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dilemmas, the interaction process between interacting agents can be trough several interaction
steps. Here we investigate a new variant of the Persistent Cooperation mechanism, in which
agents contributing in first instance must continue their contribution also when finalizing the
game. However, in the model proposed here, any continuous strategy between Cooperation and
Defection is allowed.

Highlights:
– A continuous strategy public goods game is proposed which supports emergence of cooperation:
Compulsory Persistent Cooperation
– Persistent Cooperation is an alternative model for evolution of cooperation, similar but di↵erent
to punishment mechanisms
– This continuous version of persistent cooperation is more realistic as agents can choose to invest
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– A multi-group version of the game outperforms the single-group version
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Abstract

The public goods game (PGG), where players either contribute an amount to the common pool or do noth-
ing, is a paradigm for exploring cooperative behaviors in biological systems, economic communities and
other social systems. In many situations, including climate game and charity donations, any contribution,
however large or small, should be welcome. Consequently, the conventional PGG is extended to a PGG
with continuous strategy space, which still can’t escape the tragedy of commons without any enforcing
mechanisms. Here we propose the persistent cooperation investment mechanisms based on continuous
PGG, including single-group games, multi-group games with even investment, non-even investment and
non-even investment with preference. We aim to reveal how these investment styles promote the average
cooperation level in the absence of any other enforcing mechanisms. Simulations indicate that the multi-
group game outperforms the single-group game. Among the multi-group game, non-even investment is
superior to even investment, but inferior to non-even investment with preference. Our results may pro-
vide an explanation to the emergence of cooperative actions in continuous phenotypic traits based on inner
competition and self-management without extrinsic enforcing mechanisms.

Keywords: Evolutionary Game Theory, Public Goods Game, Evolution of Cooperation
2019 MSC: 00-01, 99-00

1. Introduction

The public goods game (PGG) [1, 2, 3] is a widely used paradigm for discovering the mechanism of
cooperative behaviors, which are abundant both in human and animal societies, and can also be viewed as
a basic model of economic interactions [4, 5]. In a conventional PGG, cooperators benefit the population
at personal cost c while defectors do nothing. The resulting public resource is shared equally among all5

participants irrespective of their individual contributions. Players will acquire more profit if they invest
nothing into the common pool, which leads to the tragedy of the commons [6]. Many mechanisms including
social diversity [7, 8], voluntary participation [9] and persistent cooperation [10, 11] were put forward to
overcome these social dilemmas. Other mechanisms such as reward and punishment [12, 13] can also
promote cooperation, but both of them may induce the second free riders [14, 15, 16, 17, 18, 19].10

In a typical PGG, players select a strategy randomly from the discrete set S={C (cooperation), D
(defection)}, either cooperation or defection. However, in many real systems, each individual engaging in a
game has heterogeneity on investing owing to his or her own financial strength. Without losing generality,
we let the minimum and maximum investment of each individual be 0 and 1 in the PGG. At this point we
generalize towards continuous contributions: An individual may invest any value on the interval [0, 1] into15
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the public pool. The strategies are no longer pure cooperation or pure defection, all the strategies may be
viewed as cooperative actions with various extents of cooperation. Hereby a PGG on a continuous strategy
space S=[0, 1] is constructed. The conventional PGG where S=1 (cooperation) or S=0 (defection) is a
special case of the continuous PGG.

Many researchers deemed it more reasonable to consider the evolutionary game behavior on a continu-20

ous strategy set than a discrete one [20, 21]. For example, in the low-carbon game, due to the heterogeneity
of each enterprise in scale, finance, technique and products, etc, all the enterprises may have different de-
grees of cooperation. Actually, any amount of contribution would be grateful in the public benefit, including
environment protection and charity donations. Another common example in biological system is the body
size of animals [22], e.g., Anolis lizards [23] and Geospiza finches [24]. Such phenotypes are obviously25

continuous variables on some certain intervals. Consequently, continuous strategies have been investigated
in various evolutionary games. The Prisoner’s Dilemma was discussed on continuous space to study the
evolution of cooperation [25, 26, 27]. It was concluded that cooperation can evolve easily and remain at
relatively high levels [28]. Later, some researchers studied the repeated game and spatial game as well as
public goods games based on continuous investment [29, 30, 31, 32]. For the continuous PGG, the temp-30

tation to adopt antisocial behaviors wins over taking prosocial actions without any enforcing mechanisms
[33, 34].

Here we present the continuous persistent cooperation model. In the continuous PGG, behaviors of
players are considered in a quantitative trait rather than a qualitative one, hence there is no distinct boundary
between cooperation and defection.35

The remainder of the paper is organized as follows. In section 2, the game model in well-mixed popu-
lations is introduced, and its superiority is also illustrated in contrast to the conventional continuous PGG.
In section 3, the model is discussed in structured populations, and several mechanisms are presented to
enhance the degree of cooperation of the population. Simulations on lattices are performed to show the effi-
ciency of the mechanisms. In section 4, a summary is made based on the analysis and computer simulations40

in the preceding sections.

2. The Evolution of Continuous Persistent Cooperation in well-mixed populations

2.1. Model

Suppose that in a well-mixed population of size n (n≥ 2), each individual plays the PGG with hetero-
geneous decision ability. They contribute an amount to the common pool. Without losing generality, we45

let xi∈ [0,1] be the investment of agent i, i=1,· · · , n. The strategies of all the individuals are denoted by
a random vector (x1,· · · ,xn). Thus the continuous PGG on S=[0, 1]n is constructed. The resulting profit
is the sum of all the investments multiplied by a synergic factor r, which reflects the effect of cooperation.

Firstly, only a fraction s of the total benefit, i.e., sr
n∑
i=1

xi, is shared equally among all the players. The

remaining fraction (1−s) will be used as the public profit, and redistributed to each player according to his50

or her contribution at an additional personal cost xid, which we denote as the second cost. Thus, the total
payoff of individual i is given by

πi(x1, · · · , xi, . . . , xn) =
sr

n

n∑

j=1

xj − xi + (1− s)r
n∑

j=1

xj
xi
n∑
j=1

xj

− xid

= (r − 1− n− 1

n
sr − d)xi +

sr

n

∑

j 6=i
xj

= πi(xi;x−i).

(1)

Here d ∈ [0, 1] is the coefficient of the cost in the second distribution. The second cost is proportional
to the contribution for each player to gain the additional (1− s) of the total benefit. For convenience, we let
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πi(xi;x−i) be a substitution of the payoff function πi(x1,· · · ,xi,· · · ,xn) of agent i, i=1,· · · , n. If s=1 and55

d=0, it is in accordance with the conventional continuous PGG mentioned in ref.[33], wherein the payoff of
individual i is πi(xi;x−i) = ( rn − 1)xi + r

n

∑
j 6=i

xj . If r < n, then r/n− 1 < 0. That is to say, a player will

obtain less with the increase of his or her contribution. The only Nash equilibrium is (0, · · · , 0), i.e., none
of the players contributes to the common pool. The continuous PGG would be trapped in the tragedy of the
commons [6].60

2.2. Replicator Dynamics
At time t, the strategy or investment of each player denoted by (x1,· · · ,xi,· · · ,xn) can be viewed as a

random vector, which describes the state of the population. Each population state during its evolution can
be described by a Borel probability measure Qnt defined on S=[0, 1]n. In the game, players determine to
invest simultaneously and anonymously, they are just aware of their own investments, so x1,· · · ,xi,· · · ,xn65

are independent of each other. The statistic rule of xi(i = 1, · · · , n) is described by a Borel probability
measure Q. Then the average payoff of player i in state Q is

E(δxi
) =

∫

[0,1]n−1

πi(xi;x−i)Q(dx1) · · ·Q(dxi−1) · · ·Q(dxn)

= (r − 1− n− 1

n
sr − d)xi +

sr

n

∑

j 6=i

∫ 1

0

xjQ(dxj)

= (r − 1− n− 1

n
sr − d)xi +

n− 1

n
srx̄,

(2)

herein δxi(i = 1, · · · , n) is the Dirac delta measure. It means that the total probability mass is concentrated
on the single point xi. Further

x̄ =

∫ 1

0

xjQ(dxj) (3)

is the average investment of an agent in state Q. Let A be a Borel subset of S, then P (A) is the proportion
of the individuals whose strategies are selected in set A. Suppose that the population is large enough to
remove the effect of finite size. Finally, when the support of Q is not empty, the replicator dynamics is

dP

dt
(A) =

∫

A

[E(δx, Q)− E(Q,Q)]Q(dx), (4)

where

E(Q;Q) =

∫ 1

0

πi(xi;Q)Q(dxi) (5)

is the average investment of the whole population in state Q. Since the strategy set is compact, and the
payoff function is a continuous function with boundary, the equation (4) has a unique solution Qt(t ≥ 0)
for all the states for any initial state Q0 [35].70

Now we consider the evolutionary dynamics of the average investment x̄

dx̄

dt
=

∫ 1

0

xi
dQ

dt
dxi

=

∫ 1

0

xi[E(δxi
, Q)− E(Q,Q)]Q(dx)

= (r − 1− n− 1

n
sr − d)

∫ 1

0

(xi − x̄)2Q(dxi).

(6)

In equation (6), let z = r− 1− n−1
n sr−d. If d < r− 1− n−1

n sr, for fixed synergic factor r and population
size n, there exist s and d such that z > 0, therefore, dx̄

dt is positive in these cases. dx̄
dt = 0 if and only
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if Qt = δxi
. Due to the support Qt is invariant of the dynamics equation (4), x̄ will be convergent to the

maximum value x∗ in the support of Qt. Hence the solution to the equation (4) converges to δx∗ in weak75

topology [36]. In other words, if there are unselfish individuals who invest their maximum possession 1
in the support of Q0, then the proportion of players whose investments are 1−ε will decrease, no matter
how small ε is, Qt will be convergent to δ1 in weak topology, that is, all the players will contribute their
maximum property 1 into the common pool.

3. The Evolution of Continuous Persistent Cooperation in structured populations80

The above result was discussed in well-mixed populations, which ignore the effect of spatial structures
to the evolution. However in practical systems, limited by region, resource, information and so on, agents
have little chance to interact with anyone else randomly, they can only be involved in games in a certain
range, so, the populations are often structural. A number of researchers have studied continuous evolu-
tionary games in spatially structured populations [31, 37]. In this section, we are to discuss the continuous85

persistent cooperation mechanism in structured populations.

3.1. Continuous Persistent Cooperation in a Single-Group Game
3.1.1. Model

Suppose that all the individuals are assigned to the nodes of a network of size n (n ≥ 2). Edges denote
the interactions between pairs of the players. All the players invest into the common pool simultaneously90

and independently. Each player can only be engaged in one group, here we call it a single-group game.
Agent i sitting on node i plays the game with his or her ki neighbors connected with edges and he or she is
the focal one of the group. ki is the degree of node i, i = 1, · · · , n. In this situation, the total benefit is the
sum of the investment from each individual multiplied by a synergic factor r. Firstly, only a fraction s of
the total profit is shared equally among all the members in the same group regardless of their contributions.95

The remaining benefit is distributed again according to the investment of each player at an additional cost
xid in the second stage, where d∈[0,1] is the coefficient of the second cost. The second cost is proportional
to the investment. Then the income of player i is given by

πi(x1, · · · , xi, · · · , xki+1)

=
sr

ki + 1

ki+1∑

j=1

xj − xi + (1− s)r
∑

j∈σi

xj
xi

ki+1∑
j=1

xj

− xid

= (r − 1− ki
ki + 1

sr − d)xi +
sr

ki + 1

∑

j 6=i
xj

= πi(xi;x−i).

(7)

Similarly, the payoff of player j is denoted by πj(xj ;x−j).
Obviously, expression (1) is a special case of expression (7) if the network is homogeneous. The evo-100

lution is a dynamically learning process. Each individual may learn from one of his or her neighbors. We
perform a random sequential update where each Monte Carlo step (MCS) is defined as follows:

(i) A randomly selected agent i plays the game with his or her ki neighbors and obtains his or her payoff
πi(xi;x−i);

(ii) A randomly selected neighbor of agent i , say j, gains his or her payoff πj(xj ;x−j) in the game;105

(iii) In each MCS, player i either learns from player j with probability

Pi→j = 1/(1 + exp{[πi(xi;x−i)− πj(xj ;x−j)]/T} (8)

or keeps his or her own strategy with probability 1−Pi→j .
4



In this pairwise updating rule [38], T is the strength of noise. 1/T serves as the selection intensity in the
population dynamics as well as the stochastic errors in the replacement process [39, 40]. High values of
1/T correspond to very strong selection, whereas for 1/T → 0, selection becomes so weak that evolution
proceeds by random drift. If 1/T → ∞, we arrive at Q → 1, or Q → 0, depending solely on the sign of110

the payoff difference, hence the pairwise comparison updating rule becomes deterministic, indicating that
an individual always adopts his neighbor with higher income and refuses to imitate one with lower payoff.

Here, we define ρ = 1
n

n∑
i=1

xi as the average cooperation level in the stable state to measure the effect

of the continuous persistent cooperation.

3.1.2. Simulation Results115

Now we investigate the evolution dynamics of the model on a square lattice with periodic boundary
conditions. During a MCS, initially, all the strategies on [0,1] are assigned randomly to the nodes of a
square lattice. Then an individual is selected at random to play the game with ki=4 (i=1,· · · ,n) neighbors.
Each player is the focal one of his or her group. It is known that the system size can influence the dynamics
to a large degree, so we have confirmed our model on two different linear system sizes, 100×100 and120

400×400, and up to 105 full Monte Carlo steps before determining the average cooperation level ρ. The
phase diagrams in equilibrium have similar distributions in the phase planes. These simulations indicate
that our results are robust in even larger systems.

Figure 1: (Color online) The average cooperation level depending on s and d on a 400×400 lattice in the stable state. (a) r=2; (b)
r=3.5. Without losing generality, we set T = 0.1, implying that better performing individuals are readily to be imitated. The color
blue represents a low average cooperation level (upper right region), the darker the blue, the lower the contribution. The color red
represents a high average cooperation level (lower left region), the darker the red, the higher the contribution.

Fig.1 is the contour plot of the average cooperative level in the equilibrium state on the s−d plane. The
darker in red, the higher the average cooperative level, the darker in blue, the opposite. When r=2, the red125

area occupys nearly one third of the plane, however, when r=3.5, the red area takes over more than two-
thirds. If s is larger than the threshold (in Fig.1a, s≈0.63; in Fig.1b, s≈0.91), the persistent cooperation
mechanism fails to spur the cooperative action of all agents even without any second cost, because the
value of (r− 1− 0.8sr− d) is negative. Players will get less benefit if they contribute more into the game,
so, they prefer to play the game in a manner of “contributing less, getting more” without any surprise.130

That leads to the dilemma of the continuous PGG. For any fixed value of s within the certain interval (in
Fig.1a, s∈(0, 0.63); in Fig.1b, s∈(0.53, 0.91)), which covers the transition region, the average cooperative
level will decrease sharply towards a very low level with the increase of d. If d is large enough such that
(r− 1− 0.8sr− d) is less than zero, an individual will obtain less than ever. In other words, the temptation
of drawing back the (1− s) of the profit dwindles down due to the high second cost.135
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Fig.1 also shows that the synergic factor r plays an important role in the evolutionary dynamics. For
the same s and d, a higher synergic factor r results in a higher average cooperation level. As is seen in
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Figure 2: (Color online) Variation of the average cooperation level with r. (a) s=0.6, d=0.4; (b)s=0.7, d=0.6.

Fig.2a, we set s=0.4, d=0.6, when r=2, no agents would like to contribute any property to the public pool.
With the increase of r, the average cooperation level will go up rapidly until reaching its maximum value
1 at r=2.75. Similarly in Fig.2b, we let the two parameters be larger than that in Fig.2a, s=0.7, d=0.6, the140

enthusiasm of all players is frustrated, however, when r increases to 3.25, cooperation begins to emerge.
Fig.3 exhibits the evolutionary dynamics snapshots of the individuals strategies for r=3.5, s=0.6 and

d=0.4 in different stages. In the initial state, all the individuals invest into the common pool at random.
It is found that even though the overwhelming majority of players are not so active in cooperating at the
very beginning (Fig.3a is covered largely with blue), but with the enforcement of continuous persistent145

cooperation, agents switch their strategies in a short time period (in Fig.3b, blue areas become less and
red prevails in Fig.3c). Owing to spatial reciprocity [41, 42], players who have higher contributions form
clusters (red clusters) to defend the invasion of neighbors with lower contributions, until all the individuals
are very positive in contributing into the common pool (Fig.3d is almost covered with red).

3.2. Continuous Persistent Cooperation in a Multi-group Game150

Since the population is composed of rational and inhomogenous agents, they have various decision
abilities, learning abilites, social intercourse and investing preferences, etc. These inhomogeneities play
different roles in the evolutionary dynamics of cooperation. In this subsection, we take them into consider-
ation to discuss how the average cooperation level varies with these factors. The synergic factor r reflects
the conflicts between the social interest and the individual benefit. Larger the synergic factor yields less155

social dilemma. However, in the PGG, the synergic factor is not very large. Now the question is how to
promote the average cooperation level even if the synergic factor is small? Still the agents are arranged
on the nodes of a network of size n(n ≥ 2) with periodic boundary conditions. They decide upon their
investments into the common pool independently. For the case of agent i, he or she is involved in ki + 1
groups of games, where ki is the degree of node i. Among these ki + 1 groups, one group is focal at player160

i, the other ki groups are focal at the ki neighbors of player i, respectively. We call it a multi-group game
in the context. The influence of agent i is to be reflected in its degree ki, (i = 1, · · · , n).

3.2.1. Even investment in a multi-group game
An agent involved in a multi-group game may invest the same amount into each group, so his or her

total investment is proportional to his or her degree. On an irregular network, the degree of each node may165

be different, thereby social diversity is introduced. But if an agent has limited resource, it is hard to invest
so generously, then the agent can invest evenly into all the groups he or she is involved in so as to avoid

6



Figure 3: (Color online) Snapshots of the evolutionary dynamics of the agents strategies in a single-group game for different time
steps on a 100×100 lattice, where r=3.5, s=0.6, d=0.4. The color blue represents a low average cooperation level, the darker the blue,
the lower the contribution. The color red represents a high average cooperation level, the darker the red, the higher the contribution.
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risks. Santos et al. studied the promotion of cooperation by social diversity in conventional PGG on discrete
strategy space [7].

In our model, agent i who has ki neighbors, attends ki + 1 groups of games, and invests an amount170

xi into the common pool totally. According to the even-investment assumption, he or she shall invest
xi/(ki + 1) to each group, wherein the profit is the sum of the contributions from each member multiplied
by a synergic factor r. Only a fraction s of the total profit is shared among all the players, the remaining
(1− s) profit is relocated proportionally to their contribution at a second cost. Hence the payoff of agent i
in group g is given by175

πgi (x1, · · · , xi, · · · , xN(σ
g
i
))

=
1

N(σgi )
sr

∑

j∈σg
i

xj
kj + 1

+
1

ki + 1
[−xi + (1− s)rxi − xid]

=
1

ki + 1
[(r − 1− ki

ki + 1
sr − d)]xi +

sr

N(σgi )

∑

j 6=i

xj
kj + 1

= πgi (xi;x−i).

(9)

Note that σgi is the set of all the co-players of agent i involved in the game of group g, and N(σgi ) in the
number of co-players of agent i in group g. N(σgi ) is ki + 1 in the group which is focal at agent i. The
overall payoff of agent i from all the groups of games is obtained by πi(xi;x−i) =

∑
g π

g
i (xi;x−i).

3.2.2. Non-even investment in a multi-group game
When the agents play the continuous PGG game, they do expect to obtain more without contributing

more than planned. Hence, we take more heterogeneities into consideration such as inner competition. The
ecological and economical benefit of the ki + 1 groups are the critical points at present. Those groups who
have higher ecological and economical benefit will magnetize more investments and can make more profit
than others. Thus agents will fare better in these groups. To make the idea come true, we need to define a
new evaluating indicator. Firstly, we denote the average cooperation level of group g at time t by

ρgi (t) =

∑
j∈σg

i

xj

N(σgi )
, g = 1, · · · , ki + 1; i = 1, · · · , n. (10)

Then, we take sum of all the average cooperation levels of the ki + 1 groups which agent i attends,180

ki+1∑
g=1

ρgi (t). Finally, we compute the ratio of the average cooperation level of group g over the sum of all

mg
i (t) =

ρgi (t)
ki+1∑
g=1

ρgi (t)

, g = 1, · · · , ki + 1; i = 1, · · · , n. (11)

Obviously, mg
i (t) is monotonously increasing with ρgi (t). A group with a higher evaluating indicator can

magnetize more investment. Assuming that each player can get the average cooperation levels of all the
groups at last time step. By evaluating this indicator, to gain more profit, agents have to adjust their in-
vestments to different groups, not xi/(ki + 1) again but mg

i (t − 1)xi. The payoff of agent i in group g185

is

8



πgi (x1, · · · , xi, · · · , xN(σg
i ))

=
1

N(σgi )
sr

∑

j∈σg
i

mg
j (t− 1)xj +mg

i (t− 1)[−xi + (1− s)rxi − xid]

= mg
i (t− 1)[(r − 1− ki

ki + 1
sr − d)xi] +

sr

N(σgi )

∑

j 6=i
mg
j (t− 1)xj ]

= πgi (xi;x−i).

(12)

The overall benefit of agent i from the game is πi(xi;x−i) =
∑
g π

g
i (xi;x−i).

3.2.3. Non-even investment with preference in a multi-group game
In the study of human behavior, it is believed that various individual preferences lead to various in-

dividual behaviors and motivations. So we now modify the evaluating indicator mg
i (t) with a preference190

coefficient α to reflect preference of agents on investing into the groups with a higher average cooperation
level. Thus mg

i (t) changes into a new one

ugi (t) =
(ρgi (t))

α

ki+1∑
g=1

(ρgi (t))
α

, g = 1, · · · , ki + 1; i = 1, · · · , n. (13)

The investment that agent i contributed into group g is ugi (t − 1)xi. Now his or her payoff in group g is
expressed by

πgi (x1, · · · , xi, · · · , xN(σg
i
))

=
1

N(σgi )
sr

∑

j∈σg
i

ugj (t− 1)xj + ugi (t− 1)[−xi + (1− s)rxi − xid]

= ugi (t− 1)[(r − 1− ki
ki + 1

sr − d)xi] +
sr

N(σgi )

∑

j 6=i
ugj (t− 1)xj ]

= πgi (xi;x−i).

(14)

The overall benefit of agent i from the game is πi(xi;x−i) =
∑
g π

g
i (xi;x−i).195

ugi (t) is increasing with α. Parameter α reflects the degree of preference. A larger α results in a higher
preference. When α=0, the non-even investment game with preference returns to an even investment game,
and if α=1, it is non-even investment in a multi-group game.

3.2.4. Simulation results
In this subsection, we perform numerical simulations for the mechanisms introduced above. Santos et200

al. showed that cooperation performs better on scale-free networks than on regular networks with social
diversity [7], which implys that a structured population usually facilitates the evolution of cooperation in
most cases. Therefore, our simulations are performed on square lattice to examine the efficiency of these
mechanisms.

Fig.4 displays the variation tendency of average cooperation level with synergic factor r for fixed s and205

d. Obviously, compared to a single-group game (as illustrated in Fig.3), all these types of investment can
promote the positivity in cooperative action for the whole population effectively even if the synergic factor is
low. As for the three different types of investment in a multi-group game, the non-even investment performs
better than the even investment, but not so effective as the non-even investment with preference for some
synergic factors. With the increase of coefficient ugi (t), agents invest more into the groups which have a210

high average cooperation level or reputation, contribute less into the other groups. To gain more investment,
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Figure 4: (Color online) The variation of average cooperation level with synergic factor r for fixed s and d. (a) s=0.6, d=0.4; (b)s=0.7,
d=0.6.

the individuals in the same group have to contribute as much as they can to enhance the average cooperation
level. With this mechanism, the average cooperation level is improved in each group, so is that of the whole
population. After r approaches a threshold (r=2.2 for s=0.6, d=0.4 and r=2.8 for s=0.7, d=0.6), there is no
obvious difference in enhancing the average cooperation level among the three mechanisms. From Fig.4,215

we also find that a larger value of α makes cooperation begin to emerge in a shorter period with a smaller
synergic factor, e.g., when α=3, cooperation begins to emerge for r=1.55 (Fig.4a) and r=2 (Fig.4b). All
in all, the mechanism of non-even investment with preference promotes the activity in cooperating of the
players and mollify the social conflicts by self-management.

Figure 5: (Color online.) The average cooperation level depending on s and d on a 400×400 lattice in the stable state for r=2,
α=3. (a)T=0.1; (b)T=2 The color blue represents a low average cooperation level (upper right region), the darker the blue, the lower
the contribution. The color red represents a high average cooperation level (lower left region), the darker the red, the higher the
contribution.

Fig.5 illustrates the influence of s and d on the average cooperation level with r=2, α=3. Compared220

to Fig.1a, the red area covers larger part both in Fig.5a and Fig.5b, which again indicates the efficiency of
the investment with preference.Notably, Fig.5(a) shows some qualitative difference from Fig.1(a) on the
s − d plane. On one hand, since group size plays a decisive role in the evolution of cooperation in the
public goods game on the square lattice, thus the increase in the group size from N(σgi )=5(single-group)

10



to N(σgi )=9(multi-group) changes the interaction topology effectively in that the joint membership in the225

larger groups indirectly links the no-linking players. On the other hand, the noise level T also plays an
important role in the difference if T � 1 in spatial PGG. We set T=0.1 and T=2 in Fig5(a) and Fig5(b),
respectively. They have similar distributions on the s − d plane. Topology-independent impact of noise
remains valid multi-group systems for larger T values. The simulation results agree with the conclusions
as reported in [43]

Figure 6: (Color online.) Snapshots of the evolutionary dynamics of agents’ strategies in a non-even investment multi-group game
with preference on a 100×100 lattice for different time steps, where, r=2, α=3, s=0.6, d=0.4. The color blue represents a low average
cooperation level,the darker the blue, the lower the contribution. The color red represents a high average cooperation level,the darker
the red, the higher the contribution.

230

Fig.6 presents the snapshots of evolutionary dynamics contour plot of strategies of all the players on a
square lattice. The parameters are set as r=2, α=3, s=0.6, d=0.4. In the initial state, each agent is endowed
with a strategy randomly, most players are not active in cooperating, or they contribute only a little into the
common pool, so the color blue covers almost all the snapshot in Fig.6a, which results in a low cooperation
level. To gain more profit, players adjust their investments with preference. The groups which get more235

investments raise their average cooperation level, players involved in these groups fare well. This encourage
other players to contribute more into the game. The legend of “contributing more, getting more” spreads
among whole population. Individuals with higher investments also construct clusters in order to defend
their opponents with lower contributions. Selfish contributors also form clusters. With the promotion of
non-even investment with preference, individuals turn to invest more than ever. The blue clusters begin240

to shrink, until the plane is covered with more and more red area (Fig.6d). Due to the spatial reciprocity,
agents with similar strategies form clusters more easily in a multi-group game than in a single-group game,
thus the boundaries among agents in Fig.6b are much clearer than that in Fig.3b.
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4. Conclusion and Discussion

In a conventional PGG, some supporting mechanisms such as reward and punishment are often applied245

to promote the emergence and evolution of cooperation. However, these mechanisms need cooperators who
perform rewarding or punishing to pay an additional personal cost, which leads to the second free riders. In
this continuous PGG, there are no distinct boundaries between cooperators and defectors. No agents need to
punish or reward others to sustain the cooperative actions, they just do their own best in the game. In order
to encourage the agents to “contribute more, get more back”, several investing mechanisms are presented250

here. It is found that all the mechanisms can promote the positivity of the agents in investing (cooperative
actions) in appropriate range of distribution fraction and second cost coefficient even the synergic factor
is low. To make comparisons among the proposed mechanisms, numerical simulations are performed on
regular networks. Simulations indicate that players involved in multi-group games are more active than in
single-group games. Multi-group games are supposed to disperse risk. An agent should try not to put all his255

or her eggs in one basket. As for the three different investing styles in the continuous persistent cooperation
mechanism, non-even investment is superior to even investment, but inferior to non-even investment with
preference. Those groups with higher average cooperation levels or reputation appeal more investments and
gain more confidence from the agents. This inner competition and self-management play important roles
in promoting the average cooperation level of the body system. In summary, the proposed mechanisms260

enhance cooperative actions, and a continuous variant of persistent cooperation should be considered where
the level of cooperative actions (and hence strategies) is reflected in a continuous phenotypic trait.
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