

PWP  57.97524 3  0.0000 
    
    All  73.07440 6  0.0000 
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Choice of lag order based on VECM: 

 

VAR Lag Order Selection Criteria     
Endogenous variables: DDP PWP NWP      
Exogenous variables: RD(-1)      
     
Sample: 1 574      
Included observations: 565     

       
        Lag LogL LR FPE AIC SC HQ 
       
       0 -3314.353 NA   25.25976  11.74284  11.76587  11.75183 

1 -2987.137  649.7997  8.188932  10.61641  10.70852  10.65237 
2 -2897.810  176.4401  6.162263  10.33207  10.49326  10.39499 
3 -2863.791  66.83479  5.640015  10.24351   10.47378*   10.33339* 
4 -2857.372  12.54191  5.691862  10.25264  10.55200  10.36949 
5 -2836.136  41.26972  5.450702  10.20933  10.57777  10.35314 
6 -2825.867  19.84612  5.426451  10.20484  10.64236  10.37561 
7 -2809.726  31.02633  5.291210  10.17956  10.68616  10.37730 
8 -2796.395   25.48097*   5.211010*   10.16423*  10.73992  10.38893 
       
        * indicates lag order selected by the criterion    

 LR: sequential modified LR test statistic (each test at 5% level)   
 FPE: Final prediction error     
 AIC: Akaike information criterion     
 SC: Schwarz information criterion     
 HQ: Hannan-Quinn information criterion    

       
 
 

VAR Lag Exclusion Wald Tests   
   
Sample: 1 574    
Included observations: 569   

     
     Chi-squared test statistics for lag exclusion:  

Numbers in [ ] are p-values   
     
      DDP PWP NWP Joint 
     
     Lag 1  208.6292  2.743808  26.14838  248.9714 
 [ 0.000000] [ 0.432834] [ 8.88e-06] [ 0.000000] 
     

Lag 2  75.65071  24.75074  12.02956  131.8037 
 [ 2.22e-16] [ 1.74e-05] [ 0.007283] [ 0.000000] 
     

Lag 3  18.52589  6.255988  20.37935  63.58649 
 [ 0.000343] [ 0.099799] [ 0.000142] [ 2.72e-10] 
     

Lag 4  3.254624  7.059783  2.189237  12.73127 
 [ 0.354008] [ 0.070017] [ 0.534072] [ 0.175148] 
     
     df 3 3 3 9 
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The VECM  

 Vector Autoregression Estimates  
  
 Sample (adjusted): 5 574  
 Included observations: 570 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     DDP PWP NWP 
    
    DDP(-1)  0.248129  0.125248  0.021118 
  (0.04188)  (0.12557)  (0.12148) 
 [ 5.92449] [ 0.99742] [ 0.17384] 
    

DDP(-2)  0.067508  0.317405  0.097853 
  (0.04137)  (0.12402)  (0.11999) 
 [ 1.63198] [ 2.55923] [ 0.81554] 
    

DDP(-3)  0.098101 -0.026267 -0.064071 
  (0.03607)  (0.10813)  (0.10461) 
 [ 2.72004] [-0.24291] [-0.61245] 
    

PWP(-1)  0.085904  0.090620 -0.170996 
  (0.01508)  (0.04521)  (0.04373) 
 [ 5.69742] [ 2.00457] [-3.90983] 
    

PWP(-2)  0.086551  0.218575 -0.113179 
  (0.01549)  (0.04646)  (0.04494) 
 [ 5.58600] [ 4.70507] [-2.51830] 
    

PWP(-3)  0.056066  0.083548 -0.165831 
  (0.01620)  (0.04858)  (0.04700) 
 [ 3.45990] [ 1.71963] [-3.52810] 
    

NWP(-1)  0.130260 -0.076947  0.200602 
  (0.01565)  (0.04691)  (0.04539) 
 [ 8.32498] [-1.64021] [ 4.41994] 
    

NWP(-2)  0.082432 -0.161013  0.124901 
  (0.01633)  (0.04895)  (0.04736) 
 [ 5.04904] [-3.28934] [ 2.63747] 
    

NWP(-3)  0.004332 -0.151271  0.155563 
  (0.01619)  (0.04854)  (0.04696) 
 [ 0.26755] [-3.11618] [ 3.31242] 
    

RD(-1) -0.004749 -0.004595 -0.013791 
  (0.00385)  (0.01154)  (0.01116) 
 [-1.23411] [-0.39825] [-1.23565] 
    
     R-squared  0.538974 -0.037565  0.160410 

 Adj. R-squared  0.531564 -0.054240  0.146916 
 Sum sq. resids  245.5684  2207.515  2066.121 
 S.E. equation  0.662205  1.985445  1.920808 
 F-statistic  72.74233 -2.252729  11.88801 
 Log likelihood -568.8077 -1194.681 -1175.816 
 Akaike AIC  2.030904  4.226951  4.160757 
 Schwarz SC  2.107143  4.303190  4.236996 
 Mean dependent  0.084818  1.251793 -1.122168 
 S.D. dependent  0.967536  1.933695  2.079640 
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     Determinant resid covariance (dof adj.)  5.248459  

 Determinant resid covariance  4.977043  
 Log likelihood -2883.763  
 Akaike information criterion  10.22373  
 Schwarz criterion  10.45245  

    
        

    
    
    

COIRF table  

 

Graph of COIRF  

 

 

(2) irfname = diesel, impulse = nwp, and response = ddp
(1) irfname = diesel, impulse = pwp, and response = ddp
95% lower and upper bounds reported
                                                                                  
 8         1.06968     .752111     1.38724     .87542      .572386     1.17845    
 7         1.04256     .754685     1.33043     .841867     .572599     1.11113    
 6         1.00266     .74596      1.25936     .79734      .563857     1.03082    
 5         .939804     .716414     1.16319     .745648     .54833      .942966    
 4         .856048     .669443     1.04265     .667463     .507477     .827449    
 3         .754432     .606818     .902045     .571312     .450175     .692448    
 2         .549688     .4448       .654576     .457861     .366696     .549026    
 1         .266008     .206708     .325307     .225457     .171242     .279672    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (diesel pwp ddp coirf, ci) (diesel nwp ddp coirf, ci)

0
.5

1
1.

5

0 2 4 6 8
Weeks since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

Weekly - Diesel price response in GBP
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B2: WEEKLY GASOLINE IN GBP 

Unit root test 

 
Null Hypothesis: GP has a unit root  
Exogenous: Constant   
Lag Length: 2 (Automatic - based on SIC, maxlag=18) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.406811  0.5798 

Test critical values: 1% level  -3.441573  
 5% level  -2.866383  
 10% level  -2.569409  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GP)   
Method: Least Squares   
   
Sample (adjusted): 4 574   
Included observations: 571 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     GP(-1) -0.003246 0.002308 -1.406811 0.1600 

D(GP(-1)) 0.522787 0.041673 12.54509 0.0000 
D(GP(-2)) 0.117702 0.041836 2.813434 0.0051 

C 0.169226 0.104922 1.612882 0.1073 
     
     R-squared 0.357144     Mean dependent var 0.080582 

Adjusted R-squared 0.353743     S.D. dependent var 1.015764 
S.E. of regression 0.816574     Akaike info criterion 2.439582 
Sum squared resid 378.0715     Schwarz criterion 2.470036 
Log likelihood -692.5006     Hannan-Quinn criter. 2.451463 
F-statistic 105.0006     Durbin-Watson stat 2.018777 
Prob(F-statistic) 0.000000    
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Cointegration test: (GP, SP) 

 
   
Sample (adjusted): 3 574   
Included observations: 572 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: GP SP     
Lags interval (in first differences): 1 to 1  

     
Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.043534  28.98289  20.26184  0.0024 

At most 1  0.006141  3.523359  9.164546  0.4877 
     
      Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.043534  25.45953  15.89210  0.0012 

At most 1  0.006141  3.523359  9.164546  0.4877 
     
      Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  
     
     GP SP C   

-0.213209  0.134439  1.888909   
 0.055829  0.003285 -3.007440   

     
          
 Unrestricted Adjustment Coefficients (alpha):   
     
     D(GP)  0.142827 -0.016514   

D(SP) -0.040685 -0.246429   
     
          
1 Cointegrating Equation(s):  Log likelihood -2059.910  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

GP SP C   
 1.000000 -0.630550 -8.859424   

  (0.03703)  (2.24215)   
     

Adjustment coefficients (standard error in parentheses)  
D(GP) -0.030452    

  (0.00627)    
D(SP)  0.008674    

  (0.02816)    
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Choice of lag order based on VECM: 

 

 
VAR Lag Order Selection Criteria     
Endogenous variables: DGP PSP NSP      
Exogenous variables: RG(-1)      
     
Sample: 1 574      
Included observations: 565     

       
        Lag LogL LR FPE AIC SC HQ 
       
       0 -3297.413 NA   23.78954  11.68288  11.70590  11.69187 

1 -2962.361  665.3597  7.501332  10.52871  10.62082  10.56466 
2 -2883.020  156.7161  5.847936  10.27972  10.44091  10.34263 
3 -2834.507  95.30875  5.084654  10.13985   10.37012*  10.22973 
4 -2817.440  33.34915  4.941572  10.11129  10.41065  10.22814 
5 -2798.858  36.11149  4.776873  10.07737  10.44581  10.22118 
6 -2781.868   32.83711*   4.643805*   10.04909*  10.48661   10.21986* 
7 -2775.306  12.61280  4.684253  10.05772  10.56432  10.25546 
8 -2769.138  11.79023  4.731709  10.06774  10.64343  10.29245 
       
        * indicates lag order selected by the criterion    

 LR: sequential modified LR test statistic (each test at 5% level)   
 FPE: Final prediction error     
 AIC: Akaike information criterion     
 SC: Schwarz information criterion     
 HQ: Hannan-Quinn information criterion    

       
 
 
 

VAR Lag Exclusion Wald Tests   
   
Sample: 1 574    
Included observations: 569   

     
     Chi-squared test statistics for lag exclusion:  

Numbers in [ ] are p-values   
     
      DGP PSP NSP Joint 
     
     Lag 1  262.0390  6.619881  29.40125  313.5473 
 [ 0.000000] [ 0.085053] [ 1.84e-06] [ 0.000000] 
     

Lag 2  72.04783  5.992834  20.54759  105.4546 
 [ 1.55e-15] [ 0.111959] [ 0.000131] [ 0.000000] 
     

Lag 3  44.22077  16.55430  13.18708  84.53000 
 [ 1.35e-09] [ 0.000873] [ 0.004249] [ 2.02e-14] 
     

Lag 4  9.651958  14.45905  3.289609  34.06784 
 [ 0.021769] [ 0.002342] [ 0.349092] [ 8.69e-05] 
     
     df 3 3 3 9 
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The VECM  

 Vector Autoregression Estimates  
   
 Sample (adjusted): 5 574  
 Included observations: 570 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     DGP PSP NSP 
    
    DGP(-1)  0.185000  0.076434 -0.370780 
  (0.04172)  (0.12234)  (0.11843) 
 [ 4.43407] [ 0.62475] [-3.13069] 
    

DGP(-2)  0.055473  0.088086  0.259732 
  (0.04164)  (0.12210)  (0.11820) 
 [ 1.33222] [ 0.72143] [ 2.19745] 
    

DGP(-3)  0.112022  0.060216 -0.015726 
  (0.03518)  (0.10315)  (0.09986) 
 [ 3.18443] [ 0.58376] [-0.15749] 
    

PSP(-1)  0.131407  0.149166 -0.121945 
  (0.01515)  (0.04443)  (0.04301) 
 [ 8.67232] [ 3.35719] [-2.83514] 
    

PSP(-2)  0.072551  0.105578 -0.075613 
  (0.01600)  (0.04690)  (0.04540) 
 [ 4.53582] [ 2.25102] [-1.66535] 
    

PSP(-3)  0.081654  0.213863 -0.074741 
  (0.01594)  (0.04673)  (0.04524) 
 [ 5.12389] [ 4.57665] [-1.65226] 
    

NSP(-1)  0.139268 -0.070434  0.224009 
  (0.01575)  (0.04618)  (0.04470) 
 [ 8.84345] [-1.52524] [ 5.01105] 
    

NSP(-2)  0.099656 -0.133490  0.197092 
  (0.01679)  (0.04924)  (0.04767) 
 [ 5.93459] [-2.71097] [ 4.13474] 
    

NSP(-3)  0.043134 -0.127874  0.188809 
  (0.01674)  (0.04908)  (0.04752) 
 [ 2.57690] [-2.60523] [ 3.97367] 
    

RG(-1) -0.003651 -0.000837 -0.005050 
  (0.00405)  (0.01188)  (0.01150) 
 [-0.90118] [-0.07045] [-0.43912] 
    
     R-squared  0.586293 -0.051855  0.103292 

 Adj. R-squared  0.579644 -0.068760  0.088881 
 Sum sq. resids  243.3012  2092.010  1960.447 
 S.E. equation  0.659141  1.932804  1.871042 
 F-statistic  88.17944 -3.067462  7.167400 
 Log likelihood -566.1641 -1179.365 -1160.853 
 Akaike AIC  2.021628  4.173209  4.108256 
 Schwarz SC  2.097868  4.249448  4.184496 
 Mean dependent  0.080777  1.223204 -1.109228 
 S.D. dependent  1.016645  1.869596  1.960180 
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 Determinant resid covariance (dof adj.)  4.730187  
 Determinant resid covariance  4.485572  
 Log likelihood -2854.132  
 Akaike information criterion  10.11976  
 Schwarz criterion  10.34848  

    
    

 

COIRF table with 95% CI (Stata): 

 

 

(2) irfname = gas, impulse = nsp, and response = dgp
(1) irfname = gas, impulse = psp, and response = dgp
95% lower and upper bounds reported
                                                                                  
 8         1.31292     .963975     1.66186     1.07094     .731063     1.41083    
 7         1.27536     .960879     1.58984     1.02726     .728052     1.32646    
 6         1.21889     .940969     1.49682     .970554     .713625     1.22748    
 5         1.12812     .889622     1.36662     .896838     .682086     1.11159    
 4         1.02433     .827668     1.22099     .795013     .624022     .966004    
 3         .873954     .721356     1.02655     .670493     .542854     .798132    
 2         .616465     .508785     .724145     .491756     .397955     .585556    
 1         .335851     .275585     .396118     .238934     .184644     .293224    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (gas psp dgp coirf, ci) (gas nsp dgp coirf, ci)

0
.5

1
1.

5
2

0 2 4 6 8
Weeks since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

Weekly - Gasoline price response in GBP
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B3: DAILY DIESEL PRICES IN GBP 

Unit root tests 

Retail diesel price DP in GBP 

 
Null Hypothesis: DP has a unit root  

Exogenous: Constant   
Lag Length: 15 (Automatic - based on SIC, maxlag=27) 

     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.074088 0.7281 

Test critical values: 1% level  -3.432527  
 5% level  -2.862387  
 10% level  -2.567266  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(DP)   

Method: Least Squares   
Date: 02/05/14   Time: 17:43   
Sample (adjusted): 1/25/2000 12/30/2010  

Included observations: 2761 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     DP(-1) -0.000356 0.000331 -1.074088 0.2829 

D(DP(-1)) 0.054408 0.018982 2.866376 0.0042 
D(DP(-2)) 0.104676 0.019021 5.503174 0.0000 
D(DP(-3)) 0.125968 0.019118 6.589016 0.0000 
D(DP(-4)) 0.062721 0.019253 3.257734 0.0011 
D(DP(-5)) 0.275015 0.019243 14.29147 0.0000 
D(DP(-6)) 0.002601 0.019876 0.130867 0.8959 
D(DP(-7)) 0.048275 0.019874 2.428982 0.0152 
D(DP(-8)) 0.010793 0.019895 0.542491 0.5875 
D(DP(-9)) -0.016179 0.019876 -0.813993 0.4157 

D(DP(-10)) 0.087986 0.019879 4.426137 0.0000 
D(DP(-11)) -0.069339 0.019250 -3.602088 0.0003 
D(DP(-12)) -0.039572 0.019260 -2.054645 0.0400 
D(DP(-13)) -0.028159 0.019128 -1.472098 0.1411 
D(DP(-14)) 0.003147 0.019037 0.165292 0.8687 
D(DP(-15)) 0.105478 0.019013 5.547843 0.0000 

C 0.022488 0.016740 1.343364 0.1793 
     
     R-squared 0.235268 Mean dependent var 0.018408 

Adjusted R-squared 0.230809 S.D. dependent var 0.331330 
S.E. of regression 0.290588 Akaike info criterion 0.372319 
Sum squared resid 231.7075 Schwarz criterion 0.408790 

Log likelihood -496.9866 Hannan-Quinn criter. 0.385493 
F-statistic 52.76168 Durbin-Watson stat 1.996826 

Prob(F-statistic) 0.000000    
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Spot diesel price WP in USD 

 
Null Hypothesis: WP has a unit root  
Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=27) 
     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.136902 0.7032 

Test critical values: 1% level  -3.432514  
 5% level  -2.862382  
 10% level  -2.567263  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(WP)   

Method: Least Squares   
   

Sample (adjusted): 1/04/2000 12/30/2010  
Included observations: 2776 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     WP(-1) -0.001008 0.000887 -1.136902 0.2557 

C 0.090718 0.063301 1.433135 0.1519 
     
     R-squared 0.000466 Mean dependent var 0.026507 

Adjusted R-squared 0.000105 S.D. dependent var 1.506116 
S.E. of regression 1.506037 Akaike info criterion 3.657560 
Sum squared resid 6291.838 Schwarz criterion 3.661832 

Log likelihood -5074.693 Hannan-Quinn criter. 3.659103 
F-statistic 1.292547 Durbin-Watson stat 1.968908 

Prob(F-statistic) 0.255677    
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Cointegration test: (DP, WP) 

   
Sample (adjusted): 1/10/2000 12/30/2010  

Included observations: 2772 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 

Series: DP WP    
Lags interval (in first differences): 1 to 4  

     
Unrestricted Cointegration Rank Test (Trace)  

     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.023060 68.16060 20.26184 0.0000 

At most 1 0.001258 3.489989 9.164546 0.4933 
     
     Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.023060 64.67061 15.89210 0.0000 

At most 1 0.001258 3.489989 9.164546 0.4933 
     
     Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I): 
     
     DP WP C   

-0.205646 0.113434 2.815502   
0.047785 0.004456 -2.909702   

     
          

Unrestricted Adjustment Coefficients (alpha):  
     
     D(DP) 0.046355 0.000532   

D(WP) 0.003606 -0.053246   
     
          

1 Cointegrating Equation(s): Log likelihood -5673.149  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

DP WP C   
1.000000 -0.551601 -13.69102   

 (0.01893) (1.34135)   
     

Adjustment coefficients (standard error in parentheses)  
D(DP) -0.009533    

 (0.00118)    
D(WP) -0.000742    

 (0.00587)    
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Granger Causality/Block Exogeneity tests 

 
Pairwise Granger Causality Tests 

 
Sample: 1/03/2000 12/30/2010 

Lags: 17   
    
    Null Hypothesis: Obs F-Statistic Prob. 
    
    WP does not Granger Cause DP 2760 19.1286 2.E-55 

DP does not Granger Cause WP 1.99195 0.0091 
    
     

VAR Granger Causality/Block Exogeneity Wald Tests 
Date: 02/05/14   Time: 18:57  

Sample: 1/03/2000 12/30/2010  
Included observations: 2759  

    
        

Dependent variable: DDP  
    
    Excluded Chi-sq df Prob. 
    
    PWP 190.8958 17 0.0000 

NWP 200.2719 17 0.0000 
    
    All 288.7953 34 0.0000 
    
        

Dependent variable: PWP  
    
    Excluded Chi-sq df Prob. 
    
    DDP 27.55266 17 0.0504 

NWP 75.44996 17 0.0000 
    
    All 104.7900 34 0.0000 
    
        

Dependent variable: NWP  
    
    Excluded Chi-sq df Prob. 
    
    DDP 30.56805 17 0.0225 

PWP 84.64523 17 0.0000 
    
    All 137.7589 34 0.0000 
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Choice of lag order based on asymmetric and asymmetric VECM: 

Symmetric VECM 

VAR Lag Order Selection Criteria     
Endogenous variables: DDP DWP     

Exogenous variables: RD(-1)     
     

Sample: 1/03/2000 12/30/2010     
Included observations: 2746     

       
       Lag LogL LR FPE AIC SC HQ 
       
       0 -5812.946 NA 0.236799 4.235212 4.239522 4.236769 

1 -5790.398 45.04628 0.233622 4.221703 4.234633 4.226375 
2 -5735.547 109.5012 0.225128 4.184667 4.206218 4.192454 
3 -5674.767 121.2508 0.216007 4.143312 4.173483 4.154213 
4 -5649.709 49.95118 0.212720 4.127975 4.166767 4.141991 
5 -5490.457 317.2279 0.189977 4.014900 4.062312 4.032031 
6 -5472.142 36.45849 0.188006 4.004473 4.060506 4.024719 
7 -5448.837 46.35388 0.185381 3.990413 4.055066 4.013774 
8 -5441.509 14.56546 0.184932 3.987989 4.061263 4.014464 
9 -5428.943 24.95823 0.183782 3.981750 4.063644 4.011340 
10 -5400.979 55.50057 0.180602 3.964296 4.054811* 3.997001 
11 -5388.417 24.91375 0.179480 3.958060 4.057195 3.993880* 
12 -5384.476 7.810803 0.179487 3.958103 4.065858 3.997037 
13 -5382.280 4.348522 0.179724 3.959417 4.075792 4.001466 
14 -5374.907 14.59040 0.179283 3.956960 4.081956 4.002124 
15 -5357.534 34.35319 0.177545 3.947221 4.080837 3.995499 
16 -5353.898 7.184408 0.177592 3.947486 4.089722 3.998879 
17 -5346.841 13.93445 0.177197* 3.945259* 4.096116 3.999767 
18 -5345.407 2.828489 0.177529 3.947128 4.106606 4.004751 
19 -5340.915 8.857334 0.177465 3.946770 4.114867 4.007507 
20 -5339.431 2.923897 0.177791 3.948602 4.125320 4.012454 
21 -5334.956 8.808559 0.177730 3.948257 4.133595 4.015223 
22 -5329.986 9.777341 0.177604 3.947550 4.141509 4.017631 
23 -5327.223 5.431871 0.177764 3.948451 4.151030 4.021647 
24 -5323.586 7.143828 0.177812 3.948715 4.159915 4.025026 
25 -5319.652 7.721801 0.177820 3.948764 4.168584 4.028189 
26 -5317.478 4.265459 0.178057 3.950093 4.178533 4.032633 
27 -5314.930 4.993943 0.178246 3.951150 4.188211 4.036805 
28 -5313.298 3.194977 0.178554 3.952876 4.198557 4.041645 
29 -5307.171 11.99136* 0.178277 3.951326 4.205628 4.043210 
30 -5303.693 6.801058 0.178345 3.951707 4.214629 4.046705 
       
       * indicates lag order selected by the criterion    

LR: sequential modified LR test statistic (each test at 5% level)   
FPE: Final prediction error     

AIC: Akaike information criterion     
SC: Schwarz information criterion     

HQ: Hannan-Quinn information criterion    
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Asymmetric VECM: 

 
VAR Lag Exclusion Wald Tests   

   
Sample: 1/03/2000 12/30/2010   

Included observations: 2755   
     
     Chi-squared test statistics for lag exclusion:  

Numbers in [ ] are p-values   
     
      DDP PWP NWP Joint 
     
     Lag 1 7.724970 3.029730 1.955687 15.43691 
 [ 0.052051] [ 0.387064] [ 0.581655] [ 0.079613] 
     

Lag 2 1.856096 15.01787 5.125296 29.13651 
 [ 0.602804] [ 0.001801] [ 0.162849] [ 0.000615] 
     

Lag 3 52.63016 0.586228 6.026163 61.25547 
 [ 2.20e-11] [ 0.899578] [ 0.110344] [ 7.68e-10] 
     

Lag 4 48.78482 4.134181 10.07451 63.43682 
 [ 1.45e-10] [ 0.247335] [ 0.017943] [ 2.90e-10] 
     

Lag 5 166.7605 17.78602 17.78053 215.2758 
 [ 0.000000] [ 0.000487] [ 0.000488] [ 0.000000] 
     

Lag 6 55.84285 2.230421 1.482235 62.60155 
 [ 4.54e-12] [ 0.525981] [ 0.686376] [ 4.21e-10] 
     

Lag 7 67.12354 1.345174 2.903103 74.58745 
 [ 1.77e-14] [ 0.718435] [ 0.406807] [ 1.91e-12] 
     

Lag 8 24.37686 1.517730 4.455072 33.67753 
 [ 2.08e-05] [ 0.678184] [ 0.216333] [ 0.000102] 
     

Lag 9 40.43799 0.502876 9.228844 49.66897 
 [ 8.60e-09] [ 0.918259] [ 0.026398] [ 1.24e-07] 
     

Lag 10 40.74660 1.723518 5.142079 50.99850 
 [ 7.40e-09] [ 0.631718] [ 0.161684] [ 6.99e-08] 
     

Lag 11 25.04865 6.833263 1.585850 34.43612 
 [ 1.51e-05] [ 0.077406] [ 0.662602] [ 7.49e-05] 
     

Lag 12 10.58091 1.130824 6.853069 19.87670 
 [ 0.014222] [ 0.769639] [ 0.076731] [ 0.018689] 
     

Lag 13 5.880416 8.971441 0.231166 18.32765 
 [ 0.117575] [ 0.029673] [ 0.972408] [ 0.031557] 
     

Lag 14 11.01866 13.24755 6.702572 35.69844 
 [ 0.011625] [ 0.004131] [ 0.082007] [ 4.48e-05] 
     

Lag 15 29.61863 4.025799 4.620036 37.73846 
 [ 1.66e-06] [ 0.258692] [ 0.201830] [ 1.94e-05] 
     

Lag 16 8.878697 2.505154 7.331577 18.67767 
 [ 0.030948] [ 0.474360] [ 0.062048] [ 0.028077] 
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Lag 17 5.118644 14.94146 13.36371 37.57299 

 [ 0.163313] [ 0.001867] [ 0.003913] [ 2.08e-05] 
     

Lag 18 1.797196 2.329085 9.932447 15.33637 
 [ 0.615545] [ 0.506972] [ 0.019149] [ 0.082101] 
     

Lag 19 1.979696 6.417611 6.592162 15.05474 
 [ 0.576632] [ 0.092969] [ 0.086098] [ 0.089443] 
     

Lag 20 3.885749 7.221210 1.188555 12.61317 
 [ 0.274068] [ 0.065171] [ 0.755751] [ 0.180905] 
     

Lag 21 4.241407 16.00845 5.938186 21.14186 
 [ 0.236549] [ 0.001129] [ 0.114657] [ 0.012035] 
     
     df 3 3 3 9 
     
     

 

The VECM with 17 lags 

Vector Autoregression Estimates  
  

Sample (adjusted): 1/27/2000 12/30/2010 
Included observations: 2759 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DDP PWP NWP 
    
    DDP(-1) -0.040805 -0.013190 0.040303 
 (0.01922) (0.06450) (0.06083) 
 [-2.12259] [-0.20449] [ 0.66250] 
    

DDP(-2) 0.020422 0.119731 0.085682 
 (0.01922) (0.06448) (0.06081) 
 [ 1.06265] [ 1.85688] [ 1.40891] 
    

DDP(-3) 0.052278 -0.007749 -0.076062 
 (0.01912) (0.06417) (0.06052) 
 [ 2.73366] [-0.12076] [-1.25685] 
    

DDP(-4) 0.007347 0.116094 0.130873 
 (0.01912) (0.06416) (0.06052) 
 [ 0.38421] [ 1.80938] [ 2.16265] 
    

DDP(-5) 0.225868 -0.029035 -0.055487 
 (0.01913) (0.06417) (0.06052) 
 [ 11.8094] [-0.45245] [-0.91677] 
    

DDP(-6) -0.004543 0.046614 -0.056607 
 (0.01959) (0.06574) (0.06200) 
 [-0.23187] [ 0.70905] [-0.91294] 
    

DDP(-7) 0.050276 0.060558 0.006317 
 (0.01953) (0.06551) (0.06179) 
 [ 2.57492] [ 0.92439] [ 0.10224] 
    

DDP(-8) 0.013811 -0.042558 0.002770 
 (0.01943) (0.06518) (0.06147) 
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 [ 0.71100] [-0.65297] [ 0.04506] 
    

DDP(-9) -0.007401 0.006475 -0.039296 
 (0.01936) (0.06495) (0.06125) 
 [-0.38237] [ 0.09969] [-0.64153] 
    

DDP(-10) 0.093378 0.006790 0.020848 
 (0.01932) (0.06483) (0.06114) 
 [ 4.83278] [ 0.10474] [ 0.34096] 
    

DDP(-11) -0.048139 -0.032716 0.057309 
 (0.01930) (0.06475) (0.06107) 
 [-2.49457] [-0.50528] [ 0.93845] 
    

DDP(-12) -0.019422 -0.031300 -0.028887 
 (0.01925) (0.06460) (0.06093) 
 [-1.00879] [-0.48453] [-0.47414] 
    

DDP(-13) -0.022905 0.013242 0.010951 
 (0.01858) (0.06235) (0.05881) 
 [-1.23249] [ 0.21236] [ 0.18621] 
    

DDP(-14) 0.004764 0.108125 0.035812 
 (0.01854) (0.06221) (0.05867) 
 [ 0.25695] [ 1.73818] [ 0.61040] 
    

DDP(-15) 0.107566 -0.110794 -0.097714 
 (0.01840) (0.06175) (0.05824) 
 [ 5.84466] [-1.79424] [-1.67778] 
    

DDP(-16) -0.006689 0.106944 0.125155 
 (0.01836) (0.06160) (0.05809) 
 [-0.36436] [ 1.73621] [ 2.15431] 
    

DDP(-17) -0.023832 0.026818 0.108407 
 (0.01835) (0.06158) (0.05808) 
 [-1.29860] [ 0.43553] [ 1.86665] 
    

PWP(-1) 0.004514 0.038982 -0.023735 
 (0.00628) (0.02106) (0.01987) 
 [ 0.71912] [ 1.85071] [-1.19478] 
    

PWP(-2) 0.003874 0.079142 -0.036061 
 (0.00628) (0.02109) (0.01989) 
 [ 0.61640] [ 3.75304] [-1.81314] 
    

PWP(-3) 0.030975 0.003760 -0.026631 
 (0.00631) (0.02117) (0.01997) 
 [ 4.90857] [ 0.17759] [-1.33362] 
    

PWP(-4) 0.030149 0.023451 -0.037702 
 (0.00632) (0.02121) (0.02000) 
 [ 4.77019] [ 1.10590] [-1.88508] 
    

PWP(-5) 0.010553 0.013972 -0.074099 
 (0.00635) (0.02129) (0.02008) 
 [ 1.66278] [ 0.65616] [-3.68961] 
    

PWP(-6) 0.034379 0.033444 -0.015282 
 (0.00636) (0.02136) (0.02014) 
 [ 5.40136] [ 1.56605] [-0.75870] 
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PWP(-7) 0.030437 0.025873 -0.031234 
 (0.00640) (0.02146) (0.02024) 
 [ 4.75901] [ 1.20569] [-1.54328] 
    

PWP(-8) 0.014204 0.019772 -0.044094 
 (0.00643) (0.02157) (0.02035) 
 [ 2.20929] [ 0.91658] [-2.16724] 
    

PWP(-9) 0.015406 -0.008971 -0.035590 
 (0.00644) (0.02161) (0.02038) 
 [ 2.39201] [-0.41512] [-1.74618] 
    

PWP(-10) 0.015851 0.017543 -0.045994 
 (0.00644) (0.02162) (0.02039) 
 [ 2.45967] [ 0.81137] [-2.25538] 
    

PWP(-11) 0.019332 0.046408 0.018311 
 (0.00646) (0.02167) (0.02043) 
 [ 2.99366] [ 2.14193] [ 0.89606] 
    

PWP(-12) 0.017474 -0.002914 -0.054525 
 (0.00647) (0.02171) (0.02047) 
 [ 2.70098] [-0.13424] [-2.66322] 
    

PWP(-13) 0.007479 0.061563 -0.012204 
 (0.00642) (0.02155) (0.02032) 
 [ 1.16443] [ 2.85680] [-0.60046] 
    

PWP(-14) 0.000781 0.065078 -0.036228 
 (0.00643) (0.02158) (0.02035) 
 [ 0.12135] [ 3.01575] [-1.78001] 
    

PWP(-15) 0.000489 0.012456 -0.005728 
 (0.00643) (0.02157) (0.02035) 
 [ 0.07611] [ 0.57739] [-0.28154] 
    

PWP(-16) 0.015355 0.008435 -0.042286 
 (0.00641) (0.02150) (0.02027) 
 [ 2.39673] [ 0.39241] [-2.08573] 
    

PWP(-17) 0.002635 0.048813 -0.049109 
 (0.00641) (0.02150) (0.02028) 
 [ 0.41130] [ 2.27061] [-2.42205] 
    

NWP(-1) 0.008019 -0.006731 0.026655 
 (0.00662) (0.02223) (0.02096) 
 [ 1.21056] [-0.30282] [ 1.27150] 
    

NWP(-2) 0.002554 -0.049457 0.010473 
 (0.00662) (0.02220) (0.02094) 
 [ 0.38604] [-2.22810] [ 0.50028] 
    

NWP(-3) 0.016653 -0.025876 0.046265 
 (0.00661) (0.02219) (0.02093) 
 [ 2.51839] [-1.16628] [ 2.21094] 
    

NWP(-4) 0.020243 0.002152 0.052449 
 (0.00661) (0.02219) (0.02093) 
 [ 3.06039] [ 0.09696] [ 2.50568] 
    

NWP(-5) 0.030833 -0.092848 0.071538 
 (0.00663) (0.02224) (0.02098) 



 
 

339 
 

 [ 4.65113] [-4.17436] [ 3.41014] 
    

NWP(-6) 0.018628 -0.006589 0.013888 
 (0.00670) (0.02248) (0.02120) 
 [ 2.78003] [-0.29309] [ 0.65497] 
    

NWP(-7) 0.028621 -0.021275 -0.007679 
 (0.00671) (0.02251) (0.02123) 
 [ 4.26703] [-0.94535] [-0.36179] 
    

NWP(-8) 0.022256 -0.009476 0.021345 
 (0.00671) (0.02253) (0.02125) 
 [ 3.31445] [-0.42060] [ 1.00455] 
    

NWP(-9) 0.031663 0.009216 0.061776 
 (0.00672) (0.02254) (0.02126) 
 [ 4.71373] [ 0.40890] [ 2.90622] 
    

NWP(-10) 0.020412 0.011528 0.032055 
 (0.00674) (0.02262) (0.02133) 
 [ 3.02813] [ 0.50971] [ 1.50268] 
    

NWP(-11) 0.011979 -0.048104 -0.007571 
 (0.00674) (0.02262) (0.02133) 
 [ 1.77711] [-2.12689] [-0.35493] 
    

NWP(-12) 0.000741 -0.030036 0.009260 
 (0.00674) (0.02261) (0.02132) 
 [ 0.11000] [-1.32862] [ 0.43428] 
    

NWP(-13) 0.008214 -0.041368 0.003714 
 (0.00669) (0.02246) (0.02118) 
 [ 1.22735] [-1.84226] [ 0.17535] 
    

NWP(-14) 0.020619 -0.001311 0.059040 
 (0.00668) (0.02241) (0.02113) 
 [ 3.08748] [-0.05849] [ 2.79366] 
    

NWP(-15) 0.013154 -0.030672 0.034380 
 (0.00668) (0.02241) (0.02114) 
 [ 1.96941] [-1.36870] [ 1.62660] 
    

NWP(-16) -0.016173 0.005012 0.029958 
 (0.00666) (0.02234) (0.02107) 
 [-2.42933] [ 0.22438] [ 1.42201] 
    

NWP(-17) 0.009159 -0.095592 -0.018237 
 (0.00665) (0.02231) (0.02104) 
 [ 1.37757] [-4.28535] [-0.86685] 
    

RD(-1) -0.001579 -0.003246 0.000946 
 (0.00088) (0.00296) (0.00279) 
 [-1.79265] [-1.09828] [ 0.33930] 
    
    R-squared 0.324193 0.059067 0.127474 

Adj. R-squared 0.311461 0.041340 0.111036 
Sum sq. resids 204.7630 2305.141 2050.518 
S.E. equation 0.275031 0.922794 0.870338 

F-statistic 25.46236 3.332020 7.754641 
Log likelihood -327.0888 -3666.919 -3505.449 

Akaike AIC 0.274802 2.695846 2.578796 
Schwarz SC 0.386428 2.807472 2.690422 
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Mean dependent 0.018428 0.531707 -0.505575 
S.D. dependent 0.331449 0.942481 0.923093 

    
    Determinant resid covariance (dof adj.) 0.040867  

Determinant resid covariance 0.038600  
Log likelihood -7254.959  

Akaike information criterion 5.372206  
Schwarz criterion 5.707085  
    
    

COIRF table 

 

Graph of COIRF  

 

(2) irfname = diesel, impulse = nwp, and response = ddp
(1) irfname = diesel, impulse = pwp, and response = ddp
95% lower and upper bounds reported
                                                                                  
 21        .482137     .388275     .575998     .320275     .244953     .395596    
 20        .470786     .381067     .560505     .319338     .246858     .391818    
 19        .461921     .376291     .54755      .309423     .239777     .379069    
 18        .450465     .369037     .531893     .296089     .22955      .362627    
 17        .437027     .359783     .514271     .286016     .222884     .349148    
 16        .419639     .34682      .492458     .269122     .208403     .329841    
 15        .398233     .330103     .466363     .273153     .215409     .330897    
 14        .385198     .321567     .448829     .251965     .197215     .306716    
 13        .363082     .303994     .422169     .223661     .172087     .275235    
 12        .340093     .285513     .394672     .2051       .156931     .253269    
 11        .312869     .262861     .362877     .193863     .149351     .238374    
 10        .278224     .233059     .323389     .177496     .13696      .218031    
 9         .248485     .207625     .289344     .15227      .115245     .189296    
 8         .213513     .176964     .250063     .122996     .089518     .156474    
 7         .183193     .150783     .215604     .101742     .071795     .131689    
 6         .142984     .114472     .171496     .077148     .050558     .103738    
 5         .101421     .077046     .125796     .061134     .038153     .084115    
 4         .079634     .05839      .100878     .037463     .017224     .057701    
 3         .045186     .027312     .063061     .021373     .004109     .038637    
 2         .011078     -.003313    .025469     .008238     -.00583     .022307    
 1         .00689      -.00338     .01716      .006335     -.003826    .016495    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (diesel pwp ddp coirf, ci) (diesel nwp ddp coirf, ci)

0
.2

.4
.6

0 5 10 15 20
Days since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

Daily-Diesel response in GBP
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B4: DAILY GASOLINE PRICES IN GBP: 

Unit root tests 

Retail gasoline price GP in GBP 

 
Null Hypothesis: GP has a unit root  

Exogenous: Constant   
Lag Length: 5 (Automatic - based on SIC, maxlag=27) 

     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.129168 0.7064 

Test critical values: 1% level  -3.432518  
 5% level  -2.862384  
 10% level  -2.567264  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GP)   

Method: Least Squares   
   

Sample (adjusted): 1/11/2000 12/30/2010  
Included observations: 2771 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     GP(-1) -0.000374 0.000331 -1.129168 0.2589 

D(GP(-1)) 0.157462 0.018383 8.565763 0.0000 
D(GP(-2)) 0.193941 0.018622 10.41445 0.0000 
D(GP(-3)) 0.107478 0.018903 5.685707 0.0000 
D(GP(-4)) 0.021182 0.018656 1.135393 0.2563 
D(GP(-5)) 0.257229 0.018423 13.96253 0.0000 

C 0.021104 0.015171 1.391018 0.1643 
     
     R-squared 0.273223 Mean dependent var 0.017490 

Adjusted R-squared 0.271645 S.D. dependent var 0.302369 
S.E. of regression 0.258053 Akaike info criterion 0.131218 
Sum squared resid 184.0582 Schwarz criterion 0.146190 

Log likelihood -174.8022 Hannan-Quinn criter. 0.136625 
F-statistic 173.1816 Durbin-Watson stat 1.996457 

Prob(F-statistic) 0.000000    
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Spot gasoline price SP in USD 

 
Null Hypothesis: SP has a unit root  

Exogenous: Constant   
Lag Length: 1 (Automatic - based on SIC, maxlag=27) 

     
        t-Statistic Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.495686 0.5359 

Test critical values: 1% level  -3.432515  
 5% level  -2.862382  
 10% level  -2.567263  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(SP)   

Method: Least Squares   
   

Sample (adjusted): 1/05/2000 12/30/2010  
Included observations: 2775 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     SP(-1) -0.001497 0.001001 -1.495686 0.1348 

D(SP(-1)) 0.125437 0.018849 6.654968 0.0000 
C 0.104190 0.061085 1.705661 0.0882 
     
     R-squared 0.016312 Mean dependent var 0.024058 

Adjusted R-squared 0.015602 S.D. dependent var 1.344371 
S.E. of regression 1.333842 Akaike info criterion 3.415085 
Sum squared resid 4931.762 Schwarz criterion 3.421494 

Log likelihood -4735.430 Hannan-Quinn criter. 3.417399 
F-statistic 22.98328 Durbin-Watson stat 2.000236 

Prob(F-statistic) 0.000000    
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Cointegration test: (GP, SP) 

   
Sample (adjusted): 1/10/2000 12/30/2010  

Included observations: 2772 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: GP SP    

Lags interval (in first differences): 1 to 4  
     

Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.016864 50.94760 20.26184 0.0000 

At most 1 0.001371 3.802543 9.164546 0.4423 
     
     Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None * 0.016864 47.14506 15.89210 0.0000 

At most 1 0.001371 3.802543 9.164546 0.4423 
     
     Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 

* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I): 
     
     GP SP C   

-0.221595 0.139189 2.063036   
0.060301 0.001456 -3.073162   

     
          

Unrestricted Adjustment Coefficients (alpha):  
     
     D(GP) 0.033415 -0.000531   

D(SP) -0.001869 -0.049365   
     
          

1 Cointegrating Equation(s): Log likelihood -4879.213  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

GP SP C   
1.000000 -0.628124 -9.309942   

 (0.02633) (1.59540)   
     

Adjustment coefficients (standard error in parentheses)  
D(GP) -0.007405    

 (0.00108)    
D(SP) 0.000414    

 (0.00562)    
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Granger Causality/Block Exogeneity tests 

 
Pairwise Granger Causality Tests 

 
Sample: 1/03/2000 12/30/2010 

Lags: 15   
    
    Null Hypothesis: Obs F-Statistic Prob. 
    
    SP does not Granger Cause GP 2762 30.1363 6.E-80 

GP does not Granger Cause SP 1.61333 0.0626 
    
     

VAR Granger Causality/Block Exogeneity Wald Tests 
  

Sample: 1/03/2000 12/30/2010  
Included observations: 2761  

    
        

Dependent variable: DGP  
    
    Excluded Chi-sq df Prob. 
    
    PSP 265.6359 15 0.0000 

NSP 273.4484 15 0.0000 
    
    All 402.5582 30 0.0000 
    
        

Dependent variable: PSP  
    
    Excluded Chi-sq df Prob. 
    
    DGP 15.14502 15 0.4410 

NSP 38.29092 15 0.0008 
    
    All 71.50672 30 0.0000 
    
        

Dependent variable: NSP  
    
    Excluded Chi-sq df Prob. 
    
    DGP 23.02491 15 0.0836 

PSP 45.46728 15 0.0001 
    
    All 106.0717 30 0.0000 
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Choice of lag order based on asymmetric and asymmetric VECM: 

Symmetric VECM 

VAR Lag Order Selection Criteria     
Endogenous variables: DGP DSP     

Exogenous variables: RG(-1)     
     

Sample: 1/03/2000 12/30/2010     
Included observations: 2746     

       
       Lag LogL LR FPE AIC SC HQ 
       
       0 -5212.878 NA 0.152958 3.798163 3.802473 3.799721 

1 -5074.081 277.2905 0.138655 3.699986 3.712917 3.704658 
2 -4948.338 251.0292 0.126890 3.611317 3.632868 3.619103 
3 -4888.484 119.4031 0.121831 3.570636 3.600808 3.581538 
4 -4861.803 53.18711 0.119835 3.554117 3.592909 3.568133 
5 -4738.236 246.1429 0.109841 3.467033 3.514445 3.484164 
6 -4715.577 45.10331 0.108358 3.453443 3.509476 3.473689 
7 -4699.377 32.22257 0.107400 3.444557 3.509210* 3.467918 
8 -4689.089 20.44913 0.106909 3.439978 3.513251 3.466453 
9 -4680.100 17.85381 0.106521 3.436344 3.518238 3.465934 
10 -4657.792 44.27494 0.105110 3.423009 3.513524 3.455714* 
11 -4656.096 3.363245 0.105287 3.424688 3.523822 3.460507 
12 -4653.507 5.130751 0.105395 3.425715 3.533470 3.464649 
13 -4642.746 21.31046 0.104878 3.420791 3.537166 3.462840 
14 -4635.028 15.27353 0.104594 3.418083 3.543079 3.463246 
15 -4619.225 31.24867 0.103699* 3.409487* 3.543103 3.457765 
16 -4617.670 3.072530 0.103884 3.411267 3.553504 3.462660 
17 -4614.708 5.848556 0.103962 3.412023 3.562880 3.466531 
18 -4614.211 0.981547 0.104228 3.414574 3.574052 3.472197 
19 -4605.887 16.41165 0.103900 3.411425 3.579523 3.472162 
20 -4602.256 7.153481 0.103928 3.411694 3.588412 3.475546 
21 -4598.379 7.631716 0.103938 3.411784 3.597122 3.478750 
22 -4595.548 5.568992 0.104026 3.412635 3.606594 3.482716 
23 -4588.837 13.19253* 0.103821 3.410661 3.613240 3.483857 
24 -4584.683 8.159161 0.103810 3.410549 3.621748 3.486859 
25 -4583.599 2.129555 0.104030 3.412672 3.632492 3.492097 
26 -4580.876 5.339615 0.104127 3.413602 3.642043 3.496142 
27 -4579.607 2.487415 0.104335 3.415591 3.652652 3.501246 
28 -4577.336 4.448173 0.104466 3.416851 3.662532 3.505620 
29 -4574.202 6.132633 0.104532 3.417482 3.671783 3.509366 
30 -4572.626 3.081656 0.104717 3.419247 3.682169 3.514246 
       
       * indicates lag order selected by the criterion    

LR: sequential modified LR test statistic (each test at 5% level)   
FPE: Final prediction error     

AIC: Akaike information criterion     
SC: Schwarz information criterion     

HQ: Hannan-Quinn information criterion    
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Asymmetric VECM: 

 
VAR Lag Exclusion Wald Tests   

Date: 02/05/14   Time: 18:18   
Sample: 1/03/2000 12/30/2010   

Included observations: 2755   
     
     Chi-squared test statistics for lag exclusion:  

Numbers in [ ] are p-values   
     
      DGP PSP NSP Joint 
     
     Lag 1 9.923990 63.03847 18.07124 89.30530 
 [ 0.019223] [ 1.32e-13] [ 0.000425] [ 2.22e-15] 
     

Lag 2 96.20444 0.457575 11.83752 112.7218 
 [ 0.000000] [ 0.928108] [ 0.007961] [ 0.000000] 
     

Lag 3 60.38721 3.272786 9.085324 80.94471 
 [ 4.86e-13] [ 0.351448] [ 0.028178] [ 1.05e-13] 
     

Lag 4 89.64963 8.156921 5.173555 110.1767 
 [ 0.000000] [ 0.042878] [ 0.159521] [ 0.000000] 
     

Lag 5 151.2786 1.768259 5.198143 156.0808 
 [ 0.000000] [ 0.621866] [ 0.157850] [ 0.000000] 
     

Lag 6 72.70271 2.442696 3.281575 79.38500 
 [ 1.11e-15] [ 0.485736] [ 0.350215] [ 2.14e-13] 
     

Lag 7 39.65391 3.824895 6.123738 50.53873 
 [ 1.26e-08] [ 0.281004] [ 0.105743] [ 8.53e-08] 
     

Lag 8 23.51216 4.628635 15.91763 45.22829 
 [ 3.16e-05] [ 0.201099] [ 0.001179] [ 8.37e-07] 
     

Lag 9 28.07580 0.159072 13.23800 43.15315 
 [ 3.50e-06] [ 0.983909] [ 0.004149] [ 2.02e-06] 
     

Lag 10 33.87875 4.234301 7.567844 42.06615 
 [ 2.10e-07] [ 0.237250] [ 0.055841] [ 3.20e-06] 
     

Lag 11 10.15616 2.708815 4.322743 20.16921 
 [ 0.017284] [ 0.438731] [ 0.228657] [ 0.016896] 
     

Lag 12 1.896950 7.715516 2.921293 11.84762 
 [ 0.594068] [ 0.052272] [ 0.403920] [ 0.222037] 
     

Lag 13 23.67085 9.611763 3.024362 38.46388 
 [ 2.93e-05] [ 0.022172] [ 0.387884] [ 1.44e-05] 
     

Lag 14 10.76799 9.012301 6.094248 27.66887 
 [ 0.013049] [ 0.029128] [ 0.107114] [ 0.001083] 
     

Lag 15 18.45578 5.314359 3.618097 26.45837 
 [ 0.000354] [ 0.150173] [ 0.305765] [ 0.001718] 
     

Lag 16 7.594430 6.142543 3.233775 14.43953 
 [ 0.055181] [ 0.104877] [ 0.356967] [ 0.107527] 
     

Lag 17 2.059082 7.129794 4.721213 11.99137 



 
 

347 
 

 [ 0.560235] [ 0.067874] [ 0.193387] [ 0.213796] 
     

Lag 18 1.778860 1.551092 9.043920 16.58597 
 [ 0.619546] [ 0.670529] [ 0.028713] [ 0.055608] 
     

Lag 19 3.952152 9.326003 8.608908 18.77051 
 [ 0.266677] [ 0.025256] [ 0.034969] [ 0.027217] 
     

Lag 20 6.860661 2.832001 2.251165 13.51769 
 [ 0.076474] [ 0.418259] [ 0.521941] [ 0.140546] 
     

Lag 21 2.687693 11.16731 4.778731 21.39923 
 [ 0.442323] [ 0.010855] [ 0.188735] [ 0.010991] 
     
     df 3 3 3 9 
     
      

The VECM  

 
Vector Autoregression Estimates  

  
Sample (adjusted): 1/25/2000 12/30/2010 

Included observations: 2761 after adjustments 
Standard errors in ( ) & t-statistics in [ ] 

    
     DGP PSP NSP 
    
    DGP(-1) 0.022724 -0.025522 -0.056496 
 (0.01910) (0.06497) (0.06347) 
 [ 1.18983] [-0.39283] [-0.89012] 
    

DGP(-2) 0.083426 -0.010231 -0.093442 
 (0.01907) (0.06486) (0.06337) 
 [ 4.37538] [-0.15773] [-1.47465] 
    

DGP(-3) 0.037465 0.035598 -0.034921 
 (0.01911) (0.06501) (0.06351) 
 [ 1.96031] [ 0.54754] [-0.54983] 
    

DGP(-4) -0.021718 0.003670 0.024949 
 (0.01913) (0.06506) (0.06356) 
 [-1.13555] [ 0.05640] [ 0.39253] 
    

DGP(-5) 0.197466 0.086156 0.133300 
 (0.01912) (0.06504) (0.06354) 
 [ 10.3280] [ 1.32464] [ 2.09791] 
    

DGP(-6) 0.009849 0.021483 -0.102512 
 (0.01939) (0.06597) (0.06444) 
 [ 0.50789] [ 0.32565] [-1.59071] 
    

DGP(-7) 0.021029 0.066599 0.044396 
 (0.01935) (0.06582) (0.06430) 
 [ 1.08686] [ 1.01181] [ 0.69043] 
    

DGP(-8) -0.006713 -0.161081 -0.128826 
 (0.01934) (0.06578) (0.06426) 
 [-0.34721] [-2.44897] [-2.00488] 
    

DGP(-9) -0.035263 -0.025913 0.023566 
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 (0.01928) (0.06560) (0.06409) 
 [-1.82855] [-0.39499] [ 0.36770] 
    

DGP(-10) 0.068041 -0.011948 -0.037950 
 (0.01918) (0.06526) (0.06375) 
 [ 3.54674] [-0.18307] [-0.59526] 
    

DGP(-11) -0.047397 -0.065127 -0.040635 
 (0.01869) (0.06358) (0.06212) 
 [-2.53580] [-1.02427] [-0.65419] 
    

DGP(-12) -0.023772 0.077889 0.116895 
 (0.01866) (0.06348) (0.06202) 
 [-1.27387] [ 1.22693] [ 1.88490] 
    

DGP(-13) 0.001330 0.086601 0.085612 
 (0.01856) (0.06314) (0.06169) 
 [ 0.07166] [ 1.37148] [ 1.38788] 
    

DGP(-14) 0.046700 0.027680 0.009711 
 (0.01827) (0.06215) (0.06072) 
 [ 2.55597] [ 0.44535] [ 0.15994] 
    

DGP(-15) 0.089734 0.016538 -0.062411 
 (0.01807) (0.06147) (0.06005) 
 [ 4.96619] [ 0.26904] [-1.03935] 
    

PSP(-1) 0.014639 0.159829 0.013429 
 (0.00615) (0.02092) (0.02044) 
 [ 2.38042] [ 7.63992] [ 0.65708] 
    

PSP(-2) 0.044812 0.014073 -0.043636 
 (0.00621) (0.02113) (0.02064) 
 [ 7.21498] [ 0.66604] [-2.11404] 
    

PSP(-3) 0.031882 0.041985 -0.067400 
 (0.00627) (0.02132) (0.02083) 
 [ 5.08604] [ 1.96889] [-3.23542] 
    

PSP(-4) 0.022560 0.054839 -0.035367 
 (0.00632) (0.02149) (0.02099) 
 [ 3.57114] [ 2.55186] [-1.68465] 
    

PSP(-5) 0.027048 0.022657 -0.015259 
 (0.00633) (0.02155) (0.02105) 
 [ 4.27058] [ 1.05155] [-0.72495] 
    

PSP(-6) 0.028236 0.025117 -0.010016 
 (0.00636) (0.02164) (0.02114) 
 [ 4.43972] [ 1.16094] [-0.47389] 
    

PSP(-7) 0.011098 0.012024 -0.052309 
 (0.00637) (0.02169) (0.02118) 
 [ 1.74089] [ 0.55448] [-2.46915] 
    

PSP(-8) 0.017579 0.010247 -0.044464 
 (0.00637) (0.02168) (0.02118) 
 [ 2.75882] [ 0.47275] [-2.09983] 
    

PSP(-9) 0.013610 -0.001126 -0.041645 
 (0.00638) (0.02169) (0.02119) 
 [ 2.13476] [-0.05192] [-1.96556] 
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PSP(-10) 0.018842 0.012661 0.004190 

 (0.00639) (0.02173) (0.02122) 
 [ 2.95020] [ 0.58276] [ 0.19741] 
    

PSP(-11) 0.005399 0.030335 -0.023207 
 (0.00639) (0.02173) (0.02123) 
 [ 0.84529] [ 1.39605] [-1.09327] 
    

PSP(-12) 0.000749 0.065860 0.011349 
 (0.00636) (0.02162) (0.02112) 
 [ 0.11777] [ 3.04586] [ 0.53729] 
    

PSP(-13) 0.015585 0.069222 -0.015340 
 (0.00635) (0.02161) (0.02111) 
 [ 2.45389] [ 3.20382] [-0.72675] 
    

PSP(-14) 0.008580 0.069652 0.011549 
 (0.00634) (0.02158) (0.02108) 
 [ 1.35243] [ 3.22749] [ 0.54779] 
    

PSP(-15) 0.009856 0.051536 0.009626 
 (0.00631) (0.02146) (0.02097) 
 [ 1.56210] [ 2.40101] [ 0.45904] 
    

NSP(-1) 0.004114 -0.012750 0.077756 
 (0.00627) (0.02134) (0.02085) 
 [ 0.65584] [-0.59754] [ 3.73012] 
    

NSP(-2) 0.014405 -0.025096 0.059150 
 (0.00628) (0.02137) (0.02087) 
 [ 2.29340] [-1.17452] [ 2.83375] 
    

NSP(-3) 0.021043 -0.011118 0.035691 
 (0.00629) (0.02141) (0.02092) 
 [ 3.34306] [-0.51924] [ 1.70623] 
    

NSP(-4) 0.043405 -0.050099 0.050170 
 (0.00631) (0.02146) (0.02097) 
 [ 6.87994] [-2.33432] [ 2.39287] 
    

NSP(-5) 0.021958 -0.017326 0.005687 
 (0.00637) (0.02167) (0.02116) 
 [ 3.44782] [-0.79970] [ 0.26868] 
    

NSP(-6) 0.033559 0.010448 0.019000 
 (0.00638) (0.02169) (0.02119) 
 [ 5.26386] [ 0.48176] [ 0.89676] 
    

NSP(-7) 0.032580 -0.049555 0.012386 
 (0.00639) (0.02173) (0.02123) 
 [ 5.10071] [-2.28065] [ 0.58351] 
    

NSP(-8) 0.017988 -0.014823 0.082297 
 (0.00640) (0.02176) (0.02126) 
 [ 2.81164] [-0.68106] [ 3.87071] 
    

NSP(-9) 0.024201 -0.006358 0.086877 
 (0.00640) (0.02179) (0.02128) 
 [ 3.77881] [-0.29182] [ 4.08188] 
    

NSP(-10) 0.017297 0.032786 0.065121 
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 (0.00642) (0.02185) (0.02135) 
 [ 2.69284] [ 1.50046] [ 3.05070] 
    

NSP(-11) 0.007914 -0.035154 0.054748 
 (0.00643) (0.02188) (0.02137) 
 [ 1.23048] [-1.60682] [ 2.56156] 
    

NSP(-12) 0.002372 -0.034933 -0.003065 
 (0.00642) (0.02185) (0.02134) 
 [ 0.36934] [-1.59894] [-0.14362] 
    

NSP(-13) 0.020920 -0.022496 0.034972 
 (0.00637) (0.02168) (0.02118) 
 [ 3.28268] [-1.03764] [ 1.65123] 
    

NSP(-14) 0.007113 -0.048526 0.051561 
 (0.00636) (0.02164) (0.02114) 
 [ 1.11827] [-2.24267] [ 2.43923] 
    

NSP(-15) 0.000907 -0.002465 0.034433 
 (0.00633) (0.02154) (0.02104) 
 [ 0.14321] [-0.11445] [ 1.63649] 
    

RG(-1) -0.001450 -0.000328 0.003723 
 (0.00080) (0.00272) (0.00265) 
 [-1.81669] [-0.12071] [ 1.40340] 
    
    R-squared 0.394301 0.053175 0.116894 

Adj. R-squared 0.384261 0.037482 0.102257 
Sum sq. resids 153.3515 1774.651 1693.634 
S.E. equation 0.237662 0.808484 0.789814 

F-statistic 39.27603 3.388406 7.986155 
Log likelihood 72.80530 -3307.523 -3243.016 

Akaike AIC -0.019417 2.429209 2.382482 
Schwarz SC 0.079270 2.527896 2.481169 

Mean dependent 0.017601 0.481517 -0.458373 
S.D. dependent 0.302873 0.824076 0.833583 

    
    Determinant resid covariance (dof adj.) 0.019575  

Determinant resid covariance 0.018613  
Log likelihood -6253.318  

Akaike information criterion 4.629712  
Schwarz criterion 4.925772  
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COIRF table with 95% CI (Stata): 

 

Graph of COIRF in with 95% CI: 

 

(2) irfname = gas, impulse = nsp, and response = dgp
(1) irfname = gas, impulse = psp, and response = dgp
95% lower and upper bounds reported
                                                                                  
 21        .581851     .480047     .683654     .392799     .310983     .474615    
 20        .565614     .468845     .662383     .380348     .302211     .458485    
 19        .547341     .455538     .639143     .368779     .294158     .443401    
 18        .529149     .442254     .616045     .354454     .28332      .425588    
 17        .509644     .427596     .591693     .340532     .272925     .408138    
 16        .4931       .415867     .570334     .328857     .264805     .39291     
 15        .476493     .404224     .548762     .316504     .256327     .376682    
 14        .454147     .386568     .521727     .30268      .245221     .360138    
 13        .432469     .36966      .495277     .281973     .227658     .336288    
 12        .403909     .345881     .461937     .254353     .203429     .305278    
 11        .389313     .336109     .442516     .236888     .189746     .28403     
 10        .367777     .319697     .415856     .217307     .174398     .260216    
 9         .333328     .290118     .376537     .195129     .156215     .234044    
 8         .298326     .260036     .336617     .165834     .131022     .200646    
 7         .261261     .227811     .294712     .143355     .11263      .17408     
 6         .223561     .19477      .252353     .112671     .085948     .139393    
 5         .177618     .153376     .201859     .083038     .060299     .105776    
 4         .137728     .117112     .158344     .062786     .043247     .082324    
 3         .095802     .078958     .112646     .029509     .013359     .045659    
 2         .055504     .042521     .068487     .013536     .000911     .026161    
 1         .012977     .004081     .021873     .002971     -.005833    .011774    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (gas psp dgp coirf, ci) (gas nsp dgp coirf, ci)
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B5: DIESEL SEGMENTS 

Diesel 1: 03/01/2000 to 14/03/2001 

Vector Autoregression Estimates  
  

Sample (adjusted): 1/27/2000 3/14/2001 
Included observations: 286 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DDP PWP NWP 
    
    DDP(-1) 0.096230 0.086277 0.058143 
 (0.06605) (0.07103) (0.07194) 
 [ 1.45683] [ 1.21464] [ 0.80827] 
    

DDP(-2) -0.103573 0.039146 -0.076947 
 (0.06667) (0.07170) (0.07261) 
 [-1.55346] [ 0.54600] [-1.05974] 
    

DDP(-3) -0.007460 -0.016692 -0.077978 
 (0.06746) (0.07254) (0.07346) 
 [-0.11059] [-0.23012] [-1.06149] 
    

DDP(-4) 0.012400 0.085614 0.056444 
 (0.06930) (0.07452) (0.07547) 
 [ 0.17892] [ 1.14881] [ 0.74787] 
    

DDP(-5) 0.027606 -0.052400 -0.041698 
 (0.07039) (0.07569) (0.07665) 
 [ 0.39221] [-0.69230] [-0.54398] 
    

DDP(-6) 0.068473 0.027466 0.273119 
 (0.09641) (0.10367) (0.10499) 
 [ 0.71026] [ 0.26494] [ 2.60142] 
    

DDP(-7) 0.090578 -0.086486 -0.120434 
 (0.09716) (0.10448) (0.10581) 
 [ 0.93222] [-0.82775] [-1.13816] 
    

DDP(-8) -0.040713 0.092672 -0.005064 
 (0.09675) (0.10404) (0.10537) 
 [-0.42079] [ 0.89072] [-0.04806] 
    

DDP(-9) 0.041520 -0.115924 -0.153022 
 (0.09608) (0.10332) (0.10464) 
 [ 0.43213] [-1.12198] [-1.46241] 
    

DDP(-10) 0.043483 0.012816 -0.159686 
 (0.09518) (0.10235) (0.10365) 
 [ 0.45687] [ 0.12522] [-1.54062] 
    

DDP(-11) -0.086639 -0.105105 -0.055182 
 (0.09576) (0.10297) (0.10428) 
 [-0.90477] [-1.02072] [-0.52916] 
    

DDP(-12) 0.023035 0.111572 -0.012644 
 (0.09469) (0.10182) (0.10312) 
 [ 0.24327] [ 1.09573] [-0.12261] 
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DDP(-13) -0.005004 0.023707 -0.081740 
 (0.09435) (0.10146) (0.10275) 
 [-0.05304] [ 0.23367] [-0.79553] 
    

DDP(-14) 0.060924 0.015477 0.086057 
 (0.09393) (0.10100) (0.10229) 
 [ 0.64863] [ 0.15323] [ 0.84131] 
    

DDP(-15) 0.043874 0.030117 -0.111839 
 (0.09328) (0.10030) (0.10158) 
 [ 0.47036] [ 0.30025] [-1.10097] 
    

DDP(-16) 0.025452 -0.000287 0.204675 
 (0.09276) (0.09975) (0.10102) 
 [ 0.27438] [-0.00287] [ 2.02601] 
    

DDP(-17) 0.051021 -0.287684 -0.041672 
 (0.09175) (0.09866) (0.09991) 
 [ 0.55611] [-2.91596] [-0.41708] 
    

PWP(-1) -0.015930 -0.059047 0.007155 
 (0.06656) (0.07158) (0.07249) 
 [-0.23932] [-0.82491] [ 0.09870] 
    

PWP(-2) -0.110305 0.138801 -0.038583 
 (0.06628) (0.07128) (0.07218) 
 [-1.66417] [ 1.94738] [-0.53451] 
    

PWP(-3) 0.082433 0.103114 -0.106538 
 (0.06740) (0.07247) (0.07340) 
 [ 1.22309] [ 1.42275] [-1.45151] 
    

PWP(-4) -0.067438 0.108419 -0.091222 
 (0.06693) (0.07198) (0.07289) 
 [-1.00753] [ 1.50631] [-1.25145] 
    

PWP(-5) -0.030674 0.005568 -0.037782 
 (0.06744) (0.07252) (0.07345) 
 [-0.45481] [ 0.07677] [-0.51440] 
    

PWP(-6) 0.156995 0.054184 -0.100255 
 (0.06636) (0.07136) (0.07227) 
 [ 2.36573] [ 0.75928] [-1.38721] 
    

PWP(-7) 0.016825 0.041657 0.052296 
 (0.06744) (0.07252) (0.07344) 
 [ 0.24950] [ 0.57446] [ 0.71210] 
    

PWP(-8) 0.096917 -0.007387 0.085875 
 (0.06746) (0.07254) (0.07346) 
 [ 1.43672] [-0.10184] [ 1.16895] 
    

PWP(-9) 0.052489 -0.035181 -0.112373 
 (0.06766) (0.07276) (0.07368) 
 [ 0.77577] [-0.48354] [-1.52505] 
    

PWP(-10) -0.044454 -0.033624 -0.062770 
 (0.06786) (0.07298) (0.07390) 
 [-0.65506] [-0.46076] [-0.84934] 
    

PWP(-11) 0.151332 0.034850 -0.048398 
 (0.06797) (0.07309) (0.07402) 
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 [ 2.22657] [ 0.47684] [-0.65387] 
    

PWP(-12) 0.030170 0.071619 -0.120094 
 (0.06867) (0.07384) (0.07478) 
 [ 0.43938] [ 0.96993] [-1.60597] 
    

PWP(-13) -0.052541 0.057021 -0.030688 
 (0.06921) (0.07442) (0.07537) 
 [-0.75916] [ 0.76617] [-0.40716] 
    

PWP(-14) -0.034921 -0.016824 -0.078789 
 (0.06872) (0.07390) (0.07484) 
 [-0.50815] [-0.22767] [-1.05277] 
    

PWP(-15) 0.035623 -0.059922 -0.099529 
 (0.06888) (0.07406) (0.07501) 
 [ 0.51721] [-0.80905] [-1.32692] 
    

PWP(-16) 0.038044 0.083235 0.143088 
 (0.06868) (0.07386) (0.07480) 
 [ 0.55392] [ 1.12699] [ 1.91303] 
    

PWP(-17) -0.028106 0.019350 -0.008232 
 (0.06875) (0.07393) (0.07487) 
 [-0.40883] [ 0.26175] [-0.10996] 
    

NWP(-1) 0.037865 0.135353 0.020534 
 (0.06735) (0.07242) (0.07335) 
 [ 0.56221] [ 1.86889] [ 0.27996] 
    

NWP(-2) 0.112917 -0.114525 -0.060972 
 (0.06635) (0.07135) (0.07226) 
 [ 1.70183] [-1.60514] [-0.84381] 
    

NWP(-3) 0.015437 -0.027453 0.023349 
 (0.06548) (0.07042) (0.07131) 
 [ 0.23574] [-0.38987] [ 0.32742] 
    

NWP(-4) 0.073217 -0.011793 0.067597 
 (0.06509) (0.06999) (0.07089) 
 [ 1.12485] [-0.16849] [ 0.95361] 
    

NWP(-5) 0.101810 -0.080237 0.003925 
 (0.06513) (0.07004) (0.07093) 
 [ 1.56310] [-1.14558] [ 0.05533] 
    

NWP(-6) -0.090910 -0.006141 -0.022557 
 (0.06468) (0.06956) (0.07044) 
 [-1.40543] [-0.08829] [-0.32021] 
    

NWP(-7) 0.002785 0.009311 0.083546 
 (0.06454) (0.06940) (0.07028) 
 [ 0.04315] [ 0.13417] [ 1.18868] 
    

NWP(-8) -0.016202 -0.069141 -0.069085 
 (0.06433) (0.06918) (0.07006) 
 [-0.25185] [-0.99943] [-0.98606] 
    

NWP(-9) 0.069502 0.022027 0.011673 
 (0.06353) (0.06832) (0.06919) 
 [ 1.09400] [ 0.32243] [ 0.16871] 
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NWP(-10) -0.015049 0.010696 0.039221 
 (0.06362) (0.06841) (0.06928) 
 [-0.23657] [ 0.15635] [ 0.56613] 
    

NWP(-11) -0.043918 -0.046591 0.043180 
 (0.06334) (0.06812) (0.06898) 
 [-0.69331] [-0.68399] [ 0.62594] 
    

NWP(-12) 0.008424 -0.161052 0.096657 
 (0.06229) (0.06698) (0.06783) 
 [ 0.13524] [-2.40449] [ 1.42494] 
    

NWP(-13) -0.007524 -0.089275 -0.028179 
 (0.06294) (0.06768) (0.06854) 
 [-0.11954] [-1.31907] [-0.41112] 
    

NWP(-14) 0.099073 -0.018497 0.062364 
 (0.06303) (0.06777) (0.06864) 
 [ 1.57195] [-0.27293] [ 0.90861] 
    

NWP(-15) -0.037237 0.063044 0.110861 
 (0.06308) (0.06784) (0.06870) 
 [-0.59029] [ 0.92937] [ 1.61371] 
    

NWP(-16) -0.083302 0.032859 0.017278 
 (0.06311) (0.06786) (0.06873) 
 [-1.31997] [ 0.48419] [ 0.25140] 
    

NWP(-17) -0.012588 -0.075022 -0.054787 
 (0.06328) (0.06805) (0.06892) 
 [-0.19891] [-1.10245] [-0.79497] 
    

RD(-1) -0.034496 -0.015024 -0.029946 
 (0.01766) (0.01899) (0.01923) 
 [-1.95375] [-0.79130] [-1.55738] 
    
    R-squared 0.194052 0.128150 0.233158 

Adj. R-squared 0.018396 -0.061869 0.066026 
Sum sq. resids 45.92886 53.10971 54.47123 
S.E. equation 0.443032 0.476408 0.482476 

F-statistic 1.104729 0.674405 1.395052 
Log likelihood -144.2840 -165.0570 -168.6768 

Akaike AIC 1.372615 1.517881 1.543194 
Schwarz SC 2.037341 2.182607 2.207920 

Mean dependent 0.009352 0.304941 -0.311429 
S.D. dependent 0.447164 0.462321 0.499239 

    
    Determinant resid covariance (dof adj.) 0.008208  

Determinant resid covariance 0.004495  
Log likelihood -444.5755  

Akaike information criterion 4.199829  
Schwarz criterion 6.194006  
    
    



 
 

356 
 

 

 

 

 

(2) irfname = diesel, impulse = nwp, and response = ddp
(1) irfname = diesel, impulse = pwp, and response = ddp
95% lower and upper bounds reported
                                                                                  
 21        .13118      -.086306    .348665     .151383     -.039697    .342462    
 20        .122775     -.091934    .337485     .149635     -.037145    .336414    
 19        .13386      -.079014    .346733     .159324     -.022721    .341369    
 18        .127628     -.084309    .339565     .145966     -.031268    .3232      
 17        .127071     -.0828      .336942     .143914     -.027154    .314982    
 16        .150111     -.054577    .3548       .14591      -.024792    .316611    
 15        .149058     -.050631    .348747     .170894     .000521     .341266    
 14        .13329      -.06039     .32697      .178926     .009068     .348785    
 13        .139299     -.047762    .32636      .137712     -.030111    .305535    
 12        .156375     -.024729    .337478     .141645     -.023223    .306513    
 11        .123728     -.049268    .296724     .123224     -.035723    .282172    
 10        .084586     -.078715    .247887     .148034     -.002736    .298803    
 9         .094397     -.05923     .248025     .147042     .00466      .289423    
 8         .050365     -.092444    .193174     .10525      -.028525    .239026    
 7         .028838     -.102219    .159895     .106915     -.017022    .230852    
 6         .027539     -.093061    .14814      .100578     -.014312    .215468    
 5         -.012314    -.121436    .096809     .131378     .026183     .236573    
 4         -.007295    -.10387     .089281     .094714     .000171     .189258    
 3         .010671     -.072977    .094319     .063368     -.019959    .146695    
 2         -.024306    -.092826    .044214     .059602     -.008972    .128176    
 1         .000595     -.045168    .046357     .014746     -.031769    .061261    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (diesel pwp ddp coirf, ci) (diesel nwp ddp coirf, ci)
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Diesel 2: 15/03/2001 to 26/08/2004 

 
Vector Autoregression Estimates  

  
Sample (adjusted): 4/10/2001 8/26/2004 

Included observations: 852 after adjustments 
Standard errors in ( ) & t-statistics in [ ] 

    
     DDP PWP NWP 
    
    DDP(-1) 0.022384 -0.192896 -0.142446 
 (0.03520) (0.14469) (0.14597) 
 [ 0.63597] [-1.33320] [-0.97588] 
    

DDP(-2) 0.155417 0.164836 -0.106874 
 (0.03516) (0.14455) (0.14583) 
 [ 4.41985] [ 1.14035] [-0.73289] 
    

DDP(-3) 0.153253 0.205350 -0.018574 
 (0.03566) (0.14661) (0.14791) 
 [ 4.29703] [ 1.40066] [-0.12558] 
    

DDP(-4) 0.092108 0.388320 0.080768 
 (0.03616) (0.14863) (0.14994) 
 [ 2.54747] [ 2.61265] [ 0.53865] 
    

DDP(-5) 0.225025 0.001376 0.066867 
 (0.03634) (0.14938) (0.15070) 
 [ 6.19224] [ 0.00921] [ 0.44370] 
    

DDP(-6) 0.005686 -0.246995 -0.140523 
 (0.03715) (0.15272) (0.15407) 
 [ 0.15304] [-1.61731] [-0.91207] 
    

DDP(-7) -0.019583 -0.613919 -0.221590 
 (0.03719) (0.15287) (0.15422) 
 [-0.52660] [-4.01593] [-1.43682] 
    

DDP(-8) -0.007345 -0.194424 0.401864 
 (0.03749) (0.15413) (0.15549) 
 [-0.19590] [-1.26142] [ 2.58445] 
    

DDP(-9) 0.031380 0.173505 -0.071939 
 (0.03775) (0.15517) (0.15655) 
 [ 0.83129] [ 1.11814] [-0.45954] 
    

DDP(-10) 0.074246 0.250707 0.014379 
 (0.03783) (0.15553) (0.15690) 
 [ 1.96241] [ 1.61198] [ 0.09164] 
    

DDP(-11) 0.017552 0.240188 0.038634 
 (0.03781) (0.15543) (0.15681) 
 [ 0.46420] [ 1.54530] [ 0.24638] 
    

DDP(-12) -0.009221 -0.004200 0.137797 
 (0.03780) (0.15540) (0.15678) 
 [-0.24392] [-0.02702] [ 0.87894] 
    

DDP(-13) -0.050125 -0.391573 -0.259796 
 (0.03690) (0.15170) (0.15304) 
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 [-1.35829] [-2.58123] [-1.69756] 
    

DDP(-14) 0.063891 -0.114729 -0.102779 
 (0.03682) (0.15138) (0.15271) 
 [ 1.73500] [-0.75791] [-0.67301] 
    

DDP(-15) 0.006628 0.134661 0.036553 
 (0.03623) (0.14892) (0.15024) 
 [ 0.18295] [ 0.90424] [ 0.24330] 
    

DDP(-16) -0.008793 0.192604 -0.150810 
 (0.03556) (0.14618) (0.14747) 
 [-0.24727] [ 1.31757] [-1.02263] 
    

DDP(-17) -0.010080 -0.101244 -0.094032 
 (0.03554) (0.14609) (0.14738) 
 [-0.28363] [-0.69302] [-0.63802] 
    

PWP(-1) -0.003540 0.061448 -0.102265 
 (0.00927) (0.03809) (0.03843) 
 [-0.38204] [ 1.61317] [-2.66118] 
    

PWP(-2) 0.000115 0.044727 -0.051561 
 (0.00934) (0.03839) (0.03873) 
 [ 0.01229] [ 1.16504] [-1.33130] 
    

PWP(-3) 0.020241 0.116872 -0.071700 
 (0.00936) (0.03848) (0.03882) 
 [ 2.16256] [ 3.03754] [-1.84719] 
    

PWP(-4) 0.031377 0.088648 -0.017381 
 (0.00946) (0.03890) (0.03924) 
 [ 3.31594] [ 2.27897] [-0.44290] 
    

PWP(-5) -0.011577 -0.052216 -0.148568 
 (0.00955) (0.03925) (0.03960) 
 [-1.21246] [-1.33031] [-3.75194] 
    

PWP(-6) -0.000203 -0.010750 -0.084343 
 (0.00963) (0.03960) (0.03995) 
 [-0.02107] [-0.27144] [-2.11100] 
    

PWP(-7) 0.018522 -0.008206 -0.045739 
 (0.00964) (0.03963) (0.03998) 
 [ 1.92108] [-0.20705] [-1.14392] 
    

PWP(-8) 0.006745 -0.019131 -0.005600 
 (0.00966) (0.03972) (0.04007) 
 [ 0.69814] [-0.48168] [-0.13976] 
    

PWP(-9) -0.001560 0.050745 -0.126275 
 (0.00964) (0.03961) (0.03996) 
 [-0.16188] [ 1.28119] [-3.16019] 
    

PWP(-10) -0.003254 -0.005180 -0.048458 
 (0.00964) (0.03964) (0.03999) 
 [-0.33744] [-0.13069] [-1.21182] 
    

PWP(-11) 0.005663 0.033554 -0.001696 
 (0.00956) (0.03931) (0.03966) 
 [ 0.59214] [ 0.85348] [-0.04277] 
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PWP(-12) 0.018654 0.050425 0.006889 
 (0.00949) (0.03900) (0.03935) 
 [ 1.96617] [ 1.29289] [ 0.17508] 
    

PWP(-13) -0.007039 0.031632 -0.001030 
 (0.00950) (0.03905) (0.03940) 
 [-0.74090] [ 0.80999] [-0.02615] 
    

PWP(-14) 0.005349 0.090509 0.064014 
 (0.00950) (0.03907) (0.03941) 
 [ 0.56280] [ 2.31671] [ 1.62417] 
    

PWP(-15) 0.000664 0.043614 0.010717 
 (0.00951) (0.03908) (0.03942) 
 [ 0.06986] [ 1.11604] [ 0.27183] 
    

PWP(-16) 0.014910 0.025675 0.045320 
 (0.00951) (0.03910) (0.03944) 
 [ 1.56766] [ 0.65673] [ 1.14904] 
    

PWP(-17) 0.003397 0.094018 -0.048511 
 (0.00946) (0.03890) (0.03924) 
 [ 0.35905] [ 2.41719] [-1.23630] 
    

NWP(-1) -0.000634 -0.066371 -0.001773 
 (0.00929) (0.03820) (0.03854) 
 [-0.06826] [-1.73738] [-0.04601] 
    

NWP(-2) 0.001415 -0.011179 0.019646 
 (0.00929) (0.03820) (0.03854) 
 [ 0.15228] [-0.29260] [ 0.50973] 
    

NWP(-3) -0.002289 -0.034444 0.106194 
 (0.00931) (0.03828) (0.03862) 
 [-0.24578] [-0.89986] [ 2.75000] 
    

NWP(-4) -0.003745 -0.008099 0.038081 
 (0.00937) (0.03853) (0.03887) 
 [-0.39956] [-0.21017] [ 0.97958] 
    

NWP(-5) 0.034839 -0.020580 0.040033 
 (0.00939) (0.03859) (0.03893) 
 [ 3.71121] [-0.53329] [ 1.02829] 
    

NWP(-6) 0.017573 -0.092384 0.017041 
 (0.00948) (0.03896) (0.03930) 
 [ 1.85427] [-2.37134] [ 0.43358] 
    

NWP(-7) 0.017591 -0.050931 -0.008019 
 (0.00954) (0.03924) (0.03958) 
 [ 1.84298] [-1.29806] [-0.20258] 
    

NWP(-8) -0.000897 -0.018630 -0.026173 
 (0.00957) (0.03934) (0.03969) 
 [-0.09377] [-0.47355] [-0.65946] 
    

NWP(-9) 0.010910 0.057438 0.126015 
 (0.00947) (0.03895) (0.03929) 
 [ 1.15146] [ 1.47473] [ 3.20709] 
    

NWP(-10) 0.008330 0.053776 0.011297 
 (0.00948) (0.03895) (0.03930) 
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 [ 0.87909] [ 1.38057] [ 0.28749] 
    

NWP(-11) 0.008175 -0.017551 -0.004210 
 (0.00947) (0.03893) (0.03928) 
 [ 0.86316] [-0.45082] [-0.10720] 
    

NWP(-12) -0.005445 0.028080 0.028481 
 (0.00943) (0.03875) (0.03910) 
 [-0.57757] [ 0.72460] [ 0.72852] 
    

NWP(-13) 0.009887 0.002097 0.004763 
 (0.00939) (0.03860) (0.03894) 
 [ 1.05285] [ 0.05431] [ 0.12231] 
    

NWP(-14) 0.002873 -0.050087 -0.038927 
 (0.00935) (0.03845) (0.03879) 
 [ 0.30720] [-1.30269] [-1.00355] 
    

NWP(-15) -0.001605 -0.026447 -0.023429 
 (0.00925) (0.03802) (0.03836) 
 [-0.17353] [-0.69551] [-0.61075] 
    

NWP(-16) -0.003901 -0.007935 -0.019443 
 (0.00920) (0.03781) (0.03815) 
 [-0.42405] [-0.20986] [-0.50971] 
    

NWP(-17) 0.003009 -0.049620 0.036856 
 (0.00911) (0.03746) (0.03780) 
 [ 0.33020] [-1.32447] [ 0.97515] 
    

RD(-1) -0.006234 -0.016273 -0.020121 
 (0.00246) (0.01011) (0.01020) 
 [-2.53488] [-1.60971] [-1.97281] 
    
    R-squared 0.356297 0.063832 0.148174 

Adj. R-squared 0.315261 0.004151 0.093870 
Sum sq. resids 10.12131 171.0328 174.0702 
S.E. equation 0.112479 0.462375 0.466463 

F-statistic 8.682519 1.069561 2.728611 
Log likelihood 679.4983 -524.8941 -532.3932 

Akaike AIC -1.473001 1.354211 1.371815 
Schwarz SC -1.183242 1.643970 1.661574 

Mean dependent 0.006644 0.295684 -0.273351 
S.D. dependent 0.135929 0.463338 0.490029 

    
    Determinant resid covariance (dof adj.) 0.000504  

Determinant resid covariance 0.000417  
Log likelihood -311.3864  

Akaike information criterion 1.097151  
Schwarz criterion 1.966428  
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(2) irfname = diesel, impulse = nwp, and response = ddp
(1) irfname = diesel, impulse = pwp, and response = ddp
95% lower and upper bounds reported
                                                                                  
 21        .120132     .049454     .190809     .113989     .040929     .187048    
 20        .112892     .044808     .180976     .110786     .040422     .181149    
 19        .10941      .04405      .17477      .10601      .038418     .173601    
 18        .105188     .042633     .167744     .100018     .03529      .164746    
 17        .101399     .04173      .161067     .095819     .034129     .157508    
 16        .095042     .03803      .152055     .089241     .030041     .148442    
 15        .086263     .032217     .140309     .082048     .025741     .138354    
 14        .08489      .03392      .13586      .075848     .022697     .128999    
 13        .080021     .032141     .127901     .067674     .017779     .117568    
 12        .077703     .033135     .122271     .059184     .012816     .105552    
 11        .067837     .026671     .109004     .055309     .012572     .098045    
 10        .061635     .024063     .099207     .046874     .007953     .085795    
 9         .059089     .024951     .093227     .038125     .002862     .073387    
 8         .052395     .021683     .083106     .030222     -.001477    .061921    
 7         .045433     .018199     .072666     .026827     -.001209    .054863    
 6         .029867     .006143     .053591     .017798     -.006554    .04215     
 5         .023705     .003702     .043709     .010933     -.009508    .031374    
 4         .020433     .003593     .037273     -.00259     -.019747    .014567    
 3         .00682      -.006836    .020476     -.000553    -.014376    .01327     
 2         -.001466    -.011985    .009052     .000419     -.010178    .011017    
 1         -.001695    -.009028    .005639     -.000265    -.007647    .007116    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (diesel pwp ddp coirf, ci) (diesel nwp ddp coirf, ci)

0
.0

5
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.1
5

.2
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Diesel 3: 26/8/2004 to 1/10/2007 

 
Vector Autoregression Estimates  

  
Sample (adjusted): 9/22/2004 10/01/2007 

Included observations: 765 after adjustments 
Standard errors in ( ) & t-statistics in [ ] 

    
     DDP PWP NWP 
    
    DDP(-1) -0.088841 -0.257221 -0.051560 
 (0.04376) (0.16055) (0.15954) 
 [-2.03006] [-1.60211] [-0.32317] 
    

DDP(-2) 0.074739 0.049397 -0.056811 
 (0.04380) (0.16069) (0.15968) 
 [ 1.70635] [ 0.30741] [-0.35577] 
    

DDP(-3) 0.092693 -0.259410 -0.516234 
 (0.04332) (0.15894) (0.15794) 
 [ 2.13955] [-1.63212] [-3.26844] 
    

DDP(-4) 0.026926 0.182884 0.097710 
 (0.04378) (0.16060) (0.15959) 
 [ 0.61508] [ 1.13876] [ 0.61224] 
    

DDP(-5) 0.360223 -0.135149 0.015124 
 (0.04377) (0.16059) (0.15958) 
 [ 8.22935] [-0.84158] [ 0.09477] 
    

DDP(-6) 0.008787 0.032080 -0.030449 
 (0.04676) (0.17155) (0.17047) 
 [ 0.18792] [ 0.18700] [-0.17861] 
    

DDP(-7) 0.024261 0.290610 0.278784 
 (0.04659) (0.17093) (0.16985) 
 [ 0.52073] [ 1.70021] [ 1.64131] 
    

DDP(-8) 0.031089 0.309332 0.219029 
 (0.04653) (0.17072) (0.16965) 
 [ 0.66809] [ 1.81195] [ 1.29108] 
    

DDP(-9) -0.027476 -0.247663 -0.297410 
 (0.04660) (0.17098) (0.16991) 
 [-0.58955] [-1.44852] [-1.75044] 
    

DDP(-10) 0.055084 0.473031 0.207317 
 (0.04667) (0.17121) (0.17014) 
 [ 1.18036] [ 2.76290] [ 1.21854] 
    

DDP(-11) -0.094082 0.191537 0.395458 
 (0.04641) (0.17027) (0.16920) 
 [-2.02714] [ 1.12492] [ 2.33721] 
    

DDP(-12) -0.040096 -0.176179 -0.145130 
 (0.04660) (0.17094) (0.16987) 
 [-0.86050] [-1.03063] [-0.85434] 
    

DDP(-13) -0.063331 -0.040440 -0.130806 
 (0.04348) (0.15951) (0.15852) 
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 [-1.45655] [-0.25352] [-0.82519] 
    

DDP(-14) 0.034518 0.139893 -0.267149 
 (0.04341) (0.15924) (0.15824) 
 [ 0.79523] [ 0.87850] [-1.68821] 
    

DDP(-15) 0.168600 -0.374692 -0.364702 
 (0.04303) (0.15785) (0.15686) 
 [ 3.91845] [-2.37368] [-2.32497] 
    

DDP(-16) 0.046893 0.092814 0.332963 
 (0.04290) (0.15740) (0.15642) 
 [ 1.09296] [ 0.58966] [ 2.12869] 
    

DDP(-17) -0.065638 0.050021 0.297005 
 (0.04289) (0.15736) (0.15638) 
 [-1.53026] [ 0.31787] [ 1.89930] 
    

PWP(-1) 0.015678 -0.054164 -0.047647 
 (0.01136) (0.04166) (0.04140) 
 [ 1.38060] [-1.30011] [-1.15089] 
    

PWP(-2) -0.020735 0.051669 -0.070870 
 (0.01137) (0.04170) (0.04144) 
 [-1.82400] [ 1.23895] [-1.71008] 
    

PWP(-3) 0.028814 -0.009221 -0.070076 
 (0.01149) (0.04215) (0.04189) 
 [ 2.50786] [-0.21875] [-1.67296] 
    

PWP(-4) 0.036346 0.007301 -0.059102 
 (0.01153) (0.04229) (0.04202) 
 [ 3.15338] [ 0.17265] [-1.40652] 
    

PWP(-5) 0.017913 0.059042 -0.009245 
 (0.01158) (0.04247) (0.04221) 
 [ 1.54724] [ 1.39008] [-0.21902] 
    

PWP(-6) 0.027821 0.034813 -8.96E-05 
 (0.01159) (0.04250) (0.04224) 
 [ 2.40139] [ 0.81909] [-0.00212] 
    

PWP(-7) 0.024235 0.112873 -0.034889 
 (0.01163) (0.04268) (0.04242) 
 [ 2.08294] [ 2.64435] [-0.82251] 
    

PWP(-8) -0.002884 0.010722 -0.047775 
 (0.01170) (0.04294) (0.04267) 
 [-0.24636] [ 0.24969] [-1.11957] 
    

PWP(-9) 0.006897 0.037297 -0.086287 
 (0.01168) (0.04285) (0.04258) 
 [ 0.59047] [ 0.87041] [-2.02639] 
    

PWP(-10) 0.021448 0.026153 0.082578 
 (0.01172) (0.04301) (0.04274) 
 [ 1.82958] [ 0.60811] [ 1.93224] 
    

PWP(-11) 0.013265 -0.015346 -0.033106 
 (0.01164) (0.04270) (0.04243) 
 [ 1.13973] [-0.35939] [-0.78021] 
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PWP(-12) 0.002056 0.002429 -0.046643 
 (0.01163) (0.04266) (0.04239) 
 [ 0.17680] [ 0.05694] [-1.10033] 
    

PWP(-13) -0.001036 0.132859 0.009658 
 (0.01159) (0.04251) (0.04224) 
 [-0.08940] [ 3.12527] [ 0.22862] 
    

PWP(-14) -0.009056 0.049935 -0.040107 
 (0.01164) (0.04270) (0.04243) 
 [-0.77802] [ 1.16939] [-0.94516] 
    

PWP(-15) 0.018849 0.019172 -0.054938 
 (0.01161) (0.04259) (0.04232) 
 [ 1.62362] [ 0.45015] [-1.29802] 
    

PWP(-16) 0.025460 0.035893 -0.021079 
 (0.01165) (0.04272) (0.04246) 
 [ 2.18628] [ 0.84013] [-0.49650] 
    

PWP(-17) -0.012523 -0.019915 0.001760 
 (0.01152) (0.04225) (0.04199) 
 [-1.08739] [-0.47136] [ 0.04191] 
    

NWP(-1) -0.002247 -0.019806 -0.007827 
 (0.01142) (0.04190) (0.04163) 
 [-0.19676] [-0.47273] [-0.18801] 
    

NWP(-2) 0.016948 0.004546 0.083967 
 (0.01135) (0.04165) (0.04139) 
 [ 1.49269] [ 0.10914] [ 2.02856] 
    

NWP(-3) 0.008675 0.000164 0.047767 
 (0.01135) (0.04165) (0.04139) 
 [ 0.76400] [ 0.00393] [ 1.15397] 
    

NWP(-4) 0.018952 0.076220 0.018460 
 (0.01132) (0.04152) (0.04126) 
 [ 1.67441] [ 1.83559] [ 0.44738] 
    

NWP(-5) 0.033118 -0.070634 0.001256 
 (0.01137) (0.04172) (0.04146) 
 [ 2.91232] [-1.69310] [ 0.03031] 
    

NWP(-6) 0.019382 -0.035660 0.004530 
 (0.01146) (0.04205) (0.04178) 
 [ 1.69117] [-0.84814] [ 0.10841] 
    

NWP(-7) 0.032374 -0.100742 0.070250 
 (0.01139) (0.04177) (0.04151) 
 [ 2.84347] [-2.41187] [ 1.69246] 
    

NWP(-8) 0.014031 0.030899 0.060104 
 (0.01157) (0.04245) (0.04219) 
 [ 1.21249] [ 0.72781] [ 1.42466] 
    

NWP(-9) 0.013420 -0.027489 0.112789 
 (0.01145) (0.04199) (0.04173) 
 [ 1.17255] [-0.65466] [ 2.70306] 
    

NWP(-10) 0.017339 -0.051908 -0.053713 
 (0.01154) (0.04235) (0.04208) 
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 [ 1.50205] [-1.22573] [-1.27633] 
    

NWP(-11) 0.005907 0.006228 0.065359 
 (0.01149) (0.04216) (0.04190) 
 [ 0.51404] [ 0.14771] [ 1.56000] 
    

NWP(-12) -0.000287 -0.026142 0.000150 
 (0.01151) (0.04224) (0.04198) 
 [-0.02496] [-0.61882] [ 0.00358] 
    

NWP(-13) 0.010094 -0.117086 -0.039252 
 (0.01147) (0.04209) (0.04183) 
 [ 0.87982] [-2.78178] [-0.93845] 
    

NWP(-14) 0.015563 0.027437 0.010349 
 (0.01146) (0.04204) (0.04178) 
 [ 1.35811] [ 0.65261] [ 0.24770] 
    

NWP(-15) -0.010449 -0.040950 -0.010381 
 (0.01143) (0.04192) (0.04166) 
 [-0.91447] [-0.97689] [-0.24922] 
    

NWP(-16) -0.003546 -0.034403 0.038440 
 (0.01136) (0.04169) (0.04143) 
 [-0.31206] [-0.82524] [ 0.92789] 
    

NWP(-17) 0.006777 -0.061395 0.016140 
 (0.01135) (0.04163) (0.04137) 
 [ 0.59720] [-1.47467] [ 0.39012] 
    

RD(-1) 0.000352 -0.008700 0.001237 
 (0.00227) (0.00834) (0.00829) 
 [ 0.15495] [-1.04281] [ 0.14916] 
    
    R-squared 0.363947 0.067160 0.111802 

Adj. R-squared 0.318450 0.000436 0.048271 
Sum sq. resids 39.22432 527.9260 521.3308 
S.E. equation 0.234549 0.860482 0.855090 

F-statistic 7.999508 1.006528 1.759788 
Log likelihood 50.75846 -943.6112 -938.8026 

Akaike AIC 0.003246 2.602905 2.590334 
Schwarz SC 0.318636 2.918295 2.905724 

Mean dependent 0.018486 0.585801 -0.537729 
S.D. dependent 0.284108 0.860669 0.876507 

    
    Determinant resid covariance (dof adj.) 0.024111  

Determinant resid covariance 0.019521  
Log likelihood -1750.836  

Akaike information criterion 4.985191  
Schwarz criterion 5.931362  
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(2) irfname = diesel, impulse = nwp, and response = ddp
(1) irfname = diesel, impulse = pwp, and response = ddp
95% lower and upper bounds reported
                                                                                  
 21        .347178     .200076     .494279     .284871     .158753     .410988    
 20        .337275     .196353     .478197     .280887     .159423     .402352    
 19        .326678     .191318     .462039     .277014     .159897     .39413     
 18        .316881     .187529     .446233     .265775     .153403     .378147    
 17        .305317     .18183      .428804     .261036     .153951     .368121    
 16        .311872     .194939     .428804     .247583     .144468     .350699    
 15        .289037     .179402     .398672     .245088     .146957     .34322     
 14        .267871     .164668     .371074     .23899      .145576     .332404    
 13        .260718     .163963     .357473     .214557     .126078     .303037    
 12        .248197     .157986     .338407     .198827     .115875     .281779    
 11        .237282     .153919     .320645     .180106     .102943     .257269    
 10        .212634     .137152     .288116     .168281     .097929     .238634    
 9         .180587     .112104     .24907      .143099     .078864     .207333    
 8         .157868     .096724     .219012     .120255     .062544     .177967    
 7         .143667     .089731     .197604     .105763     .05477      .156757    
 6         .117979     .071064     .164893     .069971     .025227     .114715    
 5         .08391      .045039     .12278      .057357     .020167     .094548    
 4         .060403     .026787     .094019     .030941     -.00129     .063172    
 3         .02936      .00147      .05725      .01621      -.010739    .043158    
 2         -.000813    -.023029    .021403     .01086      -.010767    .032486    
 1         .012219     -.004056    .028494     -.001671    -.017736    .014395    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (diesel pwp ddp coirf, ci) (diesel nwp ddp coirf, ci)
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Diesel 4: 01/10/2007 to 05/01/2009 

Vector Autoregression Estimates  
  

Sample (adjusted): 10/25/2007 1/05/2009 
Included observations: 302 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DDP PWP NWP 
    
    DDP(-1) 0.047307 0.204220 0.022830 
 (0.06685) (0.34939) (0.30559) 
 [ 0.70764] [ 0.58451] [ 0.07471] 
    

DDP(-2) 0.054267 0.446486 0.469010 
 (0.06622) (0.34610) (0.30272) 
 [ 0.81945] [ 1.29006] [ 1.54933] 
    

DDP(-3) 0.020566 0.181235 -0.145279 
 (0.06610) (0.34547) (0.30217) 
 [ 0.31112] [ 0.52461] [-0.48079] 
    

DDP(-4) -0.017757 0.169693 0.493705 
 (0.06568) (0.34324) (0.30022) 
 [-0.27037] [ 0.49439] [ 1.64448] 
    

DDP(-5) 0.355588 0.309775 0.094690 
 (0.06640) (0.34702) (0.30353) 
 [ 5.35522] [ 0.89267] [ 0.31197] 
    

DDP(-6) -0.062385 0.368595 -0.189196 
 (0.07012) (0.36644) (0.32051) 
 [-0.88975] [ 1.00589] [-0.59030] 
    

DDP(-7) 0.127711 -0.279084 -0.062071 
 (0.07026) (0.36717) (0.32115) 
 [ 1.81779] [-0.76009] [-0.19328] 
    

DDP(-8) 0.028667 0.023330 0.004883 
 (0.07109) (0.37153) (0.32496) 
 [ 0.40325] [ 0.06280] [ 0.01503] 
    

DDP(-9) -0.093995 0.138387 0.104111 
 (0.07098) (0.37093) (0.32444) 
 [-1.32434] [ 0.37308] [ 0.32090] 
    

DDP(-10) 0.052658 -0.501686 0.122848 
 (0.07114) (0.37177) (0.32517) 
 [ 0.74024] [-1.34944] [ 0.37779] 
    

DDP(-11) -0.095236 -0.223243 0.273418 
 (0.07128) (0.37255) (0.32585) 
 [-1.33599] [-0.59923] [ 0.83908] 
    

DDP(-12) -0.092524 -0.057674 -0.517162 
 (0.07062) (0.36909) (0.32283) 
 [-1.31012] [-0.15626] [-1.60198] 
    

DDP(-13) -0.061397 0.062548 0.287751 
 (0.06501) (0.33976) (0.29717) 
 [-0.94441] [ 0.18409] [ 0.96829] 
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DDP(-14) -0.009479 0.200732 0.066374 

 (0.06510) (0.34022) (0.29758) 
 [-0.14561] [ 0.59000] [ 0.22305] 
    

DDP(-15) 0.256580 -0.170875 -0.310063 
 (0.06455) (0.33737) (0.29508) 
 [ 3.97473] [-0.50650] [-1.05078] 
    

DDP(-16) -0.057437 0.240631 0.139431 
 (0.06401) (0.33451) (0.29258) 
 [-0.89737] [ 0.71936] [ 0.47656] 
    

DDP(-17) -0.069396 0.324208 0.333517 
 (0.06221) (0.32514) (0.28439) 
 [-1.11545] [ 0.99713] [ 1.17276] 
    

PWP(-1) 0.002730 0.067517 -0.025952 
 (0.01317) (0.06881) (0.06018) 
 [ 0.20739] [ 0.98126] [-0.43122] 
    

PWP(-2) 0.018156 0.080597 -0.053049 
 (0.01321) (0.06902) (0.06037) 
 [ 1.37473] [ 1.16770] [-0.87871] 
    

PWP(-3) 0.030610 -0.038994 -0.052465 
 (0.01330) (0.06953) (0.06082) 
 [ 2.30065] [-0.56079] [-0.86266] 
    

PWP(-4) 0.032118 0.024987 -0.040612 
 (0.01338) (0.06992) (0.06116) 
 [ 2.40053] [ 0.35734] [-0.66403] 
    

PWP(-5) 0.009629 -0.025406 -0.156575 
 (0.01353) (0.07073) (0.06186) 
 [ 0.71150] [-0.35920] [-2.53098] 
    

PWP(-6) 0.032569 0.016142 0.000956 
 (0.01364) (0.07129) (0.06235) 
 [ 2.38766] [ 0.22643] [ 0.01533] 
    

PWP(-7) 0.035952 -0.031570 -0.058850 
 (0.01370) (0.07160) (0.06263) 
 [ 2.62410] [-0.44091] [-0.93967] 
    

PWP(-8) 0.017587 -0.038470 -0.164072 
 (0.01391) (0.07268) (0.06357) 
 [ 1.26466] [-0.52931] [-2.58101] 
    

PWP(-9) 0.019640 -0.083740 0.014461 
 (0.01400) (0.07315) (0.06398) 
 [ 1.40327] [-1.14484] [ 0.22604] 
    

PWP(-10) 0.017510 -0.018980 -0.064130 
 (0.01409) (0.07364) (0.06441) 
 [ 1.24272] [-0.25776] [-0.99570] 
    

PWP(-11) 0.004335 0.097295 0.059601 
 (0.01410) (0.07368) (0.06445) 
 [ 0.30748] [ 1.32046] [ 0.92480] 
    

PWP(-12) 0.026880 -0.108862 -0.167185 
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 (0.01413) (0.07383) (0.06458) 
 [ 1.90272] [-1.47447] [-2.58893] 
    

PWP(-13) 0.018472 -0.025621 -0.084858 
 (0.01394) (0.07286) (0.06373) 
 [ 1.32497] [-0.35165] [-1.33155] 
    

PWP(-14) -0.002070 0.078661 -0.098641 
 (0.01389) (0.07259) (0.06349) 
 [-0.14906] [ 1.08365] [-1.55363] 
    

PWP(-15) -0.004594 -0.038878 0.018315 
 (0.01389) (0.07257) (0.06347) 
 [-0.33083] [-0.53572] [ 0.28854] 
    

PWP(-16) 0.011256 -0.066703 -0.102165 
 (0.01375) (0.07187) (0.06286) 
 [ 0.81849] [-0.92813] [-1.62527] 
    

PWP(-17) 0.017692 0.068867 -0.124827 
 (0.01380) (0.07212) (0.06308) 
 [ 1.28201] [ 0.95484] [-1.97874] 
    

NWP(-1) 0.024161 -0.001392 0.014972 
 (0.01478) (0.07724) (0.06756) 
 [ 1.63481] [-0.01803] [ 0.22162] 
    

NWP(-2) -0.002274 -0.114382 -0.024665 
 (0.01480) (0.07732) (0.06763) 
 [-0.15371] [-1.47926] [-0.36470] 
    

NWP(-3) 0.014410 -0.095731 0.030069 
 (0.01479) (0.07732) (0.06763) 
 [ 0.97402] [-1.23818] [ 0.44465] 
    

NWP(-4) 0.027151 -0.080834 0.069087 
 (0.01484) (0.07755) (0.06783) 
 [ 1.82976] [-1.04236] [ 1.01855] 
    

NWP(-5) 0.044555 -0.175608 0.103674 
 (0.01505) (0.07867) (0.06881) 
 [ 2.95977] [-2.23213] [ 1.50664] 
    

NWP(-6) 0.022417 0.009552 -0.013550 
 (0.01551) (0.08108) (0.07091) 
 [ 1.44498] [ 0.11782] [-0.19107] 
    

NWP(-7) 0.039968 -0.062349 -0.096917 
 (0.01547) (0.08084) (0.07071) 
 [ 2.58375] [-0.77121] [-1.37059] 
    

NWP(-8) 0.022905 0.042481 0.013766 
 (0.01559) (0.08149) (0.07128) 
 [ 1.46893] [ 0.52129] [ 0.19313] 
    

NWP(-9) 0.015954 -0.013643 -0.052386 
 (0.01563) (0.08168) (0.07145) 
 [ 1.02077] [-0.16702] [-0.73324] 
    

NWP(-10) 0.007174 -0.013202 -0.012712 
 (0.01549) (0.08094) (0.07080) 
 [ 0.46319] [-0.16311] [-0.17955] 
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NWP(-11) -0.009270 -0.135168 -0.113598 

 (0.01548) (0.08093) (0.07078) 
 [-0.59866] [-1.67024] [-1.60486] 
    

NWP(-12) -0.002262 -0.051598 -0.049564 
 (0.01560) (0.08154) (0.07132) 
 [-0.14500] [-0.63278] [-0.69493] 
    

NWP(-13) 0.002781 -0.023175 0.045507 
 (0.01532) (0.08007) (0.07003) 
 [ 0.18150] [-0.28944] [ 0.64978] 
    

NWP(-14) 0.031632 -0.042326 0.055992 
 (0.01523) (0.07960) (0.06963) 
 [ 2.07673] [-0.53170] [ 0.80418] 
    

NWP(-15) 0.041581 -0.017181 0.056921 
 (0.01536) (0.08028) (0.07021) 
 [ 2.70703] [-0.21402] [ 0.81067] 
    

NWP(-16) -0.033787 0.048142 0.034391 
 (0.01527) (0.07979) (0.06979) 
 [-2.21301] [ 0.60335] [ 0.49278] 
    

NWP(-17) 0.027545 -0.174465 -0.090428 
 (0.01528) (0.07986) (0.06985) 
 [ 1.80248] [-2.18453] [-1.29454] 
    

RD(-1) -0.001044 -0.019524 -0.030034 
 (0.00336) (0.01758) (0.01537) 
 [-0.31034] [-1.11076] [-1.95360] 
    
    R-squared 0.687385 0.105373 0.217818 

Adj. R-squared 0.623612 -0.077130 0.058253 
Sum sq. resids 31.79107 868.3147 664.2849 
S.E. equation 0.356601 1.863668 1.630073 

F-statistic 10.77856 0.577377 1.365071 
Log likelihood -88.58196 -587.9946 -547.5503 

Akaike AIC 0.931006 4.238375 3.970532 
Schwarz SC 1.569888 4.877257 4.609413 

Mean dependent -0.022402 1.011084 -1.123024 
S.D. dependent 0.581252 1.795703 1.679732 

    
    Determinant resid covariance (dof adj.) 1.001263  

Determinant resid covariance 0.567999  
Log likelihood -1200.147  

Akaike information criterion 8.981107  
Schwarz criterion 10.89775  
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(2) irfname = diesel, impulse = nwp, and response = ddp
(1) irfname = diesel, impulse = pwp, and response = ddp
95% lower and upper bounds reported
                                                                                  
 21        .861232     .424854     1.29761     .496933     .14564      .848226    
 20        .8656       .444342     1.28686     .52421      .182742     .865678    
 19        .872218     .466758     1.27768     .488553     .157068     .820038    
 18        .862056     .474069     1.25004     .468214     .148993     .787434    
 17        .846241     .477153     1.21533     .46782      .162814     .772826    
 16        .791775     .443477     1.14007     .438951     .146357     .731544    
 15        .787798     .46249      1.11311     .485458     .209931     .760984    
 14        .770282     .467574     1.07299     .421844     .162291     .681398    
 13        .724494     .444695     1.00429     .374318     .131778     .616858    
 12        .67596      .419627     .932294     .35601      .131771     .58025     
 11        .606348     .373477     .839218     .344245     .138937     .549553    
 10        .576117     .36821      .784024     .340081     .156447     .523715    
 9         .523748     .339431     .708065     .309111     .145067     .473154    
 8         .458906     .298709     .619103     .275882     .13297      .418794    
 7         .39365      .256574     .530727     .238216     .115174     .361258    
 6         .301959     .18477      .419149     .191169     .084935     .297403    
 5         .230678     .133251     .328104     .149513     .060393     .238634    
 4         .182713     .098776     .266651     .090543     .012868     .168218    
 3         .107344     .037525     .177164     .052739     -.013063    .118542    
 2         .046448     -.008427    .101324     .032343     -.020041    .084726    
 1         .016871     -.020612    .054353     .033412     -.003131    .069955    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (diesel pwp ddp coirf, ci) (diesel nwp ddp coirf, ci)
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Diesel 5: 06/01/2009 to 31/12/2010 

Vector Autoregression Estimates  
  

Sample (adjusted): 2/01/2009 12/30/2010 
Included observations: 484 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DDP PWP NWP 
    
    DDP(-1) -0.109681 -0.047977 0.025273 
 (0.04842) (0.13885) (0.13556) 
 [-2.26535] [-0.34552] [ 0.18643] 
    

DDP(-2) 0.020872 -0.048606 -0.015619 
 (0.04867) (0.13957) (0.13627) 
 [ 0.42886] [-0.34826] [-0.11462] 
    

DDP(-3) 0.057909 -0.321822 0.082493 
 (0.04840) (0.13881) (0.13552) 
 [ 1.19643] [-2.31847] [ 0.60871] 
    

DDP(-4) 0.041208 0.042320 0.068318 
 (0.04882) (0.14000) (0.13669) 
 [ 0.84412] [ 0.30228] [ 0.49981] 
    

DDP(-5) 0.186926 -0.125378 -0.102446 
 (0.04873) (0.13974) (0.13644) 
 [ 3.83611] [-0.89720] [-0.75087] 
    

DDP(-6) 0.020200 0.000146 -0.040792 
 (0.04940) (0.14168) (0.13833) 
 [ 0.40888] [ 0.00103] [-0.29488] 
    

DDP(-7) -0.023324 0.003696 -0.199785 
 (0.04884) (0.14007) (0.13675) 
 [-0.47756] [ 0.02639] [-1.46093] 
    

DDP(-8) 0.006924 -0.027879 -0.014232 
 (0.04844) (0.13892) (0.13563) 
 [ 0.14294] [-0.20069] [-0.10494] 
    

DDP(-9) 0.035637 0.104008 0.001466 
 (0.04808) (0.13789) (0.13463) 
 [ 0.74117] [ 0.75427] [ 0.01089] 
    

DDP(-10) 0.065360 0.149765 -0.064630 
 (0.04808) (0.13789) (0.13463) 
 [ 1.35933] [ 1.08610] [-0.48006] 
    

DDP(-11) 0.013469 -0.101074 -0.169420 
 (0.04817) (0.13815) (0.13488) 
 [ 0.27959] [-0.73161] [-1.25606] 
    

DDP(-12) -0.008607 -0.323515 -0.104199 
 (0.04806) (0.13782) (0.13455) 
 [-0.17911] [-2.34745] [-0.77441] 
    

DDP(-13) -0.029390 0.032574 -0.055221 
 (0.04743) (0.13603) (0.13281) 
 [-0.61959] [ 0.23946] [-0.41579] 
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DDP(-14) 0.041327 0.039242 -0.072684 

 (0.04729) (0.13563) (0.13242) 
 [ 0.87381] [ 0.28932] [-0.54888] 
    

DDP(-15) 0.097648 -0.143245 -0.119432 
 (0.04719) (0.13534) (0.13214) 
 [ 2.06911] [-1.05838] [-0.90383] 
    

DDP(-16) 0.039619 -0.000247 -0.004076 
 (0.04726) (0.13552) (0.13232) 
 [ 0.83837] [-0.00182] [-0.03081] 
    

DDP(-17) 0.007681 0.054345 0.023403 
 (0.04703) (0.13488) (0.13169) 
 [ 0.16331] [ 0.40291] [ 0.17772] 
    

PWP(-1) 0.008162 -0.014683 0.038087 
 (0.01867) (0.05353) (0.05226) 
 [ 0.43728] [-0.27427] [ 0.72873] 
    

PWP(-2) 0.021558 0.077555 0.046820 
 (0.01863) (0.05342) (0.05216) 
 [ 1.15730] [ 1.45179] [ 0.89769] 
    

PWP(-3) 0.037634 0.018568 0.049306 
 (0.01847) (0.05297) (0.05172) 
 [ 2.03743] [ 0.35052] [ 0.95334] 
    

PWP(-4) 0.029730 0.007302 -0.010424 
 (0.01817) (0.05210) (0.05087) 
 [ 1.63645] [ 0.14014] [-0.20493] 
    

PWP(-5) 0.028290 0.042732 -0.073884 
 (0.01816) (0.05208) (0.05085) 
 [ 1.55783] [ 0.82052] [-1.45308] 
    

PWP(-6) 0.034802 0.011375 -0.062190 
 (0.01817) (0.05211) (0.05087) 
 [ 1.91536] [ 0.21830] [-1.22242] 
    

PWP(-7) 0.012721 0.029734 -0.051829 
 (0.01823) (0.05228) (0.05104) 
 [ 0.69780] [ 0.56874] [-1.01539] 
    

PWP(-8) 0.006732 0.146698 -0.002072 
 (0.01808) (0.05185) (0.05062) 
 [ 0.37234] [ 2.82936] [-0.04093] 
    

PWP(-9) -0.004135 -0.036141 -0.086816 
 (0.01829) (0.05245) (0.05121) 
 [-0.22609] [-0.68901] [-1.69521] 
    

PWP(-10) 0.025327 0.031798 -0.162142 
 (0.01801) (0.05164) (0.05042) 
 [ 1.40652] [ 0.61575] [-3.21591] 
    

PWP(-11) 0.031673 0.007797 -0.083847 
 (0.01822) (0.05225) (0.05101) 
 [ 1.73846] [ 0.14923] [-1.64367] 
    

PWP(-12) 0.004114 0.034109 -0.015274 
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 (0.01834) (0.05258) (0.05134) 
 [ 0.22437] [ 0.64869] [-0.29752] 
    

PWP(-13) 0.009815 0.099809 0.036584 
 (0.01816) (0.05209) (0.05085) 
 [ 0.54042] [ 1.91626] [ 0.71942] 
    

PWP(-14) 0.011015 -0.004047 -0.061195 
 (0.01815) (0.05204) (0.05081) 
 [ 0.60700] [-0.07776] [-1.20442] 
    

PWP(-15) -0.007217 -0.088355 -0.019784 
 (0.01804) (0.05173) (0.05051) 
 [-0.40005] [-1.70788] [-0.39169] 
    

PWP(-16) 0.024583 0.064895 -0.009121 
 (0.01808) (0.05186) (0.05063) 
 [ 1.35956] [ 1.25147] [-0.18016] 
    

PWP(-17) 0.008003 0.127921 -0.027909 
 (0.01800) (0.05161) (0.05039) 
 [ 0.44474] [ 2.47865] [-0.55389] 
    

NWP(-1) 0.001825 0.015472 0.001972 
 (0.01937) (0.05554) (0.05423) 
 [ 0.09421] [ 0.27856] [ 0.03637] 
    

NWP(-2) -0.018179 -0.042082 -0.054367 
 (0.01935) (0.05548) (0.05417) 
 [-0.93971] [-0.75852] [-1.00370] 
    

NWP(-3) 0.020978 0.053478 0.020269 
 (0.01927) (0.05527) (0.05396) 
 [ 1.08849] [ 0.96758] [ 0.37562] 
    

NWP(-4) 0.014610 -0.067737 -0.018343 
 (0.01925) (0.05520) (0.05390) 
 [ 0.75901] [-1.22704] [-0.34033] 
    

NWP(-5) 0.012805 -0.100025 -0.004557 
 (0.01925) (0.05522) (0.05391) 
 [ 0.66502] [-1.81144] [-0.08453] 
    

NWP(-6) 0.030539 -0.025653 0.011175 
 (0.01928) (0.05530) (0.05399) 
 [ 1.58366] [-0.46385] [ 0.20697] 
    

NWP(-7) 0.037839 0.089797 0.053460 
 (0.01919) (0.05504) (0.05373) 
 [ 1.97174] [ 1.63163] [ 0.99493] 
    

NWP(-8) 0.028938 -0.178453 0.011023 
 (0.01870) (0.05362) (0.05236) 
 [ 1.54760] [-3.32781] [ 0.21054] 
    

NWP(-9) 0.059365 -0.019102 -0.001928 
 (0.01890) (0.05420) (0.05292) 
 [ 3.14083] [-0.35241] [-0.03644] 
    

NWP(-10) 0.042760 -0.000834 0.065996 
 (0.01905) (0.05462) (0.05333) 
 [ 2.24507] [-0.01527] [ 1.23754] 
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NWP(-11) 0.034215 -0.027213 0.067738 

 (0.01891) (0.05422) (0.05293) 
 [ 1.80982] [-0.50192] [ 1.27967] 
    

NWP(-12) 0.007432 0.021215 0.076385 
 (0.01892) (0.05425) (0.05297) 
 [ 0.39283] [ 0.39103] [ 1.44207] 
    

NWP(-13) -0.005927 -0.028863 0.016252 
 (0.01890) (0.05420) (0.05291) 
 [-0.31363] [-0.53255] [ 0.30714] 
    

NWP(-14) 0.001485 0.005063 0.069986 
 (0.01888) (0.05416) (0.05288) 
 [ 0.07863] [ 0.09348] [ 1.32360] 
    

NWP(-15) 0.003594 -0.090524 -0.026641 
 (0.01880) (0.05392) (0.05264) 
 [ 0.19117] [-1.67883] [-0.50606] 
    

NWP(-16) -0.013926 -0.029412 0.020167 
 (0.01870) (0.05364) (0.05237) 
 [-0.74462] [-0.54835] [ 0.38511] 
    

NWP(-17) 0.007889 -0.078124 0.025355 
 (0.01872) (0.05370) (0.05243) 
 [ 0.42131] [-1.45489] [ 0.48364] 
    

RD(-1) -0.000732 -0.000850 0.002151 
 (0.00272) (0.00780) (0.00761) 
 [-0.26928] [-0.10904] [ 0.28254] 
    
    R-squared 0.225694 0.098225 0.085281 

Adj. R-squared 0.134283 -0.008234 -0.022706 
Sum sq. resids 47.68168 392.1572 373.8102 
S.E. equation 0.332226 0.952770 0.930216 

F-statistic 2.469000 0.922652 0.789734 
Log likelihood -125.9221 -635.8441 -624.2488 

Akaike AIC 0.735215 2.842331 2.794416 
Schwarz SC 1.184530 3.291646 3.243731 

Mean dependent 0.059653 0.673927 -0.586724 
S.D. dependent 0.357064 0.948872 0.919832 

    
    Determinant resid covariance (dof adj.) 0.068040  

Determinant resid covariance 0.048382  
Log likelihood -1327.369  

Akaike information criterion 6.129623  
Schwarz criterion 7.477568  
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(2) irfname = gas, impulse = nsp, and response = dgp
(1) irfname = gas, impulse = psp, and response = dgp
95% lower and upper bounds reported
                                                                                  
 21        .586512     .361387     .811638     .168934     -.002944    .340811    
 20        .583659     .366099     .80122      .171495     .00418      .33881     
 19        .581464     .372103     .790825     .178403     .016177     .340629    
 18        .57081      .370001     .771618     .180819     .024002     .337635    
 17        .560969     .369411     .752527     .181434     .030367     .332501    
 16        .547104     .365283     .728925     .184879     .039721     .330038    
 15        .532011     .360634     .703388     .178153     .040119     .316188    
 14        .508568     .347213     .669922     .196021     .063415     .328627    
 13        .488087     .337734     .638439     .182148     .056521     .307774    
 12        .455404     .3162       .594609     .188679     .070835     .306523    
 11        .433815     .306433     .561197     .19309      .083874     .302307    
 10        .405063     .289869     .520257     .171928     .071955     .271901    
 9         .378043     .274662     .481424     .14687      .055917     .237823    
 8         .338141     .246714     .429569     .118842     .037204     .20048     
 7         .296856     .216617     .377096     .111771     .039133     .18441     
 6         .248893     .179678     .318109     .098442     .035085     .1618      
 5         .181824     .123171     .240478     .070975     .015904     .126045    
 4         .154612     .104418     .204806     .059624     .012035     .107213    
 3         .094431     .053594     .135268     .034364     -.005152    .073881    
 2         .039202     .007688     .070716     .021357     -.009449    .052162    
 1         -.009219    -.031117    .01268      .001911     -.019848    .023671    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (gas psp dgp coirf, ci) (gas nsp dgp coirf, ci)
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B6: GASOLINE SEGMENTS 

Gasoline 1: 03/01/2000 to 16/03/2003 

Vector Autoregression Estimates  
  

Sample (adjusted): 1/25/2000 3/16/2003 
Included observations: 792 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DGP PSP NSP 
    
    DGP(-1) 0.157506 0.017934 -0.053704 
 (0.03632) (0.07292) (0.06845) 
 [ 4.33691] [ 0.24595] [-0.78458] 
    

DGP(-2) 0.008104 0.071506 0.060560 
 (0.03660) (0.07347) (0.06897) 
 [ 0.22145] [ 0.97320] [ 0.87803] 
    

DGP(-3) 0.029029 -0.011763 -0.039069 
 (0.03650) (0.07329) (0.06880) 
 [ 0.79528] [-0.16051] [-0.56790] 
    

DGP(-4) 0.010075 0.048116 -0.003362 
 (0.03641) (0.07310) (0.06863) 
 [ 0.27670] [ 0.65818] [-0.04899] 
    

DGP(-5) 0.104587 -0.052265 0.059978 
 (0.03641) (0.07310) (0.06862) 
 [ 2.87239] [-0.71494] [ 0.87400] 
    

DGP(-6) 0.022845 -0.026283 0.065352 
 (0.03666) (0.07360) (0.06909) 
 [ 0.62320] [-0.35712] [ 0.94592] 
    

DGP(-7) 0.007267 0.123758 -0.005189 
 (0.03655) (0.07339) (0.06889) 
 [ 0.19881] [ 1.68632] [-0.07532] 
    

DGP(-8) -0.009259 -0.077896 -0.068610 
 (0.03658) (0.07345) (0.06895) 
 [-0.25308] [-1.06053] [-0.99507] 
    

DGP(-9) -0.028805 -0.078913 -0.022841 
 (0.03658) (0.07345) (0.06895) 
 [-0.78734] [-1.07435] [-0.33127] 
    

DGP(-10) 0.029135 0.082438 0.052118 
 (0.03646) (0.07320) (0.06872) 
 [ 0.79907] [ 1.12614] [ 0.75842] 
    

DGP(-11) -0.020737 -0.110000 -0.113571 
 (0.03616) (0.07260) (0.06815) 
 [-0.57350] [-1.51520] [-1.66651] 
    

DGP(-12) 0.022171 -0.018721 -0.016617 
 (0.03605) (0.07239) (0.06795) 
 [ 0.61493] [-0.25863] [-0.24455] 
    



 
 

378 
 

DGP(-13) 0.058236 0.115322 0.074289 
 (0.03597) (0.07222) (0.06780) 
 [ 1.61886] [ 1.59671] [ 1.09571] 
    

DGP(-14) 0.081619 -0.014276 -0.052471 
 (0.03603) (0.07234) (0.06791) 
 [ 2.26533] [-0.19735] [-0.77270] 
    

DGP(-15) 0.087380 -0.033421 0.061263 
 (0.03533) (0.07092) (0.06658) 
 [ 2.47359] [-0.47123] [ 0.92016] 
    

PSP(-1) -0.013576 0.104784 0.020467 
 (0.01911) (0.03838) (0.03602) 
 [-0.71024] [ 2.73046] [ 0.56814] 
    

PSP(-2) 0.036871 0.011138 -0.094136 
 (0.01920) (0.03855) (0.03618) 
 [ 1.92048] [ 0.28896] [-2.60156] 
    

PSP(-3) 0.015961 0.090494 -0.033858 
 (0.01928) (0.03871) (0.03634) 
 [ 0.82784] [ 2.33771] [-0.93172] 
    

PSP(-4) 0.051055 0.037366 -0.050269 
 (0.01935) (0.03886) (0.03648) 
 [ 2.63789] [ 0.96160] [-1.37809] 
    

PSP(-5) 0.015658 0.007069 0.035812 
 (0.01943) (0.03900) (0.03661) 
 [ 0.80603] [ 0.18126] [ 0.97812] 
    

PSP(-6) 0.059919 0.004481 -0.045176 
 (0.01939) (0.03893) (0.03654) 
 [ 3.09029] [ 0.11511] [-1.23621] 
    

PSP(-7) 0.022277 0.010532 -0.039943 
 (0.01943) (0.03901) (0.03662) 
 [ 1.14666] [ 0.27002] [-1.09087] 
    

PSP(-8) 0.018960 0.022271 -0.025846 
 (0.01942) (0.03899) (0.03660) 
 [ 0.97629] [ 0.57118] [-0.70614] 
    

PSP(-9) 0.006526 0.090932 -0.016102 
 (0.01939) (0.03893) (0.03654) 
 [ 0.33656] [ 2.33588] [-0.44063] 
    

PSP(-10) -7.80E-05 0.036837 -0.036908 
 (0.01944) (0.03902) (0.03663) 
 [-0.00401] [ 0.94404] [-1.00760] 
    

PSP(-11) 0.013350 0.063733 0.003357 
 (0.01943) (0.03900) (0.03661) 
 [ 0.68719] [ 1.63406] [ 0.09168] 
    

PSP(-12) 0.014424 0.038750 -0.036454 
 (0.01945) (0.03906) (0.03666) 
 [ 0.74147] [ 0.99213] [-0.99426] 
    

PSP(-13) 0.001297 0.003212 -0.073156 
 (0.01942) (0.03899) (0.03660) 
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 [ 0.06679] [ 0.08237] [-1.99869] 
    

PSP(-14) -0.026190 0.018039 -0.030098 
 (0.01944) (0.03902) (0.03663) 
 [-1.34745] [ 0.46225] [-0.82162] 
    

PSP(-15) 0.002861 0.015939 0.014846 
 (0.01930) (0.03875) (0.03637) 
 [ 0.14822] [ 0.41136] [ 0.40817] 
    

NSP(-1) -0.000782 -0.079665 0.071316 
 (0.02083) (0.04182) (0.03926) 
 [-0.03754] [-1.90504] [ 1.81671] 
    

NSP(-2) -0.007966 -0.034911 0.104864 
 (0.02093) (0.04202) (0.03945) 
 [-0.38058] [-0.83075] [ 2.65825] 
    

NSP(-3) 0.038856 -0.027127 0.064241 
 (0.02099) (0.04215) (0.03957) 
 [ 1.85074] [-0.64354] [ 1.62350] 
    

NSP(-4) 0.031168 -0.044289 0.011825 
 (0.02107) (0.04230) (0.03970) 
 [ 1.47954] [-1.04712] [ 0.29784] 
    

NSP(-5) 0.047978 -0.011055 0.050873 
 (0.02106) (0.04228) (0.03969) 
 [ 2.27830] [-0.26146] [ 1.28177] 
    

NSP(-6) -0.022861 -0.010955 0.077681 
 (0.02114) (0.04244) (0.03984) 
 [-1.08140] [-0.25810] [ 1.94970] 
    

NSP(-7) 0.014732 -0.060508 -0.063403 
 (0.02120) (0.04257) (0.03996) 
 [ 0.69487] [-1.42148] [-1.58672] 
    

NSP(-8) 0.021992 0.011714 0.077880 
 (0.02120) (0.04256) (0.03995) 
 [ 1.03740] [ 0.27523] [ 1.94924] 
    

NSP(-9) 0.039837 0.019484 0.022298 
 (0.02119) (0.04255) (0.03994) 
 [ 1.87966] [ 0.45790] [ 0.55823] 
    

NSP(-10) 0.001097 0.033250 -0.012846 
 (0.02125) (0.04267) (0.04006) 
 [ 0.05161] [ 0.77924] [-0.32071] 
    

NSP(-11) 0.001718 -0.053373 0.039490 
 (0.02120) (0.04256) (0.03996) 
 [ 0.08102] [-1.25395] [ 0.98834] 
    

NSP(-12) 0.031639 -0.053452 0.021007 
 (0.02119) (0.04255) (0.03994) 
 [ 1.49301] [-1.25631] [ 0.52596] 
    

NSP(-13) 0.020956 -0.072464 -0.001815 
 (0.02114) (0.04244) (0.03984) 
 [ 0.99135] [-1.70738] [-0.04555] 
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NSP(-14) -0.009284 -0.001239 0.070011 
 (0.02104) (0.04224) (0.03965) 
 [-0.44132] [-0.02933] [ 1.76573] 
    

NSP(-15) -0.005087 0.034383 0.007807 
 (0.02072) (0.04161) (0.03906) 
 [-0.24548] [ 0.82638] [ 0.19990] 
    

RG(-1) -0.009179 -0.007446 -0.008002 
 (0.00348) (0.00699) (0.00656) 
 [-2.63542] [-1.06486] [-1.21907] 
    
    R-squared 0.246514 0.018323 0.078907 

Adj. R-squared 0.201063 -0.040893 0.023345 
Sum sq. resids 38.61933 155.6745 137.1819 
S.E. equation 0.227527 0.456814 0.428824 

F-statistic 5.423671 0.309424 1.420166 
Log likelihood 72.44086 -479.5888 -429.5107 

Akaike AIC -0.066770 1.327244 1.200785 
Schwarz SC 0.204732 1.598747 1.472287 

Mean dependent 0.009005 0.244952 -0.238229 
S.D. dependent 0.254552 0.447751 0.433919 

    
    Determinant resid covariance (dof adj.) 0.001827  

Determinant resid covariance 0.001527  
Log likelihood -803.5194  

Akaike information criterion 2.377574  
Schwarz criterion 3.192081  
    
     

 (2) irfname = gas, impulse = nsp, and response = dgp
(1) irfname = gas, impulse = psp, and response = dgp
95% lower and upper bounds reported
                                                                                  
 21        .266845     .146525     .387165     .137894     .02634      .249449    
 20        .257928     .142017     .373839     .135181     .027951     .242411    
 19        .249173     .137862     .360484     .133545     .030569     .236521    
 18        .240141     .133343     .34694      .12963      .030887     .228372    
 17        .229876     .127612     .332139     .123281     .028857     .217704    
 16        .221302     .123651     .318952     .119074     .029185     .208962    
 15        .214477     .12181      .307144     .118193     .03287      .203515    
 14        .210184     .121744     .298625     .116515     .03367      .199359    
 13        .213584     .129599     .297569     .113545     .033715     .193375    
 12        .200698     .1213       .280097     .099791     .023558     .176024    
 11        .182915     .108294     .257535     .085737     .013566     .157909    
 10        .171214     .101542     .240886     .082423     .014734     .150113    
 9         .161567     .096881     .226253     .076132     .013038     .139225    
 8         .142754     .08343      .202078     .057489     -.000619    .115598    
 7         .122283     .068551     .176014     .047232     -.005617    .100081    
 6         .101872     .053938     .149806     .042634     -.004622    .08989     
 5         .072857     .030747     .114968     .046613     .004868     .088357    
 4         .052464     .015839     .089089     .025109     -.011375    .061592    
 3         .022801     -.007854    .053457     .010764     -.019986    .041513    
 2         .007824     -.016155    .031802     -.003131    -.02735     .021087    
 1         -.00611     -.02163     .00941      -.000312    -.016126    .015502    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (gas psp dgp coirf, ci) (gas nsp dgp coirf, ci)
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Gasoline 2:  16/3/2003 to 24/8/2005 (G2) 

Vector Autoregression Estimates  
  

Sample (adjusted): 4/07/2003 8/24/2005 
Included observations: 601 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DGP PSP NSP 
    
    DGP(-1) -0.042472 0.436496 0.247691 
 (0.04211) (0.17915) (0.17002) 
 [-1.00871] [ 2.43650] [ 1.45685] 
    

DGP(-2) 0.226686 -0.365494 -0.170883 
 (0.04225) (0.17976) (0.17059) 
 [ 5.36556] [-2.03328] [-1.00169] 
    

DGP(-3) 0.074677 -0.193464 -0.410143 
 (0.04337) (0.18454) (0.17513) 
 [ 1.72178] [-1.04837] [-2.34190] 
    

DGP(-4) -0.022927 0.181511 0.180939 
 (0.04370) (0.18592) (0.17645) 
 [-0.52469] [ 0.97628] [ 1.02546] 
    

DGP(-5) 0.217671 0.448492 0.229460 
 (0.04373) (0.18606) (0.17658) 
 [ 4.97753] [ 2.41042] [ 1.29946] 
    

DGP(-6) -0.041553 -0.190757 -0.356102 
 (0.04387) (0.18667) (0.17716) 
 [-0.94708] [-1.02187] [-2.01006] 
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DGP(-7) -0.077477 -0.008829 -0.097519 

 (0.04406) (0.18745) (0.17790) 
 [-1.75853] [-0.04710] [-0.54817] 
    

DGP(-8) 0.012993 0.004001 0.279763 
 (0.04411) (0.18769) (0.17813) 
 [ 0.29454] [ 0.02132] [ 1.57059] 
    

DGP(-9) 0.021959 0.286923 0.209860 
 (0.04408) (0.18753) (0.17798) 
 [ 0.49820] [ 1.52997] [ 1.17914] 
    

DGP(-10) 0.146039 0.262062 0.149297 
 (0.04371) (0.18596) (0.17649) 
 [ 3.34128] [ 1.40920] [ 0.84594] 
    

DGP(-11) 0.014567 -0.084994 0.047201 
 (0.04331) (0.18427) (0.17488) 
 [ 0.33633] [-0.46124] [ 0.26990] 
    

DGP(-12) -0.008850 0.017429 -0.015020 
 (0.04318) (0.18373) (0.17437) 
 [-0.20493] [ 0.09486] [-0.08614] 
    

DGP(-13) -0.045255 -0.110037 -0.107982 
 (0.04286) (0.18234) (0.17305) 
 [-1.05598] [-0.60347] [-0.62400] 
    

DGP(-14) 0.039094 -0.396425 -0.469852 
 (0.04091) (0.17407) (0.16520) 
 [ 0.95554] [-2.27735] [-2.84411] 
    

DGP(-15) 0.130468 -0.285732 -0.140021 
 (0.04083) (0.17372) (0.16487) 
 [ 3.19535] [-1.64474] [-0.84928] 
    

PSP(-1) 0.005199 0.070115 0.010253 
 (0.01104) (0.04698) (0.04459) 
 [ 0.47086] [ 1.49234] [ 0.22994] 
    

PSP(-2) 0.007529 0.055132 0.001477 
 (0.01101) (0.04683) (0.04444) 
 [ 0.68403] [ 1.17731] [ 0.03324] 
    

PSP(-3) 0.042246 0.057858 -0.084247 
 (0.01097) (0.04669) (0.04431) 
 [ 3.84987] [ 1.23923] [-1.90132] 
    

PSP(-4) 0.024568 0.010359 -0.197462 
 (0.01118) (0.04757) (0.04514) 
 [ 2.19751] [ 0.21779] [-4.37415] 
    

PSP(-5) 0.015556 0.018284 -0.050782 
 (0.01144) (0.04868) (0.04620) 
 [ 1.35968] [ 0.37561] [-1.09923] 
    

PSP(-6) -0.002033 0.100422 -0.077377 
 (0.01135) (0.04828) (0.04581) 
 [-0.17922] [ 2.08019] [-1.68890] 
    

PSP(-7) 0.020907 0.020203 0.018064 
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 (0.01142) (0.04861) (0.04613) 
 [ 1.82994] [ 0.41561] [ 0.39158] 
    

PSP(-8) 0.011293 -0.007257 -0.047640 
 (0.01133) (0.04822) (0.04577) 
 [ 0.99633] [-0.15048] [-1.04094] 
    

PSP(-9) 0.017036 0.034263 -0.044078 
 (0.01140) (0.04852) (0.04604) 
 [ 1.49403] [ 0.70621] [-0.95731] 
    

PSP(-10) 0.032752 0.032907 0.100564 
 (0.01137) (0.04838) (0.04591) 
 [ 2.88057] [ 0.68024] [ 2.19041] 
    

PSP(-11) 0.010340 -0.057441 -0.158884 
 (0.01150) (0.04891) (0.04642) 
 [ 0.89938] [-1.17433] [-3.42267] 
    

PSP(-12) 0.002894 -0.019977 -0.044731 
 (0.01158) (0.04927) (0.04676) 
 [ 0.24990] [-0.40543] [-0.95652] 
    

PSP(-13) 0.005596 0.052347 0.006826 
 (0.01144) (0.04869) (0.04621) 
 [ 0.48901] [ 1.07514] [ 0.14773] 
    

PSP(-14) 0.002562 0.051464 -0.060220 
 (0.01131) (0.04812) (0.04567) 
 [ 0.22648] [ 1.06940] [-1.31856] 
    

PSP(-15) 0.008015 0.037183 -0.023447 
 (0.01134) (0.04826) (0.04580) 
 [ 0.70659] [ 0.77044] [-0.51192] 
    

NSP(-1) -0.002380 -0.013131 0.019062 
 (0.01158) (0.04925) (0.04674) 
 [-0.20559] [-0.26662] [ 0.40783] 
    

NSP(-2) 0.017187 -0.042761 0.031542 
 (0.01149) (0.04890) (0.04640) 
 [ 1.49555] [-0.87453] [ 0.67971] 
    

NSP(-3) -0.002120 -0.077713 0.033022 
 (0.01151) (0.04896) (0.04647) 
 [-0.18420] [-1.58725] [ 0.71067] 
    

NSP(-4) 0.029492 -0.065119 0.057063 
 (0.01154) (0.04911) (0.04661) 
 [ 2.55510] [-1.32597] [ 1.22433] 
    

NSP(-5) 0.014072 0.011068 0.011837 
 (0.01162) (0.04946) (0.04694) 
 [ 1.21063] [ 0.22379] [ 0.25219] 
    

NSP(-6) 0.051835 -0.003640 0.039781 
 (0.01158) (0.04929) (0.04678) 
 [ 4.47449] [-0.07384] [ 0.85043] 
    

NSP(-7) 0.027174 -0.033184 -0.027114 
 (0.01177) (0.05008) (0.04753) 
 [ 2.30854] [-0.66258] [-0.57045] 
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NSP(-8) 0.017489 -0.057724 0.055400 

 (0.01177) (0.05006) (0.04751) 
 [ 1.48643] [-1.15309] [ 1.16611] 
    

NSP(-9) 0.008229 -0.046341 -0.028647 
 (0.01182) (0.05028) (0.04772) 
 [ 0.69637] [-0.92169] [-0.60036] 
    

NSP(-10) 0.016747 -0.035834 -0.096677 
 (0.01167) (0.04963) (0.04710) 
 [ 1.43562] [-0.72200] [-2.05247] 
    

NSP(-11) 0.011213 0.006577 0.071756 
 (0.01167) (0.04964) (0.04711) 
 [ 0.96106] [ 0.13249] [ 1.52313] 
    

NSP(-12) 0.001718 -0.002241 -0.046303 
 (0.01145) (0.04872) (0.04624) 
 [ 0.15003] [-0.04599] [-1.00143] 
    

NSP(-13) 0.022124 -0.075694 0.035976 
 (0.01135) (0.04827) (0.04581) 
 [ 1.95009] [-1.56809] [ 0.78531] 
    

NSP(-14) 0.013003 -0.068895 0.032937 
 (0.01130) (0.04809) (0.04564) 
 [ 1.15049] [-1.43270] [ 0.72172] 
    

NSP(-15) -0.005287 -0.054785 0.023839 
 (0.01130) (0.04810) (0.04565) 
 [-0.46771] [-1.13901] [ 0.52224] 
    

RG(-1) -0.007195 -0.001580 -0.014218 
 (0.00313) (0.01333) (0.01265) 
 [-2.29636] [-0.11852] [-1.12383] 
    
    R-squared 0.467916 0.050952 0.149882 

Adj. R-squared 0.424775 -0.025998 0.080953 
Sum sq. resids 12.68638 229.6603 206.8479 
S.E. equation 0.151190 0.643275 0.610491 

F-statistic 10.84599 0.662140 2.174451 
Log likelihood 306.5668 -563.7029 -532.2654 

Akaike AIC -0.867111 2.028962 1.924344 
Schwarz SC -0.530446 2.365626 2.261009 

Mean dependent 0.025636 0.431223 -0.370226 
S.D. dependent 0.199344 0.635072 0.636811 

    
    Determinant resid covariance (dof adj.) 0.002921  

Determinant resid covariance 0.002300  
Log likelihood -732.8799  

Akaike information criterion 2.898103  
Schwarz criterion 3.908096  
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(2) irfname = gas, impulse = nsp, and response = dgp
(1) irfname = gas, impulse = psp, and response = dgp
95% lower and upper bounds reported
                                                                                  
 21        .30664      .179734     .433545     .1901       .079042     .301159    
 20        .299809     .17798      .421637     .180576     .073899     .287252    
 19        .29044      .173703     .407178     .178109     .075708     .280511    
 18        .282021     .170361     .393681     .172866     .07485      .270882    
 17        .273678     .167419     .379936     .170499     .077075     .263923    
 16        .267837     .167283     .36839      .168394     .079694     .257094    
 15        .261798     .167505     .356092     .163596     .080472     .24672     
 14        .250892     .1623       .339484     .160641     .081502     .23978     
 13        .239913     .157211     .322616     .150026     .075371     .22468     
 12        .22376      .147309     .300211     .136549     .066772     .206326    
 11        .211443     .141349     .281538     .130158     .065705     .194611    
 10        .197929     .134767     .261091     .118764     .060315     .177214    
 9         .171291     .114135     .228447     .103633     .050316     .15695     
 8         .148612     .0975       .199725     .090681     .042878     .138483    
 7         .129387     .08419      .174584     .075026     .032639     .117412    
 6         .10261      .063284     .141937     .05878      .021695     .095865    
 5         .083386     .050548     .116224     .029479     -.001546    .060504    
 4         .06289      .035238     .090541     .023543     -.002902    .049989    
 3         .037624     .01543      .059819     .006088     -.015416    .027591    
 2         .011333     -.005242    .027909     .007951     -.008313    .024216    
 1         .00264      -.009221    .014501     -.001279    -.012996    .010438    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (gas psp dgp coirf, ci) (gas nsp dgp coirf, ci)
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Gasoline 3: 24/8/2005 to 12/5/2008 (G3) 

Vector Autoregression Estimates  
  

Sample (adjusted): 9/18/2005 5/12/2008 
Included observations: 671 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DGP PSP NSP 
    
    DGP(-1) -0.099676 0.133123 -0.080108 
 (0.03969) (0.20611) (0.18457) 
 [-2.51126] [ 0.64589] [-0.43402] 
    

DGP(-2) 0.172041 0.132294 0.066691 
 (0.03985) (0.20694) (0.18531) 
 [ 4.31709] [ 0.63930] [ 0.35988] 
    

DGP(-3) 0.116758 0.087039 -0.072981 
 (0.04039) (0.20975) (0.18784) 
 [ 2.89047] [ 0.41496] [-0.38853] 
    

DGP(-4) 0.007372 -0.135207 -0.033806 
 (0.04045) (0.21005) (0.18810) 
 [ 0.18224] [-0.64369] [-0.17972] 
    

DGP(-5) 0.272466 0.006092 -0.010367 
 (0.04001) (0.20776) (0.18605) 
 [ 6.80991] [ 0.02932] [-0.05572] 
    

DGP(-6) 0.014210 -0.021244 0.300926 
 (0.04122) (0.21406) (0.19169) 
 [ 0.34470] [-0.09924] [ 1.56982] 
    

DGP(-7) 0.036384 -0.155920 -0.001576 
 (0.04111) (0.21349) (0.19118) 
 [ 0.88498] [-0.73035] [-0.00824] 
    

DGP(-8) 0.025072 0.193404 -0.112716 
 (0.04080) (0.21186) (0.18972) 
 [ 0.61450] [ 0.91289] [-0.59411] 
    

DGP(-9) 0.089285 -0.022527 -0.344224 
 (0.04051) (0.21034) (0.18836) 
 [ 2.20425] [-0.10710] [-1.82749] 
    

DGP(-10) -0.002115 -0.283696 -0.156272 
 (0.03627) (0.18834) (0.16866) 
 [-0.05830] [-1.50630] [-0.92655] 
    

DGP(-11) -0.060283 -0.135097 -0.126884 
 (0.03479) (0.18066) (0.16179) 
 [-1.73269] [-0.74779] [-0.78427] 
    

DGP(-12) -0.061946 0.273424 0.498545 
 (0.03393) (0.17619) (0.15778) 
 [-1.82570] [ 1.55190] [ 3.15978] 
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DGP(-13) -0.022320 0.075255 -0.038708 
 (0.03363) (0.17461) (0.15637) 
 [-0.66378] [ 0.43099] [-0.24754] 
    

DGP(-14) 0.011694 0.248287 0.276460 
 (0.03248) (0.16866) (0.15104) 
 [ 0.36003] [ 1.47210] [ 1.83038] 
    

DGP(-15) 0.076555 -0.094311 -0.238682 
 (0.03196) (0.16596) (0.14862) 
 [ 2.39537] [-0.56829] [-1.60604] 
    

PSP(-1) 0.016002 0.036024 0.029412 
 (0.00858) (0.04457) (0.03992) 
 [ 1.86416] [ 0.80819] [ 0.73685] 
    

PSP(-2) 0.037271 0.029442 -0.004115 
 (0.00854) (0.04432) (0.03969) 
 [ 4.36680] [ 0.66429] [-0.10368] 
    

PSP(-3) 0.029434 0.034538 -0.067626 
 (0.00864) (0.04486) (0.04017) 
 [ 3.40726] [ 0.76996] [-1.68347] 
    

PSP(-4) 0.020224 0.074971 0.016299 
 (0.00873) (0.04533) (0.04059) 
 [ 2.31678] [ 1.65391] [ 0.40153] 
    

PSP(-5) 0.028785 0.046117 -0.078209 
 (0.00897) (0.04656) (0.04169) 
 [ 3.21050] [ 0.99055] [-1.87586] 
    

PSP(-6) 0.011096 0.019710 -0.019603 
 (0.00909) (0.04718) (0.04225) 
 [ 1.22136] [ 0.41778] [-0.46400] 
    

PSP(-7) 0.013215 0.047489 -0.080859 
 (0.00906) (0.04703) (0.04212) 
 [ 1.45898] [ 1.00968] [-1.91976] 
    

PSP(-8) 0.019171 0.035563 -0.057048 
 (0.00910) (0.04724) (0.04230) 
 [ 2.10743] [ 0.75287] [-1.34862] 
    

PSP(-9) 0.006435 -0.005107 -0.047694 
 (0.00911) (0.04730) (0.04236) 
 [ 0.70651] [-0.10797] [-1.12606] 
    

PSP(-10) 0.012262 -0.010512 -0.052102 
 (0.00911) (0.04733) (0.04239) 
 [ 1.34528] [-0.22209] [-1.22922] 
    

PSP(-11) -0.015591 -0.005406 -0.001613 
 (0.00897) (0.04657) (0.04170) 
 [-1.73858] [-0.11608] [-0.03868] 
    

PSP(-12) -0.014103 0.092397 0.012910 
 (0.00884) (0.04592) (0.04113) 
 [-1.59469] [ 2.01197] [ 0.31391] 
    

PSP(-13) -0.005044 0.071354 -0.017301 
 (0.00875) (0.04544) (0.04069) 
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 [-0.57639] [ 1.57038] [-0.42519] 
    

PSP(-14) 0.019678 0.057336 0.035837 
 (0.00871) (0.04523) (0.04051) 
 [ 2.25914] [ 1.26762] [ 0.88476] 
    

PSP(-15) -0.001108 0.071450 0.028058 
 (0.00869) (0.04513) (0.04041) 
 [-0.12755] [ 1.58332] [ 0.69429] 
    

NSP(-1) -0.008120 -0.001380 0.035879 
 (0.00950) (0.04930) (0.04415) 
 [-0.85524] [-0.02798] [ 0.81260] 
    

NSP(-2) 0.003444 -0.021435 0.013658 
 (0.00944) (0.04904) (0.04391) 
 [ 0.36466] [-0.43711] [ 0.31103] 
    

NSP(-3) 0.013932 -0.052104 0.032048 
 (0.00941) (0.04885) (0.04374) 
 [ 1.48107] [-1.06669] [ 0.73264] 
    

NSP(-4) 0.026243 -0.041157 0.088798 
 (0.00927) (0.04816) (0.04312) 
 [ 2.82984] [-0.85468] [ 2.05914] 
    

NSP(-5) 0.024446 -0.066807 -0.026112 
 (0.00936) (0.04861) (0.04353) 
 [ 2.61158] [-1.37444] [-0.59988] 
    

NSP(-6) 0.030917 0.019286 0.064808 
 (0.00937) (0.04868) (0.04359) 
 [ 3.29812] [ 0.39620] [ 1.48672] 
    

NSP(-7) 0.021223 -0.062226 0.054041 
 (0.00937) (0.04864) (0.04356) 
 [ 2.26550] [-1.27923] [ 1.24058] 
    

NSP(-8) 0.007691 -0.026691 0.061332 
 (0.00944) (0.04901) (0.04389) 
 [ 0.81487] [-0.54462] [ 1.39750] 
    

NSP(-9) 0.007565 0.004842 0.120432 
 (0.00938) (0.04869) (0.04360) 
 [ 0.80688] [ 0.09946] [ 2.76229] 
    

NSP(-10) 0.004410 0.041566 0.042395 
 (0.00944) (0.04904) (0.04392) 
 [ 0.46691] [ 0.84752] [ 0.96528] 
    

NSP(-11) 0.009648 -0.096278 -0.013668 
 (0.00935) (0.04856) (0.04348) 
 [ 1.03178] [-1.98285] [-0.31435] 
    

NSP(-12) 0.009197 -0.028948 0.004422 
 (0.00934) (0.04848) (0.04341) 
 [ 0.98523] [-0.59717] [ 0.10186] 
    

NSP(-13) 0.011265 -0.017754 0.028191 
 (0.00917) (0.04759) (0.04262) 
 [ 1.22905] [-0.37304] [ 0.66143] 
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NSP(-14) -0.006117 -0.067535 0.045571 
 (0.00913) (0.04740) (0.04245) 
 [-0.67009] [-1.42478] [ 1.07358] 
    

NSP(-15) 0.016208 0.049000 0.078057 
 (0.00907) (0.04708) (0.04216) 
 [ 1.78759] [ 1.04070] [ 1.85126] 
    

RG(-1) -0.002804 -0.003837 -0.000301 
 (0.00223) (0.01159) (0.01038) 
 [-1.25623] [-0.33112] [-0.02903] 
    
    R-squared 0.541456 0.048936 0.098189 

Adj. R-squared 0.508441 -0.019541 0.033258 
Sum sq. resids 19.76424 532.9257 427.3789 
S.E. equation 0.177828 0.923407 0.826926 

F-statistic 16.40020 0.714638 1.512217 
Log likelihood 230.4945 -874.8129 -800.7643 

Akaike AIC -0.549909 2.744599 2.523888 
Schwarz SC -0.240813 3.053695 2.832984 

Mean dependent 0.023374 0.619933 -0.556111 
S.D. dependent 0.253637 0.914515 0.841030 

    
    Determinant resid covariance (dof adj.) 0.014923  

Determinant resid covariance 0.012059  
Log likelihood -1374.111  

Akaike information criterion 4.507038  
Schwarz criterion 5.434325  
    
     

 (2) irfname = gas, impulse = nsp, and response = dgp
(1) irfname = gas, impulse = psp, and response = dgp
95% lower and upper bounds reported
                                                                                  
 21        .561596     .390819     .732373     .2379       .089403     .386397    
 20        .544826     .382295     .707357     .231181     .089376     .372986    
 19        .527382     .373117     .681646     .217833     .082522     .353143    
 18        .505802     .359762     .651843     .211257     .082484     .34003     
 17        .489524     .351755     .627293     .202035     .079987     .324083    
 16        .468414     .33893      .597899     .193651     .078333     .308969    
 15        .45372      .332785     .574655     .187305     .079626     .294984    
 14        .430854     .318512     .543196     .165762     .064479     .267044    
 13        .39888      .294807     .502954     .159008     .064301     .253715    
 12        .378247     .282762     .473732     .14098      .053444     .228516    
 11        .359775     .273016     .446535     .124597     .044846     .204348    
 10        .34573      .268249     .423211     .107303     .03622      .178386    
 9         .304635     .23618      .37309      .098538     .03568      .161396    
 8         .272976     .213064     .332889     .085951     .031124     .140778    
 7         .23092      .179455     .282385     .075549     .028227     .122871    
 6         .188906     .14518      .232633     .058791     .018356     .099227    
 5         .153905     .118325     .189484     .037739     .004566     .070911    
 4         .110274     .080754     .139794     .022193     -.00576     .050145    
 3         .076199     .052452     .099945     .00542      -.017013    .027853    
 2         .044882     .026877     .062887     -.003003    -.020304    .014298    
 1         .011437     -.001678    .024552     -.005833    -.018739    .007072    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (gas psp dgp coirf, ci) (gas nsp dgp coirf, ci)
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Gasoline 4: 12/5/2008 to 5/1/2009 (G4) 

 

See Segment 3 
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Gasoline 5: 5/1/2009 to 31/12/2010 (G5) 

See S4 

 

 

 

 

 

 

 

 

 

0
.2

.4
.6

.8

0 5 10 15 20
Days since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

S4 - Gasoline



 
 

392 
 

 

 

 

 

 

B7: HARMONISED SEGMENTS  

Segment 1: 03/01/2000 to 14/03/2001 

Diesel 

Vector Autoregression Estimates  
  

Sample (adjusted): 1/27/2000 3/14/2001 
Included observations: 286 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DDP PWP NWP 
    
    DDP(-1) 0.096230 0.086277 0.058143 
 (0.06605) (0.07103) (0.07194) 
 [ 1.45683] [ 1.21464] [ 0.80827] 
    

DDP(-2) -0.103573 0.039146 -0.076947 
 (0.06667) (0.07170) (0.07261) 
 [-1.55346] [ 0.54600] [-1.05974] 
    

DDP(-3) -0.007460 -0.016692 -0.077978 
 (0.06746) (0.07254) (0.07346) 
 [-0.11059] [-0.23012] [-1.06149] 
    

DDP(-4) 0.012400 0.085614 0.056444 
 (0.06930) (0.07452) (0.07547) 
 [ 0.17892] [ 1.14881] [ 0.74787] 
    

DDP(-5) 0.027606 -0.052400 -0.041698 
 (0.07039) (0.07569) (0.07665) 
 [ 0.39221] [-0.69230] [-0.54398] 
    

DDP(-6) 0.068473 0.027466 0.273119 
 (0.09641) (0.10367) (0.10499) 
 [ 0.71026] [ 0.26494] [ 2.60142] 
    

DDP(-7) 0.090578 -0.086486 -0.120434 
 (0.09716) (0.10448) (0.10581) 
 [ 0.93222] [-0.82775] [-1.13816] 
    

DDP(-8) -0.040713 0.092672 -0.005064 
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 (0.09675) (0.10404) (0.10537) 
 [-0.42079] [ 0.89072] [-0.04806] 
    

DDP(-9) 0.041520 -0.115924 -0.153022 
 (0.09608) (0.10332) (0.10464) 
 [ 0.43213] [-1.12198] [-1.46241] 
    

DDP(-10) 0.043483 0.012816 -0.159686 
 (0.09518) (0.10235) (0.10365) 
 [ 0.45687] [ 0.12522] [-1.54062] 
    

DDP(-11) -0.086639 -0.105105 -0.055182 
 (0.09576) (0.10297) (0.10428) 
 [-0.90477] [-1.02072] [-0.52916] 
    

DDP(-12) 0.023035 0.111572 -0.012644 
 (0.09469) (0.10182) (0.10312) 
 [ 0.24327] [ 1.09573] [-0.12261] 
    

DDP(-13) -0.005004 0.023707 -0.081740 
 (0.09435) (0.10146) (0.10275) 
 [-0.05304] [ 0.23367] [-0.79553] 
    

DDP(-14) 0.060924 0.015477 0.086057 
 (0.09393) (0.10100) (0.10229) 
 [ 0.64863] [ 0.15323] [ 0.84131] 
    

DDP(-15) 0.043874 0.030117 -0.111839 
 (0.09328) (0.10030) (0.10158) 
 [ 0.47036] [ 0.30025] [-1.10097] 
    

DDP(-16) 0.025452 -0.000287 0.204675 
 (0.09276) (0.09975) (0.10102) 
 [ 0.27438] [-0.00287] [ 2.02601] 
    

DDP(-17) 0.051021 -0.287684 -0.041672 
 (0.09175) (0.09866) (0.09991) 
 [ 0.55611] [-2.91596] [-0.41708] 
    

PWP(-1) -0.015930 -0.059047 0.007155 
 (0.06656) (0.07158) (0.07249) 
 [-0.23932] [-0.82491] [ 0.09870] 
    

PWP(-2) -0.110305 0.138801 -0.038583 
 (0.06628) (0.07128) (0.07218) 
 [-1.66417] [ 1.94738] [-0.53451] 
    

PWP(-3) 0.082433 0.103114 -0.106538 
 (0.06740) (0.07247) (0.07340) 
 [ 1.22309] [ 1.42275] [-1.45151] 
    

PWP(-4) -0.067438 0.108419 -0.091222 
 (0.06693) (0.07198) (0.07289) 
 [-1.00753] [ 1.50631] [-1.25145] 
    

PWP(-5) -0.030674 0.005568 -0.037782 
 (0.06744) (0.07252) (0.07345) 
 [-0.45481] [ 0.07677] [-0.51440] 
    

PWP(-6) 0.156995 0.054184 -0.100255 
 (0.06636) (0.07136) (0.07227) 
 [ 2.36573] [ 0.75928] [-1.38721] 
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PWP(-7) 0.016825 0.041657 0.052296 

 (0.06744) (0.07252) (0.07344) 
 [ 0.24950] [ 0.57446] [ 0.71210] 
    

PWP(-8) 0.096917 -0.007387 0.085875 
 (0.06746) (0.07254) (0.07346) 
 [ 1.43672] [-0.10184] [ 1.16895] 
    

PWP(-9) 0.052489 -0.035181 -0.112373 
 (0.06766) (0.07276) (0.07368) 
 [ 0.77577] [-0.48354] [-1.52505] 
    

PWP(-10) -0.044454 -0.033624 -0.062770 
 (0.06786) (0.07298) (0.07390) 
 [-0.65506] [-0.46076] [-0.84934] 
    

PWP(-11) 0.151332 0.034850 -0.048398 
 (0.06797) (0.07309) (0.07402) 
 [ 2.22657] [ 0.47684] [-0.65387] 
    

PWP(-12) 0.030170 0.071619 -0.120094 
 (0.06867) (0.07384) (0.07478) 
 [ 0.43938] [ 0.96993] [-1.60597] 
    

PWP(-13) -0.052541 0.057021 -0.030688 
 (0.06921) (0.07442) (0.07537) 
 [-0.75916] [ 0.76617] [-0.40716] 
    

PWP(-14) -0.034921 -0.016824 -0.078789 
 (0.06872) (0.07390) (0.07484) 
 [-0.50815] [-0.22767] [-1.05277] 
    

PWP(-15) 0.035623 -0.059922 -0.099529 
 (0.06888) (0.07406) (0.07501) 
 [ 0.51721] [-0.80905] [-1.32692] 
    

PWP(-16) 0.038044 0.083235 0.143088 
 (0.06868) (0.07386) (0.07480) 
 [ 0.55392] [ 1.12699] [ 1.91303] 
    

PWP(-17) -0.028106 0.019350 -0.008232 
 (0.06875) (0.07393) (0.07487) 
 [-0.40883] [ 0.26175] [-0.10996] 
    

NWP(-1) 0.037865 0.135353 0.020534 
 (0.06735) (0.07242) (0.07335) 
 [ 0.56221] [ 1.86889] [ 0.27996] 
    

NWP(-2) 0.112917 -0.114525 -0.060972 
 (0.06635) (0.07135) (0.07226) 
 [ 1.70183] [-1.60514] [-0.84381] 
    

NWP(-3) 0.015437 -0.027453 0.023349 
 (0.06548) (0.07042) (0.07131) 
 [ 0.23574] [-0.38987] [ 0.32742] 
    

NWP(-4) 0.073217 -0.011793 0.067597 
 (0.06509) (0.06999) (0.07089) 
 [ 1.12485] [-0.16849] [ 0.95361] 
    

NWP(-5) 0.101810 -0.080237 0.003925 
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 (0.06513) (0.07004) (0.07093) 
 [ 1.56310] [-1.14558] [ 0.05533] 
    

NWP(-6) -0.090910 -0.006141 -0.022557 
 (0.06468) (0.06956) (0.07044) 
 [-1.40543] [-0.08829] [-0.32021] 
    

NWP(-7) 0.002785 0.009311 0.083546 
 (0.06454) (0.06940) (0.07028) 
 [ 0.04315] [ 0.13417] [ 1.18868] 
    

NWP(-8) -0.016202 -0.069141 -0.069085 
 (0.06433) (0.06918) (0.07006) 
 [-0.25185] [-0.99943] [-0.98606] 
    

NWP(-9) 0.069502 0.022027 0.011673 
 (0.06353) (0.06832) (0.06919) 
 [ 1.09400] [ 0.32243] [ 0.16871] 
    

NWP(-10) -0.015049 0.010696 0.039221 
 (0.06362) (0.06841) (0.06928) 
 [-0.23657] [ 0.15635] [ 0.56613] 
    

NWP(-11) -0.043918 -0.046591 0.043180 
 (0.06334) (0.06812) (0.06898) 
 [-0.69331] [-0.68399] [ 0.62594] 
    

NWP(-12) 0.008424 -0.161052 0.096657 
 (0.06229) (0.06698) (0.06783) 
 [ 0.13524] [-2.40449] [ 1.42494] 
    

NWP(-13) -0.007524 -0.089275 -0.028179 
 (0.06294) (0.06768) (0.06854) 
 [-0.11954] [-1.31907] [-0.41112] 
    

NWP(-14) 0.099073 -0.018497 0.062364 
 (0.06303) (0.06777) (0.06864) 
 [ 1.57195] [-0.27293] [ 0.90861] 
    

NWP(-15) -0.037237 0.063044 0.110861 
 (0.06308) (0.06784) (0.06870) 
 [-0.59029] [ 0.92937] [ 1.61371] 
    

NWP(-16) -0.083302 0.032859 0.017278 
 (0.06311) (0.06786) (0.06873) 
 [-1.31997] [ 0.48419] [ 0.25140] 
    

NWP(-17) -0.012588 -0.075022 -0.054787 
 (0.06328) (0.06805) (0.06892) 
 [-0.19891] [-1.10245] [-0.79497] 
    

RD(-1) -0.034496 -0.015024 -0.029946 
 (0.01766) (0.01899) (0.01923) 
 [-1.95375] [-0.79130] [-1.55738] 
    
    R-squared 0.194052 0.128150 0.233158 

Adj. R-squared 0.018396 -0.061869 0.066026 
Sum sq. resids 45.92886 53.10971 54.47123 
S.E. equation 0.443032 0.476408 0.482476 

F-statistic 1.104729 0.674405 1.395052 
Log likelihood -144.2840 -165.0570 -168.6768 

Akaike AIC 1.372615 1.517881 1.543194 
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Schwarz SC 2.037341 2.182607 2.207920 
Mean dependent 0.009352 0.304941 -0.311429 
S.D. dependent 0.447164 0.462321 0.499239 

    
    Determinant resid covariance (dof adj.) 0.008208  

Determinant resid covariance 0.004495  
Log likelihood -444.5755  

Akaike information criterion 4.199829  
Schwarz criterion 6.194006  
    
     

 

 
 

 

 

 

(2) irfname = diesel, impulse = nwp, and response = ddp
(1) irfname = diesel, impulse = pwp, and response = ddp
95% lower and upper bounds reported
                                                                                  
 21        .13118      -.086306    .348665     .151383     -.039697    .342462    
 20        .122775     -.091934    .337485     .149635     -.037145    .336414    
 19        .13386      -.079014    .346733     .159324     -.022721    .341369    
 18        .127628     -.084309    .339565     .145966     -.031268    .3232      
 17        .127071     -.0828      .336942     .143914     -.027154    .314982    
 16        .150111     -.054577    .3548       .14591      -.024792    .316611    
 15        .149058     -.050631    .348747     .170894     .000521     .341266    
 14        .13329      -.06039     .32697      .178926     .009068     .348785    
 13        .139299     -.047762    .32636      .137712     -.030111    .305535    
 12        .156375     -.024729    .337478     .141645     -.023223    .306513    
 11        .123728     -.049268    .296724     .123224     -.035723    .282172    
 10        .084586     -.078715    .247887     .148034     -.002736    .298803    
 9         .094397     -.05923     .248025     .147042     .00466      .289423    
 8         .050365     -.092444    .193174     .10525      -.028525    .239026    
 7         .028838     -.102219    .159895     .106915     -.017022    .230852    
 6         .027539     -.093061    .14814      .100578     -.014312    .215468    
 5         -.012314    -.121436    .096809     .131378     .026183     .236573    
 4         -.007295    -.10387     .089281     .094714     .000171     .189258    
 3         .010671     -.072977    .094319     .063368     -.019959    .146695    
 2         -.024306    -.092826    .044214     .059602     -.008972    .128176    
 1         .000595     -.045168    .046357     .014746     -.031769    .061261    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (diesel pwp ddp coirf, ci) (diesel nwp ddp coirf, ci)
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Gasoline 

 
 
 

Vector Autoregression Estimates  
  

Sample (adjusted): 1/25/2000 3/14/2001 
Included observations: 288 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DGP PSP NSP 
    
    DGP(-1) 0.134107 0.036172 -0.042934 
 (0.06297) (0.07510) (0.08024) 
 [ 2.12967] [ 0.48163] [-0.53505] 
    

DGP(-2) -0.025293 -0.032948 -0.017494 
 (0.06300) (0.07514) (0.08028) 
 [-0.40147] [-0.43850] [-0.21792] 
    

DGP(-3) 0.011520 -0.045167 -0.024325 
 (0.06244) (0.07448) (0.07957) 
 [ 0.18448] [-0.60646] [-0.30570] 
    

DGP(-4) -0.004931 -0.006667 -0.022717 
 (0.06195) (0.07389) (0.07894) 
 [-0.07960] [-0.09023] [-0.28778] 
    

DGP(-5) 0.017234 -0.073308 0.067126 
 (0.06545) (0.07806) (0.08340) 
 [ 0.26333] [-0.93915] [ 0.80490] 
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DGP(-6) 0.060203 0.085831 0.207552 

 (0.07579) (0.09040) (0.09658) 
 [ 0.79432] [ 0.94950] [ 2.14901] 
    

DGP(-7) -0.045139 0.134895 -0.178122 
 (0.07658) (0.09133) (0.09758) 
 [-0.58947] [ 1.47700] [-1.82544] 
    

DGP(-8) -0.039031 0.042576 0.038198 
 (0.07743) (0.09234) (0.09866) 
 [-0.50411] [ 0.46106] [ 0.38716] 
    

DGP(-9) -0.015977 -0.159502 -0.096626 
 (0.07730) (0.09220) (0.09850) 
 [-0.20668] [-1.73001] [-0.98093] 
    

DGP(-10) -0.008106 0.145760 0.114469 
 (0.07735) (0.09225) (0.09857) 
 [-0.10479] [ 1.57998] [ 1.16135] 
    

DGP(-11) -0.005635 -0.222516 -0.213588 
 (0.07712) (0.09198) (0.09827) 
 [-0.07307] [-2.41913] [-2.17340] 
    

DGP(-12) -0.030948 -0.028990 0.110455 
 (0.07815) (0.09321) (0.09959) 
 [-0.39598] [-0.31100] [ 1.10909] 
    

DGP(-13) 0.071689 0.088597 0.144467 
 (0.07824) (0.09331) (0.09969) 
 [ 0.91633] [ 0.94949] [ 1.44912] 
    

DGP(-14) 0.068253 -0.026428 -0.143387 
 (0.07881) (0.09399) (0.10042) 
 [ 0.86608] [-0.28118] [-1.42785] 
    

DGP(-15) 0.068247 0.014703 0.106177 
 (0.07429) (0.08860) (0.09466) 
 [ 0.91870] [ 0.16595] [ 1.12166] 
    

PSP(-1) -0.015494 0.173788 0.141219 
 (0.05708) (0.06807) (0.07273) 
 [-0.27145] [ 2.55291] [ 1.94166] 
    

PSP(-2) 0.008056 0.028201 -0.166601 
 (0.05789) (0.06904) (0.07377) 
 [ 0.13916] [ 0.40846] [-2.25852] 
    

PSP(-3) -0.070369 0.261347 0.039672 
 (0.05825) (0.06948) (0.07423) 
 [-1.20802] [ 3.76170] [ 0.53445] 
    

PSP(-4) -0.018797 0.038534 -0.007928 
 (0.05948) (0.07094) (0.07580) 
 [-0.31602] [ 0.54316] [-0.10460] 
    

PSP(-5) 0.057572 -0.006982 -0.060430 
 (0.05850) (0.06977) (0.07454) 
 [ 0.98419] [-0.10008] [-0.81070] 
    

PSP(-6) 0.060482 -0.101260 -0.048234 
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 (0.05823) (0.06945) (0.07420) 
 [ 1.03870] [-1.45805] [-0.65005] 
    

PSP(-7) 0.042716 0.027319 -0.015468 
 (0.05625) (0.06708) (0.07167) 
 [ 0.75946] [ 0.40724] [-0.21581] 
    

PSP(-8) 0.004104 -0.058927 0.021011 
 (0.05591) (0.06669) (0.07125) 
 [ 0.07339] [-0.88363] [ 0.29489] 
    

PSP(-9) -0.046208 0.271334 0.100273 
 (0.05578) (0.06653) (0.07108) 
 [-0.82837] [ 4.07832] [ 1.41067] 
    

PSP(-10) 0.005877 0.042511 -0.125351 
 (0.05718) (0.06820) (0.07286) 
 [ 0.10279] [ 0.62335] [-1.72038] 
    

PSP(-11) -0.025122 0.078608 0.034886 
 (0.05745) (0.06853) (0.07321) 
 [-0.43725] [ 1.14714] [ 0.47649] 
    

PSP(-12) 0.068394 -0.115309 -0.065728 
 (0.05754) (0.06863) (0.07332) 
 [ 1.18858] [-1.68014] [-0.89640] 
    

PSP(-13) 0.017424 -0.014095 -0.086450 
 (0.05638) (0.06725) (0.07185) 
 [ 0.30901] [-0.20960] [-1.20322] 
    

PSP(-14) -0.083436 -0.005696 0.012969 
 (0.05659) (0.06749) (0.07211) 
 [-1.47446] [-0.08439] [ 0.17986] 
    

PSP(-15) 0.013169 0.097076 0.058663 
 (0.05646) (0.06734) (0.07194) 
 [ 0.23324] [ 1.44164] [ 0.81540] 
    

NSP(-1) -0.039795 -0.001428 0.108932 
 (0.05344) (0.06374) (0.06810) 
 [-0.74466] [-0.02241] [ 1.59963] 
    

NSP(-2) -0.023831 -0.058474 0.141918 
 (0.05354) (0.06386) (0.06822) 
 [-0.44511] [-0.91574] [ 2.08021] 
    

NSP(-3) 0.041960 -0.055961 0.078049 
 (0.05399) (0.06439) (0.06879) 
 [ 0.77725] [-0.86912] [ 1.13457] 
    

NSP(-4) 0.013951 -0.046700 0.066526 
 (0.05410) (0.06452) (0.06893) 
 [ 0.25789] [-0.72382] [ 0.96509] 
    

NSP(-5) 0.069595 0.130091 0.190429 
 (0.05374) (0.06410) (0.06849) 
 [ 1.29493] [ 2.02949] [ 2.78058] 
    

NSP(-6) -0.065319 0.047551 0.088786 
 (0.05409) (0.06452) (0.06893) 
 [-1.20751] [ 0.73703] [ 1.28805] 
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NSP(-7) -0.015382 0.005549 -0.043038 

 (0.05415) (0.06459) (0.06901) 
 [-0.28403] [ 0.08591] [-0.62367] 
    

NSP(-8) 0.024987 -0.034933 0.028953 
 (0.05419) (0.06464) (0.06906) 
 [ 0.46107] [-0.54046] [ 0.41925] 
    

NSP(-9) 0.055199 -0.039259 -0.053172 
 (0.05330) (0.06356) (0.06791) 
 [ 1.03571] [-0.61762] [-0.78294] 
    

NSP(-10) -0.017912 -0.009113 0.004619 
 (0.05320) (0.06345) (0.06779) 
 [-0.33670] [-0.14362] [ 0.06814] 
    

NSP(-11) -0.023694 -0.114296 0.092389 
 (0.05303) (0.06325) (0.06757) 
 [-0.44682] [-1.80712] [ 1.36722] 
    

NSP(-12) 0.020160 0.006145 0.047747 
 (0.05357) (0.06389) (0.06826) 
 [ 0.37634] [ 0.09618] [ 0.69948] 
    

NSP(-13) 0.068755 -0.067185 -0.017028 
 (0.05309) (0.06332) (0.06766) 
 [ 1.29497] [-1.06096] [-0.25169] 
    

NSP(-14) -0.056974 0.001516 0.018994 
 (0.05268) (0.06283) (0.06713) 
 [-1.08150] [ 0.02412] [ 0.28295] 
    

NSP(-15) -0.025474 0.031415 -7.62E-05 
 (0.05081) (0.06060) (0.06475) 
 [-0.50132] [ 0.51836] [-0.00118] 
    

RG(-1) -0.035810 0.005585 0.014553 
 (0.01153) (0.01375) (0.01469) 
 [-3.10684] [ 0.40626] [ 0.99086] 
    
    R-squared 0.252935 0.160254 0.146977 

Adj. R-squared 0.114018 0.004103 -0.011643 
Sum sq. resids 27.93583 39.73884 45.36143 
S.E. equation 0.339761 0.405228 0.432948 

F-statistic 1.820762 1.026277 0.926599 
Log likelihood -72.69502 -123.4434 -142.4993 

Akaike AIC 0.824271 1.176690 1.309023 
Schwarz SC 1.409327 1.761746 1.894079 

Mean dependent 0.006350 0.241343 -0.238423 
S.D. dependent 0.360961 0.406062 0.430449 

    
    Determinant resid covariance (dof adj.) 0.003264  

Determinant resid covariance 0.001937  
Log likelihood -326.4278  

Akaike information criterion 3.225193  
Schwarz criterion 4.980362  
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(2) irfname = gas, impulse = nsp, and response = dgp
(1) irfname = gas, impulse = psp, and response = dgp
95% lower and upper bounds reported
                                                                                  
 21        .312135     .078483     .545787     .23801      .005821     .470198    
 20        .296621     .071515     .521727     .236993     .013636     .46035     
 19        .287607     .070972     .504242     .236756     .022322     .45119     
 18        .279747     .071831     .487664     .234289     .028797     .439781    
 17        .282624     .083652     .481595     .221603     .025429     .417777    
 16        .279962     .090435     .469489     .216314     .030264     .402365    
 15        .263314     .084525     .442103     .213995     .038622     .389368    
 14        .257377     .085992     .428762     .213925     .044309     .383541    
 13        .277209     .113584     .440834     .216407     .053319     .379496    
 12        .247381     .091647     .403115     .17527      .0191       .331439    
 11        .214216     .066755     .361678     .159429     .01068      .308179    
 10        .206209     .066805     .345613     .149179     .008438     .289919    
 9         .18977      .058651     .32089      .134819     .003006     .266632    
 8         .17693      .054483     .299378     .101138     -.021139    .223414    
 7         .146203     .03313      .259275     .080177     -.032145    .192498    
 6         .116016     .013226     .218806     .074458     -.02734     .176256    
 5         .076079     -.016499    .168656     .079507     -.012607    .171621    
 4         .030126     -.051527    .111779     .038059     -.043428    .119547    
 3         .019327     -.050236    .088891     .018727     -.051142    .088597    
 2         .021154     -.034324    .076632     -.006069    -.061777    .049638    
 1         .00444      -.031942    .040823     -.005377    -.041867    .031114    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (gas psp dgp coirf, ci) (gas nsp dgp coirf, ci)
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Segment 2: 15/03/2001 to 12/05/2008: 

Diesel 

 
 

Vector Autoregression Estimates  
  

Sample (adjusted): 4/10/2001 5/12/2008 
Included observations: 1788 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DDP PWP NWP 
    
    DDP(-1) -0.083005 -0.116495 0.068296 
 (0.02398) (0.10457) (0.09785) 
 [-3.46130] [-1.11405] [ 0.69794] 
    

DDP(-2) 0.071874 0.039260 -0.034407 
 (0.02401) (0.10469) (0.09797) 
 [ 2.99354] [ 0.37500] [-0.35119] 
    

DDP(-3) 0.099620 -0.054265 -0.387471 
 (0.02394) (0.10438) (0.09768) 
 [ 4.16159] [-0.51987] [-3.96677] 
    

DDP(-4) 0.048924 0.054069 0.014098 
 (0.02414) (0.10526) (0.09850) 
 [ 2.02683] [ 0.51369] [ 0.14314] 
    

DDP(-5) 0.287172 -0.035207 -0.014998 
 (0.02415) (0.10532) (0.09856) 
 [ 11.8895] [-0.33428] [-0.15218] 
    

DDP(-6) -0.002532 0.028746 -0.056132 
 (0.02513) (0.10956) (0.10253) 
 [-0.10079] [ 0.26237] [-0.54749] 
    

DDP(-7) 0.022833 0.174878 0.141054 
 (0.02508) (0.10937) (0.10235) 
 [ 0.91033] [ 1.59898] [ 1.37822] 
    

DDP(-8) 0.031591 -0.019359 0.190530 
 (0.02497) (0.10886) (0.10187) 
 [ 1.26540] [-0.17783] [ 1.87033] 
    

DDP(-9) 0.007099 -0.074965 -0.110170 
 (0.02500) (0.10902) (0.10202) 
 [ 0.28395] [-0.68762] [-1.07988] 
    

DDP(-10) 0.097846 0.070051 0.049733 
 (0.02501) (0.10904) (0.10204) 
 [ 3.91283] [ 0.64242] [ 0.48739] 
    

DDP(-11) -0.039921 0.087295 0.245275 
 (0.02495) (0.10880) (0.10181) 
 [-1.60000] [ 0.80236] [ 2.40911] 
    

DDP(-12) -0.024954 -0.032280 -0.030106 
 (0.02494) (0.10875) (0.10176) 
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 [-1.00060] [-0.29683] [-0.29584] 
    

DDP(-13) -0.032251 0.030952 -0.144994 
 (0.02392) (0.10432) (0.09762) 
 [-1.34813] [ 0.29671] [-1.48532] 
    

DDP(-14) 0.018672 0.131032 -0.237111 
 (0.02382) (0.10388) (0.09721) 
 [ 0.78379] [ 1.26141] [-2.43925] 
    

DDP(-15) 0.102623 -0.056280 -0.129735 
 (0.02363) (0.10304) (0.09642) 
 [ 4.34288] [-0.54619] [-1.34548] 
    

DDP(-16) 0.011395 0.134949 0.242526 
 (0.02323) (0.10128) (0.09477) 
 [ 0.49063] [ 1.33249] [ 2.55904] 
    

DDP(-17) -0.043517 -0.066016 0.111043 
 (0.02310) (0.10072) (0.09425) 
 [-1.88403] [-0.65545] [ 1.17817] 
    

PWP(-1) 0.008821 0.009500 -0.030515 
 (0.00605) (0.02640) (0.02470) 
 [ 1.45700] [ 0.35985] [-1.23519] 
    

PWP(-2) -0.013229 0.082668 -0.078845 
 (0.00610) (0.02659) (0.02489) 
 [-2.16921] [ 3.10855] [-3.16825] 
    

PWP(-3) 0.023769 0.006880 -0.031381 
 (0.00622) (0.02711) (0.02537) 
 [ 3.82282] [ 0.25375] [-1.23688] 
    

PWP(-4) 0.032737 0.029848 -0.058490 
 (0.00623) (0.02718) (0.02543) 
 [ 5.25205] [ 1.09816] [-2.29965] 
    

PWP(-5) 0.017814 -0.018404 -0.057044 
 (0.00631) (0.02752) (0.02576) 
 [ 2.82217] [-0.66865] [-2.21469] 
    

PWP(-6) 0.020718 0.040729 -0.020343 
 (0.00636) (0.02774) (0.02596) 
 [ 3.25613] [ 1.46800] [-0.78354] 
    

PWP(-7) 0.028917 0.097150 -0.016478 
 (0.00638) (0.02780) (0.02602) 
 [ 4.53522] [ 3.49420] [-0.63332] 
    

PWP(-8) 0.003418 0.047306 -0.028498 
 (0.00644) (0.02810) (0.02629) 
 [ 0.53045] [ 1.68353] [-1.08379] 
    

PWP(-9) 0.007145 -0.009389 -0.072716 
 (0.00646) (0.02816) (0.02635) 
 [ 1.10628] [-0.33339] [-2.75930] 
    

PWP(-10) 0.018552 0.006228 0.007215 
 (0.00647) (0.02822) (0.02641) 
 [ 2.86644] [ 0.22069] [ 0.27321] 
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PWP(-11) 0.007636 0.012511 -0.026949 
 (0.00644) (0.02807) (0.02627) 
 [ 1.18621] [ 0.44570] [-1.02591] 
    

PWP(-12) 0.005764 -0.011953 -0.060891 
 (0.00643) (0.02803) (0.02623) 
 [ 0.89664] [-0.42645] [-2.32146] 
    

PWP(-13) 0.001664 0.137270 0.015539 
 (0.00642) (0.02797) (0.02618) 
 [ 0.25941] [ 4.90712] [ 0.59360] 
    

PWP(-14) -0.010139 0.077760 -0.014987 
 (0.00646) (0.02817) (0.02636) 
 [-1.56962] [ 2.76057] [-0.56859] 
    

PWP(-15) 0.013079 0.017980 -0.004116 
 (0.00647) (0.02819) (0.02638) 
 [ 2.02286] [ 0.63776] [-0.15602] 
    

PWP(-16) 0.018252 0.051802 -0.008868 
 (0.00644) (0.02809) (0.02629) 
 [ 2.83326] [ 1.84411] [-0.33737] 
    

PWP(-17) -0.003543 0.049309 -0.025186 
 (0.00642) (0.02797) (0.02618) 
 [-0.55232] [ 1.76270] [-0.96214] 
    

NWP(-1) -0.007543 -0.052319 -0.000278 
 (0.00647) (0.02821) (0.02640) 
 [-1.16615] [-1.85482] [-0.01051] 
    

NWP(-2) 0.008885 -0.040838 0.060479 
 (0.00647) (0.02819) (0.02638) 
 [ 1.37426] [-1.44859] [ 2.29251] 
    

NWP(-3) 0.008431 0.016524 0.054570 
 (0.00649) (0.02830) (0.02648) 
 [ 1.29895] [ 0.58383] [ 2.06044] 
    

NWP(-4) 0.015494 0.015295 0.030613 
 (0.00650) (0.02834) (0.02652) 
 [ 2.38398] [ 0.53971] [ 1.15437] 
    

NWP(-5) 0.028441 -0.080126 -0.001167 
 (0.00651) (0.02838) (0.02656) 
 [ 4.37006] [-2.82346] [-0.04393] 
    

NWP(-6) 0.019358 -0.031627 0.002938 
 (0.00655) (0.02857) (0.02673) 
 [ 2.95456] [-1.10701] [ 0.10988] 
    

NWP(-7) 0.021941 -0.068371 0.030016 
 (0.00660) (0.02877) (0.02692) 
 [ 3.32571] [-2.37662] [ 1.11499] 
    

NWP(-8) 0.015019 0.007293 0.027990 
 (0.00663) (0.02890) (0.02704) 
 [ 2.26623] [ 0.25235] [ 1.03503] 
    

NWP(-9) 0.009435 0.038635 0.124659 
 (0.00660) (0.02880) (0.02695) 
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 [ 1.42866] [ 1.34167] [ 4.62610] 
    

NWP(-10) 0.012289 -0.010283 -0.035108 
 (0.00665) (0.02898) (0.02712) 
 [ 1.84936] [-0.35488] [-1.29472] 
    

NWP(-11) 0.009193 -0.034779 0.029918 
 (0.00664) (0.02896) (0.02710) 
 [ 1.38429] [-1.20105] [ 1.10410] 
    

NWP(-12) 0.003266 0.025688 0.011454 
 (0.00665) (0.02900) (0.02714) 
 [ 0.49108] [ 0.88580] [ 0.42209] 
    

NWP(-13) 0.009281 -0.064933 -0.019065 
 (0.00664) (0.02893) (0.02707) 
 [ 1.39879] [-2.24432] [-0.70416] 
    

NWP(-14) 0.016497 0.000541 0.022152 
 (0.00662) (0.02885) (0.02699) 
 [ 2.49389] [ 0.01875] [ 0.82068] 
    

NWP(-15) -0.003233 -0.015718 0.001414 
 (0.00660) (0.02877) (0.02692) 
 [-0.49004] [-0.54640] [ 0.05251] 
    

NWP(-16) -0.002163 -0.030913 0.017615 
 (0.00654) (0.02850) (0.02667) 
 [-0.33098] [-1.08456] [ 0.66044] 
    

NWP(-17) 0.006431 -0.053506 0.012257 
 (0.00653) (0.02849) (0.02666) 
 [ 0.98433] [-1.87816] [ 0.45978] 
    

RD(-1) -0.004027 -0.001382 -0.004869 
 (0.00151) (0.00659) (0.00617) 
 [-2.66442] [-0.20965] [-0.78953] 
    
    R-squared 0.377744 0.098283 0.097890 

Adj. R-squared 0.359463 0.071793 0.071388 
Sum sq. resids 57.06336 1085.016 950.1328 
S.E. equation 0.181303 0.790575 0.739805 

F-statistic 20.66367 3.710130 3.693690 
Log likelihood 542.4914 -2090.506 -1971.830 

Akaike AIC -0.548648 2.396539 2.263791 
Schwarz SC -0.389017 2.556170 2.423423 

Mean dependent 0.029533 0.491153 -0.419242 
S.D. dependent 0.226533 0.820579 0.767715 

    
    Determinant resid covariance (dof adj.) 0.009339  

Determinant resid covariance 0.008548  
Log likelihood -3353.876  

Akaike information criterion 3.926036  
Schwarz criterion 4.404929  
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(2) irfname = diesel, impulse = nwp, and response = ddp
(1) irfname = diesel, impulse = pwp, and response = ddp
95% lower and upper bounds reported
                                                                                  
 21        .340582     .261867     .419298     .200324     .129374     .271275    
 20        .329419     .254138     .4047       .196268     .12835      .264187    
 19        .314481     .24257      .386391     .192382     .12748      .257283    
 18        .302905     .234483     .371326     .182747     .120978     .244517    
 17        .290122     .22522      .355023     .17681      .118282     .235337    
 16        .281017     .219534     .3425       .166607     .110832     .222383    
 15        .261538     .203827     .319248     .160287     .107586     .212988    
 14        .243037     .188867     .297206     .153219     .103522     .202917    
 13        .234186     .183577     .284795     .135353     .088764     .181942    
 12        .218481     .171493     .265469     .120895     .077609     .164181    
 11        .20219      .15888      .245499     .110671     .070743     .150598    
 10        .183236     .144036     .222436     .101038     .064837     .13724     
 9         .156453     .120977     .191929     .086194     .053268     .11912     
 8         .138239     .106517     .16996      .074718     .045135     .104302    
 7         .123214     .095209     .151218     .062773     .036569     .088978    
 6         .092884     .068486     .117283     .043299     .02028      .066318    
 5         .067955     .047605     .088305     .032643     .013237     .052048    
 4         .046208     .028781     .063635     .015142     -.001625    .031909    
 3         .019374     .004905     .033843     .005663     -.008363    .019688    
 2         -.003307    -.014768    .008154     .001003     -.010264    .01227     
 1         .004617     -.003757    .012992     -.005017    -.013327    .003293    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (diesel pwp ddp coirf, ci) (diesel nwp ddp coirf, ci)
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S2 Diesel
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Gasoline 

Vector Autoregression Estimates  
  

Sample (adjusted): 4/08/2001 5/12/2008 
Included observations: 1790 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DGP PSP NSP 
    
    DGP(-1) -0.022409 0.041805 -0.137765 
 (0.02377) (0.10859) (0.09688) 
 [-0.94285] [ 0.38497] [-1.42204] 
    

DGP(-2) 0.122864 -0.039670 0.063996 
 (0.02370) (0.10828) (0.09659) 
 [ 5.18475] [-0.36638] [ 0.66252] 
    

DGP(-3) 0.075996 0.038224 -0.245558 
 (0.02386) (0.10904) (0.09727) 
 [ 3.18456] [ 0.35056] [-2.52440] 
    

DGP(-4) 0.011214 -0.047592 0.003410 
 (0.02392) (0.10928) (0.09749) 
 [ 0.46887] [-0.43551] [ 0.03498] 
    

DGP(-5) 0.238456 0.123107 0.253501 
 (0.02387) (0.10907) (0.09730) 
 [ 9.98975] [ 1.12875] [ 2.60537] 
    

DGP(-6) -0.016486 -0.046805 -0.080600 
 (0.02451) (0.11198) (0.09990) 
 [-0.67268] [-0.41797] [-0.80680] 
    

DGP(-7) 0.027351 -0.091945 -0.067557 
 (0.02445) (0.11173) (0.09968) 
 [ 1.11846] [-0.82289] [-0.67774] 
    

DGP(-8) 0.016902 -0.026812 0.129067 
 (0.02440) (0.11147) (0.09945) 
 [ 0.69280] [-0.24053] [ 1.29787] 
    

DGP(-9) 0.025476 0.003320 0.068612 
 (0.02436) (0.11131) (0.09930) 
 [ 1.04581] [ 0.02982] [ 0.69097] 
    

DGP(-10) 0.049843 -0.063281 -0.118839 
 (0.02426) (0.11083) (0.09887) 
 [ 2.05486] [-0.57097] [-1.20193] 
    

DGP(-11) -0.040299 -0.055047 -0.050073 
 (0.02347) (0.10725) (0.09568) 
 [-1.71691] [-0.51328] [-0.52336] 
    

DGP(-12) -0.040485 0.276322 0.213752 
 (0.02341) (0.10696) (0.09542) 
 [-1.72951] [ 2.58351] [ 2.24017] 
    

DGP(-13) -0.028908 0.082789 0.000271 
 (0.02327) (0.10633) (0.09486) 
 [-1.24223] [ 0.77863] [ 0.00285] 
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DGP(-14) 0.051811 0.080000 0.013238 
 (0.02265) (0.10349) (0.09233) 
 [ 2.28742] [ 0.77301] [ 0.14338] 
    

DGP(-15) 0.088297 -0.169297 -0.172739 
 (0.02241) (0.10239) (0.09135) 
 [ 3.94002] [-1.65338] [-1.89098] 
    

PSP(-1) 0.024843 0.154439 0.034049 
 (0.00569) (0.02602) (0.02321) 
 [ 4.36226] [ 5.93529] [ 1.46679] 
    

PSP(-2) 0.051036 0.042921 -0.051844 
 (0.00576) (0.02631) (0.02347) 
 [ 8.86337] [ 1.63139] [-2.20884] 
    

PSP(-3) 0.039050 0.037307 -0.107655 
 (0.00589) (0.02692) (0.02402) 
 [ 6.62728] [ 1.38571] [-4.48216] 
    

PSP(-4) 0.012595 0.054365 -0.063033 
 (0.00600) (0.02743) (0.02447) 
 [ 2.09811] [ 1.98213] [-2.57607] 
    

PSP(-5) 0.023379 0.026522 -0.055843 
 (0.00614) (0.02804) (0.02502) 
 [ 3.80911] [ 0.94574] [-2.23212] 
    

PSP(-6) 0.009624 0.018376 -0.032146 
 (0.00617) (0.02821) (0.02517) 
 [ 1.55864] [ 0.65133] [-1.27716] 
    

PSP(-7) 0.007988 0.014653 -0.036685 
 (0.00617) (0.02818) (0.02514) 
 [ 1.29507] [ 0.51993] [-1.45907] 
    

PSP(-8) 0.012927 0.021355 -0.047214 
 (0.00615) (0.02810) (0.02507) 
 [ 2.10166] [ 0.75983] [-1.88310] 
    

PSP(-9) 0.016511 0.003335 -0.053185 
 (0.00615) (0.02810) (0.02507) 
 [ 2.68441] [ 0.11868] [-2.12130] 
    

PSP(-10) 0.019589 0.000188 0.031033 
 (0.00617) (0.02819) (0.02515) 
 [ 3.17536] [ 0.00667] [ 1.23412] 
    

PSP(-11) -0.006245 -0.007439 -0.026823 
 (0.00617) (0.02821) (0.02516) 
 [-1.01151] [-0.26371] [-1.06588] 
    

PSP(-12) -0.010912 0.089243 -0.012290 
 (0.00615) (0.02810) (0.02506) 
 [-1.77464] [ 3.17638] [-0.49033] 
    

PSP(-13) -0.002152 0.078120 -0.009326 
 (0.00615) (0.02812) (0.02509) 
 [-0.34969] [ 2.77822] [-0.37178] 
    

PSP(-14) 0.018613 0.056870 0.009017 
 (0.00614) (0.02807) (0.02504) 
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 [ 3.03018] [ 2.02633] [ 0.36013] 
    

PSP(-15) 0.000398 0.053122 0.017392 
 (0.00614) (0.02803) (0.02501) 
 [ 0.06481] [ 1.89496] [ 0.69544] 
    

NSP(-1) -0.005745 -0.028569 0.012384 
 (0.00643) (0.02938) (0.02621) 
 [-0.89333] [-0.97235] [ 0.47246] 
    

NSP(-2) 0.001686 -0.005678 0.058836 
 (0.00642) (0.02935) (0.02619) 
 [ 0.26238] [-0.19342] [ 2.24671] 
    

NSP(-3) 0.012853 -0.023455 0.069174 
 (0.00644) (0.02940) (0.02623) 
 [ 1.99728] [-0.79767] [ 2.63702] 
    

NSP(-4) 0.036675 -0.029424 0.056553 
 (0.00645) (0.02948) (0.02630) 
 [ 5.68472] [-0.99816] [ 2.15048] 
    

NSP(-5) 0.023138 -0.027233 0.004039 
 (0.00653) (0.02985) (0.02663) 
 [ 3.54108] [-0.91219] [ 0.15164] 
    

NSP(-6) 0.033091 0.042548 0.049982 
 (0.00655) (0.02992) (0.02669) 
 [ 5.05376] [ 1.42218] [ 1.87267] 
    

NSP(-7) 0.019815 -0.046965 0.006807 
 (0.00660) (0.03014) (0.02689) 
 [ 3.00425] [-1.55843] [ 0.25321] 
    

NSP(-8) 0.017761 -0.035487 0.061475 
 (0.00663) (0.03028) (0.02701) 
 [ 2.68044] [-1.17212] [ 2.27604] 
    

NSP(-9) 0.009772 -0.004984 0.058235 
 (0.00666) (0.03045) (0.02716) 
 [ 1.46641] [-0.16370] [ 2.14383] 
    

NSP(-10) 0.003411 0.024240 -0.000863 
 (0.00667) (0.03047) (0.02718) 
 [ 0.51146] [ 0.79556] [-0.03175] 
    

NSP(-11) 0.011930 -0.034389 0.003386 
 (0.00664) (0.03036) (0.02708) 
 [ 1.79562] [-1.13281] [ 0.12501] 
    

NSP(-12) 0.013420 -0.023017 -0.016423 
 (0.00661) (0.03022) (0.02696) 
 [ 2.02887] [-0.76161] [-0.60915] 
    

NSP(-13) 0.012754 -0.029710 0.031488 
 (0.00653) (0.02984) (0.02662) 
 [ 1.95308] [-0.99575] [ 1.18296] 
    

NSP(-14) 0.001886 -0.053211 0.043821 
 (0.00652) (0.02978) (0.02657) 
 [ 0.28945] [-1.78693] [ 1.64953] 
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NSP(-15) 0.015377 0.020984 0.042550 
 (0.00648) (0.02962) (0.02643) 
 [ 2.37204] [ 0.70844] [ 1.61022] 
    

RG(-1) -0.001963 0.008037 -0.007170 
 (0.00132) (0.00603) (0.00538) 
 [-1.48729] [ 1.33286] [-1.33283] 
    
    R-squared 0.462288 0.062272 0.117078 

Adj. R-squared 0.448413 0.038076 0.094296 
Sum sq. resids 49.91014 1041.965 829.2802 
S.E. equation 0.169169 0.772953 0.689568 

F-statistic 33.31932 2.573636 5.139083 
Log likelihood 663.9733 -2055.609 -1851.275 

Akaike AIC -0.690473 2.348166 2.119861 
Schwarz SC -0.549390 2.489250 2.260944 

Mean dependent 0.023217 0.461724 -0.415127 
S.D. dependent 0.227779 0.788103 0.724576 

    
    Determinant resid covariance (dof adj.) 0.006864  

Determinant resid covariance 0.006349  
Log likelihood -3091.441  

Akaike information criterion 3.608314  
Schwarz criterion 4.031564  
    
     

 

 

(2) irfname = gas, impulse = nsp, and response = dgp
(1) irfname = gas, impulse = psp, and response = dgp
95% lower and upper bounds reported
                                                                                  
 21        .47005      .37971      .56039      .220252     .137744     .302759    
 20        .457532     .371106     .543958     .213303     .134327     .292279    
 19        .443464     .360918     .526009     .20391      .128319     .279501    
 18        .427594     .348869     .506319     .196991     .124756     .269227    
 17        .413185     .338298     .488072     .18983      .120997     .258664    
 16        .398373     .327339     .469406     .184134     .118718     .249551    
 15        .386338     .319403     .453274     .179309     .117673     .240946    
 14        .370541     .307541     .433541     .164549     .105999     .223098    
 13        .348122     .289076     .407169     .155219     .09992      .210517    
 12        .337877     .283016     .392738     .138771     .087174     .190367    
 11        .330177     .279756     .380597     .122819     .075405     .170233    
 10        .317757     .272219     .363294     .106989     .064255     .149724    
 9         .286734     .24595      .327518     .099812     .061504     .138119    
 8         .258067     .221982     .294152     .086222     .052349     .120095    
 7         .226871     .195449     .258294     .069394     .039847     .098941    
 6         .196622     .169661     .223582     .054553     .029155     .079951    
 5         .16467      .142371     .186968     .0341       .013046     .055153    
 4         .12767      .109105     .146235     .02173      .004043     .039417    
 3         .096256     .081359     .111153     .001661     -.012588    .015909    
 2         .056482     .045209     .067754     -.003881    -.014826    .007064    
 1         .016245     .008406     .024084     -.004024    -.011799    .003752    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (gas psp dgp coirf, ci) (gas nsp dgp coirf, ci)
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Segment 3: 13/05/2008 to 05/01/2009 

Diesel 

 
Vector Autoregression Estimates  

  
Sample (adjusted): 6/09/2008 1/05/2009 

Included observations: 147 after adjustments 
Standard errors in ( ) & t-statistics in [ ] 

    
     DDP PWP NWP 
    
    DDP(-1) 0.027581 0.111450 0.063375 
 (0.10911) (0.38595) (0.40227) 
 [ 0.25277] [ 0.28877] [ 0.15754] 
    

DDP(-2) -0.028800 0.654992 0.861492 
 (0.10847) (0.38367) (0.39989) 
 [-0.26552] [ 1.70718] [ 2.15432] 
    

DDP(-3) -0.030224 0.380133 0.212426 
 (0.10965) (0.38787) (0.40427) 
 [-0.27563] [ 0.98005] [ 0.52546] 
    

DDP(-4) -0.053025 0.045325 0.607830 
 (0.10766) (0.38080) (0.39690) 
 [-0.49254] [ 0.11903] [ 1.53144] 
    

0
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Days since change

95% CI of coirf of increase 95% CI of coirf of decrease
coirf of increase coirf of decrease

S2 - Gasoline
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DDP(-5) 0.308618 0.645771 0.314962 
 (0.10839) (0.38340) (0.39961) 
 [ 2.84727] [ 1.68433] [ 0.78817] 
    

DDP(-6) -0.092762 0.426649 0.180596 
 (0.11371) (0.40221) (0.41921) 
 [-0.81579] [ 1.06077] [ 0.43080] 
    

DDP(-7) 0.154835 -0.384355 -0.030499 
 (0.11348) (0.40139) (0.41836) 
 [ 1.36446] [-0.95756] [-0.07290] 
    

DDP(-8) -0.022603 -0.328373 -0.030479 
 (0.11429) (0.40428) (0.42137) 
 [-0.19776] [-0.81224] [-0.07233] 
    

DDP(-9) -0.084340 0.375215 0.082832 
 (0.11212) (0.39658) (0.41334) 
 [-0.75226] [ 0.94614] [ 0.20039] 
    

DDP(-10) 0.011128 -0.572271 0.270418 
 (0.11254) (0.39808) (0.41492) 
 [ 0.09888] [-1.43756] [ 0.65174] 
    

DDP(-11) -0.119867 -0.043255 0.149074 
 (0.11409) (0.40357) (0.42063) 
 [-1.05061] [-0.10718] [ 0.35440] 
    

DDP(-12) -0.109990 -0.205712 -0.382582 
 (0.11343) (0.40124) (0.41821) 
 [-0.96963] [-0.51269] [-0.91482] 
    

DDP(-13) -0.063825 0.117008 0.331298 
 (0.10269) (0.36325) (0.37861) 
 [-0.62151] [ 0.32212] [ 0.87505] 
    

DDP(-14) -0.050091 0.236076 0.287241 
 (0.10294) (0.36411) (0.37950) 
 [-0.48662] [ 0.64837] [ 0.75689] 
    

DDP(-15) 0.296865 -0.255117 -0.262785 
 (0.10236) (0.36207) (0.37737) 
 [ 2.90023] [-0.70462] [-0.69635] 
    

DDP(-16) -0.064631 -0.003345 0.097226 
 (0.10301) (0.36437) (0.37978) 
 [-0.62742] [-0.00918] [ 0.25601] 
    

DDP(-17) -0.072989 0.408600 0.274585 
 (0.10112) (0.35769) (0.37281) 
 [-0.72180] [ 1.14234] [ 0.73653] 
    

PWP(-1) 0.015201 0.059464 -0.158136 
 (0.02679) (0.09478) (0.09879) 
 [ 0.56730] [ 0.62739] [-1.60078] 
    

PWP(-2) 0.040142 0.080899 -0.045812 
 (0.02689) (0.09512) (0.09914) 
 [ 1.49279] [ 0.85052] [-0.46210] 
    

PWP(-3) 0.033369 0.000595 -0.121916 
 (0.02673) (0.09454) (0.09854) 
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 [ 1.24846] [ 0.00629] [-1.23723] 
    

PWP(-4) 0.042990 -0.002068 -0.085132 
 (0.02669) (0.09440) (0.09839) 
 [ 1.61089] [-0.02190] [-0.86525] 
    

PWP(-5) 0.015862 -0.049783 -0.282073 
 (0.02681) (0.09482) (0.09883) 
 [ 0.59171] [-0.52502] [-2.85412] 
    

PWP(-6) 0.051899 -0.012591 -0.082582 
 (0.02717) (0.09612) (0.10018) 
 [ 1.90998] [-0.13100] [-0.82434] 
    

PWP(-7) 0.039036 -0.102725 -0.163268 
 (0.02730) (0.09658) (0.10066) 
 [ 1.42970] [-1.06366] [-1.62196] 
    

PWP(-8) 0.034824 -0.189454 -0.355189 
 (0.02763) (0.09774) (0.10187) 
 [ 1.26032] [-1.93843] [-3.48675] 
    

PWP(-9) 0.036431 -0.022230 -0.042464 
 (0.02902) (0.10265) (0.10699) 
 [ 1.25542] [-0.21657] [-0.39691] 
    

PWP(-10) 0.027986 -0.023366 -0.124089 
 (0.02875) (0.10170) (0.10600) 
 [ 0.97338] [-0.22976] [-1.17066] 
    

PWP(-11) 0.020445 0.057742 0.026812 
 (0.02852) (0.10088) (0.10515) 
 [ 0.71687] [ 0.57237] [ 0.25500] 
    

PWP(-12) 0.041060 -0.161162 -0.182276 
 (0.02826) (0.09995) (0.10418) 
 [ 1.45310] [-1.61241] [-1.74967] 
    

PWP(-13) 0.029996 -0.107469 -0.199549 
 (0.02747) (0.09715) (0.10126) 
 [ 1.09214] [-1.10621] [-1.97070] 
    

PWP(-14) 0.018507 0.146747 -0.149596 
 (0.02756) (0.09748) (0.10160) 
 [ 0.67158] [ 1.50542] [-1.47240] 
    

PWP(-15) -0.006261 -0.016382 0.026641 
 (0.02711) (0.09591) (0.09996) 
 [-0.23091] [-0.17081] [ 0.26652] 
    

PWP(-16) 0.019572 -0.114600 -0.251892 
 (0.02702) (0.09558) (0.09962) 
 [ 0.72435] [-1.19903] [-2.52858] 
    

PWP(-17) 0.027750 -0.020423 -0.078879 
 (0.02781) (0.09835) (0.10251) 
 [ 0.99802] [-0.20765] [-0.76946] 
    

NWP(-1) 0.054328 -0.024090 -0.086770 
 (0.02992) (0.10583) (0.11031) 
 [ 1.81579] [-0.22762] [-0.78661] 
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NWP(-2) -0.003381 -0.019818 -0.125700 
 (0.02929) (0.10359) (0.10797) 
 [-0.11544] [-0.19131] [-1.16420] 
    

NWP(-3) 0.031629 -0.239393 -0.126334 
 (0.02905) (0.10275) (0.10710) 
 [ 1.08884] [-2.32984] [-1.17964] 
    

NWP(-4) 0.039937 -0.081065 0.010133 
 (0.02955) (0.10453) (0.10894) 
 [ 1.35150] [-0.77555] [ 0.09301] 
    

NWP(-5) 0.057245 -0.060950 0.145520 
 (0.02940) (0.10398) (0.10838) 
 [ 1.94733] [-0.58616] [ 1.34270] 
    

NWP(-6) 0.033503 0.038734 -0.037766 
 (0.02930) (0.10363) (0.10801) 
 [ 1.14360] [ 0.37378] [-0.34966] 
    

NWP(-7) 0.063766 -0.020564 -0.082586 
 (0.02884) (0.10200) (0.10631) 
 [ 2.21138] [-0.20162] [-0.77685] 
    

NWP(-8) 0.037166 0.139384 -0.018112 
 (0.02932) (0.10371) (0.10810) 
 [ 1.26759] [ 1.34396] [-0.16755] 
    

NWP(-9) 0.040320 -0.118002 -0.134546 
 (0.02951) (0.10437) (0.10878) 
 [ 1.36649] [-1.13061] [-1.23683] 
    

NWP(-10) 0.018226 -0.154250 -0.091350 
 (0.02926) (0.10349) (0.10787) 
 [ 0.62294] [-1.49043] [-0.84685] 
    

NWP(-11) -0.002133 -0.158563 -0.268006 
 (0.02929) (0.10360) (0.10798) 
 [-0.07282] [-1.53052] [-2.48196] 
    

NWP(-12) 0.005066 -0.119308 -0.095060 
 (0.03025) (0.10700) (0.11153) 
 [ 0.16747] [-1.11498] [-0.85234] 
    

NWP(-13) 0.004279 0.013241 0.000824 
 (0.02910) (0.10293) (0.10728) 
 [ 0.14706] [ 0.12865] [ 0.00769] 
    

NWP(-14) 0.037521 -0.019939 0.064480 
 (0.02868) (0.10143) (0.10572) 
 [ 1.30847] [-0.19658] [ 0.60992] 
    

NWP(-15) 0.053407 -0.082937 0.021563 
 (0.02845) (0.10064) (0.10490) 
 [ 1.87711] [-0.82410] [ 0.20557] 
    

NWP(-16) -0.033412 0.059563 0.065761 
 (0.02825) (0.09994) (0.10416) 
 [-1.18260] [ 0.59601] [ 0.63133] 
    

NWP(-17) 0.037773 -0.212816 -0.144658 
 (0.02797) (0.09893) (0.10311) 
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 [ 1.35057] [-2.15118] [-1.40291] 
    

RD(-1) 0.026679 -0.060299 -0.160461 
 (0.01825) (0.06455) (0.06728) 
 [ 1.46187] [-0.93410] [-2.38490] 
    
    R-squared 0.611841 0.288464 0.351950 

Adj. R-squared 0.403461 -0.093518 0.004050 
Sum sq. resids 25.28601 316.3739 343.6930 
S.E. equation 0.515915 1.824898 1.902057 

F-statistic 2.936180 0.755178 1.011641 
Log likelihood -79.21064 -264.9211 -271.0087 

Akaike AIC 1.785179 4.311852 4.394676 
Schwarz SC 2.843019 5.369692 5.452516 

Mean dependent -0.316456 0.812012 -1.515924 
S.D. dependent 0.667973 1.745121 1.905920 

    
    Determinant resid covariance (dof adj.) 2.884792  

Determinant resid covariance 0.778634  
Log likelihood -607.3611  

Akaike information criterion 10.38587  
Schwarz criterion 13.55939  
    
     

 

 

 (2) irfname = diesel, impulse = nwp, and response = ddp
(1) irfname = diesel, impulse = pwp, and response = ddp
95% lower and upper bounds reported
                                                                                  
 21        .393378     -.149524    .93628      .711167     .253006     1.16933    
 20        .413795     -.119212    .946802     .741746     .292877     1.19061    
 19        .47653      -.047552    1.00061     .699717     .256148     1.14329    
 18        .496115     -.016339    1.00857     .667047     .231606     1.10249    
 17        .522169     .022727     1.02161     .675993     .250987     1.101      
 16        .501641     .022919     .980363     .650043     .236587     1.0635     
 15        .519283     .065209     .973357     .703335     .312235     1.09443    
 14        .566513     .134912     .998114     .621215     .24652      .995911    
 13        .557271     .149782     .964761     .541535     .184768     .898303    
 12        .544664     .163846     .925483     .513422     .177006     .849839    
 11        .503366     .152356     .854376     .501425     .186995     .815856    
 10        .496394     .178937     .81385      .483284     .196795     .769772    
 9         .47702      .191613     .762427     .446873     .186539     .707207    
 8         .434494     .183301     .685688     .384148     .155213     .613082    
 7         .383713     .167129     .600296     .321148     .123057     .519239    
 6         .310963     .123228     .498698     .27073      .096694     .444767    
 5         .245296     .08698      .403613     .209696     .061139     .358252    
 4         .211608     .07314      .350076     .147484     .012815     .282153    
 3         .146038     .030035     .26204      .104127     -.015415    .223668    
 2         .086139     -.006095    .178374     .070118     -.028871    .169106    
 1         .041398     -.021056    .103853     .080425     .010035     .150815    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (diesel pwp ddp coirf, ci) (diesel nwp ddp coirf, ci)
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Gasoline 

 
Vector Autoregression Estimates  

  
Sample (adjusted): 6/05/2008 1/05/2009 

Included observations: 149 after adjustments 
Standard errors in ( ) & t-statistics in [ ] 

    
     DGP PSP NSP 
    
    DGP(-1) -0.107710 -0.289738 -0.312270 
 (0.10273) (0.29794) (0.34440) 
 [-1.04846] [-0.97246] [-0.90670] 
    

DGP(-2) -0.031938 0.044597 -0.686681 
 (0.10528) (0.30534) (0.35295) 
 [-0.30336] [ 0.14606] [-1.94554] 
    

DGP(-3) -0.030405 0.491072 0.486366 
 (0.09974) (0.28927) (0.33438) 
 [-0.30484] [ 1.69763] [ 1.45455] 
    

DGP(-4) -0.122482 0.012498 0.052455 
 (0.10076) (0.29222) (0.33779) 
 [-1.21561] [ 0.04277] [ 0.15529] 
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DGP(-5) 0.180556 0.217784 -0.360711 
 (0.09980) (0.28945) (0.33458) 
 [ 1.80914] [ 0.75242] [-1.07810] 
    

DGP(-6) 0.043774 0.038296 -0.246228 
 (0.10004) (0.29015) (0.33539) 
 [ 0.43755] [ 0.13199] [-0.73415] 
    

DGP(-7) 0.035050 0.211871 0.475412 
 (0.09790) (0.28394) (0.32822) 
 [ 0.35800] [ 0.74617] [ 1.44846] 
    

DGP(-8) -0.111649 -0.643110 -0.599320 
 (0.09806) (0.28440) (0.32874) 
 [-1.13858] [-2.26132] [-1.82307] 
    

DGP(-9) -0.154201 0.205692 -0.323937 
 (0.09995) (0.28986) (0.33506) 
 [-1.54285] [ 0.70962] [-0.96680] 
    

DGP(-10) 0.137362 -0.216188 0.154353 
 (0.10044) (0.29130) (0.33673) 
 [ 1.36758] [-0.74214] [ 0.45839] 
    

DGP(-11) -0.187618 0.105980 0.038026 
 (0.09574) (0.27766) (0.32096) 
 [-1.95968] [ 0.38169] [ 0.11848] 
    

DGP(-12) -0.101453 0.232114 0.179853 
 (0.09706) (0.28149) (0.32538) 
 [-1.04529] [ 0.82459] [ 0.55274] 
    

DGP(-13) -0.065709 -0.249595 -0.060972 
 (0.09757) (0.28297) (0.32710) 
 [-0.67345] [-0.88205] [-0.18640] 
    

DGP(-14) 0.036333 -0.007543 -0.119155 
 (0.09501) (0.27553) (0.31850) 
 [ 0.38243] [-0.02738] [-0.37411] 
    

DGP(-15) 0.145586 0.191682 0.149619 
 (0.09340) (0.27088) (0.31312) 
 [ 1.55874] [ 0.70763] [ 0.47784] 
    

PSP(-1) 0.038062 0.142900 -0.201139 
 (0.03810) (0.11050) (0.12773) 
 [ 0.99899] [ 1.29321] [-1.57471] 
    

PSP(-2) 0.072775 -0.111318 0.016453 
 (0.03865) (0.11210) (0.12958) 
 [ 1.88275] [-0.99300] [ 0.12697] 
    

PSP(-3) 0.031475 -0.089027 -0.136782 
 (0.03938) (0.11422) (0.13203) 
 [ 0.79917] [-0.77941] [-1.03596] 
    

PSP(-4) 0.073347 0.042233 0.011049 
 (0.03892) (0.11288) (0.13048) 
 [ 1.88447] [ 0.37414] [ 0.08468] 
    

PSP(-5) 0.063526 -0.040535 0.037156 
 (0.03921) (0.11373) (0.13146) 
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 [ 1.61997] [-0.35641] [ 0.28263] 
    

PSP(-6) 0.074280 0.122528 0.061159 
 (0.03936) (0.11417) (0.13197) 
 [ 1.88697] [ 1.07324] [ 0.46344] 
    

PSP(-7) 0.035159 -0.125694 -0.153083 
 (0.03903) (0.11320) (0.13086) 
 [ 0.90075] [-1.11034] [-1.16986] 
    

PSP(-8) 0.056657 -0.013377 -0.099157 
 (0.03892) (0.11287) (0.13047) 
 [ 1.45579] [-0.11852] [-0.75999] 
    

PSP(-9) 0.081808 -0.070612 -0.060494 
 (0.03869) (0.11220) (0.12970) 
 [ 2.11462] [-0.62934] [-0.46643] 
    

PSP(-10) 0.050935 0.059358 0.107896 
 (0.03912) (0.11345) (0.13114) 
 [ 1.30208] [ 0.52320] [ 0.82274] 
    

PSP(-11) 0.075229 0.139721 0.000592 
 (0.03878) (0.11246) (0.13000) 
 [ 1.94009] [ 1.24242] [ 0.00455] 
    

PSP(-12) 0.016351 0.058907 0.169289 
 (0.03719) (0.10785) (0.12466) 
 [ 0.43970] [ 0.54621] [ 1.35796] 
    

PSP(-13) 0.065220 -0.005777 -0.120673 
 (0.03761) (0.10908) (0.12609) 
 [ 1.73405] [-0.05296] [-0.95704] 
    

PSP(-14) 0.011544 0.263428 0.079783 
 (0.03713) (0.10770) (0.12449) 
 [ 0.31085] [ 2.44597] [ 0.64086] 
    

PSP(-15) 0.029068 -0.007285 0.095216 
 (0.03810) (0.11049) (0.12772) 
 [ 0.76302] [-0.06594] [ 0.74553] 
    

NSP(-1) 0.051300 -0.012543 0.105300 
 (0.03233) (0.09376) (0.10838) 
 [ 1.58689] [-0.13378] [ 0.97161] 
    

NSP(-2) 0.051290 -0.121777 0.040617 
 (0.03227) (0.09358) (0.10818) 
 [ 1.58949] [-1.30125] [ 0.37547] 
    

NSP(-3) 0.037371 0.032422 -0.107669 
 (0.03228) (0.09362) (0.10822) 
 [ 1.15766] [ 0.34630] [-0.99490] 
    

NSP(-4) 0.099522 -0.209273 0.032165 
 (0.03244) (0.09408) (0.10875) 
 [ 3.06804] [-2.22447] [ 0.29577] 
    

NSP(-5) 0.057572 -0.035097 -0.021259 
 (0.03423) (0.09928) (0.11476) 
 [ 1.68179] [-0.35350] [-0.18524] 
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NSP(-6) 0.073864 -0.058249 -0.045622 
 (0.03439) (0.09974) (0.11529) 
 [ 2.14783] [-0.58401] [-0.39572] 
    

NSP(-7) 0.102785 -0.085609 -0.010825 
 (0.03499) (0.10149) (0.11732) 
 [ 2.93723] [-0.84352] [-0.09227] 
    

NSP(-8) 0.055624 0.045838 0.169225 
 (0.03574) (0.10366) (0.11982) 
 [ 1.55630] [ 0.44221] [ 1.41233] 
    

NSP(-9) 0.047136 0.008293 0.279571 
 (0.03413) (0.09899) (0.11443) 
 [ 1.38099] [ 0.08378] [ 2.44323] 
    

NSP(-10) 0.056165 0.053171 0.129119 
 (0.03369) (0.09771) (0.11294) 
 [ 1.66715] [ 0.54420] [ 1.14325] 
    

NSP(-11) 0.001721 -0.052468 0.193693 
 (0.03358) (0.09738) (0.11257) 
 [ 0.05126] [-0.53879] [ 1.72071] 
    

NSP(-12) 0.005348 -0.096310 -0.028855 
 (0.03382) (0.09808) (0.11337) 
 [ 0.15814] [-0.98194] [-0.25451] 
    

NSP(-13) 0.079220 0.119242 0.130342 
 (0.03220) (0.09339) (0.10796) 
 [ 2.46002] [ 1.27675] [ 1.20734] 
    

NSP(-14) 0.019855 -0.093880 0.194638 
 (0.03278) (0.09507) (0.10990) 
 [ 0.60567] [-0.98745] [ 1.77108] 
    

NSP(-15) -0.001454 0.086010 0.088336 
 (0.03265) (0.09470) (0.10947) 
 [-0.04453] [ 0.90824] [ 0.80697] 
    

RG(-1) 0.033920 -0.072137 -0.024348 
 (0.01910) (0.05540) (0.06404) 
 [ 1.77569] [-1.30208] [-0.38020] 
    
    R-squared 0.521820 0.272038 0.306618 

Adj. R-squared 0.312906 -0.046004 0.003685 
Sum sq. resids 26.31752 221.3622 295.7800 
S.E. equation 0.505480 1.465997 1.694594 

F-statistic 2.497775 0.855352 1.012163 
Log likelihood -82.26034 -240.9130 -262.5042 

Akaike AIC 1.721615 3.851181 4.140996 
Schwarz SC 2.649008 4.778573 5.068389 

Mean dependent -0.298496 0.752024 -1.289990 
S.D. dependent 0.609812 1.433397 1.697725 

    
    Determinant resid covariance (dof adj.) 1.403717  

Determinant resid covariance 0.463695  
Log likelihood -577.0102  

Akaike information criterion 9.597452  
Schwarz criterion 12.37963  
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(2) irfname = gas, impulse = nsp, and response = dgp
(1) irfname = gas, impulse = psp, and response = dgp
95% lower and upper bounds reported
                                                                                  
 21        .468272     -.012171    .948716     .714253     .310872     1.11763    
 20        .473378     -.001636    .948391     .7052       .303624     1.10678    
 19        .524769     .0545       .995039     .70906      .310885     1.10723    
 18        .552425     .088439     1.01641     .691392     .297741     1.08504    
 17        .587866     .132303     1.04343     .691416     .304037     1.07879    
 16        .599006     .156727     1.04128     .660663     .28039      1.04093    
 15        .553922     .12604      .981805     .705951     .335781     1.07612    
 14        .573034     .162234     .983834     .697116     .339591     1.05464    
 13        .592362     .200651     .984073     .653975     .312767     .995183    
 12        .543074     .171545     .914603     .601103     .275512     .926694    
 11        .563547     .212378     .914716     .587232     .279159     .895305    
 10        .538437     .21373      .863143     .598395     .313422     .883369    
 9         .525912     .228481     .823342     .564042     .303193     .824891    
 8         .469622     .20272      .736525     .520597     .28573      .755464    
 7         .428886     .196363     .661409     .499933     .295673     .704194    
 6         .379123     .181225     .577021     .394651     .218908     .570395    
 5         .299678     .133768     .465588     .333095     .18398      .48221     
 4         .263984     .120474     .407494     .293253     .163039     .423468    
 3         .185024     .064347     .305701     .193253     .082261     .304245    
 2         .145045     .049528     .240562     .140688     .051239     .230137    
 1         .069857     .004367     .135347     .072147     .005295     .138999    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (gas psp dgp coirf, ci) (gas nsp dgp coirf, ci)
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Segment 4: 06/01/2009 to 31/12/2010 

Diesel 

Vector Autoregression Estimates  
  

Sample (adjusted): 2/01/2009 12/30/2010 
Included observations: 484 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 
    
     DDP PWP NWP 
    
    DDP(-1) -0.109681 -0.047977 0.025273 
 (0.04842) (0.13885) (0.13556) 
 [-2.26535] [-0.34552] [ 0.18643] 
    

DDP(-2) 0.020872 -0.048606 -0.015619 
 (0.04867) (0.13957) (0.13627) 
 [ 0.42886] [-0.34826] [-0.11462] 
    

DDP(-3) 0.057909 -0.321822 0.082493 
 (0.04840) (0.13881) (0.13552) 
 [ 1.19643] [-2.31847] [ 0.60871] 
    

DDP(-4) 0.041208 0.042320 0.068318 
 (0.04882) (0.14000) (0.13669) 
 [ 0.84412] [ 0.30228] [ 0.49981] 
    

DDP(-5) 0.186926 -0.125378 -0.102446 
 (0.04873) (0.13974) (0.13644) 
 [ 3.83611] [-0.89720] [-0.75087] 
    

DDP(-6) 0.020200 0.000146 -0.040792 
 (0.04940) (0.14168) (0.13833) 
 [ 0.40888] [ 0.00103] [-0.29488] 
    

DDP(-7) -0.023324 0.003696 -0.199785 
 (0.04884) (0.14007) (0.13675) 
 [-0.47756] [ 0.02639] [-1.46093] 
    

DDP(-8) 0.006924 -0.027879 -0.014232 
 (0.04844) (0.13892) (0.13563) 
 [ 0.14294] [-0.20069] [-0.10494] 
    

DDP(-9) 0.035637 0.104008 0.001466 
 (0.04808) (0.13789) (0.13463) 
 [ 0.74117] [ 0.75427] [ 0.01089] 
    

DDP(-10) 0.065360 0.149765 -0.064630 
 (0.04808) (0.13789) (0.13463) 
 [ 1.35933] [ 1.08610] [-0.48006] 
    

DDP(-11) 0.013469 -0.101074 -0.169420 
 (0.04817) (0.13815) (0.13488) 
 [ 0.27959] [-0.73161] [-1.25606] 
    

DDP(-12) -0.008607 -0.323515 -0.104199 
 (0.04806) (0.13782) (0.13455) 
 [-0.17911] [-2.34745] [-0.77441] 
    



 
 

422 
 

DDP(-13) -0.029390 0.032574 -0.055221 
 (0.04743) (0.13603) (0.13281) 
 [-0.61959] [ 0.23946] [-0.41579] 
    

DDP(-14) 0.041327 0.039242 -0.072684 
 (0.04729) (0.13563) (0.13242) 
 [ 0.87381] [ 0.28932] [-0.54888] 
    

DDP(-15) 0.097648 -0.143245 -0.119432 
 (0.04719) (0.13534) (0.13214) 
 [ 2.06911] [-1.05838] [-0.90383] 
    

DDP(-16) 0.039619 -0.000247 -0.004076 
 (0.04726) (0.13552) (0.13232) 
 [ 0.83837] [-0.00182] [-0.03081] 
    

DDP(-17) 0.007681 0.054345 0.023403 
 (0.04703) (0.13488) (0.13169) 
 [ 0.16331] [ 0.40291] [ 0.17772] 
    

PWP(-1) 0.008162 -0.014683 0.038087 
 (0.01867) (0.05353) (0.05226) 
 [ 0.43728] [-0.27427] [ 0.72873] 
    

PWP(-2) 0.021558 0.077555 0.046820 
 (0.01863) (0.05342) (0.05216) 
 [ 1.15730] [ 1.45179] [ 0.89769] 
    

PWP(-3) 0.037634 0.018568 0.049306 
 (0.01847) (0.05297) (0.05172) 
 [ 2.03743] [ 0.35052] [ 0.95334] 
    

PWP(-4) 0.029730 0.007302 -0.010424 
 (0.01817) (0.05210) (0.05087) 
 [ 1.63645] [ 0.14014] [-0.20493] 
    

PWP(-5) 0.028290 0.042732 -0.073884 
 (0.01816) (0.05208) (0.05085) 
 [ 1.55783] [ 0.82052] [-1.45308] 
    

PWP(-6) 0.034802 0.011375 -0.062190 
 (0.01817) (0.05211) (0.05087) 
 [ 1.91536] [ 0.21830] [-1.22242] 
    

PWP(-7) 0.012721 0.029734 -0.051829 
 (0.01823) (0.05228) (0.05104) 
 [ 0.69780] [ 0.56874] [-1.01539] 
    

PWP(-8) 0.006732 0.146698 -0.002072 
 (0.01808) (0.05185) (0.05062) 
 [ 0.37234] [ 2.82936] [-0.04093] 
    

PWP(-9) -0.004135 -0.036141 -0.086816 
 (0.01829) (0.05245) (0.05121) 
 [-0.22609] [-0.68901] [-1.69521] 
    

PWP(-10) 0.025327 0.031798 -0.162142 
 (0.01801) (0.05164) (0.05042) 
 [ 1.40652] [ 0.61575] [-3.21591] 
    

PWP(-11) 0.031673 0.007797 -0.083847 
 (0.01822) (0.05225) (0.05101) 
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 [ 1.73846] [ 0.14923] [-1.64367] 
    

PWP(-12) 0.004114 0.034109 -0.015274 
 (0.01834) (0.05258) (0.05134) 
 [ 0.22437] [ 0.64869] [-0.29752] 
    

PWP(-13) 0.009815 0.099809 0.036584 
 (0.01816) (0.05209) (0.05085) 
 [ 0.54042] [ 1.91626] [ 0.71942] 
    

PWP(-14) 0.011015 -0.004047 -0.061195 
 (0.01815) (0.05204) (0.05081) 
 [ 0.60700] [-0.07776] [-1.20442] 
    

PWP(-15) -0.007217 -0.088355 -0.019784 
 (0.01804) (0.05173) (0.05051) 
 [-0.40005] [-1.70788] [-0.39169] 
    

PWP(-16) 0.024583 0.064895 -0.009121 
 (0.01808) (0.05186) (0.05063) 
 [ 1.35956] [ 1.25147] [-0.18016] 
    

PWP(-17) 0.008003 0.127921 -0.027909 
 (0.01800) (0.05161) (0.05039) 
 [ 0.44474] [ 2.47865] [-0.55389] 
    

NWP(-1) 0.001825 0.015472 0.001972 
 (0.01937) (0.05554) (0.05423) 
 [ 0.09421] [ 0.27856] [ 0.03637] 
    

NWP(-2) -0.018179 -0.042082 -0.054367 
 (0.01935) (0.05548) (0.05417) 
 [-0.93971] [-0.75852] [-1.00370] 
    

NWP(-3) 0.020978 0.053478 0.020269 
 (0.01927) (0.05527) (0.05396) 
 [ 1.08849] [ 0.96758] [ 0.37562] 
    

NWP(-4) 0.014610 -0.067737 -0.018343 
 (0.01925) (0.05520) (0.05390) 
 [ 0.75901] [-1.22704] [-0.34033] 
    

NWP(-5) 0.012805 -0.100025 -0.004557 
 (0.01925) (0.05522) (0.05391) 
 [ 0.66502] [-1.81144] [-0.08453] 
    

NWP(-6) 0.030539 -0.025653 0.011175 
 (0.01928) (0.05530) (0.05399) 
 [ 1.58366] [-0.46385] [ 0.20697] 
    

NWP(-7) 0.037839 0.089797 0.053460 
 (0.01919) (0.05504) (0.05373) 
 [ 1.97174] [ 1.63163] [ 0.99493] 
    

NWP(-8) 0.028938 -0.178453 0.011023 
 (0.01870) (0.05362) (0.05236) 
 [ 1.54760] [-3.32781] [ 0.21054] 
    

NWP(-9) 0.059365 -0.019102 -0.001928 
 (0.01890) (0.05420) (0.05292) 
 [ 3.14083] [-0.35241] [-0.03644] 
    



 
 

424 
 

NWP(-10) 0.042760 -0.000834 0.065996 
 (0.01905) (0.05462) (0.05333) 
 [ 2.24507] [-0.01527] [ 1.23754] 
    

NWP(-11) 0.034215 -0.027213 0.067738 
 (0.01891) (0.05422) (0.05293) 
 [ 1.80982] [-0.50192] [ 1.27967] 
    

NWP(-12) 0.007432 0.021215 0.076385 
 (0.01892) (0.05425) (0.05297) 
 [ 0.39283] [ 0.39103] [ 1.44207] 
    

NWP(-13) -0.005927 -0.028863 0.016252 
 (0.01890) (0.05420) (0.05291) 
 [-0.31363] [-0.53255] [ 0.30714] 
    

NWP(-14) 0.001485 0.005063 0.069986 
 (0.01888) (0.05416) (0.05288) 
 [ 0.07863] [ 0.09348] [ 1.32360] 
    

NWP(-15) 0.003594 -0.090524 -0.026641 
 (0.01880) (0.05392) (0.05264) 
 [ 0.19117] [-1.67883] [-0.50606] 
    

NWP(-16) -0.013926 -0.029412 0.020167 
 (0.01870) (0.05364) (0.05237) 
 [-0.74462] [-0.54835] [ 0.38511] 
    

NWP(-17) 0.007889 -0.078124 0.025355 
 (0.01872) (0.05370) (0.05243) 
 [ 0.42131] [-1.45489] [ 0.48364] 
    

RD(-1) -0.000732 -0.000850 0.002151 
 (0.00272) (0.00780) (0.00761) 
 [-0.26928] [-0.10904] [ 0.28254] 
    
    R-squared 0.225694 0.098225 0.085281 

Adj. R-squared 0.134283 -0.008234 -0.022706 
Sum sq. resids 47.68168 392.1572 373.8102 
S.E. equation 0.332226 0.952770 0.930216 

F-statistic 2.469000 0.922652 0.789734 
Log likelihood -125.9221 -635.8441 -624.2488 

Akaike AIC 0.735215 2.842331 2.794416 
Schwarz SC 1.184530 3.291646 3.243731 

Mean dependent 0.059653 0.673927 -0.586724 
S.D. dependent 0.357064 0.948872 0.919832 

    
    Determinant resid covariance (dof adj.) 0.068040  

Determinant resid covariance 0.048382  
Log likelihood -1327.369  

Akaike information criterion 6.129623  
Schwarz criterion 7.477568  
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(2) irfname = diesel, impulse = nwp, and response = ddp
(1) irfname = diesel, impulse = pwp, and response = ddp
95% lower and upper bounds reported
                                                                                  
 21        .462084     .265695     .658473     .193634     .036591     .350677    
 20        .455654     .264623     .646684     .195606     .04161      .349602    
 19        .455404     .270193     .640615     .191464     .041007     .341921    
 18        .451643     .272897     .63039      .191893     .045698     .338088    
 17        .447832     .276187     .619476     .193292     .052805     .333778    
 16        .441138     .276988     .605287     .18031      .043398     .317223    
 15        .417187     .260946     .573428     .191644     .059459     .32383     
 14        .417506     .269561     .565451     .186778     .059934     .313623    
 13        .400876     .261912     .539841     .17944      .058158     .300723    
 12        .382179     .252724     .511634     .180499     .065805     .295193    
 11        .366723     .24762      .485825     .177546     .070744     .284348    
 10        .313627     .205195     .422059     .156334     .057776     .254892    
 9         .263358     .164248     .362468     .129747     .038564     .220931    
 8         .232299     .14247      .322128     .086209     .002047     .170371    
 7         .202785     .121804     .283766     .067448     -.009638    .144533    
 6         .171141     .099295     .242986     .045097     -.023998    .114192    
 5         .122014     .060094     .183935     .022067     -.038122    .082255    
 4         .090613     .036613     .144612     .015139     -.037797    .068074    
 3         .060196     .014306     .106087     .005019     -.040294    .050332    
 2         .019372     -.018178    .056922     -.012788    -.050113    .024537    
 1         .008072     -.019848    .035992     .001421     -.0265      .029341    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (diesel pwp ddp coirf, ci) (diesel nwp ddp coirf, ci)
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Gasoline 

 
Vector Autoregression Estimates  

  
Sample (adjusted): 1/28/2009 12/30/2010 

Included observations: 486 after adjustments 
Standard errors in ( ) & t-statistics in [ ] 

    
     DGP PSP NSP 
    
    DGP(-1) -0.002543 0.029698 0.025412 
 (0.04774) (0.15583) (0.15745) 
 [-0.05326] [ 0.19058] [ 0.16139] 
    

DGP(-2) 0.101268 0.101853 -0.019816 
 (0.04769) (0.15569) (0.15732) 
 [ 2.12330] [ 0.65418] [-0.12596] 
    

DGP(-3) 0.032106 -0.309994 -0.033263 
 (0.04812) (0.15710) (0.15873) 
 [ 0.66716] [-1.97324] [-0.20955] 
    

DGP(-4) -0.076103 -0.133982 -0.000461 
 (0.04830) (0.15767) (0.15931) 
 [-1.57566] [-0.84976] [-0.00290] 
    

DGP(-5) 0.159734 0.131060 0.213875 
 (0.04831) (0.15769) (0.15933) 
 [ 3.30673] [ 0.83111] [ 1.34231] 
    

DGP(-6) 0.066945 0.059472 0.034831 
 (0.04843) (0.15811) (0.15976) 
 [ 1.38219] [ 0.37614] [ 0.21803] 
    

DGP(-7) -0.006695 0.077676 -0.070561 
 (0.04838) (0.15795) (0.15959) 
 [-0.13838] [ 0.49178] [-0.44213] 
    

DGP(-8) 0.051048 0.056293 -0.274961 
 (0.04830) (0.15768) (0.15932) 
 [ 1.05688] [ 0.35702] [-1.72588] 
    

DGP(-9) -0.016729 -0.158711 0.202924 
 (0.04857) (0.15857) (0.16022) 
 [-0.34440] [-1.00088] [ 1.26652] 
    

DGP(-10) 0.044045 -0.063686 -0.173929 
 (0.04761) (0.15542) (0.15704) 
 [ 0.92512] [-0.40977] [-1.10756] 
    

DGP(-11) 0.004564 -0.111825 -0.206146 
 (0.04693) (0.15319) (0.15478) 
 [ 0.09726] [-0.72998] [-1.33183] 
    

DGP(-12) 0.014519 -0.286373 -0.014616 
 (0.04681) (0.15281) (0.15440) 
 [ 0.31017] [-1.87401] [-0.09466] 
    

DGP(-13) -0.012672 0.240933 0.346554 
 (0.04655) (0.15197) (0.15355) 
 [-0.27219] [ 1.58537] [ 2.25688] 
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DGP(-14) 0.006392 0.010292 -0.053668 

 (0.04586) (0.14972) (0.15128) 
 [ 0.13936] [ 0.06874] [-0.35476] 
    

DGP(-15) 0.049702 0.025230 -0.314576 
 (0.04508) (0.14717) (0.14870) 
 [ 1.10250] [ 0.17144] [-2.11555] 
    

PSP(-1) -0.012621 0.176888 0.028416 
 (0.01598) (0.05217) (0.05271) 
 [-0.78979] [ 3.39074] [ 0.53909] 
    

PSP(-2) 0.051734 -0.006337 -0.026673 
 (0.01592) (0.05198) (0.05252) 
 [ 3.24890] [-0.12190] [-0.50783] 
    

PSP(-3) 0.053640 0.084280 0.057919 
 (0.01607) (0.05246) (0.05300) 
 [ 3.33822] [ 1.60671] [ 1.09279] 
    

PSP(-4) 0.046864 0.040833 -0.052271 
 (0.01622) (0.05294) (0.05349) 
 [ 2.88982] [ 0.77132] [-0.97720] 
    

PSP(-5) 0.003994 0.028309 0.014387 
 (0.01641) (0.05356) (0.05411) 
 [ 0.24343] [ 0.52860] [ 0.26587] 
    

PSP(-6) 0.056267 0.002917 -0.023321 
 (0.01638) (0.05347) (0.05403) 
 [ 3.43501] [ 0.05456] [-0.43162] 
    

PSP(-7) 0.022798 0.075116 -0.017019 
 (0.01649) (0.05382) (0.05438) 
 [ 1.38277] [ 1.39564] [-0.31296] 
    

PSP(-8) 0.021487 0.011389 -0.078618 
 (0.01648) (0.05381) (0.05437) 
 [ 1.30358] [ 0.21165] [-1.44602] 
    

PSP(-9) 0.000388 0.060728 0.028582 
 (0.01647) (0.05376) (0.05432) 
 [ 0.02356] [ 1.12970] [ 0.52621] 
    

PSP(-10) -0.002881 0.032374 -0.146800 
 (0.01645) (0.05371) (0.05427) 
 [-0.17509] [ 0.60275] [-2.70499] 
    

PSP(-11) -0.004271 0.016165 -0.020876 
 (0.01664) (0.05433) (0.05490) 
 [-0.25662] [ 0.29754] [-0.38029] 
    

PSP(-12) 0.006835 -0.017362 -0.087226 
 (0.01653) (0.05397) (0.05453) 
 [ 0.41340] [-0.32170] [-1.59953] 
    

PSP(-13) 0.020581 0.113517 0.067157 
 (0.01649) (0.05383) (0.05439) 
 [ 1.24818] [ 2.10891] [ 1.23479] 
    

PSP(-14) -0.001111 -0.032892 -0.073337 
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 (0.01649) (0.05384) (0.05440) 
 [-0.06737] [-0.61090] [-1.34804] 
    

PSP(-15) 0.018128 0.052179 -0.053240 
 (0.01643) (0.05363) (0.05419) 
 [ 1.10337] [ 0.97288] [-0.98243] 
    

NSP(-1) 0.002604 0.040482 0.149725 
 (0.01590) (0.05189) (0.05243) 
 [ 0.16383] [ 0.78015] [ 2.85572] 
    

NSP(-2) 0.026619 -0.099571 0.007797 
 (0.01601) (0.05226) (0.05281) 
 [ 1.66274] [-1.90524] [ 0.14765] 
    

NSP(-3) 0.010274 0.022359 0.042735 
 (0.01605) (0.05241) (0.05296) 
 [ 0.63995] [ 0.42662] [ 0.80700] 
    

NSP(-4) 0.031416 -0.068538 -0.088517 
 (0.01592) (0.05196) (0.05250) 
 [ 1.97384] [-1.31910] [-1.68607] 
    

NSP(-5) 0.009301 3.12E-05 -0.015038 
 (0.01601) (0.05226) (0.05280) 
 [ 0.58102] [ 0.00060] [-0.28480] 
    

NSP(-6) 0.041017 -0.071890 -0.023723 
 (0.01571) (0.05127) (0.05180) 
 [ 2.61165] [-1.40217] [-0.45795] 
    

NSP(-7) 0.009290 -0.032346 0.076854 
 (0.01582) (0.05163) (0.05217) 
 [ 0.58737] [-0.62648] [ 1.47319] 
    

NSP(-8) 0.015874 -0.071095 0.085811 
 (0.01562) (0.05100) (0.05153) 
 [ 1.01608] [-1.39398] [ 1.66518] 
    

NSP(-9) 0.036282 -0.091672 -0.027429 
 (0.01571) (0.05130) (0.05183) 
 [ 2.30898] [-1.78709] [-0.52921] 
    

NSP(-10) 0.039755 0.042484 0.110803 
 (0.01578) (0.05152) (0.05206) 
 [ 2.51878] [ 0.82453] [ 2.12833] 
    

NSP(-11) 0.029498 -0.040451 0.028076 
 (0.01596) (0.05210) (0.05265) 
 [ 1.84815] [-0.77636] [ 0.53330] 
    

NSP(-12) -0.011513 0.031100 0.135228 
 (0.01586) (0.05178) (0.05232) 
 [-0.72591] [ 0.60066] [ 2.58486] 
    

NSP(-13) -0.002108 -0.093996 -0.058972 
 (0.01600) (0.05224) (0.05278) 
 [-0.13173] [-1.79943] [-1.11732] 
    

NSP(-14) 0.013073 0.059368 0.030482 
 (0.01581) (0.05163) (0.05216) 
 [ 0.82665] [ 1.14994] [ 0.58435] 
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NSP(-15) -0.010399 -0.068296 0.002912 

 (0.01571) (0.05129) (0.05182) 
 [-0.66192] [-1.33169] [ 0.05619] 
    

RG(-1) -0.001329 0.001017 0.000499 
 (0.00213) (0.00695) (0.00702) 
 [-0.62414] [ 0.14638] [ 0.07111] 
    
    R-squared 0.365126 0.086149 0.109246 

Adj. R-squared 0.300196 -0.007314 0.018146 
Sum sq. resids 29.15192 310.6649 317.1655 
S.E. equation 0.257399 0.840272 0.849017 

F-statistic 5.623354 0.921749 1.199192 
Log likelihood -5.877960 -580.8631 -585.8954 

Akaike AIC 0.213490 2.579684 2.600392 
Schwarz SC 0.609715 2.975909 2.996618 

Mean dependent 0.079982 0.606182 -0.507799 
S.D. dependent 0.307694 0.837216 0.856827 

    
    Determinant resid covariance (dof adj.) 0.027795  

Determinant resid covariance 0.020626  
Log likelihood -1125.680  

Akaike information criterion 5.200328  
Schwarz criterion 6.389004  
    
     

 

 

 
(2) irfname = gas, impulse = nsp, and response = dgp
(1) irfname = gas, impulse = psp, and response = dgp
95% lower and upper bounds reported
                                                                                  
 21        .586512     .361387     .811638     .168934     -.002944    .340811    
 20        .583659     .366099     .80122      .171495     .00418      .33881     
 19        .581464     .372103     .790825     .178403     .016177     .340629    
 18        .57081      .370001     .771618     .180819     .024002     .337635    
 17        .560969     .369411     .752527     .181434     .030367     .332501    
 16        .547104     .365283     .728925     .184879     .039721     .330038    
 15        .532011     .360634     .703388     .178153     .040119     .316188    
 14        .508568     .347213     .669922     .196021     .063415     .328627    
 13        .488087     .337734     .638439     .182148     .056521     .307774    
 12        .455404     .3162       .594609     .188679     .070835     .306523    
 11        .433815     .306433     .561197     .19309      .083874     .302307    
 10        .405063     .289869     .520257     .171928     .071955     .271901    
 9         .378043     .274662     .481424     .14687      .055917     .237823    
 8         .338141     .246714     .429569     .118842     .037204     .20048     
 7         .296856     .216617     .377096     .111771     .039133     .18441     
 6         .248893     .179678     .318109     .098442     .035085     .1618      
 5         .181824     .123171     .240478     .070975     .015904     .126045    
 4         .154612     .104418     .204806     .059624     .012035     .107213    
 3         .094431     .053594     .135268     .034364     -.005152    .073881    
 2         .039202     .007688     .070716     .021357     -.009449    .052162    
 1         -.009219    -.031117    .01268      .001911     -.019848    .023671    
 0         0           0           0           0           0           0          
                                                                                  
   step     coirf       Lower       Upper       coirf       Lower       Upper     
              (1)         (1)         (1)         (2)         (2)         (2)     
                                                                                  

. irf ctable (gas psp dgp coirf, ci) (gas nsp dgp coirf, ci)
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APPENDIX C: Price Stickiness in a Competitive Petroleum 

Retail Market 

  

NOMENCLATURE: 

P= RETAIL DIESEL PRICE 

DP= FIRST DIFFERENCE OF D 

DG= FIRST DIFFERENCE OF RETAIL G 

DS= FIRST DIFFERENCE OF S 

DW= FIRST DIFFERENCE OF W 

G= RETAIL GASOLINE PRICE 

NS= NEGATIVE CHANGE IN S 

NW= NEGATIVE CHANGE IN W 

PS= POSITIVE CHANGE IN S 

NS= NEGATIVE CHANGE IN W 

SP= WHOLESALE GASOLINE PRICE  

WP= WHOLESALE DIESEL PRICE  
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C1 – ALL STATIONS DIESEL 

UNIT ROOT TEST ON W 

Null Hypothesis: W has a unit root  
Exogenous: Constant   
Lag Length: 0 (Automatic - based on SIC, maxlag=16) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic  0.750648  0.9931 

Test critical values: 1% level  -3.448062  
 5% level  -2.869241  
 10% level  -2.570940  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(W)   
Method: Least Squares   
   
Sample (adjusted): 2/01/2008 31/12/2008  
Included observations: 365 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     W(-1) 0.002997 0.003992 0.750648 0.4534 

C -0.540358 0.518207 -1.042746 0.2978 
     
     R-squared 0.001550     Mean dependent var -0.164023 

Adjusted R-squared -0.001201     S.D. dependent var 2.503319 
S.E. of regression 2.504822     Akaike info criterion 4.679777 
Sum squared resid 2277.510     Schwarz criterion 4.701146 
Log likelihood -852.0593     Hannan-Quinn criter. 4.688269 
F-statistic 0.563472     Durbin-Watson stat 1.870845 
Prob(F-statistic) 0.453351    

     
      

UNIT ROOT TEST ON P 

 
Null Hypothesis: P has a unit root  
Exogenous: Constant   
Lag Length: 4 (Automatic - based on SIC, maxlag=16) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic  1.147472  0.9978 

Test critical values: 1% level  -3.448262  
 5% level  -2.869329  
 10% level  -2.570987  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(P)   
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Method: Least Squares   
   
Sample (adjusted): 6/01/2008 31/12/2008  
Included observations: 361 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     P(-1) 0.003598 0.003136 1.147472 0.2520 

D(P(-1)) -0.212243 0.052804 -4.019467 0.0001 
D(P(-2)) 0.038157 0.052964 0.720433 0.4717 
D(P(-3)) 0.197362 0.052989 3.724599 0.0002 
D(P(-4)) 0.156750 0.052770 2.970433 0.0032 

C -0.656343 0.475897 -1.379169 0.1687 
     
     R-squared 0.091204     Mean dependent var -0.158155 

Adjusted R-squared 0.078404     S.D. dependent var 1.950252 
S.E. of regression 1.872238     Akaike info criterion 4.108627 
Sum squared resid 1244.372     Schwarz criterion 4.173262 
Log likelihood -735.6071     Hannan-Quinn criter. 4.134324 
F-statistic 7.125334     Durbin-Watson stat 2.015188 
Prob(F-statistic) 0.000002    

     
     

COINTEGRATION TEST 

   
Sample (adjusted): 6/01/2008 31/12/2008  
Included observations: 361 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: P W     
Lags interval (in first differences): 1 to 4  

     
Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.124781  48.79789  20.26184  0.0000 

At most 1  0.001892  0.683552  9.164546  0.9840 
     
      Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.124781  48.11434  15.89210  0.0000 

At most 1  0.001892  0.683552  9.164546  0.9840 
     
      Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  
     
     P W C   

-0.161076  0.176265  1.173228   
-0.008582  0.016572  0.136946   
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 Unrestricted Adjustment Coefficients (alpha):   
     
     D(P)  0.637574 -0.012825   

D(W)  0.052615 -0.107465   
     
          
1 Cointegrating Equation(s):  Log likelihood -1536.560  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

P W C   
 1.000000 -1.094298 -7.283711   

  (0.02893)  (3.81263)   
     

Adjustment coefficients (standard error in parentheses)  
D(P) -0.102698    

  (0.01472)    
D(W) -0.008475    

  (0.02125)    
     
     

CAUSALITY 

 
VAR Granger Causality/Block Exogeneity Wald Tests 
  
Sample: 1/01/2008 31/12/2008  
Included observations: 350  

    
        

Dependent variable: DP  
    
    Excluded Chi-sq df Prob. 
    
    PW  31.98435 15  0.0065 

NW  42.32857 15  0.0002 
    
    All  64.22044 30  0.0003 
    
        

Dependent variable: PW  
    
    Excluded Chi-sq df Prob. 
    
    DP  21.41381 15  0.1241 

NW  19.55136 15  0.1898 
    
    All  42.26670 30  0.0679 
    
        

Dependent variable: NW  
    
    Excluded Chi-sq df Prob. 
    
    DP  26.12194 15  0.0368 

PW  22.30967 15  0.0999 
    
    All  55.95813 30  0.0028 
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LAG LENGTH 

 
VAR Lag Order Selection Criteria     
Endogenous variables: DP PW NW      
Exogenous variables:      
     
Sample: 1/01/2008 31/12/2008     
Included observations: 350     

       
        Lag LogL LR FPE AIC SC HQ 
       
       1 -2058.098 NA   27.06820  11.81199   11.91119*  11.85148 

2 -2046.874  22.06402  26.72655  11.79928  11.99769  11.87825 
3 -2023.369  45.80151  24.60119  11.71639  12.01400  11.83485 
4 -2002.643  40.02944  23.00795  11.64939  12.04621  11.80734 
5 -1997.297  10.23360  23.49522  11.67027  12.16629  11.86770 
6 -1977.541  37.48158  22.09705  11.60880  12.20403  11.84572 
7 -1940.411  69.80284   18.81899*   11.44806*  12.14249   11.72447* 
8 -1932.539  14.66563  18.94466  11.45451  12.24814  11.77040 
9 -1929.229  6.108680  19.57618  11.48702  12.37986  11.84240 
10 -1922.462  12.37324  19.83443  11.49979  12.49183  11.89465 
11 -1916.756  10.33587  20.21981  11.51861  12.60985  11.95296 
12 -1909.133  13.67909  20.38975  11.52647  12.71692  12.00031 
13 -1895.440   24.33435*  19.86209  11.49966  12.78931  12.01298 
14 -1889.455  10.53259  20.22143  11.51689  12.90574  12.06970 
15 -1882.517  12.09236  20.47760  11.52867  13.01673  12.12097 
       
        * indicates lag order selected by the criterion    

 LR: sequential modified LR test statistic (each test at 5% level)   
 FPE: Final prediction error     
 AIC: Akaike information criterion     
 SC: Schwarz information criterion     
 HQ: Hannan-Quinn information criterion    

       
 

THE VAR 

 Vector Autoregression Estimates  
  
 Sample (adjusted): 10/01/2008 31/12/2008 
 Included observations: 357 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     DP PW NW 
    
    DP(-1) -0.296361  0.136840 -0.127736 
  (0.05590)  (0.05097)  (0.04622) 
 [-5.30204] [ 2.68460] [-2.76362] 
    

DP(-2)  0.019895  0.019703  0.005651 
  (0.05933)  (0.05411)  (0.04906) 
 [ 0.33533] [ 0.36416] [ 0.11518] 
    

DP(-3)  0.152493 -0.010261  0.030479 
  (0.05887)  (0.05368)  (0.04868) 
 [ 2.59032] [-0.19113] [ 0.62610] 
    

DP(-4)  0.139519  0.025027  0.179986 
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  (0.05906)  (0.05386)  (0.04884) 
 [ 2.36219] [ 0.46465] [ 3.68522] 
    

DP(-5)  0.048862  0.084150  0.069560 
  (0.06021)  (0.05490)  (0.04979) 
 [ 0.81156] [ 1.53267] [ 1.39720] 
    

DP(-6)  0.029281 -0.025435  0.060432 
  (0.05836)  (0.05322)  (0.04826) 
 [ 0.50174] [-0.47793] [ 1.25229] 
    

DP(-7)  0.164689  0.046773 -0.067007 
  (0.05974)  (0.05448)  (0.04940) 
 [ 2.75677] [ 0.85856] [-1.35645] 
    

DP(-8)  0.105263  0.040033 -0.037335 
  (0.05979)  (0.05452)  (0.04944) 
 [ 1.76062] [ 0.73426] [-0.75517] 
    

PW(-1)  0.006344  0.064496 -0.025832 
  (0.06427)  (0.05861)  (0.05315) 
 [ 0.09871] [ 1.10042] [-0.48605] 
    

PW(-2) -0.049481  0.066065  0.010172 
  (0.06233)  (0.05684)  (0.05154) 
 [-0.79380] [ 1.16221] [ 0.19735] 
    

PW(-3)  0.107350  0.039205 -0.037977 
  (0.06190)  (0.05644)  (0.05118) 
 [ 1.73438] [ 0.69460] [-0.74201] 
    

PW(-4)  0.006132  0.001866 -0.088065 
  (0.06184)  (0.05639)  (0.05113) 
 [ 0.09917] [ 0.03310] [-1.72224] 
    

PW(-5)  0.073671 -0.060949 -0.018116 
  (0.06167)  (0.05623)  (0.05099) 
 [ 1.19470] [-1.08386] [-0.35528] 
    

PW(-6)  0.146543  0.054930 -0.031500 
  (0.06152)  (0.05610)  (0.05087) 
 [ 2.38219] [ 0.97919] [-0.61925] 
    

PW(-7) -0.059117  0.052772 -0.161060 
  (0.06183)  (0.05638)  (0.05113) 
 [-0.95611] [ 0.93594] [-3.15016] 
    

PW(-8) -0.064794  0.027808 -0.051108 
  (0.06177)  (0.05633)  (0.05108) 
 [-1.04888] [ 0.49364] [-1.00053] 
    

NW(-1)  0.167172 -0.057186  0.131340 
  (0.06977)  (0.06363)  (0.05769) 
 [ 2.39597] [-0.89878] [ 2.27647] 
    

NW(-2)  0.058378 -0.099415 -0.036105 
  (0.06724)  (0.06132)  (0.05560) 
 [ 0.86816] [-1.62122] [-0.64933] 
    

NW(-3)  0.055242 -0.118786  0.045329 
  (0.06631)  (0.06047)  (0.05483) 
 [ 0.83308] [-1.96438] [ 0.82668] 
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NW(-4)  0.030382  0.045685  0.056522 

  (0.06684)  (0.06095)  (0.05527) 
 [ 0.45455] [ 0.74953] [ 1.02267] 
    

NW(-5) -0.087428 -0.019358 -0.029892 
  (0.06546)  (0.05970)  (0.05413) 
 [-1.33556] [-0.32428] [-0.55222] 
    

NW(-6) -0.014490 -0.060568  0.042084 
  (0.06540)  (0.05964)  (0.05408) 
 [-0.22158] [-1.01564] [ 0.77825] 
    

NW(-7) -0.012332 -0.179453  0.266422 
  (0.06567)  (0.05988)  (0.05430) 
 [-0.18780] [-2.99679] [ 4.90656] 
    

NW(-8)  0.114650 -0.053692  0.096249 
  (0.06923)  (0.06313)  (0.05725) 
 [ 1.65600] [-0.85043] [ 1.68125] 
    
     R-squared  0.227790  0.066715  0.174340 

 Adj. R-squared  0.174454  0.002254  0.117313 
 Sum sq. resids  1051.490  874.4139  718.9749 
 S.E. equation  1.776971  1.620453  1.469382 
 F-statistic  4.270855  1.034962  3.057121 
 Log likelihood -699.3817 -666.4646 -631.5272 
 Akaike AIC  4.052558  3.868149  3.672421 
 Schwarz SC  4.313246  4.128837  3.933110 
 Mean dependent -0.165058  0.701603 -0.861600 
 S.D. dependent  1.955734  1.622282  1.563980 

    
     Determinant resid covariance (dof adj.)  15.22167  

 Determinant resid covariance  12.35351  
 Log likelihood -1968.422  
 Akaike information criterion  11.43093  
 Schwarz criterion  12.21300  
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C2 – ALL STATIONS GASOLINE 

UNIT ROOT TEST ON S 

Null Hypothesis: S has a unit root  
Exogenous: Constant   
Lag Length: 0 (Automatic - based on SIC, maxlag=16) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic  1.231453  0.9983 

Test critical values: 1% level  -3.448062  
 5% level  -2.869241  
 10% level  -2.570940  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(S)   
Method: Least Squares   
   
Sample (adjusted): 2/01/2008 31/12/2008  
Included observations: 365 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     S(-1) 0.004303 0.003494 1.231453 0.2190 

C -0.572166 0.341355 -1.676161 0.0946 
     
     R-squared 0.004160     Mean dependent var -0.169697 

Adjusted R-squared 0.001417     S.D. dependent var 1.883830 
S.E. of regression 1.882495     Akaike info criterion 4.108538 
Sum squared resid 1286.395     Schwarz criterion 4.129907 
Log likelihood -747.8082     Hannan-Quinn criter. 4.117030 
F-statistic 1.516476     Durbin-Watson stat 1.823663 
Prob(F-statistic) 0.218951    

     
     

 

UNIT ROOT TEST ON G 

Null Hypothesis: G has a unit root  
Exogenous: Constant   
Lag Length: 1 (Automatic - based on SIC, maxlag=16) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic  2.993421  1.0000 

Test critical values: 1% level  -3.448111  
 5% level  -2.869263  
 10% level  -2.570952  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(G)   
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Method: Least Squares   
   
Sample (adjusted): 3/01/2008 31/12/2008  
Included observations: 364 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     G(-1) 0.008320 0.002779 2.993421 0.0029 

D(G(-1)) -0.179077 0.052374 -3.419175 0.0007 
C -1.221079 0.345379 -3.535473 0.0005 
     
     R-squared 0.046787     Mean dependent var -0.188861 

Adjusted R-squared 0.041506     S.D. dependent var 1.586675 
S.E. of regression 1.553398     Akaike info criterion 3.726974 
Sum squared resid 871.1091     Schwarz criterion 3.759093 
Log likelihood -675.3093     Hannan-Quinn criter. 3.739740 
F-statistic 8.859503     Durbin-Watson stat 1.985373 
Prob(F-statistic) 0.000175    

     
          
     
     
     
     
     
     
     

COINTEGRATION TEST 

   
Sample (adjusted): 10/01/2008 31/12/2008  
Included observations: 357 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: G S     
Lags interval (in first differences): 1 to 8  

     
Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.064151  25.26479  20.26184  0.0094 

At most 1  0.004459  1.595268  9.164546  0.8560 
     
      Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.064151  23.66952  15.89210  0.0025 

At most 1  0.004459  1.595268  9.164546  0.8560 
     
      Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  
     
     G S C   

-0.227024  0.257975  2.742206   
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 0.056268 -0.048016 -3.240202   
     
          
 Unrestricted Adjustment Coefficients (alpha):   
     
     D(G)  0.356049  0.027437   

D(S) -0.062165  0.121338   
     
          
1 Cointegrating Equation(s):  Log likelihood -1349.926  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

G S C   
 1.000000 -1.136334 -12.07894   

  (0.03730)  (3.78053)   
     

Adjustment coefficients (standard error in parentheses)  
D(G) -0.080832    

  (0.01749)    
D(S)  0.014113    

  (0.02256)    
     
     

CAUSALITY 

VAR Granger Causality/Block Exogeneity Wald Tests 
  
Sample: 1/01/2008 31/12/2008  
Included observations: 357  

    
        

Dependent variable: DP  
    
    Excluded Chi-sq df Prob. 
    
    PW  13.44340 8  0.0975 

NW  18.07859 8  0.0206 
    
    All  31.58668 16  0.0113 
    
        

Dependent variable: PW  
    
    Excluded Chi-sq df Prob. 
    
    DP  15.53305 8  0.0496 

NW  30.01539 8  0.0002 
    
    All  43.78704 16  0.0002 
    
        

Dependent variable: NW  
    
    Excluded Chi-sq df Prob. 
    
    DP  23.65469 8  0.0026 

PW  20.15668 8  0.0098 
    
    All  48.59173 16  0.0000 
    
        



 
 

441 
 

LAG LENGTH 

VAR Lag Order Selection Criteria     
Endogenous variables: DP PW NW      
Exogenous variables:      
     
Sample: 1/01/2008 31/12/2008     
Included observations: 350     

       
        Lag LogL LR FPE AIC SC HQ 
       
       1 -2058.098 NA   27.06820  11.81199   11.91119*  11.85148 

2 -2046.874  22.06402  26.72655  11.79928  11.99769  11.87825 
3 -2023.369  45.80151  24.60119  11.71639  12.01400  11.83485 
4 -2002.643  40.02944  23.00795  11.64939  12.04621  11.80734 
5 -1997.297  10.23360  23.49522  11.67027  12.16629  11.86770 
6 -1977.541  37.48158  22.09705  11.60880  12.20403  11.84572 
7 -1940.411  69.80284   18.81899*   11.44806*  12.14249   11.72447* 
8 -1932.539  14.66563  18.94466  11.45451  12.24814  11.77040 
9 -1929.229  6.108680  19.57618  11.48702  12.37986  11.84240 
10 -1922.462  12.37324  19.83443  11.49979  12.49183  11.89465 
11 -1916.756  10.33587  20.21981  11.51861  12.60985  11.95296 
12 -1909.133  13.67909  20.38975  11.52647  12.71692  12.00031 
13 -1895.440   24.33435*  19.86209  11.49966  12.78931  12.01298 
14 -1889.455  10.53259  20.22143  11.51689  12.90574  12.06970 
15 -1882.517  12.09236  20.47760  11.52867  13.01673  12.12097 
       
        * indicates lag order selected by the criterion    

 LR: sequential modified LR test statistic (each test at 5% level)   
 FPE: Final prediction error     
 AIC: Akaike information criterion     
 SC: Schwarz information criterion     
 HQ: Hannan-Quinn information criterion    

       

 

THE VAR 

 
 Vector Autoregression Estimates  
   
 Sample (adjusted): 10/01/2008 31/12/2008 
 Included observations: 357 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     DP PW NW 
    
    DP(-1) -0.296361  0.136840 -0.127736 
  (0.05590)  (0.05097)  (0.04622) 
 [-5.30204] [ 2.68460] [-2.76362] 
    

DP(-2)  0.019895  0.019703  0.005651 
  (0.05933)  (0.05411)  (0.04906) 
 [ 0.33533] [ 0.36416] [ 0.11518] 
    

DP(-3)  0.152493 -0.010261  0.030479 
  (0.05887)  (0.05368)  (0.04868) 
 [ 2.59032] [-0.19113] [ 0.62610] 
    

DP(-4)  0.139519  0.025027  0.179986 
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  (0.05906)  (0.05386)  (0.04884) 
 [ 2.36219] [ 0.46465] [ 3.68522] 
    

DP(-5)  0.048862  0.084150  0.069560 
  (0.06021)  (0.05490)  (0.04979) 
 [ 0.81156] [ 1.53267] [ 1.39720] 
    

DP(-6)  0.029281 -0.025435  0.060432 
  (0.05836)  (0.05322)  (0.04826) 
 [ 0.50174] [-0.47793] [ 1.25229] 
    

DP(-7)  0.164689  0.046773 -0.067007 
  (0.05974)  (0.05448)  (0.04940) 
 [ 2.75677] [ 0.85856] [-1.35645] 
    

DP(-8)  0.105263  0.040033 -0.037335 
  (0.05979)  (0.05452)  (0.04944) 
 [ 1.76062] [ 0.73426] [-0.75517] 
    

PW(-1)  0.006344  0.064496 -0.025832 
  (0.06427)  (0.05861)  (0.05315) 
 [ 0.09871] [ 1.10042] [-0.48605] 
    

PW(-2) -0.049481  0.066065  0.010172 
  (0.06233)  (0.05684)  (0.05154) 
 [-0.79380] [ 1.16221] [ 0.19735] 
    

PW(-3)  0.107350  0.039205 -0.037977 
  (0.06190)  (0.05644)  (0.05118) 
 [ 1.73438] [ 0.69460] [-0.74201] 
    

PW(-4)  0.006132  0.001866 -0.088065 
  (0.06184)  (0.05639)  (0.05113) 
 [ 0.09917] [ 0.03310] [-1.72224] 
    

PW(-5)  0.073671 -0.060949 -0.018116 
  (0.06167)  (0.05623)  (0.05099) 
 [ 1.19470] [-1.08386] [-0.35528] 
    

PW(-6)  0.146543  0.054930 -0.031500 
  (0.06152)  (0.05610)  (0.05087) 
 [ 2.38219] [ 0.97919] [-0.61925] 
    

PW(-7) -0.059117  0.052772 -0.161060 
  (0.06183)  (0.05638)  (0.05113) 
 [-0.95611] [ 0.93594] [-3.15016] 
    

PW(-8) -0.064794  0.027808 -0.051108 
  (0.06177)  (0.05633)  (0.05108) 
 [-1.04888] [ 0.49364] [-1.00053] 
    

NW(-1)  0.167172 -0.057186  0.131340 
  (0.06977)  (0.06363)  (0.05769) 
 [ 2.39597] [-0.89878] [ 2.27647] 
    

NW(-2)  0.058378 -0.099415 -0.036105 
  (0.06724)  (0.06132)  (0.05560) 
 [ 0.86816] [-1.62122] [-0.64933] 
    

NW(-3)  0.055242 -0.118786  0.045329 
  (0.06631)  (0.06047)  (0.05483) 
 [ 0.83308] [-1.96438] [ 0.82668] 
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NW(-4)  0.030382  0.045685  0.056522 

  (0.06684)  (0.06095)  (0.05527) 
 [ 0.45455] [ 0.74953] [ 1.02267] 
    

NW(-5) -0.087428 -0.019358 -0.029892 
  (0.06546)  (0.05970)  (0.05413) 
 [-1.33556] [-0.32428] [-0.55222] 
    

NW(-6) -0.014490 -0.060568  0.042084 
  (0.06540)  (0.05964)  (0.05408) 
 [-0.22158] [-1.01564] [ 0.77825] 
    

NW(-7) -0.012332 -0.179453  0.266422 
  (0.06567)  (0.05988)  (0.05430) 
 [-0.18780] [-2.99679] [ 4.90656] 
    

NW(-8)  0.114650 -0.053692  0.096249 
  (0.06923)  (0.06313)  (0.05725) 
 [ 1.65600] [-0.85043] [ 1.68125] 
    
     R-squared  0.227790  0.066715  0.174340 

 Adj. R-squared  0.174454  0.002254  0.117313 
 Sum sq. resids  1051.490  874.4139  718.9749 
 S.E. equation  1.776971  1.620453  1.469382 
 F-statistic  4.270855  1.034962  3.057121 
 Log likelihood -699.3817 -666.4646 -631.5272 
 Akaike AIC  4.052558  3.868149  3.672421 
 Schwarz SC  4.313246  4.128837  3.933110 
 Mean dependent -0.165058  0.701603 -0.861600 
 S.D. dependent  1.955734  1.622282  1.563980 

    
     Determinant resid covariance (dof adj.)  15.22167  

 Determinant resid covariance  12.35351  
 Log likelihood -1968.422  
 Akaike information criterion  11.43093  
 Schwarz criterion  12.21300  
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C3 – MAJORS DIESEL 

UNIT ROOT TEST ON P 

 
Null Hypothesis: P has a unit root  
Exogenous: Constant   
Lag Length: 14 (Automatic - based on SIC, maxlag=16) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic  0.982089  0.9964 

Test critical values: 1% level  -3.448835  
 5% level  -2.869581  
 10% level  -2.571122  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(P)   
Method: Least Squares   
   
Sample (adjusted): 16/01/2008 30/12/2008  
Included observations: 350 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     P(-1) 0.036608 0.037275 0.982089 0.3268 

D(P(-1)) -0.951599 0.060492 -15.73106 0.0000 
D(P(-2)) -0.869764 0.073981 -11.75663 0.0000 
D(P(-3)) -0.791166 0.082765 -9.559130 0.0000 
D(P(-4)) -0.725500 0.088534 -8.194559 0.0000 
D(P(-5)) -0.670106 0.092181 -7.269434 0.0000 
D(P(-6)) -0.621704 0.094218 -6.598553 0.0000 
D(P(-7)) -0.576398 0.094799 -6.080224 0.0000 
D(P(-8)) -0.549047 0.094124 -5.833205 0.0000 
D(P(-9)) -0.519171 0.092166 -5.633000 0.0000 
D(P(-10)) -0.499081 0.088717 -5.625566 0.0000 
D(P(-11)) -0.483794 0.083576 -5.788647 0.0000 
D(P(-12)) -0.479031 0.076131 -6.292218 0.0000 
D(P(-13)) -0.476345 0.065224 -7.303240 0.0000 
D(P(-14)) -0.485910 0.048216 -10.07773 0.0000 

C -6.844826 5.633563 -1.215008 0.2252 
     
     R-squared 0.576243     Mean dependent var -0.163067 

Adjusted R-squared 0.557212     S.D. dependent var 33.27464 
S.E. of regression 22.14171     Akaike info criterion 9.077439 
Sum squared resid 163745.2     Schwarz criterion 9.253802 
Log likelihood -1572.552     Hannan-Quinn criter. 9.147638 
F-statistic 30.27922     Durbin-Watson stat 1.929450 
Prob(F-statistic) 0.000000    
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COINTEGRATION TEST 

 
 
   
Sample (adjusted): 10/01/2008 30/12/2008  
Included observations: 356 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: P W     
Lags interval (in first differences): 1 to 8  

     
Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.088624  33.83752  20.26184  0.0004 

At most 1  0.002247  0.800746  9.164546  0.9739 
     
      Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.088624  33.03677  15.89210  0.0000 

At most 1  0.002247  0.800746  9.164546  0.9739 
     
      Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  
     
     P W C   

-0.096843  0.102455  1.035384   
 0.012383 -0.007754 -1.826414   

     
          
 Unrestricted Adjustment Coefficients (alpha):   
     
     D(P)  6.866366 -0.320630   

D(W)  0.257698  0.109832   
     
          
1 Cointegrating Equation(s):  Log likelihood -2447.175  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

P W C   
 1.000000 -1.057948 -10.69138   

  (0.05790)  (7.63215)   
     

Adjustment coefficients (standard error in parentheses)  
D(P) -0.664958    

  (0.12116)    
D(W) -0.024956    

  (0.01294)    
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1.4.4 THE VAR 

 Vector Autoregression Estimates  
   
 Sample (adjusted): 10/01/2008 30/12/2008 
 Included observations: 356 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     DP PW NW 
    
    DP(-1) -0.862023  0.003237 -0.000678 
  (0.05469)  (0.00366)  (0.00340) 
 [-15.7629] [ 0.88373] [-0.19947] 
    

DP(-2) -0.753262  0.006049  0.001765 
  (0.07173)  (0.00480)  (0.00446) 
 [-10.5014] [ 1.25922] [ 0.39590] 
    

DP(-3) -0.634274 -0.000559  0.000597 
  (0.08147)  (0.00546)  (0.00506) 
 [-7.78495] [-0.10236] [ 0.11796] 
    

DP(-4) -0.512246  0.005325 -0.002926 
  (0.08564)  (0.00574)  (0.00532) 
 [-5.98159] [ 0.92845] [-0.54960] 
    

DP(-5) -0.399973  0.002480 -0.001650 
  (0.08514)  (0.00570)  (0.00529) 
 [-4.69782] [ 0.43499] [-0.31168] 
    

DP(-6) -0.306927 -0.004777 -0.003881 
  (0.08033)  (0.00538)  (0.00499) 
 [-3.82099] [-0.88788] [-0.77710] 
    

DP(-7) -0.202363 -0.003482 -0.000900 
  (0.07085)  (0.00474)  (0.00440) 
 [-2.85636] [-0.73389] [-0.20445] 
    

DP(-8) -0.111949 -0.001854 -0.000456 
  (0.05338)  (0.00357)  (0.00332) 
 [-2.09729] [-0.51848] [-0.13755] 
    

PW(-1) -0.777650  0.088440 -0.037835 
  (0.85547)  (0.05729)  (0.05318) 
 [-0.90904] [ 1.54365] [-0.71143] 
    

PW(-2)  0.969898  0.061990  0.026122 
  (0.82384)  (0.05518)  (0.05121) 
 [ 1.17729] [ 1.12352] [ 0.51005] 
    

PW(-3)  0.252564  0.040965  0.007282 
  (0.82422)  (0.05520)  (0.05124) 
 [ 0.30643] [ 0.74211] [ 0.14211] 
    

PW(-4)  0.685545  0.042084 -0.070131 
  (0.81792)  (0.05478)  (0.05085) 
 [ 0.83816] [ 0.76826] [-1.37926] 
    

PW(-5)  0.688219 -0.044543 -0.009905 
  (0.81744)  (0.05475)  (0.05082) 
 [ 0.84192] [-0.81362] [-0.19491] 
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PW(-6)  0.053274  0.057220 -0.049358 

  (0.81536)  (0.05461)  (0.05069) 
 [ 0.06534] [ 1.04785] [-0.97375] 
    

PW(-7) -0.727030  0.094988 -0.189566 
  (0.81145)  (0.05435)  (0.05044) 
 [-0.89596] [ 1.74785] [-3.75789] 
    

PW(-8)  0.684675  0.040831 -0.024921 
  (0.83451)  (0.05589)  (0.05188) 
 [ 0.82045] [ 0.73057] [-0.48038] 
    

NW(-1)  1.657997 -0.009812  0.112888 
  (0.91698)  (0.06141)  (0.05701) 
 [ 1.80811] [-0.15977] [ 1.98031] 
    

NW(-2) -0.999094 -0.080618 -0.046678 
  (0.85457)  (0.05723)  (0.05313) 
 [-1.16912] [-1.40859] [-0.87864] 
    

NW(-3)  4.187045 -0.096529 -0.008803 
  (0.84278)  (0.05644)  (0.05239) 
 [ 4.96814] [-1.71019] [-0.16802] 
    

NW(-4) -1.028124  0.044770  0.083307 
  (0.87664)  (0.05871)  (0.05450) 
 [-1.17280] [ 0.76255] [ 1.52866] 
    

NW(-5) -0.007673 -0.000345 -0.013889 
  (0.87556)  (0.05864)  (0.05443) 
 [-0.00876] [-0.00588] [-0.25517] 
    

NW(-6) -0.347841 -0.026416  0.106307 
  (0.87142)  (0.05836)  (0.05417) 
 [-0.39917] [-0.45262] [ 1.96237] 
    

NW(-7) -0.430589 -0.202515  0.315933 
  (0.87879)  (0.05886)  (0.05463) 
 [-0.48998] [-3.44089] [ 5.78301] 
    

NW(-8) -0.350278 -0.011069  0.081179 
  (0.94816)  (0.06350)  (0.05894) 
 [-0.36943] [-0.17432] [ 1.37723] 
    
     R-squared  0.489248  0.054522  0.123217 

 Adj. R-squared  0.453864 -0.010978  0.062476 
 Sum sq. resids  197389.8  885.3713  762.8395 
 S.E. equation  24.38335  1.633028  1.515820 
 F-statistic  13.82703  0.832389  2.028567 
 Log likelihood -1629.747 -667.3137 -640.7989 
 Akaike AIC  9.290713  3.883785  3.734825 
 Schwarz SC  9.551945  4.145016  3.996057 
 Mean dependent -0.157485  0.703574 -0.864020 
 S.D. dependent  32.99461  1.624137  1.565512 

    
     Determinant resid covariance (dof adj.)  3328.525  

 Determinant resid covariance  2699.704  
 Log likelihood -2921.786  
 Akaike information criterion  16.81902  
 Schwarz criterion  17.60272  
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C4- MAJORS GASOLINE 

UNIT ROOT TEST ON G 

 
Null Hypothesis: G has a unit root  
Exogenous: Constant   
Lag Length: 7 (Automatic - based on SIC, maxlag=16) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic  0.578841  0.9890 

Test critical values: 1% level  -3.448466  
 5% level  -2.869419  
 10% level  -2.571035  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(G)   
Method: Least Squares   
   
Sample (adjusted): 9/01/2008 30/12/2008  
Included observations: 357 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     G(-1) 0.001736 0.002998 0.578841 0.5631 

D(G(-1)) -0.195512 0.050600 -3.863883 0.0001 
D(G(-2)) 0.038369 0.051648 0.742894 0.4580 
D(G(-3)) 0.096364 0.051466 1.872364 0.0620 
D(G(-4)) 0.148135 0.051305 2.887339 0.0041 
D(G(-5)) 0.006634 0.051782 0.128120 0.8981 
D(G(-6)) 0.000333 0.051819 0.006434 0.9949 
D(G(-7)) 0.351506 0.050601 6.946585 0.0000 

C -0.317306 0.382904 -0.828685 0.4079 
     
     R-squared 0.213427     Mean dependent var -0.186418 

Adjusted R-squared 0.195345     S.D. dependent var 1.715004 
S.E. of regression 1.538402     Akaike info criterion 3.724253 
Sum squared resid 823.6051     Schwarz criterion 3.822011 
Log likelihood -655.7791     Hannan-Quinn criter. 3.763135 
F-statistic 11.80321     Durbin-Watson stat 2.059914 
Prob(F-statistic) 0.000000    

     
     

 

COINTEGRATION TEST 

   
Sample (adjusted): 10/01/2008 30/12/2008  
Included observations: 356 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: G S     
Lags interval (in first differences): 1 to 8  

     
Unrestricted Cointegration Rank Test (Trace)  
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     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.067014  26.25176  20.26184  0.0066 

At most 1  0.004367  1.557898  9.164546  0.8629 
     
      Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.067014  24.69386  15.89210  0.0016 

At most 1  0.004367  1.557898  9.164546  0.8629 
     
      Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  
     
     G S C   

-0.239352  0.267355  3.586507   
 0.035738 -0.025683 -2.923587   

     
          
 Unrestricted Adjustment Coefficients (alpha):   
     
     D(G)  0.356891  0.036036   

D(S) -0.072836  0.119945   
     
          
1 Cointegrating Equation(s):  Log likelihood -1345.672  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

G S C   
 1.000000 -1.116994 -14.98424   

  (0.03456)  (3.50235)   
     

Adjustment coefficients (standard error in parentheses)  
D(G) -0.085422    

  (0.01871)    
D(S)  0.017433    

  (0.02386)    
     
          
     
     
     
     
     
     
     
     
     
     
     
     

THE VAR 

 Vector Autoregression Estimates  
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 Sample (adjusted): 10/01/2008 30/12/2008 
 Included observations: 356 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     DG PS NS 
    
    DG(-1) -0.242797  0.109527 -0.088553 
  (0.05542)  (0.04064)  (0.04644) 
 [-4.38138] [ 2.69533] [-1.90686] 
    

DG(-2)  0.024770  0.043950 -0.043311 
  (0.05541)  (0.04063)  (0.04643) 
 [ 0.44704] [ 1.08172] [-0.93277] 
    

DG(-3)  0.072082  0.011248  0.012505 
  (0.05509)  (0.04039)  (0.04616) 
 [ 1.30853] [ 0.27846] [ 0.27089] 
    

DG(-4)  0.102855  0.038943  0.115614 
  (0.05477)  (0.04016)  (0.04590) 
 [ 1.87791] [ 0.96961] [ 2.51888] 
    

DG(-5)  0.017845 -0.065275  0.021458 
  (0.05419)  (0.03974)  (0.04541) 
 [ 0.32930] [-1.64265] [ 0.47250] 
    

DG(-6) -0.026345  0.026138  0.050380 
  (0.05388)  (0.03951)  (0.04515) 
 [-0.48901] [ 0.66163] [ 1.11587] 
    

DG(-7)  0.325132  0.034355  0.090123 
  (0.05385)  (0.03948)  (0.04512) 
 [ 6.03821] [ 0.87009] [ 1.99725] 
    

DG(-8)  0.039471  0.007121 -0.051477 
  (0.05551)  (0.04070)  (0.04651) 
 [ 0.71112] [ 0.17496] [-1.10670] 
    

PS(-1)  0.061616  0.029275 -0.007372 
  (0.07820)  (0.05734)  (0.06553) 
 [ 0.78793] [ 0.51052] [-0.11249] 
    

PS(-2)  0.133068 -0.034000  0.084394 
  (0.07618)  (0.05586)  (0.06384) 
 [ 1.74677] [-0.60864] [ 1.32197] 
    

PS(-3)  0.023767  0.089973 -0.023831 
  (0.07523)  (0.05516)  (0.06304) 
 [ 0.31594] [ 1.63107] [-0.37803] 
    

PS(-4) -0.150121  0.043071 -0.051213 
  (0.07470)  (0.05477)  (0.06260) 
 [-2.00979] [ 0.78635] [-0.81815] 
    

PS(-5) -0.016668 -0.069058 -0.186762 
  (0.07514)  (0.05510)  (0.06297) 
 [-0.22184] [-1.25339] [-2.96608] 
    

PS(-6)  0.240668  0.061098 -0.097206 
  (0.07578)  (0.05557)  (0.06350) 
 [ 3.17590] [ 1.09951] [-1.53070] 
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PS(-7) -0.064554  0.123944 -0.118846 
  (0.07679)  (0.05631)  (0.06435) 
 [-0.84065] [ 2.20112] [-1.84683] 
    

PS(-8) -0.025779  0.123869 -0.076678 
  (0.07673)  (0.05626)  (0.06430) 
 [-0.33598] [ 2.20159] [-1.19253] 
    

NS(-1)  0.018031 -0.042035  0.188171 
  (0.06864)  (0.05033)  (0.05752) 
 [ 0.26271] [-0.83519] [ 3.27156] 
    

NS(-2)  0.089240 -0.053535  0.055240 
  (0.06868)  (0.05036)  (0.05755) 
 [ 1.29940] [-1.06304] [ 0.95982] 
    

NS(-3)  0.011452 -0.005787 -0.011448 
  (0.06808)  (0.04992)  (0.05705) 
 [ 0.16823] [-0.11593] [-0.20067] 
    

NS(-4)  0.146010 -0.076994  0.007302 
  (0.06723)  (0.04930)  (0.05634) 
 [ 2.17166] [-1.56166] [ 0.12960] 
    

NS(-5)  0.002538  0.021036  0.011127 
  (0.06755)  (0.04953)  (0.05661) 
 [ 0.03757] [ 0.42468] [ 0.19657] 
    

NS(-6) -0.086440 -0.123253  0.155753 
  (0.06729)  (0.04934)  (0.05639) 
 [-1.28460] [-2.49791] [ 2.76211] 
    

NS(-7)  0.015775 -0.119294  0.111572 
  (0.06919)  (0.05074)  (0.05798) 
 [ 0.22800] [-2.35125] [ 1.92425] 
    

NS(-8)  0.215216 -0.023687  0.022415 
  (0.07000)  (0.05133)  (0.05866) 
 [ 3.07455] [-0.46147] [ 0.38212] 
    
     R-squared  0.299827  0.080364  0.152027 

 Adj. R-squared  0.251321  0.016654  0.093282 
 Sum sq. resids  732.8721  394.0760  514.6710 
 S.E. equation  1.485748  1.089484  1.245076 
 F-statistic  6.181231  1.261409  2.587905 
 Log likelihood -633.6653 -523.2292 -570.7524 
 Akaike AIC  3.694749  3.074321  3.341306 
 Schwarz SC  3.955980  3.335553  3.602537 
 Mean dependent -0.184690  0.506138 -0.679495 
 S.D. dependent  1.717106  1.098671  1.307554 

    
     Determinant resid covariance (dof adj.)  3.501196  

 Determinant resid covariance  2.839754  
 Log likelihood -1701.208  
 Akaike information criterion  9.961843  
 Schwarz criterion  10.74554  
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C5 - IOCs DIESEL 

UNIT ROOT TEST ON P 

Null Hypothesis: P has a unit root  
Exogenous: Constant   
Lag Length: 2 (Automatic - based on SIC, maxlag=16) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -0.341444  0.9155 

Test critical values: 1% level  -3.452519  
 5% level  -2.871195  
 10% level  -2.571986  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(P)   
Method: Least Squares   
   
Sample (adjusted): 4/01/2008 30/12/2008  
Included observations: 293 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     P(-1) -0.002211 0.006474 -0.341444 0.7330 

D(P(-1)) -0.402630 0.060456 -6.659829 0.0000 
D(P(-2)) -0.192865 0.056367 -3.421616 0.0007 

C 0.230195 1.002259 0.229676 0.8185 
     
     R-squared 0.140855     Mean dependent var -0.085214 

Adjusted R-squared 0.131936     S.D. dependent var 3.777932 
S.E. of regression 3.519897     Akaike info criterion 5.368298 
Sum squared resid 3580.616     Schwarz criterion 5.418540 
Log likelihood -782.4557     Hannan-Quinn criter. 5.388421 
F-statistic 15.79360     Durbin-Watson stat 1.990011 
Prob(F-statistic) 0.000000    

     
      

COINTEGRATION TEST 

   
Sample (adjusted): 10/01/2008 24/12/2008  
Included observations: 204 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: P W     
Lags interval (in first differences): 1 to 8  

     
Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.159373  36.59474  20.26184  0.0001 

At most 1  0.005762  1.178758  9.164546  0.9266 
     
      Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 
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 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.159373  35.41599  15.89210  0.0000 

At most 1  0.005762  1.178758  9.164546  0.9266 
     
      Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  
     
     P W C   

-0.240208  0.253768  3.840023   
-0.015614  0.051786 -4.078078   

     
          
 Unrestricted Adjustment Coefficients (alpha):   
     
     D(P)  1.277838 -0.041360   

D(W) -0.026021 -0.182072   
     
          
1 Cointegrating Equation(s):  Log likelihood -977.9820  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

P W C   
 1.000000 -1.056450 -15.98623   

  (0.02611)  (3.52228)   
     

Adjustment coefficients (standard error in parentheses)  
D(P) -0.306947    

  (0.05243)    
D(W)  0.006251    

  (0.04215)    
     
     

THE VAR 

 Vector Autoregression Estimates  
   
 Sample (adjusted): 10/01/2008 24/12/2008 
 Included observations: 204 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     DP PW NW 
    
    DP(-1) -0.608152  0.071324 -0.049924 
  (0.08064)  (0.04079)  (0.03328) 
 [-7.54145] [ 1.74837] [-1.50030] 
    

DP(-2) -0.336371 -0.003672 -0.036522 
  (0.09611)  (0.04862)  (0.03966) 
 [-3.49992] [-0.07552] [-0.92092] 
    

DP(-3) -0.209373 -0.000196  0.009126 
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  (0.09937)  (0.05027)  (0.04100) 
 [-2.10696] [-0.00389] [ 0.22257] 
    

DP(-4) -0.108028  0.109098  0.143398 
  (0.09809)  (0.04962)  (0.04048) 
 [-1.10131] [ 2.19859] [ 3.54277] 
    

DP(-5) -0.020389  0.120237  0.122661 
  (0.10137)  (0.05128)  (0.04183) 
 [-0.20114] [ 2.34474] [ 2.93248] 
    

DP(-6)  0.123500  0.015930  0.046086 
  (0.10302)  (0.05211)  (0.04251) 
 [ 1.19882] [ 0.30566] [ 1.08414] 
    

DP(-7)  0.208044  0.069493  0.045773 
  (0.10024)  (0.05071)  (0.04136) 
 [ 2.07554] [ 1.37048] [ 1.10665] 
    

DP(-8)  0.231483  0.074129  0.042168 
  (0.07730)  (0.03910)  (0.03190) 
 [ 2.99478] [ 1.89579] [ 1.32206] 
    

PW(-1) -0.116335  0.005122  0.015037 
  (0.15405)  (0.07793)  (0.06357) 
 [-0.75520] [ 0.06572] [ 0.23656] 
    

PW(-2)  0.047859  0.129245  0.004727 
  (0.14569)  (0.07370)  (0.06012) 
 [ 0.32850] [ 1.75363] [ 0.07863] 
    

PW(-3)  0.197482 -0.062038 -0.085275 
  (0.13722)  (0.06942)  (0.05662) 
 [ 1.43918] [-0.89373] [-1.50604] 
    

PW(-4) -0.050085  0.049427 -0.083776 
  (0.14022)  (0.07093)  (0.05786) 
 [-0.35718] [ 0.69680] [-1.44787] 
    

PW(-5)  0.149253 -0.035624  0.010144 
  (0.13767)  (0.06964)  (0.05681) 
 [ 1.08415] [-0.51153] [ 0.17856] 
    

PW(-6)  0.193321  0.000957 -0.051063 
  (0.13741)  (0.06951)  (0.05670) 
 [ 1.40690] [ 0.01377] [-0.90058] 
    

PW(-7) -0.074660  0.065885 -0.200801 
  (0.13537)  (0.06848)  (0.05586) 
 [-0.55152] [ 0.96209] [-3.59476] 
    

PW(-8)  0.084977  0.082499 -0.010394 
  (0.14934)  (0.07555)  (0.06162) 
 [ 0.56902] [ 1.09201] [-0.16866] 
    

NW(-1)  0.264577  0.004962  0.103458 
  (0.18777)  (0.09499)  (0.07748) 
 [ 1.40905] [ 0.05224] [ 1.33527] 
    

NW(-2)  0.136392 -0.128903 -0.011647 
  (0.17594)  (0.08900)  (0.07260) 
 [ 0.77522] [-1.44830] [-0.16043] 
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NW(-3)  0.339414  0.057396  0.087678 

  (0.17229)  (0.08716)  (0.07109) 
 [ 1.97004] [ 0.65855] [ 1.23328] 
    

NW(-4)  0.169621  0.070892  0.109736 
  (0.17431)  (0.08818)  (0.07193) 
 [ 0.97308] [ 0.80394] [ 1.52563] 
    

NW(-5) -0.151111 -0.022053 -0.040335 
  (0.17121)  (0.08661)  (0.07065) 
 [-0.88259] [-0.25461] [-0.57091] 
    

NW(-6) -0.218048 -0.062658  0.006122 
  (0.16307)  (0.08249)  (0.06729) 
 [-1.33717] [-0.75957] [ 0.09098] 
    

NW(-7)  0.159783 -0.267022  0.268696 
  (0.16039)  (0.08114)  (0.06618) 
 [ 0.99623] [-3.29102] [ 4.05991] 
    

NW(-8) -0.241711 -0.167068  0.036110 
  (0.17929)  (0.09070)  (0.07398) 
 [-1.34813] [-1.84199] [ 0.48808] 
    
     R-squared  0.329279  0.141099  0.284437 

 Adj. R-squared  0.243576  0.031351  0.193004 
 Sum sq. resids  2042.246  522.6305  347.7390 
 S.E. equation  3.368354  1.703967  1.389922 
 F-statistic  3.842083  1.285660  3.110875 
 Log likelihood -524.4394 -385.4204 -343.8633 
 Akaike AIC  5.376857  4.013926  3.606503 
 Schwarz SC  5.767224  4.404293  3.996870 
 Mean dependent  0.006226  0.788051 -0.877358 
 S.D. dependent  3.872889  1.731322  1.547229 

    
     Determinant resid covariance (dof adj.)  57.30201  

 Determinant resid covariance  39.36379  
 Log likelihood -1243.021  
 Akaike information criterion  12.89236  
 Schwarz criterion  14.06346  
 
   

C6 – IOCs GASOLINE 

UNIT ROOT TEST ON G 

 
Null Hypothesis: G has a unit root  
Exogenous: Constant   
Lag Length: 10 (Automatic - based on SIC, maxlag=16) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic  0.464074  0.9853 

Test critical values: 1% level  -3.451146  
 5% level  -2.870591  
 10% level  -2.571663  
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*MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(G)   
Method: Least Squares   
   
Sample (adjusted): 12/01/2008 24/12/2008  
Included observations: 312 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     G(-1) 0.003605 0.007768 0.464074 0.6429 

D(G(-1)) -0.644838 0.058307 -11.05926 0.0000 
D(G(-2)) -0.436621 0.067430 -6.475215 0.0000 
D(G(-3)) -0.233065 0.067451 -3.455340 0.0006 
D(G(-4)) -0.143662 0.066330 -2.165874 0.0311 
D(G(-5)) -0.050315 0.066647 -0.754952 0.4509 
D(G(-6)) 0.146210 0.066534 2.197522 0.0287 
D(G(-7)) 0.320935 0.066225 4.846125 0.0000 
D(G(-8)) 0.449995 0.067630 6.653754 0.0000 
D(G(-9)) 0.302052 0.067992 4.442439 0.0000 
D(G(-10)) 0.143411 0.058475 2.452522 0.0148 

C -0.764030 1.010414 -0.756155 0.4501 
     
     R-squared 0.338710     Mean dependent var -0.263238 

Adjusted R-squared 0.314463     S.D. dependent var 4.434677 
S.E. of regression 3.671787     Akaike info criterion 5.476936 
Sum squared resid 4044.605     Schwarz criterion 5.620898 
Log likelihood -842.4020     Hannan-Quinn criter. 5.534473 
F-statistic 13.96899     Durbin-Watson stat 2.001123 
Prob(F-statistic) 0.000000    

     
      

 

COINTEGRATION TEST 

 
   
Sample (adjusted): 10/01/2008 24/12/2008  
Included observations: 320 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: G S     
Lags interval (in first differences): 1 to 8  

     
Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.094146  33.41262  20.26184  0.0004 

At most 1  0.005521  1.771773  9.164546  0.8226 
     
      Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.05  
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No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.094146  31.64085  15.89210  0.0001 

At most 1  0.005521  1.771773  9.164546  0.8226 
     
      Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  
     
     G S C   

-0.195313  0.229424  2.015739   
 0.079815 -0.076710 -3.542577   

     
          
 Unrestricted Adjustment Coefficients (alpha):   
     
     D(G)  1.085459 -0.022556   

D(S)  0.114530  0.137084   
     
          
1 Cointegrating Equation(s):  Log likelihood -1498.080  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

G S C   
 1.000000 -1.174652 -10.32057   

  (0.03726)  (3.77068)   
     

Adjustment coefficients (standard error in parentheses)  
D(G) -0.212004    

  (0.03793)    
D(S) -0.022369    

  (0.02108)    
     
     

THE VAR 

 Vector Autoregression Estimates  
   
 Sample (adjusted): 10/01/2008 24/12/2008 
 Included observations: 320 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     DG PS NS 
    
    DG(-1) -0.603154 -0.003450 -0.062310 
  (0.05737)  (0.01765)  (0.02079) 
 [-10.5131] [-0.19551] [-2.99725] 
    

DG(-2) -0.357069  0.059527 -0.022379 
  (0.06610)  (0.02033)  (0.02395) 
 [-5.40229] [ 2.92774] [-0.93437] 
    

DG(-3) -0.175636  0.045262 -0.020161 
  (0.06995)  (0.02152)  (0.02535) 
 [-2.51103] [ 2.10361] [-0.79544] 
    

DG(-4) -0.142749  0.044898  0.035527 
  (0.07133)  (0.02194)  (0.02585) 
 [-2.00117] [ 2.04611] [ 1.37447] 
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DG(-5) -0.044768  0.032469  0.029237 

  (0.07162)  (0.02203)  (0.02595) 
 [-0.62503] [ 1.47366] [ 1.12651] 
    

DG(-6)  0.072545 -0.011245  0.053234 
  (0.07066)  (0.02174)  (0.02561) 
 [ 1.02661] [-0.51730] [ 2.07899] 
    

DG(-7)  0.150666 -0.031221  0.052821 
  (0.06625)  (0.02038)  (0.02400) 
 [ 2.27437] [-1.53208] [ 2.20045] 
    

DG(-8)  0.198992 -0.033434 -0.001055 
  (0.05777)  (0.01777)  (0.02093) 
 [ 3.44446] [-1.88135] [-0.05039] 
    

PS(-1) -0.105498 -0.007749 -0.026453 
  (0.19756)  (0.06077)  (0.07159) 
 [-0.53402] [-0.12751] [-0.36952] 
    

PS(-2)  0.139867 -0.047791  0.013065 
  (0.19307)  (0.05939)  (0.06996) 
 [ 0.72445] [-0.80468] [ 0.18675] 
    

PS(-3)  0.009284  0.142672  0.010257 
  (0.18867)  (0.05804)  (0.06836) 
 [ 0.04921] [ 2.45830] [ 0.15004] 
    

PS(-4)  0.009061  0.062552 -0.087504 
  (0.18823)  (0.05790)  (0.06821) 
 [ 0.04814] [ 1.08031] [-1.28294] 
    

PS(-5)  0.102170 -0.041897 -0.169400 
  (0.18615)  (0.05726)  (0.06745) 
 [ 0.54886] [-0.73166] [-2.51138] 
    

PS(-6)  0.512402  0.077549 -0.036866 
  (0.18340)  (0.05642)  (0.06646) 
 [ 2.79390] [ 1.37455] [-0.55473] 
    

PS(-7)  0.001853  0.132547 -0.118844 
  (0.18432)  (0.05670)  (0.06679) 
 [ 0.01005] [ 2.33762] [-1.77932] 
    

PS(-8)  0.071953  0.083100 -0.087340 
  (0.18719)  (0.05758)  (0.06783) 
 [ 0.38438] [ 1.44309] [-1.28760] 
    

NS(-1)  0.181214  0.018101  0.180532 
  (0.16695)  (0.05136)  (0.06050) 
 [ 1.08545] [ 0.35246] [ 2.98425] 
    

NS(-2)  0.360115 -0.050048  0.058449 
  (0.16539)  (0.05088)  (0.05993) 
 [ 2.17736] [-0.98370] [ 0.97528] 
    

NS(-3)  0.328087 -0.004142  0.019833 
  (0.16732)  (0.05147)  (0.06063) 
 [ 1.96080] [-0.08048] [ 0.32710] 
    

NS(-4)  0.528139 -0.070159  0.050322 
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  (0.16655)  (0.05124)  (0.06035) 
 [ 3.17097] [-1.36935] [ 0.83380] 
    

NS(-5) -0.331223 -0.042068  0.022777 
  (0.16978)  (0.05223)  (0.06152) 
 [-1.95090] [-0.80547] [ 0.37023] 
    

NS(-6) -0.301156 -0.155860  0.114960 
  (0.16937)  (0.05210)  (0.06137) 
 [-1.77811] [-2.99151] [ 1.87316] 
    

NS(-7)  0.366866 -0.107772  0.119522 
  (0.17459)  (0.05371)  (0.06326) 
 [ 2.10131] [-2.00668] [ 1.88926] 
    

NS(-8)  0.055786  0.049965  0.000325 
  (0.17851)  (0.05491)  (0.06469) 
 [ 0.31251] [ 0.90988] [ 0.00502] 
    
     R-squared  0.385658  0.100002  0.158281 

 Adj. R-squared  0.337922  0.030070  0.092877 
 Sum sq. resids  3772.407  356.9773  495.3330 
 S.E. equation  3.569961  1.098182  1.293608 
 F-statistic  8.078965  1.429983  2.420051 
 Log likelihood -848.8040 -471.5565 -523.9658 
 Akaike AIC  5.455025  3.097228  3.424786 
 Schwarz SC  5.737649  3.379852  3.707410 
 Mean dependent -0.254790  0.515520 -0.733955 
 S.D. dependent  4.387416  1.115075  1.358219 

    
     Determinant resid covariance (dof adj.)  23.07273  

 Determinant resid covariance  18.26098  
 Log likelihood -1826.944  
 Akaike information criterion  11.86840  
 Schwarz criterion  12.71627  

    
        
    
    

C7 – SUPERMARKETS DIESEL 

UNIT ROOT TEST ON P 

 
Null Hypothesis: P has a unit root  
Exogenous: Constant   
Lag Length: 0 (Automatic - based on SIC, maxlag=16) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic  1.571540  0.9995 

Test critical values: 1% level  -3.448998  
 5% level  -2.869653  
 10% level  -2.571161  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(P)   
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Method: Least Squares   
   
Sample (adjusted): 2/01/2008 30/12/2008  
Included observations: 347 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     P(-1) 0.005372 0.003419 1.571540 0.1170 

C -0.976628 0.499893 -1.953673 0.0515 
     
     R-squared 0.007108     Mean dependent var -0.210263 

Adjusted R-squared 0.004230     S.D. dependent var 2.052430 
S.E. of regression 2.048084     Akaike info criterion 4.277434 
Sum squared resid 1447.154     Schwarz criterion 4.299620 
Log likelihood -740.1348     Hannan-Quinn criter. 4.286268 
F-statistic 2.469738     Durbin-Watson stat 2.295855 
Prob(F-statistic) 0.116974    

     
      

 

COINTEGRATION TEST 

   
Sample (adjusted): 10/01/2008 24/12/2008  
Included observations: 295 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: P W     
Lags interval (in first differences): 1 to 8  

     
Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.100759  32.81794  20.26184  0.0006 

At most 1  0.005030  1.487553  9.164546  0.8756 
     
      Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.100759  31.33039  15.89210  0.0001 

At most 1  0.005030  1.487553  9.164546  0.8756 
     
      Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  
     
     P W C   

-0.183379  0.197247  1.023278   
-0.003017  0.010463  0.096995   

     
          



 
 

461 
 

 Unrestricted Adjustment Coefficients (alpha):   
     
     D(P)  0.600225 -0.031453   

D(W)  0.007509 -0.175377   
     
          
1 Cointegrating Equation(s):  Log likelihood -1275.861  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

P W C   
 1.000000 -1.075626 -5.580135   

  (0.03244)  (4.35503)   
     

Adjustment coefficients (standard error in parentheses)  
D(P) -0.110068    

  (0.02032)    
D(W) -0.001377    

  (0.02720)    
     
     

THE VAR 

 Vector Autoregression Estimates  
   
 Sample (adjusted): 10/01/2008 24/12/2008 
 Included observations: 295 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     DP PW NW 
    
    DP(-1) -0.178227  0.115052 -0.031390 
  (0.06216)  (0.05085)  (0.04708) 
 [-2.86702] [ 2.26268] [-0.66680] 
    

DP(-2)  0.015845 -0.004915  0.004102 
  (0.06184)  (0.05058)  (0.04683) 
 [ 0.25621] [-0.09715] [ 0.08759] 
    

DP(-3)  0.016003  0.066205 -0.065513 
  (0.06018)  (0.04923)  (0.04558) 
 [ 0.26590] [ 1.34488] [-1.43745] 
    

DP(-4)  0.106682 -0.015680  0.057837 
  (0.05966)  (0.04880)  (0.04518) 
 [ 1.78827] [-0.32134] [ 1.28023] 
    

DP(-5)  0.009768  0.108044  0.164464 
  (0.05977)  (0.04889)  (0.04526) 
 [ 0.16344] [ 2.21015] [ 3.63382] 
    

DP(-6)  0.053451 -0.008602  0.011115 
  (0.06164)  (0.05042)  (0.04668) 
 [ 0.86721] [-0.17062] [ 0.23814] 
    

DP(-7)  0.272345  2.35E-05 -0.041670 
  (0.06182)  (0.05057)  (0.04682) 
 [ 4.40541] [ 0.00046] [-0.89010] 
    

DP(-8) -0.025722  0.009429  0.004274 
  (0.06442)  (0.05269)  (0.04878) 
 [-0.39930] [ 0.17896] [ 0.08761] 
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PW(-1)  0.124778  0.077834 -0.034351 

  (0.07845)  (0.06417)  (0.05941) 
 [ 1.59051] [ 1.21294] [-0.57820] 
    

PW(-2)  0.045530  0.042133 -0.000665 
  (0.07801)  (0.06381)  (0.05908) 
 [ 0.58363] [ 0.66029] [-0.01125] 
    

PW(-3)  0.064865  0.035459  0.024044 
  (0.07964)  (0.06514)  (0.06031) 
 [ 0.81450] [ 0.54435] [ 0.39869] 
    

PW(-4)  0.018936  0.032005 -0.073769 
  (0.07832)  (0.06406)  (0.05931) 
 [ 0.24178] [ 0.49960] [-1.24382] 
    

PW(-5)  0.067424 -0.104512 -0.027471 
  (0.07702)  (0.06300)  (0.05833) 
 [ 0.87539] [-1.65892] [-0.47098] 
    

PW(-6)  0.063670  0.088418  0.006679 
  (0.07662)  (0.06267)  (0.05802) 
 [ 0.83099] [ 1.41083] [ 0.11511] 
    

PW(-7) -0.144247  0.068942 -0.224263 
  (0.07386)  (0.06041)  (0.05593) 
 [-1.95298] [ 1.14115] [-4.00950] 
    

PW(-8) -0.063532  0.011549 -0.070342 
  (0.07592)  (0.06210)  (0.05749) 
 [-0.83685] [ 0.18598] [-1.22352] 
    

NW(-1)  0.013460 -0.051153  0.104355 
  (0.08240)  (0.06740)  (0.06240) 
 [ 0.16335] [-0.75898] [ 1.67242] 
    

NW(-2) -0.054538 -0.075850 -0.033793 
  (0.07764)  (0.06350)  (0.05879) 
 [-0.70248] [-1.19444] [-0.57479] 
    

NW(-3)  0.015410 -0.173817 -0.007072 
  (0.07683)  (0.06284)  (0.05818) 
 [ 0.20058] [-2.76603] [-0.12155] 
    

NW(-4)  0.023792  0.044466  0.067862 
  (0.07680)  (0.06282)  (0.05816) 
 [ 0.30980] [ 0.70788] [ 1.16688] 
    

NW(-5) -0.025912  0.007672 -0.037959 
  (0.07674)  (0.06277)  (0.05812) 
 [-0.33764] [ 0.12222] [-0.65316] 
    

NW(-6)  0.185136 -0.054994  0.100991 
  (0.07595)  (0.06212)  (0.05752) 
 [ 2.43761] [-0.88524] [ 1.75589] 
    

NW(-7) -0.017544 -0.189861  0.329649 
  (0.07715)  (0.06311)  (0.05843) 
 [-0.22739] [-3.00850] [ 5.64205] 
    

NW(-8)  0.198601 -0.016676  0.106842 
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  (0.08431)  (0.06896)  (0.06384) 
 [ 2.35566] [-0.24182] [ 1.67347] 
    
     R-squared  0.180543  0.086109  0.198761 

 Adj. R-squared  0.110995  0.008546  0.130759 
 Sum sq. resids  1076.188  720.0186  617.1667 
 S.E. equation  1.992780  1.629999  1.509095 
 F-statistic  2.595952  1.110183  2.922877 
 Log likelihood -609.4821 -550.2014 -527.4660 
 Akaike AIC  4.294794  3.892891  3.738753 
 Schwarz SC  4.594751  4.192848  4.038710 
 Mean dependent -0.222029  0.696379 -0.952904 
 S.D. dependent  2.113525  1.637009  1.618626 

    
     Determinant resid covariance (dof adj.)  20.94151  

 Determinant resid covariance  16.23491  
 Log likelihood -1666.867  
 Akaike information criterion  11.78893  
 Schwarz criterion  12.68880  
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C8 – SUPERMARKETS GASOLINE 

UNIT ROOT TEST ON G 

 
Null Hypothesis: G has a unit root  
Exogenous: Constant   
Lag Length: 7 (Automatic - based on SIC, maxlag=16) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic  0.683661  0.9917 

Test critical values: 1% level  -3.452911  
 5% level  -2.871367  
 10% level  -2.572078  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(G)   
Method: Least Squares   
   
Sample (adjusted): 9/01/2008 24/12/2008  
Included observations: 288 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     G(-1) 0.003055 0.004468 0.683661 0.4948 

D(G(-1)) -0.214619 0.056304 -3.811800 0.0002 
D(G(-2)) 0.002216 0.057674 0.038430 0.9694 
D(G(-3)) 0.055183 0.057231 0.964215 0.3358 
D(G(-4)) 0.125454 0.056879 2.205632 0.0282 
D(G(-5)) 0.018173 0.057077 0.318395 0.7504 
D(G(-6)) 0.032531 0.057494 0.565813 0.5720 
D(G(-7)) 0.344669 0.056446 6.106121 0.0000 

C -0.552101 0.562582 -0.981369 0.3273 
     
     R-squared 0.196735     Mean dependent var -0.255236 

Adjusted R-squared 0.173703     S.D. dependent var 2.002407 
S.E. of regression 1.820206     Akaike info criterion 4.066528 
Sum squared resid 924.3688     Schwarz criterion 4.180995 
Log likelihood -576.5800     Hannan-Quinn criter. 4.112399 
F-statistic 8.541581     Durbin-Watson stat 1.974343 
Prob(F-statistic) 0.000000    

     
          

 

COINTEGRATION TEST 

   
Sample (adjusted): 6/01/2008 24/12/2008  
Included observations: 312 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: G S     
Lags interval (in first differences): 1 to 4  

     
Unrestricted Cointegration Rank Test (Trace)  
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     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.095392  35.58544  20.26184  0.0002 

At most 1  0.013707  4.306210  9.164546  0.3684 
     
      Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.095392  31.27923  15.89210  0.0001 

At most 1  0.013707  4.306210  9.164546  0.3684 
     
      Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  
     
     G S C   

-0.171536  0.200678  0.710689   
 0.113572 -0.100888 -4.570367   

     
          
 Unrestricted Adjustment Coefficients (alpha):   
     
     D(G)  0.586151  0.021635   

D(S)  0.067727  0.222595   
     
          
1 Cointegrating Equation(s):  Log likelihood -1266.619  
     
     Normalized cointegrating coefficients (standard error in parentheses) 

G S C   
 1.000000 -1.169888 -4.143090   

  (0.04299)  (4.36406)   
     

Adjustment coefficients (standard error in parentheses)  
D(G) -0.100546    

  (0.01788)    
D(S) -0.011618    

  (0.01885)    
     
      

THE VAR 

Vector Autoregression Estimates  
   
 Sample (adjusted): 10/01/2008 24/12/2008 
 Included observations: 280 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     DG PS NS 
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DG(-1) -0.206690  0.138664  0.020154 
  (0.06291)  (0.03983)  (0.04905) 
 [-3.28551] [ 3.48140] [ 0.41091] 
    

DG(-2)  0.016776  0.027116 -0.029466 
  (0.06151)  (0.03895)  (0.04796) 
 [ 0.27271] [ 0.69624] [-0.61440] 
    

DG(-3)  0.024785  0.003911 -0.021164 
  (0.06098)  (0.03861)  (0.04754) 
 [ 0.40647] [ 0.10131] [-0.44518] 
    

DG(-4)  0.061496  0.046159  0.037269 
  (0.06037)  (0.03822)  (0.04706) 
 [ 1.01870] [ 1.20773] [ 0.79187] 
    

DG(-5) -0.004591  0.021160  0.020511 
  (0.05960)  (0.03774)  (0.04647) 
 [-0.07703] [ 0.56074] [ 0.44138] 
    

DG(-6)  0.025761 -0.010228  0.061039 
  (0.05909)  (0.03741)  (0.04607) 
 [ 0.43599] [-0.27342] [ 1.32501] 
    

DG(-7)  0.318738  0.047739  0.054835 
  (0.05982)  (0.03788)  (0.04664) 
 [ 5.32805] [ 1.26042] [ 1.17571] 
    

DG(-8) -0.049770 -0.005817 -0.003125 
  (0.06165)  (0.03903)  (0.04807) 
 [-0.80726] [-0.14902] [-0.06501] 
    

PS(-1) -0.059479  0.029568 -0.023922 
  (0.10200)  (0.06458)  (0.07953) 
 [-0.58311] [ 0.45784] [-0.30081] 
    

PS(-2)  0.054456 -0.023708  0.059255 
  (0.10183)  (0.06447)  (0.07939) 
 [ 0.53480] [-0.36775] [ 0.74640] 
    

PS(-3)  0.169091  0.126015 -0.003076 
  (0.10173)  (0.06441)  (0.07931) 
 [ 1.66216] [ 1.95651] [-0.03879] 
    

PS(-4)  0.011443  0.009529 -0.064218 
  (0.10254)  (0.06492)  (0.07994) 
 [ 0.11159] [ 0.14678] [-0.80330] 
    

PS(-5)  0.088421 -0.047015 -0.162434 
  (0.10074)  (0.06378)  (0.07854) 
 [ 0.87774] [-0.73715] [-2.06821] 
    

PS(-6)  0.020249 -0.011919 -0.092186 
  (0.09852)  (0.06237)  (0.07681) 
 [ 0.20555] [-0.19110] [-1.20024] 
    

PS(-7) -0.114548  0.118279 -0.171737 
  (0.09671)  (0.06123)  (0.07540) 
 [-1.18440] [ 1.93165] [-2.27764] 
    

PS(-8)  0.007518  0.169265 -0.092505 
  (0.10537)  (0.06671)  (0.08215) 
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 [ 0.07135] [ 2.53721] [-1.12604] 
    

NS(-1)  0.045726 -0.068738  0.159409 
  (0.08485)  (0.05372)  (0.06615) 
 [ 0.53892] [-1.27959] [ 2.40983] 
    

NS(-2) -0.059293 -0.068557  0.056827 
  (0.08477)  (0.05367)  (0.06609) 
 [-0.69943] [-1.27732] [ 0.85981] 
    

NS(-3)  0.060980  0.002230 -0.032443 
  (0.08444)  (0.05346)  (0.06583) 
 [ 0.72217] [ 0.04170] [-0.49280] 
    

NS(-4)  0.237417 -0.068853  0.035963 
  (0.08399)  (0.05318)  (0.06549) 
 [ 2.82658] [-1.29473] [ 0.54917] 
    

NS(-5) -0.100538 -0.015155 -0.016262 
  (0.08546)  (0.05411)  (0.06663) 
 [-1.17639] [-0.28009] [-0.24407] 
    

NS(-6)  0.022686 -0.048502  0.160561 
  (0.08488)  (0.05374)  (0.06617) 
 [ 0.26729] [-0.90259] [ 2.42641] 
    

NS(-7)  0.030073 -0.140067  0.167456 
  (0.08621)  (0.05458)  (0.06721) 
 [ 0.34882] [-2.56614] [ 2.49140] 
    

NS(-8)  0.243422 -0.023631  0.005187 
  (0.08885)  (0.05625)  (0.06927) 
 [ 2.73968] [-0.42008] [ 0.07487] 
    
     R-squared  0.265660  0.100498  0.098473 

 Adj. R-squared  0.199685  0.019684  0.017476 
 Sum sq. resids  825.2836  330.8166  501.6372 
 S.E. equation  1.795484  1.136773  1.399829 
 F-statistic  4.026632  1.243568  1.215766 
 Log likelihood -548.6340 -420.6512 -478.9351 
 Akaike AIC  4.090243  3.176080  3.592393 
 Schwarz SC  4.401797  3.487633  3.903947 
 Mean dependent -0.268686  0.519098 -0.787756 
 S.D. dependent  2.007017  1.148129  1.412223 

    
     Determinant resid covariance (dof adj.)  7.233614  

 Determinant resid covariance  5.528421  
 Log likelihood -1431.295  
 Akaike information criterion  10.73782  
 Schwarz criterion  11.67248  

    
     




