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Abstract

In 1957, Farrell proposed to measure technical (in)efficiency as the
realised deviation from a frontier isoquant. Since then, the research
has developed several methods to derive the production frontier and
it has also extended its scope in applying frontier techniques to the
measurement of total factor productivity. In this paper, I present
the core techniques for the measurement of technical efficiency and
productivity based on the notion of frontier and introduce the more

recent methodological advances in the field.



1 Introduction

Recent discussions on the sources of productivity and efficiency differentials
have pushed forward the debate on efficiency and total factor productivity
(TFP) measurement on the research agenda. Indeed, once it is agreed that
high levels of efficiency and productivity are desirable goals for an econ-
omy, then it is important to define and measure them in ways that respect
economic theory and, at the same time, provide useful information to both
managers and policy-makers. Among the different methods, the ones based
on the notion of best practice frontier have become very popular. The reasons
for their success can be ascribed to two factors: first, they have deep roots
in the economic theory. Indeed, in this approach, efficiency is measured as
the distance from a best practice frontier (or the boundary of the production
possibility set), computed in accordance with the axioms of the production
theory; equally, productivity change is measured as the variation over time
of the firm’s distance from the frontier and is decomposed into changes in
technical efficiency, technical change and change in scale, where the first is
measured by how far the firm is from the frontier, the second by shifts in the
frontier itself and the last by the movements of the firm along the production
function curvature. Second, the concept of a distance from a standard allows
us to operationalise the concept of inefficiency and TFP, providing ready-to
use information for decision-makers.

The idea of measuring a firm’s performance with respect to a best prac-
tice frontier goes back to the 1950s. Koopmans (1951) defined technical
efficiency as the capability of a firm to maximize output for given inputs.

However this notion does not offer any guidance concerning the degree of in-



efficiency. This issue was addressed by Farrell (1957). He extended the work
initiated by Koopmans and suggested measuring inefficiency as the observed
deviation from a frontier isoquant. However, the production possibility set
that economic theory associates with any productive activity is unknown.
Therefore, the subsequent research has focused on the best way to identify
the frontier of the production possibilities set. Two methodologies are now
available: a) parametric methods, based on the econometric estimation of
the frontier and b) non-parametric methods (called this way as they do not
require a functional form for the technology) based on linear programming
techniques such as Data Envelopment Analysis (DEA, henceforth). Later,
during the 1980s, frontier techniques have been usefully extended to measure
productivity growth. Not surprisingly, it is possible to distinguish between a
parametric approach to the measurement of productivity change, and a non-
parametric one, linked mainly to the development of the Malmquist index
(Fare et al., 1992).

Where is the current research in this field going? Three main research
areas seem to be of particular interest for the applied economist. The first
deals with the use of semiparametric econometrics to estimate stochastic fron-
tiers. Indeed, parametric methods have often been criticised on the ground
that they require both a functional form for the production technology and
a distributional assumption for the inefficiency component. An attempt to
accommodate this criticism has been made by employing semiparametric
econometrics to relax at least one of the two assumptions. This has produced
an array of semi-parametric estimators of potential interest to the applied

economist. The second research area is concerned with the statistical proper-



ties of the DEA estimators. Non-parametric methods typically do not allow
us to carry out any statistical inference on the computed efficiency scores
and therefore recent research has been devoted to the identification of the
statistical properties of the estimators, to the design of possible hypotheses
tests and to use the bootstrap for constructing confidence intervals. Finally,
the last research area deals with the treatment of undesirable (from a social
standpoint) outputs when measuring productivity. Farrell based measures of
productivity usually consider as an improvement in productivity the simul-
taneous expansion in outputs (whether bad or good), for given amount of
inputs. In this type of framework, reductions in one output (the bad output)
would be treated as a decrease of productivity. Therefore, new measures of
productivity have been derived so that a firm can be credited for reducing
undesirable output and penalised vice-versa.

The purpose of this paper is to provide an introduction to different meth-
ods for the measurement of technical efficiency and TFP based on the notion
of thebest practice frontier, to assess their strenghts and shortcomings when
used in empirical work and to present some methodological advances in this
field. However, it is not meant to be an exhaustive survey on the topic.?.
Papers whose techniques are of potential interest to the applied economist
are included.

After introducing Farrell’s measure of technical efficiency (Section 2), I
will present the parametric methods to the frontier estimation (Section 3):
after briefly presenting the cross-sectional models (Section 3.1), T will focus
on panel data models (Section 3.2) and then illustrate how semiparametric

econometrics can be usefully applied to frontier models (Section 3.3). Af-



terwards, the DEA models are presented (Section 4), along with the recent
results on inference (Section 4.1) and bootstrapping (Section 4.2). The fron-
tier approach to the measurement of productivity is then presented (Section
5), followed by an illustration of the parametric approach (Section 5.1) first
and then of the non-parametric one (Malmquist index) (Section 5.2). Next
I show how the Malmquist index can be extended to take into account the
production of undesirable outputs by using the directional distance functions

(Section 6). Finally Section 7 offers some concluding remarks.

2 Farrell’s measure of technical efficiency

Farrell (1957) proposed to measure technical inefficiency as one minus the
equiproportionate reduction in all inputs for given outputs. A score of unity
indicates technical efficiency because no equiproportionate input reduction is
feasible, and a score less than unity measures the severity of technical ineffi-
ciency. This measure is an input-oriented one; it is, however, straightforward
to convert it to an output-oriented measure. This is defined as one minus
the equiproportionate expansion in output for given inputs, with a score of
one indicating technical efficiency and vice-versa.

Let me define these measures formally, starting from the input-oriented
one. Let producers use inputs z = (z1,...,2,) € R} to produce outputs
y = (y1,...,ym) € RT. Production technology can be represented by an

input set:

L(y) ={z : (y,2) is  feasible} (1)



which for every y € R has an isoquant:

IsoqL(y) ={x:x € L(y),\x & L(y),YA € [0,1)} (2)

and an efficient subset:

EffL(y) ={z:x € L(y),2" & L(y), V2" < x} (3)

Shephard (1953) introduced the input distance function to provide a func-
tional representation of a multiple output technology. The input distance
function can be defined as (with I indicating that it is an input-oriented

measure):

Di(y,x) = {mazxX : (z/}) € L(y)} (4)

where D;(y,z) > 1 and it follows from (2) that:

IsoqL(y) = {z : Di(y,z) = 1} (5)

The Farrell input-oriented measure of technical efficiency (DFf) can now

be given a formal interpretation as:

DFi(y,z) =min{\: Az € L(y)} <1 (6)

It follows from (6) that:

1
Dl(y7 l‘)

DFI(‘T7y) =

and:



IsoqL(y) = {z : DFi(y,z) = 1} (8)

that is, the Farrell index is the inverse of the Shepard distance func-
tion, which measures the maximum amount by which an input vector can be
shrunk along a ray while holding the output level constant. The value of the
distance function equals unity if and only if observed inputs equal minimum
potential inputs.

Consider, now, the output-oriented measure of technical efficiency. Pro-

duction technology can be represented by an output set P(x) defined as:

P(z) ={y: (z,y) is feasible} 9)

For every x € R, the output set has an isoquant defined as:

IsoqP(z) ={y:y € P(z),0y & P(z),¥0 € (1,+00)} (10)

and an efficient subset:

EffP(z) ={y:y € P(z),y & P(z),Yy >y} (11)

An alternative representation of the technology is the Shepard’s output

distance function (where o indicates that the measure is output-oriented):

Dy(z,y) =min{0 : (y/0) € P(x)} (12)

where D,(z,y) < 1. The output-oriented measure of technical efficiency

is defined as:



DFy(z,y) =maz{0 : 0y € P(z)} > 1 (13)

and it follows from (13) that:

(14)

and consequently:

IsoqP(x) = {y : DF,(z,y) = 1} (15)

This completes the formal derivation of the Farrell measures. The logic
behind them should be clear: they measure as inefficiency the extent to
which a firm’s actual inputs usage (or output production) can be radially
contracted (expanded) towards the boundary of the production possibility set
(or frontier) and still allowing the firm to produce the same amount of output
(or using the same amount of inputs). To implement these measures, it is
necessary to identify the frontier a firm faces and then measure how far the
latter is from it. As mentioned in the Introduction, two main methodologies
are available in the literature: the parametric one, based on the econometric
estimation of the frontier, with the residual being identified as the measure
of inefficiency and the non-parametric one, based on linear programming
techniques. We now turn to the analysis of these two methodologies starting

with the parametric approach.



3 The econometric approach to efficiency mea-

surement

3.1 The cross-sectional model

Consider a cross-section of n producers using a vector of inputs x to pro-
duce y. In this case, using a Cobb-Douglas functional form, the production

technology can be represented by:

Iny; = a+ Blnx; +u; +v;  i=1,..,n (16)

where 3 is a vector of technology parameters to be estimated; for the
estimation, an error term is attached to (16). The error term is usually
assumed to have two different components: a stochastic one, v;, picking up all
the random factors which can affect (positively and negatively) production,
having the usual Gaussian properties; and a systematic component, u; < 0,
measuring (in)efficiency and so all the factors which systematically affect
production adversely, i.e. which do not allow the firm to produce as much
output as its inputs usage would allow. For estimation purposes, it is assumed
that it is distributed independently of v; and that it is truncated. Parametric
methods use econometrics to estimate the best practice frontier (i.e. the
production technology of the best performer in the industry under analysis)
and at the same time, after deriving a measure of the estimated residual,

they measure technical efficiency as:

TE; = exp(—u;)|vi (17)



Different estimators for (16) have been suggested; historically, the first
ones go under the label of deterministic methods and are linked to Afriat
(1972) and Richmond (1974). They assume that the estimated residual
(u; + v;) measures the technical inefficiency of the decision making unit,
sweeping away any other source of stochastic variation in the dependent
variable. They estimate (16) by OLS, which allows us to estimate the ‘aver-
age’ practice within the industry; the best practice frontier is then derived
by shifting up the constant of the estimated average production function by
either the maximum positive residual (COLS) or the residuals’ mean (MOLS,
DOLS). Obviously, the main problem with deterministic methods is that they
do not allow us to disentangle the stochastic shock from the inefficiency in the
residual; therefore, they have been abandoned in favour of stochastic meth-
ods, due to Aigner et al. (1977), Meeusen and van den Broeck (1977) and
Battese and Corra (1977). (16) is now estimated by Maximum Likelihood
(ML) and the estimated residual is then decomposed into inefficiency and
stochastic noise, by using the formula proposed by Jondrow, Lovell, Materov
and Schmidt (JLMS) (1982). However, both the ML estimation and the
JLMS decomposition require distributional assumptions on the two compo-
nents of the error. Therefore, different formulations of the log-likelihood to
maximise and of the JLMS decomposition have been derived under differ-
ent distributions of the inefficiency.® Obviously, the key question is to what
extent the efficiency scores and their ranking are sensitive to the different dis-
tributional assumptions. The answer to this question is not well documented
in the literature. However, empirical studies where different distributional

assumptions have been used for comparison show that both the rankings and

10



the efficiency scores are very similar across different distributions (Greene,

1993).

3.2 Panel Data Models

In the cross-sectional model, technical efficiency indices cannot be separated
from firm-specific effects which, although not related to efficiency, can still
enter in the inefficiency component of the residual. While this problem has
been recognized long ago, it has been solved only since panel data have been
available. Two methodologies have been developed to measure technical ef-
ficiency using panel data-sets: the former is based on the traditional panel
data estimators (fixed and random effects) while the latter employs ML es-
timators. The traditional panel data estimator was initially proposed by
Schmidt and Sickles (1984). They specified the following production frontier

model:

lnyit = a0+ﬁlnxit+ui+vit t= 1,...,T 1= 1,...,N (18)

Outputs and inputs can now vary across time and producers. Statistical
noise (v;) varies over producers and time, but technical inefficiency (u;) varies
only over producers. The firm-specific inefficiency term can be merged with

the constant to obtain a conventional panel data model:

lnyit = o; + ﬁlnxﬂg + Vit (19)

(19) can be estimated either by the fixed effects (FE) (by using dummy

variables to account for individual effects or, alternatively, by applying OLS

11



on the deviations of the time means) or by the random effects (RE) esti-
mator (a GLS estimator), where the inefficiency component is allowed to be
random. Efficiency scores are then computed by comparing the estimated «;
of each producer to its maximum estimated value. The main advantages of
the FE estimator are that a) it is distribution free, i.e. no assumption on
the two error components is required, and b) the fixed effects and the regres-
sors can be correlated. However, the FE estimator suffers from some major
shortcomings, which limit its use in the empirical analysis. First, efficiency
is measured by using the fixed effects that by definition can pick up all firms’
sources of heterogeneity, not necessarily related to inefficiency; so in a sense,
the main benefit of using a panel data is lost by using the FE estimator.
Second, it is not possible to infer statistically to what extent the estimated
effects are significantly different from each other. Third, time-invariant vari-
ables cannot be introduced among the regressors. Finally, for large panels,
it is practically intractable, as the number of parameters to estimate tends
to be high. RE estimator shares with the FE estimator the advantage of
not requiring a specific distribution on the efficiency component. However, it
requires the effects to be uncorrelated with the variables in the model. This
can be a particularly unreasonable assumption when modelling production
relationships where inefficiency may be related to the usage of inputs and
quality.

ML frontier estimation methods were introduced by Pitt and Lee (1981)
and Battese and Coelli (1988), among others. Their starting point is the pro-
duction model specified in (19); now, however, the effects (a;) are assumed

to follow a one-sided distribution (either half-normal or truncated) and to

12



be independent of the remaining variables. The production frontier is esti-
mated by using Maximum Likelihood and the resulting error is decomposed
into the stochastic shock and the inefficiency component, the latter being
also used to compute the efficiency scores. The main advantage is that ML
estimation allows to gain (statistical) efficiency in the estimation (as long as
the assumption of independence is not a problem) and to have a tighter pa-
rameterisation allowing direct individual specific estimates of the inefficiency
term in the model.

All the models presented so far, however, share a common shortcoming:
they assume that inefficiency is time-invariant and clearly this is a problem
if the time series is long. Several approaches have been suggested to solve
this problem. Cornwell, Schmidt and Sickles (CSS) (1990) proposed a time-
varying technical inefficiency panel data model where firm-specific temporal
changes in technical inefficiency are allowed. More specifically, they replace

a; by a; in (19) where:

it = 051 + Oint + Oi3t? (20)

where the €’s are the parameters to be estimated. This way, efficiency can
vary over time and in a different manner for each producer. Lee and Schmidt
(1993) proposed a different generalisation where technical inefficiency effects

are defined by the product of individual firms’ effect and time effects:

Qi — 9150(1' (21)

where 0; = ¥,;6; with §; being a dummy variable for each period ¢. In

this model, the stochastic component is time-invariant while the time-varying

13



component is an ad hoc structure assumed to be common across firms. It
seems appropriate only for short panels as the number of parameters to be
estimated can increase easily otherwise. This model is usually estimated by
using instrumental variable estimators. Two objections can be made to the
CSS and Lee and Schmidt models. The first is of a more general nature:
both models approximate the evolution of efficiency over time by using a set
of time dummies or a time trend. Obviously, they do not allow us to control
for the possibility of technical change (usually done by introducing a time
trend), or movements of the frontier over time. So, by using these models,
it is implicitly assumed that no technical change has occurred over time,
which can be unreasonable if the panel is quite long. The second objection
is of more practical nature: both specifications require a lot of parameters
to be estimated and if the panel is particularly long, they can be beyond
the capabilities of an average PC. Therefore, their applicability seems to be
limited to very short panels and not surprisingly they are not used very often
in the empirical literature.

A parallel development has occurred in the field of ML estimation of
stochastic frontiers. Battese and Coelli (1992) proposed a stochastic pro-
duction model for (un)balanced panel data where the temporal variation of
technical inefficiency is modelled through an error component model. More
specifically, technical efficiency is computed as uy; = exp(—n(t — 1)) where
7 is a parameter to be estimated; u; are the non-negative random variables
which are assumed to account for technical inefficiency in production and
are assumed to be i.i.d. as truncations at zero of the N(u,c?2). Battese and

Coelli (1995) proposed a panel data frontier model where the non-negative
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technical inefficiency term is assumed to follow a truncated distribution with
different means for each DMU. So the distribution of the technical efficiency
can now be modelled as a function of observed variables. In this setting, the

inefficiency effects can be defined as:

Uit = Zit0 + Wy (22)

where z;; is a vector of observable explanatory variables, ¢ is a vector of
unknown parameters and w;; is a random variable defined by the truncation
of a Normal distribution with —z;;6 as the truncation point. By allowing the
inefficiency to have different means and to model the impact of exogenous
variables on the inefficiency, this technique is quite useful to explain the
determinants of inefficiency and it is a valid alternative to the old two-stage
procedure (where efficiency scores were first computed by the parametric
approach and then regressed on exogenous factors).

Finally, just a few words on how to choose among the different models
suggested by the literature. From the above discussion, it is clear that they
impose different restrictions on the data and have different properties. In
a short panel, where it is not possible to assume independence between the
effects and the regressors, RE and ML estimators cannot be used and only
the FE can. However, in this case, a lot of effort must be put to make sure
that inefficiency is the only source of heterogeneity as picked up by the fixed
effects. If the regressors and the effects can be maintained to be independent,
then ML is more efficient than the traditional panel estimators because it
exploits distributional information the other estimators do not.* In a long

panel, it is advisable to derive time-variant measures of technical efficiency.
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In this case, the distribution free approaches (based on the traditional panel
estimators) are not easy estimators to implement as they impose an ad hoc
structure of time variation (which prevents from controlling for technical
change) and at the same time they are computationally cumbersome. So,
if the distributional assumption on the inefficiency is not a problem, MLE
appears to be the best model to use for its computational simplicity. In
addition, it also allows us to model the impact that external factors have on

the distribution of the inefficiencies.

3.3 Semiparametric methods

As mentioned, parametric methods based on ML estimation require both a
distributional assumption on the error components and a functional form for
the production technology. Both requirements can be a source of misspecifi-
cation and attempts have been made to relax any of the two assumptions, by
using semi-parametric econometrics. However, at the moment, in spite of the
fact that there exists a significant number of semiparametric estimators, these
cannot be considered to be a unified corpus of alternative estimators to the
parametric ones; on the contrary, they tackle specific problems arising from
the implementation of parametric estimators. Anyway, within their limited
scope, they produce results of potential interest for the applied economist.
The various semi-parametric estimators proposed in the literature are now
considered. A first set of estimators has been developed to estimate a panel
data frontier model like in (19), where no distribution on the effects is as-
sumed and different types of correlation between the effects and the regressors

are allowed. We know from the previous section, that traditional panel data
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estimators do not require a distributional assumption on the effects; how-
ever, they differ in that the FE estimator allows for correlation between the
effects and all the regressors, while the RE estimator requires independence
between the two sets of variables. Suppose now there is correlation between
a sub-set of regressors and the effects in the model to estimate. In this case,
the traditional panel estimators cannot be used. A first alternative was pro-
posed by Hausmann and Taylor (1981) who proposed a hybrid between the
within estimator and the GLS estimator. However, if the distribution of the
effects is not known, this estimator is not very efficient. So semi-parametric
estimators seem to be a more efficient (statistically speaking) alternative to
the parametric estimators.

Park, Sickles and Simar (1998) consider the semiparametric estimation of
a stochastic frontier model with panel data with a known linear functional

form and an unknown density for the individual effects, that is:

yit:ai—{—ﬁxitjtvit = ]_,...,N t = 1,...,T (23)

where y; and x;; have the usual interpretation, v; are i.i.d. random
variables from N(0,0?) and o; are i.i.d. from an unknown density h whose
support is bounded above. It is assumed that v; and «; are independent. In
this context, the frontier is given by (x; + B(h) where B(h) is the upper
boundary of the support of the density h while technical efficiency of the i-th
observation is a; — B(h).

They derive the efficient semiparametric estimator for (23) where differ-
ent types of dependency between the regressors and the individual effects

are allowed (More details on the semi-parametric estimation of a frontier
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model are available on request). More specifically, they consider three types
of models: a) Model I where no orthogonality restriction between effects and
regressors is imposed; in this case, they show that the semiparametric effi-
cient estimator is the Within estimator; b) Model II, where it is assumed a
dependency between a subset of regressors and the effects. In this case, the

semiparametric efficient estimator is:

B=p"Y +N2N] (24)

where 57V is the consistent preliminary estimator of 8 (proved to be the
Hausman-Taylor Instrumental Variable estimator) and ?is an estimator of the
so-called efficient influence function, which is estimated by a non-parametric
kernel estimator, with (1 + 7'q) dimensions, where 7" is the number of time
periods and ¢ is the number of regressors correlated with the effects. c¢)
Model III, which allows for correlation between the long-run movements of
the regressors and the effects. This type of dependency may appear less
obvious than the one in Model II, but it is relevant in industries where long-
run changes in the employed factors are accompanied by changes in efficiency
over time (due to possible improvement in the quality of inputs, for instance).
In this case, the efficient semiparametric estimator is the same as in Model
IT, where the main difference is in the dimensions of the kernel estimator,
now (1 + q).

There are not many empirical applications of these estimators. Adams et
al. (1999) have applied these estimators to the US banking industry, while
Park et al. (1998) have used them to estimate the production frontier for

a set of North-American and European airlines. From these, however, it is
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possible to identify advantages and disadvantages of these estimators. First,
from a statistical standpoint, they are definitely more efficient than the tradi-
tional panel estimators. Indeed, Park et al. (1998) show that there are 17-33
per cent efficiency (in statistical terms) gains in using the semi-parametric
efficient estimator. However, most of these results are asymptotic and there-
fore require sizeable panel data. Clearly, the next step in the research would
be to define the properties of these estimators in small samples. At the same
time, too long panels may involve the use of multidimensional kernels that
can be difficult to estimate (this is particularly true for Model II). So, at
the moment, it appears as if the applicability of these estimators is limited
to short panels and to models where there are not complicated patters of
correlation between the effects and the variables. In spite of this, these esti-
mators deserve attention as they allow us to model an important source of
misspecification (i.e. correlation between regressors and effects) in empirical
work.

A second set of semiparametric estimators has been suggested by Fan, Li
and Weersink (1996) and Huang and Fu (1999) to estimate a cross-sectional
frontier model where the functional form is unspecified but the composite er-
ror follows a known distribution. Their starting point is the typical stochastic

production frontier model:

1

where ¢ is a function unknown to the researcher; e; and wu; are then
the two error components, where the usual assumptions apply. The logic

behind these estimators is quite simple. We know previously that parametric
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estimation of a cross-sectional frontier model is based on ML estimation;
this requires the derivation of a log-likelihood which is then maximised with

2 can be

respect to two parameters, o2 and \. If g(x;) is known, then o
computed independently and therefore the log-likelihood can maximised only
with respect to A\, making the estimation of the parameters much easier. If

the functional form is unknown, then these can be estimated by some non-

parametric estimator. Fan, Li and Weersink (1996) suggest to write:

9(w) = E(ys|ws) + p (26)

with p = (2°%°0,)/7%5 and then estimate F(y;|x;) by the following ker-
nel estimator, E(y;|z;) = Yy K ((ws — x5) /h) /[25_ K((z; — ;) /h)]. This
way, 62 can be calculated separately and a new log-likelihood function (called
pseudo-likelihood) can be derived which allows us to derive a pseudo-likelihood
estimate of A\. These estimates are then used to decompose the error in the
two components, by using the JLMS decomposition formula. Huang and Fu
(1999) build upon the method of Fan et al. by suggesting the use of the av-
erage derivative estimator to estimate non-parametrically F(y;|x;) and then
to derive the variance of the residual by maximising the pseudo-likelihood
function as defined by Fan et al. The two error components are then calcu-
lated by the equivalent of the JLMS formula. Simulations show that both
estimators perform like parametric estimators when having to estimate a cor-
rectly specified g and that they perform adequately in finite samples. These
semiparametric estimators are quite appealing in that they allow us to esti-
mate the (in)efficiency by avoiding a major source of misspecification, that

is the functional form. Computationally speaking, they can be applied very
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easily as they are straightforward applications of non-parametric estimators.
Therefore, they are a viable alternative when estimating frontier models in

settings where the use of restrictive functional forms may create problems.

4 Data Envelopment Analysis

The linear programming approach to the construction of the production fron-
tier is known as Data Envelopment Analysis (DEA). It is non-parametric as it
does not require an explicit functional form and constructs the frontier from
the observed input-output ratios by linear programming techniques. The first
DEA model was formulated by Charnes, Cooper and Rhodes (CCR) (1978)

and was expressed mathematically as:

mazg \0 (27)
subject to:

Oyo < YA (29)

A >0 (30)

where X is an n by [ input matrix with columns x;, Y is an m by [
output matrix with columns y; and A is an I by 1 intensity vector. In the
DEA problem the performance of a producer is evaluated in terms of his
ability to expand its output vector subject to the constraints imposed by

best observed practice. If radial expansion is possible for a producer, its
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optimal 6 > 1, while if radial expansion is not possible, its optimal 6 = 1.

The CCR problem imposes constant returns to scale on the technology
(expressed by the fact that As are free to vary between zero and infinity).
A second version of the DEA problem was suggested by Banker, Charnes
and Cooper (1984) (BCC) which relaxes the assumption of constant returns
to scale. The mathematical format of the BBC problem is the same as in
(27-30), where the only difference is that (30) is now substituted by the sum
of As constrained to be equal to one.

DEA does not allow us to model stochastic shocks to production, i.e.
it is deterministic. Therefore the computed efficiency scores may be biased
by factors which are external to the production process. Not surprisingly,
some attempts have been made to incorporate stochastic components into
the linear programming problem. Varian (1985) first introduced a two-sided
deviation to include the random noise and to calculate the efficiency mea-
sure free of such random noise. Land et al. (1993) provided the so-called
chance-constrained efficiency analysis which allowed the deterministic fron-
tier to capture the effect of random noise without being stochastic. The data
requirements of the chance-constrained efficiency measurement, however, are
too many. Indeed, it is necessary to have information on the expected values
of all variables, along with their variance and covariance matrices and the
probability levels at which feasibility constraints are to be satisfied. There-

fore, this approach is too informationally demanding to be implemented eas-

ily.
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4.1 Statistical properties of DEA estimators

A common critique to the DEA (frequently voiced within the "parametric
circles") is that no statistical inference can be carried out on the computed
efficiency scores. Indeed, in its earlier versions, the DEA-based efficiency
scores were not accompanied by the equivalent of standard errors. However,
nowadays, this critique is unfair as there exists a considerable amount of
research that has characterised the statistical properties of DEA estimators,
has designed hypotheses tests on DEA scores and employed bootstrapping
to construct confidence intervals.

Let us go in order. Before being able to define the statistical properties of
the DEA estimators and to carry out any type of inference, it is necessary to
establish the statistical model of the Data Generating Process (DGP), here
indicated as P, which generates the data upon which DEA is then applied.
This task has been taken on by Simar and Wilson, (2000), who defined the
statistical model as follows:

Al. Inputs and outputs in P are freely disposable.

A2. The sample observations, (z;,y;) are i.i.d. random variables with
probability density function f(x,y) with support over P.

A3. The probability of observing units on P must approach unity as the
sample size increases.

A4. For all (z,y) in the interior of ®, §(z,y) (the true Farrell measure of
technical efficiency) is differentiable in both its arguments.

The statistical properties of the DEA estimators can now be derived.
Banker (1993) showed that the DEA estimator is an asymptotic weakly con-

sistent estimator of an arbitrary monotone and concave production function
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with one input and one (or more) output(s), where deviations from the pro-
duction frontier are considered stochastic variations in the technical efficiency
of individual observations. Next, Korostelev et al. (1995) have analysed the
convergence rate of this DEA estimator (in the same Banker’s framework)
and show that as the number of outputs increases, the number of observa-
tions must increase at an exponential rate. The same result is obtained in a
multivariate framework by Kneip et al. (1998). As for the sampling distri-
bution of these estimators (necessary to be able to make inference), Gijbels
et al. (1999) prove that in the univariate case (one input, one output) the
estimator’s sampling distribution approximates an F-distribution.

Once the statistical properties of the DEA estimators have been defined,
it is possible to construct hypothesis tests on the DEA efficiency scores.
Banker (1993, 1996) has suggested a battery of hypotheses tests allowing
us to test the DEA model specification, the type of returns to scale the
technology exhibits and whether the inefficiency scores computed from two
samples are significantly different. We consider here in detail the different
tests for this last hypothesis (The other two types of tests are available on
request). Suppose we apply DEA to two different samples of firms (having
size N7 and N, respectively) and we want to test whether the computed
efficiency scores, #, are different across them. If the efficiency scores follow
an exponential distribution in both samples, then the mean efficiency score
for the first sample is 1+ 7, while for the second sample it is 1 + po: in this
case the null hypothesis can be specified as Hy : 1 = ps = p (indicating
that both types of firms have the same inefficiency distribution) and the

alternative hypothesis as Hy : 1 > p (implying that on average the firms of
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the first group are less efficient than the second type). So the following test
statistics can be used:
Sien, (07 —1)/N
TEX — JGNI(A‘]B )/ 1 (31)
Yieny (07 — 1)/ N

which is distributed as an F'(2N7, 2N,)-statistic. If the efficiency scores

follow a Normal distribution, N (0, ;) with ¢ = 1,2, under the null hypothesis
Hy : 11 = pe = p and the alternative hypothesis Hy : py > pg, (31) changes
to:
Sien, (02 —1)2/N
THN — JENI(A; ) / 1 (32)
Yjeny (07 —1)%/No

which is distributed as an F'(IN1, Ns)-statistic. Finally, if the efficiency

scores do not follow any distribution, a non-parametric Smirnov test can be
used.

The possibility of carrying out hypotheses tests on the DEA efficiency
score is definitely appealing; however, so far, the scope for applying these
tests is quite limited as their properties are mostly asymptotic; indeed in
small samples the tests statistics do not follow an F' distribution. This makes
them difficult to be used in the bulk of applied work which is usually based
on small samples. Therefore subsequent research has explored the feasibility
within the DEA context of bootstrapping, which allows us to approximate

the sampling distribution of 6 and so to build confidence intervals.
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4.2 Bootstrapping

Bootstrap is a data-based simulation method for statistical inference which
can be used to build confidence intervals for parameters in situations where
these cannot be derived analytically. The basic idea involves sampling with
replacement to produce random samples of size n from the original data.
Each of these samples is known as a bootstrap sample and provides an esti-
mate of the parameters of interest. Repeating the sampling a large number
of times provides information on the variability of the estimator. Extending
bootstrap techniques to the DEA environment is quite straightforward and
Simar and Wilson (1998) propose the following procedure. Assume the data
Xn are generated from the DGP P = P(¢, f(x,y)), where ¢ is the unknown
production set and f(z,y) has been defined above. By using the data y,,
it is possible to get a consistent estimator of P, of the unknown production
set, ngS, and of the efficiency scores, é(wo, Yo)- The efficiency scores estimates
can be considered as a new population from which it is possible to draw a

*

new dataset (or pseudo-sample), x* = (xF,yf). By applying DEA to the
pseudo-sample, new estimators of the production set, (;3* and of the efficiency
scores, é*, can be computed. This operation can be repeated B times so
to get B pseudo-samples and pseudo-estimates of the efficiency scores. The
empirical distribution of these pseudo-estimates gives an approximation of
the unknown sampling distribution of the efficiency scores®.

If the distribution of (6(zo,yo) — 6(zo,yo)) was known, then it would be

possible to find values of a, and b, such that:

Pr(—b, < 0(z0,y0) — 0(x0,%0) < —aa) = (1 — a) (33)
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Using the bootstrap values of the pseudo-estimates é*, we can find values

of b, and a,° such that:

PT(—Ba < é*(CUo,yo) - é(:co,yo) < _da|P(Xn)) =(1-a) (34)
So the bootstrap approximation of (33) is:

A

Pr(—by < 0(x0,y0) — 0(x0, y0) < —iia) ~ (1 — ) (35)
The estimated (1 — «)-percent confidence interval is:

~

0(z0,10) + e < 0(0,y0) < (0, Y0) + ba (36)

An important issue when using the bootstrap in a frontier context is
to ensure that in generating the pseudo-samples and the pseudo-estimators,

these are consistent, i.e. the following property holds:

A~

(0" = 0)| P(xn) = (0 - 0)| P (37)

Now a common version of the boostrap (called naive bootstrap) produces
inconsistent pseudo-estimators (Efron and Tibshirani, 1993), as they do not
consider the fact that in the frontier context the distribution functions have
a bounded, unknown support on P. To solve the problem, Simar and Wilson
suggest to draw pseudo-data sets from a smooth, consistent, kernel estimate
f (0) of the marginal density of the original estimates 6.

Finally, the procedure suggested by Simar and Wilson is quite easy to
implement as it requires the use of basic bootstrap techniques, just modified

to take into account of the frontier context. So at the moment, it is the best
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way to carry out some inference in the DEA framework.

5 TFP growth and its components

As mentioned in the Introduction, frontier techniques have been extended
so to be able to measure productivity growth. Traditional methods to the
measurement of productivity have usually assumed that firms are located on
the frontier, i.e. they are efficient. This implied that productivity move-
ments were assumed to be due to shifts of the frontier (or technical change).
However, if a firm is inefficient, then the contribution of efficiency change to
productivity change has to be acknowledged. We know that each time period
a firm faces a best practice frontier, it defines the maximum output a firm can
produce for a given inputs. The frontier is determined by the state of tech-
nical progress at that time. A firm is not always located on the best practice
frontier, but can be located anywhere in the production possibility set (and
therefore regarded as technically inefficient). Any movement of productivity
over time can be decomposed into two parts: movements of the frontier due
to changes in the technological capabilities of the firm (technical change)
and movements of the firm towards (or far from) the frontier as it is more
(or less) successful at reducing internal inefficiency. In addition, if we allow
the production technology to have decreasing returns to scale, then there is
an additional component of productivity change, the scale component, as the
firm from one period to the other moves along the production technology and
exploits its curvature. The distinctive feature of the frontier approach is in
the fact that the change in efficiency is now a component of TFP. Obviously,

the legitimate question, now, is to what extent this is a significant compo-
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nent, from an empirical standpoint. Generally speaking, efficiency change is
quite relevant and is an important source of productivity variation. However,
more striking is the relative importance of the efficiency change component
over the other components. Indeed, in studies carried out on private sector
organisations, efficiency change (while still being a source of productivity
variation) is less important than technical change, for instance (Fare et al.,
2001). By contrast in public sector organisations reductions in inefficiency
can still be a sizeable source of productivity gains (Linna, 1998). This can
be easily explained by the fact that in the private sector organisational slack
is smaller than in the public sector.

There are two main methodologies for the measurement of productivity
change using frontier techniques: the parametric approach, based on the
stochastic frontier analysis, and the non-parametric approach, linked mainly
to the developments of the Malmquist index. We will now focus indeed on

the two different approaches, starting with the parametric one.

5.1 The Parametric Approach

The first to apply parametric methods to the measurement of productivity
change were Nishimizu and Page (1982) who, by using a parametric, de-
terministic approach, measured productivity growth as the sum of the (de-
terministic) frontier technical change and change in efficiency. The key idea
was to generalise the Solow model in which technical change and productivity
change were identical and to allow for inefficiency. Afterwards, the Nishimizu
and Page approach has been extended to make use of the possibilities of the

stochastic frontier approach. Consider the following production function for
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producer ¢ at time t:

Vit = f (X, B,t)exp(ey) (38)

where y;; is the output at time ¢ for production unit ¢ and x;; is a n-vector
of inputs; €; = u; + v; is the residual. The productivity change index is
defined as the difference between the rate of change of output and the rate

of change of inputs:

TFP=7g—x% (39)

If we totally differentiate (38) and insert into (39), we get:

TFP = AT + (e — 1)S,(2)% + ATE (40)

€

where AT is a measure of the rate of technical change, ATE is a measure
of the rate of technical efficiency, €, are the elasticities of output with respect
to each input and € is the sum of all the elasticities, providing a measure
of the returns to scale characterising the production frontier. This way,
productivity change is decomposed into a technical change component, a
technical efficiency change component and a scale component.

Assume a translog functional form is used for f in (38):

lnyit - ﬁo+ﬁLl’rLLZ't+ﬁtt+ﬁLttlnLit—|—0.5ﬁLKlTLLZ'tl’rLKl’t+0.5ﬁttt2—FﬁKl’I’LKit—FﬁKttl’l’LKit—i—’Uit—{—uit
(41)
then, (40) becomes:
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AT = 3, + Byt + Y2, Bt N it (42)
ATE = 1y (43)

ér = B + BrInKy + Bt (44)

¢ =22 (B + Bulnay + But) (45)

where 1 = L, 2 = K and z is a generic input. (41) is structurally sim-
ilar to the panel data models considered above; therefore in principle all
the panel data estimators which allow us to compute time-variant efficiency
scores could be used. However, estimators based on traditional panel data
techniques use time dummies to compute efficiency change and so they do
not allow us to distinguish between technical efficiency change and techni-
cal change in the estimation of (41). Therefore, ML estimation is again
the best option as long as the assumptions on the error components and of
independence do not create problems. A nice feature of the parametric ap-
proach (and therefore its main strength) is that it allows us to test the type
of returns to scale the technology exhibits and the statistical significance
of each component of TFP, allowing us to know to what extent efficiency
change (among the others) is significant in explaining productivity move-
ments. However, its main weakness is that it does not provide disaggregated
(i.e. producer-specific) information on technical change and scale change (un-
like the Malmquist index) and this explains why it has been overshadowed
by the development of Malmquist to the point that the frontier approach to

productivity change seems to identify with the Malmquist index.
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5.2 The Malmquist index

The Malmquist index, allowing us to measure a firm’s productivity growth,
was introduced by Caves et al. (CCD) (1982). The Malmquist index mea-
sures productivity change by comparing the position of a firm in two adjacent
time periods with respect to a best practice frontier, measured by a distance
function. The index was named after Malmquist who in 1953 proposed a
quantity index (based on ratios of distance functions) for use in consumption
analysis. CCD define an output-based Malmquist productivity index relative

to a single technology at time ¢ as:

Dt t+1 , t+1
Mt — O(JJ Y ) ( 46)
Di(at,y")
where the output-input pairs used at time ¢ and at time t+41 are compared
to the technology available at time ¢, measured by the distance function DY.

The equivalent index for time ¢ + 1 is:

DL (g1 yt+1)
Dgrt(at, y)

M = (47)

Later on, Fare et al. (1989) employed the geometric mean of the two
output-based Malmquist indices, (46) and (47) to define the following index

of productivity growth:

1
A = [Pol@™ g™ Dt (gt |2
Di(at,y")  Dif(at,yt)

(48)

where the first ratio measures the change in technical efficiency from time
t to time t+1 and the second ratio measures the technology change. D?(x!, ")

and DI (281 4'*1) are the output distance functions measured at time ¢ and
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t+1, respectively. D! (z'™!, y**1) is the mixed-period distance output function
measuring the maximum proportional change in output required to make the
observed input-output pair at period ¢+ 1 feasible relative to the technology
of period t, while D5 (2t 4*) measures the maximum proportional change
in output required to make the input-output pair observed at time ¢, feasible
relative to the technology of time ¢ + 1.

(48) can be reformulated to highlight the roles of technical progress and

of technical efficiency change:

1
4y Dyt DAty Diat ) ]
T DLy | DEL ) Dt o)

(49)

with technical efficiency change being the first ratio and technical change
the product of the two ratios in the brackets. A Malmquist index greater
(smaller) than one indicates an increase (decrease) in productivity; the same
is true for its components.

It is noticeable that no mention has been made of the scale component in
the above decomposition of the Malmquist index. Indeed, as such, the index
can provide a correct measure of productivity growth only when the underly-
ing technology has constant returns to scale, i.e. there is no scale component
in the productivity growth. This implies that each distance function in (48)
must be computed under the assumption of constant returns to scale. In the
presence of non-constant returns to scale, the Malmquist index provides an
inaccurate measure of productivity change even if the distance functions are
computed under variable returns to scale (Grifell-Tatje and Lovell, 1995).
Therefore, a raft of new productivity indexes (Ray and Desli, 1997; Grifell-

Tatje and Lovell, 1999; Balk, 2001) have been proposed, having in common
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the idea of scaling the Malmquist index by a term which accounts for the
scale component. There is a heated debate on what is the best decomposition
and so at the moment this issue seems pretty unsettled.

The Malmquist index is very popular to measure and decompose produc-
tivity growth. It is used very often as an alternative to both the Tornquist
and Fisher indices as, unlike them, it does not require information on prices,
but only on quantities. So, it is very useful when measuring productiv-
ity in public sector organisations, where information on input and output
prices is rarely available. Another reason for its success is that it allows us
to easily identify the sources of productivity growth and provides a lot of
producer-specific information on technical change and the scale component
for time period, which can be very useful for decision-making. Computation-
ally speaking, both parametric and non-parametric methods can be used in
principle to estimate the distance functions making up the index. In the em-
pirical literature, it is quite common to use DEA. In earlier days, it was not
possible to carry out statistical inference on the computed distance functions;
nowadays it is possible to use bootstrap to compute confidence intervals on
each component of the Malmquist index (Simar and Wilson, 1999). How-
ever, the main weakness of DEA (namely that it is a deterministic method)
is still there and so the computed distance functions may include the effect
of factors not related to technical efficiency and technical change. Of course
stochastic frontier methods can be used (Grifell-Tatje et al., 2001). They
can be appealing as they allow us to disentangle the stochastic noise from
the efficiency measures. However, the econometric estimation of distance

functions is not trivial; indeed, in the case of a distance function, output is
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endogenous and some IV estimator is necessary in this context. Therefore,
the use of a parametric method for the estimation of the Malmquist index
does not seem a feasible route. The best option left to the researcher is to
try to specify the DEA model (underlying the Malmquist index) in the best
possible way so to minimise the impact of external factors on the computed

distance functions.

6 TFP and undesirable outputs

When evaluating the performance of producers it makes sense to credit them
for the provision of desirable outputs and penalise them for the production
of undesirable outputs; that is, good and bad outputs should be treated
asymmetrically. However, for a long time, the problem of undesirable out-
puts has been ignored in the performance measurement literature. Indeed,
the traditional output-oriented Farrell measure cannot treat good and bad
outputs asymmetrically because it seeks to increase both simultaneously. In
1989, Fare et al. (1989) modified the Farrell measure to permit an asym-
metric treatment of outputs, allowing the maximum radial expansion of all
desirable outputs and contraction of all undesirable outputs, holding inputs
constant. More recently, directional distance functions have proved extremely
useful in measuring performance to account for such outputs (Chung emphet
al., 1997; Ball et al., 1998). Their distinctive feature is that they measure
the amount by which an output vector can be translated radially from itself
to the technology frontier in a pre-assigned direction. In addition, they are
a generalisation of Shepard’s output distance functions (Chambers emphet

al., 1998) and this relationship has been used to compute a Malmquist-type
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productivity index (so-called Malmquist-Luenberger (ML) index) that allows
us to measure productivity in the presence of undesirable outputs (Chung et
al., 1997).

To define a directional distance function, it is important to make some
assumptions on the production process. Consider a productive process with

the following output set:

P(z) = {(y,b) : xzcan produce(y,b)}. (50)

where y € R} denotes the desirable output, b € R% is the undesirable
output and =z € Rf is an input. Desirable and undesirable outputs are
produced simultaneously, implying that the desirable output is "nulljoint"
with the undesirable output: the only way not to produce the undesirable
output is by not producing the desirable output, that is if (y,b) € P(z) and
b = 0 then y = 0. This simultaneous production of desirable and undesirable
outputs implies that the reduction of the undesirable output is costly (i.e.
there is weak disposability of undesirable outputs) as it requires the firm to
reduce the desirable output. Therefore (y,b) € P(z) and 0 < § < 1 imply
(0y,0b) € P(x). Finally, it is assumed that the desirable output is freely
disposable, i.e. (y,b) € P(z) and y <y imply (y,b) € P(z).

Under these assumptions, the technology can be completely characterised
by a directional output distance function. Formally, a directional output

distance function is defined as:

Do(w,y,b;9) = {sup(B : y,b) + Bg € P(x))} (51)
where ¢ is the vector of ’directions’ by which outputs are scaled. Direc-
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tional distance functions are a generalisation of the Shepard output distance
function (Chambers et al., 1998). More specifically, let g = (y, —b) (implying
that the positive output is expanded and the negative output is contracted),
then:

1

30(%% b;g) = Doz ybig) 1 (52)

(52) can be used to define the output-oriented ML index as:

1
1+ D, (at, o, b g) 1+ D, (at, o, b g) 0.5

ML, =
[1 N Bi(xt“, yt+17 bt—l—l; g) 1+ Biﬂ(th? yt—|—17 bt“; g)

(53)

The ML index (as the Malmquist index) can also be decomposed into

two components of technical efficiency (MLEFFCH) and technological change

(MLTECH):
t
14 D (2t ot bt
MLEFFCH, = s o(2'y' b5 g) (59
L+ D, (at+!,yt+1,b41; g)
t+1 t+1
14D tut ba)1l+ D t+1 i+l ptl.
MLTECHO:[ + o ('I7y7b7g) + o (':E Y 7b 79) 0.5 (55)

1+ 32(:6’5, yt,bt:g) 1+ 32(3316—%-17 YL b g)

so that their product is equal to M Lg. The efficiency change term is
equivalent to the ratio of the directional distance functions in two adjacent
time periods. The technical change term is the geometric mean of the shift in
technology evaluated at 27! and the shift in technology evaluated at z*. The

ML index indicates an increase in productivity if its value is greater than one

37



and productivity decline if its value is less than one. The directional distance
functions composing the ML index can be computed using a modification of
the DEA problem where the bad output is now weakly disposable.

A classical example where the ML index is relevant is the evaluation of
the performance of a firm having to reduce pollutants (bad output) to meet
environmental regulations. The hospital sector is another example where
directional distance functions can provide useful information (Dismuke and
Sena, 2001). Traditionally, when the performance of an hospital is evaluated,
they are assumed to 'produce’ discharges and typically no distinction is made
between their discharge status (i.e. dead or alive). Therefore, dead and alive
discharges are treated in an equivalent manner and when the traditional
Malmquist index is used, any effort of the hospital management to reduce the
mortality rate may be recorded as a productivity decrease. However, from the
social standpoint, what really matters is the ability of the hospital to reduce
dead discharges and increase the alive ones. In this case, a ML index is more
suited to measure productivity growth than the traditional Malmquist index
as the former allows to derive a measure of productivity growth which, by
rewarding the hospital’s efforts to reduce mortality, gives a picture of the

hospital’s performance more responding to society’s expectations.

7 Conclusions

An overview of the frontier approach to the measurement of technical ef-
ficiency and productivity has been provided. Both parametric and non-
parametric approaches have been presented, where the former is based on

the econometric estimation of the production frontier and the latter uses
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linear programming techniques to construct the frontier.

Stochastic methods have the advantage of controlling for random shocks
to the production and measurement errors in the inputs and outputs. How-
ever, they can be subject to specification errors, even if, by using semipara-
metric estimators, this problem can be addressed. Another problem is the
number of parameters to be estimated, which can simply be too many, es-
pecially when using panel data. The main weakness of the non-parametric
approach is the fact that it is a deterministic method. In spite of attempts to
solve this problem (such as with chance constrained DEA), it is still impossi-
ble to control for random shocks to production. On the other hand, what was
regarded to be the main problem with DEA, namely the lack of statistical
inference, has now been solved and there is a substantial literature on hy-
pothesis tests and how to construct confidence intervals by bootstrapping the
DEA efficiency scores. The main advantage of DEA is that it provides a lot
of producer-specific information, like dual solution values, slacks and so on.
It is really impossible to suggest one approach over the other, as they both
have positive and negative features; in a sense, they could be used jointly as
they provide complementary information. At any rate, it is clear that the
frontier approach offers an interesting set of tools to measure efficiency and
TFP and so contribute to decision-making within both private and public

organisations.
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!The author wishes to thank Toke Aidt, Huw Dixon, Peter Simmons, Pe-
ter Smith, Gabriel Talmain and Emmanuel Thanassoulis for useful comments
on previous drafts of the work. The usual disclaimer applies. Address for cor-
respondence: LUBS, University of Leeds, Leeds, L.S2 9JT, United Kingdom,;
telephone: 0044-113-3434514, e-mail:vs@Qlubs.leeds.ac.uk.

Interested readers can refer to Kumbhakar and Lovell (2000) and Cooper
et al. (2000) for thorough introductions to parametric and non-parametric

methods, respectively.

3The most common distributions in the empirical work are the Half-
Normal, the Truncated and the Exponential. Other distributions have been
suggested such as the Gamma; however, given its complexity, it is rarely used

in empirical work. See also Lovell and Kumbhakar (2000).

“Hallam and Machado (1996) and Bravo-Ureta and Ahmad (1996) have
compared the different panel data estimators. They find that MLE provides
better measures of the efficiency scores; however, they also seem to conclude
that the two approaches (MLE and traditional panel estimators) may gener-

ate similar rankings.

5The quality of the approximation depends on the value of B. The bigger

the number of draws, the smaller the approximation error.

6b, and a, are unknown and can be computed by sorting the values

0(xo,y0) — 0(o,yo) in increasing order and then delete a/2 percent of the

elements at either end of the sorted list; then —b, and —a, are set equal to
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the endpoints of the truncated sorted array.

"This is equivalent to assuming that the distribution of inefficiencies is
homogenous. This assumption can be relaxed (as in the so-called heteroge-
neous approach) but at a cost of increased complexity and computational

burden.
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