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Abstract: Overlapping community detection in a network is a
challenging issue which attracts lots of attention in recent years.
A notion of hesitant node (HN) is proposed. An HN contacts with
multiple communities while the communications are not strong or
even accidental, thus the HN holds an implicit community structure.
However, HNs are not rare in the real world network. It is impor-
tant to identify them because they can be ef cient hubs which
form the overlapping portions of communities or simple attached
nodes to some communities. Current approaches have dif cul-
ties in identifying and clustering HNs. A density-based rough set
model (DBRSM) is proposed by combining the virtue of density-
based algorithms and rough set models. It incorporates the macro
perspective of the community structure of the whole network and
the micro perspective of the local information held by HNs, which
would facilitate the further “growth” of HNs in community. We offer
a theoretical support for this model from the point of strength of
the trust path. The experiments on the real-world and synthetic
datasets show the practical signi cance of analyzing and cluste-
ring the HNs based on DBRSM. Besides, the clustering based on
DBRSM promotes the modularity optimization.
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1. Introduction

Insensibly but rapidly, huge data networks are forming
in a wide variety of elds ranging from bio-engineering
databases to the state information center or social network
services, thus one of the primary data mining techniques is
to divide a large data network into communities [1], which
attracts researchers bound for clustering. In this paper, we
regard the “cluster” the same as “community”. Both tradi-
tional clustering methods such as k-means clustering [2]
and modern methods including the greedy technique in
modularity maximum [3] have been applied to community
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detection in network.

Furthermore, most actual networks are made of highly
overlapping cohesive groups of nodes, instead of separated
communities [4]. Thus, the study on overlapping commu-
nity detection brings about fresh batches of approaches.

Baumes et al. proposed a method to nd the overlap-
ping community [5] which absorbs advantages of two ef -
cient heuristics: the iterative scan (IS) and the rank removal
(RaRe). A different method, the clique percolation method
[4] is one of the most popular techniques which have been
extended to the analysis of weighted, directed and bipartite
graphs [6]. However, it has limitation when dealing graphs
with just a few cliques. Huang et al. proposed a cluster-
ing algorithm called DenShrink [7]. By combining the ad-
vantages of density-based clustering [8 – 11] and modu-
larity optimization methods [3,12], DenShrink ef ciently
reveals the embedded hierarchical and overlapping com-
munity structure in large-scale weighted undirected net-
works and identi es hubs and outliers. And unlike the tra-
ditional density-based clustering methods, it is parameter-
free. However, we nd that it has dif culty in dealing with
a hesitant node (HN).

The HN is a new notion proposed in this paper, which is
de ned in Section 2.

An HN contacts with multiple communities, just as a
hub. However, unlike the active and central hub [13,14],
the connections are not necessarily strong and sometimes
even weak and accidental. Thus some HNs between com-
munities are not quali ed hubs. Besides, HNs are not rare
to nd, such as new entrants, inactive members in organi-
zations [15,16] and low frequently requested websites or
commodities [17 – 19]. Actually, they might be like the
long tail, which are just beginning to show their power
[18]. Theoretical analysis and experimental results show
that an HN might grow up to be a connector among multi-
ple communities, and then becomes a hub; or it tends to be
merged into a certain community, and then it is an attached
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node. Misjudging their roles or simply leaving them alone
provokes undesirable effects on the “growth” of HNs and
leads to inaccurate analysis of the stability of the commu-
nity structure. Fig. 1 shows the possible development trend
of HNs. We use the Venn diagram to present the inclusion
relation among the set of HNs, the attached node, the hub
and the bridge [20]. The bridge is a special kind of hub.

Fig. 1 Possible inner trend of HNs

In this paper, a density-based rough set model
(DBRSM) is established for HN clustering after essen-
tial comparison between DBSCAN [9] and DenShrink and
exible application of rough set models [21]. On one hand,

DBRSM inherits the virtue of DenShrink algorithms which
are able to obtain the community structure of the whole
graph; on the other hand, it combines the local informa-
tion held by HNs with rough set models when re ning the
clustering process of DenShrink. The whole process can
be divided into two steps. First, quali ed hubs including
bridges are detected. Then we use the neighborhood in-
formation of HNs, namely the membership degree, rather
than merely the linkage of their own to cluster them into
communities.

In this paper, we theoretically prove that DBRSM faci-
litates the “growth” of attached nodes in perspective of the
strength of the trust path [22] which represents the strength
of information dissemination from communities to HNs.
Besides, our experiments on the real-world and synthetic
datasets show that DBRSM can also promote modularity
maximization.

The remainder of the paper is structured as follows.
Section 2 is the theoretical foundation including related
de nitions and algorithms. Section 3 introduces the de-
tails of the proposed DBRSM. Section 4 presents the ex-
periments, which shows the ef ciency of our method in
HNs clustering and modularity optimization. Finally, we
give a conclusion and provide future research directions in
Section 5.

2. Theoretical foundation

2.1 De nition of hesitant node

De nition 1 (Hesitant node) Let G = 〈V, E, ω〉 de-
note a weighted undirected network. V is the set of nodes
in network. E is the set of edges connecting any two nodes
that communicate with each other. ω(e) is the weight of

any edge e ∈ E. A node h ∈ V is called a hesitant node in
G if it satis es the following two properties:

(i) The node h contacts with multiple communities;
(ii) The similarity between node h and any of its adja-

cent community is at a low level that node h could not be
clustered into multiple communities with increasing mo-
dularity.

The de nition of the HN summarizes the feature of
nodes which show the implicit community structure at
some level. It is even similar to the main character dis-
cussed in the long tail theory [18] or the power laws [23].
But here, our research background is complex network.
Note that the “hubs” detected by the DenShrink algorithm
have the property listed in De nition 1, thus they are HNs
as well and then gotten to be the object of this study.

2.2 Essential comparison of DBSCAN and DenShrink

It can be observed that not all HNs are quali ed hubs. The
basic reason is found through the essential comparison of
DBSCAN and DenShrink.

DBSCAN is one of the most famous density-based clus-
tering approaches which have been widely used in data
mining for their ability of nding clusters of arbitrary
shapes even with the nodes arbitrarily distributed. How-
ever, its effectiveness is limited, since the values of neces-
sary input parameters have signi cant impact on the clus-
tering outcome while they are usually dif cult to determine
[1]. Besides, it is unable to detect overlapping communi-
ties.

DenShrink, a functional extension to traditional density-
based clustering approaches, overcomes those two weak-
nesses with the parameter free clustering process. But it
fails to deal with HNs properly.

According to the process of DBSCAN, any two nodes
within a cluster have symmetric relation i.e., density-
connected. And the density-connected relation is based on
an asymmetric relation, i.e., density-reachable. The asym-
metric relation is exible since the strength of it can be
adjusted by changing the input parameter, i.e., Eps, maxi-
mum radius of the neighborhood.

The DenShrink algorithm is the iteration of two phrases.
The rst phrase is to nd all the micro-communities
(MCs). The MC is an isolated node or a sub-graph that con-
sists of one or more connected dense pairs. Secondly, the
MC whose mergence increases the modularity is merged
and regarded as a super-node in the following iteration.
The process of iteration stops when there is no mergence
of the MC that increases the modularity. Finally, the MC
which contains more than one node is regarded as the com-
munity, while the MC consists of an isolated node as the
hub. Compared with DBSCAN, nodes within an MC also
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hold symmetric relation with each other. However, unlike
the exible relation de ned in the DBSCAN, the relation
of nodes in the MC extends from the relation of nodes in
the dense pair [7], i.e., a rigorous equivalence relation. The
dense pair is a pair of nodes with the largest similarity from
each other. Two nodes form a dense pair only when they
have high similarity with each other which is not less than
their surrounding links. That is to say, without exible in-
put parameters, DenShrink is so rigorous that it misses the
clustering of HNs which always keep low similarity with
other nodes. What’s more, the DenShrink regards the HNs
as hubs. It is not accurate. Because some of the HNs con-
necting with multi-community remain independent in the
last interation of DenShrink for keeping low similarity with
all their adjacent nodes, but not for their role of real com-

munity junction.
Fig. 2 shows an example of community detection results

given by the DenShrink algorithm. The tagged value on the
edge is the structural similarity [24] between two adjacent
nodes. Three communities are detected by the DenShrink
algorithm because the mergence of super-nodes in MC1

which is consisted of Hub2, Community1 and Community2

reduces the modularity. Nodes 1, 2, 11, 12 are treated as
hubs. However, if considering the measurement of cen-
trality degree [25,26] and predicted trust of the informa-
tion distribution path [14,22,27] through the node, we will
see nodes 1 and 11 are less quali ed hubs compared with
nodes 2 and 12. So, DenShrink has dif culties in distin-
guishing quali ed hubs from attached nodes.

Fig. 2 Example of communities detected by DenShrink

2.3 Related de nitions based on rough set theory

The classical rough set theory, rst proposed by Pawlak
[21], attracted great attention for its fundamental role in
data classi cation and rule extraction problems. Later,
some extension versions of the rough set theory based on
various kinds of binary indiscernibility relations are pro-
posed. To use the rough set model, the precondition is the
de nition of binary indiscernibility relations. In this paper,
a density based tolerance relation is proposed in the follow-
ing De nition 2, which is based on the notion of tolerance
relation [28] in the rough set theory and adjusted to the
application background of network analysis.

De nition 2 (Density based tolerance relation) Let
G = 〈V, E, ω〉 denote a weighted undirected network. A
binary density based tolerance relation T is de ned as any

relation between two nodes that form a dense pair. Let us
de ne the density based tolerance relation more precisely:

T = {(u, v)|u ↔ε v, u ∈ V, v ∈ V }. (1)

Any (u, v) ∈ T can also be denoted as uTv. Wherein,
u ↔ε v represents that u and v form a dense pair with the
similarity ε. It can be observed that tolerance relation has
re exivity and symmetry but not transitivity.

De nition 3 (Density based tolerance class) Let G =
〈V, E, ω〉 denote a weighted undirected network. For any
u ∈ V , let T (u) denote the set {v ∈ V |uTv}. T (u) is
the density based tolerance class of u. Particularly, for any
u ∈ V , there is u ∈ T (u).

In the background of social network, the set T (u) con-
sists of members in the network which have dense relation
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with u.

De nition 4 (Upper approximation) Let G = 〈V, E, ω〉
denote a weighted undirected network. For any subset
V ′ ⊆ V , let V ′ denote the set ∪{T (u)|u ∈ V ′}. V ′ is
the upper approximation of V ′. For any V ′ ⊆ V , there is
V ′ ⊆ V ′.

The de nitions in this section form a theoretical founda-
tion for our proposed model.

3. Proposed DBRSM

3.1 Quantization basis—membership degree

DBRSM is able to cluster the attached nodes among the set
of HNs. The quantization basis for the clustering of an at-
tached node is the membership degree of the attached node
in its adjacent communities which is computed as the fol-
lowing.

Let ai denote an attached node in network G. Cj is one
of ai’s adjacent communities. Let M(i, j) denote the mem-
bership degree of ai in Cj . M(i, j) is de ned as

M(i, j) =
∑

vk∈Cj∧σ(i,k) �=0

σ(i, k) × |T (vk)| (2)

where vk is one of the adjacent nodes of ai in community
Cj ; σ(i, k) is the similarity between ai and vk; T (vk) is
the density based tolerance class of node vk; |T (vk)| is the
cardinality of the set T (vk) which is used to amplify the
contribution of vk in disseminating information to ai. The
membership degree is de ned with the standpoint that the
more dense neighbours the vk has, the more reliable and
attractive it is for the attached node ai.

Then the membership degree is the weighted sum of
|T (vk)| with the weight σ(i, k). T (vk) is the tolerance
class of node vk which belongs to the neighborhood of ai

and the adjacent community Cj . And M(i, j) largely em-
bodies the in uence of ai’s adjacent nodes in Cj on ai.

3.2 Theoretical support for DBRSM—the strength of
the trust path

Membership degree M(i, j) represents the in uence of Cj

on ai in signi cant measure. We prove this point in per-
spective of the strength of the information dissemination
path from communities to attached nodes.

Community Cj attracts attached node ai by spreading
information to it. We quantify the ef ciency of informa-
tion dissemination by the level of trust [14,22,27] between
a source user in Cj and the target user ai. A weighted
mean aggregation method has been proposed to compute
the strength of the trust path [29 – 31]. In this section, we
use this method to compute the level of trust. Besides, the
shorter and stronger the trust paths are, the more important

they are for predicting the level of trust [31]. So we only
consider paths starting from nodes within the following set
S:

S = τ(ai) (3)

where the set τ(ai) is the structure neighborhood of node
ai containing ai itself and its adjacent nodes: τ(ai) =
{v ∈ V |(ai, v) ∈ E} ∪ {ai}. S = τ(ai) is the upper
approximation of τ(ai). In the network, S is composed of
all the nodes which keep dense relation with certain one of
ai’s neighborhoods. With the premise above, if we mark
the source node with us, there is us ∈ S.

Thus we get (4) to compute the strength of the trust path
from Cj to ai, which is denoted by P (Cj , ai). And it is a
modi cation of the weighted mean aggregation method to
adapt the premise us ∈ S.

P (Cj , ai) =
∑

us∈τ(ai)

P (us, ai) (4)

where P (us, ai) is the strength of trust of the path from us

to ai. The following is going to introduce the computation
of P (us, ai).

The source user us in set S is only one or two steps
away from the target user ai. We analyze the calculation of
P (us, ai) under the two conditions:

(i) If us ∈ τ(ai), namely the source user us is one step
away from the target user ai, we have

P (us, ai) = σ(us, ai). (5)

(ii) If us ∈ S − τ(ai), namely, the source user us is two
steps away from the target user ai, we have

P (us, ai) =

∑
uk∈τ(us)

σ (us, uk)σ (uk, ai)

∑
uk∈τ(us)

σ (us, uk)
. (6)

The only contributions to the combination∑
uk∈τ(us)

σ (us, uk)σ (uk, ai) come from nodes uk ∈

τ(ai). Besides, the similarities between us and each
uk ∈ τ(us) are the same, since any us ∈ τ (ai) and any
uk ∈ τ(us) ∩ τ(ai) form a dense pair. Then we simplify
(6) as follows:

P (us, ai) =
∑

uk∈τ(us)∩τ(ai)

σ (uk, ai). (7)

Now we get the formula for P (us, ai), the estimation
of the strength of the trust path from us to ai. Plug the ex-
pression of P (us, ai) in (7) and (5) into (4) and group these
terms together, we get the nal expression of P (Cj , ai) as

P (Cj , ai) =
∑

vk∈Cj∧σ(i,k) �=0

σ(i, k) |T (vk)|. (8)
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Thus P (Cj , ai) = M(i, j) when we estimate the ef -
ciency of information distribution of Cj to ai based on the
trust path from node us, belonging to set S to ai. That is,
when we adopt more desirable paths to evaluate the level
of trust, as discussed above, we can use the membership

degree M(i, j) to represent the in uence of Cj on ai. In
conclusion, the higher the membership degree of ai in Cj

is, the more reasonable it is to cluster the attached node ai

into the community Cj . Fig. 3 represents the calculation of
P (Cj , ai) in different linkage structures.

Fig. 3 Calculation of P(Cj,ai) in different linkage structures

3.3 Clustering of HNs

In the DBRSM model, the HNs are divided into three con-
crete types: the bridge, the hub and the attached nodes
based on the clustering result of DenShrink. The poten-
tial hubs and bridges are scouted rstly; then the rest of
the HNs, namely the attached nodes, are clustered based
on the membership degree into communities which are de-
tected by DenShrink. The processing procedure for HNs is
listed as below.

As Section 2 mentioned, nodes which are left un-
clustered (they are the isolated points in the clustering re-
sult) and linking to multiple communities in the clustering
result are the HNs. For each HN hi, we set the following
steps to make the concrete analysis.

Step 1 Scout hubs. If NH hi belongs to more than two
tolerance classes (note that hi ∈ T (hi), i.e., hi is included
in a certain MC and is linking with multiple super-nodes
with dense relation), then it is regarded as the hub since it
keeps dense relation with multiple communities. In over-
lapping community detection, it belongs to the overlap-
ping portion and is classi ed into its adjacent communities
which have dense relation with it.

Step 2 If HN hi belongs to only one or two tolerance
classes (note that hi ∈ T (hi), i.e., hi and no more than
one super-node form a dense pair), we cluster hi under the

following two constraint conditions:
Step 2.1 Scout bridges. If hi is a bridge linking multiple

communities which are connected only with the existence
of the junction hi, then hi is shared by the corresponding
adjacent communities. Therefore, hi is a bridge (a special
kind of hub) although its communications with the neigh-
bor communities are not dense.

Step 2.2 Cluster attached nodes. If hi is not a bridge,
then hi is not a quali ed hub. Instead, it is an attached
node. That is because although it connects with multiple
communities, the strength is not strong enough and it is
not the necessary node of the communication of commu-
nities. Then we cluster hi into the community in which hi

gets the largest membership degree.
The following pseudo code represents the process of

DBRSM.
Step 1 Scout hubs
for each C ∈ M C ∧ |C| > 1

for each v1 ∈ C ∧ |vi| = 1 ∧ degree(vi) > 1
for each vj ∈ C ∧ |vj | > 1 ∧ σ(vi, vj) > 0

vj ← vj ∪ vi;
H ← H ∪ vi;

end for
end for

end for
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Step 2
for each Ci ∈ CR

if |Ci| = 1 then
Step 2.1: scout bridges;
Step 2.2: classify attached nodes;
end if

end for
return CR, H ;
Step 2.1 Scout bridges
for each Cj ∈ CR ∧ σ(Ci, Cj) > 0

for each Ck ∈ CR ∧ σ(Ck, Ci) > 0
if σ(Ck, Cj) = 0

Cj ← Ci ∪ Cj ;
Ck ← Ci ∪ Ck;
H ← H ∪ Ci;

end if
end for

end for
Step 2.2 Classify attached nodes
if Ci is not a bridge;

for each Cj ∈ CR ∧ σ(Ci, Cj) > 0
compute M(i, j);

end for
k == getj(max M(i, j));
Ck ← Ci ∪ Ck;

end if
where H is the set of hubs. In Step 1, M C denotes the
set of MCs in the last iteration of DenShrink. C is a micro-
community belonging to MC. Each v ∈ C is a super-node
which is a set consisting of one or more nodes. In Step 2,
the CR is the set of communities detected by DenShrink.
Ci ∈ CR is a community which can also be regarded as
a super-node. σ(Ci, Cj) is the similarity between commu-
nity Ci and Cj . The computation can be found in [7]. In
Step 2.2, getj(max M(i, j)) represents the value of j that
maximizes the M(i, j).

3.4 Analysis of computational complexity

In Step 1, we scout hubs directly from the independent
nodes in micro-community detected by DenShrink, and
then the running time on scouting hubs is linear with the
amount of HNs. In Step 2.1 of scouting bridges, the com-
putational complexity for each HN is O(D2(h)) where
D(h) is the degree of the HN, no more than D(G), the
degree of network G, since we should judge whether any
two of an HN’s adjacent communities are still connected
without the HN. In Step 2.2, we could calculate the mem-
bership degree for each HN with the computational com-
plexity O(D(h)) by employing the intermediate result of

DenShrink—the dense pair. In conclusion, the overall time
complexity for HN clustering is O(h · D2(G)) if there are
h HNs in network G.

4. Experiments

In this section, we apply the DBRSM to the real world
datasets and computer-generated data. The experiment re-
sult is compared with DenShrink, which is able to detect
overlapping community and identify two kinds of special
nodes: hubs and outliers.

4.1 Evaluation on real world networks

4.1.1 Books about US politics

Valdis Krebs compiled 105 books on US politics which
were sold online by Amazon [32]. Each of them is assigned
as “liberal”, “neutral” or “conservative” according to the
book review. Thus they could be organized into three cate-
gories. While from the microcosmic point of view, these
books possess a much richer community structure.

As shown in Fig. 4, the different political attitudes
“liberal”, “neutral” and “conservative” are represented by
hexagon, circular and triangle respectively. Fifteen sub-
classes detected by DBRSM are represented by differ-
ent colors. They are subdivision of the three categories
of books. Besides, three kinds of special nodes are de-
tected. They are 3 bridges, 14 attached nodes and 2 outliers
marked with square, diamond and upside-down triangle re-
spectively.

However, DenShrink treats attached nodes and bridges
as hubs, thinking both of them play signi cant roles in
the contact among multiple communities and ignoring the
clustering of attached nodes. This would lead to the loss of
some valuable information in the real world.

Let us take a look at attached node 28 for example. It
represents the book “All the Shah’s Men” which stands on
the neutral side. Nevertheless, there are still readers who
brought this book and another liberal or conservative book
at the same time. In our model, we gure out that it is more
close to books on the liberal side. From this discovery, we
detect an opportunity from the neutral to the liberal. In the
case of other attached nodes, we also nd the trends de-
veloping from the neutral to the conservative or from the
liberal to the neutral. This kind of discovery might do a fa-
vor to study the political trend presented in the books and
buyers.

Furthermore, we gure out that each clustering process
of the 14 attached nodes contributes to the gain of modu-
larity and the total contribution is up to 22.78%.
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Fig. 4 Experiment on books about US politics

4.1.2 Zachary’s karate club

Zachary’s karate club [33] contains the network of friend-
ships among 34 members in a karate club. And the network
is built based on an observation lasting for three years. Af-
terwards, a con ict between the club president and the in-
structor then led to the break of the club into two separate
groups [6]: one is the set of nodes at the top right of the
bold straight line, the other is the set of nodes at the lower

left side.

Various clustering algorithms have been tested in this
classical benchmark graph. However, results of previous
algorithms did not express the cause of the break clearly,
while the application of DBRSM reveals some underlying
factors.

As Fig. 5 shows, DBRSM clusters the whole club into
ve communities marked with different colors.

Fig. 5 Experiment on Zachary’s karate club
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In Fig. 5 one hub is detected and marked with reddish
brown square. Six outliers and six attached nodes are de-
noted with upside-down triangles and diamonds respec-
tively. Attached nodes are colored the same with the com-
munity they are clustered into by DBRSM. We can see that
all attached nodes are clustered correctly into the groups
which they nally support in real world.

Besides, we nd that there is no quali ed hub between
any two communities coming from the two divided groups.
That is a sign of ssion. If knowing this earlier, we might
try to build a quali ed hub deliberately and prevent the
con ict. However, in DenShrink, regarding node 10 and
node 20 as hubs would lead to a overly optimistic view-
point that communities are well connected. Besides, the
clustering of the six attached nodes increases the modular-
ity by 6.41%. The increase of modularity here is relatively
low because the low number (only six) of attached nodes.

4.2 Experiment on synthetic data

We also apply the DBRSM algorithm to synthetic data.
They are six 2-dimension spatial spherical clusters ge-
nerated based on Gaussian distribution with the follo-
wing means of each cluster: μ1 = (1, 1), μ2 = (3, 2),
μ3 = (1, 3), μ4 = (2.5, 4.5), μ5 = (4, 4), μ6 = (4.5, 1.0).
Their covariance matrices are:

δ1 = · · · = δ6 =
[

0.32 0
0 0.32

]
.

DenShrink tends to cluster the random data into many
small communities and leave behind many HNs not be-
ing clustered. Then DBRSM helps to detect the relatively
close communities of the attached nodes among the HNs.
To evaluate the performance of DBRSM in community de-
tection of different size, we use multiple sets of spheri-
cal clusters. The size of each cluster in different test sets
ranges from 30 to 150 with the step 30. We list the cluste-
ring results in Table 1.

Table 1 Community detection result of different sizes of test sets

Test
set

Cluster
size

Average community
size by DenShrink

Percentage of attached
nodes detected by DBRSM/%

Percentage of hubs
detected by DBRSM/%

Modularity gain by
clustering attached nodes/%

1 30 11.8 6.7 1.10 21.68
2 60 9.0 7.2 1.70 31.65
3 90 8.3 8.0 1.30 40.27
4 120 9.1 6.0 0.69 33.92
5 150 9.7 6.7 0.89 39.61

In Table 1, we can see that HNs devote a stable per-
centage of the statistical sample while DenShrink tends
to miss the clustering of them. Though the amount is not
large, clustering them by DBRSM gains big improvement
of modularity, which would promote the stability of the
community structure.

In summary, the experiments on both real world and syn-
thetic datasets show that HNs clustering gets practical sig-
ni cance and DBRSM performs properly in the manage-
ment of HNs and is also able to improve the modularity
optimization compared with DenShrink.

5. Conclusions

In overlapping communities, HNs get realistic meaning.
Some of them are potential hubs; some are likely to be ad-
dicted by a certain community. Their community structure
is often implicit thus current approaches have dif culties
in clustering HNs.

In this paper, we propose a DBRSM for the clustering
of HNs by combining the density-based clustering algo-
rithm with the rough set theory. It adds exibility to the
density-base algorithm for overlapping community detec-

tion and takes advantage of the rough set theory to make
use of the local information denoted by HNs. The strength
of the trust path proves its rationality in theory and our
experiments show that DBRSM also promotes modularity
maximization.

In the future, the compatibility of the clustering method
DBRSM with the optimization of modularity requires
more investigation, which will promote the application of
DBRSM in complex networks analysis. Besides, one of the
basic notions in DBRSM, the neighborhood of HN, can be
extended and become more exible.
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