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Abstract: The thermal sintering under oxidative conditions of Rh nanoparticles supported on oxides
characterized by very different oxygen storage capacities (OSC) and labilities was studied at 750
and 850 ◦C. Under sintering conditions, significant particle growth occurred for Rh/γ-Al2O3 (up to
120% at 850 ◦C). In striking contrast, Rh/ACZ (alumina–ceria–zirconia) and Rh/CZ (ceria–zirconia)
exhibited marked resistance to sintering, and even moderate (ca. −10% at 850 ◦C) to pronounced
(ca. −60% at 850 ◦C) redispersion of the Rh. A model is proposed based on a double-layer description
of metal–support interactions assigned to back-spillover of labile oxygen ions onto the Rh particles,
accompanied by trapping of atomic Rh by the resulting surface oxygen vacancies. This model accounts
for the observed resistance to sintering and actual redispersion of Rh, consistent with both alternative
sintering mechanisms, namely Ostwald ripening (OR) or particle migration and coalescence (PMC).

Keywords: rhodium; alumina ceria zirconia; nanoparticles sintering; redispersion; oxygen storage
capacity; atom trapping; Ostwald ripening; particle migration and coalescence; metal–support
interactions

1. Introduction

The vast majority of commercial heterogeneous catalysts consist of metal nanoparticles (NPs)
supported on oxides, mixed oxides or other high-surface-area materials. Restricting the active phases
to the nanoscale maximizes both the number of active catalytic sites and the interaction area between
the active phase and the supports [1,2]. The former provides efficient utilization of scarce and
expensive platinum group metals (PGMs) whilst the latter commonly leads to beneficial promotional
effects on catalytic performance for a range of reactions resulting from the so-called metal–support
interaction [3–10]. Major advances in nanocatalysis have been achieved recently due to the advent
of new or optimized traditional synthesis routes that enable the deposition of NPs with very narrow
particle size distributions, even to the level of atomic dispersion [1,2,11–15].
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However, deterioration of catalytic performance via thermal agglomeration under typical operating
conditions or during regeneration remains a key problem that has received much attention both for
reasons of fundamental significance and practical importance [16–21]. It is a leading cause of the
degradation of industrial catalysts used for large-scale synthesis of commodity chemicals as well as
energy and environmental catalytic applications that operate at elevated temperatures.

Up to date accounts of the mechanisms invoked are available in the comprehensive reviews of
Dai et al. [18], Goodman et al. [19] and Hansen et al. [20]. There are two main categories (Figure 1):
Either migration of entire nanoparticles and subsequent coalescence (PMC); or net transport of single
atomic species from smaller to larger nanoparticles so-called atomic ripening (AR), which includes
the particular case of Ostwald ripening (OR) (path b in Figure 1)—AR refers to any path of atom
migration, either over the surface of the support, or via the vapor phase [19]. Traditional analyses
(e.g., ex situ transmission electron microscopy (TEM)) of samples subjected to a variety of sintering
protocols makes distinguishing between OR and PMC a nontrivial and often impossible issue. Modes
of sintering are strongly dependent on the metal–support couple under consideration, as well as on the
reaction conditions and temperature. Modern state-of-the-art in situ TEM techniques have greatly
increased our knowledge, providing clear evidence that OR is the dominant mechanism in some
specific catalytic systems [22,23]. On the other hand, very recent literature points to the importance
of PMC in controlling sintering of dispersed nanoparticles. Thus, by means of precise atomic layer
deposition and modeling, Grillo et al. [14,15] demonstrated that NPs grew mainly via particle migration
and coalescence (PMC) rather than by OR. They claimed that OR of supported noble metals NPs is a
slow process that typically dominates the late stages of growth of large immobile NPs (ca. >5 nm) at
high temperatures (400–1000 ◦C) and over long time scales (hours to years) [14].

Catalysts 2019, 9, x FOR PEER REVIEW 2 of 16 

 

However, deterioration of catalytic performance via thermal agglomeration under typical 
operating conditions or during regeneration remains a key problem that has received much attention 
both for reasons of fundamental significance and practical importance [16–21]. It is a leading cause 
of the degradation of industrial catalysts used for large-scale synthesis of commodity chemicals as 
well as energy and environmental catalytic applications that operate at elevated temperatures. 

Up to date accounts of the mechanisms invoked are available in the comprehensive reviews of 
Dai et al. [18], Goodman et al. [19] and Hansen et al. [20]. There are two main categories (Figure 1): 
Either migration of entire nanoparticles and subsequent coalescence (PMC); or net transport of single 
atomic species from smaller to larger nanoparticles so-called atomic ripening (AR), which includes 
the particular case of Ostwald ripening (OR) (path b in Figure 1)—AR refers to any path of atom 
migration, either over the surface of the support, or via the vapor phase [19]. Traditional analyses 
(e.g., ex situ transmission electron microscopy (TEM)) of samples subjected to a variety of sintering 
protocols makes distinguishing between OR and PMC a nontrivial and often impossible issue. Modes 
of sintering are strongly dependent on the metal–support couple under consideration, as well as on 
the reaction conditions and temperature. Modern state-of-the-art in situ TEM techniques have greatly 
increased our knowledge, providing clear evidence that OR is the dominant mechanism in some 
specific catalytic systems [22,23]. On the other hand, very recent literature points to the importance 
of PMC in controlling sintering of dispersed nanoparticles. Thus, by means of precise atomic layer 
deposition and modeling, Grillo et al. [14,15] demonstrated that NPs grew mainly via particle 
migration and coalescence (PMC) rather than by OR. They claimed that OR of supported noble metals 
NPs is a slow process that typically dominates the late stages of growth of large immobile NPs (ca. 
>5 nm) at high temperatures (400–1000 °C) and over long time scales (hours to years) [14]. 

 
Figure 1. Schematic of potential sintering mechanisms of catalytic nanoparticles leading to sintering, 
fewer undercoordinated sites and reduced metal–support interaction. 

Since all heterogeneous catalysts are inevitably subjected to sintering during operation and 
regeneration [16,21], regardless of mechanism, the effect poses a grand challenge for the development 
of sinter-resistant catalysts [18,19]. Both PMC and OR mechanisms require the breaking of bonds 
between metal atoms and between metal atoms and the support surface, so that sintering is always a 
strong function of temperature. The characteristic temperatures for atom detachment and their 
subsequent diffusion can be estimated from the respective Hütting and Tamman temperatures (TH = 
0.3Tmelting, TT = 0.5Tmelting) [16,21] which provide an indication of the temperatures at which surface and 
bulk atoms are mobilized. Indeed, the susceptibilities to sintering of some common heterogeneous 
catalysts in their metallic state (under reducing atmosphere) are in accordance with their TH and TT 
temperatures: Nanoparticle stability generally decreases with decreasing TH and TT temperatures in 
the sequence: Ru > Ir > Rh > Pt > Pd > Ni > Cu > Ag [21]. The actual order is, of course, subject to 
metal–support adhesion energy and possible strong interactions that can influence behavior in many 
practical catalyst systems. In oxidizing atmospheres, TH and TT are of much less use for the prediction 
of nanoparticle stability which also depends on their volatility, thermal stability (some metal oxides 
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Since all heterogeneous catalysts are inevitably subjected to sintering during operation and
regeneration [16,21], regardless of mechanism, the effect poses a grand challenge for the development
of sinter-resistant catalysts [18,19]. Both PMC and OR mechanisms require the breaking of bonds
between metal atoms and between metal atoms and the support surface, so that sintering is always
a strong function of temperature. The characteristic temperatures for atom detachment and their
subsequent diffusion can be estimated from the respective Hütting and Tamman temperatures
(TH = 0.3Tmelting, TT = 0.5Tmelting) [16,21] which provide an indication of the temperatures at which
surface and bulk atoms are mobilized. Indeed, the susceptibilities to sintering of some common
heterogeneous catalysts in their metallic state (under reducing atmosphere) are in accordance with
their TH and TT temperatures: Nanoparticle stability generally decreases with decreasing TH and
TT temperatures in the sequence: Ru > Ir > Rh > Pt > Pd > Ni > Cu > Ag [21]. The actual order
is, of course, subject to metal–support adhesion energy and possible strong interactions that can
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influence behavior in many practical catalyst systems. In oxidizing atmospheres, TH and TT are
of much less use for the prediction of nanoparticle stability which also depends on their volatility,
thermal stability (some metal oxides decompose before TH or TT are reached) and the strength of the
metal–oxide–support interaction [16,21]. Indeed, for PGMs dispersed on a relatively inert support
(γ-Al2O3) Fiedorow et al. [24] obtained the following stability sequence in oxidizing atmospheres Rh >

Pt > Ir > Ru, which does not match the order indicated by the TT of the corresponding PGM oxides
(RuO2(735K), Rh2O3(687K), IrO2(685K), PtO2(362K)). However, under reducing conditions (NPs in the
metallic state), the stability sequence was Ir~Ru > Rh > Pt in agreement with their TT values.

As noted above, metal–support interactions may drastically alter such simplified predictions.
Accordingly, strategies that involve enhancement of the interaction of NPs with the supports have
often been used in efforts aimed at designing sinter-resistant catalysts; a comprehensive tutorial review
by Dai et al. [18] is available. In this respect, atom trapping, i.e., immobilization of isolated single
atoms at support sites is a new and promising approach, especially with supports that provide surface
lattice oxygen defects that could act as trapping centers [11–13]. CeO2- and ZrO2-based materials
and perovskites that contain a sufficient concentration of surface and bulk oxygen vacancies can
provide traps for metal atoms during their diffusion and indeed have been successfully used for this
purpose [8,25–29].

Atom trapping methodology may also be used to induce on-stream redispersion of catalyst
particles by applying oxidizing conditions at a high temperature [11]. This is of major importance
in the chemical industry and studies involving redispersion of PGM nanoparticles, mainly Pt, have
recently appeared [13,30–32]. In the absence of trapping centers, high-temperature oxidative treatment
inevitably leads to particle agglomeration. Fewer studies on the sintering behavior of other PGMs
have appeared, Ir [8,27,28], Pd [29], and Rh [33–36]. Notably, and of direct relevance to the present
paper, reports on their potential for in situ redispersion are absent.

Here, we report the resistance, or lack of resistance, to sintering and also the in situ on-stream
high-temperature oxidative redispersion of Rh nanoparticles deposited on oxide supports encompassing
a wide range of lattice oxygen ion lability, namely γ-Al2O3, alumina–ceria–zirconia (ACZ: 80 wt %
Al2O3–20 wt % Ce0.5Zr0.5O2-δ) and ceria-zirconia (CZ: Ce0.5Zr0.5O2-δ) supports. It is found that the
higher the oxygen ion lability of the support, the lower the propensity of the nanoparticles to sintering,
and most importantly, the higher the propensity towards redispersion at high temperatures. The
sintering model recently developed by our group [8,27,28] explains the observed behavior in terms
of both OR and PMC mechanisms. As we shall see, it also provides a satisfactory explanation of
the redispersion phenomena found here. To the best of our knowledge, this is the first report of Rh
redispersion achieved by a simple in situ and cost-effective atomic trapping methodology.

2. Results and Discussion

2.1. Materials Characterization

2.1.1. Textural Characteristics

The pore size distributions of the γ-Al2O3, ACZ and CZ supports and the corresponding
Rh/γ-Al2O3, Rh/ACZ and Rh/CZ catalysts are shown in Figure 2; the insets depict the corresponding
N2 adsorption–desorption isotherms at −196 ◦C. γ-Al2O3 and Rh/γ-Al2O3 exhibited type IV isotherms
similar to mesoporous oxides according to IUPAC classification, with a H1 hysteresis loop suggesting
a channel-like structure with spherical or cylindrical mesopores [37]. The isotherms did not show
a distinct plateau at 0.8 < P/Po < 1 probably due to the presence of macroporosity and interparticle
porosity. On the other hand, the absence of the characteristic steep rise at the beginning of the
absorption branch suggests the absence of micropores. The calculated pore size distribution (PSD)
using the Barrett–Joyner–Halenda (BJH) model showed two distributions of mesopores with diameters
~10 and ~15 nm, respectively. In a similar manner the ACZ and Rh/ACZ isotherms may be identified
as type IV with H1 tending to H2-type hysteresis, characteristic of cylindrical and cylindrical-ink-bottle
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pores with a fairly narrow unimodal pore-size distribution of ~8 nm diameter. This is in accord with
Brunauer–Emmett–Teller (BET)-BJH results reported for similar materials [38]. CZ and Rh/CZ yield
type IV isotherms with H2-like hysteresis attributed to cylindrical-ink-bottle pores with principal
distribution centered at ~9 nm diameter, characteristics in agreement with literature data [39,40].
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Figure 2. Pore size distribution and N2 adsorption–desorption isotherms (inset) of the support 
materials and the corresponding Rh catalysts. ACZ: Alumina–ceria–zirconia; CZ: Ceria–zirconia. 

The textural characteristics of the supports and the corresponding Rh catalysts, obtained by 
means of the BET-BJH method, are summarized in Table 1. It is apparent that differences between 
the textural characteristics of the supports and the corresponding catalysts are marginal; the small 
decreases in the total surface areas and pore volumes between pristine supports and the counterpart 
Rh catalysts indicates the expected presence of some mesopore blocking by the metal particles. The 
table also includes the inductively coupled plasma–optical emission spectroscopy (ICP-OES) 
determined Rh loadings of the three catalysts. For Rh/γ-Αl2O3, it was 1 wt %, corresponding to the 
nominal expected value; slightly lower on Rh/ACZ and Rh/CZ (0.8 wt %). 

2.1.2. Reducibility Characteristics  

Figure 2. Pore size distribution and N2 adsorption–desorption isotherms (inset) of the support materials
and the corresponding Rh catalysts. ACZ: Alumina–ceria–zirconia; CZ: Ceria–zirconia.

The textural characteristics of the supports and the corresponding Rh catalysts, obtained by means
of the BET-BJH method, are summarized in Table 1. It is apparent that differences between the textural
characteristics of the supports and the corresponding catalysts are marginal; the small decreases in
the total surface areas and pore volumes between pristine supports and the counterpart Rh catalysts
indicates the expected presence of some mesopore blocking by the metal particles. The table also
includes the inductively coupled plasma–optical emission spectroscopy (ICP-OES) determined Rh
loadings of the three catalysts. For Rh/γ-Al2O3, it was 1 wt %, corresponding to the nominal expected
value; slightly lower on Rh/ACZ and Rh/CZ (0.8 wt %).
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2.1.2. Reducibility Characteristics

Figure 3 depicts the H2 consumption profiles of the supports (Figure 3a) and the Rh catalyst
counterparts (Figure 3b) obtained by temperature programmed reduction with hydrogen (H2-TPR)
experiments. Since our attention is focused on the amount of labile lattice oxygen in these materials,
the discussion below provides this quantity in µmol O2 per gram of material, which corresponds to
half of the amount of consumed H2. The oxygen storage capacities for both supports and catalysts
assessed by H2-TPR (Figure 3) are included in Table 1. The values of 0, 101 and 557 µmol O2 g−1 for the
γ-Al2O3, ACZ and CZ supports, respectively, reflect the nonreducible character of γ-Al2O3, and the
Ce4+

→Ce3+ reduction of ACZ and CZ supports giving rise in the latter cases to two broad overlapping
peaks at ca. 450–500 ◦C and 650–700 ◦C (Figure 3a). This is a feature characteristic of ceria-containing
samples [41,42]; the low-temperature (LT) peak is attributed to superficial reduction taking place at CZ
surfaces, whilst the high-temperature (HT) one is assigned to reduction of bulk ceria [41].

Dispersion of ~1 wt % Rh on the supports resulted in an increase in the hydrogen consumption,
thus in oxygen capacity, for all three cases, yielding respectively 70, 146 and 589 µmol O2 g−1 values for
Rh/γ-Al2O3, Rh/ACZ and Rh/CZ. These higher values compared to the corresponding values (i.e., 0,
101 and 557 µmol O2 g−1) for the γ-Al2O3, ACZ and CZ supports, respectively, reflect the contribution
of rhodium oxide reduction to the metallic phase. Specifically, for Rh/γ-Al2O3, the peak at ca. 150 ◦C
and a broader one at ca. 500 ◦C, corresponding to 45 and 25 µmol O2 g−1, respectively, due to rhodium
oxide reduction, are equivalent to a total of 70 µmol O2 g−1, which is very close to the theoretically
calculated amount of 73 µmol O2 g−1 for Rh2O3→Rh0 reduction with 1 wt % Rh in the catalyst. The
LT peak (~150 ◦C) can be attributed to reduction of Rh2O3 species on the alumina surface, while the
broad HT peak (~500 ◦C) could originate from reduction of RhAlxOy formed at the metal–support
interface by diffusion of rhodium oxide into the alumina, as reported in the literature [36]. The Rh
oxide reduction peaks for both Rh/ACZ and Rh/CZ appear at a much lower temperature (ca. 90 ◦C)
compared to Rh/γ-Al2O3. This is due to hydrogen spillover that promotes the reducibility of both
CeO2 and Rh2O3 [7,41,42]. The oxygen capacities corresponding to Rh oxide reduction on Rh/ACZ and
Rh/CZ were 45 and 32 µmol O2 g−1, respectively, i.e., both significantly lower than 58.4 µmol O2 g−1

calculated theoretically for these samples containing 0.8 wt % Rh.
This is in agreement with our recent results which demonstrated that rhodium nanoparticles

anchored on supports with high oxygen ions lability undergo only partial oxidation because strong
interactions with these supports destabilizes the Rh oxide phase [43]. In particular, the capacity
of 32 µmol O2 g−1 found for Rh/CZ, where all Rh particles are in interaction with CZ, is close to
the theoretical value of 29.2 which corresponds to the transformation of Rh1+

→Rh0. This is in
good agreement with our recent X-ray photoelectron spectroscopy (XPS) findings, which showed
that Rh1+ was the only metal phase present on preoxidized Rh/CZ resulting from extensive O2−

back-spillover from the CZ support to Rh particles, thus weakening the Rh-O bond and destabilizing
the Rh2O3 phase [43]. At the same time, the enhanced reducibility of ACZ and CZ is evidenced by
the substantial shift of the peaks attributed to ceria reduction to lower temperature (ca. 150–450 ◦C,
Figure 3b) indicating strong promotion of H2 spillover, which, in the absence of metal, is limited by H2

dissociation [41,42].

2.1.3. Structural and Morphological Characteristics

Powder X-ray diffraction (PXRD) data for the fresh Rh/γ-Al2O3, Rh/ACZ and Rh/CZ catalysts [43]
showed no diffraction peaks corresponding to Rh due to the small metal particle size (<~5 nm),
as indeed confirmed by the H2 titration data (Table 2); Rh nanoparticles were, however, visible by
high-resolution transmission electron microscopy (HRTEM) as shown below. Characteristic reflections
of a Ce0.5Zr0.5O2-δ solid solution were detected in the CZ-containing samples (Rh/ACZ and Rh/CZ).
Also observed in the Rh/ACZ catalyst were distinct phases of γ-Al2O3 and CZ, consistent with a
mutual partial coating of the two substances at the nanometer scale, in accord with the literature for
ACZ mixed oxides prepared by a similar method [7,44,45]. Since the percentage of the CZ component
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in ACZ support is low (20%), γ-Al2O3 is expected to predominate at the surface—the so-called
“alumina diffusion-barrier” [44] characteristic of ACZ composites synthesized as here—which inhibits
segregation of alumina and CZ phases at elevated temperatures, thus preventing sintering of noble
metal nanoparticles.
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Rh catalysts.

Table 1. Textural characteristics and oxygen storage capacities (OSC) of the support materials and the
corresponding fresh Rh catalysts.

Supports
and

Catalysts
Chemical Formula

Rh
Loading
(wt %) a

SBET (m2

g−1)

Total Pore
Volume

(cm3 g−1)

Average
Pore Size
Diameter

(nm)

OSC
(µmol O2

g−1)

Experimental
vs. Theoretical
O2 Bound to Rh
(µmol O2 g−1) c

γ-Al2O3 γ-Al2O3 178 0.60 13.5 0

Rh/γ-Al2O3 Rh/γ-Al2O3 1.0 160 0.57 14.2 69 b 69 vs. 73

ACZ 80 wt %Al2O3–20 wt %Ce0.5Zr0.5O2-δ 149 0.29 7.9 101

Rh/ACZ Rh/(80 wt %Al2O3–20 wt %Ce0.5Zr0.5O2-δ) 0.8 136 0.28 8.2 146 b 45 vs. 58.4

CZ Ce0.5Zr0.5O2-δ 22 0.05 9.2 557

Rh/CZ Rh/Ce0.5Zr0.5O2-δ 0.8 17 0.05 9.3 589 b 32 vs. 58.4

a Rh content measured by means of inductively coupled plasma–optical emission spectroscopy (ICP-OES). b These
values include the amount of oxygen bound to the Rh component of the sample as rhodium oxides (i.e., the O2
amount related to the transformation Rh oxides→Rh0). c These values compare the experimentally measured
(via H2-TPR) amount of oxygen bound to the Rh component of the catalysts as rhodium oxide species versus the
theoretically calculated amount of oxygen bound to the Rh component of the catalysts as Rh2O3.

Figure 4A shows representative HRTEM images and corresponding particle size distributions
for the three freshly prepared catalysts (a) Rh/γ-Al2O3, (b) Rh/ACZ and (c) Rh/CZ which exhibited
small randomly distributed spherical metal particles of 1.3 ± 0.4, 1.5 ± 0.5 and 5.1 ± 1.7, respectively
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(Figure 4A(a,b,c) and Table 2). Oxidative sintering in 20% O2/He flow at 750 ◦C for 2 h (Sinter #1,
Figure 4B), followed by additional sintering in the same environment at 850 ◦C for 2 h (Sinter #2,
Figure 4C) caused significant changes in the mean Rh particle size distribution (though not in particle
shape). This implies the simultaneous occurrence of both particle growth and particle redispersion
whose relative importance depends strongly on the identity of the supporting material, as discussed in
detail below.
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2.2. Sintering Behavior

Sintering of Rh nanoparticles on the three supports was investigated by means of H2-chemisorption
(H2-uptake data shown in Supplementary Material, Table S1), and corroborated by HRTEM
measurements on the (A) fresh, (B) Sinter #1 and (C) Sinter #2 series of the (a) Rh/γ-Al2O3, (b)
Rh/ACZ and (c) Rh/CZ samples shown in Figure 4. The resulting mean particle sizes are summarized
in Table 2, while the influence of sintering time/temperature and support oxygen storage capacity on
Rh particle growth or redispersion defined by the equation

%Rh particle growth = 100·(PS − PSo)/PSo (1)
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are shown in Figures 5 and 6, respectively, where PS denotes mean Rh particle size and the superscript
“o” refers to fresh unsintered samples.

The particle sizes (Table 2) measured by TEM (a local technique) and H2-chemisorption (a surface
average technique) are in close agreement. Note, however, that the TEM particle size is a number
average (counted once per particle) that includes only particles above the instrumental detection limit.
H2-chemisorption is a highly sensitive technique that assays all different sizes of Rh clusters on the
catalyst surface (though possibly vulnerable to some error from metal–support interaction effects and
spillover of hydrogen from the metal to or from the support). H2-chemisorption was, therefore, used
as the preferred method for monitoring particle growth and redispersion.

Table 2. Sintering characteristics of the fresh Rh catalysts exposed to oxidative thermal aging. (Sinter
#1: 2 h @ 750 ◦C; Sinter #2: 2 h @ 750 ◦C + 2 h @ 850 ◦C).

Catalysts

Mean Rh Particle Size (nm)

Fresh Sinter #1 Sinter #2

H2-Chem HRTEM H2-Chem HRTEM H2-Chem HRTEM

Rh/γ-Al2O3 1.2 1.3 ± 0.4 1.6 1.6 ± 0.3 2.6 1.6 ± 0.3

Rh/ACZ 1.8 1.5 ± 0.5 1.4 2.0 ± 0.8 1.7 1.5 ± 0.4

Rh/CZ 5.0 5.1 ± 1.7 2.1 2.5 ± 0.7 2.2 2.0 ± 0.7

Nanoparticles onγ-Al2O3 exhibited an about 33% growth after procedure Sinter #1 and significantly
higher growth, ~117%, after additional sintering according to Sinter #2 (Figure 5, Table 2 and TEM images
Figure 4A(a)→4B(a)→4C(a)). In contrast, nanoparticles on ACZ, and especially on CZ, underwent
redispersion, which is much more pronounced in the latter case: An initial ~22% redispersion on
Rh/ACZ after 2 h of sintering at 750 ◦C (Sinter #1) was followed by particle growth after two additional
hours sintering at 850 ◦C (Sinter #2), finally leading to only marginal redispersion of ~6% (Figure 5,
Table 2 and TEM images Figure 4A(b)→4B(b)→4C(b)). For Rh/CZ however, an initial extended
redispersion of ~58% occurred during Sinter #1 and remained almost unaffected after Sinter #2
(Figure 5, Table 2 and TEM images Figure 4A(c)→4B(c)→4C(c)).

Clearly, the nature of the support strongly influences the oxidative sintering behavior of Rh
nanoparticles: Supports without or negligible amounts of labile lattice oxygen (i.e., γ-Al2O3 with
OSC ~0) do not prevent particle growth of Rh, as found recently for Ir nanoparticles supported on
γ-Al2O3 [8,27,28]. In contrast, supports with high oxygen ion lability (i.e., ACZ and CZ with OSC
of 101 and 557 µmol O2 g−1, respectively) not only prevent sintering as also found for Ir [8,27,28],
but actually promote Rh redispersion: The higher the OSC of the support, the greater the resulting
redispersion, as shown in Figure 6.
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2.3. Mechanistic Implications of Sinter-Resistant and Redispersion Phenomena

Oxidative redispersion of supported platinum group metals is well known, as recently reviewed
by Morgan et al. [30]. In the case of reducible supports, such as ACZ and CZ, it is most likely mediated
by metal–support interaction involving atomic trapping [11–13] at support sites of atomic species
detached from nanoparticles (the initiating step in the OR mechanism of sintering [18–20]). As shown
in the present work, redispersion depends strongly on the reducibility of the support, i.e., its labile
lattice oxygen content, or, equivalently, its oxygen storage capacity (Figures 5 and 6); the effect is very
pronounced on CZ, less so on ACZ and absent in the case of γ-Al2O3. In the latter case, extensive
particle growth occurred, rather than redispersion. It is therefore reasonable to conclude that surface
oxygen defects in the support, so-called oxygen vacancies (VÖ in Kröger–Vink defect notation for point
defects in crystals) are the active centers for atom trapping.

We recently developed a plausible model which explained the resistance to oxidative thermal
sintering of Ir nanoparticles dispersed on oxide supports with high oxygen ion lability [8,27,28]. This
involved the key role of the effective double layer [Oδ−, δ+] account of metal–support interactions [3,9,
10,46], whereby thermally driven O2− back-spillover from supports with substantial labile oxygen onto
catalyst nanoparticles affects not only their intrinsic surface activity [3–10,46], but also their sintering
behavior (Figure 7), as we demonstrated for the first time in References [8,27,28]. We argued that the
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[Oδ−, δ+] double layer endows catalyst particles with a negative charge at their gas-exposed surfaces,
leading to interparticle repulsion at short range, thus preventing particle–particle encounters followed
by coalescence (i.e., PMC): The higher the lability of O2− in the support, the lower the vulnerability of
the nanoparticles to sintering in an oxidative environment [8,27]. The model also implied simultaneous
occurrence of atomic trapping as a contributing factor in the sinter-resistant mechanism: Labile support
lattice oxygen creates surface oxygen vacancies (VÖ) that act as traps for very small (atomic) metal
particles, thus inhibiting their diffusion and agglomeration [8]. At the same time, the Oδ− modified
surface barrier present on large catalyst particles increases the activation energies for detachment and
reattachment of metal entities whose transport would otherwise lead to continuous growth of large
particles at the expense of smaller particles according to the OR model of sintering.
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These effects on metal transport would be negligible for low-lability supports (e.g., Al2O3),
which therefore cannot prevent particle agglomeration by either PMC or OR mechanisms. It is worth
noting that pure CeO2 has a relatively low concentration of lattice defects in comparison to Gd2O3 or
ZrO2-doped CeO2. Therefore, the optimal supports for providing sinter resistance should be those
with highest O2− ion mobility, such as CeO2 modified with cations such as gadolinium, zirconium
and others that act to enhance ceria lattice defects, increasing O2− vacancies and consequently O2−

mobility [5,47,48].
A summary of the factors that inhibit sintering according to effective double-layer approach is

depicted schematically Figure 8. Three mechanistic paths are associated with particle growth and our
model includes several factors that control their occurrence and strength. Path I concerns large particle
migration and coalescence (PMC) which, in our model, can be strongly inhibited by electrostatic
interparticle repulsion due to the presence of the effective double layer. Path II (a and b) concerns the
OR sequence, i.e., atom detachment (IIa) and reattachment (IIb), both of which are inhibited by the
increased activation energies arising from the Oδ−-modified metal particle surfaces. Path III concerns
the diffusion of detached atomic species from smaller particles towards larger ones, which is strongly
inhibited by atom trapping at VÖ centers.

According to this view, the behavior of Rh particles towards sintering shown in Figures 5 and 6
may be rationalized. The absence of an effective double layer (Rh/Al2O3) leads to severe particle
growth, up to ~120% as a function of sintering time and temperature (Figure 5); none of the possible
antisintering factors are available. On the other hand, the presence of an effective double layer and
its effects on metal transport can lead to either moderate particle growth, sinter prevention or even
redispersion, depending on the strength of the phenomena. Thus, for Rh/ACZ, characterized by
moderate oxygen ion lability, an initial slight redispersion after 2 h under sintering conditions was
almost quenched after 4 h. Evidently, the moderately intense effective double layer could suppress
PMC by interparticle repulsion forces, although path IIa, i.e., atom detachment via Ostwald ripening,
still seems to have been operating. Diffusing detached atoms on the mixed alumina–CZ surface initially
had a finite possibility of encountering trapping centers on the CZ compartment. Otherwise, they were
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recaptured by large particles, resulting in moderate redispersion (Figure 5). Under further sintering,
the population of Rh atom trapping centers was progressively reduced, eventually reversing the net
effect as observed (Figure 5). We cannot exclude the possibility that some detached atoms underwent
diffusion on the alumina component of the ACZ support. Nevertheless, the overall sintering propensity
should be less than that of pure Rh/Al2O3, accounting for the very different sintering behavior of
Rh/Al2O3 and Rh/ACZ; the sintering characteristics of Rh/ACZ are closer to those of Rh/CZ than
Rh/Al2O3 (Figures 5 and 6). Finally, with Rh/CZ, the expected dense effective double layer on Rh
particles strongly suppressed PMC. At the same time, the concomitant high population of support
trapping centers acted to efficiently trap detached atoms strongly inhibiting the occurrence of path IIb.
The net result was pronounced Rh redispersion, even after prolonged sintering (Figures 5 and 6).
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3. Experimental

3.1. Preparation and Aging of Catalysts

Rh nanoparticles were dispersed by wet impregnation on γ-Al2O3, ACZ (80 wt % Al2O3–20 wt
% Ce0.5Zr0.5O2-δ) and CZ (Ce0.5Zr0.5O2-δ) supports, with a 1.0 wt % Rh nominal loading. γ-Al2O3

was obtained from Engelhard (Engelhard de Meern B.V., The Netherlands) and ground to a powder.
Powders of ACZ and CZ were prepared by coprecipitation, of the corresponding precursor salts
Al(NO3)3·9H2O, Zr(NO3)2·H2O and Ce(NO3)3·6H2O supplied by Alfa Aesar (Haverhill, MA, USA),
followed by calcination at 800 ◦C for 1 h, as described in detail elsewhere [7].

Rhodium (III) nitrate solution (10% w/v Rh in 20–25 wt % HNO3) purchased from Acros Organics
was used as the metal precursor after dilution in water in order to produce a 2 mg Rh/mL concentrated
solution of Rh(NO3)3. An appropriate amount of each support was impregnated with this solution
under continuous stirring at 75 ◦C to yield supported catalysts with 1.0 wt % Rh nominal loading.
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After water evaporation, the suspension was dried at 110 ◦C for 12 h and then calcined in air at 450 ◦C
for 1 h to decompose the nitrate precursor. The resulting materials were reduced at 400 ◦C under 50%
H2/He flow for 2 h followed by heating (20 ◦C/min) under 1% H2/He flow to 800 ◦C, maintained for 1 h.
The as-prepared Rh/γ-Al2O3, Rh/ACZ and Rh/CZ catalysts are hereafter denoted as “fresh” (Table 1).

Sintering behavior was investigated by means of two aging protocols: (i) Heating in 10 NmL·min−1

20% O2/He flow at 750 ◦C for 2 h, and (ii) heating in 10 NmL·min−1 20% O2/He flow at 750 ◦C for 2 h
followed by further heating at 850 ◦C for 2 h, hereafter denoted as Sinter #1 and Sinter #2 samples,
respectively. In accord with the literature, no rhodium weight loss is expected at these temperatures
and times [49–51].

3.2. Characterization Methods

Textural, structural and other physicochemical characterizations of the catalysts were performed
by a variety of techniques as follows:

Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES) Measurements: Total Rh contents
were obtained by means of ICP-OES using a Thermo Scientific iCAP 7400 duo instrument (Waltham,
MA, USA). Details of the method and sample pretreatment before the ICP-OES measurements can be
found in our previous report [43].

BET Measurements: Total surface areas (SBET), average pore volume and mean pore size diameters
were determined according to the Brunauer–Emmett–Teller (BET) and Barret–Joyner–Halenda (BJH)
methods from N2 adsorption–desorption isotherms obtained with a Quantachrome Nova 2200e
instrument (Boynton Beach, FL, USA) at −196 ◦C. The total pore volume calculation was based on the
nitrogen volume obtained at the highest relative pressure. Prior to measurements, the samples were
degassed at 350 ◦C for 12 h under vacuum.

Isothermal Hydrogen Chemisorption (H2-Chem.): Determination of the number of Rh surface sites,
(Rh dispersion) and the associated crystallite sizes were achieved by isothermal (at 0 ◦C) hydrogen
chemisorption measurements carried out on a Quantachrome ChemBet Pulsar TPR/TPD chemisorption
analyzer (Boynton Beach, Florida) equipped with an Omnistar/Pfeiffer Vacuum mass spectrometer.
To this end, ~150 mg of catalyst was loaded into a quartz U-tube connected to the analyzer and
pretreated as follows before the measurement: Reduction at 550 ◦C for 1 h with a flux of 5% H2 in
He (15 NmL/min), gas phase purging at the same temperature for 0.5 h by N2 flux (15 Nm/min) and
finally cooling 0 ◦C (ice/water bath) under N2 flow. Pulses of pure hydrogen (280 µL) were then
injected until saturation, thus providing the total uptake of chemisorbed hydrogen. These values were
used to estimate the number of active surface sites, and hence Rh dispersion and mean crystallite
size. The low temperature used for these measurements avoided hydrogen spillover in the case of
CeO2-containing supports.

Hydrogen Temperature Programmed Reduction Measurements: H2-TPR measurements were carried out
in the temperature interval 30–850 ◦C using the same instrumentation as employed for H2-chemisorption
experiments. To this end, ~150 mg of catalyst was loaded into a quartz U-tube connected to the TPR
apparatus and preoxidized in situ with 20% O2/He at 750 ◦C for 0.5 h, cooled to room temperature
under the same atmosphere, then purged under He flow for 0.5 h. After this pretreatment, a flow of 15
NmL min−1 of 1% v/v H2 in He was continuously passed through the sample and a linear temperature
ramp from ~30 ◦C up to 850 ◦C was applied at 10 ◦C min−1 and the H2 content of the effluent gas was
measured by MS (H2-TPR spectra). The integrated peak areas were used to calculate the total amount
of H2 consumed (in µmol H2 g−1) by labile lattice oxygen; half of this quantity represents the total
oxygen storage capacity, OSC, in µmol O2 g−1 [52,53].

TEM Measurements: High-resolution TEM images obtained with an aberration corrected JEOL
2100-F microscope (Tokyo, Japan) operated at 200 kV. Samples were gently ground in high-purity
methanol using an agate pestle and mortar prior to TEM observations. The resulting samples were
deposited on 300-mesh-carbon-supported copper grids and dried under ambient conditions. ImageJ
1.41 software was used for Image analysis. In order to enable the comparison between Rh particle
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sizes obtained by H2-chemisoprtion and by TEM, the latter were performed with samples that were
preconditioned under the same reducing conditions as those used for the H2-chemisoprtion experiments.

Powder X-ray Diffraction Measurements: PXRD characterization of the fresh catalysts was performed
with a Bruker D8 Advance Diffractometer (Billerica, MA, USA) with a LynxEye high-speed strip
detector using Cu Kα1 (λ = 0.1542 nm) radiation.

4. Conclusions

Rh nanoparticles dispersed on a variety of oxide supports exhibit markedly different thermal
sintering characteristics under oxidative environments, which correlate with the oxygen ion lability of
the support.

• γ-Al2O3 provided little or no resistance to sintering, leading to ~50% Rh particle growth at 750 ◦C
after 2 h and ~150% at 850 ◦C after two additional hours.

• High resistance to sintering and even redispersion occurred on ACZ and CZ, characterized
respectively by moderate and high values of labile lattice oxygen capacity (~101 and 557 µmol
O2 g−1, respectively); the higher the OSC of the support, the greater the extent of particle
redispersion—which increased with increasing sintering temperature.

This resistance to sintering and the previously unreported actual redispersion of Rh particles can
be rationalized by taking into account the synergistic action of two phenomena: (i) The presence of a
spontaneously formed [Oδ−, δ+] double layer on the metal particles resulting from thermally driven
oxygen back-spillover from high OSC supports. This effect quenches large particle migration and
coalescence (PMC) due to the resulting interparticle electrostatic repulsion and (ii) the trapping of
Rh atoms detached from large Rh crystallites by surface oxygen vacancies in the support material,
thus suppressing diffusion of rhodium species on the support and their subsequent attachment to
larger particles; the higher the population of surface oxygen vacancies on the support the greater the
redispersion of Rh, which increased with temperature.

The observed behavior is fully consistent with the proposed model.
In light of these findings a new methodology for in situ on-stream controlled redispersion of metal

catalysts may be devised, with potentially major implications for industrial heterogeneous catalysis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/6/541/s1.
Table S1: H2-uptake values obtained by the isothermal H2-chemisorption experiments and corresponding Rh
dispersion values, D (%); Equations used for the calculation of dispersion, active metal surface area and particle
size values.
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