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Highlights:

— A continuous strategy public goods game is proposed which supports emergence of cooperation:
Compulsory Persistent Cooperation

— Persistent Cooperation is an alternative model for evolution of cooperation, similar but different
to punishment mechanisms

— This continuous version of persistent cooperation is more realistic as agents can choose to invest
into the game in different levels of commitment

— A multi-group version of the game outperforms the single-group version
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Abstract

The public goods game (PGG), where players either contribute an amount to the ¢ - mme~ ~ool or do noth-
ing, is a paradigm for exploring cooperative behaviors in biological systems, ecc *or .c co 1munities and
other social systems. In many situations, including climate game and charity ¢ ~nations -~ .y contribution,
however large or small, should be welcome. Consequently, the conventional PGG - extended to a PGG
with continuous strategy space, which still can’t escape the tragedy of cc “mons wi 10ut any enforcing
mechanisms. Here we propose the persistent cooperation investment n-=cha... ™ms “ased on continuous
PGG, including single-group games, multi-group games with even investmc. * non-even investment and
non-even investment with preference. We aim to reveal how these in-~~*~~ * _ .es promote the average
cooperation level in the absence of any other enforcing mechanisms. S.. nlations indicate that the multi-
group game outperforms the single-group game. Among the mu'i-oroup g..ae, non-even investment is
superior to even investment, but inferior to non-even investment . ith - rexccence. Our results may pro-
vide an explanation to the emergence of cooperative actions in ~ontin. us phenotypic traits based on inner
competition and self-management without extrinsic enforcing n.>c. "nisu. 3.

Keywords: Evolutionary Game Theory, Public Goods Gar-~ Evolu ‘on of Cooperation
2019 MSC: 00-01, 99-00

1. Introduction

The public goods game (PGG) [1, 2, 3] is « wic .1y used paradigm for discovering the mechanism of
cooperative behaviors, which are abundant bo. 0 wume . and animal societies, and can also be viewed as
a basic model of economic interactions [4, ,]. In « 2 ventional PGG, cooperators benefit the population
at personal cost ¢ while defectors do not’ .. ~ The resulting public resource is shared equally among all
participants irrespective of their individual con.. hutions. Players will acquire more profit if they invest
nothing into the common pool, which ] ... to the tragedy of the commons [6]. Many mechanisms including
social diversity [7, 8], voluntary par’ cipat on [9] and persistent cooperation [10, 11] were put forward to
overcome these social dilemmas. Ouw. * mechanisms such as reward and punishment [12, 13] can also
promote cooperation, but both of .nem may  :duce the second free riders [14, 15, 16, 17, 18, 19].

In a typical PGG, players elect a strotegy randomly from the discrete set S={C' (cooperation), D
(defection)}, either cooperation o. * :fect’ )n. However, in many real systems, each individual engaging in a
game has heterogeneity on 7 .,sting 0. .ng to his or her own financial strength. Without losing generality,
we let the minimum and n aximum 1westment of each individual be 0 and 1 in the PGG. At this point we
generalize towards continu. s contr sutions: An individual may invest any value on the interval [0, 1] into
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the public pool. The strategies are no longer pure cooperation or pure defection, all the strategies may b
viewed as cooperative actions with various extents of cooperation. Hereby a PGG on a continuous strate .y
space S=[0, 1] is constructed. The conventional PGG where S=1 (cooperation) or S=0 (defection) i< a
special case of the continuous PGG.

Many researchers deemed it more reasonable to consider the evolutionary game behavior on a ¢. “tin" -
ous strategy set than a discrete one [20, 21]. For example, in the low-carbon game, due to the hete ~gene.._
of each enterprise in scale, finance, technique and products, etc, all the enterprises may have differe.. e-
grees of cooperation. Actually, any amount of contribution would be grateful in the public bene it, 1. cluding
environment protection and charity donations. Another common example in biological syst m is .ae budy
size of animals [22], e.g., Anolis lizards [23] and Geospiza finches [24]. Such phenotypes ai. ‘bviously
continuous variables on some certain intervals. Consequently, continuous strategies have cen inves..gated
in various evolutionary games. The Prisoner’s Dilemma was discussed on continuous space to tudy the
evolution of cooperation [25, 26, 27]. It was concluded that cooperation can evolve ex ‘ly and emain at
relatively high levels [28]. Later, some researchers studied the repeated game and .ial gaiue as well as
public goods games based on continuous investment [29, 30, 31, 32]. For the co tinur .s 1 3G, the temp-
tation to adopt antisocial behaviors wins over taking prosocial actions without any .iforci’ 2 mechanisms
[33, 34].

Here we present the continuous persistent cooperation model. In the continuou. PGG, behaviors of
players are considered in a quantitative trait rather than a qualitative one, henc. *here is .o distinct boundary
between cooperation and defection.

The remainder of the paper is organized as follows. In section 2, the game .. ~del in well-mixed popu-
lations is introduced, and its superiority is also illustrated in contrast .. ‘ne conventional continuous PGG.
In section 3, the model is discussed in structured populations, and severa. mechanisms are presented to
enhance the degree of cooperation of the population. Simulations ¢ ...~ ~~ are performed to show the effi-
ciency of the mechanisms. In section 4, a summary is made based on “e .inalysis and computer simulations
in the preceding sections.

2. The Evolution of Continuous Persistent Cooperatioz. -. .. ""'-» xed populations

2.1. Model

Suppose that in a well-mixed population of size » n- ?), each individual plays the PGG with hetero-
geneous decision ability. They contribute an amor it to the ¢ ymmon pool. Without losing generality, we
let z;€ [0,1] be the investment of agent ¢, i=1,-- - , .. The s .ategies of all the individuals are denoted by
a random vector (21, - - ,Z,). Thus the continv .us PGG o.. S=[0,1]™ is constructed. The resulting profit
is the sum of all the investments multiplied by a syr zrgic “actor r, which reflects the effect of cooperation.

n
Firstly, only a fraction s of the total benef , i.e., . S z;, is shared equally among all the players. The

i=1

remaining fraction (1—s) will be used as ae . “blic profit, and redistributed to each player according to his
or her contribution at an additional personal cost ..,d, which we denote as the second cost. Thus, the total
payoff of individual ¢ is given by

n
(X1, Xy ,zn\:ﬂ zj—z+(1—s TZIJ - —x;d
i=1 j=1 ZCL]
! ()
n—1 sr

=(r-1- srfd)mi+gZ$j
J#i

:m(:L'i;x_i).

Here d € [0, 1] is “e coeff :ient of the cost in the second distribution. The second cost is proportional
to the contribution for eac.. piayer to gain the additional (1 — s) of the total benefit. For convenience, we let
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mi(z;;x_;) be a substitution of the payoff function m;(z1,: - - x4, - - ,xp) of agent ¢, i=1,--- ,n. If s=1 an

d=0, it is in accordance with the conventional continuous PGG mentioned in ref.[33], wherein the payoff of

individual i is 7 (zs;2_s) = (5 — L)z + £ > x;. If r < n, then r/n — 1 < 0. That is to say, a player *ill
J#i

obtain less with the increase of his or her contribution. The only Nash equilibrium is (0, --- ,0), if nor.

of the players contributes to the common pool. The continuous PGG would be trapped in the tragedy 0. ‘e

commons [6].

2.2. Replicator Dynamics

At time t, the strategy or investment of each player denoted by (x4, - - ,x;,- -+ ,z,) can be ~.wed as a
random vector, which describes the state of the population. Each population state durinc _._ evolu.. 'n can
be described by a Borel probability measure Qf defined on S=[0,1]". In the game, p ayers de. rmine to
invest simultaneously and anonymously, they are just aware of their own investments, s > 1, . 4, *,Tp,
are independent of each other. The statistic rule of z;(¢ = 1,--- ,n) is described "~ a bo. _ probability
measure (). Then the average payoff of player 7 in state @ is

B = [ mlse )@ Q) Q)

-1
:(r—l_n sr—d 7+—Z/ z;Qldxj, 2)
J#i
n—1 n— B
=(r—1- sr—d)z; + ST,
herein d,, (i = 1,--- ,n) is the Dirac delta measure. It means that L. > tow . bability mass is concentrated
on the smgle pomt x;. Further
1
0

is the average investment of an agent in state . Let A be a "~rer > set of S, then P(A) is the proportion
of the individuals whose strategies are selected in set A. Suppc. ~ that the population is large enough to
remove the effect of finite size. Finally, when the support of () is not empty, the replicator dynamics is

1P
( / (B, ™ — B( 2,Q)Q(dx), @

where 7
EQ;C)= A ;L5 Q)Q(dz;) ®)

is the average investment of the whole ; opula.’™ in state ). Since the strategy set is compact, and the
payoff function is a continuous functic~ ~vith boundary, the equation (4) has a unique solution Q;(¢ > 0)
for all the states for any initial state (", [35 .

Now we consider the evolutionai, v amics of the average investment =

dz /1 iQ .,
@ = T
1
_ /O B0, Q) — B(Q, Q))Q(dw) (©)

n—1

C-1- - sr—d)/o(xi—i)QQ(dxi).

In equation (6),let z= = —1 — —sr —d.Ifd<r—-1- ;157" for fixed synergic factor r and population
size n, there exi~* < and a such that z > 0, therefore, 4 Gf 1s positive in these cases. % = 0 if and only
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if Q¢ = &,. Due to the support ), is invariant of the dynamics equation (4), Z will be convergent to th

maximum value z* in the support of ();. Hence the solution to the equation (4) converges to §,« in we k
topology [36]. In other words, if there are unselfish individuals who invest their maximum possessie™ 1
in the support of Q)g, then the proportion of players whose investments are 1—e will decrease, no - atte

how small € is, Q; will be convergent to ¢; in weak topology, that is, all the players will contribu. the ¢
maximum property 1 into the common pool.

3. The Evolution of Continuous Persistent Cooperation in structured populations

The above result was discussed in well-mixed populations, which ignore the effect of spatia. “tructures
to the evolution. However in practical systems, limited by region, resource, informatior and so on, ugents
have little chance to interact with anyone else randomly, they can only be involved in games in 2 certain
range, so, the populations are often structural. A number of researchers have studied ntinur is evolu-
tionary games in spatially structured populations [31, 37]. In this section, we are t¢ wsCUSS e continuous
persistent cooperation mechanism in structured populations.

3.1. Continuous Persistent Cooperation in a Single-Group Game
3.1.1. Model

Suppose that all the individuals are assigned to the nodes of a network ot 5. = n (r > 2). Edges denote
the interactions between pairs of the players. All the players invest into thc ~ommun pool simultaneously
and independently. Each player can only be engaged in one group, here we <= " it a single-group game.
Agent ¢ sitting on node ¢ plays the game with his or her k; neighbors co. ~ected with edges and he or she is
the focal one of the group. k; is the degree of node ¢,7 = 1, - -- , n. In this s.. "ation, the total benefit is the
sum of the investment from each individual multiplied by a synery < 1ac . . Firstly, only a fraction s of
the total profit is shared equally among all the members in the same g. v .p regardless of their contributions.
The remaining benefit is distributed again according to the inv. ~. ment « “ each player at an additional cost
x;d in the second stage, where d€[0,1] is the coefficient of the sec “na . ~st. The second cost is proportional
to the investment. Then the income of player 7 is given by

(1, @iy Thyy1)
sr W T
i
:k.+1ijf:ci+(1 'S)rz,rjikvﬂ —xz;d
[ ; y <
=1 .
J Jj€o > oz
J=1

@)
ki or

i Do+ - TN,

ki+18r Vo + li+1§x]

:(r—l—

=7z ).

Similarly, the payoff of player j is "-. ~ted by 7;(z;; x_;).

Obviously, expression (1) is a sp cial « ase of expression (7) if the network is homogeneous. The evo-
lution is a dynamically learning proce. = Zach individual may learn from one of his or her neighbors. We
perform a random sequential upd .ce where . ~ch Monte Carlo step (MCS) is defined as follows:

(1) A randomly selected agei. * o' .ys tb . game with his or her k; neighbors and obtains his or her payoff
i (i 0);

(i) A randomly selected 1eighbor fagent i, say j, gains his or her payoff 7;(x;; x_;) in the game;

(iii) In each MCS, plaver i ¢." ~~ "carns from player j with probability
Fooj=1/(1+ exp{[mi(ws; v—i) — mj(wj50-5)]/T} ®)

or keeps hi~ ~r her own strategy with probability 1—P;_, ;.
4
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In this pairwise updating rule [38], 7" is the strength of noise. 1/7 serves as the selection intensity in th
population dynamics as well as the stochastic errors in the replacement process [39, 40]. High values of
1/T correspond to very strong selection, whereas for 1/7° — 0, selection becomes so weak that evolution
proceeds by random drift. If 1/7° — oo, we arrive at Q — 1, or @ — 0, depending solely on the s zn o
the payoff difference, hence the pairwise comparison updating rule becomes deterministic, indicat.. ~ th ¢
an individual always adopts his neighbor with higher income and refuses to imitate one with lowe * nayo..’
n
Here, we define p = % > x; as the average cooperation level in the stable state to measur ‘he en. *t
i=1
of the continuous persistent cooperation.

3.1.2. Simulation Results

Now we investigate the evolution dynamics of the model on a square lattice with periodic >oundary
conditions. During a MCS, initially, all the strategies on [0,1] are assigned randomly ‘o the r ,des of a
square lattice. Then an individual is selected at random to play the game with k;=4 . :1,---,,., neighbors.
Each player is the focal one of his or her group. It is known that the system size ca (infl’ _uc * the dynamics
to a large degree, so we have confirmed our model on two different linear systc  sizes. 100x100 and
400x400, and up to 10° full Monte Carlo steps before determining the average “nope._..on level p. The
phase diagrams in equilibrium have similar distributions in the phase planes. Thesc “imulations indicate
that our results are robust in even larger systems.

B 1 1 1
08 08 0.8
06 06 0.6
T
04 0 0.4
02 02 0.2
0 0! 0
02 04,06 08 1

§ 0.2 04 06 038

0.8

0.6

0.4

0.2

0

Figure 1: (Color online) The average cooperation leve’ depe.. mg or s and d on a 400x400 lattice in the stable state. (a) r=2; (b)
r=3.5. Without losing generality, we set 7' = 0.1, ir plying that . .cer performing individuals are readily to be imitated. The color
blue represents a low average cooperation level (ur sc. ‘oht region), the darker the blue, the lower the contribution. The color red
represents a high average cooperation level (lower .eft regio..  the darker the red, the higher the contribution.

Fig.1 is the contour plot of the av' rage ooperative level in the equilibrium state on the s — d plane. The
darker in red, the higher the average ¢~ :rative level, the darker in blue, the opposite. When r=2, the red
area occupys nearly one third of ae planc, “owever, when 7=3.5, the red area takes over more than two-
thirds. If s is larger than the tb eshe'd (in Fig.la, s~0.63; in Fig.1b, s~0.91), the persistent cooperation
mechanism fails to spur the cou, ~ ative action of all agents even without any second cost, because the
value of (r — 1 — 0.8sr — d" . aegatiy  Players will get less benefit if they contribute more into the game,
so, they prefer to play th¢ game .. 2 manner of “contributing less, getting more” without any surprise.
That leads to the dilemma f the co tinuous PGG. For any fixed value of s within the certain interval (in
Fig.1a, s€(0, 0.63); in ¥ ~.1b, . _ 4.53, 0.91)), which covers the transition region, the average cooperative
level will decrease st arply to. ards a very low level with the increase of d. If d is large enough such that
(r—1—0.8sr —d) i: less than ‘ero, an individual will obtain less than ever. In other words, the temptation
of drawing back the (1 - - . the profit dwindles down due to the high second cost.
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Fig.1 also shows that the synergic factor r plays an important role in the evolutionary dynamics. Fe
the same s and d, a higher synergic factor r results in a higher average cooperation level. As is seen .n

0.8 b
< 1f 0000000000000000 G
s 'a 0 : :
2 ° 2 :
E - 0.6’
508 ; 5 1
® o ®
< 0.6 5 s=0.7 p
g : $=0.6 (‘Ig)_o 4 d_o 6 -
o o - — ¢
g 0.4 d=0.4 S :
() : 2 0.2 i
g0.2 ; & 0
] : g :
8 (00000000000 | ®  0000000000000000( 2000 ~ ©
2 225 25 275 3 325 3.5 2 225 25 275 3 ‘.25 35
synergic factor r synergiv “actc. .

Figure 2: (Color online) Variation of the average cooperation level with 7. (a) s=0.. 7=0.4; (b)s 0.7, d=0.6.

Fig.2a, we set s=0.4, d=0.6, when r=2, no agents would like to contribute any “roperty to the public pool.
With the increase of 7, the average cooperation level will go up rapid” ..., ivacning its maximum value
1 at r=2.75. Similarly in Fig.2b, we let the two parameters be larger thau *at in Fig.2a, s=0.7, d=0.6, the
enthusiasm of all players is frustrated, however, when r increases t ~ ?S cooperation begins to emerge.

Fig.3 exhibits the evolutionary dynamics snapshots of the indiy dur .s strategies for r=3.5, s=0.6 and
d=0.4 in different stages. In the initial state, all the individuz'~ inves into the common pool at random.
It is found that even though the overwhelming majority of play ‘t> “re Lot so active in cooperating at the
very beginning (Fig.3a is covered largely with blue), but with th. emorcement of continuous persistent
cooperation, agents switch their strategies in a short time | ~riow. [ Fig.3b, blue areas become less and
red prevails in Fig.3c). Owing to spatial reciprocity [41, 42], pi._=rs who have higher contributions form
clusters (red clusters) to defend the invasion of neighbors with lower contributions, until all the individuals
are very positive in contributing into the common pe 1 (Fig. 1 is almost covered with red).

3.2. Continuous Persistent Cooperation in a Mul“i-gro..,> Gc ne

Since the population is composed of ratic .al a- d inhomogenous agents, they have various decision
abilities, learning abilites, social intercourse «. 17 .vest’ .g preferences, etc. These inhomogeneities play
different roles in the evolutionary dynamics of coop. = .on. In this subsection, we take them into consider-
ation to discuss how the average cooperat . level varies with these factors. The synergic factor r reflects
the conflicts between the social interest and the ~~dividual benefit. Larger the synergic factor yields less
social dilemma. However, in the PGC, . ~ synergic factor is not very large. Now the question is how to
promote the average cooperation ler :1 evr . if the synergic factor is small? Still the agents are arranged
on the nodes of a network of size n(s. ~ 2) with periodic boundary conditions. They decide upon their
investments into the common po 1 indepen. .ntly. For the case of agent ¢, he or she is involved in k; + 1
groups of games, where k; is tb deg- -e of 10de i. Among these k; + 1 groups, one group is focal at player
i, the other k; groups are focal av ."  k; * cighbors of player ¢, respectively. We call it a multi-group game
in the context. The influenc” v agent+ s to be reflected in its degree k;, (1 = 1,--- ,n).

3.2.1. Even investment in « ~wlti-gr up game

An agent involved ".. a muu-group game may invest the same amount into each group, so his or her
total investment is pr portiona to his or her degree. On an irregular network, the degree of each node may
be different, thereby : >cial div rsity is introduced. But if an agent has limited resource, it is hard to invest
so generously, then the ag-... can invest evenly into all the groups he or she is involved in so as to avoid

6
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Figure 3: (Color online) Snapshots of the evol” .. ry dynamics of the agents strategies in a single-group game for different time

steps on a 100x 100 lattice, where r=3.5, s=0.” , d=0.  The color blue represents a low average cooperation level, the darker the blue,
the lower the contribution. The color red repi  ~nts high average cooperation level, the darker the red, the higher the contribution.
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risks. Santos et al. studied the promotion of cooperation by social diversity in conventional PGG on discret
strategy space [7].

In our model, agent ¢ who has k; neighbors, attends k; + 1 groups of games, and invests an amrnt
x; into the common pool totally. According to the even-investment assumption, he or she shall aves
z;/(ki + 1) to each group, wherein the profit is the sum of the contributions from each member mu. ‘nlir 1
by a synergic factor . Only a fraction s of the total profit is shared among all the players, the r main.._
(1 — s) profit is relocated proportionally to their contribution at a second cost. Hence the payoff of ag =t
in group g is given by

ﬂ-;?(xh'“ y Lyt ot 71'1\7(0'?))
1 Ij 1
= g — |z + (1 - i — Tid
N(Uf)STjEUij+1+ki+l[ zt (1= o)res —id]

&)

1 ST s
-1 ) S
iy 1 et N ;ij

Note that o7 is the set of all the co-players of agent i involved in the gams of group . , and N(o7) in the
number of co-players of agent ¢ in group g. N (o) is k; + 1 in the gror» wn. ™ is ocal at agent i. The
overall payoff of agent 7 from all the groups of games is obtained by 7;(z;;2- ) =3, 7 (zi; ).

3.2.2. Non-even investment in a multi-group game

When the agents play the continuous PGG game, they do exp-~* to obtaw.. more without contributing
more than planned. Hence, we take more heterogeneities into consic “rat’ ,n such as inner competition. The
ecological and economical benefit of the k; + 1 groups are the ~ritical | dints at present. Those groups who
have higher ecological and economical benefit will magnetize 1. 7. nve. ments and can make more profit
than others. Thus agents will fare better in these groups. To make ‘he idea come true, we need to define a
new evaluating indicator. Firstly, we denote the average co. ~=1a.. = vel of group g at time ¢ by

L g=1 -,k -Li=1--,n. (10)

Then, we take sum of all the average coope ation 1. ~!. of the k; + 1 groups which agent ¢ attends,

ki+1
>~ pi(t). Finally, we compute the ratio of th ave' .ge ¢ operation level of group g over the sum of all
g=1

I(+

; pi(t)

Obviously, m? () is monotonously " cree g with pf(t). A group with a higher evaluating indicator can
magnetize more investment. Assrming -at each player can get the average cooperation levels of all the
groups at last time step. By evs aatir 2 this dicator, to gain more profit, agents have to adjust their in-
vestments to different groups, ot x /(k; - 1) again but m¢(¢ — 1)x;. The payoff of agent ¢ in group g
is
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7'['9(:617- gyt f]\7(0'9))

srz 't —Dxj+mi(t— 1)z + (1 — s)rz; — x;d]
]EU

(1
k; sr
— o 9(+ _ 1 — v _ . 9(+ _ .
mi(t—1)[(r—1 ki+lsr d)z;] + N9 jééi mi(t — 1)a;]

=7 (zi;2_4).
The overall benefit of agent ¢ from the game is m;(x;; ;) = Zg 7wl (zi; x—4).

3.2.3. Non-even investment with preference in a multi-group game

In the study of human behavior, it is believed that various individual prefere .ces lead to various in-
dividual behaviors and motivations. So we now modify the evaluating indicator nJ(*, wii 1 a preference
coefficient « to reflect preference of agents on investing into the groups with a higher aver Ze cooperation
level. Thus m(t) changes into a new one

I(t))

> (o (1)

g=1

The investment that agent ¢ contributed into group g is uf (¢ — 1)z;. Now “is or her payoff in group g is
expressed by

7T'g(ml7"' y iy 3y TN(a g))
srz (t— Dz +ud(E—71 " =+ = s)ray; — a;d]
st i (14)
— It — B R L L 9t — Vs
=ud(t—1)[r—1 Pt A V(Jig)Zuj(t 1)z;]
J#i
=7Tf(l'i;$_i).

The overall benefit of agent i from the game is ;(z , 2 = > 7] (zi;2).

u?(t) is increasing with cv. Parameter « =efic.* the - egree of preference. A larger « results in a higher
preference. When a=0, the non-even inves’ nent game with preference returns to an even investment game,
and if a=1, it is non-even investment in 2 .nu..” croup game.

3.2.4. Simulation results

In this subsection, we perform r er’ .al simulations for the mechanisms introduced above. Santos et
al. showed that cooperation perfc-ms be ‘=t on scale-free networks than on regular networks with social
diversity [7], which implys that . stri :turea population usually facilitates the evolution of cooperation in
most cases. Therefore, our sin “lati- as ar performed on square lattice to examine the efficiency of these
mechanisms.

Fig.4 displays the varia“.on tenc=ncy of average cooperation level with synergic factor r for fixed s and
d. Obviously, compared tc a single- roup game (as illustrated in Fig.3), all these types of investment can
promote the positivity in coo, ~rativ- action for the whole population effectively even if the synergic factor is
low. As for the three ¢".rerent types of investment in a multi-group game, the non-even investment performs
better than the even 1estmen but not so effective as the non-even investment with preference for some
synergic factors. Wit *he inc case of coefficient uf (¢), agents invest more into the groups which have a
high average coo~=ration level or reputation, contribute less into the other groups. To gain more investment,
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Figure 4: (Color online) The variation of average cooperation level with synergic factor r for fixed ¢ nd d. (a) s=" o, d=0.4; (b)s=0.7,
d=0.6.

the individuals in the same group have to contribute as much as they can tc ~nhan. ** . average cooperation
level. With this mechanism, the average cooperation level is improved in each . ~up, so is that of the whole
population. After r approaches a threshold (r=2.2 for s=0.6, d=0.4 an~ _.0 .v. 5=0.7, d=0.6), there is no
obvious difference in enhancing the average cooperation level among the ““ree mechanisms. From Fig.4,
we also find that a larger value of o makes cooperation begin to e ~=~= in a s.orter period with a smaller
synergic factor, e.g., when =3, cooperation begins to emerge for . =1 5 (rig.4a) and r=2 (Fig.4b). All
in all, the mechanism of non-even investment with preference ~romo. s the activity in cooperating of the
players and mollify the social conflicts by self-management.

1 1 1 1
0.8 0.8 0.0 0.8
0.6 0, N “’ 0.6

© o
0.4 Ju. 4 04
0.2 IL n 0.2 0.2

0 ‘ 0 0 0
0 02 04 _06 0b 1 0 02 04,06 08 1

Figure 5: (Color online.) The averag coor ration evel depending on s and d on a 400x400 lattice in the stable state for r=2,
a=3. (a)T=0.1; (b)T=2 The color blue rep. =nts 2 .ow average cooperation level (upper right region), the darker the blue, the lower
the contribution. The color red re- _ :nts a 1.._ average cooperation level (lower left region), the darker the red, the higher the
contribution.

Fig.5 illustrates the infl. nce ¢ s and d on the average cooperation level with =2, a=3. Compared
to Fig.1a, the red are? covers larger part both in Fig.5a and Fig.5b, which again indicates the efficiency of
the investment with referencc Notably, Fig.5(a) shows some qualitative difference from Fig.1(a) on the
s — d plane. On one “and, &’ «ce group size plays a decisive role in the evolution of cooperation in the
public goods gar= on the square lattice, thus the increase in the group size from N (o7 )=5(single-group)
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to N (of)=9(multi-group) changes the interaction topology effectively in that the joint membership in th

larger groups indirectly links the no-linking players. On the other hand, the noise level 1" also plays .n
important role in the difference if 7" < 1 in spatial PGG. We set 7'=0.1 and 7'=2 in Fig5(a) and Fig5/h),
respectively. They have similar distributions on the s — d plane. Topology-independent impact of .0is
remains valid multi-group systems for larger 7" values. The simulation results agree with the conc. <ior 3
as reported in [43]
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Figure 6: (Color online.) Snapshots of the evolutionary u, ~r .cs of gents’ strategies in a non-even investment multi-group game
with preference on a 100x 100 lattice for different time .teps, wi. =. =2, a=3, s=0.6, d=0.4. The color blue represents a low average
cooperation level,the darker the blue, the lower the ¢ “tribution. The color red represents a high average cooperation level,the darker
the red, the higher the contribution.

Fig.6 presents the snapshots of ev .iuti. nary dynamics contour plot of strategies of all the players on a
square lattice. The parameters are sc as r 2, a=3, s=0.6, d=0.4. In the initial state, each agent is endowed
with a strategy randomly, most plzyers a. not active in cooperating, or they contribute only a little into the
common pool, so the color blue » vvers almost all the snapshot in Fig.6a, which results in a low cooperation
level. To gain more profit, ple_ ~rs - djust .neir investments with preference. The groups which get more
investments raise their average coop. ti- a level, players involved in these groups fare well. This encourage
other players to contribute aore in“o the game. The legend of “contributing more, getting more” spreads
among whole population. [ndividuc s with higher investments also construct clusters in order to defend
their opponents with lower . ~ntrib- dons. Selfish contributors also form clusters. With the promotion of
non-even investment " . 1tn preference, individuals turn to invest more than ever. The blue clusters begin
to shrink, until the p ne is co >red with more and more red area (Fig.6d). Due to the spatial reciprocity,
agents with similar sti. *egies f rm clusters more easily in a multi-group game than in a single-group game,
thus the boundar’~< among agents in Fig.6b are much clearer than that in Fig.3b.
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4. Conclusion and Discussion

In a conventional PGG, some supporting mechanisms such as reward and punishment are often applied
to promote the emergence and evolution of cooperation. However, these mechanisms need cooperator: wh.
perform rewarding or punishing to pay an additional personal cost, which leads to the second free ri' ~ts. T,
this continuous PGG, there are no distinct boundaries between cooperators and defectors. No agen*s nee.
punish or reward others to sustain the cooperative actions, they just do their own best in the game. 1. ~rder
to encourage the agents to “contribute more, get more back”, several investing mechanisms 7 ¢ , ‘esente..
here. It is found that all the mechanisms can promote the positivity of the agents in investin , (coc ser.. /e
actions) in appropriate range of distribution fraction and second cost coefficient even the sy. ~ zic factor
is low. To make comparisons among the proposed mechanisms, numerical simulations -~ perfo.. =d on
regular networks. Simulations indicate that players involved in multi-group games are nore acu. ‘e than in
single-group games. Multi-group games are supposed to disperse risk. An agent should . v not to - ut all his
or her eggs in one basket. As for the three different investing styles in the continuous ~~rsis.. ' _ooperation
mechanism, non-even investment is superior to even investment, but inferior to » m-evs . . ‘vestment with
preference. Those groups with higher average cooperation levels or reputation appe ' .ore i vestments and
gain more confidence from the agents. This inner competition and self-manag. “ent p'~; tmportant roles
in promoting the average cooperation level of the body system. In summary, the . »posed mechanisms
enhance cooperative actions, and a continuous variant of persistent cooperat. = should' e considered where
the level of cooperative actions (and hence strategies) is reflected in a con. uous , »~ .otypic trait.
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