

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our <u>Takedown policy</u> and contact the service immediately (openaccess@aston.ac.uk)

THE ENHANCMENT OF FLORAL BIODIVERSITY

TREATMENT SYSTEMS

NICHOLAS ALEXANDER STEGGALL

Doctor of Philosophy

ASTON UNIVERISTY

January 2017

© Nicholas Alexander Steggall, 2017

Nicholas Alexander Steggall asserts his moral right to be identified as the author of this thesis

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright belongs to its author and that no quotation from the thesis and no information derived from it may be published without permission or acknowledgement.

ASTON UNIVERSITY

THE ENHANCMENT OF FLORAL BIODIVERSITY IN SMALL SCALE CONSTRUCTED WETLAND TREATMENT SYSTEMS

NICHOLAS ALEXANDER STEGGALL

Doctor of Philosophy

2017

SUMMARY

Within the U.K. small-scale treatment wetlands are primarily constructed using a monoculture of *Phragmites australis.* This thesis investigates the potential for enhancing the biodiversity value of these wetlands by the inclusion of appropriate floral species.

Extensive literature reviews found that although there was a plethora of data for the design of constructed wetlands, there was a dearth of information on enhancing the biodiversity value of these wetlands. Three potential biodiversity enhancing species were identified which could be beneficial; purple loosestrife *Lythrum salicaria*, meadowsweet *Filipendula ulmaria* and water mint *Mentha aquatica*.

A microcosm study was undertaken to investigate the growth of these species, the interactions between them and with *Phragmites australis*. The two pollutants employed in these studies were nitrogen and salinity. A second parallel system was constructed where competition between the plants was restricted by installing root dividers.

The results of the microcosm study identified that selected species survived within all of the nutrient concentrations employed. The roots of the biodiversity enhancing species predominantly stayed within the upper humus layer of the wetland and so would not interfere with the subsurface flow of the wetland or the treatment potential of the *Phragmites australis* roots. The area coverage of the biodiversity enhancing species combined with the coverage and treatment potential of the *Phragmites australis* roots show that these species are suitable for growing within a small-scale constructed wetland at the tested nutrient concentrations. Fatalities were present within the salinity concentration, therefore they can only be utilised at up to a limiting salinity concentration.

A field study was subsequently undertaken at operational sites to investigate the addition of biodiversity enhancing species into mature and newly restored reedbeds with mixed results.

Following the study, design principle recommendations are made for including biodiversity enhancing species within a small-scale treatment wetland systems within the U.K.

KEYWORDS

Biodiversity, Enhancement, Constructed Wetland, Phytoremediation, Microcosm.

DEDICATION

For my wife, sons, and the canine vandal, with love.

ACKNOWLEDGEMENTS

During the years that this study has taken to come to completion, I have gained invaluable expertise, support and assistance from numerous people, and lost a few hours sleep and much hair along the way. Though I cannot mention all, I would like to take the opportunity to thank several people directly who deserve an extra nod of recognition for the support they have given me along the way.

Firstly, my wife Marie Dee Steggall, whose patience and understanding has been second to none.

Secondly, I would like to thank Dr. Peter Hedges (supervisor) for his invaluable support and expertises throughout my years on this project, without whose expert level of encouragement, constructive criticism and moments of determination this thesis would never have been completed.

I would also like to take the opportunity to thank Dr Philip Fermor (external advisor) and all members of staff at Middlemarch who assisted me with the various tasks involved throughout the projects lifecycle.

This project would not have been viable without the assistance of funds from Middlemarch Environmental Limited, for which I am grateful. Thank you also to ARM Ltd and IDI Gazeley for the use of their reedbeds.

The field experiments were aided by technical assistance from Marie Dee Steggall, Dr Phil Fermor, Gabrielle Archard; Jemma Gaskin; Sarah Jefferson; George Rawlinson and Joyce Rawlinson – I thank you all.

Finally, I would like to thank my family for their assistance in all areas of life, fieldwork and their continual ongoing support.

CONTENTS

CONTENTS 5		5 -	
LIST OF TABLES 10			10 -
LIST	LIST OF FIGURES 13		
LIST	OF A	PPENDICES	16 -
ΝΟΤ		IS	17 -
1.	INTRO	DDUCTION	19 -
1.1	Orię	jins of the project	19 -
1.2	Aim	s and Objectives	20 -
1.2	2.1	Aim	20 -
1.2	2.2	Objectives	21 -
1.3	The	sis Structure	23 -
2.	INTRO	DDUCTION TO PHYTOREMEDIATION OF WASTEWATER	24 -
2.1	Ove	erview of Phytoremediation and Constructed Wetland Treatment Systems	24 -
2.2	Тур	es of Effluent and Pollutants Treated by Wetland Systems	29 -
2.3	Tre	atment Vegetation	32 -
2.4	Enh	ancement of Floral Biodiversity in Constructed Wetland Treatment Systems	36 -
3.	MICR	OCOSM STUDY METHODOLOGY AND EXPERIMENTAL DESIGN	40 -
3.1	Des	ign Overview	40 -
3.1	1.1	Introduction	40 -
3.1	1.2	Containers	42 -
3.1	1.3	Growing Medium Selection	42 -
3.2	Cor	centration Selection	43 -
3.2	2.1	Nitrogen	44 -
3.2	2.2	Salinity	47 -
3.3	Veg	etation Species Selected	50 -
3.3	3.1	Phragmites australis	50 -
3.3	3.2	Lythrum salicaria	54 -
3.3	3.3	Filipendula ulmaria	60 -
3 (3.4	Mentha aquatica	64 -

3.4	Pla	nting Configuration for Microcosms	67 -
3.	.4.1	Microcosms with Full Competition	67 -
3.	.4.2	Microcosms with Restricted Root Competition	71 -
3.5	Lay	out of Study Area	74 -
3.6	Acc	limatisation Period	77 -
3.7	Tre	atment Period August 2008 and November 2010	81 -
3.8	Me	asurements and Harvesting	84 -
3.	.8.1	Measurements during the Operational Phase	84 -
3.	.8.2	Measurements during the Harvesting Phase	87 -
3.9	Sta	tistical Analysis	90 -
4.	MICR	OCOSM STUDY RESULTS, DISCUSSION AND RECOMENDATIONS	94 -
4.1	Mic	procosm Study Results	94 -
4.	.1.1	Acclimatisation and Establishment Period: July 2007 to August 2008	94 -
4.	.1.2	Full Competition Microcosms: August 2008 to November 2010	97 -
4.	.1.3	Restricted Root Competition: August 2008 to November 2010	100 -
4.	.1.4	Full Competition Microcosms: Harvest	100 -
4.	.1.5	Restricted Root Competition Microcosms: Harvest	104 -
4.2	Mic	rocosm Study Analysis	105 -
4	.2.1	Hypothesis 1 Overview	105 -
4.	.2.2	Hypothesis 2 Overview	111 -
4.	.2.3	Hypothesis 3 Overview	116 -
4.	.2.4	Hypothesis 4 Overview	122 -
4.	.2.5	Hypothesis 5 Overview	126 -
4.	.2.6	Hypothesis 6 Overview	130 -
4.	.2.7	Hypothesis 7 Overview	135 -
4	.2.8	Hypothesis 8 Overview	140 -
4	.2.9	Control Microcosms: Natural Trends	145 -
4.3	Mic	procosm Study Discussion	146 -
4	.3.1	Phragmites australis	146 -
4.	.3.2	Lythrum salicaria	154 -
4	.3.3	Filipendula ulmaria	163 -
4	.3.4	Mentha aquatica	169 -
4	.3.5	Hypothesis 7 & 8	176 -

4.4	Ove	rview of Hypotheses	177 -
4.5 Study	Des y	ign Principles and Management Recommendations Identified During T	he Microcosm - 180 -
4.5	5.1	Species Selection and Pollutant Concentrations	180 -
4.5	5.2	Constructed Wetland and Media Selection	182 -
4.5	5.3	Planting Densities and Layout	183 -
4.5	5.4	Operational Management and Maintenance	184 -
5.	FIELD	STUDY METHODOLOGY AND EXPERIMENTAL DESIGN	185 -
5.1	Intro	oduction	185 -
5.2	Des	ign Overview: Mature Reedbed Treatment System Field Study	186 -
5.2	2.1	Study Site Selection	186 -
5.2	2.2	Reedbed Description	188 -
5.2	2.3	Study Design and Planting Configuration	189 -
5.3	Des	ign Overview: Newly Created/Refurbished Reedbed Treatment Syster	n Field Study - 194 -
5.3	3.1	Study Site Selection	194 -
5.3	3.2	Reedbed Description	196 -
5.3	3.3	Study Design and Planting Configuration	197 -
5.4	Veg	etation Measurements	200 -
5.5	Stat	istical Analysis	200 -
6.	RESU	LTS	202 -
6.1	Con	straints Encountered During the Operational Phase	202 -
6.1	1.1	Rugeley	202 -
6.1	1.2	Magna Park	203 -
6.2	Rug	eley	204 -
6.2	2.1	Reedbed 1	204 -
6.2	2.2	Reedbed 2	208 -
6.3	Мас	jna Park	213 -
6.4	Fiel	d Study Discussion	224 -
6.4	1.1	Mature Reedbeds	224 -
6.4	1.2	Newly Refurbished Reedbeds	225 -
7.	DESIG	IN PRINCIPLES AND MANAGEMENT RECOMMENDATIONS	227 -
7.1	Intro	oduction	227 -

7.2	Spe	cies Selection and Pollutant Concentrations	227 -
7.2	2.1	Nutrients	227 -
7.2	2.2	Salinity	228 -
7.3	Con	structed Wetland and Media Selection	228 -
7.4	Plar	nting Densities and Layout	230 -
7.5	Оре	erational Management and Maintenance	231 -
7.6	Sun	nmary of Recommended Design Principles and Management Practices	232 -
8.	PROJ	ECT EVALUATION AND FURTHER RESEARCH REQUIREMENTS	234 -
8.1	Intro	oduction	234 -
8.2	Proj	ect evaluation	234 -
8.2	2.1	The project	234 -
8.2	2.2	Experimental Design - Microcosm Study	235 -
8.2	2.3	Experimental Design - Field Study	236 -
8.3	Req	uirements for Further Research	237 -
8.3	8.1	Nutrient Concentration	237 -
8.3	8.2	Treatment and Hydraulic Efficiency	237 -
8.3	8.3	Species Selection	238 -
8.3	8.4	Planting Densities	238 -
8.3	8.5	Allelopathy	238 -
8.3	8.6	Full Scale Trials	238 -
8.3	8.7	Fauna	238 -
9.	CONC	LUSIONS	239 -
9.1	Intro	oduction	239 -
9.2	Aim	and Objectives	239 -
9.2	2.1	Aim	239 -
9.2	2.2	Objectives	239 -
9.3	Sun	nmation	245 -
REFERENCES 246		246 -	
APPE	ENDIC	ES	256 -
Appe	ndices	overview	256 -
List o	f Appe	endices Tables	257 -
List o	List of Appendices Figures 262 -		

Appendix 15: Root Spread Photographs for the Full Competition Microcosms with Nutrient
Treatment 266 -
Appendix 16: Root Spread Photographs for the Full Competition Microcosms with Salinity
Treatment 270 -
Appendix 19: Root Spread Photographs for the Restricted Competition Microcosms with Nutrient Treatment 274 -
Appendix 20: Root Spread Photographs for the Restricted Competition Microcosms with Salinity Treatment 278 -
CD with Electronic Appendices 282 -

LIST OF TABLES

Table 2.1: Prime Types of Constructed Wetland Treatment Systems	24 -
Table 2.2: General Flora used in Constructed Wetland Treatment Systems	33 -
Table 3.1:Selected Nitrogen Concentrations of Waste Effluents	45 -
Table 3.2:Concentration of Nitrogen Solutions Used	46 -
Table 3.3:Concentration of Main Salinity Consituents Identified within Landfill Leachate	48 -
Table 3.4: Concentration of Salinity Solutions Used	49 -
Table 3.5: Composition of Natural Seawater and Instant Ocean Synthetic Sea Salt (Instant 2008)	Ocean 49 -
Table 3.6 Chemical Composition of the Miracle-Gro Plant Food	78 -
Table 3.7: Porosity of Growing Media and Volumes of Water in Unvegetated Microcosms	78 -
Table 3.8: Levels of Nutrients Supplied to Each Microcosm During The Acclimatisation Peri	iod - 79 -
Table 3.9: Levels of Nutrients Supplied to Each Microcosm During The Treatment Period	- 82 -
Table 3.10: Water Required to Return the Water Level to the Top of the Microcosm at the V	/arious
Depths.	85 -
Table 4.1: Microcosms 1-8 Water Input during the Acclimatisation and Establishment Period	d 95 -
Table 4.2: Microcosm 1 Vegetation Heights during the Acclimatisation and Establishment P	'eriod 96 -
Table 4.3: Microcosms 1-4 Water Input during the Nutrient Treatment Period.	98 -
Table 4.4: Microcosm 1 Vegetation Heights during the Nutrient Treatment Period	99 -
Table 4.5: Microcosms 1-4 Nutrient Treatment Phase with Full Competition	101 -
Table 4.6: Microcosms 1-4 Nutrient Treatment Phase with Full Competition	102 -
Table 4.7: Microcosms 1-4 Nutrient Treatment Phase with Full Competition	102 -
Table 4.8: % Area Coverage for the Different Nutrient Concentrations for Microcosms 1-4 in	n May
and August 2008-2010	107 -
Table 4.9: % Area Coverage for the Different Salinity Concentrations for Microcosms 5-8 in and August 2008-2010	May 109 -
Table 4.10: % Area Coverage for the Different Nutrient Concentrations for Microcosms 9-12	2 in May
and August 2008-2010	112 -
Table 4.11: % Area Coverage for the Different Salinity Concentrations for Microcosms 13-1	6 in
May and August 2008-2010	114 -
Table 4.12: Analysis of Harvest Stem Heights (in mm) with Increasing Nutrient Concentration	ons 118 -
Table 4.13: Analysis of Harvest Stem Widths (in mm) with Increasing Nutrient Concentratio	ns
Table 4.14: ANOVA Summary of Stem Heights and Widths with Different Nutrient Concentr	rations
Table 4.15: Analysis of Harvest Stem Heights (in mm) with Increasing Salinity Concentratio	119- ms
	120 -

Table 4.16: Analysis of Harvest Stem Widths (in mm) with Increasing Salinity Concentrations 100
Table 4.17: ANOVA Summary of Stam Heights and Widths with Different Solinity Concentrations
Table 4.17: ANOVA Summary of Stem Heights and Widths with Different Salinity Concentrations
Table 4.18: T Test Summary of Stem Heights and Widths Between Full and Restricted Competition
Microcosms 124 -
Table 4.19: T Test Summary of Stem Heights and Widths Between Full and Restricted Competition
Microcosms 125 -
Table 4.20: Biomass Results for Microcosms 1-4 - Full Root Competition, with Increasing Nutrient
Concentration 127 -
Table 4.21: Biomass Results for Microcosms 5-8 - Full Root Competition, with Increasing Salinity
Concentration 127 -
Table 4.22: Biomass Results for Microcosms 9-12 - Restricted Root Competition, with Increasing
Nutrient Concentration 131 -
Table 4.23: Biomass Results for Microcosms 13-16 - Restricted Root Competition, with Increasing
Salinity Concentration 131 -
Table 4.24: Water Usage (L) Comparison of the Full and Restricted Root Competition Microcosms
within the Nutrient Treatment Period 137 -
Table 4.25: Water Usage (L) Comparison of the Full and Restricted Root Competition Microcosms
within the Salinity Treatment Period 139 -
Table 4.26: Water Usage (L) Comparison of the Full and Restricted Root Competition Microcosms
within the Acclimatisation Period 141 -
Table 4.27: T Test Summary of Water Usage Between Full and Restricted Competition Microcosms
During the Acclimatisation Period 141 -
Table 4.28: Water Usage (L) Comparison of the Full and Restricted Root Competition Microcosms.
142 -
Table 4.29: Phragmites australis Biomass for Each Nutrient Concentration with Full Competition
(Microcosms 1-4) & Restricted Competition (Microcosms 9-12) 151 -
Table 4.30: Phragmites australis Biomass for Each Salinity Concentration with Full Competition
(Microcosms 5-8) & Restricted Competition (Microcosms 13-16) 153 -
Table 4.31: Lythrum salicaria Biomass for Each Nutrient Concentrationwith Full Competition
(Microcosms 1-4) & Restricted Competition (Microcosms 9-12) 159 -
Table 4.32: Lythrum salicaria Biomass for Each Salinity Concentrationwith Full Competition
(Microcosms 5-8) & Restricted Competition (Microcosms 13-16) 161 -
Table 4.33: Filipendula ulmaria Biomass for Each Nutrient Concentration with Full Competition
(Microcosms 1-4) & Restricted Competition (Microcosms 9-12) 167 -
Table 4.34: Filipendula ulmaria Biomass for Each Salinity Concentration with Full Competition
(Microcosms 5-8) & Restricted Competition (Microcosms 13-16) 168 -
Table 4.35:Mentha aquatica Biomass for Each Nutrient Concentration with Full Competition
(Microcosms 1-4) & Restricted Competition (Microcosms 9-12) 173 -
Table 4.36: Mentha aquatica Biomass for Each Salinity Concentration with Full Competition
(Microcosms 5-8) & Restricted Competition (Microcosms 13-16) 174 -

Table 4.37: Summary of Hypothesis Findings (Continues) 178	-
Table 6.1 (Continues): Vegetation Heights and Areas during the Study Period For Reedbed 1	
- 206	-
Table 6.2 (Continues): Vegetation Heights and Areas during the Study Period For Reedbed 2	
211	-
Table 6.3: Vegetation Heights and Areas during the Study Period For Lythrum salicaria at Magna	
Park 214	-
Table 6.4: Vegetation Heights and Areas during the Study Period For Filipendula ulmaria at Magna	ı
Park 217	-
Table 6.5: Vegetation Heights and Areas during the Study Period For <i>Mentha aquatica</i> at Magna	
Park 219	-
Table 6.6: Vegetation Heights and Areas during the Study Period For Control Quadrats at Magna	
Park 223	-
Table 7.1: Summary of Design Principles and Management Practices 233	-

LIST OF FIGURES

Figure 2.1: Horizontal Subsurface Flow Wetland General Layout	- 28 -
Figure 3.1: Location of Marton within United Kingdom	- 41 -
Figure 3.2: Site Location within Marton (Ordnance Survey 2012)	- 41 -
Figure 3.3: Cross Section of the Media Layers within the Microcosms with Full Competition	- 43 -
Figure 3.4: Phragmites australis	- 52 -
Figure 3.5: Lythrum salicaria	- 56 -
Figure 3.6: Filipendula ulmaria	- 62 -
Figure 3.7: <i>Mentha aquatica</i>	- 65 -
Figure 3.8: Layout of Each Microcosm with Full Competition	- 69 -
Figure 3.9: Planted Microcosm with Full Competition Illustrating Gravel Layer and Partially	
Completed Humus Layer	- 70 -
Figure 3.10: Cross Section of the Media Layers and Root Dividers within the Microcosms with	
Restricted Root Competition	- 72 -
Figure 3.11: Layout of Each Microcosm with Restricted Root Competition	- 73 -
Figure 3.12: Plan Layout of Study Area	- 75 -
Figure 3.13: Study Area Pre Planting	- 76 -
Figure 3.14: Study Area Post Planting	- 76 -
Figure 3.15: Oregon Scientific WMR200 Professional Weather Station	- 77 -
Figure 3.16: Representative Layout of the Microcosms and the Plant Food Levels during the	
Acclimatisation Period.	- 80 -
Figure 3.17: Representative Layout of the Microcosms and the Plant Food and Salinity Levels	from
August 2008 to November 2010.	- 83 -
Figure 3.18: Window Cut within the Microcosm Container to View Root Distribution.	- 89 -
Figure 3.19: Lythrum salicaria Histogram and Data of Stem Widths with Increasing Nutrients for	or
Microcosms 1-5 with Full Root Competition	- 92 -
Figure 3.20: Mentha aquatica Histogram and Data of Stem Heights with Increasing Nutrients for	or
Microcosms 1-5 with Full Root Competition	- 93 -
Figure 4.1: Microcosm 1 Lythrum salicaria Root Spread	103 -
Figure 4.2: Microcosm 1 Filipendula ulmaria Root Spread	103 -
Figure 4.3: Microcosm 1 Mentha aquatica Root Spread	103 -
Figure 4.4: Bar Graph Showing Combined % Area Coverage for the Different Nutrient	
Concentratoins for Microcosms 1-4 in May and August 2008-2010	108 -
Figure 4.5: Bar Graph Showing Combined % Area Coverage for the Different Salinity	
Concentrations for Microcosms 5-8 in May and August 2008-2010	
	110 -
Figure 4.6: Bar Graph Showing Combined % Area Coverage for the Different Nutrient	110 -

Figure 4.7: Bar Graph Showing Combined % Area Coverage for the Different Salinity	
Concentrations for Microcosms 13-16 in May and August 2008-2010	115 -
Figure 4.8: Above and Below Ground Biomass for Microcosms 1-4	128 -
Figure 4.9: Above and Below Ground Biomass for Microcosms 5-8	129 -
Figure 4.10: Above and Below Ground Biomass for Microcosms 9-12	132 -
Figure 4.11: Above and Below Ground Biomass for Microcosms 13-16	133 -
Figure 4.12: Plot Graph Showing the Above and Below Ground Harvest Weights for Microco	osms 1-
16	134 -
Figure 4.13: Total Monthly Water Input (L) for Microcosms 1-4	136 -
Figure 4.14: Total Monthly Water Input (L) for Microcosms 5-8	138 -
Figure 4.15: Total Monthly Water Input (L) for Microcosms 9-12	143 -
Figure 4.16: Total Monthly Water Input (L) for Microcosms 13-16	144 -
Figure 5.1: Location of Rugeley in United Kingdom	187 -
Figure 5.2: Site Location within Rugeley (Ordnance Survey 2012)	187 -
Figure 5.3: Reedbed 1 (left) Redbed 2 (right)	188 -
Figure 5.4: Layout of Mature Study Reedbeds at Rugeley	192 -
Figure 5.5: Planting Configuration of a Magna Park Quadrat	193 -
Figure 5.6: Location of Lutterworth within United Kingdom	195 -
Figure 5.7: Site Location at Lutterworth (Ordnance Survey 2012)	195 -
Figure 5.8: Refurbished reedbeds west side (far bank) with the outlet weir from the lake	
(foreground)	197 -
Figure 5.9: Inlets for reedbeds fed along the top of higher ridges in the centre of the plate	197 -
Figure 5.10: Layout of Newly Created/Refurbished Study Reedbeds at Magna Park	199 -
Figure 6.1: Reedbed 1 (left), Reedbed 2 (right), September 2016	209 -
Figure 6.2: Reedbed 1 (left), Reedbed 2 (right), October 2016	210 -
Figure 6.3: Lythrum salicaria flowering 2015	215 -
Figure 6.4: Lythrum salicaria regrowing after a dought induced stress episode	215 -
Figure 6.5: Mentha aquatica during 2015	220 -
Figure 6.6: Mentha aquatica after a dought induced stress episode. Note this is the same be	ed as
Figure 6.5	220 -
Figure 6.7: Mentha aquatica growing well and competeing againts the main treatent species	s at the
end of 2015. Note the two beds to the right having suffered from drought stress and recently	y filled
with effluent.	221 -
Figure 6.8: Mentha aquatica after a dought induced stress episode at the end of 2016 Note	this is
the same bed as illustrated in Figure 6.7	221 -
Figure A15.1: Microcosm 1 Lythrum salicaria Root Spread	266 -
Figure A15.2: Microcosm 1 Filipendula ulmaria Root Spread	266 -
Figure A15.3: Microcosm 1 <i>Mentha aquatica</i> Root Spread	266 -
Figure A15.4: Microcosm 2 <i>Lythrum salicaria</i> Root Spread	267 -
Figure A15.5: Microcosm 2 <i>Filipendula ulmaria</i> Root Spread	267 -
Figure A15.6: Microcosm 2 <i>Mentha aquatica</i> Root Spread	267 -
Figure A15.7: Microcosm 3 Lythrum salicaria Root Spread	268 -

Figure A15.8: Microcosm 3 <i>Filipendula ulmaria</i> Root Spread	268 -
Figure A15.9: Microcosm 3 <i>Mentha aquatica</i> Root Spread	268 -
Figure A15.10: Microcosm 4 <i>Lythrum salicaria</i> Root Spread	269 -
Figure A15.11: Microcosm 4 <i>Filipendula ulmaria</i> Root Spread	269 -
Figure A15.12: Microcosm 4 <i>Mentha aquatica</i> Root Spread	269 -

LIST OF APPENDICES

Appendix 1	Monthly Weather Data August 2007 to October 2010 (supplied on CD).
Appendix 2	Harvest Stem Measurements (supplied on CD).
Appendix 3	Water Input during the Acclimatisation and Establishment Period (supplied on CD).
Appendix 4	Vegetation Heights and Area Coverage during the Acclimatisation and Establishment Period (supplied on CD).
Appendix 5	Water Input during the Nutrient Treatment Period for the Full Competition Microcosms (supplied on CD).
Appendix 6	Vegetation Heights and Area Coverage during the Nutrient Treatment Period for the Full Competition Microcosms (supplied on CD).
Appendix 7	Water Input during the Salinity Treatment Period for the Full Competition Microcosms (supplied on CD).
Appendix 8	Vegetation Heights and Area Coverage during the Salinity Treatment Period for the Full Competition Microcosms (supplied on CD).
Appendix 9	Water Input during the Nutrient Treatment Period for the Restricted Competition Microcosms (supplied on CD).
Appendix 10	Vegetation Heights and Area Coverage during the Nutrient Treatment Period for the Restricted Competition Microcosms (supplied on CD).
Appendix 11	Water Input during the Salinity Treatment Period for the Restricted Competition Microcosms (supplied on CD).
Appendix 12	Vegetation Heights and Area Coverage during the Salinity Treatment Period for the Restricted Competition Microcosms (supplied on CD).
Appendix 13	Harvest Measurements for the Full Competition Microcosms with Nutrient Treatment (supplied on CD).
Appendix 14	Harvest Measurements for the Full Competition Microcosms with Salinity Treatment (supplied on CD).
Appendix 15	Root Spread Photographs for the Full Competition Microcosms with Nutrient Treatment (supplied on CD and hard copy).
Appendix 16	Root Spread Photographs for the Full Competition Microcosms with Salinity Treatment (supplied on CD and hard copy).
Appendix 17	Harvest Measurements for the Restricted Competition Microcosms with Nutrient Treatment (supplied on CD).
Appendix 18	Harvest Measurements for the Restricted Competition Microcosms with Salinity Treatment (supplied on CD).
Appendix 19	Root Spread Photographs for the Restricted Competition Microcosms with Nutrient Treatment (supplied on CD and hard copy).
Appendix 20	Root Spread Photographs for the Restricted Competition Microcosms with Salinity Treatment (supplied on CD and hard copy).
Appendix 21	Histogram and Data Heights for All Microcosms and Full Competition Microcosms (supplied on CD).
Appendix 22	One Way ANOVA Results for All Microcosms and Full Competition Microcosms (supplied on CD).
Appendix 23	Histogram and Data Heights for Restricted Competition Microcosms (supplied on CD).
Appendix 24	One Way ANOVA Results for Restricted Competition Microcosms (supplied on CD).

NOTATIONS

BOD	biochemical oxygen demand. A measure of the amount of dissolved oxygen
	consumed by the degradation of organic matter by microorganisms.
BOD ₅	biochemical oxygen demand. A measure of the amount of dissolved oxygen
	consumed by the degradation of organic matter by microorganisms, over a five day period at 20 ⁰ C.
COD	chemical oxygen demand. A measure of the amount of oxygen consumed by
	chemical oxidation reactions. Commonly used as a measure for the oxidizable
	pollutants found in water.
HDPE	High – density polyethylene

UNITS OF MEASUREMENT

cm ²	centimetres squared
g	gram
g/l	grams per litre
g/m ²	grams per metre squared
kg/m ²	kilograms per metre squared
kg/ha	kilograms per hectare
I	litres
m	metres
ml	millilitres
mm	millimetres
mg/l	Milligrams per litre
ppt	parts per thousand
%	Percentage
‰	Within this report the salinity is reported as per mille (‰, ppt) which is approximately related to a Practical Salinity Scale (UNESCO 1981 and 1985) .
°C	Temperature (Celsius)

Chemical symbols

В	Boron
CI	Chloride
Cu	Copper
Fe	Iron
К	Potassium
Mn	Manganese
Мо	Molybdenum
Ν	Nitrogen
NO ₃ -N	Nitrate
NH ₃ -N	Ammonia
NH ₄ -N	Ammonium
Ρ	Phosphorus
рН	A measure of the molar concentration of hydrogen ions expressed in a scale using the negative logarithm to the base 10.
TN	Total Nitrogen
ТР	Total Phosphorus
Zn	Zinc

1. INTRODUCTION

1.1 Origins of the project

Landfill leachate is the liquid by-product resulting from the breakdown of waste within the landfill environment in the presence of moisture within the waste and any water – percolating into the landfill site. Older non-operational landfills, which were filled with a higher proportion of inert waste, usually have lower levels of contaminants and higher volumes of leachate (caused by water ingress due to less efficient old style clay liners or the lack of any liners) than modern landfills (Sanford, 1999). As there are still many old landfill sites whose leachate is costly to collect and transport to appropriate treatment works, it was decided to explore the potential for phytoremediation. The lower levels of contaminants in this leachate would generally not be phytotoxic to the flora within a constructed wetland treatment system, and as such would not require any additional mechanical pre-treatment.

A project was therefore conceived to:

"design a constructed wetland treatment system to ameliorate contaminants found in landfill leachate produced from a stereotypical old style landfill, which has been filled with generally inert materials, to a standard which will not deteriorate the environment upon which it is released into" (Steggall et al., 2005).

Funding was obtained from the Landfill Tax Grants Scheme for this study in 2001. Subsequently, after undertaking an extensive literature review on this topic, a pilot system was designed to be situated on an old landfill site, and planning permission was obtained. Had the pilot been implemented, the process would have involved pumping landfill leachate out of a borehole, running the leachate through the treatment system, and monitoring the levels of contaminants within the different sections of the treatment system, before returning the effluent back into a different borehole.

Unfortunately, the national statutory body for overseeing waste management within England and Wales, the Environment Agency, took the decision that a Waste Management Licence would be required for the process of running the leachate through the pilot treatment system as technically waste was being treated. The cost of obtaining the Waste Management Licence and paying for the fees, which the Environment Agency wanted in order for them to run parallel tests on the effluent, went beyond the economic means of the available funding. The owners of the landfill would not allow a new application for a Waste Management Licence for the landfill (the last licence had been surrendered several years earlier), as the landfill no longer met modern day requirements. If they

obtained a Waste Management Licence for the site, then they would not be able to surrender it until they replaced the old clay liner with a modern high-density polyethylene (HDPE) one in order to meet the new requirements.

After further consideration the transfer of the pilot system to an alternative location was deemed not to be feasible, and consequently the project and its associated funding were cancelled.

Since the original project was terminated, the Environment Agency have developed mechanisms to facilitate such research without the requirement of a waste management licence, by assessing research proposals on a case by case basis. However, the original proposal contributed positively to this thesis by identifying a paucity of information on biodiversity enhancement in wetland treatment systems, as discussed below.

Following a period of reflection and re-grouping, a new project was designed to research the potential for increasing the biodiversity within constructed wetland treatment systems. Constructed wetland treatment systems are generally planted with monocultures and the literature revealed a paucity of information on the interactions of different floral species within the same system. Where more than one species is present, this is in separate treatment cells, or within larger wetlands sub divided into areas planted with robust dominant species such as *Phragmites australis*, *Typha* sp. and *Scirpus* sp. Due to the low biodiversity value within the smaller <1 ha constructed wetland treatment systems common in the U.K., the biodiversity value could potentially be increased by planting additional floral species, which would in-turn increase the resources available to faunal species.

1.2 Aims and Objectives

1.2.1 Aim

The aim of the research is

'to produce design principles for the implementation, creation and management of biodiversity sections/corridors within monoculture phytoremediation treatment systems.'

In producing the design principles for treatment systems the effluent constituents would be salinity (found in waste effluent from industrial processes and road runoff) and nutrients, focusing upon

nitrogen (found in both domestic and industrial waste effluents). Both of these constituents can have an impact on the species diversity within a wetland treatment system by having fatal/limiting effects on some species, whilst allowing more tolerant species to takeover.

1.2.2 Objectives

To achieve the aim, the following objectives were identified:

Objective 1: Undertake a literature review focusing upon the design, management and floral species requirements of horizontal flow constructed wetlands. A literature review of effluents and their parameters will also be undertaken.

Objective 2: From the literature review, a range of floral species will be chosen which could prove beneficial in increasing the biodiversity value of constructed wetlands.

Objective 3: Design and implement an experimental microcosm study to identify the suitability of the selected species and their interactions, when subject to different contaminant ranges.

To assess the suitability of the floral species, the results from the microcosm study will be used to test the following hypotheses (1 to 8). These hypotheses were chosen to determine the survivability of the different species and therefore their suitability for use within a constructed wetland treatment system. The hypotheses were also chosen to investigate the design of restricting root competition and the affect of the competition parameters on the vegetation growth and water usage.

Hypothesis 1 – "Where all four chosen floral species survive in the chemical concentrations studied, no single floral species will take over and oust other floral species."

Hypothesis 2 – "Where all four chosen floral species survive in the chemical concentrations studied, no single floral species will take over and oust other floral species, and restricting root competition between the different floral species will have an effect."

- Hypothesis 3 "The higher concentrations of the chosen chemical ranges will have an effect on the stem heights or stem widths of the surviving plants."
- Hypothesis 4 "The higher concentrations of the chosen chemical ranges will have an effect on the stem heights or stem widths of the surviving plants, and restricting root competition between the different floral species will have an effect."
- Hypothesis 5 "The higher concentrations of the chosen chemical ranges will have an effect on the above and below ground total biomass of the plants."
- Hypothesis 6 "The higher concentrations of the chosen chemical ranges will have an effect on the above and below ground total biomass of the plants, and restricting root competition between the different floral species will have an effect."
- Hypothesis 7 "The higher concentrations of the chosen chemical ranges will have an effect on the water consumption."
- Hypothesis 8 "The higher concentrations of the chosen chemical ranges will have an effect on the water consumption, and restricting root competition between the different floral species will also have an effect."

Objective 4: From results of the microcosm study in Objective 3, implement a field study to investigate the survivability of the floral species when planted within a newly refurbished/created constructed wetland treatment system and also when retrofitting the floral species into an established constructed wetland treatment system.

To assess the suitability of the floral species within an operational setting, the results from the field study will be used to test the following hypothesis (9). This hypothesis was chosen to determine the survivability of the different species and therefore their suitability for use when either retrofitting existing mature reedbeds or planting new/restored reedbeds within a constructed wetland treatment system.

Hypothesis 9 – "Where the chosen floral species survive, there will be no difference between retroplanting these species within a mature reedbed, compared to planting these species within a newly created/restored reedbed and no single floral species will take over and oust other floral species."

Objective 5: Use the findings of both the microcosm and the field studies to develop design principles to ensure the chosen floral species will be sustainable within a constructed wetland treatment system.

1.3 Thesis Structure

Section Two provides a review of the current literature. It sets down an overview of phytoremediation and constructed wetland treatments, and the biodiversity potential available. It explores at the types of effluent, from general domestic municipal to industrial wastewater, that constructed wetlands could potentially contend with. The flora utilised in generic constructed wetlands is also discussed.

Section Three presents a design overview of the microcosm study site; it sets down the methodology used and reasoning behind both the methodology employed, and the rational for the selection of growing media, pollutant concentrations and why the four species of flora used were chosen. It explains the duration of the field experiment starting with the acclimatisation period all the way through to the final measurements (and their methodology) during the harvesting phase.

The results of the microcosm study are presented in Section Four along with a discussion of the findings in relation to the hypothesis along with general recommendations identified from the microcosm study

Section Five presents a design methodology of the field study with Section Six field study results and discussion.

Section Seven puts forward design recommendations for potential biodiversity enhancements based on conclusions drawn from this study. Section Eight provides an evaluation of the study and details further research requirements, and Section Nine contains the conclusions to this study.

2. INTRODUCTION TO PHYTOREMEDIATION OF WASTEWATER

2.1 Overview of Phytoremediation and Constructed Wetland Treatment Systems.

It is not the purpose of this thesis to demonstrate the design and effectiveness of the different types of constructed wetlands or their vegetation and as such only a brief overview is provided. For detailed information about the design of and processes within constructed wetlands there is a plethora of information which the reader can refer to, including Austin & Yu (2016), Cooper *et al.*, (1996), Ellis *et al.*, (2003), Grant *et al.*, (2000), Grant & Griggs (2001), Kadlec & Knight (1996), Kadlec & Wallace (2009), Nuttall *et al.*, (1997), Scholz (2011), Stefanakis *et al.*, (2014), Wallace & Knight (2006) and Vymazal & Kröpfelová (2008).

There are various types of constructed wetland treatment systems throughout the world that employ phytoremediation, and these can be broadly split into two groups: surface flow systems and subsurface flow systems. The types of systems available are constantly being updated and modified as new information and hybrid designs comes to light. The broad system types can be found in Table 2.1, with a brief description provided below.

	Free Water Surface Flow Systems	Floating Macrophyte Systems	
		Submerged Macrophyte Systems	
		Emergent Macrophyte Systems	
Surface Flow		Waste Stabilisation Ponds	
		Vegetated Ponds / Marshes	
		Rafted Lagoon / Hydroponic Systems	
	Horizontal	Emergent Macrophytes	
Subsurface Flow	Subsurface Flow		
Subsullace Flow	Vertical	Emergent Macrophytes	
	Subsurface Flow		

Table 2.1: Prime Types of Constructed Wetland Treatment Systems

For the waste treatment to fall into the category of phytoremediation, the system must contain vegetation that participate in/contribute to the treatment process. The vegetation predominantly consists of macrophytes, which are the non-microscopic vegetation that include most of the kingdom of Plantae. The majority of species utilised within constructed wetland treatment systems are Monocots (i.e. grasses, palms and lilies), with Dicots (i.e. broad-leaved plants such as willows and roses) used less frequently.

One of the main considerations when determining the feasibility of employing a constructed wetland treatment system is whether or not the effluent to be treated is harmful to the species of

vegetation to be used (Vymazal, 2011). If it is the designer must consider whether an alternative species can be utilised, or whether mechanical pre treatment of the effluent is required. Pretreatment can also be required when other contaminants are present in the effluent which could interfere with the operation of the constructed wetland, such as gross solids and high levels of suspended solids (Tchobanoglous, 2003). Furthermore, where there is insufficient space for the size of wetland required to treat the higher concentration effluents (Kelman Wieder *et al.*, 1998) or a chemical present which cannot be ameliorated, then pre-treatment may resolve the problem.

The presence of vegetation in wetlands benefits the treatment process in a multitude of ways. Brix (1994; 1997; 2003), Nuttall *et al.*, (1997) and Stottmeister *et al.*, (2003), all list the role vegetation plays (depending upon the species), and these include the following;

- they can stabilise the bed surface and reduce scouring;
- they can reduce turbulence and facilitate the settlement and separation of solids;
- certain species release antimicrobial chemicals from the roots;
- certain species release oxygen from the roots resulting in localised areas of aerobic conditions within an anaerobic bed;
- they can take up nutrients and certain metals;
- the detritus they produce can provide insulation during cold spells and can provide a source of carbon to facilitate further plant growth and microbial processes;
- the roots can provide hydraulic pathways through the growing media by breaking up the media and also through their decomposition;
- the surfaces of the vegetation provide additional surfaces for microbial films to attach to, which enhances the treatment process; and,
- they provide habitat for a range of species and can be aesthetically pleasing.

Again it is not the purpose of this thesis to go into detail about the different treatment benefits which vegetation has within a treatment wetland, as this can be found detailed within the generic texts detailed above and within numerous research papers. However, the following synopsis of the various wetland treatment systems (see Table 2.1), provide a brief summary of the key role played by the vegetation in each.

Floating Macrophyte Systems

Floating macrophyte systems consist of a pond with a shallow depth, containing floating macrophytes. Species usually include *Lemna* sp., duckweeds, *Eichhornia crassipes*, water hyacinth and *Pistia stratiotes*, water lettuce. The main treatment processes are through microbial action (present either as films on the root surfaces or as free floating organisms) or by uptake by the macrophytes and their subsequent harvesting. Due to the rapid growth rates required, these systems are generally utilised more within countries with hotter climates (Bonomo *et al.*, 1997; Brix, 2003; Vymazal, 2003 and Vymazal, 2008).

Submerged Macrophyte Systems

Submerged macrophyte systems are similar to floating macrophyte systems in that they are usually in a shallow pond. The vegetation within these ponds is submerged and consists of species such as *Ceratophyllum demersum* Rigid Hornwort, *Elodea sp.* waterweeds and *Myriophyllum* sp. water milfoil. Due to the physiological requirements of these species for photosynthesis, they generally require oxygenated water with low turbidity. As with floating macrophyte systems, the main treatment processes are through microbial action (present either as films on the root surfaces or as free floating organisms) or by uptake of the macrophytes and subsequent harvesting (Kadlec & Wallace, 2009 and Vymazal, 2003).

Emergent Macrophyte Systems

Emergent macrophyte systems consist of a wetland planted with emergent vegetation where the effluent being treated flows at a shallow depth over the surface of the growing media. Species commonly utilised as emergent vegetation are those considered to be hardy species and rapid colonisers, such as *Phragmites australis*, *Typha* sp., *Scirpus* sp. and *Phalaris arundinacea*. The main treatment process is from contact with the microbial films on the surface of the vegetation (Brix, 2003; Kadlec & Wallace, 2009 and Vymazal, 2003).

Waste Stabilisation Ponds

Waste stabilisation ponds are not considered to be true constructed wetland treatment systems, as they are not typically planted with aquatic macrophytes. They can be beneficial in enhancing the biodiversity of a site and they can also be used within hybrid wetland treatment systems (Kadlec, 2003a). They comprise three types of ponds linked together. The first pond is a deep anaerobic pond where the main treatment is through the sedimentation of materials and the anaerobic digestion of the sludge. Once the sediments have been removed, the effluent enters a shallow

facultative pond, which is used to further reduce the BOD through bacteria and free floating algae. The outflow from this then flows into the third pond, which is a shallower maturation pond where any remaining pathogens are removed through bacterial action, free floating algae and the sun's natural UV radiation (Mara *et al.*, 1992; Mara & Pearson, 1998; Johnson *et al.*, 2007 and Shilton & Harrison, 2003).

Vegetated Ponds / Marshes

Vegetated ponds and marshes are usually in the form of large-scale wetlands over 4000 ha and are both constructed and naturally occurring, which receive and treat waste effluent. They usually consist of a hybrid of treatment types, including areas of open water, with a mix of submerged, floating and emergent vegetation occupying the different niches available (Kadlec & Wallace, 2009 and Knight 1997).

Rafted Lagoon / Hydroponic Systems

These are surface flow wetlands where the vegetation is grown on a floating mat on the surface of the water. The mat can either be artificially created or can develop naturally on decaying leaf litter. The main species utilised in these systems are *Glyceria maxima*, *Typha* sp. and *Phragmites australis*. The main treatment process is the removal of nitrogen through the anaerobic conditions found in the sediment and the floating mats facilitating the denitrification process (Vymazal, 2003).

Horizontal Sub-Surface Flow

Horizontal sub-surface flow treatment wetlands are one of the main treatment wetlands utilised within the U.K and as such, enhancing the biodiversity within this type of system is the main focus of this research. These are sub-surface flow wetlands where the effluent is fed in at the inlet and flows horizontally through a porous media to the outflow (Figure 2.1). The system is usually planted with emergent species capable of developing an extensive root system to facilitate the treatment process. The main species used within these systems are *Phragmites australis*, *Typha* sp., *Scirpus* sp. and *Phalaris arundinacea*. A multitude of treatment processes are evident within a sub-surface flow system, including filtration, nitrification and denitrification due to the anaerobic areas and the aerobic films around the plant roots (i.e. *Phragmites australis*) (Brix, 2003; Kadlec & Wallace, 2009; Vymazal, 2003 and Vymazal, 2011).

Figure 2.1: Horizontal Subsurface Flow Wetland General Layout (From Wallace and Knight, 2006)

Vertical Sub-Surface Flow

Vertical sub-surface systems are similar to horizontal subsurface flow systems. However, rather than the effluent being fed from one end and collected at the other, the effluent is fed across the surface of the wetland to create a flooded environment. The effluent then seeps through the media to the base of the wetland where the outflow is situated. This process pulls oxygen down behind the effluent into the media, which enhances the nitrification and BOD removal rates. The main species used within these systems are *Phragmites australis*, *Typha* sp., *Scirpus* sp. and *Phalaris arundinacea* (Brix, 2003; Cooper *et al.*, 1996; Cooper *et al.*, 1997; Kadlec & Wallace, 2009 Stefanakis *et al.*, 2014 and Vymazal, 2003).

For both vertical and horizontal subsurface flow treatment wetlands, different media can be used to aid the treatment processes for different chemicals. These can include calcite, light weight aggregates, shale and pumice for enhanced phosphorous and metal removal (Arias *et al.*, 2003; Brix *et al.*, 2001; Drizo *et al.*, 1997; Jenson & Krogstad, 2003; Molle *et al.*, 2003; Njau *et al.*, 2003; Paris & Maehlum, 2003; Scholz & Xu, 2002; Stefanakis *et al.*, 2014; Zhu *et al.*, 1997 and Zhu *et al.*, 2003),

Hybrid Systems

The different types of constructed wetlands are often combined to produce hybrid systems. This is undertaken as the different types allow for different treatment processes and thus when combined in a hybrid system result in better removal efficiencies of different pollutants (Cooper, 2003a; Hogain, 2003; Kadlec & Wallace, 2009 and Nuttall *et al.*, 1997).

2.2 Types of Effluent and Pollutants Treated by Wetland Systems.

Constructed wetlands have been used to treat a variety of effluents ranging from general domestic municipal wastewater to industrial effluents (Cooper *et al.*, 1996; Kadlec & Wallace 2009; & Nuttall *et al.*, 1997). Types of effluent which have been studied by researchers include:

- single household wastewater (Cooper *et al.*, 1996; Cooper 2003b; Grant *et al.*, 2000; Grant & Griggs 2001);
- municipal waste water and combined sewerage systems (Cooper *et al.*, 1996; Kadlec & Wallace 2009; Nuttall *et al.*, 1997);
- road and urban storm water run-off (Davies *et al.*, 2001; Kadlec & Wallace 2009; Lee & Scholz, 2007; Scholz, 2011; Lund *et al.*, 2001; Nuttall *et al.*, 1997; Pontier *et al.*, 2001; Pontier *et al.*, 2003; Scholes *et al.*, 1999; Shutes *et al.*, 2001; Shutes *et al.*, 2003);
- landfill leachate (Bernard 1999; Bulc *et al.*, 1997; Connolly *et al.*, 2004; DeBusk, 1999;
 Eckhardt *et al.*, 1999; Kadlec, 1999; Kozub & Liehr 1999; Mæhlum, T. 1995; Mulamoottil *et al.*, 1999; Nuttall *et al.*, 1997);
- fish farm effluent (Naylor *et al.*, 2003);
- oil refinery waste effluent (Simi & Mitchell 1999; Wallace 2002a);
- cheese processing waste (Wallace 2002b);
- dairy farm/swine waste effluent, farm run-off and slurry dewatering (Cordero *et al.*, 2003; Edwards *et al.*, 2001; Hill *et al.*, 2001; Kern 2003; Mantovi *et al.*, 2002; Sooknah & Wilkie, 2004);
- potato processing waste water (Kadlec et al., 1997);
- explosive removal (Best et al., 2001);
- airport de-icing treatment effluent (Thoren *et al.*, 2003; Karrh *et al.*, 2002; Worrall *et al.*, 2002);
- pulp and paper mill (Abira *et al.*, 2003);
- slaughter house (Pogy-varaldo et al., 2002; Revira et al., 1997);
- army vehicle test course run-off (Cavallaro 2002); and,
- mine drainage (Groudev et al., 2002; Mays & Edwards 2001; Mitsch & Wise 1998).

This wide range of effluents can contain a multitude of polluting chemicals at different concentrations. Again, it is not the purpose of this thesis to discuss the different pollutants found within each effluent and their different concentrations levels, and as such only a brief overview is provided. For detailed information about the pollutants there is a plethora of information which the reader can refer to, including the key texts of Cooper *et al.*, (1996), Ellis *et al.*, (2003), Grant *et al.*, (2000), Grant & Griggs (2001), Kadlec & Knight (1996), Kadlec & Wallace (2009), Nuttall *et al.*, (1997) and Wallace & Knight (2006) and also the specific case study papers detailed under the effluent list above.

Generically the pollutants can be placed into the following basic groups (Kadlec 2009):

- suspended solids;
- biochemical oxygen demand;
- nutrients, nitrogen & phosphorus;
- halogens, sulphur, metals and metalloids;
- pathogens; and,
- organic chemicals

Suspended Solids

Suspended solids are one of the main causes of turbidity and anaerobic conditions in a waste effluent and generally carry pollutants such as metals and organic chemicals into the environment (Kadlec & Wallace 2009; Tchobanoglous & Burton 1991). They can reduce and even stop light penetration through the water column, which within a wetland can have a detrimental effect on the ability of submerged aquatic plants to photosynthesis. The low light and anaerobic conditions can also be detrimental to the ability of aquatic fauna and fishes to survive (Grant *et al.*, 2000).

Suspended solids are present in most waste effluents at a variety of concentrations and compositions. The majority are removed through any pre-treatment phase although constructed wetlands can remove the remaining suspended solids by filtration and settlement on passing through the bed media, and the high levels of vegetation creating a filter and slowing the flow rate (Cooper *et al.*, 1996; Kadlec & Wallace, 2009). High levels of suspended solids can kill plants within submerged macrophyte treatment systems and can cause hydraulic blockages / degradation within subsurface flow constructed wetlands (Blazejewski & Murat-Blazejewska 1997; Cooper *et al.*, 1996; Kadlec, 2003b; Kadlec & Wallace, 2009; Knowles *et al.*, 2010; Langergraber *et al.*, 2003; Platzer & Mauch 1997; Sanford *et al.*, 1995; Winter, K.J. and Goetz, D. 2003).

Biochemical Oxygen Demand

The Biochemical Oxygen Demand (BOD) is a way of monitoring the organic pollution in water. It involves the measurement of the amount of dissolved oxygen used by microbial organisms to oxidise the organic matter in a sample of water (Kadlec & Wallace 2009; Tchobanoglous & Burton 1991). The test is usually carried out over 5 days under controlled temperature conditions. The results are displayed as BOD₅ and usually expressed in mg/l. Problems arise when effluent with a high BOD is disposed of into watercourses, as the high oxygen demand of the effluent reduces the available oxygen in the watercourse. This in turn can have a detrimental impact on the biota that

naturally inhabits the water body receiving the discharged effluent (Kadlec & Wallace 2009; Tchobanoglous & Burton 1991).

The Biochemical Oxygen Demand is reduced within a wetland system by four main processes; removal of solids, ingestion, microbial decomposition, and adsorption and absorption (Nuttall *et al.*, 1997).

Nutrients, Nitrogen & Phosphorus

Nutrients are one of the key variables found within waste effluent, the concentrations and form in which the nutrients are found varies considerably between the effluent types (Kadlec & Wallace 2009; Tchobanoglous & Burton 1991). Although essential to maintain plant growth within the constructed wetlands, high levels can become phytotoxic (Kadlec & Wallace 2009). Furthermore, if left untreated, the high levels of nutrients can cause undesirable effects, such as algal blooms, to grow within the receiving water body, which subsequently can have an adverse effect due to reduction in available oxygen and light levels (Tchobanoglous & Burton 1991).

The key removal processes within constructed wetlands for the main nutrients (nitrogen and phosphorus) are, nitrification and denitrification, volatilisation, nutrient uptake by vegetation (when combined with harvesting), precipitation, storage in leaf litter, microbial decomposition, adsorption and absorption (Kadlec & Wallace 2009; Nuttall *et al.*, 1997).

Salinity, Halogens, Sulphur, Metals and Metalloids

Additional chemicals can also be required by constructed wetland flora for healthy growth as macro or micro nutrients. However, when the levels of these chemicals are elevated they can become phytotoxic to the treatment plants and also to the biota of the receiving water body (Kadlec & Wallace 2009; Tchobanoglous & Burton 1991). These chemicals include salinity, sodium, potassium and chlorides, the key removal processes for which are adsorption and absorption, uptake by vegetation (when combined with harvesting), oxidation and precipitation, storage in leaf litter, microbial decomposition and settling (Drizo *et al.*, 1997; Kadlec & Wallace 2009; Nuttall *et al.*, 1997).

Pathogens

Pathogens in waste effluent (including human and animal waste) can have an adverse effect if untreated, when a suitable host comes into contact with the effluent after it has been released back into the environment (Tchobanoglous & Burton 1991). Natural wetlands will remove the majority of harmful pathogens through the mechanism of exposure to UV radiation, predation, natural die off, settling and filtration (Kadlec & Wallace 2009; Tchobanoglous & Burton 1991).

Organic Chemicals

Organic chemicals in effluents vary in type and concentration. They can have a variety of adverse effects on the environment and may be toxic to flora and fauna, such as the run-off of pesticides (Tchobanoglous & Burton 1991). Whether or not wetlands can successfully be used to treat organic chemicals depends upon the toxicity of the chemical in question, not only to the flora of the treatment wetland, but also to the microbiology. Where organic chemicals are inactive, they will not be treated by constructed wetlands and as such pre-treatment would be required for their removal (Kadlec & Wallace 2009; Nuttall *et al.*, 1997; Tchobanoglous & Burton 1991).

2.3 Treatment Vegetation

Constructed wetlands vary in size and in the North America can reach over 100 ha (Kadlec & Knight, 1996; Vymazal, 2003), with natural treatment wetlands reaching over 4000 ha (Knight, 1997). However, these function more as a natural wetland (Vymazal, 2003) with different conditions for a variety of species to exploit. Within North America, Knight *et al.*, (2001) report that over 1400 species have been recorded within constructed and natural treatment systems. This includes 824 species of aquatic invertebrate, 78 species of fish, 21 species of amphibian, 31 species of reptile, 412 species of birds and 40 species of mammals.

The purpose of this research is to investigate how different species of vegetation may be utilised to enhance biodiversity in conjunction with the main treatment species within small constructed wetlands, such as those typically found in Europe. In the U.K. the treatment species is usually *Phragmites australis* (Cooper *et al.*, 1996), and the design conditions are usually homogeneous within each cell (Cooper *et al.*, 1996; Kadlec & Wallace, 2009). As a consequence, there are very few areas and niches for other floral species to colonise and thereby avoid competing with the dominant treatment species. Furthermore, the small scale of constructed wetlands in the U.K. limits their usage by many species, for example by large mammals and the larger birds, such as geese

and ducks. As these treatment systems are usually segregated from similar habitats this reduces their potential for attracting specialist wetland species such as bitterns and bearded tits.

The biodiversity within a constructed wetland treatment system can be enhanced where different species are planted in different cells and treatment process (Nuttall *et al.*, 1997). However, the species utilised are generally the more robust treatment ones such as *Glyceria maxima, Phalaris arundinacea, Phragmites australis* and *Schoenoplectus lacustris,* rather than the more delicate floral species usually associated with attracting a range of invertebrates, such as *Filipendula ulmaria* and *Mentha aquatica*. The addition of extra floral species not only enhances the biodiversity of the reedbed but it also enhances its aesthetics too.

The main flora species utilised within small scale constructed wetlands are those which have been proven to be robust against high nutrient concentrations, or those which have specific tolerance of the pollutant which they are treating. It is not the purpose of this thesis to detail the benefits and tolerances of the species employed as this can be found in the generic texts listed in Section 2.1 and numerous research papers. However, a brief overview of a selection of commoner species utilised in constructed wetlands (Table 2.2) and their water level requirements is provided below.

Acorus calamus	Sweet-flag	I.P
Carex sp.	Sedges	N.P
Ceratophyllum sp.	Hornworts	N.P
Elodea sp.	Waterweed	I.P
Glyceria maxima	Reed Sweet-grass	N.P
Iris pseudacorus	Yellow Flag	N.P
Juncus sp.	Rushes	N.P
Lemna sp.	Duck Weed	N.P
Phalaris arundinacea	Reed Canary Grass	N.P
Phragmites australis	Common Reed	N.P
Schoenoplectus lacustris (aka Scirpus lacustris)	Common Club-rush	N.P
Typha latifolia	Common Reedmace	N.P

Note: N = Native, I = Introduced, P = Perennial.

Where the text refers to a species group, several species can be utilised

Table 2.2: General Flora used in Constructed Wetland Treatment Systems

Sweet-flag *Acorus calamus* is an emergent rhizomatous introduced perennial, iris-like plant of 50 cm - 1.25 m height. It can be found in shallow still or flowing water, and fresh to brackish marshes with a salinity tolerance of <10 ppt (Knight, 1997). It would thus be beneficial in treatment systems which treat road runoff, where de-icing salt can be present within the effluent. The preferred water levels for this plant are - 10 cm to + 30 cm (English Nature, 1997) with a regular to permanent inundation of water and it can tolerate partial shade. It has a scattered distribution across the British Isles.

Several species of sedge can be utilised. Two species native to the U.K. are Lesser Pond Sedge *Carex acutiformis* and Bottle Sedge *Carex rostrata. Carex acutiformis* is a rhizomatous native perennial of wet meadows, marshes and near open water. It grows to 1.5 m height and is common throughout the British Isles, though rare in the north. The water levels for this plant are - 40 cm to + 50 cm with a preferred depth of 0 cm (English Nature, 1997). *Carex rostrata* is a native perennial of acid swamps, lake fringes and reedbeds. Common in the north and west of Britain and Ireland but rare or absent elsewhere. Bernard (1999) has found this species to have nearly a double life-span in Sweden, not due to the cold weather but due to the low nutrients found in the oligotrophic lakes. The water levels for this plant are - 15 cm to + 60 cm with a preferred depth of 0 cm to + 30 cm (English Nature, 1997). *Carex* species are generally a hardy plant within treatment wetlands.

Hornworts are submerged aquatic species and can be used to filter effluents and utilise different nutrients from the effluent. One of the native species to the U.K. is Rigid Hornwort *Ceratophyllum demersum* which is a perennial of still or slow flowing water growing up to 1.0 m. It has a salinity tolerance of 0.05 ppt (Knight, 1997) and has been shown to remove both macronutrients and micronutrients from effluent, including increasing the levels of sodium and potassium within its tissues when these constituents are present (Foroughi 2011). Its distribution is scattered over England and Wales being rare in the rest of the British Isles.

Another submerged group of plants used in constructed wetlands are the waterweeds *Elodea* species. Three species plus their hybrids are found in the U.K. all of which have been introduced. The three species are Canadian Waterweed *Elodea canadensis*, Nuttall's Waterweed *Elodea nuttallii* and South American Waterweed *Elodea callitrichoides*. All species of *Elodea* are listed on Schedule 9 of the Wildlife and Countryside Act 1981 (as amended), it is now illegal in England and Wales to encourage the spread of this species, and as such this group is not considered further.

Reed Sweet-grass *Glyceria maxima* is an emergent native perennial some 2.5 m in height. Distribution is common throughout England though scattered in Wales, Scotland and Ireland. Found in and by water, and can be found in deeper water than other species. The water levels for this plant are - 40 cm to + 1.0 m with a preferred depth of + 40 cm (English Nature, 1997). Within a constructed wetland this species has a high biomass and the aerenchymatous nature of its roots allows oxygen to penetrate into the rhizosphere (Vymazal & Kröpfelová, 2008).

Yellow Flag *Iris pseudacorus* is a rhizomatous native perennial of wet places to 1.5 m in height, and is common throughout the British Isles. The water levels for this plant are - 60 cm to + 60 cm with a preferred depth of -10 cm to + 10 cm (English Nature, 1997).

Several species of rush can be utilised. One species native to the U.K. is Soft Rush *Juncus effusus*. This species is a native tufted perennial to 1.5 m in height. Distribution is very common throughout the British Isles. It has a salinity tolerance of 0.5 ppt (Knight, 1997) in all types of wet or damp soils tolerating partial shade. The preferred water levels for this plant are – 55 cm to + 30 cm (English Nature, 1997).

Duckweed's Lemna spp. are small floating macrophytes which grow between 1-3 mm in length. They can form dense mats on the surface of water bodies, their numbers doubling every four days under optimal conditions. They are considered to be one of the most vigorously growing plants in the U.K., which is partly due to their ability to absorb nutrients through all of their body. In other plants, nutrients are mainly absorbed through the root system (Bonomo et al., 1997). Five species can be found in the U.K. of which four are native. The duckweeds native in the U.K. are Fat Duckweed Lemna gibba, Common Duckweed Lemna minor, Ivy-leaved Duckweed Lemna trisulca and Rootless Duckweed Wolffia arrhiza. Common duckweed has a salinity tolerance of 0.05 ppt (Knight, 1997), and can tolerate partial shade. Duckweed grows in still water or slow flowing water. They can survive in a variety of waters including moderately polluted, eutrophic and saline. The pH range for optimal growth is between 4.5-7.5, but they can survive at levels just outside this range. In the U.K they tend to be most frequently found in the south, being rarer in the north of Scotland and Ireland depending on the species involved. They require water temperatures above 5°C and air temperatures above 2°C. When temperatures drop below the optimal ranges for the plants, they go to the bottom of the waterbody and lay dormant until suitable conditions return, which makes them a poor candidate to be used for treatment purposes in areas with cold climates. The plants consist of approximately 95% water, nutritionally they are mainly comprised of protein, being very low in fibre (Bonomo et al., 1997).

Reed Canary Grass *Phalaris arundinacea* is a *n*ative rhizomatous perennial of wet or damp places to 2 m in height forming dense stands. Common throughout the British Isles. Phalaris has been shown (in Bernard, 1999) to grow for two weeks longer in the autumn and start growing two weeks earlier in the spring within wetland systems receiving effluent from landfill sites due to the warm leachate temperatures entering the reedbed of $5-8^{\circ}$ C. The water levels for this plant are - 60 cm to + 30 cm with a preferred depth of – 40 cm to 0 cm (English Nature, 1997).

Common Reed *Phragmites australis* (aka *communis*) is a native rhizomatous perennial of wet ground or shallow water, including the edges of salt marshes and estuaries. It grows to 3.5 m in height, forming dense stands and is common throughout the British Isles. *Phragmites* has a salinity
tolerance of up to 20 ppt (Knight, 1997). The water levels for this plant are - 1.0 m to + 50 cm with a preferred depth of – 20 cm to 0 cm (English Nature, 1997). This is the most utilised species for constructed wetlands within the U.K. and will be the main treatment species utilised in this study, and is discussed in more detail in Section 3.

Common Club-rush *Schoenoplectus lacustris* (aka *Scirpus lacustris*) is an extremely rhizomatous native perennial growing erect to 3 m in height. Found in shallow, still or slow flowing water it is frequent throughout Britain. The preferred water levels for this plant are – 10 cm to + 1.5 m (English Nature, 1997), it has been shown to release antibiotics from its roots (Brix, 1997) and is good for nutrient and pathogen removal (Soto, 1999).

Reedmace (aka Bulrush & Cattail) *Typha* spp. are frequently used in treatment wetlands as they become established quickly. The most common *Typha* species in the U.K. is Common Reedmace *Typha latifolia*, which is a rhizomatous perennial of mud or still/slow flowing fresh water. It forms dense stands growing up to 2.5 m and is frequent throughout most of the British Isles except for north and west Scotland. *Typha latifolia* has a salinity tolerance of < 0.05 ppt (Knight, 1997). The water levels for this plant are - 20 cm to + 1.0 m with a preferred depth of + 10 cm to + 75 cm (English Nature, 1997).

2.4 Enhancement of Floral Biodiversity in Constructed Wetland Treatment Systems

With regards to the biodiversity of the large-scale American wetlands which act predominantly as natural wetlands Kadlec & Wallace (2009) state;

"The wetland treatment system designer should not expect to maintain a system with just a few species. Such attempts frequently fail because of the natural diversity of competitive species and the resulting high management costs associated with eliminating competition, or because of imprecise knowledge of all the physical and chemical requirements of even a few species. Rather, the successful wetland designer creates the gross environmental conditions suitable for group or guilds of species; seeds the wetland with diversity by planting multiple species, using soil seed banks and inoculating from other similar wetlands; and then uses a minimum of external control to guide wetland development. This form of ecological engineering results in lower initial cost, lower operation and maintenance costs, and most consistent system performance."

A variety of ecological niches can be created within the same large-scale wetland, as opposed to the opportunities for enhancement of biodiversity in small scale constructed wetlands, which this research is focused towards. Kadlec & Wallace (2009) do however acknowledge the difficulties in

maintaining a few known species, with one of the reasons being the imprecise knowledge of the physical and chemical requirements. This research aims to contribute to reducing this lack of knowledge, and identifying the parameters which will enable a few biodiversity enhancing species to co-exist together with the main treatment species within a confined small scale constructed wetland.

The general physiological types of flora found within a natural wetland are:

- submerged aquatic species;
- floating aquatic species;
- emergent and marsh species including:
 - o grasses, sedges and rushes;
 - o upright herbaceous perennials;
 - o creeping herbaceous perennials; and,
 - o woody perennials.

As this study is restricted to small scale constructed wetlands, and in particular constructed reedbeds, it will focus on the potential of emergent and marsh vegetation to enhance biodiversity. The interaction between species from each of the four groups found within this broad physiological category will be studied to investigate how they interact when planted within the same small-scale wetland.

The growth characteristics of the four groups comprising emergent and marsh species are:

- grasses, sedges and rushes, include species such as *Carex* sp., *Phalaris arundinacea, Phragmites australis, Scirpus lacustris* and *Typha latifolia*. Within a wetland these species are usually perennial, being tolerant of high nutrient loadings and will rapidly colonise new areas. Due to their robustness, they are usually the main treatment species group utilised in constructed wetlands with emergent species (Cooper *et al.*, 1996; Kadlec & Wallace, 2009), and as such any non-treatment species utilised to enhance the biodiversity will have to be able to survive alongside this group;
- woody species includes the broad group of trees such as *Alnus* sp. and *Salix* sp. and also shrubs and woody perennials such as *Lythrum salicaria*. Woody species once established should be able to hold ground more robustly when other species (such as the prime treatment species) are competing for space. However, to avoid adverse effects upon the treatment of the effluent, they must not adversely affect the main treatment species utilised within the wetland. One example of this is willow species *Salix* sp., which can adversely

affect *Phragmites australis* by producing large amounts of shade (Copper *et al.*, 1996) and whose roots can also damage liners (Copper *et al.*, 1996; Ellis *et al.*, 2003);

- upright perennial herbs include *Alisima plantago-aquatica*, *Caltha palustris*, *Filipendula ulmaria*, *Myosotis scorpioides* and *Ranunculus flammula*. These species do not generally spread quickly and might be disadvantaged when competing against more vigorous plants such as *Phragmites australis*; and,
- creeping species (rhizomatous/stoloniferous) include *Mentha aquatica*, and are generally quick at growing and colonising. Their rhizomatous/stoloniferous nature allows them to intertwine between the stems of different species, quickly colonising new openings (i.e. in the growing media and where light is present) as they become available.

To aid in the selection of biodiversity enhancing flora for incorporation in constructed wetlands, the community structures of natural reedbeds containing *Phragmites australis* within the U.K was looked at. The main reedbed communities within the U.K. described by Rodwell (2000) in the National Vegetation Classification are:

- S4: *Phragmitetum australis* swamp;
- S24: *Peucedano-Phragmitetum* tall-herb fen;
- S25: *Phragmites-Eupatorium* tall-herb fen; and
- S26: *Phragmites-Urtica* fen.

Due to the large number of species present within these floral communities it was not feasible within this study to investigate each species, and consequently the author used his long experience as a practicing ecologist to choose species which are native to the U.K., hardy, have a wide distribution and which have a beneficial effect on biodiversity. In order that the final design principles could be applied across a large geographic gradient, all of the species chosen were both common (to avoid introducing new species into a specific geographic area) and readily available.

To investigate the floral interaction within a *Phragmites australis* reedbed treatment system, the four species chosen from each of the four groups were:

- Phragmites australis grasses, sedges and rushes;
- Lythrum salicaria woody perennial;
- Filipendula ulmaria upright herbaceous perennial; and,
- Mentha aquatica creeping herbaceous perennial.

All of these are present within the S24, S25 & S26 communities and as such are known to co-exist with *Phragmites australis* in larger natural wetlands. Although Kadlec & Wallace (2009) and Wallace & Knight (2006) detail *Lythrum salicaria* as an invasive weed within Northern America and recommend that it is not planted, within the UK it does not exhibit this characteristic and as such will be studied within the community mix.

The four selected species listed above are discussed in more detail in Section 3.3, in connection with the design of the microcosm systems described in Section 3.

3. MICROCOSM STUDY METHODOLOGY AND EXPERIMENTAL DESIGN

3.1 Design Overview

3.1.1 Introduction

To determine if constructed wetland treatment systems can have their biodiversity increased by incorporating some common floral wetland species (which are not generally associated with the treatment process), a three-year microcosm study was devised. It is recognised that the static flow in a microcosm study does not truly simulate the dynamic flow regime of a full scale reedbed treatment system, and that the methodology detailed within Section 3 is pseudo-replication. However, it provides a relatively controlled environment for the study of the viability of introducing a range of biodiversity enhancing species, and the results were to be utilised in the design of full scale studies in operating reedbed treatment systems (see Section 5).

The study involved the addition to the water of two different chemical parameters in different strengths, to simulate a wastewater liquid effluent, and to determine both the tolerance of the different species to these pollutants and the interactions between the plants. To allow competition between the plants to occur, the study was undertaken over the course of three full growing seasons.

A second parallel microcosm system was also set up to restrict the majority of root interaction. This was to determine if minimising root competition had any effect, since this could influence the design of future constructed wetland treatment systems, by allowing vulnerable biodiversity enhancing species to survive.

For convenience of access and to facilitate regular monitoring, the microcosm study site was located in the village of Marton, Warwickshire, England at National Grid Reference SP 407 687. Figure 3.1 details the location of the site within the UK and Figure 3.2 details the location of the site within Marton.

Figure 3.1: Location of Marton within United Kingdom

Figure 3.2: Site Location within Marton (Ordnance Survey 2017a)

3.1.2 Containers

Each microcosm consisted of a plant pot style container constructed from high-density polyethylene (HDPE), which had a base diameter of 720 mm, a top diameter of 838 mm and a height of 610 mm (see Figure 3.3). HDPE was used as this material is generally stable, not reacting/breaking down when it comes into contact with the wide variety of chemicals found in high strength industrial effluents, such as landfill leachate. HDPE is used to line modern landfills to stop leachate from escaping and contaminating ground water. In addition, under normal circumstance this resilience to chemical attack/degradation stops the liner from degrading easily and releasing additional chemicals back into the environment.

3.1.3 Growing Medium Selection

The fill within the container was divided into three layers (see Figure 2.1), to simulate the design of a constructed wetland treatment system.

The bottom layer was 10 mm washed pea gravel, which was placed in the container to a depth of 480 mm. Pea gravel was used as this is the primary media employed in sub-surface flow reedbed treatment systems (Grant *et al.*, 2001, Copper *et al.*, 1996, Ellis *et al.*, 2003), and Copper *et al.*, (1996) reports three typical gravel sizes, 3 - 6 mm, 5 - 10 mm and 6 - 12 mm. The pea gravel should be washed as this minimises fine material within the treatment system and helps to reduce the speed at which the system becomes blocked (Grant *et al.*, 2001, Copper *et al.*, 1996). Grant *et al.*, (2001) report the general depth of the gravel media for tertiary treatment to be 400 – 600 mm, with Copper *et al.*, (1996), Kadlec *et al.*, (1996, updated 2009) and Ellis *et al.*, (2003) giving a standard depth of 600 mm, as this is generally the maximum depth which the rhizomes of *Phragmites australis* will penetrate to.

The next section situated on top of the gravel subsurface layer was an artificial humus layer 30 mm deep to give an overall planting depth of 510 mm, which is within the 400 mm and 600 mm range referred to above. This layer was incorporated to replicate a mature reedbed where old leaf litter has accumulated on the surface of the treatment system. The humus layer has benefits for reedbeds by providing an insulating layer for the substrate (Wallace & Knight 2006, Wittgren & Maehlum 1997, Hiley 2002, Ellis *et al.*, 2003, Kadlec & Wallace 2009). General-purpose peat free compost (with no added nutrients) was used, which was high in fibre content as recommended in Wallace and Knight (2006).

The gravel and humus layer were subsequently saturated and the container filled with water to produce the final layer, 100 mm depth of surface water.

A perforated HDPE pipe was placed in the centre of the microcosm to facilitate water level and water usage monitoring.

Figure 3.3: Cross Section of the Media Layers within the Microcosms with Full Competition

The green domed layer above the humus layer on Figure 3.3 is caused by the 3D nature of the figure, combined with the transparent nature of the surface water, which has resulted in a proportion of the humus layer bed being visible.

3.2 Concentration Selection

Two main potential pollutants were used to test the floral interactions under different concentrations. These were nitrogen and salinity.

Nitrogen can be found in a variety of domestic and industrial effluents in a multitude of forms and concentrations (Kadlec & Wallace 2009, Tchobanoglous & Burton 1991). Nitrogen is an essential

element in the growth of plants, which utilise it in the form of nitrate and ammonia. Too much or too little can have adverse effects on vegetation and alter the plant community dynamics (Baldwin 2013; Dickson & Gross 2013; Silliman & Bertness 2004; Suding *et al.*, 2005). A study undertaken on natural marsh (infrequently inundated) and swamp (frequently inundated) habitats identified that the addition of nitrogen caused the perennial species to increase their area coverage whilst the annual species decreased their coverage (Baldwin 2013).

Many industrial effluents contain salinity in a multitude of forms and concentrations (Kadlec & Wallace 2009, Tchobanoglous & Burton 1991). It is also becoming more present in domestic effluent due to the increased use of water softeners (Kadlec & Wallace 2009). Salinity causes stress to plants, can affect their ability to utilise water and can affect their growth (Howard 2010; Mauchamp & Mesleard 2001; Munns 2002; Pagter *et al.*, 2005; Pagter *et al.*, 2009; Tchobanoglous & Burton 1991). It can affect the species composition of plant communities depending upon the tolerance levels of the individual plant species present and the levels of concentration (Mauchamp & Mesleard 2001; Silliman & Bertness 2004).

The concentrations of these potential pollutants are discussed below.

3.2.1 Nitrogen

The levels of nitrogen within effluent vary between the different types (i.e. domestic and industrial) and also depends upon the processes which produce the effluent (i.e. whether there are water saving devices within the property, which can result in a more concentrated effluent). With regards to industrial effluent, nitrogen levels can vary considerably depending upon the industry involved and the processes which produced the effluent. Similarly, landfill leachate can vary considerably depending upon the waste deposited, the design and management of the landfill. Although in general less leachate is produced at newer landfills, this is usually at higher concentration, as the design allows for greater moisture control and leachate re-circulation (Sanford 1999).

The range of nitrogen concentrations found in waste effluents or being fed into constructed wetland treatment systems can be found within the plethora of papers reporting the treatment capabilities of different treatment systems. However, a selection of the ranges identified by various authors are provided in Table 3.1 for comparison.

Given the variability of nitrogen within different effluents as illustrated by Table 3.1, it was decided to choose values which covered general domestic wastewater and the lower strength industrial effluents, which generally range between 20 mg/l and 125 mg/l. This level would not have fatal consequences for *Phragmites australis*, the main species utilised within U.K. reedbed treatment systems.

Author	Sample	Ammonia NH₃-N (mg/l)	Ammonium NH₄-N (mg/l)	Total Nitrogen (mg/l)	Total Oxidised Nitrogen NO ₃ -N + NO ₂ -N (mg/l)		
Sewage	Sewage						
Tchobanoglous & Burton (1991)	Generic Untreated Domestic Wastewater	-	-	20 (weak) 40 (medium) 85 (strong)	-		
Cooper (2003b)	Little Stretton Sewage Treatment Works Secondary Sewage Treatment Inlet	-	8.0 – 24.8	-	2.2 – 22.2		
	Oaklands Park Secondary Sewage Treatment Inlet	-	50.5	-	1.7		
	Dwelling built for 8 people equivalent Secondary Sewage Treatment Inlet. Low water usage and solid separator results in concentrated effluent.	-	93.9	124.5	-		
Grant and Griggs (2001)	Wildfowl and Wetlands Trust Visitor Centre at Slimbridge Secondary Sewage Treatment Inlet	31.72	-	-	0.1		
Kadlec &	Generic Raw Municipal Wastewater	-	12-50	20-85	-		
	Residential Septic Tank Effluent	-	40-60	-	0-1		
Industrial			,				
Kadlec & Wallace (2009)*	Generic Effluent for Landfill Leachate	-	0.01 – 1,000	70 – 1,900	-		
	Generic Effluent for Petroleum Refinery	-	0.05 -300	-	-		
	Generic Effluent for Electroplating	-	-	10-120	-		
	Generic Effluent for Breweries	-	-	25-45	-		
Croft & Campbell 1992	Review of Landfill Leachate from Various Sites	-	0 – 2582 (mean 421.8)	-	0 – 33.6 (mean 5.8)		
Steggall <i>et al</i> ., 2005	Poolsfield Landfill. Old landfill Filled with Inert Waste	-	-	0.4 - 107 (mean 24.59)	-		

* This is not an exhaustive list of industrial effluents and is only provided to illustrate a variety of industrial effluents.

Table 3.1:Selected Nitrogen Concentrations of Waste Effluents

The nitrogen solution concentrations employed in the experiments are shown in Table 3.2 below.

	Total N (mg/l)
Base Concentration	10
1/3 of Maximum Dose Level	50
2/3 of Maximum Dose Level	100
Maximum Dose Level	150

Table 3.2: Concentration of Nitrogen Solutions Used

Tchobanoglous & Burton (1991), indicate that a weak concentration of total nitrogen within domestic wastewater is 20mg/l. Whereas at the opposite end of the scale, Cooper (2003b) states that a strong concentration of total nitrogen within domestic wastewater is 124.5mg/l total.

Taking these two findings into consideration, it was therefore decided that the base concentration for this research would be set at 10mg/l, and the maximum dose level would be set at 150mg/l giving the two extreme concentrations to be tested. The reasoning's behind these choices were, a base level of 10mg/l would be half the value of Tchobanoglous & Burton's (1991) findings, but still provide some nutrients for the vegetation to utilise, and a maximum dosage of 150mg/l would allow for 'future proofing' should domestic wastewater become more concentrated due to advancements in water saving and recycling technologies.

Tchobanoglous & Burton (1991), also state that 40mg/l is the medium concentration of nitrogen within domestic wastewater effluent, and therefore 50mg/l total nitrogen was chosen as the medium level since it is exactly a third of the maximum dosage, but is slightly higher than the medium concentration of domestic wastewater effluent described within Tchobanoglous & Burton (1991) although within the ranges of the total combined nitrogen described within Kadlec & Wallace (2009) and Cooper (2003b).

The 100 mg/l total nitrogen was used as this is slightly higher than the strong concentration of domestic wastewater effluent described within Tchobanoglous & Burton (1991) and is also slightly higher than the range identified by Kadlec & Wallace (2009). This concentration is lower than the concentrated domestic wastewater effluent described in Cooper (2003b) created by water saving and recycling mechanisms, and is also at the upper end of the total nitrogen range identified for Poolsfield Landfill which was the landfill site at the focus of the original study (Steggall *et al.*, 2005).

3.2.2 Salinity

Within this thesis the salinity is reported as the per mille (‰, ppt) which is approximately related to the Practical Salinity Scale (UNESCO1981 and 1985). The reporting of the salinity as per mille is due to the measured salinity within the microcosms being composed of different salts and not just a single salt such as Chloride. Where the specific salts have been identified within the literature, these have been reported as the scientific unit identified and not converted to a combined salinity value.

Chloride can be present in domestic wastewater effluent with a main source being the use of water softeners. Kadlec & Wallace (2009) identifies that a wastewater treatment plant in Genoa-Oceola, Michigan, receives very high chloride loads (about 400-550 mg/l).

Salinity can find its way into treatment wetlands when de-icing salt used to treat the roads in cold weather is washed off the road. This can vary in concentration depending upon the level of salt used between each rainfall event flushing the salt off the road. Kadlec & Wallace (2009) identify that within Cumberland County, Pennsylvania, the chloride within these flushes of de-icing salt entering treatment wetlands reaches 140 mg/l, with approximately 175 mg/l chloride being present at one created wetland in Connecticut (Moore *et al.*, 1999).

In the U.K. de-icing salt has been shown to alter roadside vegetation communities, with maritime species including Reflexed Saltmarsh-grass *Puccinellia distans*, Common Saltmarsh-grass *Puccinellia maritima*, Lesser Sea-spurrey *Spergularia marina* and Sea Plantain *Plantago maritima* spreading inland along the road network (Scott & Davison 1982).

Sandford (1999) identified that the chemical composition of landfill leachate can vary considerably depending upon the waste deposited, the design and management of the landfill. Croft & Campbell (1992) compiled a review of landfill data and presented the general salinity constituents shown in Table 3.3. The constituents found within an older landfill site filled with inert waste identified during the original study (Steggall *et al.*, 2005) are also presented in Table 3.3.

	Croft & Campbell 1992		Steggall <i>et al.</i> , 2005		
Constituent	Range (mg/l)	Mean (mg/l)	Range (mg/l)	Mean (mg/l)	
Chloride (Cl ⁻)	41-16150	2083	<2-524	186	
Sodium (Na)	112-3475	1249	17-169	107	
Potassium (K)	9-1800	444	2.6-18	8.65	
Magnesium (Mg	7-754	190.1	26-192	116	
Calcium (Ca)	40-1133	297.5	43-183	139	

Table 3.3: Concentration of Main Salinity Consituents Identified within Landfill Leachate

As this study aims to look at enhancing the floral diversity of freshwater wetland treatment systems within the U.K., the impact of low levels of salinity or infrequent doses of salinity (i.e. where wetlands are used as an emergency backup to store sudden surplus effluent before it is fully treated) was explored. *Phragmites australis* is the main species used within the UK for constructed wetlands and thus the salinity concentrations employed were based upon its tolerance levels. The salinity tolerance of *Phragmites australis*, which varies depending upon where the individual specimens originated, has been previously studied by a number of researchers (Lissner & Schierup 1997; Adams & Bate 1999; Clevering & Lissner 1999; Lissner *et al.*, 1999a&b; Hartzendorf & Rolletschek 2001; Mauchamp & Mesleard 2001; Hurry *et al.*, 2013).

Knight (1997) reports that *Phragmites australis* has a salinity tolerance of up to 20 ppt and Lissner & Schierup (1997) found that a salinity of 35 ‰ proved fatal for all *Phragmites australis*. At 22.5 ‰ salinity the plants taken from established rhizomes had a survival rate of 75 % with only 12 % of juvenile plants surviving this concentration. At greater than 5 ‰ salinity levels the leaf number and shoot height decreased, but were unaffected below this concentration (Lissner & Schierup, 1997).

Antonellini, M & Mollema, P.M. (2010), found that in natural wetlands, when the salinity reaches 10-12 ‰, the species diversity reduces, and the area becomes almost barren, with only a few reed species surviving.

As *Phragmites australis* has been demonstrated to have high survival rates below 20 ‰ salinity and is not significantly affected below 5 ‰, a range of salinities between these concentrations was utilised in the experimental study, as shown in Table 3.4.

	Salinity (‰) (g/l)
Base Concentration	< 0.5 (fresh water)
1/3 of Maximum Dose Level	5
2/3 of Maximum Dose Level	10
Maximum Dose Level	15

Table 3.4: Concentration of Salinity Solutions Used

Due to the variation in industrial effluents and the different chemical composition and concentrations making up the salinity component of these (depending upon the processes involved) it was not possible to identify a generic composition for use in the study. Consequently, a general aquarium sea salt (Instant Ocean 2008) was used, as it was readily available, thereby allowing the microcosms to be quickly adjusted should the design salinity concentrations become diluted. With this synthetic sea salt being used for livestock it has a constant chemical composition, as shown in Table 3.5.

lon	Mean Composition of Natural Seawater (g/l)	Instant Ocean (g/l)
Sodium (Na+)	10.781	10.780
Potassium (K+)	0.399	0.420
Magnesium (Mg++)	1.284	1.320
Calcium (Ca++)	0.412	0.400
Strontium (Sr++)	0.008	0.0088
Chloride (Cl-)	19.353	19.290
Sulphate (SO4)	2.712	2.660
Bicarbonate (HCO3)	0.126	0.200
Bromide (Br-)	0.067	0.056
Boric Acid (B(OH)3)	0.026	-
Fluoride (F-)	0.001	0.001

 Table 3.5: Composition of Natural Seawater and Instant Ocean Synthetic Sea Salt (Instant

 Ocean 2008)

3.3 Vegetation Species Selected

Firstly, *Phragmites australis* was chosen as the key experimental species, since it is the most widespread of species used within European constructed wetland treatment systems (Copper *et al.*, 1996; Price & Probert, 1997; Ellis *et al.*, 2003; Kadlec *et al.*, 1996 and second edition 2009). *Phragmites australis* is a robust species, tolerant of a wide range of pollutants and nutrient levels (Copper *et al.*, 1996; Ellis *et al.*, 2003). It has a high biomass root density and can tolerate fluctuating water levels (Copper *et al.*, 1996, Ellis *et al.*, 2003).

As discussed in Section 2, in addition to *Phragmites australis*, three generally robust perennial species were identified which could be beneficial to enhancing the biodiversity potential of a constructed wetland treatment system. The four individual species chosen from the four general physiological flora types found in natural wetlands were:

- Phragmites australis grasses, sedges and rushes;
- Lythrum salicaria woody perennial;
- Filipendula ulmaria upright herbaceous perennial; and,
- Mentha aquatica creeping herbaceous perennial.

In Sections 3.3.1 to 3.3.4, the morphology, distribution and general habitats for each species is discussed. In addition, research into each of the species relevant to this study was reviewed, and is also included. The quantity and relevance of information available for each of the species varied considerably. For *Phragmites australis* there is a plethora of information, including salinity tolerances and biomass production, whereas at the opposite end of the scale for *Filipendula ulmaria*, there is minimal information of relevance.

For clarity, where more than one of these species is discussed within the same publication, the relevant sections from the publication have been divided and incorporated into the appropriate species sections.

3.3.1 Phragmites australis

As well as being the most frequently used macrophyte within treatment wetlands, *Phragmites australis* represented the grasses, sedges and rushes group (see Section 2.4).

Morphology

Phragmites australis is an erect perennial grass which can grow <1 m to 3.5 m high (Rose, 1989; Stace, 1997) (Figure 3.4). The leaves are lanceolate and a grey/green colour (Hubbard, 1992; Rose, 1989) and the roots are rhizomatous and can be stoloniferous (Hubbard, 1992; Rose, 1989). The inflorescences are present in panicles (up to 150 mm to 400 mm long) with purple to brown colouration (Hubbard, 1992; Rose, 1989). The spikelets are 10 mm – 16 mm long (Hubbard, 1992; Rose, 1989; Stace, 1997). The rhizomes of *Phragmites australis* have been reported as extending 20 m (Holm *et al.*, 1977), and Curtis (1959) them growing at an equivalent of 40 cm per year.

Distribution and General Habitat

Phragmites australis is a native species to the U.K with a widespread, common and stable distribution (BSBI, 2002; Hubbard, 1992; Rose, 1989; Stace, 1997). In Europe this species is also both widespread and common (Rose, 1989).

It is generally found in lowland wetland habitats such as lake edges, ditches, swamps, fens, salt marshes and river banks (BSBI, 2002; Hubbard, 1992; Rose, 1989; Stace, 1997). The soils can vary and include alkaline, neutral and acid soils in fresh or brackish water (Rose 1989). The recommended water level requirements for *Phragmites australis* range from 1000 mm below the growing media surface level, to 500 mm above, with a preferred range of 200 mm below the surface to level with the ground surface (English Nature, 1997).

General Structure

Panicle and Upper Leaves

Figure 3.4: Phragmites australis

Key Research Literature

There is a plethora of information on this species and its use within constructed wetlands. Consequently, this section highlights key research relevant to this study and does not go into detail about its efficiency (including nutrient distribution and oxygen root transfer) as a wetland treatment species. This information can be found within the generic texts on constructed wetland treatment systems which have been detailed earlier (See Section 2).

Although *Phragmites australis* is a native plant in North America, an aggressive invasive genotype has been introduced (Blossey *et al.*, 2002; Kettenring *et al.*, 2011) which is rapidly colonising

natural wetlands and causing it to become a nuisance. As such this species is discouraged within constructed wetland treatment systems within North America (Kadlec and Wallace, 2009). The opposite is true for the UK and Europe, where this is the main native species recommended for use (Cooper *et al.*, 1996; Vymazal, 2011).

Kadlec and Wallace (2009) note that above and below ground biomass responds to an influx of nutrients. However, they state that high nutrient levels can lead to nutrient toxicity within aquatic plants in treatment wetlands and although they note that the biomass for *Phragmites australis* is not affected by 20-80 mg/l ammonia, no toxicity level is given. Peverly *et al.*, (1995), found *Phragmites australis* used for the treatment of landfill leachate grew well in leachate with values of 300 mg/l NH₄⁺, 300 mg/l BOD, 30 mg/l Fe, 1.5 mg/l Mn, 500 mg/l K, and pH of 7-7.2.

Meuleman *et al.*, (2002) investigated the nutrient storage of an infiltration wetland receiving 82 mg/l Total-N and a natural wetland receiving <5 mg/l Total Nitrogen. They found that the Shoot : Root ratio of the infiltration wetland was 2.1, whereas it was 0.55 within a natural wetland. This shows that in the infiltration wetland the plants produced over twice as much above ground biomass than below ground biomass. Within the lower nutrient natural wetland, the opposite was true. Meuleman *et al.*, (2002) attribute this to the availability of nutrients, explaining that where nutrient levels are low, as they were in the natural wetland, plants invest more resources in below ground biomass, where as the increased nutrient availability within the infiltration wetlands facilitated a higher production in above ground biomass. Meuleman *et al.*, (2002) did not discuss the effects of potential plant competition on the biomass, but in the natural wetlands *Phragmites australis* was the dominant species with *Typha latifolia* and several *Carex* species present, compared to the infiltration wetland which consisted of a monoculture of *Phragmites australis*. Therefore plant competition could have been a variable in the different Shoot : Root ratios encountered.

Bastelova *et al.* (2004) undertook a garden tub experiment, where they studied two species *Lythrum salicaria* and *Phragmites australis*, both of which have vigorously invaded North America. They took individuals across a wide geographical area across Europe and grew them for one growing season at two water levels and at three nutrient levels for *Lythrum salicaria* and two nutrient levels for *Phragmites australis*. For *Phragmites australis*, six populations from six geographical locations were studied in 5 l plastic pots, with four pots/plants representing each population. The two nutrient loadings were 1 and 6 g/l of a slow diluting granulate fertilizer (Osmocote Plus N-P-K 15-11-13). The water levels were classed as high (300 mm above the surface of the pot) and low (at the surface of the pot). With regards to *Phragmites australis* these were separated into three distinct groups with the Swedish and Romanian populations being far apart and the remaining four locations (Netherlands, Czech Republic, Hungary and Spain)

occupying the middle ground. These plants generally showed the trend of increasingly taller and thicker stems the further south along the geographical gradient from which they were sourced. The increase in nutrients was positively significant giving an increase in dry weight of both above and below ground biomass, but it did not significantly increase the heights of the tallest stems. The different water levels did not have a significant effect on *Phragmites australis*, with the exception of the below ground biomass dry weight which decreased with increasing water levels. This study is discussed further in the Section 3.3.2 detailing the choice of *Lythrum salicaria*.

Phragmites australis is not a true halophyte but tolerant of certain salinity concentrations. The salinity tolerance of *Phragmites australis*, has been extensively studied, and been found to vary depending upon where the individual specimens originated (Knight, 1997; Lissner & Schierup, 1997; Adams & Bate, 1999; Clevering & Lissner, 1999; Lissner *et al.*, 1999a&b; Hartzendorf & Rolletschek, 2001; Mauchamp & Mesleard, 2001; Hurry *et al.*, 2013). Relevant aspect have already been explored in the salinity concentration selection discussion in Section3.2.2.

3.3.2 Lythrum salicaria

Lythrum salicaria was selected as the species to represent the woody species group. The adaptive nature of this species to different growing conditions and its reported vigorous nature should allow it to survive when competing with other vigorous plants.

Morphology

Lythrum salicaria is a woody herbaceous perennial (see Figure 3.5) which can grow to a height of 1.5 m (Stace 1997). The leaves are sessile, slightly pubescent, lanceolate to ovate and generally in opposite pairs with the upper leaves being alternate (Rose, 2006; Shamsi and Whitehead, 1974a; Stace, 1997). The red-purple inflorescences are present in whorls for 100 – 300 mm at the ends of the stems (Figure 3.5) and each inflorescence is up to 15 mm long in a calyx-tube with 6 petals. The inflorescences are usually present in June to September/October. Shamsi and Whitehead (1974a) report that a healthy plant generally produces approximately 900 seed capsules each year with approximately 120 seeds per capsule. It does not disperse much by vegetative spread, but as the seeds are small and light, they are dispersed in the air. The stems die back each winter with the plant perennation being in the root where new shoots are produced from the top of the root stock in the spring. The roots comprise a tap root, which is present throughout the life of the plant, maturing to provide secondary and tertiary root branches.

Distribution and General Habitat

Lythrum salicaria is a native species to the U.K. with a widespread, common and stable distribution, except for northern Scotland (BSBI, 2002; Rose, 2006; Stace, 1997). In Europe this species is widespread and relatively common.

It is generally found in wetland habitats such as marshland, wet woodland, tall herb fens and also on the banks of rivers, canals and standing water bodies, with either permanently wet soil or in areas which are temporarily flooded (BSBI, 2002; Rose, 2006; Stace, 1997). The soils can be either acid or alkaline (Shamsi and Whitehead, 1974a). The recommended water level requirements for *Lythrum salicaria* range from 400 mm below the growing media surface level to 100 mm above, with a preferred range of 100 mm below the surface to 100 mm above (English Nature, 1997).

Lythrum salicaria is generally found in open habitats, but is tolerant of light shade and moderate shade when established (Shamsi and Whitehead, 1974a). Shamsi and Whitehead (1974b) have shown that this species adapts to shade by producing fewer lateral branches and a larger leaf with a thinner depth. The reduction in light also reduced the number of flowers produced. Overall a decrease in dry weight was found with decreasing light levels, but the root proportions did not alter.

General Structure

Inflorescences

Figure 3.5: *Lythrum salicaria*

Key Research Literature

Non-native strains of this species which were introduced into the United States and Australia have been problematic, often outcompeting other wetland flora species and forming dense stands (Bastlova & Kvet, 2002; Blossey & Kamil, 1996; Edwards *et al.*, 1998; Schooler *et al.*, 2006; Thompson *et al.*, 1987). Thompson *et al.*, (1987) identified that one of the native plants which *Lythrum salicaria* displaces is *Typha latifolia*, a species which is used in constructed wetland treatment systems.

This dominance of the non-native American strains was attributed to the different life strategies of non-native American strains and native European strains. It was identified that the non-native strains are taller with larger above ground biomass and less reproductive effort is used compared to the native strains (Bastlova & Kvet, 2002, Bastlova *et al.*, 2006). Bastlova & Kvet, (2002) identified that the dry weight partitioning for different parts of the plants was different for native and non-native plants. Non-native plants had a higher proportion of dry weight in their shoots and roots than native plants, but native plants had a higher proportion of dry weight in the leaves and reproductive parts. The native plants also flowered 10 days earlier than non-native individuals. This difference in dry weight partitioning allows for non-native individuals to grow taller earlier in the season than the native individuals, hence they gain an advantage over adjacent vegetation when competing for solar irradiance (Bastlova & Kvet, 2002). This extra partitioning of dry weight to the shoots and the earlier increase in height allows for non-native individuals to compete with taller species such as *Phragmites australis* and *Typha latifolia*, which it does in the U.S.A. By comparison the European native species are generally found in shorter plant communities (Bastelova & Hanzelyova, 2001; Bastlova & Kvet, 2002)

Notzold *et al.*, (1998) noted that when *Lythrum salicaria* (seeds collected from the USA) was subject to competition with *Phleum pratense* within a pot, that during year one the above ground heights and biomass of *Lythrum salicaria* was slightly higher than the control but not statistically significant. During year 2 the competition resulted in a significant reduction in the fine roots of *Lythrum salicaria* and also delayed flowering.

The garden tub experiment where Bastelova *et al.*, (2004) studied two species *Lythrum salicaria* and *Phragmites australis*, has already been described in Section 3.3.1. For *Lythrum salicaria*, the results showed that it could be divided into three main geographical groups separated by latitude. The first group were the southern European populations which had a strong main shoot and flowered later in the year. The second group was the north European populations which were shorter, had lateral branches almost as thick as the main stem and exhibited earlier flowering. The remainder were from central Europe which had characteristics falling between the northern and southern populations. These plants had the general characteristics found within the identification guides for this species, being a main stem with obvious lateral branches, inflorescences along the terminal spikes of the main stem and lateral stems, and the flowering season was in the middle, being late July to early August. The low and intermediate nutrient levels for *Lythrum salicaria* enhanced the plants growth, however the higher nutrient dose did not further increase the dry weights of the plants, with the plant becoming more vulnerable to herbivory and growth stress (damaged tips and leaf necrosis).

Shamsi and Whitehead (1977c) found that by diluting the standard dose of a soluble fertilizer and applying the various dilutions to *Lythrum salicaria*, the dry weight of the plants decreased with the greater dilutions. They also identified that the root/shoot ratio increased with the decrease in nutrient concentrations. Shamsi and Whitehead (1977c) found that reducing the concentration of nitrogen, phosphorus and potassium reduced the dry weight of the plants with the reduction in nitrogen having the most affect on the individual plants. When Shamsi and Whitehead (1977d) planted *Lythrum salicaria* and *Epilobium hirsutum* at high densities in two different nutrient solutions, *Lythrum salicaria* became the dominant species. *Epilobium hirsutum* was outcompeted either totally dying out or becoming prostrate and forced to the edge of the containers.

Antonellini, M & Mollema, P.M. (2010), looked at the impacts of groundwater salinity on vegetation species richness in the coastal pine forests and wetlands of Ravenna, Italy. They identified that *Lythrum salicaria* was present in areas where the salinity levels were 1.5 g/l. In their literature review Antonellini, M & Mollema, P.M. (2010) identify that *Lythrum salicaria* has a salt tolerance of 1.5 to 2 ds/m (approximately 0.96 to 1.28 g/l, based upon 1 ds/m equating to 640 mg/l salt).

Hutchinson (1998) mentions that *Lythrum salicaria* has been found invading subsaline marshes in the Pacific Northwest. In the Fraser River delta it has been recorded at salinity values of 8 ppt for short periods of time in the early growing season but no further quantitative data on the salinity gradients for the Pacific Northwest exist.

Previous studies have looked at the soil characteristics where *Lythrum salicaria* has invaded habitats to successfully form a dominant monoculture. Fickbohm, S.S. & Zhu W.X. (2006) found that in the Montezuma National Wildlife Refuge (New York State), the soil characteristics differed between old (>20 years) dense stands of *Lythrum salicaria* and the native stands of *Typha latifolia*. They found that the stands of *Lythrum salicaria* had significantly higher standing dead biomass (1.88 kg m² compared to 0.59 kg m²) and a higher organic soil content in the upper 200 mm of soil (35.2 kg m² compared to 27.5 kg m²). The decaying *Typha latifolia* leaves produced a thicker leaf litter layer which was absent in the *Lythrum salicaria*, with *Typha latifolia* slowly collapsing over the winter months when less microbial activity is being undertaken. *Lythrum salicaria* also had higher average monthly nitrogen mineralisation rates (911 mg N m² compared to 638 mg N m²). Fickbohm, S.S. & Zhu W.X. (2006) note that the extensive fine root system of *Lythrum salicaria* could be an adaptation for this species in dealing with limited nutrients (N is usually a limiting factor in freshwater marshes) improving its invasive capabilities.

Weihe & Neely (1997) undertook a short (three month) study of *Lythrum salicaria* and *Typha latifolia*. In the study they placed a mixed ratio of each species (maximum 5 plants per 1 l pot) in both unshaded and shaded areas. In the unshaded areas, they identified that *Lythrum salicaria* increased its above ground biomass when a higher proportion of *Typha latifolia* was present. Where no *Typha latifolia* was present the above ground biomass for each *Lythrum salicaria* plant weighed 5.3 g and increased to 17.7 g where four *Typha latifolia* plants were present for each *Lythrum salicaria* plant. The below ground biomass also increased from 3.02 g per plant where no *Typha latifolia* was present, to > 7 g per plant where four *Typha latifolia* plants were present for each *Lythrum salicaria* plant. In the shade (60% less light), where no *Typha latifolia* was present the above ground biomass for each *Lythrum salicaria* plant. In the shade (60% less light), where no *Typha latifolia* was present the above ground biomass for each *Lythrum salicaria* plant. The below ground biomass also increased from 3.69 g and increased to 8.88 g where four *Typha latifolia* plants were present for each *Lythrum salicaria* plant. The below ground biomass also increased from 2.0 g per plant where no *Typha latifolia* was present, to 4.3 g per plant where four *Typha latifolia* plants were present for each *Lythrum salicaria* plant. The study also showed that *Lythrum salicaria* suppressed the dry biomass of *Typha latifolia* both above and below ground compared to the pots where *Lythrum salicaria* was absent.

Twolan-Strutt & Keddy (1996) undertook a short-term study looking at the competition between Lythrum salicaria and Carex crinite. The aspects of competition which they investigated were: full competition with both roots and shoot interaction; part competition where the shoots were held back with netting so that only the roots interacted; and no competition where the roots and shoots were separated. The species were planted in a high standing crop wetland with high nutrients (fertile bay) and within a low standing crop wetland with low nutrients (infertile sandy shoreline). The seedlings were planted into the relevant plots in June and then harvested in September the same year. The above ground biomass was cut at ground level and the below ground biomass was sampled using 10 cm diameter soil cores to a depth of 20 cm. They analysed the results to calculate a competition intensity which was based upon the relative growth rates from the starting biomass of seedlings, and the final biomass of the plants over the duration of one growing season. They found that for Lythrum salicaria there was no significant difference between the two wetlands for the mean total competition intensity. When the results were separated further, they identified that both the above ground and below ground competition intensities between the two wetlands were significantly different. In the high nutrient wetland Lythrum salicaria had greater above ground component with the opposite being true for the low nutrient wetland.

Although the study by Twolan-Strutt & Keddy (1996) looks at competition intensity within a wetland, the aims of the study presented in this thesis did not permit the same methods to be utilised, as they were deemed unsuitable for identifying the mid to long term feasibility of using a mixture of aquatic species within a wetland treatment system. The Twolan-Strutt & Keddy (1996) competition intensity looked at the starting biomass of the plants and the end biomass over one season. The

study presented in this thesis had additional factors which included reproduction and mortality over multiple growing seasons and as such the Twolan-Strutt & Keddy (1996) competition intensity calculation could not be utilised. Another factor was the limited sampling of the root biomass undertaken by Twolan-Strutt & Keddy (1996) who utilised 10 cm diameter soil cores to a depth of 20 cm. This study investigates the feasibility of using wetland species within an operational sub-surface flow treatment wetlands which extend beyond the 20 cm sample depth. The treatment in sub-surface flow treatment wetlands occur primarily, as the name suggests, in the sub-surface media and vegetation roots. With the main treatment occurring below ground, the root interactions below the 20 cm depth and beyond the 10 cm core needs to be investigated, and given time to develop and interact over multiple growing seasons. The greater depth and multiple growing seasons utilised in this study permit any potential future design issues to be identified such as the growth rates of the roots. The growth patterns for the roots, and any parameters which have an adverse affect on the root growth needs to be identified, as this could adversely affect any future effluent treatment and as such could render certain species or design principles unsuitable for deployment into operational treatment wetlands.

Although this thesis is looking at the ability of *Lythrum salicaria* to survive long-term as a biodiversity enhancer within a constructed wetland treatment system, and not at its treatment potential, *Lythrum salicaria* has the ability to facilitate the removal of pollutants. Zhang *et al.*, (2007) found from a study of *Lythrum salicaria* grown in pots that after a 15 day retention period, TN removal was 88.8 %, TP removal was 97 %, BOD₅ removal was 88.8 % and COD removal was 88.7 %. These were all significantly higher than the unplanted pots used as controls. The study also explored the removal of metals from the tested effluent and found that *Lythrum salicaria* removed significantly higher amounts of Cr (81.3 % removal), Pb (87 % removal) and Fe (99.1 % removal) than the controls.

3.3.3 Filipendula ulmaria

Filipendula ulmaria was identified as the species to represent the perennial herbs originating each year from a perennating bud. In the U.K. this species is often found in damp roadside ditches which would be affected by de-icing salt spreading of the roads, and as such could have some tolerance to low levels of salinity. It is also found in both open environments and shady (wet woodland) environments and therefore might be able to tolerate being shaded out when competing with other vigorous wetland plants.

Morphology

Stace (1997) and Rose (2006) report *Filipendula ulmaria* as an herbaceous perennial which can grow to 1.2 m high (Figure 3.6). The leaves are pinnate and stalked with 2-5 pairs of main leaflets (80 mm long) with smaller leaflets present in-between. The leaflets are toothed terminating in a point with a dark green hairless upper surface and pale green downy surface underneath. The white-cream inflorescences are present in panicles (with the panicles up to 150 mm across) at the end of the main flowering stem. Each inflorescence is up to 4-10 mm across with 5 petals and are usually present in June to September. The stems die back each winter with the plant perennation being in the root with new shoots produced from the top of the root stock in the spring.

Inflorescence Buds

Basal Leaves

Distribution and General Habitat

Filipendula ulmaria is a native species to the U.K. with a widespread and common and stable distribution (BSBI, 2002; Rose, 2006; Stace, 1997). In Europe this species is widespread and relatively common.

It is generally found in wetland habitats such as swamps, tall herb fens damp meadows roadside/railway ditches and also on the banks of rivers, canals and standing water bodies (BSBI, 2002; Rose, 2006; Stace, 1997). The soils are generally neutral to calcareous and moderately fertile (BSBI, 2002; Rose, 2006). The recommended water level requirements for *Filipendula ulmaria* range from 600 mm below the growing media surface level to 50 mm above with a preferred range of 200 mm below the surface to level with the surface (English Nature, 1997). Price & Probert (1997) note that *Filipendula ulmaria* is a native species which is a good nectar source for invertebrates with its key attributes being shade tolerant and scour resistance.

Key Research Literature

There is a void in research on *Filipendula ulmaria* being utilised within constructed wetlands. The majority of research which lists *Filipendula ulmaria* as a species present within a natural habitat being studied, gives no detail about this specific species. There is no information upon its salinity tolerance limits.

Pauli *et al.*, (2001) studied the effects of nutrient enrichment in calcareous fens, and looked at the impact of increasing nutrients on *Filipendula ulmaria*. After 16 months of growth the plants were measured during August. The results found that in unfertilised plots, this species had an average of two leaves with a length of 144 mm. The above ground biomass was 0.2 g, the below ground biomass was 0.6 g giving an approximate shoot:root ratio of 0.3. The plots which were only subject to additional Nitrogen were not affected. The sites which were subject to a mixed NPK fertiliser had increased leaf lengths of 56% and increased above ground biomass of 78%. The below ground biomass did not alter and consequently, the shoot:root ratio increased. They identified that these increases were parallel with the increase in biomass of the surrounding calcareous fen vegetation and as such *Filipendula ulmaria* was able to compete for the available light resource.

Studer-Ehrensberger *et al.*, (1993), found that *Filipendula ulmaria* can be displaced by *Glyceria maxima* within a dune slack environment. *Glyceria maxima* is less anoxia tolerant and starts growing earlier in the season due to its aerenchyma providing it with access to oxygen. This helps

to displace *Filipendula ulmaria* which stays dormant for longer until the water subsides within the dune slacks.

Smirnoff & Crawford (1983) found that although *Filipendula ulmaria* is a flood tolerant species, when subject to flooding, this species does not produce extensive aerenchyma which resulted in low root porosity. When compared to wild *Mentha aquatica* the authors note that the porosity is similar to *Filipendula ulmaria*, however *Mentha aquatica* has aerenchyma and therefore they did not know the reason for *Filipendula ulmarias'* low porosity.

3.3.4 Mentha aquatica

Mentha aquatica was selected as the species to represent the creeping plant group. The rhizomatous/stoloniferous nature of these plants should allow them to intertwine between the stems of the different species, quickly colonising new openings (i.e. in the growing media and where light is present) as they become available. This should allow this species to survive when competing with other vigorous plants.

Morphology

Stace (1997) and Rose (2006) report *Mentha aquatica* (Figure 3.7) as a rhizomatous and stoloniferous herbaceous perennial which can grow to 900 mm high. The leaves are subglabrous, ovate with shallow blunt teeth and in opposite pairs with a mint aroma. The mauve inflorescences are present in whorls up to 20 mm across in a rounded ball situated just above the higher leaves on the main stem. Each inflorescence is up to 3-4.5 mm long in a hairy calyx-tube, and are usually present from July to October. The plant generally dies back each year, storing its reserves over winter within its rhizomes (Lenssen *et al.*, 2000).

Upright Stems

Prostrate Stems Under Water During The Winter Figure 3.7: *Mentha aquatica*

Distribution and General Habitat

Mentha aquatica is a native species to the U.K with a widespread, common and stable distribution (BSBI, 2002; Rose, 2006; Stace, 1997). In Europe this species is also widespread and common.

It is generally found in wetland habitats such as marshland, wet woodland, tall herb fens, dune slacks, ditches and also on the banks of rivers, canals and standing water bodies (BSBI, 2002; Rose, 2006; Stace, 1997). The recommended water level requirements for *Mentha aquatica* range from 600 mm below the growing media surface level to 200 mm above, with a preferred range of 100 mm below the surface to 100 mm above (English Nature, 1997).

Key Research Literature

There is minimal research on *Mentha aquatica* being utilised within constructed wetlands. The majority of research which lists *Mentha aquatica* as a species present within a natural habitat, gives no detail about this specific species. There is no information available on its salinity tolerance limits.

Price & Probert (1997) have *Mentha aquatica* in a table which details that it is one of the most commonly used plant species in UK constructed wetlands. However, the reference for this table entry, Biddlestone *et al.*, (1991), contradicts this as it does not state that it is one of the most commonly used plants. Biddlestone *et al.*, (1991) provide a list of plants in their introduction, which have the ability to treat wastewater and reference notes from a workshop in 1989. Price & Probert, (1997) also list *Mentha aquatica* as a native species which attract butterflies and other invertebrates with its key attributes being shade tolerant, scour resistance and that it helps to improve water quality.

A literature search showed that this is not a commonly used plant for treatment purposes, but is used within some constructed wetland treatment systems. Research has been undertaken upon this species' ability to provide a beneficial antibacterial effect when treating wastewater. Stottmeister *et al.*, (2003) in their review of the effects of plants and microorganisms refer to previous research undertaken by Seidel (1971) on *Mentha aquatica* within pot experiments. Seidel's work showed that *Mentha aquatica* was very good at removing *E. Coli* (up to 99 %) and *Enterococci*, as well as being good at removing colif. bacteria, salmonella, acidifiers, moulds and yeasts.

Although this thesis is looking at the ability of *Mentha aquatica* to survive long-term as a biodiversity enhancer within a constructed wetland treatment system, and not at the treatment potential of the biodiversity enhancing species, it has the ability to facilitate in the removal of pollutants. Kamel *et al.*, (2007) found from a study of *Mentha aquatica* grown in a solution containing heavy metals, that after a 21 day retention period, heavy metals were reduced from 28.06 mg/l to 18.3 mg/l for zinc (34.77 % reduction, comprising of 39.55 % plant uptake and 60.45

% precipitation), 5.56 mg/l to 3.48 mg/l for copper (30.89 % reduction, comprising of 50.86 % plant uptake and 49.13 % precipitation), 103.55 mg/l to 7.30 mg/l for iron (92.92 % reduction, comprising of 96.72 % plant uptake and 3.28 % precipitation) and 501 μ g/l to 0.02 μ g/l for mercury (99.99 % reduction, comprising of 90.05 % plant uptake and 9.95 % precipitation).

Smirnoff & Crawford (1983) found that *Mentha aquatica* has aerenchyma. The presence of aerenchyma should permit the flow of oxygen to the roots and as such permit this species roots to spread within anoxic wetland soils.

3.4 Planting Configuration for Microcosms

Two planting configurations were utilised to determine if different design principles would permit different species to live within the treatment wetland. The first system focused on full competition between the different species within the same microcosm. The second system focused on restricting the root competition between the different species with the only competition present being above ground. This latter was included to determine if the addition of below ground root baffles in full scale treatment systems would limit competition and permit the different species to co-exist more easily, and as such inform future design principles.

3.4.1 Microcosms with Full Competition

3.4.1.1 Experiment Design

A total of eight microcosms were installed to measure the long-term sustainability and interactions between the different floral species with full species interactions. Four of these microcosms were subject to the four different nutrient concentrations, whilst the remaining four microcosms were subject to the four different salinity concentrations.

Each microcosm was divided into four sections (no physical dividers were used within the tank to allow for competition of roots), with each section covering 25 % of the surface area (Figure 3.8) and planted with a different species. The surface area of the microcosm was 5515.4 cm² which gives an allocated planting area for each of the four floral species of 1378.85 cm².

3.4.1.2 Planting Configuration

Figure 3.8 and Figure 3.9 detail the layout of each container used in the microcosms with full competition. The central circle contained *Phragmites australis*. The outer circle was divided into three equal sections, in each of which a different floral species was planted. This ensured that all of the species were in contact with and competing against each other. The location of *Phragmites australis* in the centre allowed for it to interact more with the other floral species, having a contact length of 453 mm, compared with 174 mm between the outer species. As the majority of a traditional constructed wetland treatment system consists of *Phragmites* australis, this greater level of competition would occur in any final created treatment system and thus required particular attention.

A total of four 90 mm pot plants for each species were planted (without the pots) within each microcosm. Cooper *et al.*, (1996) recommend planting four plugs of *Phragmites australis* per m². However, a higher planting density and the 90 mm pot plants were chosen above plug plants, to help achieve a fully vegetated microcosm as quickly as possible, and thus shorten the time before the competition interactions between the species would occur. All pot plants were of native provenance.

The flora within these microcosms were planted on the 28th and 29th July 2007. This accords with the preferred planting time in Western Europe of between May and August, as recommended by Cooper *et al.*, (1996) for wetland treatment systems.

Figure 3.8: Layout of Each Microcosm with Full Competition Note: the internal lines are hypothetical divides on the surface of the microcosm and are not actual

dividers.

Figure 3.9: Planted Microcosm with Full Competition Illustrating Gravel Layer and Partially Completed Humus Layer

3.4.2 Microcosms with Restricted Root Competition

3.4.2.1 Experiment Design

The second experimental system was designed to restrict root competition. A total of eight microcosms were installed to measure the long-term sustainability and interactions between the different floral species with restricted root competition. As with the full competition microcosms, four were subject to the four different nutrient concentrations, and four to the different salinity concentrations discussed in Section 3.2.

The materials and growing media were installed using the same configuration as the microcosms with full competition. However, to restrict root competition, solid internal dividers constructed from HDPE were installed. These dividers extended to 300 mm below the surface of the media and for 50 mm above the surface of the media (Figure 3.10).

Stopping the dividers before the base of the container allowed the chemical concentration to disperse across the base of the microcosm. This also applied for extending the dividers 50 mm above the surface of the growing media, thereby allowing a further 50 mm of solution above the divider for added chemicals to disperse and interact above the media surface in the free water layer. These precautions were taken to prevent the dissolved chemicals within the water from becoming locally concentrated in areas of a microcosm.

Figure 3.10: Cross Section of the Media Layers and Root Dividers within the Microcosms with Restricted Root Competition

3.4.2.2 Planting Configuration

As with the full competition experiment, four of each of the chosen flora were planted in each microcosm, which was divided into 16 equal compartments. With a microcosm surface area of 5515.4 cm² this gave a total growing area for each of the 16 compartments of 344.7 cm². Within each compartment a single 90 mm pot plant was planted on the 28th and 29th July 2007, as detailed in Figure 3.11.

Rather than divide each microcosm into quarters with one for each species, each quarter of the microcosm was subdivided into four compartments. This configuration was chosen for ease of construction, but the arrangement of the inserted root dividers resulted in four different plan shapes for the plants to grow in (Figure 3.11). The planting arrangement was designed so that overall all of the four species experienced all of the four differently shaped growing compartments, yet had a quarter of the total available surface area for growth. This created four replicas within the same microcosm which would facilitate statistical analysis of individual stem heights, stem widths and area coverage during the acclimatisation and treatment phases. For reasons discussed in Section 3.8.1.3 these individual measurements had to cease and group measurements for each species had to be reverted to.

Figure 3.11: Layout of Each Microcosm with Restricted Root Competition Note: the internal lines are the locations of the actual dividers.

3.5 Layout of Study Area

Figure 3.12 to Figure 3.14 illustrate the general layout of the study area, which was positioned in a location where the microcosms would receive the least amount of shading. Shading only occurred for a short period each day at sunrise and at sunset from the adjacent 1.8 m wooden fence panels. Laying out the microcosms in rows enabled ease of access to facilitate monitoring and maintenance. Microcosms 1 to 8 are being used to investigate the interactions of the species with full competition, with microcosms 1 to 4 investigating nutrients and 5 to 8 investigating salinity. Microcosms 9 to 16 are being used to investigate the interactions of the species with restricted root competition, with microcosms 9 to 12 investigating nutrients and 13 to 16 investigating salinity.

To monitor the natural water input from rainfall, an automatic weather station with a built in datalogger (Oregon Scientific WMR200 Professional Weather Station (Oregon Scientific, 2014)) was installed adjacent to the microcosms. The automated weather station was chosen over a manual weather station to minimise the physical monitoring required, in addition to which, automated weather stations are capable of taking more frequent measurements. The weather station was used to monitor the daily meteorological data, particularly rainfall which when combined with the irrigation input produced a total water input for each microcosm.

Figure 3.12 and Figure 3.15 show the location of the weather station within the study area. Due to canine vandalism, the weather station was moved approximately 2 m during the first year to a more secure location within the fenced area. As the new location was close to the original position, its move was not detrimental to the study.

Figure 3.12: Plan Layout of Study Area.

Figure 3.13: Study Area Pre Planting.

Figure 3.14: Study Area Post Planting.

Figure 3.15: Oregon Scientific WMR200 Professional Weather Station.

3.6 Acclimatisation Period

Cooper *et al.* (1996) showed that if a reedbed was managed correctly, *Phragmites australis* usually achieved a suitable cover after a full growing season. Consequently, once all of the microcosms had been planted, they were given 12 months to acclimatise and colonise their allocated space within the microcosm. During this period all of the microcosms were provided with a general purpose plant food (Miracle-Gro, water soluble all purpose plant food) (Miracle-Gro 2014), equivalent to 10 mg/l total nitrogen. The chemical composition of the plant food is an NPK blend of 24-8-16 with trace nutrients and can be found in Table 3.6.

The nutrient dosing levels and volume of water were calculated using the experimentally determined porosity of the media present within an un-vegetated microcosm. The porosity of the humus layer and gravel layer were calculated by measuring the volume of the media using displacement. Measurements were taken for ten samples of each media and the mean value of the calculated porosities was used. The porosity and volume of water in each of the microcosm layers can be found in Table 3.7.

Chemical	%
Nitrogen (N) total	24
Ammoniacal nitrogen (N)	3.5
Ureic nitrogen (N)	20.5
Phosphorus pentoxide (P_2O_5) soluble in	8 (3 5 % P)
of which soluble in water	8 (3 5 % P)
Potassium (K) soluble in water	13.3
Poron (R) soluble in water	0.02
Coppor (Cu) soluble in water	0.02
Licon (Eq) soluble in water 0.10 % abalated	0.03
by EDTA	0.19
Manganese (Mn) soluble in water 0.05 % chelated by EDTA	0.05
Molybdenum (Mo) soluble in water	0.001
Zinc (Zn) soluble in water	0.03

Table 3.6 Chemical Composition of the Miracle-Gro Plant Food.

	Depth of Media Layer (m)	Radius at Top of Media Layer (m)	Radius at Base of Media Layer (m)	Volume of Media Layer (I)	Porosity of Media (%)	Volume of Water (I)
Free Water						
Level	0.1	0.419	0.409	53.8535	100	53.8535
Humus Layer	0.03	0.409	0.406	15.6506	44.15	6.9097
Gravel Layer	0.48	0.406	0.36	221.9995	37.3	82.8058

Table 3.7: Porosity of Growing Media and Volumes of Water in Unvegetated Microcosms.

During the acclimatisation period the microcosms were not supplied with nutrients when the plants were going dormant and over the winter months. The cessation of nutrients over the winter months when the plants are dormant was to reduce the risk of nutrients building up to concentrations above the desired levels as the microcosms are a still system and not a through flow reedbed. Plant food was supplied on five monthly occasions during the growing season (Table 3.8) at the following monthly rate; Miracle grow to a nitrogen concentration of 10 mg/l. Given the porosity of the growing media and microcosm volume this equates to a nitrogen addition of 2.603 g/m² or 26.031 kg/ha. The corresponding macronutrient additions of phosphorous is 3.333 mg/l (0.868 g/m² or 8.677 kg/ha) and potassium is 5.542 mg/l (1.443 g/m² or 14.425 kg/ha).

It should be noted that although the nitrogen concentrations are based upon the varying nitrogen concentrations of wastewater identified within the literature review, the actual nutrients provided were in the form of a soluble plant food. As the nitrogen concentrations of the soluble plant food are increased during the treatment phase to the required concentrations (Section 3.7), the other plant nutrients supplied increased at the same ratio within the nutrient mix.

As detailed in Section 3.8, at the beginning of each month (prior to the fresh batch of nutrients being mixed) the remaining liquid within the microcosms were tested for nutrients in the form of nitrate and ammonia. These levels were measured to determine the concentration of nutrients required to return the nutrient concentrations back to the desired levels. It was identified that negligible amounts of nitrate and ammonia were present and as such the full concentrations of plant food were required to return the nutrient concentrations back to the desired levels. This was also the case for all concentrations of nutrients investigated in Section 3.7. The analysis was undertaken on the nitrate and ammonia on the assumption that the ureic nitrogen supplied in the plant food had been transformed into the more available forms of nitrogen's which usually takes 2-4 days (University of Minnesota, 2017).

The phosphorous was investigated at the start of the project for the same reasons as the nitrate and ammonia, which also found that negligible levels remained in the remaining liquid.

		Nitrogen		PI	hosphorou	JS	Potassium			
Date	Ma/I	Equiva	alent to	Ma/I	Equiva	lent to	Ma/I	Equiva	alent to	
	wig/i	g/m²	kg/ha	wig/i	g/m²	kg/ha	wig/i	g/m²	kg/ha	
29 th July 2007	10	2.603	26.031	3.333	0.868	8.677	5.542	1.443	14.425	
1 st September 2007	10	2.603	26.031	3.333	0.868	8.677	5.542	1.443	14.425	
30 th April 2008	10	2.603	26.031	3.333	0.868	8.677	5.542	1.443	14.425	
1 st June 2008	10	2.603	26.031	3.333	0.868	8.677	5.542	1.443	14.425	
1 st July 2008	10	2.603	26.031	3.333	0.868	8.677	5.542	1.443	14.425	

 Table 3.8: Levels of Nutrients Supplied to Each Microcosm During The Acclimatisation

 Period.

The levels of nutrients supplied has been also provided as g/m2 and kg/ha within Tables 3.8 and 3.9 for reference. These are the two commoner notations for nutrient studies where vegetation is involved. However, as this study is related to wastewater treatment the mg/l notation will be used throughout this thesis.

Figure 3.16 illustrates the layout of the microcosms and the plant food levels provided during the acclimatisation period.

Figure 3.16: Representative Layout of the Microcosms and the Plant Food Levels during the Acclimatisation Period.

3.7 Treatment Period August 2008 and November 2010

Following the acclimatisation period, the concentrations of the nutrients and salinity were adjusted to the selected design levels (see Section 3.2) on the 1st August 2008. Subsequently the levels of nutrients and salinity were monitored and adjusted at the beginning of each calendar month throughout the study period to maintain the desired concentration (Table 3.9). As per the acclimatisation period, the microcosms were not supplied with nutrients when the plants were going dormant and over the winter months between October and April.

Figure 3.17 illustrates the layout of the microcosms and the nutrient and salinity concentrations from August 2008 to November 2010.

			Nitrogen		Р	hosphoro	us		Potassiun	n
Date	Microcosm Number	Mar //	Equiva	alent to	Mar //	Equiva	alent to	Mar /I	Equiv	alent to
		wg/i	g/m ²	kg/ha	wig/i	g/m ²	kg/ha	wg/i	g/m ²	kg/ha
	1, 5, 6, 7, 8, 9, 13, 14, 15, 16	10	2.603	26.031	3.333	0.868	8.677	5.542	1.443	14.425
1 st August	2, 10	50	13.015	130.153	16.666	4.338	43.384	27.708	7.213	72.126
2008	3, 11	100	26.030	260.306	33.333	8.677	86.769	55.417	14.425	144.253
	4, 12	150	39.046	390.459	50	13.015	130.153	83.125	21.638	216.379
	1, 5, 6, 7, 8, 9, 13, 14, 15, 16	10	2.603	26.031	3.333	0.868	8.677	5.542	1.443	14.425
31 st August	2, 10	50	13.015	130.153	16.666	4.338	43.384	27.708	7.213	72.126
2008	3, 11	100	26.030	260.306	33.333	8.677	86.769	55.417	14.425	144.253
	4, 12	150	39.046	390.459	50	13.015	130.153	83.125	21.638	216.379
	1, 5, 6, 7, 8, 9, 13, 14, 15, 16	10	2.603	26.031	3.333	0.868	8.677	5.542	1.443	14.425
1 st May	2, 10	50	13.015	130.153	16.666	4.338	43.384	27.708	7.213	72.126
2009	3, 11	100	26.030	260.306	33.333	8.677	86.769	55.417	14.425	144.253
	4, 12	150	39.046	390.459	50	13.015	130.153	83.125	21.638	216.379
	1, 5, 6, 7, 8, 9, 13, 14, 15, 16	10	2.603	26.031	3.333	0.868	8.677	5.542	1.443	14.425
31 st May	2, 10	50	13.015	130.153	16.666	4.338	43.384	27.708	7.213	72.126
2009	3, 11	100	26.030	260.306	33.333	8.677	86.769	55.417	14.425	144.253
	4, 12	150	39.046	390.459	50	13.015	130.153	83.125	21.638	216.379
	1, 5, 6, 7, 8, 9, 13, 14, 15, 16	10	2.603	26.031	3.333	0.868	8.677	5.542	1.443	14.425
30 th June	2, 10	50	13.015	130.153	16.666	4.338	43.384	27.708	7.213	72.126
2009	3, 11	100	26.030	260.306	33.333	8.677	86.769	55.417	14.425	144.253
	4, 12	150	39.046	390.459	50	13.015	130.153	83.125	21.638	216.379
	1, 5, 6, 7, 8, 9, 13, 14, 15, 16	10	2.603	26.031	3.333	0.868	8.677	5.542	1.443	14.425
1 st August	2, 10	50	13.015	130.153	16.666	4.338	43.384	27.708	7.213	72.126
2009	3, 11	100	26.030	260.306	33.333	8.677	86.769	55.417	14.425	144.253
	4, 12	150	39.046	390.459	50	13.015	130.153	83.125	21.638	216.379
⊿ st	1, 5, 6, 7, 8, 9, 13, 14, 15, 16	10	2.603	26.031	3.333	0.868	8.677	5.542	1.443	14.425
Sontombor	2, 10	50	13.015	130.153	16.666	4.338	43.384	27.708	7.213	72.126
2009	3, 11	100	26.030	260.306	33.333	8.677	86.769	55.417	14.425	144.253
2003	4, 12	150	39.046	390.459	50	13.015	130.153	83.125	21.638	216.379
	1, 5, 6, 7, 8, 9, 13, 14, 15, 16	10	2.603	26.031	3.333	0.868	8.677	5.542	1.443	14.425
1 st May	2, 10	50	13.015	130.153	16.666	4.338	43.384	27.708	7.213	72.126
2010	3, 11	100	26.030	260.306	33.333	8.677	86.769	55.417	14.425	144.253
	4, 12	150	39.046	390.459	50	13.015	130.153	83.125	21.638	216.379
	1, 5, 6, 7, 8, 9, 13, 14, 15, 16	10	2.603	26.031	3.333	0.868	8.677	5.542	1.443	14.425
31 ^s May	2, 10	50	13.015	130.153	16.666	4.338	43.384	27.708	7.213	72.126
2010	3, 11	100	26.030	260.306	33.333	8.677	86.769	55.417	14.425	144.253
	4, 12	150	39.046	390.459	50	13.015	130.153	83.125	21.638	216.379
at	1, 5, 6, 7, 8, 9, 13, 14, 15, 16	10	2.603	26.031	3.333	0.868	8.677	5.542	1.443	14.425
1 st July	2, 10	50	13.015	130.153	16.666	4.338	43.384	27.708	7.213	72.126
2010	3, 11	100	26.030	260.306	33.333	8.677	86.769	55.417	14.425	144.253
	4, 12	150	39.046	390.459	50	13.015	130.153	83.125	21.638	216.379
	1, 5, 6, 7, 8, 9, 13, 14, 15, 16	10	2.603	26.031	3.333	0.868	8.677	5.542	1.443	14.425
1 st August	2, 10	50	13.015	130.153	16.666	4.338	43.384	27.708	7.213	72.126
2010	3, 11	100	26.030	260.306	33.333	8.677	86.769	55.417	14.425	144.253
	4, 12	150	39.046	390.459	50	13.015	130.153	83.125	21.638	216.379
1 st	1, 5, 6, 7, 8, 9, 13, 14, 15, 16	10	2.603	26.031	3.333	0.868	8.677	5.542	1.443	14.425
September	2, 10	50	13.015	130.153	16.666	4.338	43.384	27.708	7.213	72.126
2010	3, 11	100	26.030	260.306	33.333	8.677	86.769	55.417	14.425	144.253
2010	4, 12	150	39.046	390.459	50	13.015	130.153	83.125	21.638	216.379

Table 3.9: Levels of Nutrients Supplied to Each Microcosm During the Treatment Period.

Figure 3.17: Representative Layout of the Microcosms and the Plant Food and Salinity Levels from August 2008 to November 2010.

3.8 Measurements and Harvesting

3.8.1 Measurements during the Operational Phase

3.8.1.1 Water Usage

During the operational phases of the study, the monthly water usage rates were calculated, when the microcosms were artificially watered via a hose pipe, which during the summer months occurred up to four times per month.

Prior to the microcosms being watered, the depth of the water was measured using a rule via the central water level monitoring tube. The volume of water used since the microcosm was last watered was calculated and hence how much water was required to refill the microcosm. The amount of water required to return the level to the starting datum was calculated using the known porosity rates of the un-vegetated media, and the known circumference of the microcosm at the different depths. A table was created which detailed the water volume required at the various depths (Table 3.10), the values from which, when combined with the recorded precipitation input, enabled the total monthly water use rate to be determined.

	Water Required		Water Required		Water Required		Water Required		Water Required		Water Required		Water Required		Water Required
Water	to Return the Depth	Water	to Return the Depth	Water	to Return the Depth	Water	to Return the Depth	Water	to Return the Depth	Water	to Return the Depth	Water	to Return the Depth	Water	to Return the Depth
Depth (mm)	to 610 mm (L)	Depth (mm)	to 610 mm (L)	Depth (mm)	to 610 mm (L)	Depth (mm)	to 610 mm (L)	Depth (mm)	to 610 mm (L)	Depth (mm)	to 610 mm (L)	Depth (mm)	to 610 mm (L)	Depth (mm)	to 610 mm (L)
610	0.0000	529	43.6213	448	66.2836	367	80.2571	286	94.2306	205	108.2041	124	122.1776	43	136.1511
609	1.0771	526	44.1599	447	66.6287	365	80.6021	285	94.4031	204	108.5491	123	122.5501	42	136.4961
607	1.6156	526	45.2369	445	66.8012	364	80.7747	283	94.7481	202	108.7216	121	122.6951	40	136.6686
605	2.1541	525	46.3140	444	67.1462	362	81.1197	282	94.9207	201	108.8941	120	122.0070	39	137.0136
604	3.2312	523	46.8525	442	67.3187	361	81.2922	280	95.2657	199	109.2392	118	123.2126	37	137.1861
603	4.3083	522	47.3911	441	67.4912	360	81.4647	279	95.4382	198	109.4117	117	123.3852	36	137.3586
601	4.8468	520	48.4681	439	67.8363	358	81.8097	277	95.7832	196	109.7567	115	123.7302	34	137.7037
600 599	5.3853	519 518	49.0067	438	68.0088	357 356	81.9822	276	95.9557	195 194	109.9292	114	123.9027	<u>33</u> 32	137.8762
598	6.4624	517	50.0838	436	68.3538	355	82.3273	274	96.3008	193	110.2742	112	124.2477	31	138.2212
597 596	7.0010	516	50.6223	435	68.5263 68.6988	354	82.4998	273	96.4733	192	110.4467	111	124.4202	30	138.3937
595	8.0780	513	51.6994	433	68.8713	352	82.8448	272	96.8183	190	110.7918	109	124.7653	28	138.7387
594 502	8.6166	513	52.2379	432	69.0438	351	83.0173	270	96.9908	189	110.9643	108	124.9378	27	138.9112
593	9.6936	512	53.3150	431	69.3889	349	83.3623	269	97.1033	187	111.3093	107	125.2828	25	139.0656
591	10.2322	510	53.8535	429	69.5614	348	83.5349	267	97.5083	186	111.4818	105	125.4553	24	139.4288
590 589	10.7707	509	54.0838	428	69.7339 69.9064	347	83.7074	266	97.6808	185	111.6543	104	125.6278	23	139.6013
588	11.8478	507	54.5445	426	70.0789	345	84.0524	264	98.0259	183	111.9994	102	125.9728	21	139.9463
587 586	12.3863	506 505	54.7748	425	70.2514	344	84.2249 84 3974	263 262	98.1984	182	112.1719	101	126.1453	20	140.1188
585	13.4634	504	55.2354	423	70.5964	342	84.5699	261	98.5434	180	112.5169	99	126.4904	18	140.4639
584	14.0019	503	55.4658	422	70.7690	341	84.7424	260	98.7159	179	112.6894	98	126.6629	17	140.6364
582	15.0790	502	55.9264	421	70.9415	339	85.0875	259	99.0609	178	112.8619	97	120.0354	15	140.8089
581	15.6175	500	56.1567	419	71.2865	338	85.2600	257	99.2335	176	113.2069	95	127.1804	14	141.1539
<u>580</u> 579	16.1560	499 498	56.3871	418	71.4590	<u>337</u> 336	85.4325 85.6050	256 255	99.4060 99.5785	175	<u>113.3795</u> 113.5520	94	127.3529	13	141.3264
578	17.2331	497	56.8477	416	71.8040	335	85.7775	254	99.7510	173	113.7245	92	127.6980	11	141.6714
577	17.7717	496	57.0780	415	71.9765	334	85.9500	253	99.9235	172	113.8970	91	127.8705	10 9	141.8440
575	18.8487	493	57.5387	413	72.3216	332	86.2950	252	100.2685	170	114.2420	89	128.2155	8	142.1890
574	19.3873	493	57.7690	412	72.4941	331	86.4676	250	100.4410	169	114.4145	88	128.3880	7	142.3615
573	20.4643	492	58.2297	411	72.8391	329	86.8126	249	100.8136	168	114.5870	86	128.5605	5	142.5340
571	21.0029	490	58.4600	409	73.0116	328	86.9851	247	100.9586	166	114.9321	85	128.9055	4	142.8790
570 569	21.5414	489	58.6903	408	73.1841	327	87.1576	246	101.1311	165	115.1046	84 83	129.0781	3	143.0515
568	22.6185	487	59.1510	406	73.5292	325	87.5026	244	101.4761	163	115.4496	82	129.4231	1	143.3966
567	23.1570	486	59.3813	405	73.7017	324	87.6751	243	101.6486	162	115.6221	81 80	129.5956	0	143.5691
565	24.2341	484	59.8420	403	74.0467	322	88.0202	241	101.9937	160	115.9671	79	129.9406		
564	24.7726	483	60.0723	402	74.2192	321	88.1927	240	102.1662	159	116.1396	78	130.1131		
562	25.8497	482	60.5329	401	74.5642	319	88.5377	239	102.5387	158	116.4847	76	130.4582		
561	26.3882	480	60.7633	399	74.7367	318	88.7102	237	102.6837	156	116.6572	75	130.6307		
559	26.9267	479	61.1083	398	74.9092	317	89.0552	236	102.8562	155	117.0022	74	130.8032		
558	28.0038	477	61.2808	396	75.2543	315	89.2278	234	103.2012	153	117.1747	72	131.1482		
557 556	28.5424	476	61.4533	395 394	75.4268	314	89.4003 89.5728	233	103.3737	152	117.3472	71	131.3207		
555	29.6194	474	61.7983	393	75.7718	312	89.7453	231	103.7188	150	117.6923	69	131.6657		
554 553	30.1580	473 472	61.9708	392 391	75.9443	<u>311</u> 310	89.9178	230	103.8913	149	117.8648	68 67	131.8382		
552	31.2350	471	62.3159	390	76.2893	309	90.2628	228	104.2363	147	118.2098	66	132.1833		
551	31.7736	470	62.4884	389	76.4619	308	90.4353	227	104.4088	146	118.3823	65	132.3558		
549	32.8506	468	62.8334	387	76.8069	306	90.7804	225	104.7538	143	118.7273	63	132.7008		
548	33.3892	467	63.0059	386	76.9794	305	90.9529	224	104.9264	143	118.8998	62	132.8733		
547 546	33.9277	465	63.3509	385	77.3244	304	91.1254	223	105.0989	142	119.0724	60	133.0458		
545	35.0048	464	63.5234	383	77.4969	302	91.4704	221	105.4439	140	119.4174	59	133.3909]	
544 543	35.5433	463	63.6960 63.8685	382	77.8420	301 300	91.6429 91.8154	220	105.6164	139	119.5899	58 57	133.5634		
542	36.6204	461	64.0410	380	78.0145	299	91.9879	218	105.9614	137	119.9349	56	133.9084		
541 540	37.1589	460 450	64.2135	379	78.1870	298 207	92.1605	217	106.1339	136	120.1074	55 54	134.0809		
539	38.2360	458	64.5585	377	78.5320	296	92.5055	215	106.4790	133	120.2799	53	134.4259		
538	38.7745	457	64.7310	376	78.7045	295	92.6780	214	106.6515	133	120.6250	52	134.5984		
537	39.8516	456	65.0761	375	79.0495	294 293	92.8505	213	106.9965	132	120.7975	50	134.7710	l	
535	40.3901	454	65.2486	373	79.2221	292	93.1955	211	107.1690	130	121.1425	49	135.1160]	
534 533	40.9287	453 452	65.4211 65.5936	372 371	79.3946 79.5671	291 290	93.3680	210	107.3415	129 128	121.3150	48	135.2885 135.4610		
532	42.0057	451	65.7661	370	79.7396	289	93.7131	208	107.6866	127	121.6600	46	135.6335		
531 530	42.5443	450 449	65.9386	369 368	79.9121	288 287	93.8856	207	107.8591	126	121.8325	45 44	135.8060		

Table3.10: Water Required to Return the Water Level to the Top of the Microcosm at the Various Depths.

3.8.1.2 Chemical measurements

The salinity (‰) was measured monthly using an Aqua Medic handheld field refractometer (Aqua Medic 2014). This was undertaken to ensure that the rainfall (primarily during the winter) had not diluted the salinity within the microcosms. The salinity was measured on the surface and at the base of the microcosm. To enable the latter measurement, a sample was extracted via the water level monitoring tube using a syringe.

The pH and temperature were measured at the same time as the salinity using a Hanna water test meter, model HI98204 (Hannah Instruments 2014a). Although this model is also capable of measuring the conductivity, the salinity levels were beyond the maximum range for this meter and as such the refractometer was utilised. The meter was calibrated prior to each use using a pH 7 (Hannah Instruments 2014b) and pH 4 Buffer Solution (Hannah Instruments 2014c).

As detailed in Section 3.6, at the beginning of each month (prior to the fresh batch of nutrients being mixed) the remaining liquid within the microcosms were tested for nutrients in the form of nitrate and ammonia. These levels were measured to determine the concentration of nutrients required to return the nutrient concentrations back to the desired levels.

The nitrate, ammonia and phosphorous levels were measured using a Hach DR/2000 Direct Reading Spectrophotometer (Hach 2014) using the following methods;

- Nitrate: The cadmium reduction method (using powder pillows);
- Ammonia: The Nessler method; and,
- Phosphate: The PhosVer3 (absorbic acid) method (using powder pillows)

3.8.1.3 Vegetation Measurements

In order to monitor the community dynamics the following common measurements were taken on a monthly basis,

- height of each species (Howard 2010);
 - o maximum height;
 - o general height;
- area coverage of each species (Baldwin 2013). The calculation of area coverage was facilitated through the use of a quadrant divided into area grids. These parameters were measured for both;
 - \circ within the microcosm;

- outside of the microcosm (where the foliage went beyond the width of the microcosm); and,
- as a proportion of both inside and outside coverage, so that the total area which the above ground biomass was utilising could be determined.

The methodology originally proposed for sampling the vegetation during the operational period included randomly selecting 20 stems of each species and measuring the stem widths and heights. However, when this was implemented in the field, it became apparent that measuring stems at the centre of the microcosm was not practical, as it often resulted in snapping adjacent stems. As the loss of plant stems could have affected the competition rates by creating clear areas for different species to colonise and by removing some of the plants vigour, these measurements were discontinued.

3.8.2 Measurements during the Harvesting Phase

During November 2010 after the majority of vegetation had become dormant for the winter, the microcosms were dismantled and the biomass was harvested. The harvest was undertaken in two main phases. Phase one involved harvesting the above ground biomass and phase two involved harvesting the below ground biomass.

3.8.2.1 Phase 1: Above Ground Biomass

The above ground biomass was cut at the surface media level (top of the humus layer) using standard gardening secateurs.

With regards to *Phragmites australis* and *Lythrum salicaria* the following parameters were measured for every stem:

- stem height (mm) using a flexible tape measure which could flex along the bends within the vegetation producing an accurate stem length;
- stem diameter (mm) measured 50 mm from the base using handheld callipers. This point
 was selected due to the presence of a variety of swellings at the base of the plant, whereas
 measuring the stem diameter 50 mm from the base avoided these features and provided a
 consistent and comparable sampling location;
- stem intactness (whether the stem was snapped or intact);
- inflorescence (whether evidence of current or historic inflorescence was present on the stem).

With regards to *Filipendula ulmaria* and *Mentha aquatica*, since the stems differed in vegetative nature to those of *Phragmites australis* and *Lythrum salicaria*, the same measurements could not be made.

The morphology of *Filipendula ulmaria* is predominantly basal leaves with a flowering stem. During the vegetative period for this species, the central leaf-stalk of the pinnate leaf remained but the leaflets were not present. Where a vegetative flowering stem was present, the same measurements as for *Phragmites australis* and *Lythrum salicaria* were taken.

The stoloniferous nature of *Mentha aquatica* restricted the entire length of the stem from being measured. This was due to the rooting being present along the stems, the ease with which the stems snapped at the rooted sections, and their intertwining hindered the identification of the individual stems. Where a flowering stem was present the same measurements as for *Phragmites australis* and *Lythrum salicaria* were made.

For each species within each microcosm, the volume (ml) of all of the stems combined (excluding the leaf litter) was measured using the displacement method. The bundles of stems were placed into a vessel and the displaced water was then collected and measured to obtain the volume of the stems.

The dry weight (gms) of the combined stems for each individual species in each microcosm was also measured. To enable this, the samples were cut into <20 mm sections, which were placed on a mesh tray (to allow air circulation) inside aluminium trays. These were then dried in an oven set to 80° C for 6 hours (Faithfull, 2002). The samples were then ground up and placed back into the aluminium tray and dried for a further 2 hours at 80° C.

3.8.2.2 Phase 2: Below Ground Biomass

Prior to harvesting the below ground biomass, windows were cut into the sides of the microcosms to allow for the root systems and interactions to be observed and photographed (e.g. Figure 3.18). These windows were cut using a rotary cutting blade and were approximately 500 mm high by 200 mm wide. The window size was chosen as it enabled a clear view of the roots within the microcosm, and allowed for the root samples to be collected without collapsing the microcosm.

Figure 3.18: Window Cut within the Microcosm Container to View Root Distribution.

Once the root distributions had been photographed and observations made, the roots were then separated from the soil media. First, the larger roots were separated from the growing media by hand and subsequently sorted then into the different species.

The finer roots within the gravel media were then separated by using a 30 mm gauge sieve and a 15 mm gauge sieve. These size sieves allowed the 10 mm pea gravel to pass through. The roots were passed through each sieve three times which separated the majority of the roots from the gravel. Following this the gravel was placed in flowing water (in a container) and agitated every five minutes for 15 minutes, during which time the roots were collected from the water surface and from the overflow spout using a fine mesh (1mm diameter) sieve. After a period of 15 minutes no further roots were present in the gravel sample being washed. As a final check, the gravel was then re-inspected for any remaining roots. The use of flowing water and an overflow spout is described in Lauenroth & Whitman (1971).

A different methodology had to be used for separating the roots from the humus layer. Due to the binding nature of the humus to the roots, and the fine and fragile nature of the roots within this layer (generally only the coarser roots extended into the gravel layer) as sieving was not effective. Also

due to the low density of the humus, predominantly humus and leaf litter material in this layer, the water separation method could also not be used as this material also floated in the water. Consequently, the roots within the humus layer were separated by hand using tweezers and a small paintbrush.

The separated roots were subject to a final examination by hand to ensure that no contaminants remained (i.e. growing media), and then their dry weight was measured using the same methodology as described for the above ground biomass. Due to the fine nature of the roots, it was not feasible to measure their volumes.

3.9 Statistical Analysis

When the measured vegetation parameters such as stem heights and widths were plotted the resulting distributions were skewed from the normal (Figure 3.19 and Figure 3.20). Thus to allow for parametric analysis to be undertaken (i.e. ANOVA), the data was transformed into a normal distribution using a logarithmic transformation of 10 (Fowler *et al.*, 1999; Pallant, 2010).

Where more than two samples were being analysed, a One Way Analysis of Variance (ANOVA) test was undertaken (Fowler *et al.*, 1999; Pallant, 2010).

Where two samples were being analysed, an independent samples *t* test was undertaken (Fowler *et al.*, 1999; Pallant, 2010; Wildi, 2010). In unison with the independent samples *t* test, the Levene's tests for equality of variances was used to confirm that the data did not violate the assumption of equal variances, and effect of size was calculated using Cohan's d ETA squared. (Cohen 1988; Pallant, 2010). Cohen (1988) lists the ETA squared values as:

- 0.01 = Small Effect;
- 0.06 = Moderate Effect; and,
- 0.14 = Large Effect.

The thresholds chosen for the analysis to be statistically significant were (Fowler *et al.*, 1999):

- P <0.05 = Significant;
- P <0.01 = Highly Significant; and,
- P <0.001 = Very Highly Significant.

The statistical analysis was undertaken using the PAWS Statistics 18 software (IBM, 2014).

The next section (Section 4) details the results obtained from the microcosm study during the acclimatisation period, the treatment period and the post treatment harvesting. This section also provides the references to where the relevant result tables and charts are provided within the appendices. Section 4 includes a discussion on the findings and provides general recommendations from the microcosm study.

Figure 3.19: *Lythrum salicaria* Histogram and Data of Stem Widths with Increasing Nutrients for Microcosms 1-5 with Full Root Competition

Figure 3.20: *Mentha aquatica* Histogram and Data of Stem Heights with Increasing Nutrients for Microcosms 1-5 with Full Root Competition

4. MICROCOSM STUDY RESULTS, DISCUSSION AND RECOMENDATIONS

Section 3 described the microcosm experiments designed to explore the interaction of the four vegetation species selected for their biodiversity enhancement potential. Section 4.1 presents the results obtained from the data collected both during the experimental period and at the end of the study.

Section 4.2 commences with an overview of each hypothesis and an outline of the analysis undertaken for each hypothesis including the relevant tables and graphs for each hypothesis.

Section 4.3 then goes on to discus each of the four vegetation species used within the study and discusses the results obtained with respect to Hypotheses 1 to 6. Where relevant to the study, the results are compared to the findings of other researchers. As Hypothesis 7 and 8 are not species specific, they are discussed separately at the end of Section 4.3.

An overview of each of the hypothesis posed for the microcosm study in Section 1 and whether the hypothesis has been proved or disproved is provided in Section 4.4.

Section 4.5 provides general recommendations from the microcosm study.

4.1 Microcosm Study Results

4.1.1 Acclimatisation and Establishment Period: July 2007 to August 2008 The acclimatisation and establishment period lasted from when the microcosms were planted on 28th and 29th July 2007, until August 2008.

The total monthly water input during the acclimatisation period, comprising the sum of the added water and the rainfall, is presented in Appendix 3. An example of the data collected is presented in Table 4.1. A record was maintained throughout this period of vegetation heights and area coverage for all of the microcosms and this can be found in Appendix 4, an example is presented in Table 4.2.

			Total Water Added per Month (Litres)											
Year	Microcosm													
	Number		January	February	March	April	Мау	June	July	August	September	October	November	December
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	27.47	42.54	33.93	5.92	0.00
	1	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	54.39	59.62	56.98	33.17	31.02
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	27.47	40.93	32.85	7.00	0.00
	2	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	54.39	58.00	55.90	34.25	31.02
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	23.70	36.62	29.62	4.85	0.00
	3	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	50.62	53.69	52.67	32.10	31.02
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	32.85	51.16	40.93	7.00	0.00
	4	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
2007		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	59.78	68.23	63.98	34.25	31.02
2007		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	33.93	50.08	39.85	8.08	0.00
	5	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	60.85	67.16	62.90	35.33	31.02
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	24.77	37.16	29.08	4.85	0.00
	6	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	51.70	54.23	52.13	32.10	31.02
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	27.47	41.47	33.93	5.92	0.00
	7	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	54.39	58.54	56.98	33.17	31.02
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22.62	35.54	28.54	5.92	0.00
	8	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	49.55	52.61	51.59	33.17	31.02
	1	Artificial Water Added	0.00	0.00	0.00	71.63	153.47	177.72	197.10	N/A	N/A	N/A	N/A	N/A
		Natural Rainfall Added	49.71	14.59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	N/A
		Total Input	49.71	14.59	34.52	108.46	200.76	198.45	246.33	N/A	N/A	N/A	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	70.93	147.32	168.02	185.79	N/A	N/A	N/A	N/A	N/A
	2	Natural Rainfall Added	49.71	14.59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	N/A
		Total Input	49.71	14.59	34.52	107.76	194.60	188.76	235.02	N/A	N/A	N/A	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	77.44	143.79	169.64	189.56	N/A	N/A	N/A	N/A	N/A
	3	Natural Rainfall Added	49.71	14.59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	N/A
		Total Input	49.71	14.59	34.52	114.27	191.07	190.37	238.79	N/A	N/A	N/A	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	73.47	158.90	178.79	194.95	N/A	N/A	N/A	N/A	N/A
	4	Natural Rainfall Added	49.71	14.59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	N/A
2000		Total Input	49.71	14.59	34.52	110.30	206.19	199.53	244.17	N/A	N/A	N/A	N/A	N/A
2008		Artificial Water Added	0.00	0.00	0.00	68.47	152.24	171.79	188.49	N/A	N/A	N/A	N/A	N/A
	5	Natural Rainfall Added	49.71	14.59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	N/A
		Total Input	49.71	14.59	34.52	105.30	199.52	192.53	237.71	N/A	N/A	N/A	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	71.09	148.17	182.02	199.26	N/A	N/A	N/A	N/A	N/A
	6	Natural Rainfall Added	49.71	14.59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	N/A
		Total Input	49.71	14.59	34.52	107.92	195.45	202.76	248.48	N/A	N/A	N/A	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	78.07	155.78	182.56	195.41	N/A	N/A	N/A	N/A	N/A
	7	Natural Rainfall Added	49.71	14.59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	N/A
		Total Input	49.71	14.59	34.52	114.91	203.06	203.30	244.63	N/A	N/A	N/A	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	73.24	155.47	171.79	188.49	N/A	N/A	N/A	N/A	N/A
	8	Natural Rainfall Added	49.71	14.59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	N/A
	8 1	Total Input	49.71	14.59	34.52	110.08	202.76	192.53	237.71	N/A	N/A	N/A	N/A	N/A

Table 4.1: Microcosms 1-8 Water Input during the Acclimatisation and Establishment Period.

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1022	749	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	723	608	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	881	0	0
2007	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	655	0	0
2007	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	501	438	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	379	390	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	572	337	73
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	455	162	35
	Phragmites	Maximum Height	0	0	0	182	891	1281	1514	1644	N/A	N/A	N/A	N/A
	australis	General Height	0	0	0	107	793	1109	1291	1397	N/A	N/A	N/A	N/A
	Lythrum	Maximum Height	0	0	89	165	621	1437	1651	1948	N/A	N/A	N/A	N/A
2000	salicaria	General Height	0	0	58	142	516	1280	1549	1748	N/A	N/A	N/A	N/A
2008	Filipendula	Maximum Height	0	0	52	260	737	1443	1493	1535	N/A	N/A	N/A	N/A
	ulmaria	General Height	0	0	42	112	560	1207	1277	1329	N/A	N/A	N/A	N/A
	Mentha	Maximum Height	71	70	70	100	214	444	526	613	N/A	N/A	N/A	N/A
aquatica	General Height	41	37	36	67	199	292	318	328	N/A	N/A	N/A	N/A	

Table 4.2: Microcosm 1 Vegetation Heights during the Acclimatisation and Establishment Period.

4.1.2 Full Competition Microcosms: August 2008 to November 2010

The study period during which nutrient and salinity treatments were undertaken lasted from the end of the acclimatisation and establishment period, at the start of August 2008, until November 2010. Throughout the duration of the experiment water input, the general and maximum heights and area coverage for each of the four study species, in each of the microcosms, was monitored as described in Section 3.8.

Data for the full competition nutrient studies are presented in Appendix 5 (water input) and Appendix 6 (vegetation measurements), and for the salinity studies in Appendix 7 (water input) and Appendix 8 (vegetation measurements). An example of the water input data during the treatment period is presented in Table 4.3, and Table 4.4 provides an example for microcosm 1 of the vegetation measurements during the treatment period.

			Total Water Added per Month (Litres)											
Year	Microcosm Number		Januarv	February	March	April	Mav	June	Julv	August	September	October	November	December
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	181.13	104.48	75.24	35.54	0.00
	1	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	52.29	53.96	33.66	43.89	28.27
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	233.42	158.44	108.90	79.43	28.27
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	171.69	94.78	78.80	31.24	0.00
	2	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	52.29	53.96	33.66	43.89	28.27
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	223.99	148.74	112.45	75.13	28.27
2008		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	178.89	93.71	79.16	30.16	0.00
	3	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	52.29	53.96	33.66	43.89	28.27
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	231.18	147.67	112.82	74.05	28.27
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	182.46	103.94	70.47	28.54	0.00
	4	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	52.29	53.96	33.66	43.89	28.27
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	234.75	157.90	104.13	72.43	28.27
		Artificial Water Added	0.00	0.00	0.00	87.68	160.85	191.72	213.25	201.41	107.71	90.90	0.00	0.00
	1	Natural Rainfall Added	34.68	19.71	14.54	19.93	25.74	26.07	55.95	24.18	7.86	26.77	52.83	30.10
		Total Input	34.68	19.71	14.54	107.61	186.59	217.78	269.20	225.59	115.57	117.67	52.83	30.10
		Artificial Water Added	0.00	0.00	0.00	84.15	164.52	209.41	231.82	209.87	120.63	90.69	0.00	0.00
	2	Natural Rainfall Added	34.68	19.71	14.54	19.93	25.74	26.07	55.95	24.18	7.86	26.77	52.83	30.10
		Total Input	34.68	19.71	14.54	104.08	190.27	235.47	287.78	234.05	128.49	117.45	52.83	30.10
2009		Artificial Water Added	0.00	0.00	0.00	67.24	181.04	210.40	235.96	216.71	100.71	65.39	0.00	0.00
	3	Natural Rainfall Added	34.68	19.71	14.54	19.93	25.74	26.07	55.95	24.18	7.86	26.77	52.83	30.10
		Total Input	34.68	19.71	14.54	87.16	206.78	236.47	291.92	240.89	108.57	92.16	52.83	30.10
		Artificial Water Added	0.00	0.00	0.00	72.61	193.27	242.64	265.48	239.31	112.55	74.23	0.00	0.00
	4	Natural Rainfall Added	34.68	19.71	14.54	19.93	25.74	26.07	55.95	24.18	7.86	26.77	52.83	30.10
		Total Input	34.68	19.71	14.54	92.54	219.01	268.71	321.43	263.49	120.42	101.00	52.83	30.10
		Artificial Water Added	0.00	0.00	0.00	80.93	162.65	192.26	207.41	194.41	110.94	64.90	N/A	N/A
	1	Natural Rainfall Added	33.17	32.74	27.41	21.33	13.25	26.50	21.43	52.88	30.91	27.52	N/A	N/A
		Total Input	33.17	32.74	27.41	102.26	175.90	218.75	228.84	247.30	141.85	92.42	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	79.20	170.30	192.26	215.33	200.34	118.48	69.39	N/A	N/A
	2	Natural Rainfall Added	33.17	32.74	27.41	21.33	13.25	26.50	21.43	52.88	30.91	27.52	N/A	N/A
		Total Input	33.17	32.74	27.41	100.53	183.55	218.75	236.76	253.22	149.39	96.91	N/A	N/A
2010		Artificial Water Added	0.00	0.00	0.00	64.62	144.25	197.64	219.78	206.03	103.40	47.93	N/A	N/A
	3	Natural Rainfall Added	33.17	32.74	27.41	21.33	13.25	26.50	21.43	52.88	30.91	27.52	N/A	N/A
		Total Input	33.17	32.74	27.41	85.95	157.50	224.14	241.22	258.91	134.31	75.45	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	74.31	159.78	215.71	238.19	218.78	103.94	47.93	N/A	N/A
	4	Natural Rainfall Added	33.17	32.74	27.41	21.33	13.25	26.50	21.43	52.88	30.91	27.52	N/A	N/A
		Total Input	33.17	32.74	27.41	95.64	173.02	242.21	259.63	271.67	134.85	75.45	N/A	N/A

Table 4.3: Microcosms 1-4 Water Input during the Nutrient Treatment Period.

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1644	1619	1575	0	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1397	1426	1428	0	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1948	1919	1732	0	0
0000	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1748	1678	1433	0	0
2008	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1535	1474	1367	401	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1329	1458	1354	296	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	613	618	633	624	76
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	328	341	299	227	50
	Phragmites	Maximum Height	0	0	0	149	687	1465	1606	1693	1731	1647	0	0
	australis	General Height	0	0	0	81	560	1214	1436	1489	1492	1459	0	0
	Lythrum	Maximum Height	0	0	0	43	563	1538	1567	1621	1673	1624	0	0
2000	salicaria	General Height	0	0	0	36	518	1287	1484	1542	1530	1355	0	0
2009	Filipendula	Maximum Height	0	0	0	224	497	1018	1431	1462	1344	708	0	0
	ulmaria	General Height	0	0	0	122	394	688	916	950	935	681	0	0
	Mentha	Maximum Height	66	62	57	146	136	386	776	888	968	771	706	99
	aquatica	General Height	43	43	42	58	74	137	237	514	606	618	588	77
	Phragmites	Maximum Height	0	0	0	170	772	1012	1488	1597	1641	1567	0	N/A
	australis	General Height	0	0	0	96	473	814	1196	1268	1310	1313	0	N/A
	Lythrum	Maximum Height	0	0	0	49	512	927	1164	1468	1472	1460	0	N/A
2010	salicaria	General Height	0	0	0	44	286	766	989	1130	1130	1061	0	N/A
2010	Filipendula	Maximum Height	0	0	88	176	507	709	1113	1351	762	801	794	N/A
	ulmaria	General Height	0	0	49	149	469	537	747	766	725	720	719	N/A
	Mentha	Maximum Height	98	92	91	89	94	142	562	700	609	588	173	N/A
	aquatica	General Height	69	62	50	48	62	106	229	312	305	273	112	N/A

 Table 4.4: Microcosm 1 Vegetation Heights during the Nutrient Treatment Period.

4.1.3 Restricted Root Competition: August 2008 to November 2010

In parallel with the full competition study, the experiment investigating restricted root competition was undertaken with both varied salinity and varied nutrient levels, over the same period. The same parameters were also monitored (i.e. water input, the general and maximum heights and area coverage) for each of the four study species.

The measurements for the restricted competition nutrient studies are presented in Appendix 9 (water input) and Appendix 10 (vegetation measurements), and for the salinity studies in Appendix 11 (water input) and Appendix 12 (vegetation measurements). The data provided in Appendices 9 to 12 is presented in the same format as the examples presented in Table 4.3 and Table 4.4.

4.1.4 Full Competition Microcosms: Harvest

In November 2010, the experiment was terminated and the vegetation in each of the Full Competition microcosms was harvested. For each microcosm and each of the four species, the above ground total number of stems, stem heights and widths were recorded, and the dry weight and volume of the harvested stems was determined (see Section 3.8). The measurements for each individual stem can be found within Appendix 2. Within the full competition microcosms a total of 5590 stems were harvested and measured (4055 stems from the nutrient microcosms 1 to 4 and 1535 stems from the salinity microcosms 5 to 8). The below ground biomass for each species was harvested as described in Section 3.8.

A summary of the all the above and below ground harvested measurements for the nutrient studies can be found in Appendix 13, and for the salinity studies in Appendix 14, with Table 4.5 to Table 4.7 providing examples of these data. A photographic record was also made showing the root spread at the time of harvest within each of the Full Competition microcosms. Figure 4.1 to Figure 4.3 are examples of these photographs, with the complete record presented in Appendix 15 (nutrients) and Appendix 16 (salinity).

Chaolica		Devementer		Micro	cosm	
Species		Parameter	1	2	3	4
		Total Number of Stems	286	396	557	681
	Total Stems	Stems with Evidence of Previous Inflorescence	33	44	67	112
Dhragmitaa	Hoights	Max Height	1721.00	1742.00	2088.00	2270.00
australis	(mm)	Min Height	86.00	97.00	92.00	15.00
uuouuno	()	Mean Height	796.21	863.62	1141.03	1055.19
	Widths	Max Width	5.00	4.90	6.50	6.80
	(mm)	Min Width	1.40	0.90	1.30	1.20
	. ,	Mean Width	2.64	2.84	3.39	3.33
		Total Number of Stems	243	181	161	216
	Total Stems	Stems with Evidence of Previous Inflorescence	105	90	70	81
1	Unighto	Max Height	1937.00	2077.00	1923.00	1867.00
Lytnrum salicaria	(mm)	Min Height	125.00	161.00	91.00	58.00
Sancaria	()	Mean Height	922.60	1090.13	979.32	897.00
Sancaria	Widths (mm)	Max Width	8.70	11.50	9.50	30.00
		Min Width	0.80	1.00	1.00	0.70
	(((((((((((((((((((((((((((((((((((((((Mean Width	3.08	3.87	3.67	3.75
		Total Number of Stems	240	233	192	235
	Total Stems	Stems with Evidence of Previous Inflorescence	0	9	5	7
		Max Height	677.00	1602.00	1509.00	1416.00
Filipendula	Heights	Min Height	28.00	10.00	12.00	26.00
uiiiaiia	(((((((((((((((((((((((((((((((((((((((Mean Height	281.98	345.65	292.18	354.45
		Max Width	12.00	42.00	8.70	9.10
	Widths (mm)	Min Width	0.10	0.10	0.20	0.20
		Mean Width	1.14	1.59	1.41	1.49
		Total Number of Stems	255	41	52	86
	Total Stems	Stems with Evidence of Previous Inflorescence	54	1	6	6
	Llaishta	Max Height	723.00	593.00	621.00	876.00
Mentha	(mm) *	Min Height	14.00	63.00	40.00	63.00
aquatica	(((((((((((((((((((((((((((((((((((((((Mean Height	277.25	218.73	229.48	289.69
		Max Width	3.80	2.00	2.40	3.00
	(mm)	Min Width	0.30	0.40	0.20	0.40
		Mean Width	1.36	1.00	0.90	1.14

Notes:

* = this is the length of the stoloniferous live material present and is not the height above ground as the stolons had set roots along the procumbent stems.

Table 4.5: Microcosms 1-4 Nutrient Treatment Phase with Full Competition – Stem Measurements for All Stems.

			Micro		
Species	Parameter	1	2	3	4
	volume (ml)	1025.00	1930.00	3050.00	4570.00
Phragmites australis	weight (g)	253.86	418.90	629.18	997.39
	g per ml	0.248	0.217	0.206	0.218
	volume (ml)	1840.00	1965.00	1580.00	1873.00
Lythrum salicaria	weight (g)	567.44	546.97	490.79	592.09
	g per ml	0.308	0.278	0.311	0.316
	volume (ml)	220.00	570.00	330.00	390.00
Filipendula ulmaria	weight (g)	63.45	136.49	78.77	95.97
	g per ml	0.288	0.239	0.239	0.246
	volume (ml)	345.00	18.00	21.00	47.00
Mentha aquatica	weight (g)	82.91	3.72	4.87	13.58
	a per ml	0.240	0.207	0.232	0.289

 Table 4.6: Microcosms 1-4 Nutrient Treatment Phase with Full Competition –

 Volumes and Weights for All Stems.

		Microcos	m Number	
Species	1	2	3	4
Phragmites australis	425.89	711.97	1159.49	2168.09
Mentha aquatica	16.88	0.7	0.85	2.12
Filipendula ulmaria	186.54	360.45	199.47	221.71
Lythrum salicaria	661.24	422.72	258.48	252.65

 Table 4.7: Microcosms 1-4 Nutrient Treatment Phase with Full Competition –

 Weights (g) for All Roots.

Figure 4.1: Microcosm 1 *Lythrum salicaria* Root Spread

Figure 4.2: Microcosm 1 *Filipendula ulmaria* Root Spread

Figure 4.3: Microcosm 1 *Mentha aquatica* Root Spread

4.1.5 Restricted Root Competition Microcosms: Harvest

At the same time as the Full Competition microcosms were harvested, so were the Restricted Competition microcosms. The process followed the same pattern as described in Section 4.1.4.

A summary of the harvested measurements for the nutrient studies can be found in Appendix 17, and for the salinity studies in Appendix 18, with Table 4.5 to Table 4.7 providing examples of the collected data. Within the restricted competition microcosms a total of 5530 stems were harvested and measured (3611 stems from the nutrient microcosms 9 to 12 and 1919 stems from the salinity microcosms 13 to 16).

As with the Full Competition microcosms, a photographic record was made of the root spread at the time of harvest with all the images presented in Appendix 19 (nutrients) and Appendix 20 (salinity).

4.2 Microcosm Study Analysis

4.2.1 Hypothesis 1 Overview Hypothesis 1 is:

"Where all four chosen floral species survive in the chemical concentrations studied, no single floral species will take over and oust other floral species."

This is one of the key hypothesis which the study was designed to investigate. If the floral species die or are outcompeted at the higher or lower concentrations, then incorporating them into a constructed wetland for the purpose of biodiversity enhancement would not be sustainable.

In order to disprove the hypothesis, the null hypothesis is:

"Where all four chosen floral species survive in the chemical concentrations studied, a single floral species will take over and oust the other floral species."

To test this hypothesis the area percentage coverage within the microcosms with full below and above ground competition (microcosms 1-8) was used. These microcosms were chosen as this is what would be present in a typical constructed wetland treatment system without any management strategies, i.e. root barriers, which could potentially allow biodiversity enhancing species to survive.

The effects of nutrient and salinity were assessed separately for Hypothesis 1. May and August were chosen for the months being assessed. These were to represent the early stages of the general flora growing season (May) and the peak flora growing season (August) when most plants are at full growth, either flowering or setting seed. The reasoning behind this was to determine if the life strategies of the different species allowed for the earlier growing plants to commence their life cycles prior to the more dominant species increasing their area coverage post dormancy season.

Due to the change in vegetation sampling at the start of the experiment (i.e. the ceasing of measuring individual stems to avoid any anthropogenic effects from snapped stems, Section 3), only the area coverage measurement was available for this hypothesis during the treatment period. Consequently, no statistical analysis could be undertaken for Hypothesis 1, and the hence the evaluation is predominantly qualitative.

From the percentage cover results detailed within Tables A4.9 - A4.16 (area coverage for Microcosms 1 - 8 during the acclimatisation period, Appendix 4), Tables A6.5 - A6.8 (area coverage for Microcosms 1 - 4 during the nutrient treatment period, Appendix 6) and Tables A8.5 – A8.8 (area coverage for Microcosms 5 - 8 during the salinity treatment period, Appendix 8), the results for May and August each year were extracted and are presented in Table 4.8 and Table 4.9. Bar Graphs illustrating the pattern of growth within these microcosms for May and August each year are illustrated on Figure 4.4 and Figure 4.5.

Microcosm Number	Chemical Bange	Species	Location	% Cover 2008		% Cov	er 2009	% Cover 2010	
		000000	Location	Мау	August	Мау	August	Мау	August
1 (Full Root Competition)	10 mg/l Nitrogen and <0.05 ‰ Salinity	Phragmites australis	Inside Microcosm	7	9	5	10	5	19
			Outside Microcosm	0	0	0	0	0	0
			Combined	7	9	5	10	5	19
		Lythrum salicaria	Inside Microcosm	23	37	11	24	6	18
			Outside Microcosm	15	18	1	7	0	3
			Combined	38	55	12	31	6	21
		Filipendula ulmaria	Inside Microcosm	24	22	26	28	24	35
			Outside Microcosm	7	8	3	6	2	6
			Combined	31	30	29	34	26	41
		Mentha aquatica	Inside Microcosm	21	18	7	19	6	15
			Outside Microcosm	2	2	0	1	0	2
			Combined	23	20	7	20	6	17
		Standing Dead or Dormant Vegetation	Inside Microcosm	16	5	19	8	12	9
			Outside Microcosm	0	0	1	0	1	0
			Combined	16	5	20	8	13	9
		Bare Ground or		0	0	30	11	47	4
2 (Full Root Competition)	50 mg/l Nitrogen and <0.05 ‰ Salinity	Phragmites australis	Inside Microcosm	5	7	6	20	47	24
			Outside Microcosm	0	0	0	20	0	24
			Combined	5	7	6	20	0	27
				21	12	12	20	6	16
		Lythrum salicaria	Outside Misrossom	21	42	13	21	0	10 F
			Combined	0	IZ 54	1 /	7	6	3
				21	54	14	34	0	21
		Filipendula ulmaria	Inside Microcosm	15	16	32	32	27	28
				2	5	5	/	1	3
			Combined	17	21	37	39	28	31
		Mentha aquatica	Inside Microcosm	14	16	7	6	6	16
			Outside Microcosm	0	3	0	1	0	2
			Combined	14	19	7	7	6	18
		Standing Dead or Dormant Vegetation	Inside Microcosm	11	7	16	14	18	13
			Outside Microcosm	0	0	0	0	1	0
			Combined	11	7	16	14	19	13
		Bare Ground or		34	12	26	1	35	з
3 (Full Root Competition)	100 mg/l Nitrogen	Phragmites australis	Inside Microcosm	6	9	11	23	15	29
				0	0		1	0	5
			Combined	6	q	11	24	15	34
		Lythrum salicaria		18	41	12	27	9	18
			Outside Microcosm		1/	1	 	0	5
			Combined	27	55	13	36	9	23
		Filipendula ulmaria		15	16	19	24	22	25
				6	5	5	6	1	20
	and <0.05 ‰		Combined	21	21	23	30	24	2
	Salinity			10	10	23	14	7	14
		Mentha aquatica Standing Dead or Dormant Vegetation		19	2		14	0	14
			Combined	10	2	21	16	7	16
				19	21	17	11	27	11
			Outeide Microcosm	4	Э О	0	0	21	0
			Combined	1	0	17	11	20	11
		Bare Ground or	Compilied	4	Э	17		29	11
		Leaf Litter		38	6	21	1	19	2
			Inside Microcosm	3	8	14	25	18	38
		Phragmites australis	Outside Microcosm	0	0	0	6	1	7
			Combined	3	8	14	31	19	45
			Inside Microcosm	21	45	15	29	8	14
		Lythrum salicaria	Outside Microcosm	14	12	.3	8	0	7
4 (Full Root Competition)	150 mg/l Nitrogen and <0.05 ‰ Salinity		Combined	35	57	18	37	8	21
			Inside Microcosm	17	17	24	22	28	24
		Filipendula ulmaria		Q	Q	0	6	20	24
			Combined	25	25	33	29	20	2
		Mentha aquatica		10	10	22	10	11	11
			Outeide Microcosm	19	F	23	10	0	
			Combined	3	00	0	3	11	0
				22	23	23	21	11	11
		Standing Dead or Dormant Vegetation		12	8	9	5	32	13
				0	0	1	1	2	0
			Combined	12	8	10	6	34	13
		Bare Ground or Leaf Litter		28	4	15	1	3	0

Table 4.8: % Area Coverage for the Different Nutrient Concentrations for Microcosms 1-4 in May and August 2008-2010

% Cover in Microcosm 1: 10 mg/l Nitrogen and <0.05 ‰ Salinity

% Cover in Microcosm 2: 50 mg/l Nitrogen and <0.05 ‰ Salinity

% Cover in Microcosm 3: 100 mg/l Nitrogen and <0.05 ‰ Salinity

% Cover in Microcosm 4: 150 mg/l Nitrogen and <0.05 ‰ Salinity

Note: The *x* axis is species and category. The area coverage is the combined area coverage. This includes the percentage cover of the features within the microcosm area and the percentage cover (in relation to the microcosm area) of the feature which is spilling over the edge of the microcosm. Figure 4.4: Bar Graph Showing Combined % Area Coverage for the Different Nutrient Concentratoins for Microcosms 1-4 in May and August 2008-2010

Microcosm	Chemical Range	Species	Location	% Cove	r in 2008	% Cove	r in 2009	% Cove	r in 2010
Number	Chemical Kange	Species	Location	Мау	August	Мау	August	Мау	August
		Phraamites	Inside Microcosm	3	7	5	10	6	14
		australis	Outside Microcosm	0	0	0	0	0	1
			Combined	3	7	5	10	6	15
			Inside Microcosm	20	34	22	30	11	22
		Lythrum salicaria	Outside Microcosm	4	9	3	4	0	5
			Combined	24	43	25	34	11	27
			Inside Microcosm	21	22	26	29	18	28
5 (Full Root	10 mg/l Nitrogen	Filipendula ulmaria	Outside Microcosm	4	7	1	3	1	6
Competition)	Salinity		Combined	25	29	27	32	19	34
	-		Inside Microcosm	14	20	19	20	14	18
		Mentha aquatica	Outside Microcosm	0	4	0	0	0	2
			Combined	14	24	19	20	14	20
		Standing Dead or	Inside Microcosm	13	6	13	8	12	9
		Dormant Vegetation	Outside Microcosm	0	0	0	0	0	0
			Combined	13	6	13	8	12	9
		Bare Ground or		29	11	15	3	39	9
		Loui Lilloi	Inside Microcosm	4	6	5	8	6	13
		Phragmites	Outside Microcosm	0	0	0	0	0	0
		australis	Combined	4	6	5	8	6	13
			Inside Microcosm	14	32	8	12	6	14
		Lythrum salicaria	Outside Microcosm	5	9	0	4	0	2
			Combined	19	41	8	16	6	_ 16
			Inside Microcosm	25	28	6	11	8	17
		Filipendula ulmaria	Outside Microcosm	9	10	0	1	0	1
6 (Full Root	10 mg/l Nitrogen		Combined	34	38	6	12	8	18
oompetition)			Inside Microcosm	15	19	10	4	1	0
		Mentha aquatica		1	3	0		0	0
			Combined	16	22	10	4	1	0
			Inside Microcosm	14	4	16	9	11	8
		Standing Dead or	Outside Microcosm	0		0	9	0	0
		Dormant Vegetation	Combined	14	4	16	0	11	0
		Bara Ground or	Combined	14	4	10	9		0
		Leaf Litter		28	11	55	56	68	48
			Inside Microcosm	6	9	4	5	5	12
		australis	Outside Microcosm	0	о	0	0	0	0
			Combined	6	9	4	5	5	12
			Inside Microcosm	17	39	5	8	6	5
		Lythrum salicaria	Outside Microcosm	7	14	0	2	0	0
			Combined	24	53	5	10	6	5
			Inside Microcosm	26	22	3	0	0	0
7 (Full Poot	10 mg/l Nitrogon	Filipendula ulmaria	Outside Microcosm	12	15	0	0	0	0
Competition)	and 10 % Salinity		Combined	38	37	3	0	0	0
			Inside Microcosm	20	20	3	0	0	0
		Mentha aquatica	Outside Microcosm	2	3	0	0	0	0
			Combined	22	23	3	0	0	0
			Inside Microcosm	9	5	17	7	9	9
		Standing Dead or Dormant Vegetation	Outside Microcosm	0	0	1	1	0	0
			Combined	9	5	18	8	9	9
		Bare Ground or							
		Leaf Litter		22	5	68	80	80	74
		Phragmites	Inside Microcosm	5	7	3	3	5	10
		australis	Outside Microcosm	0	0	0	0	0	0
			Combined	5	7	3	3	5	10
		,	Inside Microcosm	18	36	0	0	0	0
		Lythrum salicaria	Outside Microcosm	11	15	0	0	0	0
			Combined	29	51	0	0	0	0
			Inside Microcosm	25	25	0	0	0	0
8 (Full Root	10 mg/l Nitrogen	Filipendula ulmaria	Outside Microcosm	6	6	0	0	0	0
Competition)	and 15 ‰ Salinity		Combined	31	31	0	0	0	0
			Inside Microcosm	16	20	0	0	0	0
		Mentha aquatica	Outside Microcosm	2	3	0	0	0	0
			Combined	18	23	0	0	0	0
		Standing Dead or	Inside Microcosm	8	4	16	9	7	6
		Dormant Vegetation	Outside Microcosm	0	0	0	0	0	0
			Combined	8	4	16	9	7	6
		Bare Ground or Leaf Litter		28	8	81	88	88	84

Table 4.9: % Area Coverage for the Different Salinity Concentrations for Microcosms 5-8 in May and August 2008-2010

% Cover in Microcosm 5: 10 mg/l Nitrogen and <0.05 ‰ Salinity

% Cover in Microcosm 6: 10 mg/l Nitrogen and 5 ‰ Salinity

% Cover in Microcosm 7: 10 mg/l Nitrogen and 10 ‰ Salinity

% Cover in Microcosm 8: 10 mg/l Nitrogen and 15 ‰ Salinity

Note: The x axis is species and category.

The area coverage is the combined area coverage. This includes the percentage cover of the features within the microcosm area and the percentage cover (in relation to the microcosm area) of the feature which is spilling over the edge of the microcosm. Figure 4.5: Bar Graph Showing Combined % Area Coverage for the Different Salinity Concentrations for Microcosms 5-8 in May and August 2008-2010

4.2.2 Hypothesis 2 Overview Hypothesis 2 is:

"Where all four chosen floral species survive in the chemical concentrations studied, no single floral species will take over and oust other floral species, and restricting root competition between the different floral species will have an effect."

This is the second of the key hypotheses which the study was to test and builds upon the first hypothesis. This hypothesis investigates if adding barriers to restrict root competition has any effect on the floral species ability to survive and compete within the different concentrations of nutrients and salinity and thus explores whether root barriers would be worth considering as a management strategy for enhancing biodiversity.

In order to disprove the hypothesis, the null hypothesis is:

"Where all four chosen floral species survive in the chemical concentrations studied, a single floral species will take over and oust the other floral species and restricting root competition between the different floral species will not have an effect."

To test this hypothesis the area percentage coverage within the microcosms with restricted root competition (microcosms 9-16) was used. The effects of nutrient and salinity were assessed separately for Hypothesis 2.

In line with and to provide consistency with Hypothesis 1, May and August were chosen to assess the area coverage. However for the same reasons outlined for Hypothesis 1, no statistical analysis of the results could be undertaken.

From the percentage cover results detailed within Tables A4.25 - A4.32 (area coverage for Microcosms 9 - 16 during the acclimatisation period, Appendix 4), Tables A10.5 - A10.8 (area coverage for Microcosms 9 - 12 during the nutrient treatment period, Appendix 10) and Tables A12.5 – A12.8 (area coverage for Microcosms 13 - 16 during the salinity treatment period, Appendix 12), the results for May and August each year were extracted and are presented in Table 4.10 and Table 4.11. Bar Graphs illustrating the pattern of growth within these microcosms for May and August each year are presented in Figure 4.6 and Figure 4.7.

Microcosm	Chemical Range	Species	Location	% Cover	r in 2008	% Cove	r in 2009	% Cove	r in 2010
Number	Chemical Kange	Species	Location	Мау	August	Мау	August	Мау	August
		Phraomites	Inside Microcosm	4	7	9	13	8	21
		australis	Outside Microcosm	0	0	0	0	0	3
			Combined	4	7	9	13	8	24
			Inside Microcosm	7	47	21	27	11	19
		Lythrum salicaria	Outside Microcosm	3	13	1	4	0	5
			Combined	10	60	22	31	11	24
			Inside Microcosm	8	13	28	29	15	28
9 (Restricted Root	10 mg/l Nitrogen	Filipendula ulmaria	Outside Microcosm	2	6	4	5	1	5
Competition)	Salinity		Combined	10	19	32	34	16	33
		Monthe equation	Inside Microcosm	5	11	17	21	21	21
		Mentha aquatica	Outside Microcosm	0	2	3	3	1	2
			Combined	5	13	20	24	22	23
		Standing Dead or	Inside Microcosm	5	5	9	4	12	9
		Dormant Vegetation		0	U 5	1	1	1	0
		Bara Cround or	Complned	5	5	10	5	13	9
		Leaf Litter		71	17	16	6	33	2
			Inside Microcosm	3	9	15	21	22	27
		Phragmites	Outside Microcosm	0	0	0	2	0	3
		austrans	Combined	3	9	15	23	22	30
			Inside Microcosm	22	32	23	27	18	25
		Lythrum salicaria	Outside Microcosm	12	14	4	4	1	6
			Combined	34	46	27	31	19	31
			Inside Microcosm	18	22	23	24	21	24
10 (Restricted	50 mg/l Nitrogen	Filipendula ulmaria	Outside Microcosm	2	6	3	3	2	4
Root	and <0.05 ‰ Salinity		Combined	20	28	26	27	23	28
Competition	Samily		Inside Microcosm	8	11	21	20	16	16
		Mentha aquatica	Outside Microcosm	0	2	3	3	1	6
			Combined	8	13	24	23	17	22
		Standing Dood or	Inside Microcosm	2	2	5	4	15	8
		Dormant Vegetation	Outside Microcosm	0	0	1	0	1	0
		_	Combined	2	2	6	4	16	8
		Bare Ground or		47	~ ~ ~	10			2
		Leaf Litter		47	24	13	4	8	0
		Phragmites	Inside Microcosm	6	9	22	28	1/	31
		australis		0	0	2	5	0	6
				6	9	24	33	17	37
		l vthrum salicaria	Outside Microcosm	25	32	24	21	13	25
		Lytinani Sandana	Combined	20	13	2	0 25	12	22
				29	40	20	<u></u>	10	32
11 (Postrictod	100 mg/l Nitrogen	Filipendula ulmaria	Outside Microcosm	וט ר	Λ	23 7	7	וט 2	29 1
Root	and <0.05 ‰		Combined	18	26	30	29	21	33
Competition)	Salinity		Inside Microcosm	6	10	14	13	12	12
		Mentha aquatica		0	2	1	2	1	2
		, , ,	Combined	6	12	15	15	13	14
			Inside Microcosm	2	3	2	2	19	3
		Standing Dead or	Outside Microcosm	0	0	1	0	3	1
		Connant vegetation	Combined	2	3	3	2	22	4
		Bare Ground or	-						
		Leaf Litter		45	24	15	8	21	0
		Phraamites	Inside Microcosm	5	9	24	28	21	39
		australis	Outside Microcosm	0	0	9	6	0	8
			Combined	5	9	33	34	21	47
			Inside Microcosm	28	34	24	29	19	18
		Lythrum salicaria	Outside Microcosm	19	24	3	12	0	4
			Combined	47	58	27	41	19	22
			Inside Microcosm	25	24	22	21	22	22
12 (Restricted	150 mg/l Nitrogen	Filipendula ulmaria	Outside Microcosm	5	6	4	4	3	4
Competition)	Salinity		Combined	30	30	26	25	25	26
			Inside Microcosm	9	14	26	18	6	12
		Mentha aquatica	Outside Microcosm	0	2	3	10	0	1
			Combined	9	16	29	28	6	13
		Standing Dead or	Inside Microcosm	3	3	2	2	21	8
		Dormant Vegetation	Outside Microcosm	0	0	0	0	3	0
			Combined	3	3	2	2	24	8
		Bare Ground or Leaf Litter		30	16	2	2	11	1

Table 4.10: % Area Coverage for the Different Nutrient Concentrations for Microcosms 9-12 in May and August 2008-2010

% Cover in Microcosm 9: 10 mg/l Nitrogen and <0.05 ‰ Salinity

% Cover in Microcosm 10: 50 mg/l Nitrogen and <0.05 ‰ Salinity

% Cover in Microcosm 11: 100 mg/l Nitrogen and <0.05 ‰ Salinity

% Cover in Microcosm 12: 150 mg/l Nitrogen and <0.05 ‰ Salinity

Note: The x axis is species and category.

The area coverage is the combined area coverage. This includes the percentage cover of the features within the microcosm area and the percentage cover (in relation to the microcosm area) of the feature which is spilling over the edge of the microcosm. Figure 4.6: Bar Graph Showing Combined % Area Coverage for the Different Nutrient Concentrations for Microcosms 9-12 in May and August 2008-2010

Microcosm	Chemical Range	Species	Location	% Cove	r in 2008	% Cove	r in 2009	% Cove	r in 2010
Number	Chemical Kange	Species	Location	Мау	August	Мау	August	Мау	August
		Phraamitas	Inside Microcosm	5	12	11	17	8	19
		australis	Outside Microcosm	0	0	0	2	0	3
			Combined	5	12	11	19	8	22
			Inside Microcosm	30	35	17	24	12	19
		Lythrum salicaria	Outside Microcosm	6	11	1	5	0	8
			Combined	36	46	18	29	12	27
			Inside Microcosm	12	14	22	25	27	30
13 (Restricted	10 mg/l Nitrogen	Filipendula ulmaria	Outside Microcosm	2	4	8	7	6	7
Root Competition)	and <0.05 ‰ Salinity		Combined	14	18	30	32	33	37
	Cannity		Inside Microcosm	14	18	18	20	15	22
		Mentha aquatica	Outside Microcosm	1	3	0	5	1	2
			Combined	15	21	18	25	16	24
			Inside Microcosm	1	1	6	4	9	7
		Standing Dead or Dormant Vegetation	Outside Microcosm	0	0	0	0	2	1
		Donnant Vogetation	Combined	1	1	6	4	11	8
		Bare Ground or							
		Leaf Litter		38	20	26	10	29	3
		Bhrogmitop	Inside Microcosm	4	8	6	7	7	10
		australis	Outside Microcosm	0	0	0	0	0	0
		-	Combined	4	8	6	7	7	10
			Inside Microcosm	25	36	6	7	13	11
		Lythrum salicaria	Outside Microcosm	6	15	0	3	0	2
			Combined	31	51	6	10	13	13
			Inside Microcosm	28	25	3	1	2	1
14 (Restricted		Filipendula ulmaria	Outside Microcosm	4	7	0	0	0	0
Root	10 mg/l Nitrogen and 5 ‰ Salinity		Combined	32	32	3	1	2	1
Competition)			Inside Microcosm	26	25	18	8	5	4
		Mentha aquatica	Outside Microcosm	2	5	0	1	0	0
			Combined	- 28	30	18	a	5	4
				20	3	9	6	7	9
		Standing Dead or	Outside Microcosm	0	0	0	0	, 0	0
		Dormant Vegetation	Combined	2	3	0	6	7	0
		Bara Craund ar	Compined	2	3	9	0	1	9
		Leaf Litter		15	3	58	71	66	65
			Inside Microcosm	7	11	4	7	5	9
		Phragmites	Outside Microcosm	0	0	0	0	0	1
		austrans	Combined	7	11	4	7	5	10
			Inside Microcosm	24	33	3	5	1	4
		Lythrum salicaria	Outside Microcosm	4	12	0	0	0	0
			Combined	28	45	3	5	1	4
			Inside Microcosm	15	21	0	0	0	0
15 (Restricted		Filipendula ulmaria	Outside Microcosm	2	21	0	0	0	0
Root	10 mg/l Nitrogen		Combined	17	24	0	0	0	0
Competition)				21	24	1	0	0	0
		Mentha aquatica	Outside Microsoam	21	24	0	0	0	0
			Combined	0	3	0	0	0	0
				21	21	10	0	0	0
		Standing Dead or		1	1	12	8	8	9
		Dormant Vegetation			0	10	0	0	0
			Complined	1	1	12	8	8	9
		Bare Ground or Leaf Litter		32	10	80	80	86	78
			Inside Microcosm	3	7	3	3	5	8
		Phragmites		0	0	0	0	0	0
		australis	Combined	0		0	0	5	0
				3	7	3	3	5	0
		l ythrum salicaria		28	30	0	0	0	0
			Outside Microcosm	22	27	0	0	0	0
			Combined	50	63	0	0	0	0
		Filipondula ulusaria	Inside Microcosm	18	16	0	0	0	0
16 (Restricted	10 mg/l Nitrogen	riiipenaula ulmaria	Outside Microcosm	3	5	0	0	0	0
Competition)	and 15 ‰ Salinity		Combined	21	21	0	0	0	0
			Inside Microcosm	24	22	1	0	0	0
		Mentha aquatica	Outside Microcosm	0	3	0	0	0	0
			Combined	24	25	1	0	0	0
		Standing Dood or	Inside Microcosm	2	4	10	9	7	7
		Dormant Vegetation	Outside Microcosm	0	0	1	1	0	0
			Combined	2	4	11	10	7	7
		Bare Ground or							
		Leaf Litter		25	15	86	88	88	85

Table 4.11: % Area Coverage for the Different Salinity Concentrations for Microcosms 13-16 in May and August 2008-2010

% Cover in Microcosm 13: 10 mg/l Nitrogen and <0.05 ‰ Salinity

% Cover in Microcosm 15: 10 mg/l Nitrogen and 10 ‰ Salinity

% Cover in Microcosm 16: 10 mg/l Nitrogen and 15 ‰ Salinity

Note: The x axis is species and category.

The area coverage is the combined area coverage. This includes the percentage cover of the features within the microcosm area and the percentage cover (in relation to the microcosm area) of the feature which is spilling over the edge of the microcosm. Figure 4.7: Bar Graph Showing Combined % Area Coverage for the Different Salinity Concentrations for Microcosms 13-16 in May and August 2008-2010

% Cover in Microcosm 14: 10 mg/l Nitrogen and 5 ‰ Salinity

4.2.3 Hypothesis 3 Overview Hypothesis 3 is:

"The higher concentrations of the chosen chemical ranges will have an effect on the stem heights or stem widths of the surviving plants."

This was undertaken to determine if the different concentrations had an effect on the species either by increasing or decreasing the stem measurements. This data would facilitate the management recommendations for designing biodiversity enhancements within a constructed wetland treatment system.

In order to disprove the hypothesis, the null hypothesis is:

"The higher concentrations of the chosen chemical ranges will not have an effect on the stem height or stem widths of the surviving plants."

The results for this hypothesis are split to investigate the stem heights and stem widths individually for the nutrient concentrations and the salinity concentrations. These are then further split to analysis the results where:

- both the microcosms with full and restricted competition are combined to produce overall results for the different concentration levels; and,
- the stems within the full competition microcosms are separated from the combined results, as this is representative of what would occur within a standard constructed wetland treatment system.

Hypothesis 4 analyses the microcosms where the restricted root competition was occurring. Hypothesis 4 also compares the results to see if restricting root competition has any effect on the vegetation height or widths of the surviving plants within each pollutant concentration.

The stem heights and widths were skewed, but with some species/microcosms exhibiting almost normal distributions. To allow for parametric analysis to be undertaken, the data was transformed using a logarithmic transformation of 10. The original histograms pre data transformation showing the distribution for the stem heights and for the stem widths of the four species studied for all of the microcosms can be found within Appendix 21. The data outlining the averages for the stem heights and for the stem widths for the four different species at the different loadings can be found in Table 4.12 and Table 4.13 for the nutrients and Table 4.15 and Table 4.16 for the salinity.

The One Way ANOVA test was run comparing both the heights and widths of the plant stems for each vegetation species. The results of the One Way ANOVA test including the Sum of Squares, df, Mean Square, F and Sig. including the Between Groups data and Within Groups Data can be found in Appendix 22 along with all of the remaining One Way ANOVA Results for the remaining Hypothesis. An overview of the One Way ANOVA results for the stem heights and stem widths can be found in Table 4.14 for nutrients and Table 4.17 for salinity.

With fatalities occurring within the higher two salinity concentrations for *Filipendula ulmaria* and *Mentha aquatica* two groups were available for comparison. Although they are included in the ANOVA output detailed in Table 4.17, an Independent Samples T Test was undertaken to ensure that the presence of only two groups did not affect the significance levels.

	Species		Phragmite	es australis			Lythrum	salicaria			Filipendu	la ulmaria			Mentha	aquatica	
	Nitrogen (mg/l)	10	50	100	150	10	50	100	150	10	50	100	150	10	50	100	150
Parameter	Salinity (‰)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Number of Stems	1148.0	800.0	1048.0	1442.0	831.0	406.0	362.0	395.0	407.0	294.0	294.0	281.0	840.0	221.0	113.0	95.0
Stem Heights	Mean	671.0	887.1	1031.3	1004.5	855.2	1022.5	986.2	922.6	301.1	359.7	332.1	376.3	246.9	318.2	274.3	276.6
(in mm) with	Std Error of Mean	9.0	14.3	15.5	12.3	13.1	21.3	23.2	21.0	8.1	16.8	14.5	12.7	5.6	14.1	17.1	19.3
Increasing	Median	646.0	900.5	1018.0	1041.0	833.0	1027.5	1014.0	913.0	277.0	283.0	267.0	350.0	205.0	252.0	228.0	212.0
Nutrients -	Std Deviation	306.2	405.0	502.8	466.5	377.8	492.1	441.6	417.1	162.7	288.0	249.5	212.8	163.5	208.9	181.9	187.9
Combined	Variance	93761.5	164012.0	252764.0	217609.6	142728.2	184149.5	195039.3	173974.5	26455.4	82937.9	62236.2	45267.5	26729.1	43642.4	33076.6	35320.8
Results	Minimum	10.0	97.0	58.0	15.0	122.0	101.0	91.0	58.0	20.0	10.0	12.0	26.0	14.0	54.0	40.0	25.0
	Maximum	1740.0	2016.0	2088.0	2270.0	1937.0	2077.0	1923.0	1867.0	1584.0	1602.0	1509.0	1416.0	1059.0	1081.0	766.0	876.0
	Number of Stems	459.0	396.0	557.0	681.0	431.0	181.0	161.0	216.0	245.0	233.0	192.0	235.0	369.0	41.0	52.0	86.0
	Mean	691.9	863.6	1141.0	1055.2	879.5	1090.1	979.3	897.0	301.3	345.7	292.2	354.4	247.0	218.7	229.5	289.7
Stem Heights	Std Error of Mean	15.2	19.4	21.4	18.5	19.4	34.7	38.1	30.9	11.6	18.7	18.0	13.2	7.7	19.9	16.2	20.0
(in mm) with	Median	694.0	874.5	1186.0	1111.0	872.0	1147.0	1017.0	882.5	276.0	273.0	236.5	335.0	207.0	205.0	228.0	220.5
Nutrients - Full	Std Deviation	326.5	386.2	505.1	482.5	403.0	467.1	484.0	454.7	182.0	285.4	248.9	203.0	147.2	127.2	116.5	185.9
Competition	Variance	106576.6	149135.8	255100.4	232783.1	162437.5	218170.1	234292.0	206721.1	33122.4	81446.3	61964.9	41227.9	21660.6	16186.5	13578.5	34549.4
	Minimum	10.0	97.0	92.0	15.0	122.0	161.0	91.0	58.0	28.0	10.0	12.0	26.0	14.0	63.0	40.0	63.0
	Maximum	1721.0	1742.0	2088.0	2270.0	1937.0	2077.0	1923.0	1867.0	1584.0	1602.0	1509.0	1416.0	723.0	593.0	621.0	876.0
	Number of Stems	689.0	404.0	491.0	761.0	400.0	225.0	201.0	179.0	162.0	61.0	102.0	46.0	471.0	180.0	61.0	9.0
Stom Hoights	Mean	657.1	910.2	906.8	959.1	829.1	968.2	991.7	953.5	300.8	413.3	407.3	487.7	246.9	340.8	312.5	151.4
(in mm) with	Std Error of Mean	11.1	21.0	21.2	16.2	17.4	25.9	28.6	27.3	10.1	37.6	23.1	33.7	8.1	16.2	27.8	56.2
Increasing	Median	628.0	936.5	837.0	971.0	778.0	934.0	1012.0	935.0	279.5	329.0	366.5	455.0	205.0	268.5	228.0	51.0
Nutrients -	Std Deviation	291.3	421.8	470.5	447.2	347.2	388.6	405.6	365.6	128.5	293.9	233.7	228.3	175.4	217.3	216.7	168.7
Restricted	Variance	84882.9	177923.0	221402.3	199957.4	120522.3	150972.7	164543.3	133641.6	16515.4	86401.3	54617.9	52100.5	30754.6	47239.7	46974.9	28468.3
Competition	Minimum	71.0	105.0	58.0	121.0	170.0	101.0	153.0	111.0	20.0	28.0	86.0	190.0	15.0	54.0	40.0	25.0
	Maximum	1740.0	2016.0	2037.0	2127.0	1778.0	1829.0	1908.0	1816.0	1049.0	1403.0	1316.0	1260.0	1059.0	1081.0	766.0	438.0

Table 4.12: Analysis of Harvest Stem Heights (in mm) with Increasing Nutrient Concentrations

	Species		Phragmites	s australis			Lythrum	salicaria			Filipendu	la ulmaria			Mentha a	aquatica	
	Nitrogen (mg/l)	10	50	100	150	10	50	100	150	10	50	100	150	10	50	100	150
Parameter	Salinity (‰)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Number of Stems	1148.0	800.0	1048.0	1442.0	831.0	406.0	362.0	395.0	407.0	294.0	294.0	281.0	840.0	221.0	113.0	95.0
Stem Widths	Mean	2.2	2.7	3.1	3.0	2.9	3.3	3.3	3.6	1.2	1.6	1.4	1.5	1.1	1.3	1.1	1.1
(in mm) with	Std Error of Mean	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.0	0.0	0.1	0.1
Increasing	Median	2.1	2.6	3.1	2.8	2.5	3.0	3.0	3.2	1.0	1.0	1.0	1.1	1.0	1.1	1.0	1.0
Nutrients -	Std Deviation	0.8	0.7	1.0	0.9	1.5	1.7	1.6	2.1	1.0	2.7	1.4	1.3	0.5	0.6	0.7	0.5
Combined	Variance	0.6	0.5	1.0	0.9	2.3	2.9	2.4	4.5	1.1	7.5	1.8	1.7	0.3	0.4	0.5	0.3
Results	Minimum	0.2	0.9	1.0	0.8	0.2	0.4	0.4	0.7	0.1	0.1	0.2	0.2	0.2	0.4	0.2	0.4
	Maximum	6.0	5.4	6.5	6.8	12.5	11.5	9.5	30.0	12.0	42.0	8.7	9.1	3.8	3.7	4.1	3.0
	Number of Stems	459.0	396.0	557.0	681.0	431.0	181.0	161.0	216.0	245.0	233.0	192.0	235.0	369.0	41.0	52.0	86.0
	Mean	2.4	2.8	3.4	3.3	3.0	3.9	3.7	3.8	1.3	1.6	1.4	1.5	1.2	1.0	0.9	1.1
Stem Widths	Std Error of Mean	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.1	0.0	0.1	0.1	0.1
(in mm) with	Median	2.4	2.8	3.4	3.2	2.7	3.5	3.3	3.3	1.0	1.0	1.0	1.1	1.0	1.0	0.9	1.0
Nutrients - Full	Std Deviation	0.7	0.7	0.8	0.9	1.6	1.7	1.8	2.5	1.2	3.0	1.3	1.3	0.6	0.4	0.4	0.5
Competition	Variance	0.5	0.5	0.7	0.9	2.7	3.0	3.1	6.0	1.6	8.9	1.8	1.8	0.4	0.2	0.1	0.3
	Minimum	0.7	0.9	1.3	1.2	0.2	1.0	1.0	0.7	0.1	0.1	0.2	0.2	0.2	0.4	0.2	0.4
	Maximum	5.0	4.9	6.5	6.8	12.5	11.5	9.5	30.0	12.0	42.0	8.7	9.1	3.8	2.0	2.4	3.0
	Number of Stems	689.0	404.0	491.0	761.0	400.0	225.0	201.0	179.0	162.0	61.0	102.0	46.0	471.0	180.0	61.0	9.0
Stem Widths	Mean	2.1	2.6	2.7	2.7	2.7	2.8	3.1	3.4	1.0	1.4	1.3	1.6	1.0	1.4	1.2	0.9
(in mm) with	Std Error of Mean	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.0	0.2	0.1	0.2	0.0	0.0	0.1	0.0
Increasing	Median	2.0	2.5	2.5	2.6	2.4	2.6	2.8	3.1	0.9	0.8	0.9	1.2	0.9	1.2	1.0	0.9
Nutrients -	Std Deviation	0.8	0.7	1.1	0.8	1.4	1.5	1.3	1.6	0.5	1.6	1.4	1.2	0.5	0.7	0.9	0.1
Restricted	Variance	0.6	0.4	1.1	0.7	1.9	2.4	1.8	2.6	0.3	2.5	1.9	1.4	0.2	0.4	0.8	0.0
Competition	Minimum	0.2	1.0	1.0	0.8	0.3	0.4	0.4	1.0	0.2	0.1	0.3	0.2	0.2	0.5	0.3	0.7
	Maximum	6.0	5.4	6.3	6.5	8.5	7.6	7.4	8.7	3.6	7.7	6.8	4.7	2.9	3.7	4.1	1.2

Table 4.13: Analysis of Harvest Stem Widths (in mm) with Increasing Nutrient Concentrations

			Phragmites australis	Lythrum salicaria	Filipendula ulmaria	Mentha aquatica
		F	(3, 4434) = 114.853	(3, 1990) = 11.042	(3, 1272) = 4.638	(3, 1265) = 8.644
	Combined Results	р	0.000	0.000	0.003	0.000
		significance	Very Highly Significant	Very Highly Significant	Highly Significant	Very Highly Significant
Stem Heights	Full Competition	F	(3, 2089) = 70.003	(3, 985) = 6.607	(3, 901) = 5.028	(3, 544) = 1.729
Increasing	Microcosms	р	0.000	0.000	0.002	0.160
Nutrients		significance	Very Highly Significant	Very Highly Significant	Highly Significant	Not Significant
	Destricted Competition	F	(3, 2341) = 50.880	(3, 1001) = 8.705	(3, 367) = 13.383	(3, 717) = 16.664
	Microcosms	р	0.000	0.000	0.000	0.000
	Willionocosinis	significance	Very Highly Significant	Very Highly Significant	Very Highly Significant	Very Highly Significant
		F	(3, 4434) = 267.701	(3, 1990) = 21.265	(3, 1272) = 4.513	(3, 1265) = 11.125
	Combined Results	р	0.000	0.000	0.004	0.000
		significance	Very Highly Significant	Very Highly Significant	Highly Significant	Very Highly Significant
Stem Widths	Full Competition	F	(3, 2089) = 190.716	(3, 985) = 18.532	(3, 901) = 1.238	(3, 544) = 3.201
Increasing	Microcosms	р	0.000	0.000	0.295	0.023
Nutrients		significance	Very Highly Significant	Very Highly Significant	Not Significant	Significant
	Postricted Competition	F	(3, 2341) = 103.244	(3, 1001) = 12.835	(3, 367) = 4.127	(3, 717) = 17.074
	Microcosms	р	0.000	0.000	0.007	0.000
		significance	Very Highly Significant	Very Highly Significant	Highly Significant	Very Highly Significant

Table 4.14: ANOVA Summary of Stem Heights and Widths with Different Nutrient Concentrations

	Species		Phragmite	s australis			Lythrum	salicaria			Filipendul	a ulmaria			Mentha a	quatica	
	Nitrogen (mg/l)	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Parameter	Salinity (‰)	< 0.05	5	10	15	< 0.05	5	10	15	< 0.05	5	10	15	< 0.05	5	10	15
	Number of Stems	1148.0	468.0	608.0	556.0	831.0	247.0	240.0	N/A	407.0	6.0	N/A	N/A	840.0	18.0	N/A	N/A
Stem Heights	Mean	671.0	719.1	730.2	662.6	855.2	821.8	911.5	N/A	301.1	796.0	N/A	N/A	246.9	62.8	N/A	N/A
(in mm) with	Std Error of Mean	9.0	14.7	14.1	15.5	13.1	27.1	29.7	N/A	8.1	130.2	N/A	N/A	5.6	12.1	N/A	N/A
Increasing	Median	646.0	690.5	706.5	590.5	833.0	830.0	919.0	N/A	277.0	938.0	N/A	N/A	205.0	51.0	N/A	N/A
Salinity -	Std Deviation	306.2	317.4	347.1	365.3	377.8	425.6	459.4	N/A	162.7	318.9	N/A	N/A	163.5	51.4	N/A	N/A
Combined	Variance	93761.5	100715.4	120500.4	133447.2	142728.2	181174.3	211085.2	N/A	26455.4	101665.6	N/A	N/A	26729.1	2644.9	N/A	N/A
Results	Minimum	10.0	85.0	30.0	70.0	122.0	43.0	73.0	N/A	20.0	381.0	N/A	N/A	14.0	9.0	N/A	N/A
	Maximum	1740.0	1712.0	1774.0	1892.0	1937.0	1955.0	1926.0	N/A	1584.0	1074.0	N/A	N/A	1059.0	229.0	N/A	N/A
	Number of Stems	459.0	217.0	241.0	301.0	431.0	130.0	160.0	N/A	245.0	6.0	N/A	N/A	369.0	N/A	N/A	N/A
	Mean	691.9	784.6	766.9	760.6	879.5	876.9	882.4	N/A	301.3	796.0	N/A	N/A	247.0	N/A	N/A	N/A
Stem Heights	Std Error of Mean	15.2	23.7	25.0	23.4	19.4	39.1	34.2	N/A	11.6	130.2	N/A	N/A	7.7	N/A	N/A	N/A
(in mm) with	Median	694.0	814.0	812.0	756.0	872.0	914.5	919.0	N/A	276.0	938.0	N/A	N/A	207.0	N/A	N/A	N/A
Salinity - Full	Std Deviation	326.5	348.6	388.3	406.0	403.0	445.7	432.3	N/A	182.0	318.9	N/A	N/A	147.2	N/A	N/A	N/A
Competition	Variance	106576.6	121544.3	150812.2	164866.7	162437.5	198666.5	186853.7	N/A	33122.4	101665.6	N/A	N/A	21660.6	N/A	N/A	N/A
-	Minimum	10.0	85.0	44.0	116.0	122.0	43.0	73.0	N/A	28.0	381.0	N/A	N/A	14.0	N/A	N/A	N/A
	Maximum	1721.0	1712.0	1774.0	1892.0	1937.0	1955.0	1824.0	N/A	1584.0	1074.0	N/A	N/A	723.0	N/A	N/A	N/A
	Number of Stems	689.0	251.0	367.0	255.0	400.0	117.0	80.0	N/A	162.0	N/A	N/A	N/A	471.0	18.0	N/A	N/A
Stom Hoights	Mean	657.1	662.5	706.1	546.9	829.1	760.6	969.6	N/A	300.8	N/A	N/A	N/A	246.9	62.8	N/A	N/A
(im mm) with	Std Error of Mean	11.1	17.4	16.5	16.8	17.4	36.5	56.7	N/A	10.1	N/A	N/A	N/A	8.1	12.1	N/A	N/A
Increasing	Median	628.0	634.0	672.0	495.0	778.0	700.0	918.5	N/A	279.5	N/A	N/A	N/A	205.0	51.0	N/A	N/A
Salinity -	Std Deviation	291.3	276.0	315.4	268.4	347.2	395.1	507.3	N/A	128.5	N/A	N/A	N/A	175.4	51.4	N/A	N/A
Restricted	Variance	84882.9	76182.3	99481.9	72038.0	120522.3	156110.3	257393.0	N/A	16515.4	N/A	N/A	N/A	30754.6	2644.9	N/A	N/A
Competition	Minimum	71.0	110.0	30.0	70.0	170.0	148.0	160.0	N/A	20.0	N/A	N/A	N/A	15.0	9.0	N/A	N/A
	Maximum	1740.0	1413.0	1675.0	1687.0	1778.0	1753.0	1926.0	N/A	1049.0	N/A	N/A	N/A	1059.0	229.0	N/A	N/A

	Maximum	1740.0	1415.0	1075.0	1007.0	1770.0	1755.0	1920.0	IN/A	1049.0	IN/A	IN/A	IN/P	1059.0	229.0	J IN/A	IN/7
	Note: N/A = No r	results due	to fatalities.														
r	- I	1	Tabl	le 4.15: Ar	alysis of l	Harvest Ste	em Height	s (in mm) v	vith Increa	asing Salir	nity Concer	ntrations					
	Species		Phragmites	australis			Lythrum	salicaria			Filipendul	a ulmaria			Mentha a	aquatica	
	Nitrogen (mg/l)	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Parameter	Salinity (‰)	< 0.05	5	10	15	< 0.05	5	10	15	< 0.05	5	10	15	< 0.05	5	10	15
	Number of Stems	1148.0	468.0	608.0	556.0	831.0	247.0	240.0	N/A	407.0	6.0	N/A	N/A	840.0	18.0	N/A	N/A
Stem Widths	Mean	2.2	2.3	2.1	2.2	2.9	2.8	3.5	N/A	1.2	3.7	N/A	N/A	1.1	1.0	N/A	N/A
(in mm) with	Std Error of Mean	0.0	0.0	0.0	0.0	0.1	0.1	0.1	N/A	0.1	0.9	N/A	N/A	0.0	0.1	N/A	N/A
Increasing	Median	2.1	2.2	2.0	2.0	2.5	2.6	3.2	N/A	1.0	4.2	N/A	N/A	1.0	1.0	N/A	N/A
Salinity -	Std Deviation	0.8	0.8	0.8	0.9	1.5	1.3	1.7	N/A	1.0	2.1	N/A	N/A	0.5	0.3	N/A	N/A
Combined	Variance	0.6	0.6	0.6	0.8	2.3	1.6	3.0	N/A	1.1	4.5	N/A	N/A	0.3	0.1	N/A	N/A
Results	Minimum	0.2	0.5	0.6	0.5	0.2	0.4	0.6	N/A	0.1	1.1	N/A	N/A	0.2	0.3	N/A	N/A
	Maximum	6.0	5.1	5.6	5.4	12.5	7.4	9.5	N/A	12.0	6.1	N/A	N/A	3.8	1.8	N/A	N/A
	Number of Stems	459.0	217.0	241.0	301.0	431.0	130.0	160.0	N/A	245.0	6.0	N/A	N/A	369.0	N/A	N/A	N/A
	Mean	2.4	2.6	2.3	2.5	3.0	2.9	3.3	N/A	1.3	3.7	N/A	N/A	1.2	N/A	N/A	N/A
Stem Widths	Std Error of Mean	0.0	0.0	0.0	0.1	0.1	0.1	0.1	N/A	0.1	0.9	N/A	N/A	0.0	N/A	N/A	N/A
(in mm) with	Median	2.4	2.5	2.2	2.4	2.7	2.6	3.0	N/A	1.0	4.2	N/A	N/A	1.0	N/A	N/A	N/A
Salinity - Full	Std Deviation	0.7	0.7	0.8	0.9	1.6	1.2	1.6	N/A	1.2	2.1	N/A	N/A	0.6	N/A	N/A	N/A
Competition	Variance	0.5	0.5	0.6	0.9	2.7	1.6	2.6	N/A	1.6	4.5	N/A	N/A	0.4	N/A	N/A	N/A
_	Minimum	0.7	0.9	0.7	0.5	0.2	0.5	0.6	N/A	0.1	1.1	N/A	N/A	0.2	N/A	N/A	N/A
	Maximum	5.0	5.0	4.7	5.4	12.5	7.4	9.5	N/A	12.0	6.1	N/A	N/A	3.8	N/A	N/A	N/A
	Number of Stems	689.0	251.0	367.0	255.0	400.0	117.0	80.0	N/A	162.0	N/A	N/A	N/A	471.0	18.0	N/A	N/A
Stom Widths	Mean	2.1	2.1	2.0	1.9	2.7	2.8	3.8	N/A	1.0	N/A	N/A	N/A	1.0	1.0	N/A	N/A
(in mm) with	Std Error of Mean	0.0	0.0	0.0	0.0	0.1	0.1	0.2	N/A	0.0	N/A	N/A	N/A	0.0	0.1	N/A	N/A
Increasing	Median	2.0	2.0	1.9	1.8	2.4	2.5	3.6	N/A	0.9	N/A	N/A	N/A	0.9	1.0	N/A	N/A
Salinity -	Std Deviation	0.8	0.8	0.8	0.7	1.4	1.3	2.0	N/A	0.5	N/A	N/A	N/A	0.5	0.3	N/A	N/A
Restricted	Variance	0.6	0.6	0.6	0.5	1.9	1.7	3.8	N/A	0.3	N/A	N/A	N/A	0.2	0.1	N/A	N/A
Competition	Minimum	0.2	0.5	0.6	0.5	0.3	0.4	0.9	N/A	0.2	N/A	N/A	N/A	0.2	0.3	N/A	N/A
	Maximum	6.0	5.1	5.6	4.2	8.5	6.8	9.2	N/A	3.6	N/A	N/A	N/A	2.9	1.8	N/A	N/A

Note: N/A = No results due to fatalities.

Table 4.16: Analysis of Harvest Stem Widths (in mm) with Increasing Salinity Concentrations

			Phragmites australis	Lythrum salicaria	Filipendula ulmaria	Mentha aquatica
		F	(3, 2776) = 6.942	(2, 1315) = 3.417	(1, 411) = 23.073	(1, 856) = 69.985
	Combined Results	р	0.000	0.033	0.000	0.000
		significance	Very Highly Significant	Significant	Very Highly Significant	Very Highly Significant
Stem Heights	Evil Osma stitism	F	(3, 1214) = 2.290	(2, 718) = 0.592	(1, 249) = 20.622	N/A
Increasing	Full Competition	р	0.077	0.553	0.000	N/A
Salinity	WICIOCOSITIS	significance	Not Significant	Not Significant	Very Highly Significant	N/A
	Destricted Commetition	F	(3, 1558) = 16.193	(2, 594) = 5.074	N/A	(1, 487) = 59.886
	Microcosms	р	0.000	0.007	N/A	0.000
	WICI OCOSITIS	significance	Very Highly Significant	Highly Significant	N/A	Very Highly Significant
		F	(3, 2776) = 3.297	(2, 1315) = 13.961	(1, 411) = 25.404	(1, 856) = 0.473
	Combined Results	р	0.020	0.000	0.000	0.492
		significance	Significant	Very Highly Significant	Very Highly Significant	Not Significant
Stem Widths		F	(3, 1214) = 5.599	(2, 718) = 2.277	(1, 249) = 20.154	N/A
Increasing	Microcosms	р	0.001	0.103	0.000	N/A
Salinity	Willionocosinis	significance	Very Highly Significant	Not Significant	Very Highly Significant	N/A
	Destricted Commentitien	F	(3, 1558) = 5.411	(2, 594) = 15.766	N/A	(1, 487) = 0.106
	Microcosms	р	0.001	0.000	N/A	0.745
	Microcoarria	significance	Very Highly Significant	Very Highly Significant	N/A	Not Significant

 Table 4.17: ANOVA Summary of Stem Heights and Widths with Different Salinity Concentrations

4.2.4 Hypothesis 4 Overview

Hypothesis 4 is:

"The higher concentrations of the chosen chemical ranges will have an effect on the stem heights or stem widths of the surviving plants, and restricting root competition between the different floral species will have an effect."

Following on from Hypothesis 3, Hypothesis 4 was used to determine if restricting root competition had an effect on the surviving stem heights and widths at the chosen chemical ranges, and thus influence the management recommendations for designing biodiversity enhancements within a constructed wetland treatment system.

In order to disprove the hypothesis, the null hypothesis is:

"The higher concentrations of the chosen chemical ranges will not have an effect on the stem height or stem widths of the surviving plants, and restricting root competition between the different floral species will not have an effect."

As with Hypothesis 3, the stem heights and widths were skewed so the data was transformed using a logarithmic transformation of 10. The histograms can be found within Appendix (23). The averages of the stem heights and stem widths for the four different species at the different loadings can be found in Table 4.12 and Table 4.13 for the nutrients and Table 4.15 and Table 4.16 for the salinity.

The results were separated to enable the individual heights and widths of the species within all the restricted competition microcosms to be analysed for each pollutant concentration. As with Hypothesis 3, a One Way ANOVA test was run comparing both the heights and widths of the plant stems. An overview of the One Way ANOVA results for the stem heights and stem widths can be found in Table 4.14 for nutrients and Table 4.17 for salinity, with the full results presented in Appendix (24).

The data was further separated to compare the full competition microcosm against the restricted competition microcosm for each species and at each individual concentration of nutrients and salinity. Only two parameters, one for full competition and one for restricted competition were available for this analysis. Therefore an Independent Samples T Test was undertaken using PAWS Statistics 18 on the stems of the surviving species present. The Independent Samples T Test was run on the Log10 transformed data comparing both the heights and widths of the plant stems. This

was undertaken for each individual species separately. Where the Levene's tests for equality of variances confirmed that the data violates the assumption of equal variances, the alternative T Test result produced within PAWS 18 to take account of this violation was used. An overview of the T Test results for the stem heights and stem widths can be found in Table 4.18 for nutrients and Table 4.19 for salinity.

			Phrag	mites australis			Lyth	rum salicaria	1
		Full Competition	Restricted Competition	T Test	Significance	Full Competition	Restricted Competition	T Test	Significance
10 mg/l Nitrogen	Height	M = 2.78, SD = 0.26	M = 2.77, SD = 0.21	t (0.38) = 822.43, p = 0.69	Not Significant	M = 2.89, SD = 0.25	M = 2.88, SD = 0.20	t (813.45) = 0.57, p = 0.57	Not Significant
and <0.05 ‰ Salinity	Width	M = 0.36, SD = 0.14	M = 0.29, SD = 0.17	t (1097.36) = 7.54, p = 0.00	Very Highly Significant	M = 0.43, SD = 0.23	M = 0.38, SD = 0.22	t (829) = 2.91, p = 0.00	Very Highly Significant
50 mg/l Nitrogen	Height	M = 2.88, SD = 0.25	M = 2.90, SD = 0.25	t (798) = -1.13, p = 0.26	Not Significant	M = 2.98, SD = 0.25	M = 2.94, SD = 0.21	t (354.55) = 1.67, p = 0.10	Not Significant
<0.05 ‰ Salinity	Width	M = 0.44, SD = 0.11	M = 0.40, SD = 0.12	t (798) = 5.13, p = 0.00	Very Highly Significant	M = 0.55, SD = 0.19	M = 0.38, SD = 0.26	t (399.43) = 7.45, p = 0.00	Very Highly Significant
100 mg/l Nitrogen	Height	M = 3.00, SD = 0.26	M = 2.89, SD = 0.27	t (1046) = 6.67, p = 0.00	Very Highly Significant	M = 2.91, SD = 0.30	M = 2.95, SD = 0.22	t (285.43) = -1.36, p = 0.18	Not Significant
<0.05 ‰ Salinity	Width	M = 0.52, SD = 0.11	M = 0.40, SD = 0.17	t (806.64) = 12.79, p = 0.00	Very Highly Significant	M = 0.52, SD = 0.20	M = 0.45, SD = 0.20	t (360) = 3.35, p = 0.00	Very Highly Significant
150 mg/l Nitrogen	Height	M = 2.96, SD = 0.27	M = 2.92, SD = 0.25	t (1440) = 2.87, p = 0.00	Very Highly Significant	M = 236.23, SD = 7.39	M = 2.88, SD = 0.29	t (380.26) = -2.63, p = 0.01	Highly Significant
<0.05 ‰ Salinity	Width	M = 0.51, SD = 0.12	M = 0.41, SD = 0.13	t (1440) = 13.53, p = 0.00	Very Highly Significant	M = 0.52, SD = 0.22	M = 0.49, SD = 0.21	t (393) = 1.27, p = 0.20	Not Significant
			Filipe	ndula ulmaria			Men	tha aquatica	1
		Full Competition	<i>Filipe</i> Restricted Competition	ndula ulmaria T Test	Significance	Full Competition	Men Restricted Competition	tha aquatica T Test	Significance
10 mg/l Nitrogen	Height	Full Competition M = 2.42, SD = 0.24	Filipe Restricted Competition M = 2.44, SD = 0.19	ndula ulmaria T Test t (405) = -0.96, p = 0.34	Significance Not Significant	Full Competition M = 2.31, SD = 0.28	Men Restricted Competition M = 2.28, SD = 0.32	tha aquatica T Test t (826.31) = 1.30, p = 0.20	Significance Not Significant
10 mg/l Nitrogen and <0.05 ‰ Salinity	Height Width	Full Competition M = 2.42, SD = 0.24 M = 0.01, SD = 0.26	Filipe Restricted Competition M = 2.44, SD = 0.19 M = -0.05, SD = 0.21	ndula ulmaria T Test t (405) = -0.96, p = 0.34 t (405) = 2.24, p = 0.03	Significance Not Significant Significant	Full Competition M = 2.31, SD = 0.28 M = 0.01, SD = 0.22	Men Restricted Competition M = 2.28, SD = 0.32 M = -0.03, SD = 0.20	tha aquatica T Test t (826.31) = 1.30, p = 0.20 t (733.11) = 2.93, p = 0.00	Significance Not Significant Very Highly Significant
10 mg/l Nitrogen and <0.05 ‰ Salinity 50 mg/l Nitrogen	Height Width Height	Full Competition M = 2.42, SD = 0.24 M = 0.01, SD = 0.26 M = 2.42, SD = 0.34	Filipe Restricted Competition M = 2.44, SD = 0.19 M = -0.05, SD = 0.21 M = 2.53, SD = 0.28	ndula ulmaria T Test t (405) = -0.96, p = 0.34 t (405) = 2.24, p = 0.03 t (292) = -2.34, p = 0.02	Significance Not Significant Significant Significant	Full Competition M = 2.31, SD = 0.28 M = 0.01, SD = 0.22 M = 2.26, SD = 0.27	Men Restricted Competition M = 2.28, SD = 0.32 M = -0.03, SD = 0.20 M = 2.44, SD = 0.29	tha aquatica T Test t (826.31) = 1.30, p = 0.20 t (733.11) = 2.93, p = 0.00 t (219) = -3.71, p = 0.00	Significance Not Significant Very Highly Significant Very Highly Significant
10 mg/l Nitrogen and <0.05 ‰ Salinity 50 mg/l Nitrogen and <0.05 ‰ Salinity	Height Width Height Width	Full Competition M = 2.42, SD = 0.24 M = 0.01, SD = 0.26 M = 2.42, SD = 0.34 M = 0.03, SD = 0.33	Filipe Restricted Competition M = 2.44, SD = 0.19 M = -0.05, SD = 0.21 M = 2.53, SD = 0.28 M = -0.01, SD = 0.36	T Test t (405) = -0.96, p = 0.34 t (405) = 2.24, p = 0.03 t (292) = -2.34, p = 0.02 t (292) = -0.81, p = 0.42	Significance Not Significant Significant Significant Not Significant	Full Competition M = 2.31, SD = 0.28 M = 0.01, SD = 0.22 M = 2.26, SD = 0.27 M = -0.03, SD = 0.17	Men Restricted Competition M = 2.28, SD = 0.32 M = -0.03, SD = 0.20 M = 2.44, SD = 0.29 M = 0.09, SD = 0.19	T Test t (826.31) = 1.30, p = 0.20 t (733.11) = 2.93, p = 0.00 t (219) = -3.71, p = 0.00 t (219) = -3.88, p = 0.00	Significance Not Significant Very Highly Significant Very Highly Significant Very Highly Significant
10 mg/l Nitrogen and <0.05 ‰ Salinity 50 mg/l Nitrogen and <0.05 ‰ Salinity	Height Width Height Width Height	Full Competition M = 2.42, SD = 0.24 M = 0.01, SD = 0.26 M = 2.42, SD = 0.34 M = 0.03, SD = 0.33 M = 2.36, SD = 0.30	Filipe Restricted Competition M = 2.44, SD = 0.19 M = -0.05, SD = 0.21 M = 2.53, SD = 0.28 M = -0.01, SD = 0.36 M = 2.55, SD = 0.22	T Test t (405) = -0.96, p = 0.34 t (405) = 2.24, p = 0.03 t (292) = -2.34, p = 0.02 t (292) = -0.81, p = 0.42 t (264.29) = -6.26, p = 0.00	Significance Not Significant Significant Significant Not Significant Very Highly Significant	Full Competition M = 2.31, SD = 0.28 M = 0.01, SD = 0.22 M = 2.26, SD = 0.27 M = -0.03, SD = 0.17 M = 2.30, SD = 0.24	Men Restricted Competition M = 2.28, SD = 0.32 M = -0.03, SD = 0.20 M = 2.44, SD = 0.29 M = 0.09, SD = 0.19 M = 2.38, SD = 0.33	T Test t (826.31) = 1.30, p = 0.20 t (733.11) = 2.93, p = 0.00 t (219) = -3.71, p = 0.00 t (219) = -3.88, p = 0.00 t (108.56) = -1.46, p = 0.15	SignificanceNot SignificantVery Highly SignificantVery Highly SignificantVery Highly SignificantVery Highly SignificantNot Significant
10 mg/l Nitrogen and <0.05 ‰ Salinity 50 mg/l Nitrogen and <0.05 ‰ Salinity 100 mg/l Nitrogen and <0.05 ‰ Salinity	Height Width Height Width Height Width	Full Competition M = 2.42, SD = 0.24 M = 0.01, SD = 0.26 M = 2.42, SD = 0.34 M = 0.03, SD = 0.33 M = 2.36, SD = 0.30 M = 236.23, SD = 7.39	Filipe Restricted Competition M = 2.44, SD = 0.19 M = -0.05, SD = 0.21 M = 2.53, SD = 0.28 M = -0.01, SD = 0.36 M = 2.55, SD = 0.22 M = 0.03, SD = 0.31	ndula ulmariaT Testt (405) = -0.96, $p = 0.34$ t (405) = 2.24, $p = 0.03$ t (292) = -2.34, $p = 0.02$ t (292) = -2.34, $p = 0.02$ t (292) = -0.81, $p = 0.42$ t (264.29) = -6.26, $p = 0.00$ t (292) = 1.00, $p = 0.32$	SignificanceNot SignificantSignificantSignificantNot SignificantVery Highly SignificantNot Significant	Full Competition M = 2.31, SD = 0.28 M = 0.01, SD = 0.22 M = 2.26, SD = 0.27 M = -0.03, SD = 0.17 M = 2.30, SD = 0.24 M = -0.08, SD = 0.18	Men Restricted Competition M = 2.28, SD = 0.32 M = -0.03, SD = 0.20 M = 2.44, SD = 0.29 M = 0.09, SD = 0.19 M = 2.38, SD = 0.33 M = -0.01, SD = 0.29	T Test t (826.31) = 1.30, p = 0.20 t (733.11) = 2.93, p = 0.00 t (219) = -3.71, p = 0.00 t (219) = -3.88, p = 0.00 t (108.56) = -1.46, p = 0.15 t (103.31) = -1.63, p = 0.11	SignificanceNot SignificantVery Highly SignificantVery Highly SignificantVery Highly SignificantNot SignificantNot Significant
10 mg/l Nitrogen and <0.05 ‰ Salinity 50 mg/l Nitrogen and <0.05 ‰ Salinity 100 mg/l Nitrogen and <0.05 ‰ Salinity	Height Width Height Width Height Width	Full Competition M = 2.42, SD = 0.24 M = 0.01, SD = 0.26 M = 2.42, SD = 0.34 M = 0.03, SD = 0.33 M = 2.36, SD = 0.30 M = 236.23, SD = 7.39 M = 2.47, SD = 0.29	Filipe Restricted Competition M = 2.44, SD = 0.19 M = -0.05, SD = 0.21 M = 2.53, SD = 0.28 M = -0.01, SD = 0.36 M = 2.55, SD = 0.22 M = 0.03, SD = 0.31 M = 2.65, SD = 0.19	ndula ulmaria T Test t (405) = -0.96, $p = 0.34$ t (405) = 2.24, $p = 0.03$ t (292) = -2.34, $p = 0.02$ t (292) = -2.34, $p = 0.02$ t (292) = 0.81, $p = 0.42$ t (264.29) = -6.26, $p = 0.00$ t (292) = 1.00, $p = 0.32$ t (90.03) = -5.19, $p = 0.00$	Significance Not Significant Significant Significant Not Significant Very Highly Significant Vot Significant Very Highly Significant Very Highly Significant Very Highly Significant	Full Competition M = 2.31, SD = 0.28 M = 0.01, SD = 0.22 M = 2.26, SD = 0.27 M = -0.03, SD = 0.17 M = 2.30, SD = 0.24 M = -0.08, SD = 0.18 M = 2.37, SD = 0.29	Men Restricted Competition M = 2.28, SD = 0.32 M = -0.03, SD = 0.20 M = 2.44, SD = 0.29 M = 0.09, SD = 0.19 M = 2.38, SD = 0.33 M = -0.01, SD = 0.29 M = -0.01, SD = 0.29 M = 1.93, SD = 0.49	T Test t (826.31) = 1.30, p = 0.20 t (733.11) = 2.93, p = 0.00 t (219) = -3.71, p = 0.00 t (219) = -3.88, p = 0.00 t (108.56) = -1.46, p = 0.15 t (103.31) = -1.63, p = 0.11 t (8.59) = 2.68, p = 0.03	SignificanceNot SignificantVery Highly SignificantVery Highly SignificantVery Highly SignificantNot SignificantNot SignificantSignificantSignificant

 Table 4.18: T Test Summary of Stem Heights and Widths Between Full and Restricted Competition Microcosms with Different Nutrient Concentrations

			Phrag	mites australis	1		Lyth	rum salicaria	
		Full Competition	Restricted Competition	T Test	Significance	Full Competition	Restricted Competition	T Test	Significance
10 mg/l Nitrogen	Height	M = 2.78, SD = 0.26	M = 2.77, SD = 0.21	t (0.38) = 822.43, p = 0.69	Not Significant	M = 2.89, SD = 0.25	M = 2.88, SD = 0.20	t (813.45) = 0.57, p = 0.57	Not Significant
<pre>and <0.05 ‰ Salinity</pre>	Width	M = 0.36, SD = 0.14	M = 0.29, SD = 0.17	t (1097.36) = 7.54, p = 0.00	Very Highly Significant	M = 0.43, SD = 0.23	M = 0.38, SD = 0.22	t (829) = 2.91, p = 0.00	Very Highly Significant
10 mg/l Nitrogen	Height	M = 2.84, SD = 0.26	M = 2.78, SD = 0.20	t (410.54) = 2.60, p = 0.01	Highly Significant	M = 2.86, SD = 0.33	M = 2.82, SD = 0.25	t (245) = 1.07, p = 0.29	Not Significant
5 ‰ Salinity	Width	M = 0.39, SD = 0.12	M = 0.28, SD = 0.17	t (457.18) = 8.04, p = 0.00	Very Highly Significant	M = 0.42, SD = 0.19	M = 0.40, SD = 0.20	t (245) = 1.06, p = 0.29	Not Significant
10 mg/l Nitrogen	Height	M = 2.80, SD = 0.29	M = 2.80, SD = 0.23	t (423.81) = 0.40, p = 0.69	Not Significant	M = 2.88, SD = 0.27	M = 2.91, SD = 0.27	t (238) = -0.98, p = 0.33	Not Significant
10 ‰ Salinity	Width	M = 0.34, SD = 0.16	M = 0.28, SD = 0.16	t (606) = 4.22, p = 0.00	Very Highly Significant	M = 0.47, SD = 0.21	M = 0.53, SD = 0.22	t (238) = -2.08, p = 0.04	Significant
10 mg/l Nitrogen	Height	M = 2.80, SD = 0.29	M = 2.69, SD = 0.23	t (552.79) = 5.44, p = 0.00	Very Highly Significant	N/A	N/A	N/A	N/A
15 ‰ Salinity	Width	M = 0.37, SD = 0.17	M = 0.24, SD = 0.17	t (554) = 8.76, p = 0.00	Very Highly Significant	N/A	N/A	N/A	N/A
			Filipe	ndula ulmaria	1		Men	tha aquatica	
		Full Competition	<i>Filipe</i> Restricted Competition	ndula ulmaria T Test	Significance	Full Competition	Men Restricted Competition	tha aquatica T Test	Significance
10 mg/l Nitrogen	Height	Full Competition M = 2.42, SD = 0.24	Filipe Restricted Competition M = 2.44, SD = 0.19	ndula ulmaria T Test t (405) = -0.96, p = 0.34	Significance Not Significant	Full Competition M = 2.31, SD = 0.28	Men Restricted Competition M = 2.28, SD = 0.32	tha aquatica T Test t (826.31) = 1.30, p = 0.20	Significance Not Significant
10 mg/l Nitrogen and <0.05 ‰ Salinity	Height Width	Full Competition M = 2.42, SD = 0.24 M = 0.01, SD = 0.26	Filipe Restricted Competition M = 2.44, SD = 0.19 M = -0.05, SD = 0.21	ndula ulmaria T Test t (405) = -0.96, p = 0.34 t (405) = 2.24, p = 0.03	Significance Not Significant Significant	Full Competition M = 2.31, SD = 0.28 M = 0.01, SD = 0.22	Men Restricted Competition M = 2.28, SD = 0.32 M = -0.03, SD = 0.20	tha aquatica T Test t (826.31) = 1.30, p = 0.20 t (733.11) = 2.93, p = 0.00	Significance Not Significant Very Highly Significant
10 mg/l Nitrogen and <0.05 ‰ Salinity 10 mg/l Nitrogen	Height Width Height	Full Competition M = 2.42, SD = 0.24 M = 0.01, SD = 0.26 N/A	Filipe Restricted Competition M = 2.44, SD = 0.19 M = -0.05, SD = 0.21 N/A	ndula ulmaria T Test t (405) = -0.96, p = 0.34 t (405) = 2.24, p = 0.03 N/A	Significance Not Significant Significant N/A	Full Competition M = 2.31, SD = 0.28 M = 0.01, SD = 0.22 N/A	Men Restricted Competition M = 2.28, SD = 0.32 M = -0.03, SD = 0.20 N/A	tha aquatica T Test t (826.31) = 1.30, p = 0.20 t (733.11) = 2.93, p = 0.00 N/A	Significance Not Significant Very Highly Significant N/A
10 mg/l Nitrogen and <0.05 ‰ Salinity 10 mg/l Nitrogen and 5 ‰ Salinity	Height Width Height Width	Full Competition M = 2.42, SD = 0.24 M = 0.01, SD = 0.26 N/A N/A	Filipe Restricted Competition M = 2.44, SD = 0.19 M = -0.05, SD = 0.21 N/A	ndula ulmaria T Test t (405) = -0.96, p = 0.34 t (405) = 2.24, p = 0.03 N/A N/A	Significance Not Significant Significant N/A N/A	Full Competition M = 2.31, SD = 0.28 M = 0.01, SD = 0.22 N/A N/A	Men Restricted Competition M = 2.28, SD = 0.32 M = -0.03, SD = 0.20 N/A N/A	tha aquatica T Test t (826.31) = 1.30, p = 0.20 t (733.11) = 2.93, p = 0.00 N/A N/A	Significance Not Significant Very Highly Significant N/A N/A
10 mg/l Nitrogen and <0.05 ‰ Salinity 10 mg/l Nitrogen and 5 ‰ Salinity 10 mg/l Nitrogen	Height Width Height Width Height	Full Competition M = 2.42, SD = 0.24 M = 0.01, SD = 0.26 N/A N/A N/A	Filipe Restricted Competition M = 2.44, SD = 0.19 M = -0.05, SD = 0.21 N/A N/A	ndula ulmaria T Test t (405) = -0.96, p = 0.34 t (405) = 2.24, p = 0.03 N/A N/A N/A	Significance Not Significant Significant N/A N/A N/A	Full Competition M = 2.31, SD = 0.28 M = 0.01, SD = 0.22 N/A N/A N/A	Men Restricted Competition M = 2.28, SD = 0.32 M = -0.03, SD = 0.20 N/A N/A N/A	tha aquatica T Test t (826.31) = 1.30, p = 0.20 t (733.11) = 2.93, p = 0.00 N/A N/A N/A	Significance Not Significant Very Highly Significant N/A N/A N/A
10 mg/l Nitrogen and <0.05 ‰ Salinity 10 mg/l Nitrogen and 5 ‰ Salinity 10 mg/l Nitrogen and 10 ‰ Salinity	Height Width Height Width Height Width	Full Competition M = 2.42, SD = 0.24 M = 0.01, SD = 0.26 N/A N/A N/A N/A	Filipe Restricted Competition M = 2.44, SD = 0.19 M = -0.05, SD = 0.21 N/A N/A N/A	ndula ulmaria T Test t (405) = -0.96, p = 0.34 t (405) = 2.24, p = 0.03 N/A N/A N/A N/A	Significance Not Significant Significant N/A N/A N/A N/A	Full Competition M = 2.31, SD = 0.28 M = 0.01, SD = 0.22 N/A N/A N/A N/A	Men Restricted Competition M = 2.28, SD = 0.32 M = -0.03, SD = 0.20 N/A N/A N/A	tha aquatica T Test t (826.31) = 1.30, p = 0.20 t (733.11) = 2.93, p = 0.00 N/A N/A N/A N/A	Significance Not Significant Very Highly Significant N/A N/A N/A N/A
10 mg/l Nitrogen and <0.05 ‰ Salinity 10 mg/l Nitrogen and 5 ‰ Salinity 10 mg/l Nitrogen and 10 ‰ Salinity	Height Width Height Width Height Width Height	Full Competition M = 2.42, SD = 0.24 M = 0.01, SD = 0.26 N/A N/A N/A N/A N/A	Filipe Restricted Competition M = 2.44, SD = 0.19 M = -0.05, SD = 0.21 N/A N/A N/A N/A N/A	ndula ulmaria T Test t (405) = -0.96, p = 0.34 t (405) = 2.24, p = 0.03 N/A N/A N/A N/A N/A N/A	Significance Not Significant Significant N/A N/A N/A N/A N/A	Full Competition M = 2.31, SD = 0.28 M = 0.01, SD = 0.22 N/A N/A N/A N/A N/A	Men Restricted Competition M = 2.28, SD = 0.32 M = -0.03, SD = 0.20 N/A N/A N/A N/A N/A	tha aquatica T Test t (826.31) = 1.30, p = 0.20 t (733.11) = 2.93, p = 0.00 N/A N/A N/A N/A N/A	Significance Not Significant Very Highly Significant N/A N/A N/A N/A N/A

Note: N/A = No results due to fatalities. Table 4.19: T Test Summary of Stem Heights and Widths Between Full and Restricted Competition Microcosms with Different Salinity Concentrations

4.2.5 Hypothesis 5 Overview Hypothesis 5 is:

"The higher concentrations of the chosen chemical ranges will have an effect on the above and below ground total biomass of the plants."

This hypothesis was chosen to see if the biomass of the vegetation was affected by the increasing chemical concentrations, as this could impact upon future management options for constructed wetland treatment systems.

In order to disprove the hypothesis, the null hypothesis is:

"The higher concentrations of the chosen chemical ranges will not have an effect on the above and below ground total biomass of the plants."

To test this hypothesis, the above ground weight and volume was analysed along with the below ground weights for the different species, and the Root:Shoot Ratios. This was undertaken for the microcosms with full below and above ground competition (microcosms 1 - 8) and is presented in Table 4.20 and Table 4.21. Bar Graphs illustrating the pattern of above and below ground biomass within these microcosms are presented in Figure 4.8 and Figure 4.9.

The measurements employed in the analysis were collected from the final harvest undertaken in November 2010. As only a single measurement of each parameter was available, no parametric statistical tests could be undertaken. The effects of nutrient and salinity were assessed separately for Hypothesis 5.

Species	Deremeter	Microcosm Number						
Species	Parameter	1	2	3	4			
	Above Ground Weight (g)	253.86	418.90	629.18	997.39			
Dhua avaita a sustratio	Below Ground Weight (g)	425.89	711.97	1159.49	2168.09			
Phragmites australis	Root : Shoot Weight Ratio	1.68	1.70	1.84	2.17			
	Above Ground Volume (ml)	1025.00	1930.00	3050.00	4570.00			
	Above Ground Weight (g)	567.44	546.97	490.79	592.09			
Lythrum colicorio	Below Ground Weight (g)	661.24	422.72	258.48	252.65			
Lytinum sancana	Root : Shoot Weight Ratio	1.17	0.77	0.53	0.43			
	Above Ground Volume (ml)	1840.00	1965.00	1580.00	1873.00			
	Above Ground Weight (g)	63.45	136.49	78.77	95.97			
Eilinandula ulmaria	Below Ground Weight (g)	186.54	360.45	199.47	221.71			
Filipendula ulmana	Root : Shoot Weight Ratio	2.94	2.64	2.53	2.31			
	Above Ground Volume (ml)	220.00	570.00	330.00	390.00			
	Above Ground Weight (g)	82.91	3.72	4.87	13.58			
Months aquation	Below Ground Weight (g)	16.88	0.70	0.85	2.12			
wentha aquatica	Root : Shoot Weight Ratio	0.20	0.19	0.17	0.16			
	Above Ground Volume (ml)	345.00	18.00	21.00	47.00			

 Table 4.20: Biomass Results for Microcosms 1-4 - Full Root Competition, with Increasing Nutrient Concentration

Species	Parameter	Microcosm Number					
Species	Parameter	5	6	7	8		
	Above Ground Weight (g)	73.32	217.75	209.31	306.89		
Phraamites australis	Below Ground Weight (g)	121.15	308.22	277.41	418.06		
	Root : Shoot Weight Ratio	1.65	1.42	1.33	1.36		
	Above Ground Volume (ml)	360.00	1020.00	1110.00	1540.00		
	Above Ground Weight (g)	361.16	225.84	387.83	0.00		
Lythrum colicorio	Below Ground Weight (g)	430.14	192.56	314.90	0.00		
Lytinum sailcana	Root : Shoot Weight Ratio	1.19	0.85	0.81	0.00		
	Above Ground Volume (ml)	1145.00	720.00	1330.00	0.00		
	Above Ground Weight (g)	58.78	13.66	0.00	0.00		
Filinandula ulmaria	Below Ground Weight (g)	176.02	39.90	0.00	0.00		
Filipendula ulmana	Root : Shoot Weight Ratio	2.99	2.92	0.00	0.00		
	Above Ground Volume (ml)	301.00	35.00	0.00	0.00		
	Above Ground Weight (g)	10.22	0.00	0.00	0.00		
Mentha aquatica	Below Ground Weight (g)	2.09	0.00	0.00	0.00		
	Root : Shoot Weight Ratio	0.20	0.00	0.00	0.00		
	Above Ground Volume (ml)	61.00	0.00	0.00	0.00		

 Table 4.21: Biomass Results for Microcosms 5-8 - Full Root Competition, with Increasing

 Salinity Concentration

Figure 4.8: Above and Below Ground Biomass for Microcosms 1-4

Figure 4.9: Above and Below Ground Biomass for Microcosms 5-8

4.2.6 Hypothesis 6 Overview Hypothesis 6 is:

"The higher concentrations of the chosen chemical ranges will have an effect on the above and below ground total biomass of the plants, and restricting root competition between the different floral species will have an effect."

This hypothesis was chosen to see if the biomass of the vegetation was affected by the increasing chemical concentrations when the root competition was restricted, since this could also impact upon future management options.

In order to disprove the hypothesis, the null hypothesis is:

"The higher concentrations of the chosen chemical ranges will not have an effect on the above and below ground total biomass of the plants, and restricting root competition between the different floral species will not have an effect."

As with Hypothesis 5, the effects of nutrient and salinity were assessed, and as only a single measurement of each parameter was obtained from the final harvest, no parametric statistical tests were undertaken.

To test this hypothesis, the above ground weight and volume was analysed along with the below ground weights for the different species, and the Root:Shoot Ratios. This was undertaken for the microcosms with full below and above ground competition (microcosms 9 - 16) and is presented in Table 4.22 and Table 4.23. Bar Graphs illustrating the pattern of above and below ground biomass within these microcosms are presented in Figure 4.10 and Figure 4.11.

The biomass ratios of above ground and below ground weights for all of the different microcosms were plotted per species in Figure 4.12 to enable the relationships between biomass ratios to be explored.

Species	Deremeter	Microcosm Number						
Species	Parameter	9	10	11	12			
	Above Ground Weight (g)	173.15	468.55	638.96	1027.20			
Phragmites quetralis	Below Ground Weight (g)	307.04	830.04	1210.40	2220.77			
Fillaginites austrans	Root : Shoot Weight Ratio	1.77	1.77	1.89	2.16			
	Above Ground Volume (ml)	840.00	2339.00	3180.00	4910.00			
	Above Ground Weight (g)	305.43	556.96	455.43	460.30			
	Below Ground Weight (g)	382.21	878.79	652.35	703.30			
Lytinum saiicana	Root : Shoot Weight Ratio	1.25	1.58	1.43	1.53			
	Above Ground Volume (ml)	1060.00	1735.00	1570.00	1740.00			
	Above Ground Weight (g)	9.25	39.82	51.47	29.95			
Eilinandula ulmaria	Below Ground Weight (g)	27.09	105.17	128.86	71.77			
Filipendula ulmana	Root : Shoot Weight Ratio	2.93	2.64	2.50	2.40			
	Above Ground Volume (ml)	25.00	135.00	169.00	104.00			
	Above Ground Weight (g)	63.47	56.09	11.12	6.28			
Mentha aquatica	Below Ground Weight (g)	14.22	13.45	2.07	1.01			
	Root : Shoot Weight Ratio	0.22	0.24	0.19	0.16			
	Above Ground Volume (ml)	272.00	244.00	55.00	27.00			

Table 4.22: Biomass Results for Microcosms 9-12 - Restricted Root Competition, with

 Increasing Nutrient Concentration

Species	Parameter	Microcosm Number						
Species	Farameter	13	14	15	16			
	Above Ground Weight (g)	284.96	163.53	265.40	121.14			
Phraamites australis	Below Ground Weight (g)	499.86	234.53	361.06	160.83			
Fillaginites austrans	Root : Shoot Weight Ratio	1.75	1.43	1.36	1.33			
	Above Ground Volume (ml)	1480.00	810.00	1390.00	690.00			
	Above Ground Weight (g)	329.94	190.08	308.72	0.00			
Lythrum solicorio	Below Ground Weight (g)	403.58	201.87	296.34	0.00			
Lytinum sailcana	Root : Shoot Weight Ratio	1.22	1.06	0.96	0.00			
	Above Ground Volume (ml)	1205.00	700.00	937.00	0.00			
	Above Ground Weight (g)	29.21	0.00	0.00	0.00			
Eilinandula ulmaria	Below Ground Weight (g)	86.66	0.00	0.00	0.00			
Filipendula ulmana	Root : Shoot Weight Ratio	2.97	0.00	0.00	0.00			
	Above Ground Volume (ml)	135.00	0.00	0.00	0.00			
	Above Ground Weight (g)	26.98	6.31	0.00	0.00			
Monthe equation	Below Ground Weight (g)	6.23	1.49	0.00	0.00			
Mentha aquatica	Root : Shoot Weight Ratio	0.23	0.24	0.00	0.00			
	Above Ground Volume (ml)	109.00	29.00	0.00	0.00			

Figure 4.10: Above and Below Ground Biomass for Microcosms 9-12

Figure 4.12: Plot Graph Showing the Above and Below Ground Harvest Weights for Microcosms 1-16

4.2.7 Hypothesis 7 Overview Hypothesis 7 is:

"The higher concentrations of the chosen chemical ranges will have an effect on the water consumption."

This hypothesis allows the effect of increasing chemical concentrations on the vegetation water consumption to be explored,.

In order to disprove the hypothesis, the null hypothesis is:

"The higher concentrations of the chosen chemical ranges will not have an effect on the water consumption."

The measurements of water input were collected each month throughout the study period. As only a single water usage result for each parameter was obtained each month, no parametric statistical tests were undertaken on the results. The effects of nutrient and salinity were assessed separately for Hypothesis 7 to identify any trends which may be occurring.

For Hypothesis 1 and 2, May and August were chosen to assess the area coverage in the early stages of the general flora growing season (May) and in the peak flora growing season (August). For this hypothesis May was chosen as the beginning of the growing season when the plants were starting to use larger quantities of water, and the water was tabulated until the end of August when the water usage was declining. The yearly water usage totals were also assessed.

The water usage results detailed within Table A3.1 (water input for Microcosms 1 - 8 during the acclimatisation period, Appendix 3), Tables A5.1 & A7.1 (Water input for Microcosms 1 - 8 during the treatment period, Appendices 5 and 7), were utilised in the analysis.

Figure 4.13 illustrates the water usage cycles for Microcosms 1-4 during the study period. Table 4.24 details the water usage data during the peak growing season (prior to water usage decreasing) as well as the yearly totals.

Figure 4.14 illustrates the water usage cycles for Microcosms 5-8 during the study period. Table 4.25 details the water usage data during the peak growing season (prior to water usage decreasing) as well as the yearly totals.

Figure 4.13: Total Monthly Water Input (L) for Microcosms 1-4

_		2009				2010					
Treatment Concentration	Microcosm Number	May-09	Jun-09	Jul-09	Aug-09	Total Jan 2009 – Dec-09	May-10	Jun-10	Jul-10	Aug-10	Total Jan 2010 – Oct-10
	1 (Full Root Competition)	186.59	217.78	269.2	225.59	1391.88	175.9	218.75	228.84	247.3	1300.64
10 mg/l Nitrogen and <0.05 ‰ Salinity	9 (Restricted Root Competition)	185.29	221.55	266.75	220.67	1382.25	148.42	200.98	216.92	231.68	1201.64
	Difference	1.3	-3.77	2.45	4.92	9.63	27.48	17.77	11.92	15.62	99
	2 (Full Root Competition)	190.27	235.47	287.78	234.05	1449.46	183.55	218.75	236.76	253.22	1332.44
50 mg/l Nitrogen and <0.05 ‰ Salinity	10 (Restricted Root Competition)	190.44	222.63	272.67	223.74	1392.88	162.56	211.75	221.77	237.6	1241.03
	Difference	-0.17	12.84	15.11	10.31	56.58	20.99	7	14.99	15.62	91.41
	3 (Full Root Competition)	206.78	236.47	291.92	240.89	1415.81	157.5	224.14	241.22	258.91	1270.8
100 mg/l Nitrogen and <0.05 ‰ Salinity	11 (Restricted Root Competition)	196.37	234.7	287.24	234.82	1385.73	164.19	214.98	233.46	249.45	1230.88
	Difference	10.41	1.77	4.68	6.07	30.08	-6.69	9.16	7.76	9.46	39.92
150 mg/l Nitrogen and <0.05 ‰ Salinity	4 (Full Root Competition)	219.01	268.71	321.43	263.49	1538.45	173.02	242.21	259.63	271.67	1345.79
	12 (Restricted Root Competition)	196.42	252.07	308.09	254.34	1460.44	175.58	236.13	255.9	267.83	1323.79
	Difference	22.59	16.64	13.34	9.15	78.01	-2.56	6.08	3.73	3.84	22

Notes: Shaded cells highlight where the restricted root competition microcosm is higher than the full root microcosm with the same treatment concentration.

Table 4.24: Water Usage (L) Comparison of the Full and Restricted Root Competition Microcosms within the Nutrient Treatment Period

Figure 4.14: Total Monthly Water Input (L) for Microcosms 5-8

_		2009				2010					
Treatment Concentration	Microcosm Number	May-09	Jun-09	Jul-09	Aug-09	Total Jan 2009 – Dec-09	May-10	Jun-10	Jul-10	Aug-10	Total Jan 2010 – Oct-10
	5 (Full Root Competition)	177.3	218.32	264.97	222.36	1356.72	168.02	212.29	223.92	234.91	1246.31
10 mg/l Nitrogen and <0.05 ‰ Salinity	13 (Restricted Root Competition)	190.2	208.63	258.98	213.21	1342.05	157.04	204.21	211	231.14	1205.64
	Difference	-12.9	9.69	5.99	9.15	14.67	10.98	8.08	12.92	3.77	40.67
10 mg/l Nitrogen and 5 ‰Salinity	6 (Full Root Competition)	139.91	175.78	231.52	153.97	1032.53	117.72*	168.13	188.92	175.13	949.54
	14 (Restricted Root Competition)	131.29	167.16	220.21	144.27	984.6	117.72*	166.52	182.46	173.52	930.7
	Difference	8.62	8.62	11.31	9.7	47.93	0*	1.61	6.46	1.61	18.84
	7 (Full Root Competition)	111.91	148.31	208.9	129.19	903.82	85.95	147.13	164.68	148.74	813.83
10 mg/l Nitrogen and 10 ‰Salinity	15 (Restricted Root Competition)	107.06	142.39	194.36	117.35	860.74	88.64	132.05	151.22	140.67	777.21
,,	Difference	4.85	5.92	14.54	11.84	43.08	-2.69	15.08	13.46	8.07	36.62
10 mg/l Nitrogen and 15 ‰Salinity	8 (Full Root Competition)	99.52	130	185.2	107.11	795.04	88.64	123.97	149.07	128.82	735.75
	16 (Restricted Root Competition)	94.14	121.39	174.43	94.73	762.19	72.49	117.51	137.22	120.74	683.51
	Difference	5.38	8.61	10.77	12.38	32.85	16.15	6.46	11.85	8.08	52.24

Notes: Shaded cells highlight where the restricted root competition microcosm is higher than the full root microcosm with the same treatment concentration. * = Water Usage is the same between competition variables within the same treatment concentration

Table 4.25: Water Usage (L) Comparison of the Full and Restricted Root Competition Microcosms within the Salinity Treatment Period

4.2.8 Hypothesis 8 Overview Hypothesis 8 is:

"The higher concentrations of the chosen chemical ranges will have an effect on the water consumption, and restricting root competition between the different floral species will also have an effect."

As with Hypothesis 7, Hypothesis 8 was chosen to explore the effect of increasing chemical concentrations on water consumption, but this time when the root competition was restricted.

In order to disprove the hypothesis, the null hypothesis is:

"The higher concentrations of the chosen chemical ranges will not have an effect on the water consumption and restricting root competition between the different floral species will not have an effect."

Hypothesis 8 was investigated using the results detailed within Table A3.2 (Water input for Microcosms 9-16 during the acclimatisation period, Appendix 3), Tables A9.1 & A11.1 (Water input for Microcosms 9-16 during the treatment period, Appendices 9 and 11).

To investigate whether the restricted root competition has an effect on water use during the acclimatisation period when all of the microcosms were receiving the same nutrient and salinity concentrations the data from the peak growing season in 2008 (May, June and July) (Table 4.26) was used for the analysis. Since the treatment experiments commenced in August 2008, this month was excluded from the analysis. To statistically analysis the data for each month, the Independent Samples T Test was used (Table 4.27). During the treatment season, the microcosms receiving the base conditions (Microcosms 1 and 9 for full competition, and Microcosms 5 and 13 for restricted competition) were assessed to investigate any trends between the different competition scenarios (Table 4.28).

The water usage of the restricted competition microcosms was assessed for trends across the different treatment period. In addition, the water usage of the restricted competition microcosms was compared with those for the full competition microcosms. This was undertaken for the months with peak vegetation growth between May to August inclusive, but as only one set of data was available for each variable, parametric statistical tests were not undertaken on the results which are illustrated on Figure 4.15 and Figure 4.16.

		2008						
Competition	Microcosm Number	May-08	Jun-08	Jul-08	Total May 2008 - July 2008			
	1	200.76	198.45	246.33	645.54			
	2	194.6	188.76	235.02	618.38			
	3	191.07	190.37	238.79	620.23			
Eull Doot	4	206.19	199.53	244.17	649.89			
Competition	5	199.52	192.53	237.71	629.76			
	6	195.45	202.76	248.48	646.69			
	7	203.06	203.3	244.63	650.99			
	8	202.76	192.53	237.71	633.00			
	Total	1593.41	1568.23	1932.84	5094.48			
	9	184.84	188.22	231.79	604.85			
	10	192.15	189.83	230.17	612.15			
	11	191.22	184.45	224.25	599.92			
Postricted Post	12	195.91	194.68	239.32	629.91			
Competition	13	200.75	193.6	235.02	629.37			
Competition	14	194.75	200.07	240.4	635.22			
	15	193.92	180.68	228.02	602.62			
	16	198.07	187.14	235.56	620.77			
	Total	1551.61	1518.67	1864.53	4934.81			
Difference		41.8	49.56	68.31	159.67			

Table 4.26: Water Usage (L) Comparison of the Full and Restricted Root Competition

 Microcosms within the Acclimatisation Period

Month	Full Competition	Restricted Competition	T Test	Significance
May 2008	M = 194.59, SD = 6.54	M = 198.54, SD = 3.58	t (14) = -1.59, p = 0.16	Not Significant
June 2008	M = 191.79, SD =5.27	M = 194.08, SD = 7.83	t (14) = -0.69, p = 0.50	Not Significant
July 2008	M = 236.23, SD = 7.39	M = 238.44, SD = 6.24	t (14) = -0.65, p = 0.53	Not Significant

 Table 4.27: T Test Summary of Water Usage Between Full and Restricted Competition

 Microcosms During the Acclimatisation Period

				2009			2010					
Competition	Microcosm Number	May-09	Jun-09	Jul-09	Aug-09	Total Jan 2009 – Dec-2009	May-10	Jun-10	Jul-10	Aug-10	Total Jan 2010 – Oct-2010	
E II D I I	1	186.59	217.78	269.2	225.59	1391.88	175.9	218.75	228.84	247.3	1300.64	
Full Root	5	177.3	218.32	264.97	222.36	1356.72	168.02	212.29	223.92	234.91	1246.31	
Competition	Total	363.89	436.1	534.17	447.95	2748.6	343.92	431.04	452.76	482.21	2546.95	
Restricted Root Competition	9	185.29	221.55	266.75	220.67	1382.25	148.42	200.98	216.92	231.68	1201.64	
	13	190.2	208.63	258.98	213.21	1342.05	157.04	204.21	211	231.14	1205.64	
	Total	375.49	430.18	525.73	433.88	2724.3	305.46	405.19	427.92	462.82	2407.28	
Differ	ence	-11.6	5.92	8.44	14.07	24.3	38.46	25.85	24.84	19.39	139.67	

Shaded cells highlight where the restricted root competition microcosm is higher than the full root microcosm with the same treatment concentration. **Table 4.28: Water Usage (L) Comparison of the Full and Restricted Root Competition Microcosms** Note:

for the Base Concentrations During the Treatment Period

Figure 4.15: Total Monthly Water Input (L) for Microcosms 9-12

Figure 4.16: Total Monthly Water Input (L) for Microcosms 13-16

4.2.9 Control Microcosms: Natural Trends

The methodology originally proposed for sampling the vegetation during the operational period involved randomly selecting 20 stems of each species in each microcosm and measuring the stem widths and heights. This would have allowed a statistical analysis of the vegetation data to be carried out for each month during the study period, in line with other previous research where physiological plant characteristics had been measured on vegetation within smaller plant pots. However, when this approach was implemented in the field, it became apparent that this was not feasible as gaining access to the base of a stem was often not possible without snapping adjacent stems. The loss of plant stems could have affected the competition rates by creating clear areas for different species to colonise and by removing some of the plants vigour and hence, these measurements were ceased. This measurement of multiple stems through the growing periods was where the main repetition was going to be present and its loss removed this repetition and also the amount of statistical analysis which could be carried out.

The study was conducted in an outside environment and not sterile laboratory conditions, as such external factors could have an influence upon the results. Other unpredictable factors could also be present such as the vigour of the initial plug plants. Within the control microcosms, which were subject to identical treatments, there were variations in the data and as such the trends presented within this report should be focused upon rather than the detailed changes.

4.3 Microcosm Study Discussion

4.3.1 Phragmites australis

Phragmites australis survived within all of the chemical concentrations within the different competition scenarios. As detailed within Sections 2 and 3, *Phragmites australis* is the main vegetation utilised in constructed wetland treatment systems within the U.K. and as such, the study was designed so that the concentrations of chemicals used would not result in its mortality. With this species surviving within all of the microcosms, it shows that the chosen chemical concentrations and the design methodologies used in the construction and operation of the microcosms are suitable for use with *Phragmites australis*.

Hypothesis 1 & 2

These hypotheses investigated if all four species survived at the different chemical concentrations studied whether a single species would take over and oust the other species, and restricting root competition will have an effect.

Nutrients

Within the full competition microcosms, this species survived until the end of the study period (after almost 3.5 years). It increased in area as the nutrients increased to a final combined area coverage of 19 % (M1), 27 % (M2), 34 % (M3) & 45 % (M4). Although the cover of *Phragmites australis* increased it did not oust the other species, with its maximum coverage being less than half of the available area. This allowed space for other species to remain within the microcosm for which the design principles used in this study could be transferred to a treatment wetland.

As per the full competition microcosms, within the restricted competition microcosms, *Phragmites australis* survived until the end of the study period and increased in area coverage as the nutrients increased. The maximum area coverage was also less than 50 % of the quadrat allowing for other species to remain within the microcosm. At the higher nutrients, the spread plateaued slightly when the plants appeared to reached the root dividers. However, the roots eventually went under the root dividers, and towards the end of the study period started to grow within sections of the microcosm not designated for *Phragmites australis*.

The final combined area coverage for this species within the restricted competition microcosms was slightly higher than for the full competition microcosms for all nutrient levels. This would indicate that the barriers may have had a slight beneficial effect upon the *Phragmites australis* by reducing the interspecific competition in the early years prior to it breaching the root dividers.

However, the difference was only a few percent and the data gathered (being only a single area coverage measurement for each microcosm) for Hypothesis 1 and 2 was not suitable for statistical analysis to show if this was statistically significant or due to natural variation. Either way the results show that *Phragmites australis* did not become dominant in either of the competition scenarios.

Salinity

When the area coverage within the full competition microcosms was investigated, it was apparent that an increase in salinity levels did not increase the area coverage of *Phragmites australis* to a level that would oust the other species. This species preferred no salinity and tolerated the higher salinity concentrations with the final combined area coverage being 15 % (M5), 13 % (M6), 12 % (M7) & 10 % (M8).

When the area coverage within the restricted competition microcosms was investigated, this species followed the same pattern as for the full competition microcosms, reducing its area coverage as the salinity levels increased. The final combined area coverage for *Phragmites australis* within the restricted competition microcosms was 7 % higher than for the full competition microcosms at the base salinity level, but was slightly lower at the higher salinity concentrations. However, the difference is only a few percent at the higher salinity concentrations and the data gathered for Hypothesis 1 and 2 was therefore not suitable for statistical analysis to prove if this effect was statistically significant or due to natural variation. Consequently, at the higher concentrations there were no obvious beneficial effect for having root dividers for *Phragmites australis*, however this could be due to the fact that at the higher salinity concentrations within the full competition microcosms fatalities occurred for the biodiversity enhancing species, and as such there was less direct competition.

Hypothesis 3 & 4

Hypothesis 3 & 4, investigated if the different nutrient and salinity concentrations would have an effect on the vegetation stem heights or stem widths of the surviving plants.

Nutrients

The measurements of the harvested stems identified that when all of the data were combined to include both full competition and restricted competition microcosms, there was a *very highly significant* difference (p = 0.000) in both the heights and widths of the stems between the different nutrient concentrations.

When these data were separated into that for restricted and for full competition microcosms, there was a *very highly significant* difference (p = 0.000) in both the heights and widths of the stems between the different nutrient concentrations for both types of competition.

These results showed that there is a very highly significant difference in the stem heights and widths of *Phragmites australis* as the nutrient levels increased. This is different to the findings of previous research undertaken by Bastelova et al. (2004), who identified in their study that the biomass significantly increased with increasing nutrient concentrations, but not the height or basal diameter. In their study the plants were placed in different containers with no competition between individuals. Within this study there was a very highly significant difference in the stem heights and widths for both the full and restricted competition microcosms. However, within the restricted competition microcosms there is still above ground competition between the individual plants of both the same and different species, which is not present in Bastelova et al. (2004). This could suggest that the above ground competition was also having an effect on the heights and widths of Phragmites australis stems. When Phragmites australis was monitored within constructed wetlands monocultures, it was apparent that the plants nearest to the effluent inlet were taller than the plants near the outlet (which had lower nutrients levels), and as such indicates that nutrient levels have an effect on plant height. However as per this study, within a constructed wetland there is both above and below ground competition, which was not present within Bastelova et al. (2004). This would add further support to the findings that competition contributes an effect on the heights of Phragmites australis at different nutrient levels.

An overview of the statistical analysis for the stem height and width data can be found in Table 4.18. Table 4.18 it shows that at the lower nutrient concentrations there are no statistical difference between stem heights in the full and restricted competition microcosms. The opposite is true at the higher nutrient concentrations where the stem heights are statistically different.

This shows that at the lower nutrient concentrations the restriction of root competition did not have an effect on the height of *Phragmites australis*. However, at greater nutrient concentrations, the heights were affected, with the mean height of the stems decreasing when there was restricted competition. This adds further weight to the argument that competition has an effect upon the height of this species at higher nutrient concentrations and that when some of this competition is removed (i.e. by restricting root competition), the height also reduces.

Table 4.18 shows that for stem widths, there was a statistically significant difference between the full and restricted competition microcosms at each nutrient concentration, and the mean width decreases when there was restricted competition. Again, this adds further weight that competition

does have an effect upon the stem width of this species as the nutrient concentrations increase and that when some of this competition is removed, the widths of this species also reduces.

Salinity

The measurements of the harvested stems for *Phragmites australis* showed that when all of the stems were combined to include both full competition and restricted competition microcosms, there was a *very highly significant* difference (p = 0.000) in the heights and a *highly significant* difference in widths (p = 0.020) of the stems between the different salinity concentrations.

When these results were separated into those for restricted and full competition microcosms, it was found that there was a *very highly significant* difference (p = 0.001) in the widths of the stems between the different salinity concentrations for both types of competition. However, the heights within the full competition microcosms alone were not statistically different (p = 0.077) being slightly above the confidence limit of 0.05. There was a *very highly significant* difference (p = 0.000) between the different salinity concentrations for heights within the restricted competition microcosms. This shows, that where an increase in salinity occurs, *Phragmites australis* changes both its stem heights and widths unless competition was present, in which case the height did not alter significantly. This is in agreement with Hellings & Gallagher (1992), who found that after a 30 week study, *Phragmites australis* reduces its height as the salinity increased. The short term study by Hellings & Gallagher (1992) only investigated *Phragmites australis* without any competition.

As with the nutrients, increasing salinity levels have an effect on the vegetation stem heights (excluding full competition heights) and widths, however, at the higher salinity concentrations, the interspecific competition decreased due to the fatalities occurring within the other floral species. Intraspecific competition between individuals of *Phragmites australis* remained and as such some level of competition was present, but reduced when compared with the lower salinity concentrations. This level of reduced competition at higher salinity concentrations could be the reason why the heights were just outside the significance level and could form a Type 1 statistical error.

The stem harvest data was further divided to investigate if restricting root competition had an effect on the stem height and width when compared to the same salinity concentrations within the full competition microcosm. In Table 4.19 an overview of the statistical analysis for the stem height and width can be seen. In Table 4.19 it can be see that for stem heights, at the base concentration and the 10 % salinity concentration, they found to be *not statistically* different (p = 0.69 and p = 0.69 respectively) between the full and restricted competition microcosms. However, the opposite is true for the 5 % and 15 % salinity concentrations where the stem heights were *very highly significantly* different (p = 0.01 and p = 0.00 respectively) between the full and restricted competition microcosms. The mean height of the stems for the 5 % and 15 % salinity concentrations decreased when there was restricted competition. This fluctuation in significance could be due to the patchy nature of the competition (caused by plant fatalities) within the salinity microcosms.

In Table 4.19 showing stem widths, it can be seen that there was a *very highly significant* difference between the full and restricted competition microcosms at each salinity concentration. The mean width of the stems decreased when there was restricted competition.

Hypothesis 5 & 6.

Hypothesis 5 & 6, investigated if the different concentrations had an effect on the above and below ground total biomass of the surviving plants.

Nutrients

The above and below ground biomass values for the different nutrient concentrations in the full competition microcosms and the restricted competition microcosms can be found in Table 4.29. The table shows that the above and below ground biomass increased as the nutrient concentration increased for both the full and restricted competition microcosms. This agreed with the findings of Bastelova *et al.* (2004). Although all of the biomass parameters increased, they did not increase at the same rate; with the below ground biomass increasing at a greater rate than the above ground biomass, as the nutrient levels increased.

When the full and restricted competition microcosms are compared against each other, there appears to be no large difference between the Root : Shoot ratios, with both competition parameters increasing at a similar rate, although the full competition microcosms have a slightly lower root biomass (Table 4.29). The full competition microcosms also have a slightly lower Root : Shoot ratio in the lower nutrient microcosms than the restricted competition microcosms. This indicates that the full competition microcosms put slightly more energy into the above ground biomass, and less into the below ground biomass forming a single measurement for each parameter within each microcosm, the data gathered for Hypothesis 5 and 6 is not suitable for statistical analysis to prove if this was statistically significant.

Within a natural wetland, Asaeda *et al.*, (2006) found that *Phragmites australis* had over three times the amount of below ground biomass compared to above ground biomass. Asaeda & Karunaratne (2000) report data which calculates a Root : Shoot Ratio of approximately 3.5 and 1.3 for two studies in Australia and approximately 3.5 for a study in Japan. Farnsworth & Meyerson (2003) found the Root : Shoot ratio to be $0.7 (\pm 0.04)$ within a freshwater tidal marsh. By comparison for this study the below ground biomass was found to be just over twice as much as the above ground biomass at the highest nutrient concentration. This shows that the Root : Shoot ratio *for Phragmites australis* varies, but as the nutrient concentrations for the above studies are not provided, a direct comparison cannot be made.

Competition	Parameter	10 mg/l Nitrogen and <0.05 ‰ Salinity	50 mg/l Nitrogen and <0.05 ‰ Salinity	100 mg/l Nitrogen and <0.05 ‰ Salinity	150 mg/l Nitrogen and <0.05 ‰ Salinity
E	Above Ground Weight (g)	253.86	418.90	629.18	997.39
Full	Below Ground Weight (g)	425.89	711.97	1159.49	2168.09
Competition	Root : Shoot Weight Ratio	1.68	1.70	1.84	2.17
Restricted Competition	Above Ground Weight (g)	173.15	468.55	638.96	1027.20
	Below Ground Weight (g)	307.04	830.04	1210.40	2220.77
	Root : Shoot Weight Ratio	1.77	1.77	1.89	2.16
Table 4.29: Pl	hragmites australis Bioma	ss for Each	Nutrient C	oncentratio	on with Full

Competition (Microcosms 1-4) & Restricted Competition (Microcosms 9-12)

The publication of Zhu *et al.*, (2010) coincided with the harvest phase of this research. They found that when the species richness of vertical flow treatment wetlands was increased, that the biomass of the community then also increased and as did the substrate nitrogen retention. Ten seedlings per m² were planted in April 2006 and harvested 5 cm above the ground in September 2007. The species composition included both *Phragmites australis* and *Lythrum salicaria* along with 14 other species. When the effects of *Phragmites australis* and *Lythrum salicaria* were statistically analysed, it was found that when these species were planted in mixtures with other species, then there was no significant effect on the above ground biomass for the community. No details of below ground biomass, the above ground biomass weights or the survivability of each individual species were plublished, and as such, the weights of each species could not be compared to the biomass values found in this study. They did conclude, however, that due to their finding that increased biomass resulted in substrate nitrogen retention, plant biodiversity should be incorporated into constructed wetlands.

Salinity

The above and below ground biomass values for the different salinity concentrations in the full competition microcosms and the restricted competition microcosms can be found in Table 4.30.

Although there were differences in the amount of biomass produced between Microcosms 1 and 5 (both being base concentrations with full competition), the Root : Shoot Ratios were almost identical. When the higher salinity biomass values are compared against Microcosm 1, the biomass decreases slightly before increasing to above that for the base concentration at the highest salinity level. Although the biomass produced varied, the highest salinity value was greater than the biomass produced within the base concentrations. Although the biomass produced increased with the highest salinity, the Root : Shoot ratios decreased indicating that they put less energy into root development.

The above and below ground biomass for the restricted competition microcosm at the base salinity level (M13) is higher than the biomass in its counterpart with the same nutrients and restricted competition (M9). However when the Root : Shoot ratios were assessed they are almost identical, which indicates that although these microcosms contained the same nutrient and salinity parameters with differing biomass, they had similar Root ; Shoot ratios.

Although the biomass within the restricted competition microcosms fluctuated as the salinity levels increased, the Root : Shoot ratio decreased (Table 4.30) When the decrease in biomass was compared alongside the Root : Shoot ratio for the full competition microcosms, the rate of decrease was similar. This would indicate that the increase in salinity is a factor of the reduction in the Root : Shoot ratio.

Farnsworth & Meyerson (2003) found the Root : Shoot ratio to be $3.0 (\pm 0.4)$ for a brackish tidal marsh, which is noticeably higher than the Root : Shoot ratio of $0.7 (\pm 0.04)$ they reported for a freshwater tidal marsh. The opposite effect was observed for this study with the Root : Shoot ratios decreasing as the salinity levels increased. This indicates that *Phragmites australis* will vary the Root : Shoot ratio depending upon the local growing conditions. The variety in growth for the referenced studies could also be down to the geographical gradient from where the *Phragmites australis* was sourced (Bastelova *et al.*, 2004 & Bastelova *et al.*, 2006).

Competition	Parameter	10 mg/l Nitrogen and <0.05 ‰ Salinity	10 mg/l Nitrogen and 5 ‰ Salinity	10 mg/l Nitrogen and 10 ‰ Salinity	10 mg/l Nitrogen and 15 ‰ Salinity
Full Competition	Above Ground Weight (g)	73.32	217.75	209.31	306.89
	Below Ground Weight (g)	121.15	308.22	277.41	418.06
	Root : Shoot Weight Ratio	1.65	1.42	1.33	1.36
	Above Ground Weight (g)	284.96	163.53	265.40	121.14
Restricted	Below Ground Weight (g)	499.86	234.53	361.06	160.83
Competition					
	Root : Shoot Weight Ratio	1.75	1.43	1.36	1.33

 Table 4.30: Phragmites australis Biomass for Each Salinity Concentration with Full

 Competition (Microcosms 5-8) & Restricted Competition (Microcosms 13-16)

Nutrients and Salinity

When the above and below ground biomass is plotted on a graph (Figure 4.12), the individual points representing each microcosm for *Phragmites australis* are in close proximity to the linear line but there is a slight curve towards the point of origin. The scatter points are separated into five main groups. The first group consist of the base nutrients and salinity concentrations. The second group is the 50 mg/l nutrient concentration, the third group is the 100 mg/l nutrient concentration and the fourth group is the 150 mg/l nutrient. The fifth group comprises the remainder of the salinity concentrations. Within the three groups representing the higher nutrients, the restricted competition microcosms (Microcosms 10, 11 and 12) are all slightly higher than their full competition microcosm counterparts (Microcosms 2, 3 and 4).

Phragmites australis Conclusion.

In summary, *Phragmites australis* will alter its stem height and stem width depending upon the nutrient or salinity concentration which it is subject to. In their study, using two different nutrient levels where there was no competition, Bastelova *et al.* (2004), found that only the biomass increased. Whereas for this study there was a *very highly significant* difference in the stem heights and widths for both the full and restricted competition microcosms. Comparing the findings from the two studies suggests that competition could be a key factor in the height and stem width parameters of *Phragmites australis*. Within the restricted competition microcosms, a significant difference was still apparent between the heights with increasing nutrient levels, indicating that above ground competition can play a role in the height differences.

When the full competition and restricted competition microcosms are compared against each other at the higher nutrient loadings, there was a significant difference between the heights and stem widths, with the restricted competition microcosms having slightly lower dimensions than their counterparts in the full competition microcosms. This shows that when faced with full competition with other vegetation species *Phragmites australis* will increase its size and when the root competition is restricted, it will not grow as large.

When the biomass data is assessed, as the nutrient levels increase the biomass produced increases. The above ground and below ground biomass does not increase at the same rates, with the below ground biomass increasing at a greater rate, therefore increasing the Root : Shoot ratio. The opposite was true for the salinity concentrations.

When nutrient results for the full competition and restricted competition microcosms are compared against each other, although the biomass and Root : Shoot ratios were slightly larger for the restricted competition microcosms, there was no large difference (Figure 4.12). These similar below ground biomass values show that adding the biodiversity enhancing species did not result in a large decrease of the roots biomass of *Phragmites australis*, nor did it deter their root spread, with the roots going under the growing locations of the biodiversity enhancing species. This can be viewed on the root windows plates for the full competition microcosms, Appendix 15. The majority of the treatment of effluents occurred within the root zone (for subsurface flow treatment wetlands). As similar Root : Shoot ratios were found, this should not affect the root treatment potential of *Phragmites australis* when grown alongside the biodiversity enhancing species tested within this study at similar effluent concentrations. Indeed, Zhu *et al.*, (2010) found that a higher plant biodiversity resulted in higher substrate nitrogen retention.

Phragmites australis did not take over at any of the pollutant concentrations employed and areas were available for other species to utilise, combined with the root zone being not subject to a large decrease by the competition from biodiversity enhancing species, *Phragmites australis* is suitable for use as the main treatment species when planted alongside biodiversity enhancing species.

4.3.2 Lythrum salicaria

Lythrum salicaria survived within all of the nutrient concentrations within the different competition scenarios, however, fatalities were observed within the higher salinity concentrations.

Hypothesis 1 & 2

These hypotheses investigated if all four species would survive at the different concentrations or whether a single species would take over and oust the other species.

Nutrients

Within the full competition microcosms, this species survived until the end of the study period. It decreased in area coverage over the treatment period as the nutrients increased to a final combined area coverage of 21 % (M1), 21 % (M2), 23 % (M3) & 21 % (M4). Although the combined area coverage decreased during the treatment period from the acclimatisation period, the increase in nutrient levels and competition at these nutrient levels did not appear to have any significant effect, with *Lythrum salicaria* maintaining a constant final area coverage. When grown within these conditions, this species also appeared not to be an invasive species as reported for wetlands in other countries (Bastlova & Kvet, 2002; Blossey & Kamil, 1996; Edwards *et al.*, 1998; Schooler *et al.*, 2006; Thompson *et al.*, 1987).

Comparing the results presented in Table 4.8 and Table 4.10, the reduced decline in area coverage for the middle nutrient loadings (where the area coverage was 9 % to 10 % greater than for the microcosms without root dividers) could indicate that the provision of root separators at these concentrations had a beneficial effect for *Lythrum salicaria*. However, as there is no clear trend, since this difference did not occur at the lower of the highest nutrient concentrations, the difference in area coverage could also be due to natural variation.

A study by Suter et al., 2010 (published when the harvest for this study was being undertaken) found that, when Lythrum salicaria was planted in fen communities containing different species mixtures, it declined. Suter et al's study was undertaken within a grassland field which was being restored to a semi-natural wet grassland habitat. At the end of the study period (3 years) the final proportion was less than 0.1 within all species mixtures, including locations where Lythrum salicaria was originally planted as the dominant species. The species utilised within the different mixtures included the tussock species of Carex elata, Carex flava, Juncus effusus and Molinia caerulea; the upright species of Angelica sylvestris, Epilobium parviflorum, Lythrum salicaria; the rosette species of Centaurea jacea spp. angustifolia, Myosotis nemorosa, Silene flos-cuculi; and the stoloniferous species of Lycopus europaeus & Mentha aquatica. Within the microcosm study, although the coverage reduced during the treatment period, a higher proportion of cover remained than that found by Suter et al. As the habitat studied by Suter et al., a field which was being restored to a semi-natural wet grassland, was different to the constructed treatment bed being simulated in the microcosms, this could explain the differences identified. In addition, the different species utilised by Suter et al. could be better at outcompeting Lythrum salicaria, than the species utilised within this study.

In this study, *Lythrum salicaria* maintained a favourable final area coverage within the restricted competition microcosms and was not ousted by the other species.

Salinity

When the area coverage within the full competition microcosms was investigated, it was apparent that an increase in salinity levels had an adverse effect upon this species with the area coverage decreasing in each of the microcosms. This species preferred no salinity, it tolerated the lower salinity concentrations and did not survive in the highest salinity concentration, with the final combined area coverage of 27 % (M5), 16 % (M6), 5 % (M7) & 0 %, fatal (M8).

The decreasing trend was also true for the restricted competition microcosms with the final combined area coverage of 27 % (M13), 13 % (M14), 4 % (M15) & 0 %, fatal (M16). From these results it can be seen that the root barriers appear to have had no positive effect on the area coverage for *Lythrum salicaria* with the area either remaining the same or showing a minimal decrease.

Hypothesis 3 & 4

Hypothesis 3 & 4, investigated if the different concentrations would have an effect on the vegetation heights or the stem widths of the surviving plants.

Nutrients

The measurements of the harvested stems identified that when all of the stems were combined to include both full competition and restricted competition microcosms, there was a *very highly significant* difference (p = 0.000) in both the heights and widths of the stems between the different nutrient concentrations.

When these results were separated for the restricted and the unrestricted microcosms, there was a *very highly significant* difference (p = 0.000) in both the heights and widths of the stems between the different nutrient concentrations for both types of competition.

These results show that there was a *very highly significant* difference in the main stem heights and widths of *Lythrum salicaria* as the nutrient levels increased for both the full and restricted competition microcosms. As per the *Phragmites australis*, this is different to previous research undertaken by Bastelova *et al.* (2004) who identified in their study that the biomass of shoot dry weight significantly increased with increasing nutrients, but not the plant height, whereas this study found a *very highly significant* difference in the stem heights and widths.. Within Bastelova *et al*'s study the plants were separated into different containers with no competition between different species. However, even within the restricted competition microcosms there was still above ground

competition between the individual plants of both the same and different species, which was not present within Bastelova *et al.* (2004). As occurred with *Phragmites australis*, this could suggest that the above ground competition was also having an effect on the heights and widths of *Lythrum salicaria* at different nutrient levels.

The stem harvest data was further divided to investigate if restricting root competition had an effect on the stem height and width at the different nutrient concentrations. An overview of the statistical analysis for the stem height and width can be found in Table 4.18, which shows that at the lower nutrient concentrations, the stem heights are not statistically different between the full and restricted competition microcosms, but at the highest nutrient concentration the difference is *highly significant*. This shows that the barriers did not have an effect on stem height at the lower concentrations, but they did at the highest concentration.

The opposite was found to be true for the stem widths (Table 4.18). At the lower nutrient concentrations, the stem widths were *very highly significantly* different between the full and restricted competition microcosms, until the highest nutrient concentration, where the difference was *not significant*. This showed that the barriers had an effect on stem width at the lower concentrations but did not at the highest. Taking the stem heights and widths together, the presence of barriers (thus restricting root competition) had an effect on either the stem height or stem width at each nutrient concentration.

Salinity

The measurements of the harvested stems of *Lythrum salicaria* showed that when all of the stems were combined to include both full competition and restricted competition microcosms, there was a *highly significant* difference (p = 0.033) in the heights and a *very highly significant* difference (p = 0.000) in the widths of the stems between the different salinity concentrations.

When these results were divided between the restricted and full competition microcosms, there was no statistically significant difference in either the height or the widths of the stems between the different salinity concentrations in the full competition microcosms. However, the effect on the heights and widths within the restricted competition microcosms was *highly significant* (heights, p = 0.007) and *very highly significant* (widths, p = 0.000) respectively, for the different salinity concentrations.

The stem harvest data was further divided to investigate if restricting root competition had an effect on the stem height and width at the different salinity concentrations. An overview of the statistical analysis for the stem height and width can be found in Table 4.19, which shows that for stem heights, there is no statistical difference between the restricted and full competition microcosms at any salinity concentrations. However, Table 4.19 also shows that for the stem widths, there was a statistically significant difference between the full and restricted competition microcosms for the base concentration and the 10 ‰ salinity concentration, but no statistical difference occurred for the 5 ‰ salinity concentration. The mean width of the stems decreased when there was restricted competition at the base concentration, and stayed similar at the 5 ‰ salinity concentration and increased at the 10 ‰ salinity concentration. There were full fatalities at 15 ‰ salinity concentration for both full competition and restricted competition microcosms.

Hypothesis 5 & 6

Hypothesis 5 & 6, investigated if the different concentrations would have an effect on the above and below ground biomass of the surviving plants.

Nutrients

The above and below ground *Lythrum salicaria* biomass values for the different nutrient concentrations in the full competition microcosms and the restricted competition microcosms can be found in Table 4.31. From this table it can be seen that there is no obvious pattern to the weights of above ground biomass as the nutrient concentration increased for both the combined full and restricted competition microcosm data. However, within the full competition microcosms, the below ground biomass showed a decrease in weights as the nutrient concentration increased. When compared to the restricted competition microcosms, it was found that the opposite was true, with the below ground biomass increasing at the higher nutrient concentrations above that of the base concentration, but with no clear relationship as the nutrient concentrations increased.

When the full and restricted competition microcosms were compared against each other there was a difference between the Root : Shoot ratios. The ratios within the full competition microcosms decreased with increasing nutrient level, with the plants having less below ground biomass to above ground biomass. The opposite was true for the restricted competition microcosms where the Root : Shoot ratios increased at the higher nutrient concentration when compared with the base nutrient concentration. This showed that where the root competition is restricted, *Lythrum salicaria* invested more energy in the roots than in the microcosms with root competition present. These opposing results suggest that the nutrients did not fully control the Root : Shoot ratios, but that the competition with other species had a distinct effect.

Shamsi & Whitehead (1977b), found that after 70 days the Root : Shoot ratio of *Lythrum salicaria* increased as the different levels of phosphorous and nitrogen increased. The approximate Root : Shoot ratios (gleaned from graph data) increased from 0.09 to 0.98 as the general nutrient levels increased, from 0.1 to 0.87 as the nitrogen levels increase, and from 0.09 to 1.17 as the phosphorus levels increased. Shamsi & Whitehead (1974b), also identified that the Root : Shoot ratios decreased as the light levels decreased from 0.32 (100 % light) to 0.22 (70 % light) and 0.19 (40 % light), however, their experiment was undertaken using small pots which would not have allowed *Lythrum salicaria* to fully develop its roots to its maximum potential.

The studies by Shamsi and Whitehead (1977a-d) were undertaken over a short period of time, usually one growing season or less. After the study presented in this thesis was harvested, a longer term study was published by Edwards *et al.*, (2011). Although the small sample size restricted the statistical analysis of the plants on a latitudinal scale, the paper reports on plants which were harvested after 3 years and as such contains dry weights for the plants across a geographical gradient. Edwards *et al.*, (2011) identified that the Root : Shoot ratio for *Lythrum salicaria* varied depending upon where the seed was collected from. The Root : Shoot ratios were calculated as Finland 2.99; Czech Republic 3.40; Spain 1.81 & Turkey 2.24. Whereas from the data reported in Stevens *et al.*, (2002) it was found that the Root : Shoot ratio for *Lythrum salicaria* was 2.39 which reduced to 1.15 when the phellem was removed to interrupt gas transport to the roots.

The various Root : Shoot ratios gathered from other studies illustrate the range of Root : Shoot ratios which this species is capable of varying depending upon light levels, nutrient levels or the seed source from where it originated. The ability of *Lythrum salicaria* to alter its root shoot ratio was also observed in this study through both competition and an increase in either nutrient or salinity concentrations.

Competition	Parameter	10 mg/l Nitrogen and <0.05 ‰ Salinity	50 mg/l Nitrogen and <0.05 ‰ Salinity	100 mg/l Nitrogen and <0.05 ‰ Salinity	150 mg/l Nitrogen and <0.05 ‰ Salinity
	Above Ground Weight (g)	567.44	546.97	490.79	592.09
Full Composition	Below Ground Weight (g)	661.24	422.72	258.48	252.65
Competition	Root : Shoot Weight Ratio	1.17	0.77	0.53	0.43
	Above Ground Weight (g)	305.43	556.96	455.43	460.30
Restricted Competition	Below Ground Weight (g)	382.21	878.79	652.35	703.30
	Root : Shoot Weight Ratio	1.25	1.58	1.43	1.53

 Table 4.31: Lythrum salicaria Biomass for Each Nutrient Concentrationwith Full Competition (Microcosms 1-4) & Restricted Competition (Microcosms 9-12)

As outlined in the *Phragmites australis* discussion (Section 4.2.2), the publication of Zhu *et al.*, (2010) coincided with the harvest phase of this research. They found that when the species richness of vertical flow treatment wetlands was increased, then the biomass of the community also increased and so did the substrate nitrogen retention. The species composition included both *Phragmites australis* and *Lythrum salicaria* along with 14 other species. When the effects of *Phragmites australis* and *Lythrum salicaria* were statistically analysed, it was found that when these species were planted in mixtures with the other species, then there was no significant effect on the above ground biomass for the community. No details of below ground biomass, the above ground biomass weights or the survivability of each species were published, and as such, the weights of each species could not be compared to the biomass values identified within this study. They did however conclude that due to the increased biomass produced substrate nitrogen retention, plant biodiversity should be incorporated into constructed wetlands.

The root spread within Microcosms 1-4 can be observed on Figures A15.1 to A15.12 (Appendix 15). The roots for Lythrum salicaria are thin and dark, which are not obvious in the photographs. When Microcosms 1-4 were being dismantled, the roots for this species were found predominantly in the humus layer. In the lower nutrient microcosms the lower sections of the roots were just within the gravel layer. However, in the higher nutrient microcosms there were barely any of these roots within the upper gravel layer and fewer roots within the humus layer. The root spread for Lythrum salicaria within the restricted microcosms (Microcosms 9-12, Figures A19.1 to A19.16, Appendix 19) was observed penetrating deep into the gravel layer. This did not occur where there was a dense mat of fine hairs for Phragmites australis present within the full competition microcosms. In Microcosm 9 (Figure A19.1), *Phragmites australis* roots can be observed penetrating the gravel layer within the Lythrum salicaria section. The thick rhizome roots of Phragmites australis do not appear to have an effect on the Lythrum salicaria roots, however when the microcosms were being dismantled, where the finer roots of Phragmites australis were present, it was observed that these finer roots were repelling the roots of Lythrum salicaria. This can just be observed within Figure A19.1. However, where this occurred in other microcosms (where it was more apparent), due to a lack of roots in the zones where the Phragmites australis was repelling the Lythrum salicaria, the growing media collapsed prior to it being captured on camera. The increase in nutrients generally increased the spread density of the Lythrum salicaria roots (within the restricted competition microcosms). However, at the highest nutrient loading, Phragmites australis has penetrated the outer layer around the edge of the microcosm and so this effect cannot be observed in Figure A19.13, however the lack of Lythrum salicaria roots where the fine Phragmites australis roots are present is apparent.

The distinct separation of the roots between the full and restricted competition microcosms between the humus and gravel layers, combined with the observation of *Lythrum salicaria* roots not being observed where the finer roots of *Phragmites australis* had penetrated the root dividers, indicates that the fine roots of *Phragmites australis* have a repelling effect on the roots of *Lythrum* - 160 -

salicaria. Additional data to indicate an adverse effect of full competition on *Lythrum salicaria* is suggested by the reduction of below ground biomass and Root : Shoot ratio in the full competition microcosms, The exact reason for this was not studied within this research, however a general cause could be from the roots of *Phragmites australis* having an allelopathic affect upon the roots of *Lythrum salicaria* when they are in close quarters within a gravel substrate. If the biochemical for this allelopathy is identified then this could contribute to reducing the population of *Lythrum salicaria* in parts of the world where this species is considered invasive.

Salinity

The above and below ground biomass values for the different salinity concentrations in the full competition microcosms and the restricted competition microcosms can be found in Table 4.32.

There is no obvious pattern to the weights of above ground biomass as the salinity concentration increases for both the full and restricted competition microcosms, However the Root : Shoot ratios decrease once salinity is increased above the base concentration. When the full and restricted competition microcosms are compared against each other there is a difference between the Root : Shoot ratios. The ratios within the full competition microcosms decreases at a higher rate than the restricted root competition microcosms, with the plants having less below ground biomass to above ground biomass. This also suggests that where the root competition is restricted, as per nutrients, *Lythrum salicaria* invests more energy in the roots than in the microcosms with root competition present.

Competition	Parameter	10 mg/l Nitrogen and <0.05 ‰ Salinity	10 mg/l Nitrogen and 5 ‰ Salinity	10 mg/l Nitrogen and 10 ‰ Salinity	10 mg/l Nitrogen and 15 ‰ Salinity
Full Competition	Above Ground Weight (g)	361.16	225.84	387.83	0.00
	Below Ground Weight (g)	430.14	192.56	314.90	0.00
	Root : Shoot Weight Ratio	1.19	0.85	0.81	0.00
Restricted Competition	Above Ground Weight (g)	329.94	190.08	308.72	0.00
	Below Ground Weight (g)	403.58	201.87	296.34	0.00
	Root : Shoot Weight Ratio	1 22	1.06	0.96	0.00

 Table 4.32: Lythrum salicaria Biomass for Each Salinity Concentrationwith Full Competition (Microcosms 5-8) & Restricted Competition (Microcosms 13-16)

Nutrients and Salinity

The individual scatter points in Figure 4.12 resembling each microcosm for *Lythrum salicaria* do not generally fit along the linear regression line. However, when the microcosms are separated into their respective competition groups and concentration ratings, a pattern emerges. The scatter plot can be summarised by dividing it into three main groups.

The first group, containing Microcosm numbers 1-4 (full competition microcosms, nutrients) are all located well above the linear regression line. These show that Microcosm numbers 1-4 have a lower Root : Shoot ratio producing more above ground biomass than below ground biomass. The second group, contains Microcosm numbers 10-12 which are the restricted competition microcosms with the higher nutrient concentrations. Their position shows that where there is restricted root competition, *Lythrum salicaria* has a higher Root : Shoot ratio and produces more below ground biomass than compared to the full competition microcosms. The final group comprises the salinity microcosms and three of the base nutrient microcosms.

When all of the microcosms are separated into the two competition groups, a straight line can be drawn between the two groups (shown in red on Figure 4.12). The restricted microcosms are generally below the line with the exception of Microcosm 15, which is slightly above the line. All of the full competition microcosms are above the line. This illustrates the Root : Shoot relationships and shows that root competition has an effect by reducing the below ground biomass for this species.

Lythrum salicaria Conclusion.

In summary, *Lythrum salicaria* (with the exclusion of the full competition salinity concentrations) will alter its stem height and width depending upon the nutrient or salinity concentration which it is subject to. As per *Phragmites australis*, this is different to previous research undertaken by Bastelova *et al.* (2004) who found that the biomass of shoot dry weight significantly increased with increasing nutrients, but not the plant height. The results of this study show that there is a *very highly significant* difference in the main stem heights and widths of *Lythrum salicaria* as the nutrient levels increase for both the full and the restricted competition microcosms.

When a comparison between the full competition microcosms and the restricted competition microcosms was made for this species, at each nutrient concentration there was a mixture of *very highly significant* differences and *highly significant* differences for either the stem heights or widths along with *no significant* differences. The restricted competition microcosms had slightly narrower stem widths than their counterparts in the full competition microcosms. The presence of significant differences demonstrates that the provision of root barriers does have a significant effect at certain nutrient concentrations. This shows that when faced with full competition with other vegetation species, *Lythrum salicaria* will increase its stem widths, and when the root competition is restricted, *Lythrum salicaria* will not grow stems as wide.

When the biomass data from the full competition microcosms is compared, the below ground biomass of *Lythrum salicaria* shows a decrease in weight as the nutrient concentration increases. When compared to the restricted competition microcosms the opposite is true, with the below ground biomass increasing at the higher nutrient concentrations, but with no obvious trend as the nutrient concentrations increase. The Root : Shoot ratios also show a similar pattern, decreasing in the full competition microcosms and increasing above the base concentration within the restricted competition microcosms. This indicates that the nutrients do not fully control the Root : Shoot ratios, but that competition with other species also has a significant effect. As discussed above, this could be down to allelopathy from *Phragmites australis*.

The coverage of above ground biomass, at all of the nutrient concentrations and for both competition levels, show that this species maintains a good level of coverage and does not oust the other species. However, due to toxicity, fatalities occurred and this species struggled at the higher two salinity concentrations, and as such it is not recommended that this species be grown in effluent with a salinity above 5 ‰.

Although the root zone of *Lythrum salicaria* was adversely affected by the presence of *Phragmites australis*, with its roots being restricted to the humus layer and extending slightly into the gravel layer, a good amount of above ground biomass was produced. The zonation of the *Lythrum salicaria* roots, with the *Phragmites australis* roots growing in the gravel layer beneath this species, should not affect the root treatment potential of *Phragmites australis*.

Due to the good above ground coverage maintained at all of the nutrient concentrations and the lower salinity concentrations, combined with the roots of *Lythrum salicaria* not adversely affecting the roots of *Phragmites australis*, this species is suitable for use as a biodiversity enhancing species within the conditions studied within this thesis.

4.3.3 Filipendula ulmaria

Filipendula ulmaria survived within all of the nutrient concentrations within the different competition scenarios, but fatalities were observed within the higher salinity concentrations.

Hypothesis 1 & 2

These hypotheses investigated if all four species would survive at the different concentrations or whether a single species would take over and oust the other species.

Nutrients

Within the full competition microcosms, this species survived until the end of the study period (after almost 3.5 years). The area coverage of *Filipendula ulmaria* decreased as the nutrients increased to a final combined area coverage of 41 % (M1), 31 % (M2), 28 % (M3) & 26 % (M4). At the lower nutrient range, this species accounts for a high proportion of the area coverage, however it does not oust the other species with its maximum coverage being less than half of the available growing area.

Filipendula ulmaria, survived until the end of the study period in the restricted competition microcosms. It stayed within the confines of its root segregation areas with only the leaves occupying space outside the allocated growing areas. The final combined area coverage was 33 % (M9), 28 % (M10), 32 % (M11) & 26 % (M12). The final combined area coverage was not significantly different to that in the full competition microcosms, however the area coverage was higher at the base nutrient level in the full competition microcosms, where no root dividers were present. These results show that at the low nutrient levels without the root barriers, *Filipendula ulmaria* can compete against the other species and that the root barriers have an adverse effect restricting its stoloniferous surface spread. When grown at the higher concentrations, the differences in area coverage are minor with the root barriers appearing to have a neutral effect on the area of *Filipendula ulmaria*. It therefore maintained a favourable final area coverage within the restricted competition microcosms and was not ousted by the other species.

Salinity

When the area coverage within the full competition microcosms was investigated, it was apparent that an increase in salinity levels had an adverse effect upon this species with the area coverage decreasing in each of the microcosms. This species preferred no salinity, it tolerated the 5 ‰ salinity concentration and did not survive at the highest two salinity concentrations, with the final combined area coverage of 34 % (M5), 18 % (M6), 0 % fatal (M7) & 0 % fatal (M8).

For the restricted competition microcosms it was clear that an increase in salinity levels above the base concentration proved fatal, giving final combined area coverage of 37 % (M13), 0 %, fatal (M14), 0 %, fatal (M15) & 0 %, fatal (M16). From these results, the root barriers appear to have no positive effect on the area coverage for *Filipendula ulmaria*.

Hypothesis 3 & 4

Hypothesis 3 & 4, investigated if the different concentrations would have an effect on the vegetation heights or stem widths of the surviving plants.

Nutrients

The measurements of the harvested stems identified that when all of the stems were combined to include both full competition and restricted competition microcosms, there was a *highly significant* difference in both the heights (p = 0.003) and widths (p = 0.004) of the stems between the different nutrient concentrations.

When these results were separated into those for the restricted and the full competition microcosms, there was a *highly significant* difference (p = 0.002) and a *very highly significant* difference (p = 0.000) in the heights of the stems between the different nutrient concentrations for both types of competition. However for the stem widths there was only a *highly significant* difference (p = 0.007) in the restricted competition microcosms between the different nutrient concentrations concentrations.

The stem harvest data was further divided to investigate if restricting root competition had an effect on the stem height and width at the different nutrient concentrations. An overview of the statistical analysis for the stem height and width can be found in Table 4.18. Table 4.18 shows that at the base nutrient concentrations, the stem heights is no statistical difference between the full and restricted competition microcosms, whereas the stem widths are statistically different. This reverses at the higher three nutrient concentrations showing that there is a statistical difference for the stem heights between the full and restricted competition microcosms, but the stem widths are not statistically different.

Salinity

The measurements of the harvested stems identified that when all of the stems of the microcosms where plants survived were combined to include both full competition and restricted competition microcosms, there was a *very highly significant* difference (p = 0.000) in both the heights and widths of the stems between the different salinity concentrations.

When these results were divided between the restricted and unrestricted microcosms, there was a *very highly significant* difference (p = 0.000) in the heights and widths of the stems between the

different salinity concentrations for the full competition microcosms with an increase in size with the higher salinity. However, where the salinity was above base value, this species did not survive within any of the restricted competition microcosms. As this species did not survive in the restricted competition microcosms where the salinity was above base value, no statistical comparisons could be undertaken between the full and restricted competition microcosms at each salinity value.

Hypothesis 5 & 6

Hypothesis 5 & 6, investigated if the different concentrations would have an effect on the above and below ground biomass of the surviving plants.

Nutrients

The above and below ground biomass values for the different nutrient concentrations in the full competition microcosms and the restricted competition microcosms can be found in Table 4.33.

For both the full and restricted competition microcosms the above and below ground biomass fluctuates as the nutrient concentration increases. Although biomass parameters fluctuate, they do not do so at the same rate, with the below ground biomass reducing at a greater rate than the above ground biomass, resulting in a lower Root : Shoot ratio as the nutrient levels increase.

When the full and restricted competition microcosms are compared against each other there appears to be no significant difference between the Root : Shoot ratios of *Filipendula ulmaria*, with both competition parameters observed decreasing at a similar rate. The full competition microcosms have a higher total biomass than the restricted competition, however, the data gathered for Hypothesis 5 and 6 is not suitable for statistical analysis to prove if this is statistically significant.

Pauli *et al.*, (2001) studied the effects of nutrient enrichment in calcareous fens, and looked at the impact of increasing nutrients on *Filipendula ulmaria*. After 16 months of growth the plants were measured during August. They found that in unfertilised plots, this species had an approximate Root : Shoot ratio of 3.33 (note that Pauli *et al.*, 2001 use shoot:root, whereas this study presents the results as Root : Shoot; when converted the shoot:root ratio of 0.3 would be approximately a Root : Shoot Ratio of 3.33). The plots which were only subject to additional Nitrogen were not affected. The sites which were fertilised with a mixed NPK fertiliser had increased leaf lengths of 56% and increased above ground biomass by 78%. The below ground biomass did not alter and as such, the shoot:root ratio increased. Although Pauli *et al.*, (2001) had a slightly higher Root : Shoot

ratio, this is similar to the findings of this research, where an increase in nutrients resulted in a decrease of Root : Shoot ratio.

Competition	Parameter	10 mg/l Nitrogen and <0.05 ‰ Salinity	50 mg/l Nitrogen and <0.05 ‰ Salinity	100 mg/l Nitrogen and <0.05 ‰ Salinity	150 mg/l Nitrogen and <0.05 ‰ Salinity
E.J.	Above Ground Weight (g)	63.45	136.49	78.77	95.97
Full	Below Ground Weight (g)	186.54	360.45	199.47	221.71
Competition	Root : Shoot Weight Ratio	2.94	2.64	2.53	2.31
	Above Ground Weight (g)	9.25	39.82	51.47	29.95
Restricted	Below Ground Weight (g)	27.09	105.17	128.86	71.77
Competition					
	Root : Shoot Weight Ratio	2.93	2.64	2.50	2.40

 Table 4.33: Filipendula ulmaria Biomass for Each Nutrient Concentration with Full

 Competition (Microcosms 1-4) & Restricted Competition (Microcosms 9-12)

The root spread of *Filipendula ulmaria* did not spread far from the perennating bud staying predominantly within the humus layer and only just penetrated the gravel layer within the restricted competition microcosms. This species had spread vegetatively during the study via the use of above ground stolons.

Salinity

The above and below ground biomass values for the different salinity concentrations in the full competition microcosms and the restricted competition microcosms can be found in Table 4.34. However, above the base salinity *Filipendula ulmaria* only survived within one of the full competition microcosms,.

Within the microcosms, as the salinity increases, the Root : Shoot ratio does not alter but stays the same as the base concentration. This Root : Shoot ratio is the same as the base nutrient concentrations assessed in Table 4.33 which indicates that salinity does not have an effect on this parameter (other than the fatal effects), but the nutrients do.

Competition	Parameter	10 mg/l Nitrogen and <0.05 ‰ Salinity	10 mg/l Nitrogen and 5 ‰ Salinity	10 mg/l Nitrogen and 10 ‰ Salinity	10 mg/l Nitrogen and 15 ‰ Salinity
	Above Ground Weight (g)	58.78	13.66	0.00	0.00
Full	Below Ground Weight (g)	176.02	39.90	0.00	0.00
Competition	Root : Shoot Weight Ratio	2.99	2.92	0.00	0.00
	Above Ground Weight (g)	29.21	0.00	0.00	0.00
Restricted Competition	Below Ground Weight (g)	86.66	0.00	0.00	0.00
	Root : Shoot Weight Ratio	2.97	0.00	0.00	0.00

 Table 4.34: Filipendula ulmaria Biomass for Each Salinity Concentration with Full

 Competition (Microcosms 5-8) & Restricted Competition (Microcosms 13-16)

As with the nutrients, where this species survived in the single microcosm above the control concentration, the root spread of *Filipendula ulmaria* did not spread far from the perennating bud staying predominantly within the humus layer.

Nutrients and Salinity

When the above and below ground biomass of *Filipendula ulmaria* is plotted on a graph (Figure 4.12), the individual scatter points resembling each microcosm are placed in close proximity to the linear line. The linear line goes through the origin showing that the scatter points for the above ground weights and the below ground weights are almost directly proportional. It can be seen from the graph that the higher nutrient microcosms with full competition are at the higher end of the linear line and those with restricted competition, base nutrients, or the salinity concentrations, are at the lower end.

Filipendula ulmaria Conclusion.

In summary, *Filipendula ulmaria* will generally alter its stem height and width depending upon the nutrient or salinity concentration which it is subject to. When the heights are separated into the full competition and restricted competition microcosms, there are significant differences at the higher nutrient concentrations, which indicates that competition plays a role in the height differences.

The coverage of above ground biomass at all of the nutrient concentrations and for both competition levels show that this species maintains a good level of coverage and does not oust the other species. However due to toxicity, fatalities occurred and this species struggled at the higher three salinity concentrations, and as such it is not recommended to grow this species in a saline effluent.

When the biomass data for *Filipendula ulmaria* is compared for the various nutrient concentrations, no specific trend is observed. However when the Root : Shoot ratios are compared, the increase in nutrients result in a decrease in the Root : Shoot Ratio.

However, when the full and restricted competition microcosms are compared against each other, there is no significant difference between the Root : Shoot ratios. This would suggest that it is the nutrient levels which control the Root : Shoot ratios and not the competition with other individuals.

The root spread of *Filipendula ulmaria* did not extend far from the perennating bud staying predominantly within the humus layer, and only just penetrated the gravel layer within the restricted competition microcosms. This species had spread vegetatively during the study via the use of above ground stolons. The final combined area coverage within the restricted competition microcosms was not significantly different to the full competition microcosms, however the area coverage was higher at the base nutrient level in the full competition microcosms where no root dividers were present to restrict the spread of this species. As such, within the low nutrient concentrations the presence of root dividers (which protruded above the humus layer) had an adverse effect on the spread of this species by preventing it colonising new ground. Taking these results into account, to prevent this species from being constrained, it is not recommended that root barriers are utilised, unless the barriers are not as closely spaced as they were within this study.

The zonation of the *Filipendula ulmaria* roots, with the *Phragmites australis* roots growing in the gravel layer beneath this species, should not affect the root treatment potential of *Phragmites australis* when grown alongside the biodiversity enhancing species tested within this study and within similar pollutant concentrations.

Due to the good above ground coverage maintained for all of the nutrient concentrations and the lower salinity concentrations, combined with the roots of *Filipendula ulmaria* not adversely affecting the roots of *Phragmites australis*, this species is suitable for use as a biodiversity enhancing species for the conditions studied within this research.

4.3.4 Mentha aquatica

Mentha aquatica survived within all of the nutrient concentrations within the different competition scenarios, but fatalities were observed for the higher salinity concentrations.

Hypothesis 1 & 2

These hypotheses investigated if all four species would survive at the different concentrations or whether a single species would take over and oust the other species.

Nutrients

Within the full competition microcosms, *Mentha aquatica* survived until the end of the study period (after almost 3.5 years). It decreased slightly in area coverage at the higher nutrient concentrations with final combined area coverage of 17 % (M1), 18 % (M2), 15 % (M3) & 11 % (M4). At the lower nutrient range, this species accounts for a good proportion of the area coverage being just under 20 % of the coverage. This is slightly lower than the 25 % which could be expected if all species had the same competitive ability (i.e. it is 1 of 4 species present), however it is not ousted by the other species and remains as a viable species, even at the higher nutrient concentrations.

This species also survived until the end of the study period in the restricted competition microcosms. The final combined area coverage of *Mentha aquatica* was 23 % (M9), 22 % (M10), 14 % (M11) & 13 % (M12). The final combined area coverage within the restricted competition microcosms was slightly higher than in the full competition microcosms, however the area coverage still decreased at the higher nutrient loadings. From these results, at the low nutrient levels in the restricted root microcosms, the root barriers appear to have a beneficial effect on the area of *Mentha aquatica*, as the area coverage is marginally greater. However, at the higher nutrient levels the difference between the full and restricted microcosms is minimal.

The study by Suter *et al.*, (2010), already referred to in the discussions of *Phragmites australis* and *Lythrum salicaria*, found that when *Mentha aquatica* was planted in fen communities containing different species mixtures, it declined. As with *Lythrum salicaria*, at the end of the study the final proportion was less than 0.1 within all species mixtures, including the mixture where this species was planted as the dominant species. The growing habitat studied in Suter *et al.*, 2010 (a field being restored to a semi-natural wet grassland), differed from the constructed treatment wetland habitat with a gravel bed simulated in this research, which could contribute to the differences identified. In addition, the different species utilised by Suter *et al.*, 2010 could be better at outcompeting *Mentha aquatica*, than the species utilised within this study.

Salinity

When the area coverage within the full competition microcosms was investigated, it was apparent that an increase in salinity levels had an adverse effect upon *Mentha aquatica*. It did not survive in

the highest three salinity concentrations, with the final combined area coverage of 20 % (M5), 0 %, fatal (M6), 0 %, fatal (M7) & 0 %, fatal (M8).

From the investigation, it was apparent that an increase in salinity levels also had an adverse effect upon this species in the restricted competition microcosms. *Mentha aquatica* preferred no salinity, it just survived in the 5 ‰ salinity concentration and did not survive at the highest two salinity concentrations, with the final combined area coverage of 24 % (M13), 4 % (M14), 0 %, fatal (M15) & 0 %, fatal (M16). As per the nutrients, from these results it is seen that the root barriers appear to have a slight beneficial effect on the area coverage of *Mentha aquatic,* with the area coverage being slightly higher in the restricted competition microcosms. However, the highest two salinities still had fatal affects upon this species.

Hypothesis 3 & 4

Hypothesis 3 & 4, investigated if the different concentrations would have an effect on the vegetation stem heights or widths of the surviving plants.

Nutrients

The measurements of the harvested *Mentha aquatica* stems identified that when all of the stems were combined to include both full competition and restricted competition microcosms, there was a *very highly significant* difference (p = 0.000) in both the heights and widths of the stems between the different nutrient concentrations.

When investigated further, there was a *very highly significant* difference (p = 0.000) in the stem heights for restricted competition microcosms between the different nutrient concentrations, but not for the full competition microcosms. However, there was a *very highly significant* difference (p = 0.000, restricted competition microcosms) and a *significant* difference (p = 0.023, full competition microcosms) in the widths of the stems between the different nutrient concentrations for both types of competition.

The stem harvest data was further divided to investigate if restricting root competition had an effect on the stem height and width at the different nutrient concentrations, and an overview of the statistical analysis can be found in Table 4.18. Table 4.18 shows that between the full and restricted competition microcosms, the stem heights are not statistically different at the 10 mg/l and 100 mg/l concentrations, but they are for the 50 mg/l and 150 mg/l concentrations. However the stems widths are statistically different between the full and restricted competition microcosms at the lower two concentrations, but are not at the highest two nutrient concentrations. This shows that restricting the root competition had an effect upon the stem measurements.

Salinity

When all of the stem data were combined to include both full competition and restricted competition microcosms, there was a *very highly significant* difference (p = 0.000) in the *Mentha aquatica* stem heights, but no statistical difference between the widths of the stems between the different salinity concentrations.

Where the salinity was above base value, *Mentha aquatica* did not survive in any of the full competition microcosms. There was a *very highly significant* difference (p = 0.000) in the heights of the stems between the different salinity concentrations for the restricted competition microcosms, but not for the widths.

No statistical comparisons could be made between the full and restricted competition microcosms as *Mentha aquatica* did not survive in the full competition microcosms when the salinity was above the base value.

Hypothesis 5 & 6

Hypothesis 5 & 6, investigated if the different concentrations would have an effect on the above and below ground biomass of the surviving plants.

Nutrients

The above and below ground biomass values for *Mentha aquatica* at the different nutrient concentrations in the full competition microcosms and the restricted competition microcosms can be found in Table 4.35.

Fluctuations in *Mentha aquatica* above and below ground biomass occurred as the nutrient concentration increases for the full competition microcosms, where as in the restricted competition microcosms it decreases. Although biomass parameters fluctuate, they do not fluctuate at the same rate, with the below ground biomass decreasing at a greater rate than the above ground biomass. With the exception of a small spike in the restricted competition microcosms results at the 50 mg/l nutrient level, as the nutrients increase, the Root : Shoot ratio slowly decreases.

When the full and restricted competition microcosms are compared against each other the Root : Shoot ratios are almost identical with the restricted competition microcosms being ever so slightly higher for all but the greatest nutrient concentration. However, the *Mentha aquatica* data gathered for Hypothesis 5 and 6 is not suitable for statistical analysis to show whether this is statistically significant or not.

Competition	Parameter	10 mg/l Nitrogen and <0.05 ‰ Salinity	50 mg/l Nitrogen and <0.05 ‰ Salinity	100 mg/l Nitrogen and <0.05 ‰ Salinity	150 mg/l Nitrogen and <0.05 ‰ Salinity
Full Competition	Above Ground Weight (g)	82.91	3.72	4.87	13.58
	Below Ground Weight (g)	16.88	0.70	0.85	2.12
	Root : Shoot Weight Ratio	0.20	0.19	0.17	0.16
Restricted Competition	Above Ground Weight (g)	63.47	56.09	11.12	6.28
	Below Ground Weight (g)	14.22	13.45	2.07	1.01
	Root : Shoot Weight Ratio	0.22	0.24	0.19	0.16

 Table 4.35:Mentha aquatica Biomass for Each Nutrient Concentration with Full Competition (Microcosms 1-4) & Restricted Competition (Microcosms 9-12)

The stolons and rhizomes of *Mentha aquatica* stayed predominantly within the humus layer and only just penetrated the gravel layer where the edges of the container or root barriers provided a small gap for access. This species had spread vegetatively during the study via the use of its stolons and rhizomes.

Salinity

The above and below ground biomass values for the different salinity concentrations in the full competition microcosms and the restricted competition microcosms can be found in Table 4.36. However, *Mentha aquatica* only survived within one of the restricted competition microcosms, above the base salinity.

Within the microcosms, as the salinity increases in the restricted competition microcosms, the Root : Shoot ratio does not alter but stays almost the same as the base concentration. This Root : Shoot ratio is almost the same as the base nutrient concentrations assessed in Table 4.35 with a slight increase in the 5 ‰ salinity concentration. This would indicate that salinity does not have an effect on this parameter other than the fatal affects which occurred.

Competition	Parameter	10 mg/l Nitrogen and <0.05 ‰ Salinity	10 mg/l Nitrogen and 5 ‰ Salinity	10 mg/l Nitrogen and 10 ‰ Salinity	10 mg/l Nitrogen and 15 ‰ Salinity
E.J.	Above Ground Weight (g)	10.22	0.00	0.00	0.00
Full Composition	Below Ground Weight (g)	2.09	0.00	0.00	0.00
Competition	Root : Shoot Weight Ratio	0.20	0.00	0.00	0.00
	Above Ground Weight (g)	26.98	6.31	0.00	0.00
Restricted Competition	Below Ground Weight (g)	6.23	1.49	0.00	0.00
	Root : Shoot Weight Ratio	0.23	0.24	0.00	0.00

 Table 4.36: Mentha aquatica Biomass for Each Salinity Concentration with Full Competition (Microcosms 5-8) & Restricted Competition (Microcosms 13-16)

Nutrients and Salinity

The individual scatter points representing each microcosm for *Mentha aquatica* are placed in close proximity to the linear line (Figure 4.12). The linear line goes through the origin showing that the scatter points for the above ground weights and the below ground weights are almost directly proportional. The graph shows that there is a slight additional pattern in that the base nutrient and salinity microcosms (Microcosm numbers 1, 5, 9 and 13) are generally higher up the linear line, with the exception of Microcosm 10 (50 mg/l nutrients with restricted root competition), which is also high up the linear line.

Mentha aquatica Conclusion.

In summary, *Mentha aquatica* will generally alter its stem height and width depending upon the nutrient or salinity concentration which it is subject to. When the heights are separated for the full competition and restricted competition microcosms, as the nutrient levels increase there are significant differences within some of the nutrient concentrations with a slight increase in heights for the full competition microcosms, and a slight increase then decrease in heights for the restricted competition microcosms. This indicates that competition plays a partial role in the height differences.

The coverage of above ground biomass at all nutrient concentrations and for both competition situations, show that *Mentha aquatica* maintains a good level of coverage, but this declines at the higher nutrient concentrations. It does not oust the other species, nor is it ousted by them. However, due to toxicity, fatalities occurred and this species struggled at the higher three salinity concentrations, and therefore growing this species in a saline effluent is not recommended.

When the biomass data is compared for the various nutrient concentrations, the biomass weights show no specific trend for the full competition microcosms, but a declining trend was observed for the restricted competition microcosms. A comparison of the Root : Shoot ratios found that, an increase in nutrients results in a decrease in the Root : Shot ratio. When the full and restricted competition microcosms are compared against each other, there is no significant difference between the Root : Shoot ratios, however the restricted competition ratios are slightly higher for all but the highest nutrient concentration.

Since the *Mentha aquatica* roots were found predominantly in the humus layer, with the *Phragmites australis* roots growing in the gravel layer beneath, there should be no affect on the root treatment potential of *Phragmites australis* when grown alongside this species for the similar pollutant concentrations employed in this study. This is in concurrence with the findings of Frazer-Williams (2007), who investigated the treatment of grey water from student accommodation. *Mentha aquatica* was planted within its own section at the end of a trough treatment system. This species was chosen for its aesthetic value and was not in competition with any other species. At the end of the study (2.5 years) he concluded that with regards to *Mentha aquatica*, there was no evidence that its small roots would have an adverse effect on the hydraulic flow of a trough treatment system and as such it could be a suitable species to use for its aesthetic value.

Kadewa (2010) undertook a 16 month study looking at the treatment of grey water in small scale constructed wetlands. He tested the treatment potential of a mixture of aquatic macrophytes against unplanted cells. The species he used for the planted cells and the rational for their choice was: *Iris pseudacorus* and *Iris chrysographes* for their beauty, *Mentha aquatica* for its scent, and *Carex elata aurea* for its structure. As with the Frazer-Williams (2007) study, the effluent source was grey water from student accommodation and had a BOD ranging from 28 to 185 mg/l and COD ranging from 74 to 279 mg/l. He found that there was no significant difference in treatment between the planted and unplanted systems. There was a small difference in the BOD removal, but this was put down to microbial activity on the roots and not the plants themselves. The study did not report any findings on the coverage of the various vegetation species or interactions in cover between them (which his study was not designed to do). However, it is unlikely that any significant results in population dynamics would be seen, due to the low number of reproductive seasons during the study, hence the species involved would not have had time to spread either by setting seed or by spreading vegetatively.

Due to the good above ground coverage maintained at all nutrient concentrations, combined with the roots of *Mentha aquatica* not adversely affecting the roots of *Phragmites australis*, this species is suitable for use as a biodiversity enhancing species for the conditions studied during this

research. Due to the fatalities occurring at salinity concentrations above base level, this species should not be used for saline effluent.

4.3.5 Hypothesis 7 & 8

These hypotheses were designed to investigate if there was a significant difference in water usage as the pollutant concentrations increased, and whether restricting root competition had an effect upon the water usage. This information would be required to inform water budget design calculations when using the study species within a constructed wetland,

During the treatment period, for both the full and restricted competition microcosms, a trend appeared which shows that the water usage increases as the nutrient levels increase. When the water usage levels of the full competition microcosms are compared to the restricted competition microcosms, the full competition microcosms use more water than the restricted competition microcosms.

The differences in water usage between nutrient levels within both competition scenarios are generally low being less than 20 % of the monthly totals. The data presented within this thesis and the findings of Fermor *et al.*, (2001) show that the evapotranspiration rate of reedbeds varies through the year and from reedbed to reedbed depending upon its geographic location. As such the greatest water usage rates should be employed when designing constructed wetland treatment systems, and water budgets should be calculated to ensure system sustainability.

With regards to salinity, the opposite is true for water usage. As the salinity concentration increases, the water usage decreases. Again the full competition microcosms utilise more water than the restricted competition microcosms. The differences in water usage between salinity levels within both competition scenarios are high, being nearly 50 % lower for the highest salinity concentrations within the monthly totals. As such the lower water usage with higher salinity levels are to be encountered the lower water usage rate under these circumstances should be taken into account when designing constructed wetland treatment systems.

4.4 Overview of Hypotheses

Table 4.37 provides a summary of the overall findings for each of the hypotheses. Together the analysis shows that providing toxic concentration levels are not encountered, the study species can exist successfully together, and no one species outcompetes any other.

The hypotheses presented in Section 1 were formulated to determine the viability of using each species for enhancing biodiversity within a constructed wetland treatment system. By proving the hypothesis, or in the case of Hypothesis 1 and 2 showing that no species took over and ousted the other species (though all species did not survive within the higher salinity levels due to the saline conditions and not plant competition), this shows that it is viable for biodiversity enhancing species to survive within small scale constructed wetland treatment systems. Sections 4.3 and 7 proposes guidance on the design methodologies and management options resulting from this study.

	Hypothesis	Factor	Summary	Conclusion	Hypothesis Proved?
	<i>"Where all four chosen floral species</i>	Nutrients	The area coverage fluctuated over the study period, however the combined area coverage for any species of vegetation did not exceed 50 % and as such no single species took over and ousted the other species.	As no species took over and ousted the other species, the null hypotheses was disproved and with regards to nutrients Hypothesis 1 is proved.	As no species took over and
Hypothesis 1	survive in the chemical concentrations studied, no single floral species will take over and oust other floral species."	Salinity	The higher salinity levels caused fatalities to occur for some of the vegetation. Although fatalities occurred, this was not due to competition but due to the tolerance levels of the plants being unable to survive within the higher salinity concentrations. Although only one species (<i>Phragmites australis</i>) survived within the highest salinity concentration, it did not take over and oust the other species through direct competition.	When the hypothesis is looked at from a plant competition view, the null hypothesis is disproved as it was not down to one species taking over and ousting the other species but due to the fatal affects of the salinity concentration tested.	ousted the other species, the null hypotheses was disproved Hypothesis 1 is proved.
<i>"Where all four chosen floral species survive in the chemical concentrations studied, no single</i>		Nutrients	Within the different nutrient concentrations tested under Hypothesis 2, all species survived at reasonable area coverage and one species did not fully take over and oust the other species. The results and observations of growth patterns also showed that the root barriers had an effect between the different species, which varied depending upon the nutrient concentrations by reducing competition from adjacent species. This effect came from restricting the plants spread, such as occurred with <i>Phragmites australis</i> under full competition when it intermingled across the microcosm.	As no species took over and ousted the other species, the null hypotheses was disproved and with regards to nutrients Hypothesis 2 is proved.	As no species took over and ousted the other species, the null
Hypothesis 2 <i>f</i>	floral species will take over and oust other floral species, and restricting root competition between the different floral species will have an effect."	Salinity	Within the different salinity concentrations tested under Hypothesis 2, fatalities occurred. Although there were fatalities, this was not due to competition (as root barriers were present with bare ground available for species to colonise), but due to the toxicity at higher salinity concentrations. This backs up the findings in Hypothesis 1. Although only one species (<i>Phragmites australis</i>) survived at the highest salinity concentration, it did not take over and oust the other species through direct competition. The results also showed that the root barriers had a slight effect between the different species at the low salinity concentrations.	When the hypothesis is looked at from a plant competition perspective, the null hypothesis is disproved as it was not down to one species taking over and ousting the other species but due to the fatal affects of the salinity concentration tested.	hypotheses was disproved Hypothesis 2 is proved.
Hypothesis 3	"The higher concentrations of the chosen chemical ranges will have an effect on the stem heights or stem widths of the surviving plants."	Nutrients	Within the different nutrient concentrations tested under Hypothesis 3, the statistics showed that the species exhibited a significant difference in either the stem height or their widths. This was for both the full and restricted competition microcosms combined, and also for the data which was separated to show the full competition microcosms only.	The higher nutrient concentrations had an effect on the vegetation height or widths and as such, for the nutrients, the null hypothesis is disproved, therefore Hypothesis 3 is proved.	
		Salinity	Within the different salinity concentrations tested under Hypothesis 3, the statistics showed that there was a significant difference in either the stem height or stem widths for most species. <i>Lythrum salicaria</i> showed significant differences for the full and restricted microcosms combined, but no significant differences for the surviving plants within the full competition microcosms. <i>Mentha aquatica</i> showed no significant differences for the surviving plants for the full and restricted competition microcosms, but, due to fatalities occurring, the data could not be split to extract the information full competition microcosms alone. Although <i>Lythrum salicaria</i> and <i>Mentha aquatica</i> showed no significant difference for some of their statistics, the increase in salinity had an adverse effect on stem height and stem width due to fatalities occurring.	The higher salinity concentrations had an effect on the stem height or stem widths (including survival rates) and as such, for the salinity, the null hypothesis is disproved, therefore Hypothesis 3 is proved.	As the higher concentrations had an effect on the vegetation height or widths, the null hypothesis is disproved, therefore Hypothesis 3 is proved.
Hypothesis 4	"The higher concentrations of the	Nutrients	Within the different nutrient concentrations tested under Hypothesis 4, the statistics showed that there was a significant difference in either the stem height or stem widths of the species within the restricted nutrient microcosms. When a comparison was undertaken between the full competition microcosms and the restricted competition microcosms at each nutrient concentration, each species had a level of significant difference for either the stem heights or stem widths. The presence of significant differences shows that the provision of root barriers does have a significant effect at certain nutrient concentrations.	The statistics showed that each species had a significant difference between the full and restricted competition microcosms at certain nutrient concentrations, therefore the provision of root barriers does result in a significant difference within certain nutrient concentrations for each species. As such, for the nutrients, the null hypothesis is disproved and therefore Hypothesis 4 is proved.	As the higher concentrations had an effect on either the vegetation stem height or widths, and where species survived within both the full out rootrigted competition
	Hypothesis 4	effect on the stem heights or stem widths of the surviving plants, and restricting root competition between the different floral species will have an effect."	Salinity	As with Hypothesis 3, fatalities occurred which showed that the higher salinity concentrations had an adverse effect on stem height and stem width due to these fatalities in the restricted microcosms. Within the different salinity concentrations tested under Hypothesis 4, the statistics showed that there was a significant difference in either the stem height or stem widths of the species. When each species was compared with the full competition microcosms at each salinity concentration, each surviving species had a level of significant differences for either the stem heights or widths (due to fatalities, <i>Filipendula ulmaria</i> and <i>Mentha aquatica</i> could not be compared). The presence of significant differences shows that the provision of root barriers does have a significant effect at certain salinity concentrations.	The statistics showed that each surviving species exhibited a significant difference between the full and restricted competition microcosms within certain nutrient concentrations, therefore the provision of root barriers does have a significant difference under these circumstances. As such, for salinity, the null hypothesis is disproved, therefore Hypothesis 4 is proved.

Table 4.37: Summary of Hypothesis Findings (Continues)

	Hypothesis	Factor	Summary	Conclusion	Hypothesis Proved?
Hypothesis 5	"The higher concentrations of the chosen chemical ranges will have an effect on the above and below ground total biomass of the plants."	Nutrients	Within the different nutrient concentrations tested under Hypothesis 5, the results showed that the above and below ground biomass was affected by the different nutrient concentrations, with the Root : Shoot ratio either increasing or decreasing as the nutrient concentrations increase.	As biomass was affected by the increase in nutrient concentrations, the null hypothesis is disproved, therefore Hypothesis 5 is proved.	As biomass was affected by the increase in concentrations, the
		Salinity	As with the different Nutrient concentrations, the results for the different salinity concentrations tested under Hypothesis 5, showed that the Root : Shoot ratios either decreased or caused fatalities as the salinity concentrations increased.	As biomass was affected by the increase in salinity concentrations, the null hypothesis is disproved, therefore Hypothesis 5 is proved.	null hypothesis is disproved, therefore Hypothesis 5 is proved.
	<i>"The higher concentrations of the chosen chemical ranges will have an effect on the above and below ground</i>	Nutrients	The results for the different nutrient concentrations tested under Hypothesis 6, showed that within the restricted competition microcosms the above and below ground biomass was affected by the different nutrient concentrations, with the Root : Shoot ratio either increasing or decreasing as the nutrient concentrations increase. When the full and restricted competition microcosms were compared against each other, the Root : Shoot ratio for <i>Lythrum salicaria</i> were significantly different, so was the total biomass for <i>Filipendula ulmaria</i> , showing that restricting root competition for these species has a significant affect. <i>Phragmites australis</i> and <i>Mentha aquatica</i> have little discernible difference between the full and restricted competition microcosms.	As the increase in nutrients clearly has an effect on the different species and the vegetation within the plant community reacting differently to the restriction of root competition, the null hypothesis is disproved and Hypothesis 6 is proved with respect to nutrients.	As the increase in concentrations clearly has an effect on the different species and the
Hypothesis 6	total biomass of the plants, and restricting root competition between the different floral species will have an effect."	Salinity	Within the different salinity concentrations tested under Hypothesis 6, the results showed that the plant biomass was affected by the different salinity concentrations, with the Root : Shoot ratios either decreasing or causing fatalities as the salinity concentrations increase. When the full and restricted competition microcosms were compared against each other, the Root : Shoot ratio for <i>Lythrum salicaria</i> were different showing that restricting root competition for this species has a significant affect. <i>Filipendula ulmaria</i> and <i>Mentha aquatica</i> both suffered fatalities at the higher salinity concentrations so no definitive affect of restricting root competition could be determined. Phragmites australis had little discernible difference between the full and restricted competition microcosms.	As the increase in salinity clearly has an effect on the different species and the vegetation within the plant community (<i>Lythrum salicaria</i>) reacts differently to the restriction of root competition, therefore for salinity, the null hypothesis is disproved and Hypothesis 6 is proved.	community reacting differently to the restriction of root competition, the null hypothesis is disproved and Hypothesis 6 is proved.
	"The higher concentrations of the	Nutrients	For Hypothesis 7, the results showed that the water usage was affected by the different nutrient concentrations, with the water usage during the peak growing season increasing as the nutrient concentrations increased.	As the water usage was affected by the different nutrient concentrations, the null hypothesis is disproved, therefore Hypothesis 7 is proved.	As the water usage was affected
Hypothesis 7	chosen chemical ranges will have an effect on the water consumption."	Salinity	As with the differing nutrient levels, the results showed that the water usage was affected by the different salinity concentrations, and during the growing season it decreased as the salinity concentrations increased.	As the water usage was affected by the different salinity concentrations, the null hypothesis is disproved, therefore Hypothesis 7 is proved.	the null hypothesis is disproved and Hypothesis 7 is proved.
Hypothesis 8	"The higher concentrations of the chosen chemical ranges will have an effect on the water consumption, and restricting root competition between the different floral species will also have an effect."	Nutrients	Within the different nutrient concentrations tested under Hypothesis 8, the results showed that for the restricted competition microcosms, the water usage was affected by the different concentrations, with the water usage during the peak growing season increasing as the nutrient concentrations increased. The results also showed that the full competition microcosms used more than their counterparts in the restricted competition microcosms.	As the water usage was affected by the different nutrient concentrations, and the water usage varied between the restricted and full competition microcosms, proving that the root barriers have an effect on water consumption, the null hypothesis is disproved, therefore Hypothesis 8 is proved.	The water usage was affected by the different concentrations and the presence of root barriers had an effect on the water usage.
		Salinity	The analysis showed that for the restricted competition microcosms, the water usage was affected by the different salinity concentrations, decreasing during the growing season as the salinity concentrations increased. The results also showed that the full competition microcosms used more than their counterparts in the restricted competition microcosms	As the water usage was affected by the different salinity concentrations, and the water usage varied between the restricted and full competition microcosms, proving that the root barriers have an effect on water consumption, the null hypothesis is disproved, therefore Hypothesis 8 is proved.	Therefore the null hypothesis is disproved and Hypothesis 8 is proved.

Table 4.37(Continued): Summary of Hypothesis Findings
4.5 Design Principles and Management Recommendations Identified During The Microcosm Study

Based upon the observations made and results obtained from the microcosm studies, this section provides guidance on the requirements for biodiversity enhancing species when incorporated into small scale constructed wetlands within the U.K.

4.5.1 Species Selection and Pollutant Concentrations <u>Nutrients</u>

The results for the full competition microcosms showed that the roots of all three of the biodiversity enhancing species did not penetrate deep into the gravel layer where *Phragmites australis* was growing and that the roots of *Phragmites australis* were successfully growing under those of the biodiversity enhancing species. Although *Lythrum salicaria* roots did penetrate into the gravel where the root dividers were present, once *Phragmites australis* was actively growing in the area the roots of *Lythrum salicaria* retreated to the humus layer and were only present just penetrating the gravel layer potentially due to allelopathy. This should therefore not affect the hydraulics or root treatment efficiency of sub-surface flow constructed wetlands which utilise *Phragmites australis* as their key treatment species.

None of the biodiversity enhancing species became dominant and out competed other species during the study. As all species survived at reasonable levels and did not prevent the roots of *Phragmites australis* from growing within the gravel layer, all three of the species studied are suitable for use for biodiversity enhancement.

All three of the biodiversity enhancing species survived in the entire range of nutrient concentrations tested. Consequently, where nutrient dosing is intermittent (such as a system treating urban run-off) and not above the levels tested, then all three of the species can be utilised. It is not recommended that these species are planted where nutrient levels which exceed 150 mg/l nitrogen, until further research has been undertaken on the species dynamics and treatment potential at these higher concentrations.

<u>Salinity</u>

The salinity levels employed in the study, had fatal consequences for all three of the biodiversity enhancing species.

The highest salinity loading of 15 ‰ was fatal to *Lythrum salicaria*, which also struggled to survive at 10 ‰ salinity. At 5 ‰ salinity the area coverage was 16 %, which is reasonable for providing biodiversity enhancing effects.

Both *Filipendula ulmaria* and *Mentha aquatica* suffered fatal effects at salinity loadings of 15 ‰ and 10 ‰. They also struggled to survive within the 5 ‰ salinity loading and some fatal effects occurred, which indicates that the 5 ‰ salinity concentration is at the upper end of their survivability limits.

Where the species survived, none of the biodiversity enhancing species became dominant and out competed the other species during the study. None of the biodiversity enhancing species prevented the roots of *Phragmites australis* from growing within the gravel layer under these conditions, and thus all three of the species studied are suitable for use for biodiversity enhancement providing salinity concentrations are below toxic levels.

Summary

From the pollutant concentration studies, the following recommendations are made.

- *Phragmites australis* will survive at all of the nutrient and salinity levels studied and can be planted in all of the concentrations tested.
- where the salinity levels are over 5 ‰, none of the biodiversity enhancing species studied should be planted.
- where nutrient (nitrogen) concentrations are 150 mg/l or less and salinity levels do not exceed 5 ‰, *Lythrum salicaria* can be planted as a biodiversity enhancing species.
- where nutrient concentrations are 150 mg/l or less and salinity levels do not exceed 0.05 ‰, *Lythrum salicaria, Filipendula ulmaria and Mentha aquatica* can be planted as biodiversity enhancing species.
- where nutrient concentrations are 150 mg/l or less and the salinity levels do not exceed intermittent doses of a couple of ‰ (such as infrequent urban run-off from roads following de-icing) all three of the biodiversity enhancing species can be planted as they all survived 5 ‰ salinity for a short period of time.

4.5.2 Constructed Wetland and Media Selection

The design methodology for the study was based upon a subsurface flow constructed wetland with gravel media. As all floral species survived successfully at all nutrient concentrations up to 150 mg/l, the initial recommendation would be that biodiversity enhancing species can successfully be incorporated within subsurface flow constructed wetlands. The effect of the different stem physiology and densities upon the filtration of effluents in surface flow wetlands was not explored and thus, no guidance on the use of the biodiversity enhancement as an aid to treatment can be provided for these treatment wetlands.

The 10 mm pea gravel used in the beds of constructed wetlands is an appropriate rooting medium for the biodiversity enhancing species studied. The majority of these species roots were present within the upper layers of the growing media, and thus the slightly greater bed depth of standard subsurface flow designs would not have any adverse affect on the species diversity. Consequently, the recommended designs for the depths of subsurface flow wetlands found within the standard design manuals of Cooper *et al.*, (1996) and Kadlec & Wallace (2009) should continue to be followed if biodiversity enhancing species are incorporated.

This research identified that the roots of biodiversity enhancing species were found predominantly within the upper humus layer and only just penetrated into the gravel layer. When the roots of *Phragmites australis* were present the roots of *Lythrum salicaria* were predominantly found within the humus layer, however, in the absence of *Phragmites australis* roots, the roots of *Lythrum salicaria* penetrated further into the gravel layer. Due to the reliance on the humus layer by the biodiversity enhancing species, where they are employed in treatment beds, it is recommended that the 30 mm artificial litter/humus layer is installed to aid establishment when the constructed wetlands are built. Subsequently, the accumulation of leaf litter would self sustain this layer. This will also have an additional beneficial effect, due to the insulating effect this layer can provide during cold spells.

The root dividers provided some beneficial effects for the biodiversity enhancing species as discussed earlier. However, due to the fact that *Phragmites australis* eventually penetrated under the root barriers, were such barriers installed on a full scale bed, it is likely that the beneficial effect would only be a short-term one. Within the full competition microcosms, all of the species survived at sufficient levels to contribute to biodiversity enhancement, and so, the installation of root dividers is not recommended and species should be mixed together and allowed to compete with each other. However, to allow the different species to become established before full competition takes effect, they should be planted in plots each containing several individuals, rather than fully mixed.

The size of the constructed wetland varies dependent parameters employed in the design (Cooper et al., 1996; and Kadlec & Wallace 2009). These design parameters can range from the average daily flow and BOD values required under the Kickuth calculation, to the area based upon a population equivalent which the constructed wetland is required to cater for. The large amount of data now gathered from monitoring systems designed using the older methods outlined above, have resulted in more sophisticated design methodologies are being utilised. These take account of the inlet concentrations and the required effluent concentrations, and the hydraulic retention times. These latter are calculated using potential evapotranspiration (ET), natural precipitation input, temperature, the hydraulic efficiency of bed media, the temperature effects of microbial activity and any specific pollutants within the waste liquid being treated, that might require longer treatment times. This study demonstrated that the competition between the different species resulted in greater water usage from the plants. It also identified that where salinity was present, less water was required. If more detailed equations are being utilised in the design a treatment reedbed, including the use of ET and water budgets, then the increased water use of a competitive floral community such as that studied within this research should be taken into account. The lower water requirements for higher salinity concentrations should also be considered if the influent is likely to have any saline input (i.e. runoff from de-iced roads).

4.5.3 Planting Densities and Layout

For this research, the planting densities were increased above the recommended guidelines of Cooper *et al.*, (1996). This was to allow for a rapid colonisation of all the available areas within the microcosms, and therefore to reduce the acclimatisation period required before the treatment component could commence. As no adverse effects were observed, the density employed within this study for the biodiversity enhancing species should be utilised when planting these species. It is not recommended that *Lythrum salicaria, Filipendula ulmaria and Mentha aquatica* be planted at lower densities until further research has been undertaken on the effects this would have. In accordance with the methodology utilised for this study, plug plants should be employed until further research supports the use of other sized plants. *Phragmites australis* can be planted as either plug plants or as rhizomes to the densities recommended in Cooper *et al.*, (1996).

In surface flow treatment systems, stem filtration comprises part of the treatment process, and since this was not studied, the impact of planting the biodiversity enhancement species is unknown, and hence cannot be considered for this purpose. As a consequence, the use of *Lythrum salicaria, Filipendula ulmaria and Mentha aquatica* can only be recommended for subsurface flow wetlands.

As outlined above it is suggested that the different species are planted in multiple blocks. The number of blocks and their shape would depend upon the design size of the wetland. The blocks

could be in the form of strips or as a mosaic formed by either a monoculture of one biodiversity enhancing species or multiple species. To ensure that the roots of *Phragmites australis* can colonise the gravel media areas below the biodiversity enhancing species (and thus maintain the treatment potential of the constructed wetland), the width of the blocks containing the biodiversity enhancing species should be designed so that the *Phragmites australis* roots can extend below these blocks. The rhizomes of *Phragmites australis* have been reported as extending 20 m (Holm *et al.*, 1977). It is not recommended that the blocks should be this large due to the time period which it takes to reach this length. Curtis (1959) reports the rhizomes of *Phragmites australis* grow at an equivalent of 40 cm per year. This study did not record the length of each rhizome (due to the fragility of the rhizomes breaking when harvesting the roots in the microcosms), however, roots approaching 3 m in length were noted coiled around the base of the microcosms. This would equate to double the growth rate reported in Curtis (1959). Despite Holm *et al.* (1977) reporting that the rhizomes of *Phragmites australis* extend to 20 m, since this study shows that the rhizomes will reach 3 m in a constructed wetland with a gravel media, the planting blocks should not exceed this width when surrounded by *Phragmites australis*, until further research suggests otherwise.

4.5.4 Operational Management and Maintenance

The biodiversity enhancing species have been chosen to avoid any perceivable extra costs during the operation and maintenance of the constructed treatment wetland, and thus no additional operational or maintenance management principles above those for *Phragmites australis* are being recommended. The operation and future maintenance of the constructed treatment wetland should therefore be undertaken as set out within standard design and operation manuals.

If weeding operations are required, then these should be undertaken to avoid any adverse impacts upon the biodiversity enhancing species. Weeding operations should be undertaken by hand, and not utilise herbicides, which could kill the biodiversity enhancing species.

Harvesting of *Phragmites australis* is utilised in some constructed wetlands for various reasons including to remove nutrients. Based upon the experience of the microcosm studies, where biodiversity enhancing species have been planted, this should be avoided until further research identifies whether or not harvesting operations have an adverse effect.

A free surface water layer was added to the surface to replicate the effect of intermittent "pooling" of effluent upon the different species. The presence of this pooling layer did not have an adverse effect upon the species diversity and, should pooling occur within the subsurface flow wetland, no additional operational or maintenance recommendations are required.

Full Scale Trials

This study was undertaken using small scale microcosms. Logically the next step is the use of full scale trials over a long period to monitor the population dynamics and the effectiveness of the biodiversity enhancing species, and to identify any long term management requirements that may be necessary.

- 184 -

5. FIELD STUDY METHODOLOGY AND EXPERIMENTAL DESIGN

5.1 Introduction

Following on from the controlled microcosm study, a field study was designed and implemented where biodiversity enhancing species were planted within operational reedbed treatment systems which would be subject to the same trials and tribulations to which the treatment flora are exposed on a daily basis.

To determine if operational constructed wetland treatment systems can have their biodiversity increased by the addition of common floral wetland species, a two year microcosm study was devised. The study involved the use of two different scenarios to investigate the sustainability of planting the biodiversity enhancing species.

The first scenario was to investigate the survivability of planting the biodiversity enhancing species within mature reedbeds where the treatment flora were already established. Therefore, the interactions between new plug planting and mature reeds could be assessed within a fully operational reedbed.

The second scenario was to investigate the survivability of the biodiversity enhancing species within newly created/refurbished reedbeds where, as per the microcosm study, the biodiversity enhancing species would have the opportunity to gain a foothold prior to the treatment flora becoming established. In this scenario, the interactions between new plug planting and new reedbed planting could be assessed within a fully operational reedbed.

A suitable site in Staffordshire (Rugeley) was found to test the first scenario and a suitable site was found in Leicestershire (Magna Park, Lutterworth) to test the second scenario. The methodologies for the two different scenarios are discussed separately below.

5.2 Design Overview: Mature Reedbed Treatment System Field Study

5.2.1 Study Site Selection

Two companies originally offered the use of their mature reedbeds for the use in this scenario. These were ARM Ltd, who are the market leader in reedbed design and construction, and Severn Trent Water, who are the main water treatment company for the Midlands.

Positive discussions had commenced with Severn Trent Water to utilise two to three of their sites. Unfortunately, due to staff changes, the champion for the project within the company was lost immediately prior to the start of the study. The replacement manager was un-willing to give any commitment to the study until he became settled and familiar with the new sites he was now responsible for. The resulting delay, beyond the 2015 planting period, led to the Severn Trent Water sites being eliminated from further consideration.

ARM Ltd permitted the use of two of their mature reedbeds located at their headquarters in Rugeley, Staffordshire. The site was located to the northeast of Rugeley, Staffordshire, England at National Grid Reference SK 047 195. Figure 5.1 shows the location of the site within the UK and Figure 5.2 details its location within Rugeley.

Figure 5.1: Location of Rugeley in United Kingdom

Figure 5.2: Site Location within Rugeley (Ordnance Survey 2017b)

5.2.2 Reedbed Description

The two constructed wetlands utilised at Rugeley were both subsurface flow reedbeds with *Phragmites australis* as their main treatment species (Figure 5.3). Both were lined with a plastic liner with gravel as the growing media.

The reedbeds treat the sewage effluent from the offices and workshops at Rydal Estate, a business complex where ARM is located. The raw effluent undergoes primary treatment in a septic tank before being held in storage tanks. From the storage tanks it is divided between two different treatment routes.

The first route goes into a forced aeration bed which then feeds Reedbed 1. The second route goes into vertical flow reedbeds before feeding Reedbed 2. The two reedbeds are used to investigate new treatment opportunities by the operators whose business is to design reedbed treatment systems and consequently the reason for the two beds maturing differently was due to the effluent pre-treatment's which the reedbeds had been subject to over the years, resulting in a differing nutrient availability for the reeds.

Figure 5.3: Reedbed 1 (left) Redbed 2 (right)

5.2.3 Study Design and Planting Configuration

The microcosm study identified that the biodiversity enhancing species survived at all the nutrient concentrations employed and that they did not outcompete *Phragmites australis*. When the root structure of *Phragmites australis* was monitored at the end of the experimental period, the roots were observed to go fully under the biodiversity enhancing species, and the latter should therefore not adversely affect the hydraulic flow of the reedbeds or the treatment capacity of the microbial colonies within the subsurface layers.

An initial design recommendation was made following the microcosm study to plant the biodiversity enhancing species in no more than 3 m wide strips, so that the root growth of *Phragmites australis* can grow under the biodiversity enhancing species, as occurred in the microcosm study. Due to the design issues of retrofitting up to 3 m wide strips to existing and refurbished reedbeds, along with matter of acquiring enough sites for replicate plantings, it was decided to use 1 m² quadrats.

Following consultations with an academic ecologist (Besenyei, 2015) it was agreed that the experimental design for the two ARM reedbeds would involve planting a four by four grid of 1 m² quadrats each comprising a single species within each of the two reedbeds. The shape of a four by four grid would permit each of the four species to be placed in each row and in each position, to would ensure that each was subject to the different environmental parameters occurring; such as exposure to different wind directions and solar radiation as the sun orientates its self through the day and sub-surface flow variations. *Lythrum salicaria, Filipendula ulmaria* and *Mentha aquatica* were to be planted in 12 of the quadrats. The remaining four quadrats were to be used as controls where the mature *Phragmites australis* would be monitored. The four repetitions per reedbed (eight repetitions in total if the results for both reedbeds are combined) would permit the use of a variety of statistics including ANOVA and t test (see Section 5.4) to analyse the significance of the results.

However, due to the small size of the reedbeds and the uncertain impact this arrangement could have had on the treatment efficiency of the operational reedbeds and their discharge consent criteria, ARC only gave permission for six 1 m² quadrats to be planted per reedbed in a two by three grid. This reduction in the number of quadrats affected the number of possible replicates and hence limited any statistical analysis of the results.

With only six planted quadrats being installed per reedbed, the decision was taken not to plant one of the biodiversity enhancing species. The decision to sacrifice one of the biodiversity enhancing species would increase the number of replicates undertaken and avoid the pseudo-replication of the microcosm study. This left three quadrats per planted species per bed (n = 2) or six quadrats per planted species if both reedbeds were combined (n = 5). The issue of a small sample size,

where n < 5, is discussed in by Vaux in Nature (2012) and by de Winter (2013), and confirmed that if the Rugeley reedbeds were to be analysed separately, then the students t test would be an appropriate statistic as long as the observed effects were large and where too much data is present to visualise.

Considering the microcosm study, it was found that *Mentha aquatica* was a robust species, since it was able to quickly colonise new openings in the reedbed due to its stoloniferous nature. In contrast, over the course of the first two years of the microcosm study, *Lythrum salicaria* and *Filipendula ulmaria* were more sessile, remaining in the locations where they were originally planted and not showing any significant signs of expanding their range until the third year when the seeds previously set started to germinate. Due to the short term (two year) duration of the field study, it was decided to compare the two species which had presented a more sessile existence in the microcosm study and consequently *Mentha aquatica* was omitted from the mature reedbed trials.

To avoid bias, the positioning of the two biodiversity enhancing species within the two by three grid was selected using a random number generator (Fowler *et al.*, 1999; Wildi, 2010) with their resulting locations shown on Figure 5.4.

Since the permitted two by three grid (where reed cutting was accepted to enable planting) did not allow for any random control. In an effort to overcome this, quadrats of *Phragmites australis*, were marked out to the rear of the plantings, where, the undisturbed *Phragmites australis* would be monitored Figure 5.4.

Between each of the quadrats and along the edge of the reedbed a 1 m buffer strip was left where the existing mature vegetation within the reedbed remained intact. This was to enable competition with the newly planted species, see Figure 5.4.

In April 2015 whilst awaiting delivery of the plug plants, the *Phragmites australis* within the mature reedbeds was harvested to ground level and any loose leaf litter removed leaving the already decayed humus layer in situ. This was undertaken as warblers and harvest mice are known to nest within the reedbeds each year and the reeds were harvested to prevent any wildlife nesting within the locations required for the quadrats, thus maintaining the design of the study. The wildlife were able to nest undisturbed within the remainder of the reedbed.

During the microcosm study, a total of four 90 mm pots per species (16 pots in total) was planted within each microcosm. Each of the four species were allocated to 1378 cm² growing area within the microcosm which equated to a planting density of 29 pots per m². A total of 16 plug plants for each species were planted within each quadrat during the field study, as illustrated on Figure 5.5. The reduced number of plants per m² and the reduction in size from 90 mm pots to plug plants was used to assess if a lower planting density (when compared to the microcosm study) would still make planting the biodiversity enhancing species viable. Cooper *et al.*, (1996) recommend planting four plugs of *Phragmites australis* per m². However, a higher planting density was still used in the field study to help achieve a fully vegetated quadrat as quickly as possible, and thus shorten the time before competition interactions between the species would occur. All plants were of native provenance.

The flora within these quadrats were planted during the first week in June 2015. This accords with the preferred planting time in Western Europe of between May and August, as recommended by Cooper *et al.*, (1996) for wetland treatment systems.

Figure 5.4: Layout of Mature Study Reedbeds at Rugeley

Figure 5.5: Planting Configuration of a Magna Park Quadrat

5.3 Design Overview: Newly Created/Refurbished Reedbed Treatment System Field Study

5.3.1 Study Site Selection

IDI Gazeley permitted the use of their recently restored reedbeds located within their Magna Park distribution centre in Lutterworth, Leicestershire. The site was located to the west of Lutterworth, Leicestershire, England at National Grid Reference SP 506 850. Figure 5.6 shows the location of the site within the UK and Figure 5.7 details the location of the site within Lutterworth.

Figure 5.6: Location of Lutterworth within United Kingdom

Figure 5.7: Site Location at Lutterworth (Ordnance Survey 2017c)

5.3.2 Reedbed Description

The reedbed treatment system (Figure 5.8 & Figure 5.9) at Magna Park is fed by a series of Rotating Biological Contactors (RBCs'), which are used as the main treatment process for the sewage effluent from Magna Park. The effluent from the RBCs' is distributed via a single pipe which then splits to feed all of the reedbeds with the same effluent. The effluent from the reedbeds then flows into the adjacent lake, which in turn outflows into a local brook.

The treatment system was designed and constructed approximately 26 years ago, prior to the main design manuals for reedbed treatment systems first being published. In the interim, the RBCs' have had operational issues which resulted in the reedbeds being overloaded, clogged and malfunctioning (Beard, 2015). In addition, the original beds were shaded by trees and adjacent vegetation, which resulted in poor growth, with areas of the reedbeds becoming devoid of vegetation where the shading occurred.

During winter 2014/2015, the trees and scrub which shaded the reedbeds were cut back and half of the reedbeds, those on the west side of the lake, were refurbished to their original design, including replacement of the old gravel with new. The reedbeds on the east side were non operational at the start of the field study (Figure 5.10), but following a second phase of refurbishment, became operational part way through the field study in winter 2015/2016.

Originally the reedbeds were lined with clay, and this remained in situ during the refurbishment. The original gravel size was small (circa 3-6 mm) and angular, which did not permit large voids between the different pieces of gravel and consequently the permeability and hydraulic flow was limited with the small voids easily blocked and the beds becoming clogged. To increase the permeability and thus hydraulic flow, the new bed material installed was larger 10 - 16 mm washed round gravel.

Figure 5.8: Refurbished reedbeds west side (far bank) with the outlet weir from the lake (foreground).

Figure 5.9: Inlets for reedbeds fed along the top of higher ridges in the centre of the plate.

5.3.3 Study Design and Planting Configuration

The design of the refurbished reedbeds presented a good opportunity for replicates to be included in the field study. Each of the reedbeds consists of a treatment channel separated from the adjacent channel by a soil strip (Figure 5.9). The channels were 3 m wide by approximately 16 m long. The reedbeds refurbished during the winter of 20014/2015 contained 29 channels in total.

For the field study design at Magna park, as with the Rugeley site, the wildlife enhancing species were planted in 1 m^2 quadrats, with one quadrat per channel. The quadrats were placed 1 m back from the inlet and in the centre of the channel so that the plot was surrounded by the primary treatment species. Again, as with the Rugeley site and for the same reasons, each quadrat was planted with 16 plug plants of a single species.

It was proposed to carry out five replicates of each of the biodiversity enhancing species (*Lythrum salicaria, Filipendula ulmaria* and *Mentha aquatica*). This resulted in 15 plots (one per channel) totalling 15 m², which is approximately 1 % of the total treatment area of the refurbished channels (\approx 1392 m²). With the reedbeds being newly refurbished, in accordance with the design for the microcosm study, and for the same reasons, a 30 mm deep layer of compost was added to the treatment plot to simulate a humus layer. This 30 mm artificial humus layer was also a recommendation outcome from the microcosm study where, in the presence of *Phragmites australis*, it was found that the biodiversity enhancing species had a reliance on this layer. This was particularly so for *Lythrum salicaria*, which was shown to be adversely affected within the gravel root zone by the presence of *Phragmites australis roots* in what appeared to be allelopathy.

In addition to the planted biodiversity enhancing species, five quadrats were installed where no additional species were planted for use as controls.

During the reconnaissance visit to the site it was noted that some of the reedbeds appeared to be uneven and suffering from hydraulic flow issues, and these reedbeds were eliminated from the study. The remaining reedbeds, which were flooded to just below the surface of the media, were selected for use in the study. As with Rugeley, the species planted in each quadrat within the reedbeds was randomly chosen using a random number generator. The locations of the quadrats and the species planted can be found illustrated on Figure 5.10.

Figure 5.10: Layout of Newly Created/Refurbished Study Reedbeds at Magna Park

5.4 Vegetation Measurements

In order to monitor the community dynamics the following common measurements were taken on a monthly basis,

- height of each species (Howard 2010);
 - o maximum height;
 - o general height;
- area coverage of each species (Baldwin 2013). The calculation of area coverage was facilitated through the use of a quadrant divided into area grids. These parameters were measured for both;
 - \circ within the microcosm; and,
 - outside of the microcosm (where the foliage went beyond the width of the microcosm). This was only undertaken for the biodiversity enhancing species planted as to measure the coverage for all species outside of the microcosm would be unfeasible. It would also cause an anthropogenic effect on the reedbed through damaging the plants (which in turn could reduce their vigour and open up new spaces for other species to grow) which are potentially competing with the biodiversity enhancing species;

5.5 Statistical Analysis

To investigate Hypothesis 9 *"Where the chosen floral species survive, there will be no difference between retro-planting these species within a mature reedbed, compared to planting these species within a newly created/restored reedbed and no single floral species will take over and oust other floral species."* The following statistical analysis was planned and undertaken using the PAWS Statistics 18 software (IBM, 2014).

The proposed statistics included using an Analysis of Variance (ANOVA) test (Fowler *et al.*, 1999; Pallant, 2010) as more than two samples would have been investigated: i.e. the newly refurbished reedbed at Magna Park and the two separate reedbeds at Rugeley. If the data obtained was found to be skewed, to allow for parametric analysis to be undertaken (i.e. ANOVA), the data would be transformed into a normal distribution using a logarithmic transformation of 10 (Fowler *et al.*, 1999; Pallant, 2010).

It was also proposed to merge the data from the reedbeds at Rugeley to form two samples to enable operations such as comparing the *Lythrum salicaria* in a mature bed against the same species within a newly refurbished bed. Where two samples were being analysed, an independent samples *t* test would be undertaken (Fowler *et al.*, 1999; Pallant, 2010; Wildi, 2010). In unison with the independent samples *t* test, the Levene's tests for equality of variances would be used to

confirm that the data did not violate the assumption of equal variances, and the effect of size would be calculated using Cohan's d ETA squared. (Cohen 1988; Pallant, 2010). The chosen thresholds for the statistical analysis to be statistically significant along with the values for Cohan's d ETA squared can be found within the statistical methods section of the microcosm study.

Unfortunately, multiple operational issues occurred at both sites, which were all outside the control of the research project, and consequently no sensible statistical analysis was possible. These issues are discussed in the next section of the thesis, but to put the lack of data for analysis into context they are briefly summarised here.

The winter storms, flooding, hydraulic blockages and a change in the operation of the two reedbeds at Rugeley had a detrimental impact upon the biodiversity enhancing species. At Magna Park the operational issues began with the contractors planting the wrong treatment species; the level changes within the reedbed affected hydraulic flow patterns resulting in periods of drought for the wetland plants; and, the restoration of the remaining reedbeds required the effluent to be diverted away from the study beds to enable vegetation establishment in the new beds, further contributing to the drought issues experienced within the study beds.

Section 6 discusses the results and observations that were obtained from the two field studies whose design is described in this section. As explained the various external natural and anthropogenic impacts on the two study sites has had the effect that no sensible statistical analysis is possible, and therefore, the evaluation in Section 6 is predominantly qualitative.

6. RESULTS

Section 5 described the field experiments designed to explore the planting the biodiversity enhancing species, within the mature reedbeds and the newly restored reedbeds, and the differences between them. This section presents the results obtained from the data collected during the two year experimental period and also includes a discussion on the findings.

6.1 Constraints Encountered During the Operational Phase

Unfortunately, multiple operational issues occurred at both sites, which were outside the control of and impacted on this study and these issues are discussed below.

6.1.1 Rugeley

During the first year (2015) of the field study at Rugeley, the biodiversity enhancing species planted within both reedbeds survived, and within some of the quadrats in Reedbed 2 *Lythrum salicaria* flowered and set seed. However, the winter storms during 2015/2016 had a detrimental effect on the biodiversity enhancing species within both of the reedbeds, but for different reasons.

Reedbed 1

During the winter storms a large proportion of the standing dead plant material from the 2015 *Phragmites australis* growth was blown over. During the same period the bed became blocked, resulting in standing water above the surface of the bed. These two factors combined to form a wet mulch akin to papier mâché, which formed a blanket on the surface of the bed. This mulch was left in-situ and not removed or harvested, as is a common practice on reedbed treatment systems, and the biodiversity enhancing species were monitored to determine how they would perform under these conditions. The operators of the reedbed undertook gentle forking to alleviate the flooding issue. During the monthly monitoring visits from February to April, the mulch within the quadrats was gently moved to the side (only for one quadrat per species to avoid increasing the level of anthropogenic affect) to see if any growth was visible. The plants remained in their dormant stage with the culms of *Filipendula ulmaria* showing green bulging, indicating that is was still alive. Unfortunately, it became apparent during the May and June visits that the plants were unable to compete with the smothering effect of the mulch and 100% fatalities occurred.

Reedbed 2

Reedbed 2 was subject to the similar fall of standing dead plant material and flooding which the winter storms brought. As with Reedbed 1, the bed was gently forked to alleviate the flooding, but it became apparent that this bed had significant hydrological issues. During 2016 this bed ceased to be used as a daily operational treatment bed. The bed was only periodically provided with effluent to keep the reeds alive for their biodiversity enhancing value, as they provided nesting locations for warblers and harvest mice *Micromys minutus*. The reduced effluent supply did not appear to cause significant fatalities to the plants directly, however the dry nature of this bed permitted the frequent use by field voles *Microtus agrestis*. These voles regularly grazed on the biodiversity enhancing species, usually grazing them back to the ground which clearly had an adverse effect on the area coverage / heights of the vegetation. In 2015, when the beds were fully operational and constantly fed effluent this grazing effect was not noticeable.

The impact of the grazing was so severe that no sensible measurements could be obtained, thus no statistical analysis could be undertaken to enable hypothesis 9 to be proven or disproved.

6.1.2 Magna Park

At Magna Park the operational issues began when the wrong treatment species were planted in the wrong place during its refurbishment. Unfortunately, when the vegetation was planted in 2015, they were small plugs/dormant and it was not noticeable that this error had been made when the biodiversity enhancing species were planted in the beds. This was only noticed once the vegetation had been growing for two months and the identifying features became apparent. At this point it was too late to change the study site, or to retrofit *Phragmites australis*, as the available study duration would not permit sufficient time for adequate competition to occur between *Phragmites australis* and the biodiversity enhancing species.

Rather than the majority of the plants being *Phragmites australis* another wetland species *Phalaris arundinacea* had been used. Although both species were due to be planted, since they can both be used in constructed wetland systems, the *Phalaris arundinacea* was located where the *Phragmites australis* should have been. This error is believed to have occurred due to a misinterpretation of the job specification, since both plant names can be abbreviated to Ph a. The combined effects of restoring these treatment beds and the cleaning out the Rotating Biological Contactors, resulted in the discharge consent levels for the site being achieved. Since this was the case, and the remaining reedbeds were due for refurbishment during Winter 2016, the operators of the site concluded that, from a treatment perspective, the planting error did not require rectifying. In addition to the *Phragmites australis* and *Phalaris arundinacea*, pockets of other aquatic species were planted which included *Carex* sp., *Iris pseudacorus, Juncus* sp., *Schoenoplectus lacustris and Typha latifolia*.

At the same time that this error was discovered, it was becoming evident that the beds were suffering from hydraulic flow issues, and vegetation within parts of the beds were found to be showing signs of drought stress. When these areas were investigated further, the water level was found to be below that of the root zone for the young plants. It was also apparent that the restored beds were not level which resulted in some of them being flooded at the inlet end, whilst the water level was below the root zone of the plants at the other.

During discussions with the operator, it was acknowledged that they were having issues fine tuning the water levels and effluent input of these beds, and consequently were having to regularly adjust the outlet controls of the different beds in order to try and keep the plants alive. These manipulations in water level management resulted in some of the biodiversity enhancing species in the quadrats showing signs of drought one month and then flooding (with a visible water level on or just below the surface) the next.

The water level and drought issue was compounded during 2016 after the remaining reedbeds were refurbished and the main effluent flow was diverted to feed and maintain them. This resulting reduction in flow to the reedbeds used in this study amplified the drought issues which had already been experienced.

The effects of the drought and the change in the main treatment species from *Phragmites australis* to *Phalaris arundinacea* effectively sabotaged the experiment which had been designed to study the biodiversity enhancing species within newly created/refurbished reedbeds. Therefore, as with the Rugeley site no sensible data was available to test hypothesis 9.

6.2 Rugeley

Since operational and external factors described above meant that no sensible data were available for statistical analysis, the following discussions in both this section and in Section 6.3 are predominantly qualitative.

6.2.1 Reedbed 1

The vegetation heights and area coverage data for the flora within the quadrats within Reedbed 1 can be found in Table 6.1 and the experimental configuration in Figure 5.4.

Lythrum salicaria

Lythrum salicaria struggled within Reedbed 1 with the area coverage declining and fatalities occurring within the first year. Where the plants reached any height (maximum height recorded of 754 mm in August 2015), the stems stayed thin as they struggled to compete for light against *Phragmites australis*. The *Phragmites australis*, which surrounded the quadrat extended its leaves to take advantage of the light provided by the open space created when it was originally harvested from the quadrat to enable *Lythrum salicaria* to be planted. Towards the end of the 2015 growing season, the spread of the *Phragmites australis* leaves had created a canopy over the *Lythrum salicaria*, and only dappled light reached the ground.

The *Lythrum salicaria* did not flower or set seed within the first year, and experienced 100% fatalities in the second.

Filipendula ulmaria

From the results provided in Table 6.1, it can be seen that during 2015 *Filipendula ulmaria* was recorded surviving until the end of the growing season after starting to senesce during September/October. It did not expand its range within the quadrats, nor did it colonise new areas outside of the quadrants. The heights generally remained low with the average ranging from 268 mm to 358 mm during September. As with the *Lythrum salicaria* quadrats, the surrounding *Phragmites australis* formed a canopy over the quadrats allowing only dappled light to reach the floor. The *Filipendula ulmaria* also did not flower or set seed during the first year.

Also, as discussed in the constraints section the *Filipendula ulmaria*, although the culms were green in the spring after the winter storms, it suffered 100 % fatalities during 2016. The majority of these occurred at the beginning of 2016, as the plants failed to regrow after the winter period. Within Quadrat 3, it was observed that two individuals started to grow at the start of the year, but their growth was weak and they had died by July.

Phragmites australis

During September 2015 the *Phragmites australis*, which were being monitored in the three quadrats behind the biodiversity enhancing species (see Table 6.1), all showed signs of good growth, achieving 100 % coverage and reaching heights of between 2434 mm and 2552 mm. These stems flowered and set seed. The good growth continued throughout 2016.

				2	2015								2016					
Quadrat	Species	(Cover =	Value %, Height = mm)	August	September	October	November	December	January	February	March	April	May	June	July	August	September	October
	Phragmites	% Cover	Inside Quadrat	6	94	97	0	0	0	0	0	0	6	6	93	100	100	97
1	australis	Height	Maximum	1953	2431	2280	0	0		0	0		993	2413	2570	2649	2560	2305
	Filipendula	% Cover	Inside Quadrat Outside Quadrat Combined	20 0 20	22 0 22	9 0 9	0 0 0	0	0 0 0	0 0 0	0 0 0	0 0 0	0	0	0	0 0 0	0	0
	ulmaria	Height	Maximum General	209 168	319 268	158 121	0	0	0	0	0	0	0	0	0	0	0	0
	Dhrogmitoo	% Cover	Inside Quadrat	8	86	97	0	0	0	0	0	0	10	11	92	100	100	96
	australis	Height	Maximum	1963	2465	2285	0	0	0	0	0	0	974	2383	2534	2624	2572	2498
	Filipendula ulmaria	% Cover	General Inside Quadrat Outside Quadrat Combined	1702 18 0 18	1891 23 0 23	1790 7 0 7	0 0 0 0 0	0 0 0 0 0	0 0 0	0 0 0 0 0	0 0 0	0 0 0 0 0	898 0 0 0	2231 0 0 0	2496 0 0 0	2594 0 0 0	2493 0 0 0	2372 0 0 0
		Height	Maximum	238	378	143	0	0	0	0	0	0	0	0	0	0	0	0
2		% Cover	General Inside Quadrat	181	296	0	0	0	0	0	0	0	0	1	0	0	0	0
-	Urtica dioica	Height	Maximum	0	0	0	0	0	0	0	0	0	0	189 164	0	0	0	0
		% Cover	Inside Quadrat	6	6	0	0	0	0	0	0	0	0	0	0	0	0	0
	Galium aparine	Height	Maximum General	480 480	980 980	0 0	0	0	0	0 0	0	0	0 0	0 0	0 0	0 0	0	0 0
	Enilobium	% Cover	Inside Quadrat	13	11	0	0	0	0	0	0	0	0	0	0	0	0	0
	hirsutum	Height	Maximum General	132 121	263 154	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0
	Phragmites	% Cover	Inside Quadrat	21	94	97	0	0	0	0	0	0	13	13	89	100	100	99
	australis	Height	Maximum General	1943 1845	2596 2331	2477 2140	0	0	0	0	0	0	979 935	2285 2147	2619 2568	2657 2556	2614 2597	2508 2470
	Lythrum salicaria	% Cover	Inside Quadrat Outside Quadrat Combined	34 0 34	8 0 8	3 0 3	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	3 0 3	3 0 3	0 0 0	0 0 0	0 0 0	0 0 0
		Height	Maximum	643 301	732	612	0	0		0	0	0	97 71	211	0	0	0	0
		% Cover	Inside Quadrat	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0
3	Urtica dioica	Height	Maximum General	0	336 336	1027 1027	0	0	0	0	0	0	0	0	0	0	0	0
	Oalium	% Cover	Inside Quadrat	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0
	aparine	Height	Maximum General	902 902	1043 1043	0	0	0	0 0	0 0	0	0	0	0 0	0 0	0 0	0	0
	Epilobium hirsutum	% Cover	Inside Quadrat	11	4	0	0	0	0	0	0	0	0	0	0	0	0	0
		Height	Maximum General	131 112	305 281	0	0	0	0	0	0	0	0	0	0 0	0	0	0
	Cardamine	% Cover	Inside Quadrat	0	0	0	0	0	0	0	0	0	0.5	0.5	0	0	0	0
	flexuosa	Height	Maximum	0	0	0	0	0		0	0	0	38	164	0	0	0	0
		% Cover	Inside Quadrat	48	92	97	0	0	0	0	0	0	6	7	91	100	100	100
	Phragmites australis	Height	Maximum General	2243 1741	2499 2385	2218 1930	0	0	0	0	0	0	1035 880	2255 1881	2540 2436	2604 2517	2580 2482	2439 2357
	Lythrum	% Cover	Inside Quadrat Outside Quadrat	24 0	2 0	0 0	0	0	0 0	0 0	0	0	0	0 0	0 0	0 0	0 0	0 0
4	salicaria	Height	Combined Maximum	24 726	2 408	0	0	0	0	0	0	0	0	0	0	0	0	0
		% Cover	Inside Quadrat	548 8	408	0	0	0	0	0	0	0	0	0	0	0	0	0
	Epilobium hirsutum	Height	Maximum	124	307	0	0	0	0	0	0	0	0	0	0	0	0	0
		% Cover	Inside Quadrat	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0
	Lemna		Maximum	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	minor	Height	General	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Phragmites	% Cover	Inside Quadrat	32	96	97	0	0	0	0	0	0	12	14	99 2597	100	100	100
	australis	Height	General	1706	2376	2265	0	0	0	0	0	0	866	2191	2519	2580	2490	2401
		% Cover	Inside Quadrat	18 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	Lythrum		Combined	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	salicaria	Height	Maximum	754	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			General	398	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Epilobium	70 Cover	Maximum	4	0	0	0	0		0	0	0	0	0	0	0	0	0
	hirsutum	Height	General	113	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 6.1 (Continues): Vegetation Heights and Areas during the Study Period For Reedbed 1.

		Value (Cover = %, Height = mm)			2	2015								2016				
Quadrat	Species			August	September	October	November	December	January	February	March	April	May	June	July	August	September	October
	Dhro amito o	% Cover	Inside Quadrat	45	82	97	0	0	0	0	0	0	11	13	99	100	100	99
	australis	Height	Maximum	2304	2628	2618	0	0	0	0	0	0	1051	2325	2533	2673	2523	2436
		Tielgin	General	1809	2550	2480	0	0	0	0	0	0	888	2229	2453	2524	2451	2396
	Filipendula ulmaria		Inside Quadrat	12	14	11	0	0	0	0	0	0	0	0	0	0	0	0
6		% Cover	Outside Quadrat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			Combined	12	14	11	0	0	0	0	0	0	0	0	0	0	0	0
		Height	Maximum	321	468	284	0	0	0	0	0	0	0	0	0	0	0	0
		Tioigitt	General	282	358	145	0	0	0	0	0	0	0	0	0	0	0	0
	Epilobium hirsutum	% Cover	Inside Quadrat	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0
		Height	Maximum	130	462	0	0	0	0	0	0	0	0	0	0	0	0	0
		Tioigin	General	109	462	0	0	0	0	0	0	0	0	0	0	0	0	0
	Lemna minor	% Cover	Inside Quadrat	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Height	Maximum	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		rioigint	General	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Phraamites	% Cover	Inside Quadrat	100	100	100	0	0	0	0	0	0	60	64	100	100	100	100
7	australis	Height	Maximum	2355	2591	2230	0	0	0	0	0	0	996	2367	2596	2643	2598	2456
		Tiolgitt	General	2238	2474	2120	0	0	0	0	0	0	953	2142	2490	2554	2457	2377
	Phraamites	% Cover	Inside Quadrat	100	100	100	0	0	0	0	0	0	38	39	97	100	100	100
8	australis	Height	Maximum	2398	2542	2310	0	0	0	0	0	0	1038	2434	2601	2652	2581	2447
		Tiolgitt	General	2237	2434	1940	0	0	0	0	0	0	872	2296	2518	2527	2482	2373
	Phragmites	% Cover	Inside Quadrat	98	100	100	0	0	0	0	0	0	38	38	96	100	100	100
9	australis	Heiaht	Maximum	2448	2687	2597	0	0	0	0	0	0	1005	2348	2606	2619	2549	2463
			General	2249	2552	2260	0	0	0	0	0	0	917	2185	2465	2497	2441	2385
, , , , , , , , , , , , , , , , , , ,	Urtica	% Cover	Inside Quadrat	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0
	dioica	Heiaht	Maximum	592	875	0	0	0	0	0	0	0	0	0	0	0	0	0
	uioica	risigni	General	592	875	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 6.1 (Continued): Vegetation Heights and Areas during the Study Period For Reedbed 1.

6.2.2 Reedbed 2

The vegetation heights and area coverage for the flora within the quadrats within Reedbed 2 can be found in Table 6.2, and the experimental layout in Figure 5.4.

The *Phragmites australis* within Reedbed 2 appeared to be less dense both in stem density and leaf coverage than Reedbed 1 during the growing season. The number of stems and stem density during the study period could not be counted or harvested without potentially influencing the competition rate between the *Phragmites australis* and the biodiversity enhancing species. As with Reedbed 1, the *Phragmites australis* formed a canopy over the quadrats by the end of the first year. Dappled light reached ground level within each quadrat, however this visually appeared to be lighter than Reedbed 1 as the canopy formed by the reeds appeared to be less dense/leafy than Reedbed 1.

Lythrum salicaria

During the first year *Lythrum salicaria* showed good levels of growth, expanding its range within the quadrat and also starting to spread its leaves out beyond the quadrat. The heights were taller than Reedbed 1 growing to a maximum height of 1272 mm in the first year compared to 754 mm in Reedbed 1. This species flowered and set seed in the first year.

During 2016 healthy growth began to occur, however the dry nature of the ground (caused by the bed now being non-operational on a daily basis) had allowed herbivores, namely field vole free access. It was observed that the field voles targeted the new growth shoots of the *Lythrum salicaria,* which resulted in the area coverage being less than that recorded in 2015. However, where shoots managed to gain height and then turn woody in nature (which the field voles did not noticeably appear to browse), these reached a maximum height of 1820 mm. The surrounding *Phragmites australis* stems did not show any signs of grazing by field vole. *Lythrum salicaria* managed to flower and set seed in all of the quadrats during the second year.

Filipendula ulmaria

As occurred with *Lythrum salicaria*, during the first year *Filipendula ulmaria* showed good levels of growth, expanding its range within the quadrat and also starting to spread its leaves beyond the quadrat.

During 2016 healthy growth began to occur, however, as with *Lythrum salicaria* the field voles targeted the shoots of the *Filipendula ulmaria* causing the overall area coverage to be less than that observed in 2015. This species does not turn woody like *Lythrum salicaria* and consequently

was a permanent target of grazing by the field voles. *Filipendula ulmaria* was observed to send up flowering shoots, however these were grazed following which *Filipendula ulmaria* again sent up shoots yet to be grazed again and no seeds were set.

Phragmites australis

The *Phragmites australis* in the three quadrats being monitored all showed signs of good growth during the first year, though as noted above, the coverage was not 100%, but thinner than in Reedbed 1, permitting more light to penetrate to the ground. The general stem heights reached between 2395 mm and 2497 mm during September 2015, which was within the same range as Reedbed 1, and they also flowered and set seed.

During 2016 *Phragmites australis* was also impacted by the cessation of daily operational activities. These reeds were smaller and appeared to have thinner leaf coverage. During September 2016, the recorded general heights ranged between 1887 mm to 1934 mm, approximately half a meter smaller than the year before during the same month. During August and September 2016, the *Phragmites australis* exhibited signs of nutrient stress in the form of chlorosis (Cooper *et al.*, 1996) resulting in the reeds senescing earlier than in Reedbed 1, as can be seen in Figure 6.1 and Figure 6.2.

Figure 6.1: Reedbed 1 (left), Reedbed 2 (right), September 2016

Figure 6.2: Reedbed 1 (left), Reedbed 2 (right), October 2016

					2	2015								2016				
Quadrat	Species	(Cover =	Value = %, Height = mm)	August	September	October	November	December	January	February	March	April	May	June	۷InL	August	September	October
	Phragmites	% Cover	Inside Quadrat	2	87	97	0	0	0	0	0	0	2	2	97	97	34	97
	australis	Height	Maximum General	1530 1511	2486 2291	2382 2210	0	0	0	0	0	0	858 664	1750 1688	2306 1813	2499 1955	2640 2214	2597 2176
	Filipendula	% Cover	Inside Quadrat Outside Quadrat	23 0	73 0	72 0	0	0	0	0	0	0	5 0	5 0	7 0	8 0	2 0	0.5
1	ulmaria	Height	Combined Maximum	23 331	73 399 261	72 382	0	0	0	0	0	0	5 183	5 230	7 194 76	8 143	2 84	0.5
		% Cover	Inside Quadrat	6	201	97	0	0	0	0	0	0	49	05	0	0	07	42
	Epilobium hirsutum	Height	Maximum	142	242	0	0	0	0	0	0	0	0	0	0	0	0	0
		% Cover	Inside Quadrat	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
	Cardamine flexuosa	Height	Maximum General	0	0	0	0	0	0	0	0	0	72 39	135 135	0	0	0	0
	Dhua avaita a	% Cover	Inside Quadrat	75	97	97	0	0	0	0	0	0	7	8	97	97	97	97
	Phragmites australis	Height	Maximum	1862	2386	2329	0	0	0	0	0	0	815	1723	2446	2519	2402	1430
		lioigin	General	1630	2259	1940	0	0	0	0	0	0	761	1462	2081	2118	2046	1382
		% Cover	Inside Quadrat	32	34	9	0	0	0	0	0	0	5	/ 0	9	9	5	1
	Lythrum		Combined	32	34	9	0	0	0	0	0	0	5	7	9	9	5	1
2	salicaria	Height	Maximum	498	591	483	0	0	0	0	0	0	63	470	715	813	841	835
2			General	221	377	360	0	0	0	0	0	0	46	374	508	557	647	835
	Epilobium	% Cover	Inside Quadrat	5	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	hirsutum	Height	General	120	194	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ocurlantina	% Cover	Inside Quadrat	0	0	0	0	0	0	0	0	0	3	2	1	1	0	0
	flexuosa	Height	Maximum General	0	0	0	0	0	0	0	0	0	93 69	198 173	181 156	53 53	0	0
	Phraamites	% Cover	Inside Quadrat	18	97	97	0	0	0	0	0	0	12	13	97	97	97	97
	australis	Height	Maximum	1762	2160	2125	0	0	0	0	0	0	825	1720	2327	2476	2316	2191
			General Inside Quadrat	1361 64	1954 58	1855 53	0	0	0	0	0	0	768 Q	1642	1886	18	2113	2017
		% Cover	Outside Quadrat	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0
	Lythrum salicaria		Combined	64	58	53	0	0	0	0	0	0	9	14	17	21	19	6
3		Height	Maximum	451	670	647	0	0	0	0	0	0	94	451	728	823	1011	952
		% Cover	General	366	386	329	0	0	0	0	0	0	75	379	618	792	676	635
	Epilobium		Maximum	, 138	248	0	0	0	0	0	0	0	0	0	0	0	0	0
	misulum	Height	General	119	159	0	0	0	0	0	0	0	0	0	0	0	0	0
	Cardamine flexuosa	% Cover	Inside Quadrat	0	0	0	0	0	0	0	0	0		7	~ · ·	0	0	0
		Height	Maximum		0	0	0	0	0	0	0	0	119 97	245	214	0	0	0
		% Cover	Inside Quadrat	5	89	80	0	0	0	0	0	0	2	2	91	97	30	46
	Phragmites	Height	Maximum	1252	2366	2182	0	0	0	0	0	0	722	1512	2272	2315	2555	2163
		rieigin	General	772	1957	1768	0	0	0	0	0	0	643	1407	1898	2018	2242	2003
		% Cover	Inside Quadrat	65	63	87	0	0	0	0	0	0	10	11	18	18	55 o	32
	Lythrum		Combined	65	65	90	0	0	0	0	0	0	10	11	20	21	63	43
4	salicaria	Height	Maximum	573	1272	1114	0	0	0	0	0	0	157	465	1632	1690	1785	1820
-			General	408	829	792	0	0	0	0	0	0	149	342	947	1163	906	1320
	Epilobium	% Cover	Inside Quadrat	11	7	1	0	0	0	0	0	0	0	0	0	0	0	0
	hirsutum	Height	General	140	197	214	0	0	0	0	0	0	0	0	0	0	0	0
	Cordomino	% Cover	Inside Quadrat	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	flexuosa	Height	Maximum	0	0	0	0	0	0	0	0	0	0	78	0	0	0	0
		% Cover	General	0	0	0	0	0	0	0	0	0	0	78	0	0	0	0
	Phragmites		Maximum	1782	92 2251	2100	0	0	0	0	0	0	878	1478	94 2441	2467	2388	2251
	australis	Height	General	1531	2058	1997	0	0	0	0	0	0	715	1600	2041	2139	2154	2075
			Inside Quadrat	80	87	86	0	0	0	0	0	0	3	3	3	4	2	0
	Filipendula	% Cover	Outside Quadrat	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	ulmaria		Maximum	349	530	486	0	0	0	0	0	0	3 72	3 193	288	4 297	65	0
5		Height	General	245	332	290	0	0	0	0	0	0	68	123	165	166	40	0
	Enilohium	% Cover	Inside Quadrat	6	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	hirsutum	Height	Maximum	137	197	0	0	0	0	0	0	0	0	0	0	0	0	0
		% Cover	Inside Quadrat	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	Cardamine	Listeriet	Maximum	0	0	0	0	0	0	0	0	0	0	184	0	0	0	0
	nexuosa	Height	General	0	0	0	0	0	0	0	0	0	0	184	0	0	0	0

 Table 6.2 (Continues): Vegetation Heights and Areas during the Study Period For Reedbed 2.

		Value (Cover = %, Height = mm)		2015										2016				
Quadrat	Species			August	September	October	November	December	January	February	March	April	May	June	July	August	September	October
	Phroamitoo	% Cover	Inside Quadrat	3	82	60	0	0	0	0	0	0	2	2	984	97	16	9
	australis	Height	Maximum	976	1991	1602	0	0	0	0	0	0	784	1528	2252	2325	2344	1783
		Tioigin	General	900	1894	1486	0	0	0	0	0	0	709	1162	1610	1838	2135	1650
			Inside Quadrat	32	74	82	0	0	0	0	0	0	5	5	8	10	8	5
	Filinondulo	% Cover	Outside Quadrat	0	1	2	0	0	0	0	0	0	0	0	1	2	0	0
	ulmaria		Combined	32	75	84	0	0	0	0	0	0	5	5	9	12	8	5
		Height	Maximum	301	319	286	0	0	0	0	0	0	152	494	932	942	379	173
6			General	180	250	90	0	0	0	0	0	0	143	155	369	384	121	64
	Urtica	% Cover	Inside Quadrat	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
		Uciabt	Maximum	0	162	403	0	0	0	0	0	0	0	0	0	0	0	0
	uioica	Height	General	0	162	403	0	0	0	0	0	0	0	0	0	0	0	0
	F aile himm	% Cover	Inside Quadrat	11	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Epilobium	Uciabt	Maximum	147	325	298	0	0	0	0	0	0	0	0	0	0	0	0
	misuum	Height	General	135	325	298	0	0	0	0	0	0	0	0	0	0	0	0
	Cardamine flexuosa	% Cover	Inside Quadrat	65	32	16	0	0	0	0	0	0	3	3	0	0	3	7
		Height	Maximum	120	150	128	0	0	0	0	0	0	124	248	0	0	39	85
			General	104	128	90	0	0	0	0	0	0	87	221	0	0	21	70
	Diana anna ita a	% Cover	Inside Quadrat	97	97	97	0	0	0	0	0	0	36	38	85	97	93	46
7	Phragmites	Height	Maximum	2381	2512	2481	0	0	0	0	0	0	990	2140	2469	2447	2205	1993
	australis		General	2348	2497	2430	0	0	0	0	0	0	885	1894	1914	1991	1887	1748
		% Cover	Inside Quadrat	97	97	97	0	0	0	0	0	0	34	42	88	97	97	46
	Phragmites	Hoight	Maximum	2426	2538	2401	0	0	0	0	0	0	972	1640	2337	2395	2287	2051
	australis	Height	General	2322	2395	2300	0	0	0	0	0	0	734	1491	2082	2101	1934	1840
8		% Cover	Inside Quadrat	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Gallum	Hojaht	Maximum	983	949	0	0	0	0	0	0	0	0	0	0	0	0	0
	apanne	neignt	General	983	949	0	0	0	0	0	0	0	0	0	0	0	0	0
	Diamanit	% Cover	Inside Quadrat	97	97	97	0	0	0	0	0	0	21	35	91	97	82	75
9	Phragmites	Unight	Maximum	2390	2574	2494	0	0	0	0	0	0	974	1888	2374	2437	2380	2218
, j	australis	Height	General	2209	2427	2380	0	0	0	0	0	0	813	1609	1835	2070	1923	1802

 Table 6.2 (Continued): Vegetation Heights and Areas during the Study Period For Reedbed 2.

6.3 Magna Park

The recorded vegetation heights and area coverage for the flora within the quadrats at Magna Park can be found in Tables 6.3. to 6.6. The quadrat locations are shown in Fig 5.10.

Lythrum salicaria

The data for the quadrats where *Lythrum salicaria* was grown as the target species can be found in Table 6.3.

During the first year *Lythrum salicaria* showed exceptional levels of growth, expanding its range within the quadrat and spreading its leaves beyond, whilst also flowering and setting seed. The majority of the quadrats experienced 90 to 100% coverage with an equivalent coverage outside Quadrat 6 reaching 74 %. Quadrat 15, did not do well in the first year due to operational hydrological issues which resulted in water stress.

During the second year of study, the area coverage and height for *Lythrum salicaria* fluctuated on a monthly basis. As discussed earlier in Section 6.1.2 this was predominantly due to the operational management of the reedbeds altering the available water resources, which in turn created drought induced stress. Figure 6.3 and Figure 6.4 provide a visual example of this, where the *Lythrum salicaria* had successfully flowered, then a period of drought occurred which resulted in the *Lythrum salicaria* dying back before trying to regrow in the same year. Where *Phalaris arundinacea* and other aquatic species planted during the refurbishment were present adjacent to the quadrats, they continually struggled to survive and started to regrow during the periods when water was available, before shrivelling up during the next management period when effluent was diverted to the new beds.

Minor herbivory from rabbits, *Oryctolagus cuniculus*, and field voles was noted during the study, however this was only minor when compared to that observed in Reedbed 2 at Rugeley, which was surrounded by arable land and amenity grassland limiting the availability of other food resources. At Magna Park the variety of flora planted around the treatment beds, together with planting throughout the distribution centre, around the wildlife ponds and the lake adjacent to the reedbeds, all provided additional sources of food for the herbivores.

Although *Lythrum salicaria* was subject to varying levels of water stress throughout the study, predominantly occurring in 2016, it survived within all of the quadrats in which it was planted, and was observed successfully flowering and setting seed during both years of the study.

		Value (Cover = %, Height = mm)		2015										2016				
Quadrat	Species			August	September	October	November	December	January	February	March	April	May	June	July	August	September	October
	Lythrum salicaria	% Cover	Inside Quadrat Outside Quadrat Combined Maximum	100 28 128 552	100 68 168 838	100 74 174 895	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	35 8 43 362	36 11 0 604	7 4 0 211	10 8 0 703	13 15 0 1975	11 14 25 1849
	Carex pendula	% Cover Height	General Inside Quadrat Maximum	419 0 0	344 0 0	309 0 0	0 0 0	000000000000000000000000000000000000000	0 0 0	0 0 0	0 0 0	0 0 0	265 0 0	562 0 0	162 2 337 257	638 8 1129 1037	1296 12 1522 1372	1322 12 1475 1327
	Holcus lanatus	% Cover Height	Inside Quadrat Maximum	0	0	0	0	0	0	0	0	0	62 580	57 396 256	3 131 86	6 283	8 370 243	8 340 200
7	lris pseuadacorus	% Cover Height	Inside Quadrat Maximum General	0 0 0	0 0 0	0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0	0 0 0	0 0 0	0 0 0	3 840 680	3 946 704	1 597 521	1 684 560	1 670 593	1 597 562
	Phalaris arundinacea	% Cover Height	Inside Quadrat Maximum General	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	6 1260 1135	16 1613 1479	14 829 615	43 1083 <u>666</u>	54 1120 <mark>613</mark>	58 1124 587
	Ranunculus repens	% Cover Height	Inside Quadrat Maximum General	0 0 0	0 0 0	0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0	0 0 0	0 0 0	0 0 0	2 234 234	3 292 239	0 0 0	0 0 0	0 0 0	0 0 0
	Typha latifolia	% Cover Height	Inside Quadrat Maximum General	0 0 0	8 984 776	14 1201 1030	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	1 111 111	1 680 680	0 0 0	0 0 0	0 0 0	0 0 0
	Lythrum salicaria	% Cover	Outside Quadrat Outside Quadrat Combined	100 5 105	100 58 158	100 61 161	0 0 0	0	0	0 0 0	0 0 0	0 0 0	84 1 85 420	12 0 12	25 0 25	27 4 31	32 6 38	33 6 39
9	Cardamine	Height % Cover	General Inside Quadrat	612 0	653 0	621 0	0	0	0	0	0	0	210 0	58 0	149 0	397 0	721 2 81	788 3 70
	flexuosa Typha latifolia	Height % Cover	General Inside Quadrat Maximum	0 0 0	0	0 0 0	0 0 0	0 0 0	0	0 0 0	0 0 0	0 0 0	0 1 1069	0	0	0 0 0	62 0 0	57 0 0
	Phragmites	Height % Cover	General Inside Quadrat Maximum	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	1069 2 315	0 0 0	0 0 0	0 1 362	0 1 1231	0 1 1198
	Lythrum salicaria	Height % Cover	General Inside Quadrat Outside Quadrat	0 100 4	0 97 35	0 92 36	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	222 15 1	0 88	0 100	362 100	1231 99	1078 98 48
		Height	Combined Maximum General	104 573 472	132 640 481	128 575 438	0 0 0	000000000000000000000000000000000000000	0 0 0	0 0 0	0 0 0	0 0 0	16 273 141	88 877 809	100 1641 1054	100 1703 1101	99 1759 1233	146 1717 1163
10	Cardamine flexuosa	% Cover Height	Inside Quadrat Maximum General	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	6 85 49	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
	Holcus lanatus	% Cover Height	Maximum General	0 0 0	2 371 221	4 501 246	0 0 0	0 0 0	0	0 0 0 0	0 0 0	0 0 0	3 227 133	0 0 0	0 0 0	0 0 0	0 0 0 0	0
	Urtica dioica	Height	Maximum General	0	0 0 18	0 0 23	0	0	0	0	0	0	2 312 233 82	0 0 7	0	0 0 19	0 0 20	0
	Lythrum salicaria	% Cover	Outside Quadrat Combined Maximum	15 115 809	2 20 61	4 27 434	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0	0 0 0	0 0 0	0 0 0	2 84 688	0 7 68	0 8 85	1 19 110	1 20 173	1 17 161
	Cardamine	Height % Cover	General Inside Quadrat Maximum	625 0 0	46 0 0	261 5 282	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	593 1 196	50 0 0	69 0 0	97 20 75	159 27 275	153 26 282
15	Epilobium	% Cover	General Inside Quadrat Maximum	0 0 0	0 0 0	163 12 298	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	175 0 0	0 0 0	0 0 0	54 6 85	219 11 415	229 12 391
	Holcus lanatus	% Cover Height	General Inside Quadrat Maximum	0 0 0	0 0 0	54 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	59 0 0	283 2 82	268 2 129
	Phalaris arundinacea	% Cover Height	General Inside Quadrat Maximum General	0	0	0	0	0	0	0	0	0	1 307 277	0	0	0	0	0
	Lythrum salicaria	% Cover	Inside Quadrat Outside Quadrat Combined Maximum	100 15 115 920	100 43 143 916	100 44 144 679	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	42 1 43 425	6 0 6 125	7 0 7 396	16 0 16 500	19 1 20 668	17 1 18 515
	Epilobium hirsutum	% Cover Height	General Inside Quadrat Maximum	723 0 0	698 0 0	560 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0	0 0 0	0 0 0	0 0 0	328 0 0	90 0 0	257 1 90	296 6 380	301 10 643	245 12 616
18	Holcus lanatus	% Cover Height	General Inside Quadrat Maximum General	0	0	0	0 0 0	0	0	0	0 0 0 0	0 0 0	48 441 162	0	39 4 64 64	260 7 67 67	268 15 316 198	205 14 237 135
	Impatiens glandulifera	% Cover Height	Inside Quadrat Maximum General	0 0 0	0 0 0	0 0 0	000000000000000000000000000000000000000	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	4 862 827	20 1624 1340	22 1783 1408
	Urtica dioica	% Cover Height	Inside Quadrat Maximum General	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	3 96 64	8 242 236

 Table 6.3: Vegetation Heights and Areas during the Study Period For Lythrum salicaria at Magna Park

Figure 6.3: Lythrum salicaria flowering 2015

Figure 6.4: Lythrum salicaria regrowing after a dought induced stress episode
Filipendula ulmaria

The data for the quadrats where *Filipendula ulmaria* was grown as the target species can be found in Table 6.4.

Filipendula ulmaria had a mixed start to the first year, struggling in those quadrats where hydraulic flow issues and subsequent drought occurred, but thriving in others, where the plant just expanded its leaf coverage outside of the quadrat. *Filipendula ulmaria* survived in all of the quadrats during the first year, however no flowering occurred.

In all of the quadrats, this aquatic plant came out of dormancy and showed visible above ground growth at the start of 2016. However, at this time the owners of the site had just finished restoring the other half of the original treatment reedbeds on the opposite side of the lake and the main water flow was subsequently diverted as described in Section 6.1.2. This resulted in intermittent water stress affected the *Filipendula ulmaria* in the same way as *Lythrum salicaria* above, with the plant trying to regrow after a period of drought.

During 2015, but more so in 2016, it was observed that other species more commonly associated with colonisation of drier habitats began to colonise the channels and were expanding their coverage within the quadrats. These species included *Urtica dioica*, *Holcus lanatus* and *Persicaria maculosa*, and it was observed that their growth was predominantly limited to the compost area within the quadrats and struggled on the adjacent bare gravel. As with *Lythrum salicaria*, where *Phalaris arundinacea* and other aquatic species planted during the refurbishment were present adjacent to the quadrats, they continually struggled to survive and started to regrow during the periods when water was available, before shrivelling up during the next management period when effluent was diverted to the new beds.

Filipendula ulmaria is an early flowerer and the drought which occurred early in the season (when the plant should have been starting to flower) appeared to have had an adverse effect, with only a couple of flowers observed during 2016. It was subject to herbivory from field vole and rabbit during both years, however as with *Lythrum salicaria* this was minor when compared to the herbivory recorded within Reedbed 2 at Rugeley. During winter 2015/2016 the rabbits also dug into the compost within the quadrats in several of the reedbeds scattering it around.

Although *Filipendula ulmaria* was subject to bouts of water stress and herbivory, it managed to survive in all bar one of the quadrats, with the area coverage in two of the quadrats being 78 % and 57 % at the end of the study period. Quadrat 13 (the one quadrat which suffered 100 % fatalities) and Quadrat 2 (where *Filipendula ulmaria* was observed struggling to survive) were both affected by the water management regime imposed and not through competition with other species.

				2015					2016									
Quadrat	Species	(Cover	Value r = %, Height = mm)	August	September	October	November	December	January	February	March	April	May	June	July	August	September	October
		% Cover	Inside Quadrat Outside Quadrat	10 0	24	27	0	0	0	0	0	0	4	4	2	2	3	3
	Filipendula ulmaria		Combined	10	24	27	0	0	0	0	0	0	4	4	2	2	3	3
		Height	General	18	176	136	0	0	0	0	0	0	48	61	94 73	125 90	130 91	90 77
	Cardamine	% Cover	Inside Quadrat	0	16	17	0	0	0	0	0	0	4	2	0	0	0	0
	flexuosa	Height	General	0	58	122	0	0	0	0	0	0	62	86	0	0	0	0
	Geranium molle	% Cover	Inside Quadrat Maximum	0	4 53	5 49	0	0	0	0	0	0	0	0	0	0	0	0
		Height	General	0	41	38	0	0	0	0	0	0	0	0	0	0	0	0
2	Holcus lanatus	% Cover	Maximum	0	12	257	0	0	0	0	0	0	55	126	179	157	238	268
2		% Cover	General	0	147	120	0	0	0	0	0	0	51 0	105	147	121	168 3	186
	Persicaria maculosa	Height	Maximum	0	0	0	0	0	0	0	0	0	0	0	0	76	292	354
		% Cover	General Inside Quadrat	0	0	0	0	0	0	0	0	0	0	0	0	56 0	113 0	129 1
	Phalaris arundinacea	Height	Maximum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	392
	Banunculus	% Cover	Inside Quadrat	0	0	0	0	0	0	0	0	0	6	7	3	0	0	0
	sceleratus	Height	Maximum	0	0	0	0	0	0	0	0	0	110 95	161	186	0	0	0
		% Cover	Inside Quadrat	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	l ypha latifolia	Height	General	0	0	0	0	0	0	0	0	0	0	0	0	0	921 768	1242 896
		% Cover	Inside Quadrat	25	95	98	0	0	0	0	0	0	42	42	40	36	36	34
	Filipendula ulmaria		Combined	25	96	99	0	0	0	0	0	0	42	42	40	36	36	34
		Height	Maximum General	32 49	127	130	0	0	0	0	0	0	266 230	357 261	439 280	485 297	488 147	462
	Cardamine	% Cover	Inside Quadrat	0	0	0	0	0	0	0	0	0	0	0	0	0	5	6
	flexuosa	Height	General	0	0	0	0	0	0	0	0	0	0	0	0	0	57	82
	Holcus lanatus Phalaris	% Cover	Inside Quadrat Maximum	0	0	0	0	0	0	0	0	0	46 355	48 52	46 264	42 294	44 253	44 270
6		Height	General	0	0	0	0	0	0	0	0	0	254	232	216	279	214	174
		% Cover	Maximum	3 1183	1154	341	0	0	0	0	0	0	17 826	1106	1239	1317	17	16
	aiunumacea	Meight % Cover	General	497	493	341	0	0	0	0	0	0	783	971 4	1150 6	1190 8	1167	1107
	Rumex obtusifolius	Height	Maximum	0	0	0	0	0	0	0	0	0	180	217	229	261	290	282
	Veronica	% Cover	General Inside Quadrat	0	0	0	0	0	0	0	0	0	180 3	217 2	229 0	261 0	290 0	282 0
	anagallis-	Height	Maximum	0	0	0	0	0	0	0	0	0	152	290	0	0	0	0
	aqualica		Inside Quadrat	35	31	28	0	0	0	0	0	0	65	70	72	80	79	78
	Filipendula	% Cover	Outside Quadrat Combined	0 35	0 31	0 28	0	0	0	0	0	0	0 65	0 70	0 72	1 81	4 83	5 83
	ulmaria	Height	Maximum	176	395	332	0	0	0	0	0	0	296	485	510	544	630	616
	Cardamine	% Cover	Inside Quadrat	0	82	83	0	0	0	0	0	0	35	<u>429</u> 6	458 0	0	0	0
	flexuosa Epilobium hirsutum	Height	Maximum General	0	349 301	401	0	0	0	0	0	0	185	306 216	0	0	0	0
		% Cover	Inside Quadrat	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0
11		Height	General	0	0	0	0	0	0	0	0	0	185	0	0	0	0	0
	Persicaria maculosa	% Cover	Inside Quadrat Maximum	0	0	0	0	0	0	0	0	0	0	0	0	0	1 365	1 745
		Height	General	0	0	0	0	0	0	0	0	0	0	0	0	0	365	745
	Phalaris arundinacea Veronica anagallis- aquatica	% Cover	Inside Quadrat Maximum	1 175	0	0	0	0	0	0	0	0	0	0	1 318	8	20 995	22 930
		Meight % Cover	General	153	0	0	0	0	0	0	0	0	0	0	228	654	917	875
		Height	Maximum	0	0	0	0	0	0	0	0	0	223	0	0	0	0	0
			General Inside Quadrat	0 40	0 70	0 68	0	0	0	0	0	0	206 12	0	0	0	0	0
	Filipendula	% Cover	Outside Quadrat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ulmaria	Height	Maximum	168	235	203	0	0	0	0	0	0	174	0	0	0	0	0
		% Cover	General Inside Quadrat	74 0	153 12	144 13	0	0	0	0	0	0	99 16	0 28	0 61	0 76	0 80	0 79
13	flexuosa	Height	Maximum	0	179	208	0	0	0	0	0	0	143	198	197	169	154	156
		% Cover	Inside Quadrat	0	0	0	0	0	0	0	0	0	6	105	1	2	3	3
	Holcus lanatus	Height	Maximum General	0	0	0	0	0	0	0	0	0	123	86	85 66	94 84	191 136	178
	Veronica	% Cover	Inside Quadrat	0	0	0	0	0	0	0	0	0	13	0	0	0	0	0
	anaganis- aquatica	Height	General	0	0	0	0	0	0	0	0	0	127	0	0	0	0	0
		% Cover	Inside Quadrat	78	48	22	0	0	0	0	0	0	10	6	18	55	59 2	57
	Filipendula ulmaria		Combined	80	48	27	0	0	0	0	0	0	10	6	18	55	59	59
		Height	General	235	494	489	0	0	0	0	0	0	132	84	314 271	346	525 319	439 296
	Cardamine	% Cover	Inside Quadrat	2	0	0	0	0	0	0	0	0	0	0	0	0	24 72	18
	flexuosa	Height	General	29	0	0	0	0	0	0	0	0	0	0	0	0	52	49
14	Epilobium	% Cover	Inside Quadrat Maximum	0	63	1 349	0	0	0	0	0	0	4 52	0	1 69	1 305	3 762	3 691
		Cover	General	0	48	349 80	0	0	0	0	0	0	47	0	50	261	395 Q	366
	Phalaris arundinacea	Heiaht	Maximum	0	873	1521	0	0	0	0	0	0	780	0	369	1407	1718	1508
		% Cover	General Inside Quadrat	0	489 0	642 0	0	0	0	0	0	0	691 1	0	319 0	874 0	1035 0	870 0
	Urtica dioica	Height	Maximum General	0	0	0	0	0	0	0	0	0 0	96 96	0	0	0	0	0

Table 6.4: Vegetation Heights and Areas during the Study Period For Filipendula ulmaria at Magna Park

Mentha aquatica

The data for the quadrats where *Mentha aquatica* was grown as the target species can be found in Table 6.4.

During the first year *Mentha aquatica* showed exceptional levels of growth, expanding its range within the quadrats and spreading its leaves beyond, whilst also flowering and setting seed. All of the quadrats experienced 100 % coverage (Figure 6.5) with an equivalent coverage outside of Quadrat 19, reaching 480 %.

During the second year of study, the area coverage and height for *Mentha aquatica* fluctuated on a monthly basis. As discussed earlier, this was predominantly due to the operational management on the reedbeds and the resulting drought induced stress. Figure 6.5 and Figure 6.6 are of the same bed before and after periods of drought, as are Figure 6.7 and Figure 6.8.

When subject to drought induced stress, *Mentha aquatica* died back to the rhizomes and stolons before re-growing. As with *Filipendula ulmaria*, this species survived in all but one of the quadrats. Again the quadrat which suffered 100 % fatalities was due to water stress and not competition with adjacent vegetation. This latter included flora more commonly associated with dry habitats which started to colonise the channels.

Mentha aquatica flowered and set seed during both years of the study period, but no grazing was observed on this species, though rabbits had dug within the compost layer during the winter of 2015/2016.

				2015										2016]								
Quadrat	Species	(Cover	Value (Cover = %, Height = mm)		September	October	November	December	January	February	March	April	May	June	July	August	September	October						
	Mentha aquatica	% Cover	Inside Quadrat Outside Quadrat Combined Maximum	100 17 117 568	100 99 199 518	100 135 235 448	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	1 14 15 53	3 19 22 194	7 21 28 350	10 22 32 612	11 24 35 349	11 24 35 352						
1	Holcus lanatus	% Cover	General Inside Quadrat Maximum	241 0 0	252 0 0	209 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	53 2 68	122 35 278	263 71 362	352 77 413	335 84 463	311 88 469						
•	Persicaria maculosa	% Cover	General Inside Quadrat Maximum	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	64 0 0	207 0 0	255 0 0	331 2 109	338 3 365	327 3 396						
	Phalaris arundinacea	% Cover	General Inside Quadrat Maximum	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	89 1 966	218 2 1355	249 8 1205						
	arananaooa	% Cover	General Inside Quadrat Outside Quadrat	0 100 24	0 100 74	0 100 83	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 76 179	0 66 141	0 53 86	556 45 54	811 41 29	747 31 14						
	aquatica	Height	Combined Maximum General	124 387 331	174 935 351	183 1182 389	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	255 572 315	207 682 371	139 767 385	99 832 412	70 867 449	45 891 462						
	Carex pendula	% Cover Height	Inside Quadrat Maximum General	0	2 887 815	2 1322 1194	0	0	0	0	0	0	3 744	3 987 855	3 1205 936	3 1108 314	4 1067 374	4 1061 384						
3	Holcus lanatus	% Cover Height	Inside Quadrat Maximum	0	0	0	0	0	0	0	0	0	0	0	5 85	11 140	16 277	18 246						
	Typha latifolia	% Cover Height	Inside Quadrat Maximum	0	2 971	3 1296	0	0	0	0	0	0	26 1028	29 1374	31 1569	4 786	5 1592	5 1619						
	Veronica anagallis-	% Cover	General Inside Quadrat Maximum	0 2 359	882 2 403	1007 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	890 0 0	1240 0 0	1507 0 0	589 0 0	1592 0 0	1619 0 0						
	aquatica Phragmites australis	% Cover	General Inside Quadrat Maximum	359 0 0	318 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 1 433	0 1 1226	0 1 1510	0 5 1176	0 6 1156	0 6 1011						
	Mentha aquatica	% Cover	General Inside Quadrat Outside Quadrat	0 100 31 131	0 100 63 163	0 100 68 168	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	433 87 28 115	1125 75 33 108	1465 72 31 103	1064 24 13 37	1051 26 10 36	690 24 7 31						
8		Height	Maximum General	561 422	560 472	592 490	0	0	0	0	0	0	405 235	590 342	727 391	861 208	949 173	912 147						
	Holcus lanatus	% Cover Height	Maximum General	0 0 0	0 0 0	0 0	0 0	0 0 0	0	0 0	0 0 0	0	0 0 0	0 0 0	0 0 0	91 61	3 247 183	4 391 250						
	Schoenoplectus lacustris	% Cover Height	Inside Quadrat Maximum General	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	38 1320 1115	41 1833 1690	43 2150 1998	0 0 0	0 0 0	0 0 0						
	Mentha	% Cover	Inside Quadrat Outside Quadrat Combined	100 28 128	100 129 229	100 138 238	0 0 0	0 0 0	0 0	0 0	0 0 0	0 0 0	12 14 26	0 0 0	0 0	0 0 0	0 0 0	0000						
	aquatica	Height	Maximum General	562 438	577 469	361 258	0 0 0	0 0 0	0	0 0	0 0 0	0 0 0	246 141	0 0 2	0 0 2	0 0 2	0 0 2	0						
17	Carex pendula	Height	Maximum General	0	0	0	0	0	0	0	0	0	435 373	439 319	464 352	566 395	582 367	544 373						
	Geranium robertianum	% Cover Height	Inside Quadrat Maximum General	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	5 108 59	6 112 51						
	Urtica dioica	% Cover Height	Inside Quadrat Maximum General	0 0 0	0 0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	6 63 63	21 371 183	24 383 190						
19	Phragmites australis	% Cover Height	Inside Quadrat Maximum General	0	0	0	0	0	0	0	0	0	0	0	1 470 416	5 1371 1252	6 1689 1348	6 1740						
	Mentha aquatica	% Cover	Inside Quadrat Outside Quadrat Combined	100 48 148	100 382 482	100 480 580	0 0 0 0	0 0 0 0	0 0 0 0	000000000000000000000000000000000000000	0 0 0 0	0 0 0 0	94 245 339	96 241 337	95 248 343	97 237 334	90 213 303	82 185 267						
	Carey pendulo	Height % Cover	General Inside Quadrat	410 0	434 0	349 0	0	0	0	0	0	0	282 8	312 1	495 1	798 1	581 1	226 1						
	Carex pendula	Height	General	0	0	0	0	0	0	0	0	0	585	46	324	672	1085	999						

Table 6.5: Vegetation Heights and Areas during the Study Period For *Mentha aquatica* at Magna Park

Figure 6.5: Mentha aquatica during 2015

Figure 6.6: *Mentha aquatica* after a dought induced stress episode. Note this is the same bed as Figure 6.5

Figure 6.7: *Mentha aquatica* growing well and competeing againts the main treatent species at the end of 2015. Note the two beds to the right having suffered from drought stress and recently filled with effluent.

Figure 6.8: *Mentha aquatica* after a dought induced stress episode at the end of 2016 Note this is the same bed as illustrated in Figure 6.7

Control

The control quadrats were not planted with any target species and contained only plants already present within the reedbeds (*Phalaris arundinacea*). The data for the control quadrats, and a comprehensive list of the species present in each can be found in Table 6.4. This table also shows that as with the quadrats containing the biodiversity enhancing species, the control quadrats experienced the same trials and tribulations with drought induced stress.

During the first year, *Phalaris arundinacea* survived in all quadrats until the end of the first growing season. The area coverage reached 100 % in one quadrat, however the hydraulic issues in the remaining quadrats appeared to limit its spread.

During the second year the effects caused by the hydraulic issues continued, with *Phalaris arundinacea* dying back to the base, before re-growing once the hydrology permitted. Again, during and after these periods of drought, flora more associated with colonising dry habitats started to colonise the channel, and quadrats.

With regards to herbivory, very minor grazing was observed on *Phalaris arundinacea*, though rabbits had dug within the compost layer during the winter of 2015/2016. *Phalaris arundinacea* survived in all of the quadrats, flowering and setting seed both years.

				2015					2016									
Quadrat	Species	(Cove	Value r = %, Height = mm)	August	September	October	November	December	January	February	March	April	May	June	ylul	August	September	October
	Agrostis stolonifera	% Cover Height	Inside Quadrat Maximum	0	0	0	0	0	0	0	0	0	13 175	14 290	11 201	0	0	0
	Cardamine	% Cover	Inside Quadrat Maximum	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1 84
	flexuosa	Height % Cover	General Inside Quadrat	0	0	126 0	0	0	0	0	0	0	0	0	0 5	0	48 4	68 3
	Holcus lanatus Lolium perenne	Height	Maximum General	0	0	0	0	0	0	0	0	0	72 63	70 63	71 64	81 61	188 159	224 198
4		% Cover	Inside Quadrat Maximum	0 0	0	0	0 0	0	0 0	0 0	0	0 0	4 54	4 319	3 401	0	0 0	0
	Dhalaria	% Cover	General Inside Quadrat	0 10	0 12	0 13	0 0	0 0	0 0	0 0	0 0	0 0	88 7	<u>97</u> 17	168 25	0 33	0 34	0 36
	arundinacea	Height	Maximum General	1124 729	1182 969	1192 1029	0	0	0 0	0 0	0	0	762 680	1060 922	1270 994	1506 961	1680 998	1679 1045
	Ranunculus repens	% Cover Height	Inside Quadrat Maximum	0	0	2 38	0	0	0	0 0	0	0	0	0	0	0	0	0
		% Cover	General Inside Quadrat	0	0	38	0	0	0	0	0	0	0	0	0	0 6	0 42	0 51
	υπιςα αιοιςα	Height	General	0	0	52 52	0	0	0	0	0	0	0	0	0	177 146	413 348	455 361
	Cardamine flexuosa	% Cover Height	Maximum	0	0	0	0	0	0	0	0	0	0	0	0	0	4 37	5 73
	Carex pendula	% Cover	Inside Quadrat Maximum	0	0	0	0	0	0	0	0	0	0	0	0	0	1 908	1 948
		Height % Cover	General Inside Quadrat	0	0	0	0	0	0	0	0	0	0	0	0	0	908 0	948 0
	Holcus lanatus	Height	Maximum General	0	0	0	0	0	0	0	0	0	138 76	92 63	0	0	0	0
5	Iris pseuadacorus	% Cover	Inside Quadrat Maximum	0	0	0	0 0	0	0 0	0 0	0	0 0	1 595	1 612	1 638	1 639	1 635	1 614
	Phalaris arundinacea Urtica dioica	% Cover	General Inside Quadrat	0 5	0 100	0 100	0 0	0	0 0	0 0	0	0	<u>595</u> 18	<u>612</u> 11	638 12	639 8	<u>635</u> 8	<u>614</u> 6
		Height	Maximum General	1281 741	1848 1657	1853 1694	0	0	0	0 0	0	0	570 553	989 839	1397 992	926 996	1042 977	992 947
		% Cover Height	Inside Quadrat Maximum	0	0	0	0	0	0	0	0	0	17 510	39 635	70 862	73 590	89 738	92 727
		% Cover	General Inside Quadrat	0	0	0	0	0	0	0	0	0	475	541 0	839	550 0	649 2	595 2
	Carex pendula	Height	General	0	0	0	0	0	0	0	0	0	0	0	0	0	349 285	60 60
	Holcus lanatus	% Cover Height	Maximum	0	0	0	0	0	0	0	0	0	57	0	0	0	0	0
	Iris pseuadacorus	% Cover	Inside Quadrat Maximum	0	1 303	1 283	0	0	0	0	0	0	0	0	0	0	0	0
12	Paraiaaria	Height % Cover	General Inside Quadrat	0	303 0	283 0	0	0	0	0	0	0	0	0	0	0	0	0
	Persicaria maculosa	Height	Maximum General	0 0	0	0	0	0	0	0	0	0 0	48 48	0	0	0 0	0 0	0
	Phalaris arundinacea	% Cover Height	Inside Quadrat Maximum	22 822	9 1152	8 1164	0	0	0	0 0	0	0	1 249	0	1 305	2 743	2 1082	2 60
		% Cover	General Inside Quadrat	648 0	769 0	750	0	0	0	0	0	0	234 0	0	257 9	675 64	820 72	60 72
	υπιςα αιοιςα	Height	General	0	0	0	0	0	0	0	0	0	0	0	43	345 0	669 7	60 60 7
	Cardamine flexuosa	Height	Maximum	0	0	0	0	0	0	0	0	0	0	0	0	0	157 126	177
	Carex pendula	% Cover	Inside Quadrat Maximum	0	0	0	0	0	0	0	0	0	0	0	0	1 74	3 260	3 243
16	,	Height % Cover	General Inside Quadrat	0 0	0	0	0 0	0	0 0	0 0	0 0	0	0	0 0	0 0	57 1	241 1	223 1
	Iris pseuadacorus	Height	Maximum General	0	0	0	0	0	0	0	0	0	371 245	0	0	64 64	183 183	179 179
	Phalaris arundinacea	% Cover Height	Inside Quadrat Maximum	25 933	6 201	8 636	0	0	0	0	0	0	1 132	0	0	2 74	5 589	5
	Cardamine	% Cover	Inside Quadrat	0	0	470	0	0	0	0	0	0	0	0	0	48	297 11 126	140
	flexuosa	Height % Cover	General	0	0	30 4	0	0	0	0	0	0	0	0	0	0	97 29	<u>114</u> 32
	Carex pendula	Height	Maximum General	0	99 85	235 206	0	0	0	0	0	0	215 153	626 328	987 431	1067 478	1294 489	1036 388
	Holcus lanatus	% Cover	Inside Quadrat Maximum	0 0	1 61	4 293	0 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	1 77	2 134
		% Cover	General Inside Quadrat	0	49 0	190 0	0	0	0	0 0	0	0	0	0	0	0	54 2	134 2
	Iris pseuadacorus	Height	Maximum General	0	0	0	0	0	0	0	0	0	372 281	653 538	667 562	641 586	669 585	668 0
20	Lolium perenne	% Cover Height	Inside Quadrat Maximum	0	0	0	0	0	0	0	0	0	64 196	36 64	4 61	0	0	0
	Phalaris	% Cover	Inside Quadrat	35 1497	16 776	18	0	0	0	0	0	0	124 11 574	23 947	40 37 1470	38 1757	40	41
	arundinacea	Height % Cover	General Inside Quadrat	930	<u>617</u>	918 0	0	0	0	0	0	0	260 1	618 0	1278 0	1352 0	1328 0	1300 0
	Schoenoplectus lacustris	Height	Maximum General	0	0	0	0	0	0	0	0	0	727 378	0	0	0	0	0
	Urtica dioica	% Cover	Inside Quadrat Maximum	0 0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	7 71	11 176
	Veronica	% Cover	General Inside Quadrat	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 2	0 5	0 0	00	54 0	154 0
	anagallis- aquatica	Height	Maximum General	0	0	0	0	0	0	0	0	0	168 160	427 339	0	0	0	0

 Table 6.6: Vegetation Heights and Areas during the Study Period For Control Quadrats at Magna Park

6.4 Field Study Discussion

The field study was undertaken in an operational setting to investigate Hypothesis 9: "Where the chosen floral species survive, there will be no difference between retro-planting these species within a mature reedbed, compared to planting these species within a newly created/restored reedbed and no single floral species will take over and oust other floral species".

As described in Section 5, the two field studies were designed to permit replication and thus to enable statistical analysis the results. However, given all of the issues described in Sections 6.2 and 6.3 no sensible statistical analysis has been possible, and the following evaluation is therefore predominantly qualitative.

6.4.1 Mature Reedbeds

The two mature reedbeds studied at Rugeley resulted in differing results. Within Reedbed 1 both *Lythrum salicaria* and *Filipendula ulmaria* had individuals surviving until the end of the first year. However, these individuals struggled to compete for light against the mature *Phragmites australis* stands. *Lythrum salicaria* appeared to fair worse with its stems remaining thin and weak. Though the *Filipendula ulmaria* did not fare much better, this species was putting energy into its culms (observed by the culms becoming visibly larger) ready to regrow the following year. Unfortunately, the dense mulch created by the standing dead *Phragmites australis* litter collapsing during the winter storm of 2015/2016 smothered the biodiversity enhancing species to such an extent that they failed to recover.

Reedbed 2 on the other hand had different issues and hence results. During the first year the biodiversity enhancing species looked visibly healthier and *Lythrum salicaria* was growing taller than in Reedbed 1. This could be due to the *Phragmites australis* cover being visibly less dense and letting more dappled light reach the ground. The two reedbeds are used to investigate new treatment opportunities by the operators whose business is to design reedbed treatment systems and consequently the reason for the two beds maturing differently was due to the effluent pre-treatment's which the reedbeds had been subject to over the years, resulting in a differing nutrient availability for the reeds.

Although Reedbed 2 was subjected to the same winter storms as Reedbed 1, the management of the reedbed in forking the substrate to permit drainage, combined with the cessation of effluent input, allowed the bed to dry out. This prevented the thick wet mulch of Reedbed 1 from forming and as such the biodiversity enhancing species were not smothered. In 2016, both of the

biodiversity enhancing species started to grow well, however the dry nature of the reedbed permitted herbivores access and a sustained grazing pressure followed, which limited their growth. *Lythrum salicaria* where it managed to gain some height and turn woody managed to flower and set seed. *Filipendula ulmaria* on the other hand did not manage to flower, with the flower shoots it produced grazed when they appeared.

From the results of the mature and established reedbeds, it is recommended that the biodiversity enhancing species should not be retrofitted, particularly where the mature reeds are dense and where limited management is undertaken. It may be feasible to retrofit mature reedbeds with biodiversity enhancing species where the reeds are dense and appropriate management, such as harvesting at the end of the growing season, is undertaken. However this would require further research and is discussed further in Section 7 and 8.

Where the established reeds are not dense and the beds are intermittently used to treat effluent, this study showed that the biodiversity enhancing species survived. However, in this study their growth was effected through herbivory and an appropriate management recommendation is made in Section 7.

6.4.2 Newly Refurbished Reedbeds

Although the newly refurbished reedbeds at Magna Park were predominantly planted with *Phalaris arundinacea* rather than *Phragmites australis*, around the quadrats, this permitted an insight of how the biodiversity enhancing species interacted with a different treatment species.

Where the biodiversity enhancing species were planted within the newly refurbished reedbeds in 2015, they all managed to survive their first year and spread their range. In the quadrats where they did not do too well, the plants were subject to drought induced stress caused by the uneven construction of the bed surface and the water management of the reedbeds, rather than through competition from other flora. This was substantiated by the main treatment species also dying back at the same time as the biodiversity enhancing species.

The 2016 results were affected even more by the hydraulic issues, and were compounded by the operators for Magna Park diverting the main flow to the newly refurbished reedbeds on the opposite side of the lake.

Even though the water management regime employed resulted in intermittent drought induced stress, the biodiversity enhancing species survived where the water management permitted, and they actively competed with the treatment species (Figure 6.7) and expanded their ranges. This shows that it is possible to plant biodiversity enhancing species within reedbeds planted with *Phalaris arundinacea* and that they can survive for the first two years. Vymazal (2015), which was published after the start of this study, notes that *Phragmites australis* can be resilient to invasion by other wetland flora, whilst *Phalaris arundinacea* is commonly invaded. This would indicate that the biodiversity enhancing species could survive over a longer period and as such further research would be required to substantiate this and is recommended in Section 7.

Due to the external influencing factors which occurred at the experimental sites, the field studies did not provide enough data to statistically prove or disprove Hypothesis 9 as had been planned. However, results obtained indicate that it is feasible to add biodiversity enhancing species to newly created/refurbished reedbeds containing *Phalaris arundinacea*, and that it may be possible under certain circumstances to retrofit existing reedbeds containing *Phragmites australis* providing specific management practices are in place.

The next Section, Section 7, provides recommendations for design principles and management procedures, and this is followed by Section 7 where further supporting research is discussed.

7. DESIGN PRINCIPLES AND MANAGEMENT RECOMMENDATIONS

7.1 Introduction

Based upon the results obtained from this study, this section provides guidance on the parameters required for biodiversity enhancing species to be incorporated into a small scale constructed wetlands within the U.K.

7.2 Species Selection and Pollutant Concentrations

7.2.1 Nutrients

The results for the full competition microcosms showed that the roots of all three of the biodiversity enhancing species, *Lythrum salicaria*, *Filipendula ulmaria* and *Mentha aquatic*, did not penetrate deep into the gravel layer and that the roots of *Phragmites australis* were successfully growing under those of the biodiversity enhancing species. Therefore the introduction of these species should not affect the hydraulics or root treatment efficiency of sub-surface flow constructed wetlands which utilise *Phragmites australis* as their key treatment species. Vymazal (2015) reported that where reedbeds containing *Phalaris arundinacea* have been overgrown at the inlet and outlets by weed species, there was no difference in discharge quality. With *Phragmites australis* australis having a large rhizome system, the same should apply.

None of the biodiversity enhancing species became dominant and out competed the other species during the microcosm study. As all species survived at reasonable nutrient concentrations and did not prevent the roots of *Phragmites australis* from growing within the gravel layer, all three of the species studied are suitable for use for biodiversity enhancement.

All three of the biodiversity enhancing species survived in the entire range of nutrient concentrations tested in the microcosm study. Therefore, it can be extrapolated that where nutrient dosing is intermittent (such as within a system treating urban run-off) and providing that nutrient levels do not exceed those levels tested, then all three of the species can be utilised in such a system. It is not recommended that these species be planted in nutrient levels which exceed 150 mg/l nitrogen until further research has been undertaken on the species dynamics and treatment potential at these higher concentrations.

7.2.2 Salinity

The salinity levels employed in the microcosm study, had fatal consequences for all three of the biodiversity enhancing species. The highest salinity loading of 15 ‰ was fatal to *Lythrum salicaria*, which also struggled to survive at 10 ‰ salinity. At 5 ‰ salinity the area coverage was 16 %, which is a reasonable for providing biodiversity enhancing effects. *Filipendula ulmaria* and *Mentha aquatica* suffered fatal effects at salinity loadings of 15 ‰ and 10 ‰. They struggled to survive within the 5 ‰ salinity loading and some fatal effects occurred which indicates that the 5 ‰ salinity concentration is at the upper end of their survivability limits.

Where the species survived, none of the biodiversity enhancing species became dominant and out competed the other species during the study. Furthermore, none of the biodiversity enhancing species prevented the roots of *Phragmites australis* from growing within the gravel layer, and therefore all three of the species studied are suitable for use for biodiversity enhancement providing salinity concentrations are below toxic levels.

7.2.3 Summary

From the pollutant concentration studies, the following species recommendations are made:

- *Phragmites australis* will survive at all of the nutrient and salinity levels studied and can be planted for all concentrations tested;
- where the salinity levels are over 5 ‰, none of the biodiversity enhancing species studied within this research should be planted;
- where nutrient (nitrogen) concentrations are 150 mg/l or less and salinity levels do not exceed 5 ‰, *Lythrum salicaria* can be planted as a biodiversity enhancing species;
- where nutrient concentrations are 150 mg/l or less and salinity levels do not exceed 0.05 ‰, *Lythrum salicaria, Filipendula ulmaria and Mentha aquatica* can be planted as biodiversity enhancing species;
- where nutrient concentrations are 150 mg/l or less and the salinity levels do not exceed intermittent doses of a couple of ‰ (such as infrequent urban run-off from roads following de-icing) all three of the biodiversity enhancing species can be planted as they all survived 5 ‰ salinity for a short period of time.

7.3 Constructed Wetland and Media Selection

The design methodology for the microcosm study was based upon a subsurface flow constructed wetland with gravel media. The 10 mm pea gravel used in the beds of constructed wetlands is an appropriate rooting medium for the biodiversity enhancing species studied. The majority of these species roots were present within the upper layers of the growing media, and thus the slightly -228 -

greater bed depth of standard subsurface flow designs would not have any adverse affect on the species diversity. Consequently, the recommended designs for the depths of subsurface flow wetlands found within the standard design manuals of Cooper *et al.*, (1996) and Kadlec & Wallace (2009) should continue to be followed.

As discussed in Section 7.2, all floral species survived successfully at all nutrient concentrations up to 150 mg/l, the initial recommendation would be for their incorporation within subsurface flow constructed wetlands. However, the effect of the different stem physiology and densities upon the filtration of effluents in surface flow wetlands was not explored, and thus no guidance on the use of the biodiversity enhancement as an aid to treatment can be provided for surface flow wetlands.

The microcosm study demonstrated that the roots of the biodiversity enhancing species occurred predominantly within the upper humus layer and only just penetrated into the gravel layer. This was the case for *Lythrum salicaria* when the roots of *Phragmites australis* were present, however, in the absence of *Phragmites australis* roots, they penetrated further into the gravel layer. Due to the reliance on the humus layer by the biodiversity enhancing species, when they are employed in treatment beds, it is recommended that a 30 mm artificial litter/humus layer is installed when the constructed wetlands are built to aid establishment. Subsequently the accumulation of leaf litter should self sustain this layer. This will also have an additional beneficial effect due to the insulation it can provide during cold spells.

The root dividers employed in the microcosm study provided some beneficial effects for the biodiversity enhancing species as discussed in Section 6. However, due to the fact that *Phragmites australis* eventually penetrated beneath the root barriers, were such barriers installed on a full scale bed, it is likely that the beneficial effect would only be a short-term one. Within the full competition microcosms, all of the species survived at sufficient levels to contribute to biodiversity enhancement. Thus, the installation of root dividers is not recommended and species should be mixed into the same bed and allowed to compete with each other. To allow the different species to become established before full competition takes effect, each species should be planted in groups of several individuals, rather than fully mixed.

The more in-depth design methodologies take account of the inlet concentrations and the required effluent concentrations, hydraulic retention times which are calculated using ET, natural input, temperature, the hydraulic efficiency of bed media, the temperature effects of microbial activity and any specific pollutants within the waste liquid being treated which might require longer retention times (Section 4.5). The microcosm study identified that the competition between the different species resulted in greater water usage from the plants. It also identified that where salinity was

present, less water was required. If more detailed equations are being utilised to design the reedbed then the increased water use rate for a competitive floral community should be taken into account. The lower water requirements for higher salinity values should also be considered if the influent is likely to have any saline input (i.e. runoff from de-iced roads).

7.4 Planting Densities and Layout

In the microcosms and field study quadrats the planting densities were increased above those recommended for *Phragmites australis* in guidelines, such as those of Cooper *et al.*, (1996). In the microcosms, this was to allow for a more rapid colonisation of all the available areas and therefore to reduce the acclimatisation period required before the treatment research could commence. As no adverse effects were observed, the density employed (29 90mm pots per m²) within the microcosm study for the biodiversity enhancing species can be utilised when planting these species.

A lower density of plug plants (16 plug plants per m²) was used within the field study, but still above the recommended guidelines for *Phragmites australis* (Cooper *et al.*, (1996) recommend planting four plugs of *Phragmites australis* per m²). The results indicate that when the biodiversity enhancing species are planted within newly created/refurbished reedbeds containing *Phalaris arundinacea*, they will survive. However, in the mature reedbeds, the biodiversity enhancing species suffered fatal effects or were adversely impacted. Given the different effects experienced, such as herbivory and variable water management regimes, it is not possible to say if the lower planting densities used in the field study relative to the microcosm study contributed to the adverse effects.

Where *Phragmites australis* is the key treatment species, it is not recommended that *Lythrum salicaria, Filipendula ulmaria and Mentha aquatica* are planted at lower densities than those used in the microcosm study until further research has been undertaken on the effects this would have. Where *Phalaris arundinacea* is the key treatment species, the results indicate that within newly created/restored reedbeds, the lower planting densities go below this for these beds until further research has been undertaken on the effects this would have. It is also not recommended that planting densities go below this for these beds until further research has been undertaken on the effects this would have. In accordance with the methodology presented within this study, pot and plug plants should be employed until further research supports the use of other size plants. *Phragmites australis* can be planted as either plug plants or as rhizomes to the densities recommended in Cooper *et al.*, (1996).

As discussed in Section 4.5 to ensure that the roots of *Phragmites australis* can colonise the gravel media areas below the biodiversity enhancing species (and thus maintain the treatment potential of the constructed wetland), the width of the groups containing the biodiversity enhancing species should not exceed 3 m until further research suggests otherwise.

Vymazal (2015) found that when weed species colonise the inlet and outlet zones of *Phalaris arundinacea* beds, there was no difference in discharge water quality. This would indicate that planting the groups of biodiversity enhancing species (either as single species or multiple species) as strips across the inlet and outlet zones would not adversely affect the treatment capacity of the wetlands. Clearly this is dependent upon the size of the reedbed treatment system and further research should be undertaken to confirm this.

Where strips of biodiversity enhancing species are being retrofitted to existing reedbeds, it is recommended to locally remove the *Phragmites australis* (and rhizomes where feasible) from the strip being planted. This will give the biodiversity enhancing species time to become established before having to compete with fully mature plants.

7.5 Operational Management and Maintenance

The biodiversity enhancing species have been chosen to avoid any perceivable extra costs required in the operation and future maintenance of the constructed treatment wetland, above those required or *Phragmites australis*. The operation and future maintenance of the constructed treatment wetland should therefore be undertaken as set out within the standard design and operation manuals.

Maintenance activities should avoid any adverse impacts to the biodiversity enhancing species. Weeding operations should be undertaken by hand, and no herbicides which could kill the biodiversity enhancing species utilised. Harvesting of *Phragmites australis* is undertaken in some constructed wetlands for various reasons including to remove nutrients. Where biodiversity enhancing species have been planted in a newly created/refurbished reedbed, this should be avoided until further research identifies whether or not harvesting operations have an adverse effect.

When retrofitting to mature reedbeds, it may be beneficial to harvest the *Phragmites australis* immediately adjacent to the biodiversity enhancing groups until they become established. The

affects of the harvesting on the humus layer, the species establishment and the duration over which it is undertaken will require further research.

A free surface water layer was added to the surface of the microcosms to replicate the effect of intermittent "pooling" of effluent upon the different species. The presence of this pooling layer had no adverse effect upon the species diversity and, should it occur within a subsurface flow wetland, no additional operational or maintenance is recommended.

The pooling and occasional flooding are employed in conventional constructed reedbeds to control weed species (Cooper *et al.*, 1996; Vymazal 2015) and herbivores (Cooper *et al.*, 1996). Given the impact of voles on the biodiversity enhancing species at Reedbed 2 of the Rugeley study, it is recommended that this management option is utilised should weed species and herbivory become an issue. Action should also be taken to ensure that any standing dead vegetation which collapse into pooled water on the surface of a bed does not cause the formation of a thick impenetrable mulch blanket, such as that which occurred in Reedbed 1.

7.6 Summary of Recommended Design Principles and Management Practices

For ease of access the recommended design principles and management practices that have emerged from this research project s discussed in Sections 4.5 and 7 are summarised in Table 7.1.

	Damana	4	Operation	Suitable for use							
Diadiyaraity Enhancing	Parame	eters	Concentration	Lythrum salicaria	Filipendula ulmaria	Mentha aquatica					
Species Suitable for Planting in Differing		Nitrogen	Intermittent dosing up to 150 mg/l	Yes	Yes	Yes					
			Salinity levels greater than 5 ‰	No	No	No					
	Potential Pollutant		Salinity levels do not exceed 5 ‰	Yes	No	No					
	i otentiai i onutant	Salinity	Salinity levels do not exceed 0.05 ‰	Yes	Yes	Yes					
200013.			Salinity levels do not exceed intermittent doses of a couple of ‰ (such as infrequent urban run-off from roads following de-icing)	Yes	Yes	Yes					
	Growing	Media	10 mm pea gravel with 30 mm humus layer.								
	Depth of Growing Me Dimens	edia and Reedbed ions	The standard design manuals e.g. Cooper et al., (1996) and Kadlec & Wallace (2009) should continue to be followed.								
Treatment Reedbed Design for Horizontal Subsurface Flow Reedbeds	Sizing Using Hydr Times to Treat	aulic Retention t Pollutants	The microcosm study identified that the competition between the different species resulted in greater water usage from the plants. It also identified that where salinity was present, less water was required. If more detailed equations are being utilised to design the reedbed then the increased water use rate for a competitive floral community should be taken into account. The lower water requirements for higher salinity values should also be considered.								
	Root Div	viders	In the absence of intensive management, root dividers are only likely to have a short term beneficial effect for the biodiversity enhancing species and as such are not recommended for use in low maintenance reedbed treatment wetlands.								
	Retrofitting M	nes where feasible) from th I to compete with fully matu	es where feasible) from the strip being planted. This will give the o compete with fully mature plants.								
		Phragmites australis	The standard design manuals e.g. Cooper <i>et al.</i> , (1996) and Kadlec & Waused in the microcosm study.	allace (2009) should contin	ue to be followed. Four plug	plants per m ² were					
		Lythrum	Where Phalaris arundinacea is the main treatment species, sixteen plug	en plug plants per m ² were used in the field study.							
	Planting Densities	salicaria,	With the wrong treatment species being planted in the newly refurbished	es australis is the key reedbe	d treatment species						
		Filipendula	being utilised, the lower planting density of sixteen plug plants per m ² cannot be fully recommended until further research is undertake								
Planting Densities and		ulmaria and	lower planting density should be appropriate, until the further research has been undertaken the minimum tested planting density should be appropriate.								
Layout		Mentha aquatica	microcosm study of 29 90 mm pots per m should be used.								
	Planting	Grouping	i o allow the different species to become established before full competition takes effect, each species should be planted in groups of several individuals rather than fully mixed. The groups of different species could be combined to make blocks or strips of multiple species in a mosaic or kept as single species groups.								
	Anangement	Size Of	The width of the strips or blocks containing the biodiversity enhancing species should not exceed 3 m until further research suggests of								
		Grouping	however the length can be longer.								
Operational Management and Maintenance	Weed Species a	nd Herbivory	The pooling and occasional flooding are employed in conventional constr and herbivores (Cooper <i>et al.</i> , 1996). Given the impact of voles on the bio recommended that this management option is utilised should weed speci	ucted reedbeds to control v odiversity enhancing specie es and herbivory become a	weed species (Cooper <i>et al.</i> , es at Reedbed 2 of the Rugel an issue.	1996; Vymazal 2015) ey study, it is					
		New Reedbeds	Harvesting should be avoided until further research identifies whether or not harvesting operations have an adverse effect on the humus layer which the biodiversity enhancing species use to become established								
	Harvesting Mature When retrofitting to mature reedbeds with an established humus layer, it may be beneficial to harvest the <i>Phragmites australis</i> immediate to the biodiversity enhancing groups until they become established. Mature Reedbeds Action should also be taken to ensure that any standing dead vegetation which collapse into pooled water on the surface of a bed does not formation of a thick impenetrable mulch blanket which could smother the biodiversity enhancing species.										

 Table 7.1: Summary of Design Principles and Management Practices

8. PROJECT EVALUATION AND FURTHER RESEARCH REQUIREMENTS

8.1 Introduction

This section provides an evaluation of the successes and limitations of the project (Section 8.2) and highlights areas of study which require further research (Section 8.3).

8.2 Project evaluation

8.2.1 The project

The original project aim was to design and implement an experimental hybrid constructed wetland treatment system to ameliorate the pollutants found within the leachate of old landfills. Due to issues associated with obtaining a waste licence for the experimental system, as discussed in Section 1, the original study was cancelled when four years of negotiations between the landfill owners and the Environment Agency collapsed. Prior to its cancellation, a microcosm system had been fully designed as described in Steggall *et al.*, (2005), and full planning permission had been granted by the county council, with full support from the local parish council. Since the original project was ceased, the Environment Agency have developed mechanisms to facilitate such research without the requirement of a waste management licence. This includes the Environment Agency providing confirmation that they will not prosecute certain studies on a case by case basis. As such if the original project was proposed today, it is likely that it would be given the go ahead by the Environment Agency.

When the subsequent literature search identified there to be a lack of knowledge concerning the use of biodiversity enhancing species, and their survivability within small scale constructed treatment wetlands, a new project involving microcosms was formulated to explore this subject. This new study was completed on a part-time basis, which permitted a long-term plant competition study to be undertaken within the microcosms. This study took place over a period of three and a half growing seasons, contributing to the long-term survivability knowledge of the biodiversity enhancing species, whereas previous studies on these species were generally short term, over a maximum duration of two years or less (Kadewa, 2010; Pauli *et al.*, 2001 and Zhu *et al.*, 2010).

Situating the microcosm study site within a single readily accessible area reduced the requirement for travelling to field sites (thus reducing costs) and allowed for the water requirements to be maintained on a frequent (sometimes weekly) basis. This level of control was not required during the subsequent field study within operational sites (see Section 5) as they were being managed by the site owners. However, other unforeseen issues occurred which would have been easier to overcome had control been in the hands of the researcher.

8.2.2 Experimental Design - Microcosm Study

Vegetation Measurements and Replication

Since the resources were not available to allow for large scale replicates of each microcosm, the experimental design allowed for the planting of four of each of the chosen species per microcosm to provide some degree of repetition. Besides recording the area coverage of each species, the planned sampling regime for the vegetation during the operational period in the microcosm study, was to randomly select samples from each species in each microcosm and measure the stem widths and heights. This would have allowed for statistical analysis of the data to be carried out for each month during the study period, and would have been in line with previous research where physiological plant characteristics had been monitored for vegetation within smaller plant pots. However, when this approach was attempted, it became apparent that it was not practical, since gaining access to the base of a selected stem often resulted in the snapping adjacent stems. Consequently, since the loss of plant stems could have affected the competition rates by both creating clear areas for different species to colonise, and reducing some of the plants vigour, these measurements were abandoned. The measurement of multiple stems throughout the growing periods was where consideration of replicates was going to occur, and its loss both removed this possibility, and also the amount of statistical analysis which could be carried out. Although the opportunity for statistical analysis of replicates was lost, trends were identified within the data.

During the summer growing season, the extensive and frequent watering of microcosms required a significant amount of resource and water. The site where the microcosms were located was next to a fresh water tap. However, had the microcosms been located away from a suitable freshwater supply, then the experiment would not have been practical without the resource of an alternative water source. The supply of water should therefore be a key consideration when designing any follow-up study and could include the use of rainwater rather than tap water.

Choice of pollutants

The two pollutants chosen for the research are both common components of effluents from domestic, industrial effluents and road runoff sources that require treatment. The choice of these two pollutants enabled a baseline to be set in identifying whether individual biodiversity enhancing floral species will survive at various nutrient and salinity concentrations, and also whether they will outcompete each other or not. In reality, the range of components which make up the pollutants in a given effluent varies along with their concentrations which is dependent upon numerous factors, including diurnal and seasonal variations and the use to which the water supply is put at any specific time. Now that it has been shown that these species are suitable to use at the nutrient concentrations studied and at what salinity levels fatal effects occur, different and more complex effluents could be tested to determine if these species are suitable for use within a wider range of chemical cocktails.

Project Evaluation Summary

Given the constraints of time, funding and space, combined with the reduced repetition measurements, the microcosm study design and implementation is judged to have been a success. It has shown that the chosen species have the potential to survive together within small scale constructed wetlands within a wide range of nutrient concentrations, though toxic levels of salinity need to be avoided. Differing water usage variations and growth have been identified along with differing root interactions caused by competition.

8.2.3 Experimental Design - Field Study

The original design for the field studies would have permitted several replicates within the same reedbed all receiving the same effluent and subject to the same environmental conditions. However, once it became apparent that Severn Trent Water were unwilling to partner the research, two alternative constructed wetland treatment systems were identified. The first at Rugeley comprised two mature reedbeds, whilst the second at Magna Park was a series of newly refurbished and planted reedbed channels.

At Rugeley, due to the reedbeds small size, concern was raised over the space required for the experimental plots of the proposed design and the potentially adverse effect this could have had on the treatment capabilities of the reedbeds. Consequently the number of quadrats had to be reduced. Furthermore, one of the biodiversity enhancing species (*Mentha aquatica*) was omitted from the study to facilitate the collection of adequate data from the remaining species for statistical analysis.

The main issues that occurred at Rugeley were operational and outside the control of the researcher. The plants within Reedbed 1 died during the second year of the study when they were smothered by a thick mulch created by the standing dead leaf litter collapsing, in the winter storms, into standing water. As the researcher had no control over the operation of the beds the water level could not be lowered to alleviate the problem. Reedbed 2 became hydraulically blocked during the second year and its daily operational use was stopped. Subsequently, the reedbed was only intermittently dosed with effluent to keep the reeds alive. This in turn resulted in damage to the biodiversity enhancing species planted in the experimental plots through herbivory. In addition, the lack of nutrient availability and water resulted in early senescence of the reeds and an unrealistic water regime for the biodiversity enhancing species.

The operational difficulties encountered in the newly refurbished reedbeds at Magna Park commenced with *Phalaris arundinacea* being planted in place of the main treatment species, *Phragmites australis* by the sub-contractor during the bed refurbishment. This was not apparent until the plants became mature enough to develop identifying characteristics, by which time it was too late to restart the study. Hydrological issues soon followed caused by poor workmanship resulting in uneven bed surface and consequently some sections of the beds became flooded whilst other sections became dry, resulting in drought stress to the plants. The drought issue was further compounded in the second year when the main flow of feeder effluent was diverted to phase two of the reedbed refurbishment programme which came on line at that time.

Despite all of the setbacks described above, and the consequent loss of opportunity to collect data, valuable management lessons were learnt. These have been discussed in Section 7 and incorporated into the recommendations and guidance for the incorporation of biodiversity enhancing species into small constructed wetland treatment systems. It is also believed that the experimental design proposed in Section 5 for validating the conclusions drawn from the microcosm studies in the field, was sound.

8.3 Requirements for Further Research

Throughout this study, through literature reviews and the results from the experimental work, requirements for future research have been identified, and are discussed below.

8.3.1 Nutrient Concentration

The current study was undertaken using four different nutrient concentrations, which were based upon reported tertiary effluent values. The use of higher concentrations, more frequent or intermittent dosing (to provide consistent nutrient levels or to replicate storm water runoff), were not explored due to the resource demand this would have required. To extend the options for waste effluent treatment systems where biodiversity enhancing species could be utilised, further research should investigate stronger nutrient concentrations, together with differing chemicals/effluent compositions (where the nutrient levels can be controlled independently), alongside increased and intermittent dosing.

8.3.2 Treatment and Hydraulic Efficiency

The microcosm study did not explore the treatment capabilities of the biodiversity enhancing species or their hydraulic effects, but focused on their survivability. These aspects should therefore be investigated in different types of small scale constructed wetland, especially surface flow reedbeds, where the stems of the vegetation have a filtration potential and hence effect on overall treatment efficiency.

- 237 -

8.3.3 Species Selection

The experimental study using the three wetland species, *Lythrum salicaria, Filipendula ulmaria and Mentha aquatic,* which were chosen to be representative of the vegetation groups present within the National Vegetation Classification S24, S25 & S26 communities (Rodwell, 2000) has proved that they can successfully compete with *Phragmites australis* within a small scale constructed wetland. This study should be extended further to investigate the potential of using additional species to further enhance the biodiversity value of small scale constructed wetlands.

8.3.4 Planting Densities

A higher planting density was employed in the microcosm and field study than those recommended for use with *Phragmites australis* (e.g. by Cooper *et al.*, 1996) to expedite the establishment and acclimatisation of the vegetation. Further research should be undertaken to determine the effects of differing planting densities and species source material (e.g. alternative size plug plants, rhizomes and seeding) on both the establishment and sustainability of the biodiversity enhancing species and their cost effectiveness.

8.3.5 Allelopathy

Lythrum salicaria was shown to be adversely affected within the gravel root zone of the microcosms by the presence of *Phragmites australis* roots. Research should be undertaken to determine whether this is allelopathy caused by *Phragmites australis* and if it is, then to identify the chemicals involved. The identification of an allelopathic chemical which reduces the vigour of *Lythrum salicaria,* either on its own or in conjunction with another control method, could help in controlling this species in countries where it is regarded as invasive.

8.3.6 Full Scale Trials

This first study was undertaken using small scale microcosms which was logically to be followed by trials in operational beds over a short period. Since issues arose, particularly associated with the lack of control over the operational management of the reedbeds, it is recommended that full scale trials over a long period are undertaken on both established and newly refurbished/new small constructed wetland treatment systems. The aim of this research should be to study the population dynamics and the effectiveness of the biodiversity enhancing species, and to trial the design and management recommendations made in this thesis. Ideally in this longer term field study the bed operation and management should both be fully controlled by the researcher.

8.3.7 Fauna

During both the microcosm and field study it was observed that a range of invertebrates and birds were using the reedbeds. Future work should be undertaken to quantify the benefits of including the biodiversity enhancing species within a reedbed particularly focusing on the invertebrate population and how far up the food chain any beneficial effects are encountered.

9. CONCLUSIONS

9.1 Introduction

This section provides a summary of the conclusions that have been reached during this research project including a review of how the project's aims and objectives have been met.

Species have been successfully identified, that are not considered to be the typical robust treatment species, but which can be used for biodiversity enhancement within a small scale constructed wetland. It has successfully explored the effect of two different pollutants at varied concentrations, together with the effects of restricting competition on these species. It has also identified operational difficulties when the biodiversity enhancing species were installed in field trials. This data has been used to recommend design and management principles for use with these biodiversity enhancing species within small scale constructed wetlands.

9.2 Aim and Objectives

9.2.1 Aim

The overall aim of the project as stated in Section 1.2 was;

'to produce design principles for the implementation, creation and management of biodiversity sections/corridors within monoculture phytoremediation treatment systems.'

This aim has been achieved through the identification of biodiversity enhancing flora which can compete with the robust treatment species, *Phragmites australis*, at differing pollutant concentrations. The results obtained from, and observations made during both the microcosm study and field experiments has enabled further design principles and management guidance to be produced.

9.2.2 Objectives

This section provides an assessment of the extent to which each of the five objectives outlined in Section 1.2.2 have been achieved.

Objective 1

'Undertake a literature review focusing upon the design, management and floral species requirements of horizontal flow constructed wetlands. A literature review of effluents and their parameters will also be undertaken.'

The literature review provided a brief overview of the types of constructed wetlands, the general floral species utilised and the range of effluents and their pollutants which could be treated. The extensive review undertaken for the original research question, included a study of the comprehensive design manuals for constructed treatment wetlands, and the associated design parameters and equations employed for different pollutants. This informed the subsequent microcosm and field experiment designs employed. The literature review also identified a dearth of published works relating to biodiversity enhancement within constructed treatment wetlands.

The literature review enabled the range of effluents and their associated parameters experienced by constructed wetland systems to be identified. From this nutrients and salinity were selected as the focus of the microcosm study, being two parameters commonly found in domestic and industrial wastewater. The nutrient concentrations used in the microcosms were identified through this study, and appropriate salinity concentrations were selected both in this manner and through the literature review of plants and their tolerance limits.

Objective 2

' From the literature review, a range of floral species will be chosen which could prove beneficial in increasing the biodiversity value of constructed wetlands.'

Because it is commonly used in phytoremediation systems and has been studied extensively, there was a plethora of information on *Phragmites australis*, However, as discussed below relevant information relating to potential biodiversity enhancing species was very limited.

Once the physiological types of flora found in natural wetlands had been explored, emergent and marsh species (i.e. woody perennial, upright herbaceous perennial and creeping perennial) were selected as the groups appropriate for biodiversity enhancement. The final biodiversity enhancing species were then chosen through consultation with community lists of British plant species found in naturally occurring reedbeds.

A further literature review (predominantly presented within Section 3) was undertaken on these species, *Lythrum salicaria, Filipendula ulmaria* and *Mentha aquatic,* for their growth characteristics, their tolerances to pollution and the effects which plant competition has upon them. The literature review found that the majority of papers were not relevant, being focused upon homeopathic oils for *Mentha aquatica* and *Filipendula ulmaria*. Minimal to no relevant information was present for the chosen species tolerances to pollutants, with the data usually consisting of the salinity value of the site which had been surveyed. The species usually formed part of a long list of floral identified within the site and minimal further detailed information for the chosen species was present.

When population dynamics was investigated for the chosen species, again the reference to the species usually formed part of a larger species list for a specific site, such as investigating the long term effect of atmospheric pollution and did not have any significant contribution to this research.

Where studies had been undertaken which measured parameters such as shoot length and root weights, very few of these were of a quality which could be used to inform this research. The majority of sources found were old and undertaken in sub-optimal growing conditions, which would not permit the natural plant structure to develop (i.e. the plants were grown within small pots, thus restricting their root growth and over short periods of time).

Lythrum salicaria was a slight exception to this rule, in that due to its invasive nature within Northern America, recent relevant research has been undertaken to study its growth characteristic and geographical distribution. This has been detailed within Section 3 and Section 6.

Overall the desk study provided a range of information of differing volumes and quality for the individual species. However, useful information was gleaned from the literature review such as the salinity tolerance of *Phragmites australis* which contributed to Objective 3.

Objective 3

'Design and implement an experimental microcosm study to identify the suitability of the selected species and their interactions, when subject to different contaminant ranges.'

Following the literature review a microcosm study was designed to look at the suitability of the biodiversity enhancing species and their interactions when subject to different contaminant ranges.

This study further investigated the interactions of the species through a comparison of unrestricted and restricted root competition.

Although the measurements of the vegetation during the operational phase had to be curtailed to reduce potential damage to the plants and thus invalidating the study, enough data was gathered to identify either statistical differences or trends.

To achieve Objective 3, the following hypotheses were tested for the microcosm study

Hypothesis 1 – "Where all four chosen floral species survive in the chemical concentrations studied, no single floral species will take over and oust other floral species."

All species survived the different nutrient concentrations tested under Hypothesis 1 at reasonable area coverage, and one species did not fully take over and oust the other species. As such, Hypothesis 1 was proved.

Within the different salinity concentrations tested under Hypothesis 1, fatalities occurred. Although fatalities occurred, this was not due to competition but due to the tolerance levels of the plants and their inability to survive at the higher salinity concentrations. Although only one species (*Phragmites australis*) survived the highest salinity concentration, it did not take over and oust the other species (at the lower salinity concentrations) through direct competition. As such, for the salinity, Hypothesis 1 was also proved.

Hypothesis 2 – "Where all four chosen floral species survive in the chemical concentrations studied, no single floral species will take over and oust other floral species, and restricting root competition between the different floral species will have an effect."

As with Hypotheses 1, all species survived at reasonable area coverage and one species did not fully take over and oust the other species. The results also showed that the root barriers had an effect on the interaction between the different species which varied depending upon the nutrient concentration. As such, for the nutrients, Hypothesis 2 was proved.

Again, as with Hypotheses 1, with the exception of *Phragmites australis*, fatalities occurred at salinity concentrations above the control level, but this was not due to competition but due to the tolerance levels of the plants. Consequently, for the salinity, Hypothesis 2 was proved.

Hypothesis 3 – "The higher concentrations of the chosen chemical ranges will have an effect on the stem heights or stem widths of the surviving plants."

For the conditions explored during the microcosm studies, the statistics showed that there was a significant difference in either species stem heights or widths. Hypothesis 3 was therefore proved.

Hypothesis 4 – "The higher concentrations of the chosen chemical ranges will have an effect on the stem heights or stem widths of the surviving plants, and restricting root competition between the different floral species will have an effect."

Within both the different nutrient and salinity concentrations tested under Hypothesis 4, the statistics again showed that there was a significant difference in either the stem height or widths of the species within the restricted root microcosms. When a comparison was made for each species between the full competition microcosms and the restricted competition microcosms at each pollutant concentration, there was a mixture of *very highly significant* differences, *highly significant* differences and *significant* differences for either the stem heights or widths along with *no significant* differences. The presence of significant differences shows that the provision of root barriers has a significant effect at certain concentrations. As such, for both nutrients and salinity, Hypothesis 4 was proved.

Hypothesis 5 – "The higher concentrations of the chosen chemical ranges will have an effect on the above and below ground total biomass of the plants."

At the different concentrations tested under Hypothesis 5, the results showed that the above and below ground biomass was affected by the different nutrient and salinity concentrations. For nutrients, the Root : Shoot ratio either increased or decreased as the concentrations increased. Whereas it either decreased or caused fatalities as the salinity concentrations increased. Hypothesis 5 was therefore proved for both nutrients and salinity.

Hypothesis 6 – "The higher concentrations of the chosen chemical ranges will have an effect on the above and below ground total biomass of the plants, and restricting root competition between the different floral species will have an effect." The Root : Shoot ratios for both the nutrient and salinity under restricted root competition conditions mirrored those observed for the Hypotheses 5 tests. A comparison of Root : Shoot ratios under full competition and restricted root competition showed that the root barriers had had an effect. Therefore, for both nutrients and salinity, Hypothesis 6 was proved.

Hypothesis 7 – "The higher concentrations of the chosen chemical ranges will have an effect on the water consumption."

Within the different nutrient concentrations tested under Hypothesis 7, the results showed that the water usage was affected by the different nutrient concentrations, with the water usage during the peak growing season increasing as the nutrient concentrations increased. Conversely, with increasing salinity concentration, the water usage declined. Thus Hypothesis 7 was proved for both nutrient and salinity as an effect on water consumption was observed.

Hypothesis 8 – "The higher concentrations of the chosen chemical ranges will have an effect on the water consumption, and restricting root competition between the different floral species will also have an effect."

For Hypothesis 8, as with hypotheses 7, the results showed that with increasing nutrient and salinity concentrations, the water usage during the peak growing season increased for nutrients, but decreased for salinity. The results also showed that the full competition microcosms used more than their counterparts in the restricted competition microcosms for both nutrient and salinity concentrations. Therefore, for both the nutrients and salinity, Hypothesis 8 was proved.

Objective 4

'From results of the microcosm study in Objective 3, implement a field study to investigate the survivability of the floral species when planted within a newly refurbished/created constructed wetland treatment system and also when retrofitting the floral species into an established constructed wetland treatment system.'

The two field studies were undertaken to investigate Hypothesis 9 in an operational setting "Where the chosen floral species survive, there will be no difference between retro-planting these species within a mature reedbed, compared to planting these species within a newly created/restored reedbed and no single floral species will take over and oust other floral species" in an operational setting.

The field studies were designed to enable data to be collected from replicate quadrats for statistical analysis. However, with the operational management of the reedbeds being outside the control of the researcher and the negative issues experienced at both sites, as discussed in Section 6, no sensible data were obtained and thus it was not possible to statistically prove or disprove Hypothesis 9.

However, the results which were obtained, together with regular observation of each of the sites would indicate that it is feasible to incorporate biodiversity enhancing species in newly created/refurbished reedbeds containing *Phalaris arundinacea*. It may also be possible under certain circumstances to retrofit existing reedbeds containing *Phragmites australis* providing specific management recommendations (Section 7) are adhered to. However, the further research as put forward in Section 8 is recommended to confirm these conclusions.

Objective 5

'Use the findings of both the microcosm and the field studies to develop design principles to ensure the chosen floral species will be sustainable within a constructed wetland treatment system.'

The results obtained whilst meeting Objectives 1 to 4 informed the design and management recommendations detailed in Section 7 for successfully incorporating the biodiversity enhancing species studied within a small scale constructed wetland. Section 8 highlighted areas where further research could be undertaken to take this research forward to further explore the effects of different effluent chemicals and concentrations, additional potential biodiversity enhancing species and planting regimes, together with the need for full scale trials.

9.3 Summation

The overall aim of this unique project has been successfully achieved. The literature review, followed by the three and a half year microcosm study and subsequent field experiments, have allowed the identification of suitable species for biodiversity enhancement and the pollution concentrations at which they can be utilised within small constructed wetland effluent treatment systems. The research also identified design principles, that included the use of specific growing media and whether restricting root competition is required, together with operational management guidance. These outcomes have been summarised and presented in Table 7.1.

REFERENCES

- Abira, M.A. Ngirigacha, H.W. & van Bruggen, J.J.A. (2003). Preliminary Investigation of the Potential of Four Tropical Emergent Macrophytes for Treatment of Pre-Treated Pulp and Paper Mill Wastewater in Kenya. Water Science & Technology, 48, 5, pp223-232. Pergamon.
- Adams, J.B. & Bate, G.C. (1999). Growth and photosynthetic performance of Phragmites australis in estuarine waters: a field and experimental evaluation. Aquatic Botany, **64**, pp359-367.
- Antonellini, M & Mollema, P.M. (2010). Impact of ground water salinity on vegetation species richness in the coastal pine forests and wetlands of Ravenna, Italy. Ecological Engineering, 36, pp1201-1211.
- Aqua Medic (2014). Aqua Medic Handheld Field Refractometer, http://www.aquamedic.com/product/refractometer (16/06/2014).
- Arias, C.A. Brix, H. & Johansen, N.H. (2003). Phosphorous Removal from Municipal Wastewater in an Experimental Two-Stage Vertical Flow Constructed Wetland System Equipped with a Calcite Filter. Water Science & Technology, 48, 5, pp51-58 Pergamon.
- Asaeda, T. Karunaratne, S. (2000). Dynamic modeling of the growth of Phragmites australis: model description. Aquat. Bot. 68, 301–308.
- Asaeda, T. Manatunge, J. Roberts, J. Hai, D. N. (2006). Seasonal dynamics of resource translocation between the aboveground organs and age-specific rhizome segments of *Phragmites australis*. Environmental and Experimental Botany, 2006, **57**, 1, p.9-18
- Austin, G. & Yu, K. (2016). Constructed Wetlands and Sustainable Development. Routledge.
- Baldwin, A.H. (2013). Nitrogen and Phosphorous Differently Affect Annual and Perennial Plants in Tidal Freshwater and Oligohaline Wetlands. Estuaries and Coast, **36**, pp547-558.
- Bastlova, D. & Kvet, J (2002). Differences in dry weight partitioning and flowering phenology between native and non-native plants of purple loosestrife (Lythrum salicaria L.). Flora, 197, pp332-340.
- Bastelova, D. Cizkova, H. Bastl, M & Kvet, J. (2004). Growth of Lythrum salicaria and Phragmites australis plants originating from a wide geographical area: response to nutrient and water supply. Global Ecology and Biogeography, **13**, pp259-271.
- Bastlova, D. Bastl, M. Cizkova, H. & Kvet, J. (2006). *Plasticity of Lythrum salicaria and Phragmites australis growth characteristics across a European geographical gradient*. Hydrobiologia, **570**, pp237-242.
- Beard, K. (2015). pers comm, Site Manager, Magna Park, Lutterworth, UK.
- Bernard, J.M (1999). Seasonal Growth Patterns in Wetland Plants Growing in Landfill Leachate. in: Mulamoottil G., McBean E. A. & Rovers F.(Ed.) Constructed Wetlands for the Treatment of Landfill Leachates, pp223-233. Lewis Publishers.
- **Besenyei, L. (2015).** pers comm, School of Biology, Chemistry and Forensic Science, University of Wolverhampton, UK.
- Best, E.P.H. Miller, J.L. & Larson, S.L. (2001). Tolerance towards Explosives, and Explosives Removal from Groundwater in Treatment Wetland Mesocosms. Water Science & Technology, 44, pp 11-12, pp515-521. Pergamon.
- Biddlestone, A.J. Gray, K.R. & Thurairajan, K. (1991). A botanical approach to the treatment of wastewaters. Journal of Biotechnology, 17, pp209-220.
- Blazejewski, R. & Murat-Blazejewska, S. (1997). Soil Clogging Phenomena in Constructed Wetlands with Subsurface Flow. Water Science & Technology, **35**, 5, pp183-188. Pergamon.
- Blossey, B. & Kamil, J. (1996). What determines the increased competitive ability of invasive nonindigenous plants? Pages 3–9 in V. C. Moran, J. H. Hoffmann, V. C. Moran, and J. H. Hoffmanns, editors. Proceedings of the IX International Symposium of Biological Control of Weeds. University of Cape Town, Stellenbosch, South Africa.

- Blossey, B., Scwartzlander, M., Häfliger, P., Casagrande, R. & Tewksbury, L. (2002). Common Reed. In Biological Control of Invasive Plants in the Eastern United States. USDA Forest Service Publication.
- Bonomo, L., Pastrorelli, G. & Zambon, N. (1997). Advantages and Limitations of Duckweed-Based Wastewater Treatment Systems. Water Science & Technology, **35**, 5, pp239-246.
- Botanical Society of the British Isles (BSBI) (2002). New Atlas of the British and Irish Flora. Oxford University Press
- Brändel, M. (2006). Effect of Temperatures on Dormancy and Germination in Three Species in the Lamiaceae Occurring in Northern Wetlands. Wetlands Ecology and Management, 14, pp11-28.
- Brix, H. (1994). Functions of Macrophytes in Constructed Wetlands. Water Science & Technology, 29, 4, pp71-78. Pergamon.
- Brix, H. (1997). Do Macrophytes Play a Role in Constructed Wetlands? Water Science & Technology, 35, 5, pp11-17. Pergamon.
- Brix, H. (1999). How 'Green' are Aquaculture, Constructed Wetlands and Conventional Wastewater Treatment Systems? Water Science & Technology, 40, 3, pp45-50. Pergamon.
- Brix, H. (2003). Plants Used in Constructed Wetlands and Their Functions. In. Dias, V. & Vymazal, J. (Ed.) 1st International Seminar on the use of Aquatic Macrophytes for Wastewater Treatment in Constructed Wetlands. pp81 – 109. ICN & INAG.
- Brix, H. Arias, C.A. & del Bubba, M. (2001). Media Selection for Sustainable Phosphorus Removal in Subsurface Flow Constructed Wetlands. Water Science & Technology, 44, pp11-12, pp47-54. Pergamon.
- Bulc, T. Vrhovsek, D. & Kukanja, V. (1997). The Use of Constructed Wetland for Landfill Leachate Treatment. Water Science & Technology, **35**, 5, pp301-306. Pergamon.
- **Cavallaro, N. (2002)**. Wetlands Creation Filtering Runoff from an Army Vehicle Test Course. Nehring K.W. & Brauning S.E. (Ed.) Wetlands and Remediation 2. pp251-254. Battelle Press.
- Clevering, O.A. Lissner, J. (1999). *Taxonomy, chromosone numbers, clonal diversity and population dynamics of Phragmites australis.* Aquatic Botany, **64**, pp185-208.
- **Cohen, J.W. (1988)**. *Statistical Power Analysis for the Behavioural Sciences*. 2nd Edition. Lawrence Erlbaum Associates. New Jersey.
- Connolly, R., Zhao, Y. Sun, G. & Allen, S. (2004). Removal of Ammonical-Nitrogen from an Artificial Landfill Leachate in Downflow Reed Beds. Process Biochemistry, **39**, pp1971-1976. Elsevier.
- Cooper, P. (2003a), Sizing Vertical Flow and Hybrid Constructed Wetland Systems. In. Dias, V. & Vymazel, J, (Ed.) 1st International Seminar on The Use of Aquatic Macrophytes for Wastewater Treatment in Constructed Wetlands. pp195-218
- Cooper, P. (2003b). UK Experience with Reedbed and Constructed Wetland Systems 1985-2003.
 In. Dias, V. & Vymazel, J, (Ed.) 1st International Seminar on The Use of Aquatic Macrophytes for Wastewater Treatment in Constructed Wetlands. pp403-420
- Cooper, P.F. Job, G.D. Green, M.B. & Shutes, R.B.E. (1996). Reedbeds and Constructed Wetlands for Wastewater Treatment. WRc, Wiltshire.
- Cooper, P. Smith, M. & Maynard, H. (1997). The Design and Performance of a Nitrifying Vertical Flow Reedbed Treatment System. Water Science & Technology, **35**, 5, pp215-221. Pergamon
- **Cordero, M.C. Ansola, G. & Luis, E. (2003).** *Swine Wastewater Tertiary Treatment for Nitrogen Removal by a Constructed Wetland.* Dias V. & Vymazel J, (Ed.) 1st International Seminar on The Use of Aquatic Macrophytes for Wastewater Treatment in Constructed Wetlands. pp591-610.
- Croft, B. & Campbell, D. (1992). Characteristics of One Hundred United Kingdom Landfill Sites. Waste Technical Division Research Report No. CWM 015/90. Waste Technical Division.
- Curtis, J.T. (1959). The Vegetation of Wisconsin. Madison, WI. The University of Wisconsin Press.

- Davies, C.M. Sakadevan, K. & Bavor, H.J. (2001). Removal of Storm Water Associated Nutrients and Bacteria in Constructed Wetland and Water Pollution Control Pond Systems. Vymazel J, (Ed.) Transformation of Nutrients in Natural and Constructed Wetlands. pp483-496. Backhuys Publishers.
- de Winter, J. C. F. (2013). Using the Student's t-test with Extremely Small Sample Sizes. Practical Assessment, Research & Evaluation, 18(10).
- Dickson, T.L. & Gross, K.L. (2013). Plant Community Responses to Long-term Fertilisation: Changes in Functional Group Abundance Drive Changes in Species Richness. Oecologia, 173, 1513-1520.
- **DeBusk, W.F. (1999).** Evaluation of a Constructed Wetland for the Treatment of Leachate at a Municipal Landfill in Northwest Florida. in: Mulamoottil G., McBean E. A. & Rovers F.(Ed.) Constructed Wetlands for the Treatment of Landfill Leachates, pp175-186. Lewis Publishers.
- Drizo, A. Frost, C.A. Smith, K.A. & Grace, J. (1997). Phosphate and Ammonium Removal by Constructed Wetlands with Horizontal Subsurface Flow, Using Shale as a Substrate. Water Science & Technology, 35, 5, pp95-102. Pergamon.
- Eckhardt, D. A. V. Surface, J. M. & Peverly, J. H. (1999). A Constructed Wetland System for Treatment of Landfill Leachate, Monroe County, New York. in: Mulamoottil G., McBean E. A. & Rovers F.(Ed.) Constructed Wetlands for the Treatment of Landfill Leachates, pp205-222. Lewis Publishers.
- Edwards, J.K. Gray, K.R. Cooper, D.J. Biddlestone, A.J. & Willoughby, N. (2001). *Reedbed Dewatering of Agricultural Sludge's and Slurries*. Water Science & Technology, **44**, pp11-12, pp551-558. Pergamon.
- Edwards K.R. Adams M.S. & Kvet J (1998). Differences between European native and American invasive populations of Lythrum salicaria. Applied Vegetation Science, 1, 2, pp267-280.
- Edwards, K.R. Bastlova, D. Edwards-Jonasova, M. & Kvet, J. (2011). A comparison of univariate and multivariate methods for analysing clinal variation in an invasive species. Hydrobiologia, 674, pp119-131.
- Ellis, J.B. Shutes, R.B.E. & Revitt, D.M. (2003). Guidance Manual for Constructed Wetlands. R & D Technical Report P2-159/TR2 Environment Agency.
- **English Nature (now Natural England) (1997).** English Nature Fresh Water Series No. 5; Water level requirements of wetland plants and animals. English Nature, Peterborough.
- **Faithfull, N.T. (2002).** *Methods in agricultural chemical analysis: a practical handbook.* CABI Publishing, Oxon.
- Farnsworth, E.J. & Meyerson, L.A. (2003). Comparative ecophysiology of four wetland plant species along a continuum of invasiveness. Wetlands, 23, 4, 750-762.
- Fermor, P.M. Hedges, P.D. Gilbert J.C. & Gowing, D.J.G. (2001). Reedbed evapostranspiration rates in England. Hydrological Processes, 15, pp621-631.
- Fickbohm, S.S. & Zhu W.X. (2006). Exotic purple loosestrife invasion of native cattail freshwater wetlands: Effects on organic matter distribution and soil nitrogen cycling. Applied Soil Ecology, 32, pp123-131.
- Foroughi, M. (2011). Role of Ceratophyllum demersum in recycling macro elements from wastewater. J. Appl. Sci. Environ> Manage.11 (2) pp123-131.
- Fowler, J. Cohen, L and Jarvis, P. (1999). Practical Statistics for Field Biology. 2nd Edition. John Wiley & Sons.
- Frazer-Williams, R.A.D. (2007). Constructed Wetlands for Advanced Treatment and Reuse. PhD Thesis, Cranfield University.
- Grant, N. Moodie, M. & Weedon, C. (2000). Sewage Solutions: Answering the call of Nature. Centre for Alternative Technology. Powys. UK
- Grant, N. & Griggs, J. (2001). Reedbeds for the treatment of domestic wastewater. Building Research Establishment, London.

- Groudev, S.N. Konnitsas, K. Spasova, I.I. & Paspaliaris, I. (2002). *Treatment of Acid Mine Drainage by a Natural Wetland*. Nehring K.W. & Brauning S.E. (Ed.) Wetlands and Remediation 2. pp133-140. Battelle Press.
- Hach (2014). DR/2000 Direct Reading Spectrophotometer, http://www.hach.com/dr-2000spectrophotometer/product-downloads?id=7640439022 (16/06/2014).
- Hanna Instruments (2014a). Handheld Water Test Meter, Model HI98204, http://www.hannainst.com/USA/prods2.cfm?id=044002&ProdCode=HI%2098204 (16/06/2014).
- Hanna Instruments (2014b). pH 4 Buffer Solution, HI7004, http://www.hannainst.com/Usa/prods2.cfm?id=043004001&ProdCode=HI 7004L/C (16/06/2014).
- Hanna Instruments (2014c). pH 7 Buffer Solution, HI7007, http://www.hannainst.com/Usa/prods2.cfm?id=043006001&ProdCode=HI 5007 (16/06/2014).
- Hartzendorf, T. & Rolletschek, H (2001). Effects of NaCL-salinity on amino acid and carbohydrate contents of Phragmites australis. Aquatic Botany, 69, pp195-208.
- Hellings, S.E. & Gallagher, J.L. (1992). The Effects of Salinity and flooding on Phragmites australis. Journal of Applied Ecology, 29, pp41-49.
- Hiley, P. (2002). Performance of wastewater treatment and nutrient removal wetlands (reedbeds) in cold temperate climates. In. Mander, U. & Jenssen, P., (Ed.) Constructed Wetlands for Wastewater Treatment in Cold Climates. Series: Advances in Ecological Sciences Volume 11. pp1-18. WIT Press
- Hill, C.M. Ducksbury, J.M. Geohring, L.D. & Peck, T. (2003). Designing Constructed Wetlands to Remove Phosporous from Barnyard Runoff: Seasonal Variability in Loads and Treatment. Mander U. & Jenssen P. (Ed.) Constructed wetlands for wastewater treatment in cold climates. pp181-196. WIT Press.
- Hogain, S.O. (2003). The Design, Operation and Performance of a Municipal Hybrid Reedbed Treatment System. Water Science & Technology, 48, 5, pp119-126. Pergamon.
- Holm, L.G. Plocknett, D.L. Pancho, J.V. & Herberger, J.P. (1977). The Worlds Worst Weed: distribution and biology. University Press of Hawaii.
- Howard, R. (2010). Intraspecific Variation in Growth of March Macrophytes in Response to Salinity and Soil Type: Implications for Wetland Restoration. Estuaries and Coasts. **33**, pp127-138.
- Hubbard, C.E. (1992). Grasses. Penguin Books.
- Hurry, C.R. James, E.A. & Thompson, R.M. (2013). Connectivity, genetic structure and stress response of Phragmites australis: Issues for restoration in a salinising wetland system. Aquatic Botany, 104, pp138-146.
- Hutchinson, I. (1988). Salinity Tolerance of Plants of Estuarine Wetlands and Associated Uplands. Washington State Shorelands and Coastal Zone Management Program: Wetlands Section. Simon Fraser University, B.C. Canada.
- **IBM (2014).** SPSS Statistics Software, http://www-01.ibm.com/software/analytics/spss (16/06/2014).
- **Instant Ocean (2008)..** *Table detailing the composition of its synthetic sea salt.* www.instantocean.com.
- Jenson, P.D. & Krogstad, T. (2003). Design of Constructed Wetland using Phosphorous Sorbing Lightweight Aggregate (LWA). Mander U. & Jenssen P. (Ed.). Constructed wetlands for wastewater treatment in cold climates. pp259-272. WIT Press
- Johnson, M. Camargo Valero, M.A. & Mara, D.D. (2007). *Maturation Ponds, Rock Filters and Reedbeds in the UK; Statistical Analysis of Winter Performance.* Water Science and Technology, **55**, pp135-142.
- Kadewa, W.W. (2010). Small-Scale Constructed Wetland for Onsite Light Grey Water Treatment and Recycling. PhD thesis, Cranfield University.

- Kadlec, R.H. Burgoon, P.S. & Henderson, M.E. (1997). Integrated Natural Systems for Treating Potato Processing Wastewater. Water Science & Technology, **35**, 5, pp263-270. Pergamon.
- Kadlec, R.H. (1999). Constructed Wetlands for Treating Landfill Leachate. in: Mulamoottil G., McBean E. A. & Rovers F. (Ed.) Constructed Wetlands for the Treatment of Landfill Leachates, pp17-31. Lewis Publishers
- Kadlec, R.H. (2003a). Pond and Wetland Treatment. Water Science & Technology, 48, pp1-8. Pergamon.
- Kadlec, R.H. (2003b). Hydrology and Hydraulics of Constructed Wetlands. Dias V. & Vymazel J (Ed.), 1st International Seminar on The Use of Aquatic Macrophytes for Wastewater Treatment in Constructed Wetlands. pp111-136.
- Kadlec, R.H. & Knight, R.L. (1996). *Treatment Wetlands:* 1st Edition. CRC Press, Boca Raton.
- Kadlec, R.H. & Wallace, S.D. (2009). Treatment Wetlands: 2nd Edition. CRC Press, Boca Raton.
- Kamal, M. Ghaly, A.E. Mahmoud, N & Cote, R. (2004). *Phytoaccumulation of heavy metals by aquatic plants.* Environment International, **29**, pp1029-1039.
- Karrh, J.D. Moriarty, J. Cornuc, J.J. & Knight, R.L. (2002). Sustainable Management of Aircraft Anti/De-Icing Process Effluent Using a Subsurface Flow Treatment Wetland. Nehring K.W. & Brauning S.E. (Ed.) Wetlands and Remediation 2. pp187-196 Battelle Press.
- Kelman Wieder, R. Tchobanoglous, G. & Tuttle, R.W. (1998). Preliminary Considerations Regarding Constructed Wetlands for Wastewater Treatment. in: Hammer D.A (Ed.) Constructed Wetlands for Wastewater Treatment: Municipal, Industrial and Agricultural. pp297-305 Lewis Publishers
- Kern, J. (2003). Seasonal Efficiency of a Constructed Wetland for Treating Dairy Farm Wastewater. Mander U. & Jenssen P. (Ed.) Constructed wetlands for wastewater treatment in cold climates. pp197-214. WIT Press.
- Kettenring, K.M., McCormick, M.K., Baron, H.M. & Whigham, F.F. (2011). Mechanisms of *Phragmites australis* Invasion: Feedbacks Among Genetic Diversity, Nutrient, and Sexual Reproduction. Journal of Applied Ecology. 48, pp1305-1313.
- Knight, R.L. (1997). Wildlife Habitat and Public Use Benefits of Treatment Wetlands. Water Science & Technology, **35**, 5, pp35-43.
- Knight, R.L. Clarke, Jr. & Bastian, R.K. (2001). Surface Flow (SF) Treatment Wetlands as a Habitat for Wildlife and Humans. Water Science & Technology, 44, pp11/12, pp27-37.
- Knowles, P.R. Griffin P. & Davies P.A. (2010). Complementary methods to investigate the development of clogging within a horizontal sub-surface flow tertiary treatment wetland. water research 44, 320-330.
- Kozub, D. D. & Liehr, S. K. (1999). Assessing Denitrification Rate Limiting Factors in a Constructed Wetland Receiving Landfill Leachate. Water Science & Technology, 40, 3, pp75-82. Pergamon.
- Langergraber, G. Haberl, R. Laber, J. & Pressl, A. (2003). Evaluation of Substrate Clogging Processes in Vertical Flow Constructed Wetlands. Water Science & Technology, 48, 5, pp25-34 Pergamon
- Lauenroth, W.K. & Whitman, W.C. (1971). A rapid method for washing roots. Journal of Range Management, 24, pp308–309.
- Lee, B-H. & Scholz, M. (2007). What is the Role of Phragmites australis in Experimental Constructed Wetland Filters Treating Urban Runoff? Ecological Engineering, 29, pp87-95. Elsevier.
- Lenssen, J.P.M. Menting, F.B.J. Van Der Putten, W.H. & Blom, C.W.PM. (2000). Vegetative reproduction by species with different adaptations to shallow-flooded habitats. New Phytologist. **145**, pp61-70.
- **Lissner, J. & Schierup, H.H. (1997).** *Effects of salinity on the growth of Phragmites australis.* Aquatic Botany, **55**, 4, pp247-260.

- Lissner, J. Schierup, H.H. Comín, F.A. & Astorga, V. (1999a). Effect of climate on the salt tolerance of two Phragmites australis populations: I. Growth, inorganic solutes, nitrogen relations and osmoregulation. Aquatic Botany, 64, pp317-333.
- Lissner, J. Schierup, H.H. Comín, F.A. & Astorga, V. (1999b). Effect of climate on the salt tolerance of two Phragmites australis populations: II. Diurnal CO2 exchange and transpiration. Aquatic Botany, 64, pp335-350.
- Lund, M.A. Lavery, P.S. & Froend, R.F. (2001). Removing Filterable Reactive Phosphorus from Highly Coloured Stormwater using Constructed Wetlands. Water Science & Technology, 44, pp11-12, pp85-92. Pergamon.
- Mæhlum, T. (1995). Treatment of Landfill Leachate in On-site Lagoons and Constructed Wetlands. Water Science and Technology, **32**, 3, pp129-135.
- Mantovi, P. Piccinini, S. Marmiroli, N. Maestri, E. & Tagliabini, S. (2002). Treating Dairy Parlour Wastewater Using Subsurface Flow Constructed Wetlands. Nehring K.W. & Brauning S.E. (Ed.) Wetlands and Remediation 2. pp205-212. Battelle Press.
- Mara, D.D. Alabaster, G.P. Pearson, H.W. & Mills S.W (1992). Waste Stabilisation Ponds: A Design Manual for Eastern Africa. Lagoon Technology International.
- Mara, D. & Pearson, H. (1998). Design Manual for Waste Stabilization Ponds in Mediterranean Countries. Lagoon Technology International.
- Mauchamp, A. & Mesleard, F. (2001). Salt tolerance in Phragmites australis populations from coastal Mediterranean marshes. Aquatic Botany, **70**, pp39-52.
- Mays, P. A. & Edwards, G. S. (2001). Comparison of Heavy Metal Accumulation in a Natural Wetland and Constructed Wetlands Receiving Acid Mine Drainage. Ecological Engineering, 16, pp487-500. Elsevier.
- Meuleman, A. F. M., Beekman, J. Ph. & Verhoeven J. T. A. (2002). Nutrient Retention and Nutrient Use Efficiency in Phragmites australis Stands after Wastewater Application. Wetlands, 22, pp712-721.
- Miracle-Gro (2014). Water Soluble All Purpose Plant Food, http://www.miraclegro.com/smg/goprod/miracle-gro-plant-food/prod70342/.
- Mitsch, W. J. & Wise, K. M. (1998). Water Quality, Fate of Metals, and Predictive Model Validation of a Constructed Wetland Treating Acid Mine Drainage. Wat. Res., 32, 6, pp1888-1900. Pergamon.
- Molle, P. Lienard, A., Grasmick, A. & Iwema, A. (2003). Phosphorous Retention in Subsurface Constructed Wetlands: Investigations Focused on Calcareous Materials and their Chemical Reactions. Water Science & Technology, 48, 5, pp75-84. Pergamon
- Moore, H.H. Niering, W.A. Marsicano, L.J. & Dowdell, M. (1999). Vegetation change in created emergent wetlands (1988–1996) in Connecticut (USA). Wetlands Ecology and Management, 7, pp177-191.
- Mulamoottil, G. McBean, E. A. & Rovers, F. (1999). Constructed Wetlands for the Treatment of Landfill Leachates. Lewis Publishers.
- Munns, R. (2002). Comparative Physiology of Salt and Water Stress. Plant, Cell and Environment. 25, pp239-250.
- Naylor, S. Brisson, J. Labelle, M.A. Drizo, A. & Comeau, Y. (2003). Treatment of Freshwater Fish Farm Effluent Using Constructed Wetlands: The Role of Plants and Substrate. Water Science & Technology, 48, 5, pp215-222. Pergamon.
- Njau, K.N. Minja, R.J.A. & Katima, J.H.Y. (2003). *Pumice Soil: A Potential Wetlands Substrate for Treatment of Wastewater.* Water Science & Technology, **48**, 5, pp85-92. Pergamon.
- Nötzold, R. Blossey, B. & Newton, E. (1998). The influence of below ground herbivory and plant competition on growth and biomass allocation of purple loosestrife. Oecologia, **113**, pp82-93.
- Nuttall, P.M. Boon, A.G. & Rowell, M.R. (1997). *Review of the Design and Management of Constructed Wetlands*. Construction Industry Research and Information Association. CIRIA, London.
- Ordnance Survey (2017a). 1:25 000 Scale Colour Raster [TIFF geospatial data], Scale 1:25000, Tile: sp46 (part of), Updated: 16 February 2017, Ordnance Survey (GB), Using: EDINA Digimap Ordnance Survey Service, http://digimap.edina.ac.uk, Downloaded: 2017-06-08 12:26:52.447.
- Ordnance Survey (2017b). 1:25 000 Scale Colour Raster [TIFF geospatial data], Scale 1:25000, Tile: sk01 (part of), Updated: 16 February 2017, Ordnance Survey (GB), Using: EDINA Digimap Ordnance Survey Service, <http://digimap.edina.ac.uk>, Downloaded: 2017-06-08 12:23:48.049.
- Ordnance Survey (2017c). 1:25 000 Scale Colour Raster [TIFF geospatial data], Scale 1:25000, Tiles: sp58 (part of), Updated: 16 February 2017, Ordnance Survey (GB), Using: EDINA Digimap Ordnance Survey Service, <http://digimap.edina.ac.uk>, Downloaded: 2017-06-08 12:22:44.829
- **Oregon Scientific (2014).** Professional Weather Station WMR200, http://uk.oregonscientific.com/cat-Professional-Weather-sub-About-Professional-Weather-Stations-prod-Professional-Weather-Station-.html#.U9jTBVxwbIU (30/07/2014).
- Pagter, M. Bragato, C. Malagoli, M. & Brix, H. (2005). Tolerance and Physiological Responses of Phragmites australis to Water Deficit. Aquatic Botany, 81, pp285-299.
- **Pagter, M. Bragato, C. Malagoli, M. & Brix, H. (2009)**. Osmotic and ionic effects of NaCl and NA₂SO₄ salinity on Phragmites australis. Aquatic Botany, **90**, pp43-51.
- Pallant, J. (2010). SPSS Survival Manual. 4th Edition. Open University Press, McGraw Hill Education.
- Paris, T.Z. & Maehlum, T. (2003). Nitrogen Removal in Lightweight Aggregate Pre-treatment Filter Columbs and Mesocosm Wetlands. Mander U. & Jenssen P. (Ed.) Constructed wetlands for wastewater treatment in cold climates. pp273-298. WIT Press
- Pauli, D. Peintinger, M. & Schmid, B. (2002). Nutrient enrichment in calcareous fens: effects on plant species and community structure. Basic and Applied Ecology, **3**, pp255-266.
- Pedersen, O. & Sand-Jensen, K. (1997). Transpiration does not control growth and nutrient supply in the amphibious plant Mentha aquatica. Plant Cell and Environment, **20**, pp117-123.
- Peverly, J.H., Surface, J.M. & Wang T. (1995). Growth and Trace Metal Absorption by Phragmites australis in Wetlands Constructed for Landfill Leachate Treatment. Ecological Engineering, 5, pp21-35 Elsevier
- Platzer, C. & Mauch, K. (1997). Soil Clogging in Vertical Flow Reedbeds Mechanisms, Parameters, Consequences andSolutions? Water Science & Technology, 35, 5, pp175-181. Pergamon.
- Pogy-varaldo, H.M. Gutierrez-saravia, A. Fernandes-villagomez, G. Martinez-Perda, P. & Rinderknecht- seijs, N. (2002). *A Full Scale System with Wetlands for Slaughter House Treatment*. Nehring K.W. & Brauning S.E. (Ed.) Wetlands and Remediation 2. pp213-224. Battelle Press.
- Pontier, H. Williams, J.B. & May, E. (2001). *Metals in Combined Conventional and Vegetated Road Runoff Control Systems*. Water Science & Technology, **44**, 11-12, pp607-614. Pergamon.
- Pontier, H. Williams, J.B. & May, E. (2003). Behaviour of Metals Associated with Sediments in a Wetland Based System for Road Runoff Control. Water Science & Technology, 48, 5, pp291-299. Pergamon.
- Price, T. & Probert, D. (1997). Role of constructed wetlands in environmentally-sustainable developments. Applied Energy, 57, pp129-174
- Rivera, F. Warren, A. Curds, C.R. Robles, E. Gutierrez, A. Gallegos, E. & Calderon, A. (1997). The Application of the Root Zone Method for the Treatment and Reuse of High-Strength Abattoir Waste in Mexico. Water Science & Technology, **35**, 5, pp271-278.
- Rodwell, J.D. (2000). British Plant Communities Volume 4: Aquatic Communities, Swamps and Tall Herb Fens. Cambridge University Press.

- Rolletschek, H. & Hartzendorf, T. (2000). Effects of Salinity and Connective Rhizome Ventilation on Amino Acid and Carbohydrate Patterns of Phragmites australis Populations in the Neusiedler See Region of Austria and Hungary. New Phytologist. **144**, pp95-105.
- Rose, F. (1989). Colour Identification Guide to the Grasses, Sedges, Rushes and Ferns of the British Isles and North-Western Europe. Viking
- Rose, F. (2006). The Wild Flower Key. Warne
- Sanford, W.E. Steenhuis, T.S. Parlange, J.Y. Surface, J.M. & Peverly, J.H. (1995). *Hydraulic conductivity of gravel and sand as substrates in rock-reed filters*. Ecological Engineering, 4, pp321–326. Elsevier.
- Sanford, W.E. (1999). Substrate Type, Flow Characteristics and Detention Times Related to Landfill Leachate Treatment Efficiency in Constructed Wetlands. In. Mulamootil, G. McBean, E.A. & Rovers, F. (eds) Constructed Wetlands for the Treatment of Landfill Leachate. pp47 – 56. CRC Press, Boca Raton, Fl.
- Scholz, M. (2011). Wetland Systems: Storm Water Management Control. Springer.
- Scholz, M. & Xu, J. (2002). Comparison Of Constructed Reedbeds with Different Filter Media and Macrophytes Treating Urban Stream Water Contaminated with Lead and Copper. Ecological Engineering, 18, pp385-390. Elsevier.
- Scholes, L. N. L. Shutes, R. B. E. Revitt, D. M. Purchase, D. & Forshaw, M. (1999). The Removal of Urban Pollutants by Constructed Wetlands during Wet Weather. Water Science & Technology, 40, 3, pp333-340. Pergamon.
- Schooler, S.S. McEvoy P.B. Coombe E.M. (2006). Negative per Capita Effects of Purple Loosestrife and Reed Canary Grass on Plant Diversity of Wetland Communities. Diversity and Distributions, **12**, pp351-303.
- Seidel, K. (1971). Macrophytes as Functional Elements in the Environment of Man. Hydrobiologia, 12, pp121-130. Bucuresti.
- Shutes, R.B.E. Revitt, D.M. Scholes, L.N.L. Forshaw, M. & Winter, B. (2001). An Experimental Constructed Wetland System for the Treatment of Highway Runoff in the UK. Water Science & Technology, 44, 11-12, pp571-578. Pergamon.
- Shutes, R.B.E. Ellis, J.B. Revitt, D.M. Forshaw, M. & Winter, B. (2003). Urban and Highway Runoff Treatment by Constructed Wetlands. Dias, V. & Vymazel, J, (Ed.) 1st International Seminar on The Use of Aquatic Macrophytes for Wastewater Treatment in Constructed Wetlands. pp289-314.
- Scott, N.A. & Davison, A.W. (1982). De-icing Salt and the Invasion of Road Verges by Maritime Plants. Watsonia, 14, pp41-52.
- Shamsi, S.R.A. & Whitehead, F.H. (1974a). Comparative Eco-Physiology of Epilobium hirsutum L. And Lythrum salicaria L.: I. General Biology, Distribution and Germination. Journal of Ecology, 62, 1, pp279-290.
- Shamsi, S.R.A. & Whitehead, F.H. (1974b). Comparative Eco-Physiology of Epilobium hirsutum L. And Lythrum salicaria L.: II. Growth and Development in Relation to Light. Journal of Ecology, 62, 2, pp631-645.
- Shamsi, S.R.A. & Whitehead, F.H. (1977a). Comparative Eco-Physiology of Epilobium hirsutum L. And Lythrum salicaria L.: III. Mineral Nutrition. Journal of Ecology, 65, 1, pp55-70.
- Shamsi, S.R.A. & Whitehead, F.H. (1977b). Comparative Eco-Physiology of Epilobium hirsutum L. And Lythrum salicaria L.: IV. Effects of Temperature and Interspecific Competition and Concluding Discussion. Journal of Ecology, **65**, 1, pp71-84.
- Shilton, A. & Harrison, J. (2003). Guidelines for the Hydraulic Design of Waste Stabilisation Ponds. Massey University.
- Silliman, B.R. & Bertness, M.D. (2004). Shoreline Development Drives Invasion of Phragmites australis and the Loss of Plant Diversity on New England Salt Marshes. Conservation Biology, 18, 5, pp1424-1434.
- Simi, A. L. & Mitchell, C. A. (1999). Design and Hydraulic Performance of a Constructed Wetland Treating Oil Refinery Wastewater. Water Science & Technology, 40, 3, pp301-307. Pergamon.

- Smirnoff, N. & Crawford, R.M.M. (1983). Variation in the Structure and Response to Flooding of Root Aerenchyma in some wetland plants. Annals of Botany, **51**, pp237-249.
- Sooknah, R.D. & Wilkie, A.C. (2004). Nutrient Removal by Floating Aquatic Macrophytes Cultured in Anaerobically Digested Flushed Dairy Manure Wastewater. Ecological Engineering, 22, pp27-42. Elsevier.
- Stace, C. (1997). New Flora of the British Isles. Cambridge University Press
- Stefanakis, A. Akratos, CS. & Tsihrintzis, V.A. (2014). Vertical Flow Constructed Wetlands: Ecoengineering Systems for Wastewater and Sludge Treatment. Elsevier.
- Steggall, N.A. Hedges, P.D. & Fermor, P.M. (2005). *Phytoremediation Treatment System for Landfill Leachate.* In Vymazal, J. (Ed.) Natural and Constructed Wetlands: Nutrients, Metals and Management, pp160-168.
- Stevens, K.J. Peterson, R.L. & Reader, R.J. (2002). The Aerenchymatous Phellem of Lythrum salicaria (L.): a Pathway for Gas Transport and its Role in Flood Tolerance. Annals of Botany, 89, pp621-625.
- Stottmeister, U. Wießner, A. Kuschk, P. Kappelmeyer, U. Kästner, M. Bederski, O. Müller, R.A. & Moormann, H. (2003). Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnology Advances, 22, pp93-117.
- Studer-Ehrensberger, K. Studer, C, & Crawford, R.M.M. (1993). Competition at community boundaries: mechanisms of vegetation structure in a dune slack complex. Functional Ecology. 7, pp156-168.
- Suding, K.N. Collins, S.L. Gough, L. Clark, C. Cleland, E.E. Gross, K.L. Milchunas, D.G. & Pennings, S. (2005). Functional- and Abundance-based Mechanisms Explain Diversity Loss Due to N Fertilization. Proceedings of the National Academy of Sciences of the United States of America, 102, 4387–4392.
- Suter, M. Ramseier, D. Connolly, J. & Edwards, P. J. (2010). Species identity and negative density dependence lead to convergence in designed plant mixtures of twelve species. Basic and Applied Ecology, **11**, pp627-637.
- Tchobanoglous, G. (2003). Preliminary Treatment in Constructed Wetlands. Dias V. & Vymazel J (Ed.), 1st International Seminar on The Use of Aquatic Macrophytes for Wastewater Treatment in Constructed Wetlands. pp13-34
- Tchobanoglous, G.& Burton, F.L. (1991). Wastewater Engineering: Treatment, Disposal and Reuse / Metcalf & Eddy, Inc. (3rd ed.). McGraw-Hill Book Company.
- Thompson, D.P., Stuckey, R.I. & Thompson, E.B. (1987). Spread impact and control of purple loosestrife (Lythrum salicaria) in North American wetlands. US Fish and Wildlife Service, Fish and Wildlife Research Report 2. United States Department of the Interior, Washington, DC.
- Thoren, A.K. Legrand, C. & Herrmann, J. (2003). Transport and Transformation of De-icing Urea from Airport Runways in a Constructed Wetland System. Water Science & Technology, 48, 5, pp283-290. Pergamon.
- Tolstead, W.L. (1942). Vegetation of the Northern Part of Cherry County, Nebraska. Ecological Monographs, 12. pp255-292.
- Twolan-Strutt, L. & Keddy, P. (1996). Above- and below ground competition intensity in two contrasting wetland plant communities. Ecology, **77**, pp259-270.
- **UNESCO (1981).** The Practical Salinity Scale 1978 and the International Equation of State of Seawater 1980. UNESCO Technical Papers in Marine Science, **36**.
- **UNESCO (1985).** The International System of Units (SI) in Oceanography. UNESCO Technical Papers in Marine Science, **45**.
- University of Minnesota Extension (2017). Fertilizer Urea. https://www.extension.umn.edu/agriculture/nutrient-management/nitrogen/fertilizer-urea/
- Vaux, D. L. (2012). Know When Your Numbers Are Significant. Nature, 492, pp180-181.

- **Vymazal, J. (2003).** *Types of Constructed Wetland*. In. Dias, V. & Vymazal, J. (eds) 1st International Seminar on the use of Aquatic Macrophytes for Wastewater Treatment in Constructed Wetlands. pp35 – 79. ICN & INAG.
- Vymazal, J. (2008). Constructed Wetlands for Wastewater Treatment: A Review. Proceedings Taal2007: The 12th World Lake Conference: pp965-980.
- Vymazal, J. & Kröpfelová, L. (2008). Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow. Springer Netherlands
- Vymazal, J. (2011). Plants Used in Constructed Wetlands with Horizontal Subsurface flow: A Review. Hydrobiologia, 674, pp133-156.
- Vymazal, J. (2015). Does the Presence of Weedy Species Affect the Treatment Efficiency in Constructed Wetlands with Horizontal Subsurface Flow? In. Vymazal, J. (ed.) The Role of Natural and Constructed Wetlands in Nutrient Cycling and Retention on the Landscape. pp315-321. Springer International.
- Wallace, S.D. (2002a). On-Site Remediation of Petroleum Contact Wastes Using Subsurface Flow Wetlands. Nehring K.W. & Brauning S.E. (Ed.) Wetlands and Remediation 2. pp125-132. Battelle Press.
- Wallace, S.D. (2002b). Treatment of Cheese Processing Waste Using Subsurface Flow Wetlands. Nehring K.W. & Brauning S.E. (Ed.) Wetlands and Remediation 2. pp197-204. Battelle Press.
- Wallace, S.D. & Knight, R.L. (2006). Small-Scale Constructed Wetland Treatment Systems: Feasibility, Design Criteria, and O & M Requirements. The Water Environment Research Foundation, IWA Publishing UK.
- Weihe, P.E. & Neely, R.K. (1997). The effects of shading on competition between purple loosestrife and broad-leaved cattail. Aquatic Botany, **59**, pp127-138.
- Wildi, O. (2010), Data Analysis in Vegetation Ecology. Wiley-Blackwell.
- Winter, K.J. & Goetz, D. (2003). The Impact of Sewage Composition on the Soil Clogging Phenomena of Vertical Flow Constructed Wetlands. Water Science & Technology, 48, 5, pp9-14. Pergamon.
- Wittgren, H.B. & Maehlum, T. (1997). Wastewater Treatment Wetlands in Cold Climates. Water Science & Technology, 35, 5, pp45-53.
- Worrall, P. Revitt, D.M. Prickett, G. & Brewer D. (2002). Constructed Wetlands for Airport Runoff - The London Heathrow Experience. Nehring K.W. & Brauning S.E. (Ed.) Wetlands and Remediation 2. pp177-186. Battelle Press.
- Zhang, X.-b. Liu, P. Yang, Y.-s. & Chen, W.-r. (2007). Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes. Journal of Environmental Sciences, 19, pp902-909
- Zhu, S.-X. Ge, H.-L. Ge, Y. Cao, H.-Q. Liu, D. Chang, J. Zhang, C.-B. Gu, B.-J. Chang, S.-X. (2010). Effects of plant diversity on biomass production and substrate nitrogen in a subsurface vertical flow constructed wetland. Ecological Engineering, 36, pp1307-1313.
- Zhu, T. Jenssen, P.D. Maehlum, T. & Krogstad, T. (1997). Phosphorous Sorption and Chemical Characteristics of Lightweight Aggregates (LWA) - Potential Filter Media in Treatment Wetlands. Water Science & Technology, 35, 5, pp103-108. Pergamon.
- Zhu, T. Maehlum, T. Jenssen, P.D. & Krogstead, T. (2003). Phosphorous Sorption Characteristics of Light-weight Aggregate. Water Science & Technology, 48, 5, pp93-100. Pergamon.

APPENDICES

Appendices Overview

Appendix 1	Monthly Weather Data August 2007 to October 2010 (supplied on CD).
Appendix 2	Harvest Stem Measurements (supplied on CD).
Appendix 3	Water Input during the Acclimatisation and Establishment Period (supplied on CD).
Appendix 4	Vegetation Heights and Area Coverage during the Acclimatisation and Establishment Period (supplied on CD).
Appendix 5	Water Input during the Nutrient Treatment Period for the Full Competition Microcosms (supplied on CD).
Appendix 6	Vegetation Heights and Area Coverage during the Nutrient Treatment Period for the Full Competition Microcosms (supplied on CD).
Appendix 7	Water Input during the Salinity Treatment Period for the Full Competition Microcosms (supplied on CD).
Appendix 8	Vegetation Heights and Area Coverage during the Salinity Treatment Period for the Full Competition Microcosms (supplied on CD).
Appendix 9	Water Input during the Nutrient Treatment Period for the Restricted Competition Microcosms (supplied on CD).
Appendix 10	Vegetation Heights and Area Coverage during the Nutrient Treatment Period for the Restricted Competition Microcosms (supplied on CD).
Appendix 11	Water Input during the Salinity Treatment Period for the Restricted Competition Microcosms (supplied on CD).
Appendix 12	Vegetation Heights and Area Coverage during the Salinity Treatment Period for the Restricted Competition Microcosms (supplied on CD).
Appendix 13	Harvest Measurements for the Full Competition Microcosms with Nutrient Treatment (supplied on CD).
Appendix 14	Harvest Measurements for the Full Competition Microcosms with Salinity Treatment (supplied on CD).
Appendix 15	Root Spread Photographs for the Full Competition Microcosms with Nutrient Treatment (supplied on CD and hard copy).
Appendix 16	Root Spread Photographs for the Full Competition Microcosms with Salinity Treatment (supplied on CD and hard copy).
Appendix 17	Harvest Measurements for the Restricted Competition Microcosms with Nutrient Treatment (supplied on CD).
Appendix 18	Harvest Measurements for the Restricted Competition Microcosms with Salinity Treatment (supplied on CD).
Appendix 19	Root Spread Photographs for the Restricted Competition Microcosms with Nutrient Treatment (supplied on CD and hard copy).
Appendix 20	Root Spread Photographs for the Restricted Competition Microcosms with Salinity Treatment (supplied on CD and hard copy).
Appendix 21	Histogram and Data Heights for All Microcosms and Full Competition Microcosms (supplied on CD).
Appendix 22	One Way ANOVA Results for All Microcosms and Full Competition Microcosms (supplied on CD).
Appendix 23	Histogram and Data Heights for Restricted Competition Microcosms (supplied on CD).
Appendix 24	One Way ANOVA Results for Restricted Competition Microcosms (supplied on CD).

List of Appendices Tables

Table A1.1: Average and Combined Monthly Weather Data. August 2007 to October 2010. Table A2.1: Microcosm 1: Phragmites australis Stem Measurements. Table A2.2: Microcosm 2: Phragmites australis Stem Measurements. Table A2.3: Microcosm 3: Phragmites australis Stem Measurements. Table A2.4: Microcosm 4: Phragmites australis Stem Measurements. Table A2.5: Microcosm 5: Phragmites australis Stem Measurements. Table A2.6: Microcosm 6: Phragmites australis Stem Measurements. Table A2.7: Microcosm 7: Phragmites australis Stem Measurements. Table A2.8: Microcosm 8: Phragmites australis Stem Measurements. Table A2.9: Microcosm 9: Phragmites australis Stem Measurements. Table A2.10: Microcosm 10: Phragmites australis Stem Measurements. Table A2.11: Microcosm 11: Phragmites australis Stem Measurements. Table A2.12: Microcosm 12: Phragmites australis Stem Measurements. Table A2.13: Microcosm 13: Phragmites australis Stem Measurements. Table A2.14: Microcosm 14: Phragmites australis Stem Measurements. Table A2.15: Microcosm 15: Phragmites australis Stem Measurements. Table A2.16: Microcosm 16: Phragmites australis Stem Measurements. Table A2.17: Microcosm 1: Lythrum salicaria Stem Measurements. Table A2.18: Microcosm 2: Lythrum salicaria Stem Measurements. Table A2.19: Microcosm 3: Lythrum salicaria Stem Measurements. Table A2.20: Microcosm 4: Lythrum salicaria Stem Measurements. Table A2.21: Microcosm 5: Lythrum salicaria Stem Measurements. Table A2.22: Microcosm 6: Lythrum salicaria Stem Measurements. Table A2.23: Microcosm 7: Lythrum salicaria Stem Measurements. Table A2.24: Microcosm 8: Lythrum salicaria Stem Measurements. Table A2.25: Microcosm 9: Lythrum salicaria Stem Measurements. Table A2.26: Microcosm 10: Lythrum salicaria Stem Measurements. Table A2.27: Microcosm 11: Lythrum salicaria Stem Measurements. Table A2.28: Microcosm 12: Lythrum salicaria Stem Measurements. Table A2.29: Microcosm 13: Lythrum salicaria Stem Measurements. Table A2.30: Microcosm 14: Lythrum salicaria Stem Measurements. Table A2.31: Microcosm 15: Lythrum salicaria Stem Measurements. Table A2.32: Microcosm 16: Lythrum salicaria Stem Measurements. Table A2.33: Microcosm 1: Filipendula ulmaria Stem Measurements. Table A2.34: Microcosm 2: Filipendula ulmaria Stem Measurements. Table A2.35: Microcosm 3: Filipendula ulmaria Stem Measurements. Table A2.36: Microcosm 4: Filipendula ulmaria Stem Measurements. Table A2.37: Microcosm 5: Filipendula ulmaria Stem Measurements. Table A2.38: Microcosm 6: Filipendula ulmaria Stem Measurements.

Table A2.39: Microcosm 7: Filipendula ulmaria Stem Measurements. Table A2.40: Microcosm 8: Filipendula ulmaria Stem Measurements. Table A2.41: Microcosm 9: Filipendula ulmaria Stem Measurements. Table A2.42: Microcosm 10: Filipendula ulmaria Stem Measurements. Table A2.43: Microcosm 11: Filipendula ulmaria Stem Measurements. Table A2.44: Microcosm 12: Filipendula ulmaria Stem Measurements. Table A2.45: Microcosm 13: Filipendula ulmaria Stem Measurements. Table A2.46: Microcosm 14: Filipendula ulmaria Stem Measurements. Table A2.47: Microcosm 15: Filipendula ulmaria Stem Measurements. Table A2.48: Microcosm 16: Filipendula ulmaria Stem Measurements. Table A2.49: Microcosm 1: Mentha aquatica Stem Measurements. Table A2.50: Microcosm 2: *Mentha aquatica* Stem Measurements. Table A2.51: Microcosm 3: Mentha aquatica Stem Measurements. Table A2.52: Microcosm 4: Mentha aquatica Stem Measurements. Table A2.53: Microcosm 5: Mentha aquatica Stem Measurements. Table A2.54: Microcosm 6: Mentha aquatica Stem Measurements. Table A2.55: Microcosm 7: Mentha aquatica Stem Measurements. Table A2.56: Microcosm 8: Mentha aquatica Stem Measurements. Table A2.57: Microcosm 9: Mentha aquatica Stem Measurements. Table A2.58: Microcosm 10: Mentha aquatica Stem Measurements. Table A2.59: Microcosm 11: Mentha aquatica Stem Measurements. Table A2.60: Microcosm 12: Mentha aquatica Stem Measurements. Table A2.61: Microcosm 13: Mentha aquatica Stem Measurements. Table A2.62: Microcosm 14: Mentha aquatica Stem Measurements. Table A2.63: Microcosm 15: Mentha aquatica Stem Measurements. Table A2.64: Microcosm 16: Mentha aquatica Stem Measurements. Table A 3.1: Microcosms 1-8 Water Input during the Acclimatisation and Establishment Period. Table A 3.2: Microcosms 9-16 Water Input during the Acclimatisation and Establishment Period. Table A 4.1: Microcosm 1 Vegetation Heights during the Acclimatisation and Establishment Period. Table A 4.2: Microcosm 2 Vegetation Heights during the Acclimatisation and Establishment Period. Table A 4.3: Microcosm 3 Vegetation Heights during the Acclimatisation and Establishment Period. Table A 4.4: Microcosm 4 Vegetation Heights during the Acclimatisation and Establishment Period. Table A 4.5: Microcosm 5 Vegetation Heights during the Acclimatisation and Establishment Period. Table A 4.6: Microcosm 6 Vegetation Heights during the Acclimatisation and Establishment Period. Table A 4.7: Microcosm 7 Vegetation Heights during the Acclimatisation and Establishment Period. Table A 4.8: Microcosm 8 Vegetation Heights during the Acclimatisation and Establishment Period. Table A 4.9: Microcosm 1 Vegetation Areas during the Acclimatisation and Establishment Period. Table A 4.10: Microcosm 2 Vegetation Areas during the Acclimatisation and Establishment Period. Table A 4.11: Microcosm 3 Vegetation Areas during the Acclimatisation and Establishment Period. Table A 4.12: Microcosm 4 Vegetation Areas during the Acclimatisation and Establishment Period. Table A 4.13: Microcosm 5 Vegetation Areas during the Acclimatisation and Establishment Period.

Table A 4.14: Microcosm 6 Vegetation Areas during the Acclimatisation and Establishment Period.

Table A 4.15: Microcosm 7 Vegetation Areas during the Acclimatisation and Establishment Period.

Table A 4.16: Microcosm 8 Vegetation Areas during the Acclimatisation and Establishment Period.

Table A 4.17: Microcosm 9 Vegetation Heights during the Acclimatisation and Establishment Period.

Table A 4.18: Microcosm 10 Vegetation Heights during the Acclimatisation and Establishment Period.

Table A 4.19: Microcosm 11 Vegetation Heights during the Acclimatisation and Establishment Period.

Table A 4.20: Microcosm 12 Vegetation Heights during the Acclimatisation and Establishment Period.

Table A 4.21: Microcosm 13 Vegetation Heights during the Acclimatisation and Establishment Period.

Table A 4.22: Microcosm 14 Vegetation Heights during the Acclimatisation and Establishment Period.

Table A 4.23: Microcosm 15 Vegetation Heights during the Acclimatisation and Establishment Period.

Table A 4.24: Microcosm 16 Vegetation Heights during the Acclimatisation and Establishment Period.

Table A 4.25: Microcosm 9 Vegetation Areas during the Acclimatisation and Establishment Period.

Table A 4.26: Microcosm 10 Vegetation Areas during the Acclimatisation and Establishment Period.

Table A 4.27: Microcosm 11 Vegetation Areas during the Acclimatisation and Establishment Period.

Table A 4.28: Microcosm 12 Vegetation Areas during the Acclimatisation and Establishment Period.

Table A 4.29: Microcosm 13 Vegetation Areas during the Acclimatisation and Establishment Period.

Table A 4.30: Microcosm 14 Vegetation Areas during the Acclimatisation and Establishment Period.

Table A 4.31: Microcosm 15 Vegetation Areas during the Acclimatisation and Establishment Period.

 Table A 4.32: Microcosm 16 Vegetation Areas during the Acclimatisation and Establishment

 Period.

Table A 5.1: Microcosms 1-4 Water Input during the Nutrient Treatment Period.

Table A 6.1: Microcosm 1 Vegetation Heights during the Nutrient Treatment Period.

Table A 6.2: Microcosm 2 Vegetation Heights during the Nutrient Treatment Period.

Table A 6.3: Microcosm 3 Vegetation Heights during the Nutrient Treatment Period.

Table A 6.4: Microcosm 4 Vegetation Heights during the Nutrient Treatment Period.

Table A 6.5: Microcosm 1 Vegetation Areas during the Nutrient Treatment Period.

Table A 6.6: Microcosm 2 Vegetation Areas during the Nutrient Treatment Period.

Table A 6.7: Microcosm 3 Vegetation Areas during the Nutrient Treatment Period.

Table A 6.8: Microcosm 4 Vegetation Areas during the Nutrient Treatment Period.

Table A 7.1: Microcosms 5-8 Water Input during the Salinity Treatment Period.

Table A 8.1: Microcosm 5 Vegetation Heights during the Salinity Treatment Period.

Table A 8.2: Microcosm 6 Vegetation Heights during the Salinity Treatment Period.

Table A 8.3: Microcosm 7 Vegetation Heights during the Salinity Treatment Period.

Table A 8.4: Microcosm 8 Vegetation Heights during the Salinity Treatment Period. Table A 8.5: Microcosm 5 Vegetation Areas during the Salinity Treatment Period. Table A 8.6: Microcosm 6 Vegetation Areas during the Salinity Treatment Period. Table A 8.7: Microcosm 7 Vegetation Areas during the Salinity Treatment Period. Table A 8.8: Microcosm 8 Vegetation Areas during the Salinity Treatment Period. Table A 9.1: Microcosms 9-12 Water Input during the Nutrient Treatment Period. Table A 10.1: Microcosm 9 Vegetation Heights during the Nutrient Treatment Period. Table A 10.2: Microcosm 10 Vegetation Heights during the Nutrient Treatment Period. Table A 10.3: Microcosm 11 Vegetation Heights during the Nutrient Treatment Period. Table A 10.4: Microcosm 12 Vegetation Heights during the Nutrient Treatment Period. Table A 10.5: Microcosm 9 Vegetation Areas during the Nutrient Treatment Period. Table A 10.6: Microcosm 10 Vegetation Areas during the Nutrient Treatment Period. Table A 10.7: Microcosm 11 Vegetation Areas during the Nutrient Treatment Period. Table A 10.8: Microcosm 12 Vegetation Areas during the Nutrient Treatment Period. Table A 11.1: Microcosms 13-16 Water Input during the Salinity Treatment Period. Table A 12.1: Microcosm 13 Vegetation Heights during the Salinity Treatment Period. Table A 12.2: Microcosm 14 Vegetation Heights during the Salinity Treatment Period. Table A 12.3: Microcosm 15 Vegetation Heights during the Salinity Treatment Period. Table A 12.4: Microcosm 16 Vegetation Heights during the Salinity Treatment Period. Table A 12.5: Microcosm 13 Vegetation Areas during the Salinity Treatment Period. Table A 12.6: Microcosm 14 Vegetation Areas during the Salinity Treatment Period. Table A 12.7: Microcosm 15 Vegetation Areas during the Salinity Treatment Period. Table A 12.8: Microcosm 16 Vegetation Areas during the Salinity Treatment Period Table A 13.1: Microcosms 1-4 Nutrient Treatment Phase with Full Competition - Stem Measurements for All Stems. Table A 13.2: Microcosms 1-4 Nutrient Treatment Phase with Full Competition – Volumes and Weights for All Stems. Table A 13.3: Microcosms 1-4 Nutrient Treatment Phase with Full Competition – Weights (g) for All Roots. Table A 14.1: Microcosms 5-8 Salinity Treatment Phase with Full Root Competition – Stem Measurements for All Stems. Table A 14.2: Microcosms 5-8 Salinity Treatment Phase with Full Competition – Volumes and Weights for All Stems.

Table A 14.3: Microcosms 5-8 Salinity Treatment Phase with Full Competition – Weights (g) for All Roots.

Table A 17.1: Microcosms 9-12 Nutrient Treatment Phase with Restricted Root Competition – Stem Measurements for All Stems.

Table A 17.2: Microcosms 9-12 Nutrient Treatment Phase with Restricted Root Competition – Volumes and Weights for All Stems.

Table A 17.3: Microcosms 9-12 Nutrient Treatment Phase with Restricted Root Competition – Weights (g) for All Roots.

Table A 18.1: Microcosms 13-16 Salinity Treatment Phase with Restricted Root Competition – Stem Measurements for All Stems.

Table A 18.2: Microcosms 13-16 Salinity Treatment Phase with Restricted Root Competition – Volumes and Weights for All Stems.

Table A 18.3: Microcosms 13-16 Salinity Treatment Phase with Restricted Root Competition – Weights (g) for All Roots

Table A 21.1: One Way ANOVA results for effects of different nutrient ratios on stem harvest heights (Log10) for all microcosms not subject to increased salinity levels

Table A 21.2: One Way ANOVA results for effects of different nutrient ratios on stem harvest widths (Log10) for all microcosms not subject to increased salinity levels

Table A 21.3: One Way ANOVA Results for Effects of Different Nutrient Ratios on Stem Harvest Heights (Log10) for Microcosms 1-5 with Full Root Competition

Table A 21.4: One Way ANOVA Results for Effects of Different Nutrient Ratios on Stem Harvest Widths (Log10) for Microcosms 1-5 with Full Root Competition

Table A 21.5: One Way ANOVA results for effects of different salinity ratios on surviving stem harvest heights

Table A 21.6: One Way ANOVA results for effects of different salinity ratios on surviving stem harvest widths

Table A 21.7: One Way ANOVA Results for Effects of Different Salinity Ratios on Stem Harvest Heights (Log10) for Microcosms 1, 5-8 with Full Root Competition

Table A 21.8: One Way ANOVA Results for Effects of Different Salinity Ratios on Stem Harvest Widths (Log10) for Microcosms 1, 5-8 with Full Root Competition

Table A 22.1: One Way ANOVA results for effects of different nutrient ratios on stem harvest heights (Log10) for all microcosms not subject to increased salinity levels

Table A 22.2: One Way ANOVA results for effects of different nutrient ratios on stem harvest widths (Log10) for all microcosms not subject to increased salinity levels

Table A 22.3: One Way ANOVA Results for Effects of Different Nutrient Ratios on Stem Harvest Heights (Log10) for Microcosms 1-5 with Full Root Competition

Table A 22.4: One Way ANOVA Results for Effects of Different Nutrient Ratios on Stem Harvest Widths (Log10) for Microcosms 1-5 with Full Root Competition

Table A 22.5: One Way ANOVA results for effects of different salinity ratios on surviving stem harvest heights

Table A 22.6: One Way ANOVA results for effects of different salinity ratios on surviving stem harvest widths

Table A 22.7: One Way ANOVA Results for Effects of Different Salinity Ratios on Stem Harvest Heights (Log10) for Microcosms 1, 5-8 with Full Root Competition

Table A 22.8: One Way ANOVA Results for Effects of Different Salinity Ratios on Stem Harvest Widths (Log10) for Microcosms 1, 5-8 with Full Root Competition

Table A 24.1: One Way ANOVA Results for Effects Of Different Nutrient Ratios on Stem Harvest Heights (Log10) for Microcosms 9-13 with Restricted Root Competition

Table A 24.2: One Way ANOVA Results for Effects of Different Nutrient Ratios on Stem Harvest Widths (Log10) for Microcosms 9-13 with Restricted Root Competition

 Table A 24.3: One Way ANOVA Results for Effects of Different Salinity Ratios on Stem Harvest

 Heights (Log10) for Microcosms 9, 13-16 with Restricted Root Competition

Table A 24.4: One Way ANOVA Results for Effects of Different Salinity Ratios on Stem Harvest Widths (Log10) for Microcosms 9, 13-16 with Restricted Root Competition

List of Appendices Figures

Figure A 15.1: Microcosm 1 Lythrum salicaria Root Spread Figure A 15.2: Microcosm 1 Filipendula ulmaria Root Spread Figure A 15.3: Microcosm 1 Mentha aquatica Root Spread Figure A 15.4: Microcosm 2 Lythrum salicaria Root Spread Figure A 15.5: Microcosm 2 Filipendula ulmaria Root Spread Figure A 15.6: Microcosm 2 Mentha aquatica Root Spread Figure A 15.7: Microcosm 3 Lythrum salicaria Root Spread Figure A 15.8: Microcosm 3 Filipendula ulmaria Root Spread Figure A 15.9: Microcosm 3 Mentha aquatica Root Spread Figure A 15.10: Microcosm 4 Lythrum salicaria Root Spread Figure A 15.11: Microcosm 4 Filipendula ulmaria Root Spread Figure A 15.12: Microcosm 4 Mentha aquatica Root Spread Figure A 16.1: Microcosm 5 Lythrum salicaria Root Spread Figure A 16.2: Microcosm 5 Filipendula ulmaria Root Spread Figure A 16.3: Microcosm 5 Mentha aquatica Root Spread Figure A 16.4: Microcosm 6 Lythrum salicaria Root Spread Figure A 16.5: Microcosm 6 Filipendula ulmaria Root Spread Figure A 16.6: Microcosm 6 Mentha aquatica Root Spread Figure A 16.7: Microcosm 7 Lythrum salicaria Root Spread Figure A 16.8: Microcosm 7 Filipendula ulmaria Root Spread Figure A 16.9: Microcosm 7 Mentha aquatica Root Spread Figure A 16.10: Microcosm 8 Lythrum salicaria Root Spread Figure A 16.11: Microcosm 8 Filipendula ulmaria Root Spread Figure A 16.12: Microcosm 8 Mentha aquatica Root Spread Figure A 19.1: Microcosm 9 Lythrum salicaria Root Spread Figure A 19.2: Microcosm 9 Filipendula ulmaria Root Spread Figure A 19.3: Microcosm 9 Mentha aquatica Root Spread Figure A 19.4: Microcosm 9 Phragmites australis Root Spread Figure A 19.5: Microcosm 10 Lythrum salicaria Root Spread Figure A 19.6: Microcosm 10 Filipendula ulmaria Root Spread Figure A 19.7: Microcosm 10 Mentha aquatica Root Spread Figure A 19.8: Microcosm 10 Phragmites australis Root Spread Figure A 19.9: Microcosm 11 Lythrum salicaria Root Spread Figure A 19.10: Microcosm 11 Filipendula ulmaria Root Spread Figure A 19.11: Microcosm 11 Mentha aquatica Root Spread Figure A 19.12: Microcosm 11 Phragmites australis Root Spread Figure A 19.13: Microcosm 12 Lythrum salicaria Root Spread Figure A 19.14: Microcosm 12 Filipendula ulmaria Root Spread Figure A 19.15: Microcosm 12 Mentha aquatica Root Spread

Figure A 19.16: Microcosm 12 Phragmites australis Root Spread

Figure A 20.1: Microcosm 13 Lythrum salicaria Root Spread

Figure A 20.2: Microcosm 13 Filipendula ulmaria Root Spread

Figure A 20.3: Microcosm 13 Mentha aquatica Root Spread

Figure A 20.4: Microcosm 13 Phragmites australis Root Spread

Figure A 20.5: Microcosm 14 Lythrum salicaria Root Spread

Figure A 20.6: Microcosm 14 Filipendula ulmaria Root Spread

Figure A 20.7: Microcosm 14 Mentha aquatica Root Spread (Humus Layer Bottom Right)

Figure A 20.8: Microcosm 14 Phragmites australis Root Spread

Figure A 20.9: Microcosm 15 Lythrum salicaria Root Spread

Figure A 20.10: Microcosm 15 Filipendula ulmaria Root Spread

Figure A 20.11: Microcosm 15 Mentha aquatica Root Spread

Figure A 20.12: Microcosm 15 Phragmites australis Root Spread

Figure A 20.13: Microcosm 16 Lythrum salicaria Root Spread

Figure A 20.14: Microcosm 16 Filipendula ulmaria Root Spread

Figure A 20.15: Microcosm 16 Mentha aquatica Root Spread (Right Hand Side)

Figure A 20.16: Microcosm 16 Phragmites australis Root Spread

Figure A 21.1: Phragmites australis Histogram and Data of Stem Heights with Increasing Nutrients

Figure A 21.2: Phragmites australis Histogram and Data of Stem Widths with Increasing Nutrients

Figure A 21.3: Lythrum salicaria Histogram and Data of Stem Heights with Increasing Nutrients

Figure A 21.4: Lythrum salicaria Histogram and Data of Stem Widths with Increasing Nutrients

Figure A 21.5: Filipendula ulmaria Histogram and Data of Stem Heights with Increasing Nutrients

Figure A 21.6: Filipendula ulmaria Histogram and Data of Stem Widths with Increasing Nutrients

Figure A 21.7: Mentha aquatica Histogram and Data of Stem Heights with Increasing Nutrients

Figure A 21.8: Mentha aquatica Histogram and Data of Stem Widths with Increasing Nutrients

Figure A 21.9: Phragmites australis Histogram and Data of Stem Heights with Increasing Nutrients for Microcosms 1-5 with Full Root Competition

Figure A 21.10: Phragmites australis Histogram and Data of Stem Widths with Increasing Nutrients for Microcosms 1-5 with Full Root Competition

Figure A 21.11: Lythrum salicaria Histogram and Data of Stem Heights with Increasing Nutrients for Microcosms 1-5 with Full Root Competition

Figure A 21.12: Lythrum salicaria Histogram and Data of Stem Widths with Increasing Nutrients for Microcosms 1-5 with Full Root Competition

Figure A 21.13: Filipendula ulmaria Histogram and Data of Stem Heights with Increasing Nutrients for Microcosms 1-5 with Full Root Competition

Figure A 21.14: Filipendula ulmaria Histogram and Data of Stem Widths with Increasing Nutrients for Microcosms 1-5 with Full Root Competition

Figure A 21.15: Mentha aquatica Histogram and Data of Stem Heights with Increasing Nutrients for Microcosms 1-5 with Full Root Competition

Figure A 21.16: Mentha aquatica Histogram and Data of Stem Widths with Increasing Nutrients for Microcosms 1-5 with Full Root Competition

Figure A 21.17: Phragmites australis Histogram and Data of Stem Heights with Increasing Salinity

Figure A 21.18: Phragmites australis Histogram and Data of Stem Widths with Increasing Salinity

Figure A 21.19: Lythrum salicaria Histogram and Data of Stem Heights with Increasing Salinity

Figure A 21.20: Lythrum salicaria Histogram and Data of Stem Widths with Increasing Salinity

Figure A 21.21: Filipendula ulmaria Histogram and Data of Stem Heights with Increasing Salinity

Figure A 21.22: Filipendula ulmaria Histogram and Data of Stem Widths with Increasing Salinity

Figure A 21.23: Mentha aquatica Histogram and Data of Stem Heights with Increasing Salinity

Figure A 21.24: Mentha aquatica Histogram and Data of Stem Widths with Increasing Salinity

Figure A 21.25: Phragmites australis Histogram and Data of Stem Heights with Increasing Salinity for Microcosms 1, 5-8 with Full Root Competition

Figure A 21.26: Phragmites australis Histogram and Data of Stem Widths with Increasing Salinity for Microcosms 1, 5-8 with Full Root Competition

Figure A 21.27: Lythrum salicaria Histogram and Data of Stem Heights with Increasing Salinity for Microcosms 1, 5-8 with Full Root Competition

Figure A 21.28: Lythrum salicaria Histogram and Data of Stem Widths with Increasing Salinity for Microcosms 1, 5-8 with Full Root Competition

Figure A 21.29: Filipendula ulmaria Histogram and Data of Stem Heights with Increasing Salinity for Microcosms 1, 5-8 with Full Root Competition

Figure A 21.30: Filipendula ulmaria Histogram and Data of Stem Widths with Increasing Salinity for Microcosms 1, 5-8 with Full Root Competition

Figure A 21.31: Mentha aquatica Histogram and Data of Stem Heights with Increasing Salinity for Microcosms 1, 5-8 with Full Root Competition

Figure A 21.32: Mentha aquatica Histogram and Data of Stem Widths with Increasing Salinity for Microcosms 1, 5-8 with Full Root Competition

Figure A 23.1: Phragmites australis Histogram and Data of Stem Heights with Increasing Nutrients for Microcosms 9-13 with Restricted Root Competition

Figure A 23.2: Phragmites australis Histogram and Data of Stem Widths with Increasing Nutrients for Microcosms 9-13 with Restricted Root Competition

Figure A 23.3: Lythrum salicaria Histogram and Data of Stem Heights with Increasing Nutrients for Microcosms 9-13 with Restricted Root Competition

Figure A 23.4: Lythrum salicaria with Restricted Root Competition Histogram and Data of Stem Widths with Increasing Nutrients for Microcosms 9-13

Figure A 23.5: Filipendula ulmaria Histogram and Data of Stem Heights with Increasing Nutrients for Microcosms 9-13 with Restricted Root Competition

Figure A 23.6: Filipendula ulmaria Histogram and Data of Stem Widths with Increasing Nutrients for Microcosms 9-13 with Restricted Root Competition

Figure A 23.7: Mentha aquatica Histogram and Data of Stem Heights with Increasing Nutrients for Microcosms 9-13 with Restricted Root Competition

Figure A 23.8: Mentha aquatica Histogram and Data of Stem Widths with Increasing Nutrients for Microcosms 9-13 with Restricted Root Competition

Figure A 23.9: Phragmites australis Histogram and Data of Stem Heights with Increasing Salinity for Microcosms 9, 13-16 with Restricted Root Competition

Figure A 23.10: Phragmites australis Histogram and Data of Stem Widths with Increasing Salinity for Microcosms 9, 13-16 with Restricted Root Competition

Figure A 23.11: Lythrum salicaria Histogram and Data of Stem Heights with Increasing Salinity for Microcosms 9, 13-16 with Restricted Root Competition

Figure A 23.12: Lythrum salicaria Histogram and Data of Stem Widths with Increasing Salinity for Microcosms 9, 13-16 with Restricted Root Competition

Figure A 23.13: Filipendula ulmaria Histogram and Data of Stem Heights with Increasing Salinity for Microcosms 9, 13-16 with Restricted Root Competition

Figure A 23.14: Filipendula ulmaria Histogram and Data of Stem Widths with Increasing Salinity for Microcosms 9, 13-16 with Restricted Root Competition

Figure A 23.15: Mentha aquatica Histogram and Data of Stem Heights with Increasing Salinity for Microcosms 9, 13-16 with Restricted Root Competition

Figure A 23.16: Mentha aquatica Histogram and Data of Stem Widths with Increasing Salinity for Microcosms 9, 13-16 with Restricted Root Competition

Appendix 15: Root Spread Photographs for the Full Competition Microcosms with Nutrient Treatment

Figure A15.1: Microcosm 1 *Lythrum salicaria* Root Spread

Figure A15.2: Microcosm 1 *Filipendula ulmaria* Root Spread

Figure A15.3: Microcosm 1 *Mentha aquatica* Root Spread

Figure A15.4: Microcosm 2 *Lythrum salicaria* Root Spread

Figure A15.5: Microcosm 2 *Filipendula ulmaria* Root Spread

Figure A15.6: Microcosm 2 *Mentha aquatica* Root Spread

Figure A15.7: Microcosm 3 *Lythrum salicaria* Root Spread

Figure A15.8: Microcosm 3 *Filipendula ulmaria* Root Spread

Figure A15.9: Microcosm 3 *Mentha aquatica* Root Spread

Figure A15.10: Microcosm 4 *Lythrum salicaria* Root Spread

Figure A15.11: Microcosm 4 *Filipendula ulmaria* Root Spread

Figure A15.12: Microcosm 4 *Mentha aquatica* Root Spread

Appendix 16: Root Spread Photographs for the Full Competition Microcosms with Salinity Treatment

Figure A16.1: Microcosm 5 *Lythrum salicaria* Root Spread

Figure A16.2: Microcosm 5 *Filipendula ulmaria* Root Spread

Figure A16.3 Microcosm 5 *Mentha aquatica* Root Spread

Figure A16.4: Microcosm 6 *Lythrum salicaria* Root Spread

Figure A16.5: Microcosm 6 *Filipendula ulmaria* Root Spread

Figure A16.6: Microcosm 6 *Mentha aquatica* Root Spread

Figure A16.7: Microcosm 7 *Lythrum salicaria* Root Spread

Figure A16.8: Microcosm 7 *Filipendula ulmaria* Root Spread

Figure A16.9: Microcosm 7 *Mentha aquatica* Root Spread

Figure A16.10: Microcosm 8 *Lythrum salicaria* Root Spread

Figure A16.11: Microcosm 8 *Filipendula ulmaria* Root Spread

Figure A16.12: Microcosm 8 *Mentha aquatica* Root Spread

Appendix 19: Root Spread Photographs for the Restricted Competition Microcosms with Nutrient Treatment

Figure A19.1: Microcosm 9 *Lythrum salicaria* Root Spread

Figure A19.3: Microcosm 9 *Mentha aquatica* Root Spread

Figure A19.2: Microcosm 9 *Filipendula ulmaria* Root Spread

Figure A19.4: Microcosm 9 *Phragmites australis* Root Spread

Figure A19.5: Microcosm 10 *Lythrum salicaria* Root Spread

Figure A19.7: Microcosm 10 *Mentha aquatica* Root Spread

Figure A19.6: Microcosm 10 *Filipendula ulmaria* Root Spread

Figure A19.8: Microcosm 10 *Phragmites australis* Root Spread

Figure A19.9: Microcosm 11 *Lythrum salicaria* Root Spread

Figure A19.11: Microcosm 11 *Mentha aquatica* Root Spread

Figure A19.10: Microcosm 11 *Filipendula ulmaria* Root Spread

Figure A19.12: Microcosm 11 *Phragmites australis* Root Spread

Figure A19.13: Microcosm 12 *Lythrum salicaria* Root Spread

Figure A19.15: Microcosm 12 *Mentha aquatica* Root Spread

Figure A19.14: Microcosm 12 *Filipendula ulmaria* Root Spread

Figure A19.16: Microcosm 12 *Phragmites australis* Root Spread

Appendix 20: Root Spread Photographs for the Restricted Competition Microcosms with Salinity Treatment

Figure A20.1: Microcosm 13 *Lythrum salicaria* Root Spread

Figure A20.3: Microcosm 13 *Mentha aquatica* Root Spread

Figure A20.2: Microcosm 13 *Filipendula ulmaria* Root Spread

Figure A20.4: Microcosm 13 *Phragmites australis* Root Spread

Figure A20.5: Microcosm 14 *Lythrum salicaria* Root Spread

Figure A20.7: Microcosm 14 *Mentha aquatica* Root Spread (Humus Layer Bottom Right)

Figure A20.6: Microcosm 14 *Filipendula ulmaria* Root Spread

Figure A20.8: Microcosm 14 *Phragmites australis* Root Spread

Figure A20.9: Microcosm 15 *Lythrum salicaria* Root Spread

Figure A20.11: Microcosm 15 *Mentha aquatica* Root Spread

Figure A20.10: Microcosm 15 *Filipendula ulmaria* Root Spread

Figure A20.12: Microcosm 15 *Phragmites australis* Root Spread

Figure A20.13: Microcosm 16 *Lythrum salicaria* Root Spread

Figure A20.15: Microcosm 16 *Mentha aquatica* Root Spread (Right Hand Side)

Figure A20.14: Microcosm 16 *Filipendula ulmaria* Root Spread

Figure A20.16: Microcosm 16 *Phragmites australis* Root Spread

CD with Electronic Appendices

THE ENHANCMENT OF FLORAL BIODIVERSITY

IN SMALL SCALE CONSTRUCTED WETLAND

TREATMENT SYSTEMS

ELECTRONIC CD APPENDICES

NICHOLAS ALEXANDER STEGGALL

Doctor of Philosophy

ASTON UNIVERISTY

January 2017

© Nicholas Alexander Steggall, 2017

Nicholas Alexander Steggall asserts his moral right to be identified as the author of this thesis

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright belongs to its author and that no quotation from the thesis and no information derived from it may be published without permission or acknowledgement.

CD Appendices Contents

CD Appendices Contents 2 -			
Appendices Table List 4 -			
Appendices Figure List 10 -			
Appendix 1	Monthly Weather Data August 2007 to October 2010 14 -		
Appendix 2	Harvest Stem Measurements 16 -		
Appendix 3	Water Input during the Acclimatisation and Establishment Period 244 -		
Appendix 4 Establishmer	Vegetation Heights and Area Coverage during the Acclimatisation and nt Period 247 -		
Appendix 5 Microcosms	Water Input during the Nutrient Treatment Period for the Full Competition - 280 -		
Appendix 6 for the Full C	Vegetation Heights and Area Coverage during the Nutrient Treatment Period ompetition Microcosms 282 -		
Appendix 7 Microcosms	Water Input during the Salinity Treatment Period for the Full Competition - 291 -		
Appendix 8 for the Full C	Vegetation Heights and Area Coverage during the Salinity Treatment Period ompetition Microcosms 293 -		
Appendix 9 Competition	Water Input during the Nutrient Treatment Period for the Restricted Microcosms 302 -		
Appendix 10 for the Restri	Vegetation Heights and Area Coverage during the Nutrient Treatment Period cted Competition Microcosms 304 -		
Appendix 11 Competition	Water Input during the Salinity Treatment Period for the Restricted Microcosms 313 -		
Appendix 12 for the Restri	Vegetation Heights and Area Coverage during the Salinity Treatment Period cted Competition Microcosms 315 -		
Appendix 13 Treatment	Harvest Measurements for the Full Competition Microcosms with Nutrient - 324 -		
Appendix 14 Treatment	Harvest Measurements for the Full Competition Microcosms with Salinity		
Appendix 15 Treatment	Root Spread Photographs for the Full Competition Microcosms with Nutrient - 330 -		
Appendix 16 Treatment	Root Spread Photographs for the Full Competition Microcosms with Salinity		
Appendix 17 Nutrient Trea	Harvest Measurements for the Restricted Competition Microcosms with tment		

Appendix 18	Harvest Measurements for the Restricted Competition Microcosms with
Salinity Treat	ment 343 -
Appendix 19	Root Spread Photographs for the Restricted Competition Microcosms with
Nutrient Trea	tment 346 -
Appendix 20	Root Spread Photographs for the Restricted Competition Microcosms with
Salinity Treat	ment 351 -
Appendix 21	Histogram and Data Heights for All Microcosms and Full Competition
Microcosms	- 356 -
Appendix 22	One Way ANOVA Results for All Microcosms and Full Competition
Microcosms	- 393 -
Appendix 23	Histogram and Data Heights for Restricted Competition Microcosms 398 -
Appendix 24	One Way ANOVA Results for Restricted Competition Microcosms 415 -
-	

Appendices Table List

Table A1.1: Average and Combined Monthly Weather Data. August 2007 to October 2010 1	14 -
Table A2.1: Microcosm 1: Phragmites australis Stem Measurements 1	6 -
Table A2.2: Microcosm 2: Phragmites australis Stem Measurements 2	21 -
Table A2.3: Microcosm 3: Phragmites australis Stem Measurements 2	28 -
Table A2.4: Microcosm 4: Phragmites australis Stem Measurements 3	38 -
Table A2.5: Microcosm 5: Phragmites australis Stem Measurements 5	50 -
Table A2.6: Microcosm 6: Phragmites australis Stem Measurements	54 -
Table A2.7: Microcosm 7: Phragmites australis Stem Measurements	58 -
Table A2.8: Microcosm 8: Phragmites australis Stem Measurements 6	33 -
Table A2.9: Microcosm 9: Phragmites australis Stem Measurements 6	39 -
Table A2.10: Microcosm 10: Phragmites australis Stem Measurements	'6 -
Table A2.11: Microcosm 11: Phragmites australis Stem Measurements	33 -
Table A2.12: Microcosm 12: Phragmites australis Stem Measurements) 2 -
Table A2.13: Microcosm 13: Phragmites australis Stem Measurements 10	05 -
Table A2.14: Microcosm 14: Phragmites australis Stem Measurements 17	11 -
Table A2.15: Microcosm 15: Phragmites australis Stem Measurements 17	16 -
Table A2.16: Microcosm 16: Phragmites australis Stem Measurements 17	18 -
Table A2.17: Microcosm 1: Lythrum salicaria Stem Measurements 12	23 -
Table A2.18: Microcosm 2: Lythrum salicaria Stem Measurements 12	28 -
Table A2.19: Microcosm 3: Lythrum salicaria Stem Measurements 13	32 -
Table A2.20: Microcosm 4: Lythrum salicaria Stem Measurements 13	35 -
Table A2.21: Microcosm 5: Lythrum salicaria Stem Measurements 13	39 -
Table A2.22: Microcosm 6: Lythrum salicaria Stem Measurements 14	43 -
Table A2.23: Microcosm 7: Lythrum salicaria Stem Measurements 14	46 -
Table A2.24: Microcosm 8: Lythrum salicaria Stem Measurements 14	49 -
Table A2.25: Microcosm 9: Lythrum salicaria Stem Measurements 15	50 -
Table A2.26: Microcosm 10: Lythrum salicaria Stem Measurements 15	54 -
Table A2.27: Microcosm 11: Lythrum salicaria Stem Measurements 15	58 -
Table A2.28: Microcosm 12: Lythrum salicaria Stem Measurements 16	<u> 5</u> 2 -
Table A2.29: Microcosm 13: Lythrum salicaria Stem Measurements 16	- 66
Table A2.30: Microcosm 14: Lythrum salicaria Stem Measurements 17	70 -
Table A2.31: Microcosm 15: Lythrum salicaria Stem Measurements 17	73 -
Table A2.32: Microcosm 16: Lythrum salicaria Stem Measurements 17	75 -
Table A2.33: Microcosm 1: Filipendula ulmaria Stem Measurements 17	76 -
Table A2.34: Microcosm 2: Filipendula ulmaria Stem Measurements	31 -
Table A2.35: Microcosm 3: Filipendula ulmaria Stem Measurements	35 -
Table A2.36: Microcosm 4: Filipendula ulmaria Stem Measurements	39 -
Table A2.37: Microcosm 5: Filipendula ulmaria Stem Measurements 19	93 -
Table A2.38: Microcosm 6: Filipendula ulmaria Stem Measurements 19	94 -
Table A2.39: Microcosm 7: Filipendula ulmaria Stem Measurements 19	95 -

Table A2.40: Microcosm 8: <i>Filipendula ulmaria</i> Stem Measurements	196 -
Table A2.41: Microcosm 9: <i>Filipendula ulmaria</i> Stem Measurements	197 -
Table A2.42: Microcosm 10: <i>Filipendula ulmaria</i> Stem Measurements	199 -
Table A2.43: Microcosm 11: <i>Filipendula ulmaria</i> Stem Measurements	201 -
Table A2.44: Microcosm 12: <i>Filipendula ulmaria</i> Stem Measurements	203 -
Table A2.45: Microcosm 13: <i>Filipendula ulmaria</i> Stem Measurements	204 -
Table A2.46: Microcosm 14: <i>Filipendula ulmaria</i> Stem Measurements	206 -
Table A2.47: Microcosm 15: <i>Filipendula ulmaria</i> Stem Measurements	207 -
Table A2.48: Microcosm 16: Filipendula ulmaria Stem Measurements	208 -
Table A2.49: Microcosm 1: Mentha aquatica Stem Measurements	209 -
Table A2.50: Microcosm 2: Mentha aquatica Stem Measurements	214 -
Table A2.51: Microcosm 3: Mentha aquatica Stem Measurements	215 -
Table A2.52: Microcosm 4: Mentha aquatica Stem Measurements	217 -
Table A2.53: Microcosm 5: Mentha aquatica Stem Measurements	219 -
Table A2.54: Microcosm 6: Mentha aquatica Stem Measurements	222 -
Table A2.55: Microcosm 7: Mentha aquatica Stem Measurements	223 -
Table A2.56: Microcosm 8: Mentha aquatica Stem Measurements	224 -
Table A2.57: Microcosm 9: Mentha aquatica Stem Measurements	225 -
Table A2.58: Microcosm 10: Mentha aquatica Stem Measurements	230 -
Table A2.59: Microcosm 11: Mentha aquatica Stem Measurements	234 -
Table A2.60: Microcosm 12: Mentha aquatica Stem Measurements	236 -
Table A2.61: Microcosm 13: Mentha aquatica Stem Measurements	237 -
Table A2.62: Microcosm 14: Mentha aquatica Stem Measurements	241 -
Table A2.63: Microcosm 15: Mentha aquatica Stem Measurements	242 -
Table A2.64: Microcosm 16: Mentha aquatica Stem Measurements	243 -
Table A 3.1: Microcosms 1-8 Water Input during the Acclimatisation and Establishment P	eriod
	245 -
Table A 3.2: Microcosms 9-16 Water Input during the Acclimatisation and Establishment I	Period
	246 -
Table A 4.1: Microcosm 1 Vegetation Heights during the Acclimatisation and Establishme	nt Period. 248 -
Table A 4.2: Microcosm 2 Vegetation Heights during the Acclimatisation and Establishme	nt Period.
Table A 4.3: Microcosm 3 Vegetation Heights during the Acclimatisation and Establishme	nt Period.
	250 -
able A 4.4: Microcosm 4 Vegetation Heights during the Acclimatisation and Establishme	nt Period.
Table A 4.5: Microcosm 5 Vegetation Heights during the Acclimatisation and Establishme	201 -
	- 252 -
Table A 4.6: Microcosm 6 Vegetation Heights during the Acclimatisation and Establishme	nt Period
	253 -
- 254 - Table A 4.8: Microcosm 8 Vegetation Heights during the Acclimatisation and Establishment Period. - 255 - Table A 4.9: Microcosm 1 Vegetation Areas during the Acclimatisation and Establishment Period. - 256 - Table A 4.10: Microcosm 2 Vegetation Areas during the Acclimatisation and Establishment Period.	

Table A 4.8: Microcosm 8 Vegetation Heights during the Acclimatisation and Establishment Period. - 255 - Table A 4.9: Microcosm 1 Vegetation Areas during the Acclimatisation and Establishment Period. - 256 - Table A 4.10: Microcosm 2 Vegetation Areas during the Acclimatisation and Establishment Period. - 256 -	
Table A 4.9: Microcosm 1 Vegetation Areas during the Acclimatisation and Establishment Period - 256 - Table A 4.10: Microcosm 2 Vegetation Areas during the Acclimatisation and Establishment Period.	
Table A 4.10: Microcosm 2 Vegetation Areas during the Acclimatisation and Establishment Period.	
- /5/ -	
Table A 4.11: Microcosm 3 Vegetation Areas during the Acclimatisation and Establishment Period.	
Table A 4.12: Microcosm 4 Vegetation Areas during the Acclimatisation and Establishment Period.	
Table A 4.13: Microcosm 5 Vegetation Areas during the Acclimatisation and Establishment Period. - 260 -	
Table A 4.14: Microcosm 6 Vegetation Areas during the Acclimatisation and Establishment Period. - 261 -	
Table A 4.15: Microcosm 7 Vegetation Areas during the Acclimatisation and Establishment Period. - 262 -	
Table A 4.16: Microcosm 8 Vegetation Areas during the Acclimatisation and Establishment Period.	
Table A 4.17: Microcosm 9 Vegetation Heights during the Acclimatisation and Establishment Period. - 264 -	
Table A 4.18: Microcosm 10 Vegetation Heights during the Acclimatisation and Establishment	
Table A 4.19: Microcosm 11 Vegetation Heights during the Acclimatisation and Establishment	
Table A 4.20: Microcosm 12 Vegetation Heights during the Acclimatisation and Establishment	
Table A 4.21: Microcosm 13 Vegetation Heights during the Acclimatisation and Establishment Period - 268 -	
Table A 4.22: Microcosm 14 Vegetation Heights during the Acclimatisation and Establishment Period. - 269 -	
Table A 4.23: Microcosm 15 Vegetation Heights during the Acclimatisation and Establishment Period. - 270 -	
Table A 4.24: Microcosm 16 Vegetation Heights during the Acclimatisation and Establishment Period. - 271 -	
Table A 4.25: Microcosm 9 Vegetation Areas during the Acclimatisation and Establishment Period. - 272 -	
Table A 4.26: Microcosm 10 Vegetation Areas during the Acclimatisation and Establishment Period. - 273 -	
Table A 4.27: Microcosm 11 Vegetation Areas during the Acclimatisation and Establishment Period	

Table A 4.28: Microcosm 12 Vegetation Areas during the Acclimatisation and Establishment	
Period	· 275 -
Table A 4.29: Microcosm 13 Vegetation Areas during the Acclimatisation and Establishment	
Period	· 276 -
Table A 4.30: Microcosm 14 Vegetation Areas during the Acclimatisation and Establishment	
Period	· 277 -
Table A 4.31: Microcosm 15 Vegetation Areas during the Acclimatisation and Establishment	
Period	· 278 -
Table A 4.32: Microcosm 16 Vegetation Areas during the Acclimatisation and Establishment	
Period	· 279 -
Table A 5.1: Microcosms 1-4 Water Input during the Nutrient Treatment Period	· 281 -
Table A 6.1: Microcosm 1 Vegetation Heights during the Nutrient Treatment Period	· 283 -
Table A 6.2: Microcosm 2 Vegetation Heights during the Nutrient Treatment Period	· 284 -
Table A 6.3: Microcosm 3 Vegetation Heights during the Nutrient Treatment Period	· 285 -
Table A 6.4: Microcosm 4 Vegetation Heights during the Nutrient Treatment Period	- 286 -
Table A 6.5: Microcosm 1 Vegetation Areas during the Nutrient Treatment Period	· 287 -
Table A 6.6: Microcosm 2 Vegetation Areas during the Nutrient Treatment Period	· 288 -
Table A 6.7: Microcosm 3 Vegetation Areas during the Nutrient Treatment Period	· 289 -
Table A 6.8: Microcosm 4 Vegetation Areas during the Nutrient Treatment Period	- 290 -
Table A 7.1: Microcosms 5-8 Water Input during the Salinity Treatment Period	· 292 -
Table A 8.1: Microcosm 5 Vegetation Heights during the Salinity Treatment Period	- 294 -
Table A 8.2: Microcosm 6 Vegetation Heights during the Salinity Treatment Period	- 295 -
Table A 8.3: Microcosm 7 Vegetation Heights during the Salinity Treatment Period	- 296 -
Table A 8.4: Microcosm 8 Vegetation Heights during the Salinity Treatment Period	- 297 -
Table A 8.5: Microcosm 5 Vegetation Areas during the Salinity Treatment Period.	- 298 -
Table A 8.6: Microcosm 6 Vegetation Areas during the Salinity Treatment Period.	· 299 -
Table A 8.7: Microcosm 7 Vegetation Areas during the Salinity Treatment Period.	- 300 -
Table A 8.8: Microcosm 8 Vegetation Areas during the Salinity Treatment Period.	· 301 -
Table A 9.1: Microcosms 9-12 Water Input during the Nutrient Treatment Period	· 303 -
Table A 10.1: Microcosm 9 Vegetation Heights during the Nutrient Treatment Period	· 305 -
Table A 10.2: Microcosm 10 Vegetation Heights during the Nutrient Treatment Period	· 306 -
Table A 10.3: Microcosm 11 Vegetation Heights during the Nutrient Treatment Period	· 307 -
Table A 10.4: Microcosm 12 Vegetation Heights during the Nutrient Treatment Period	· 308 -
Table A 10.5: Microcosm 9 Vegetation Areas during the Nutrient Treatment Period	· 309 -
Table A 10.6: Microcosm 10 Vegetation Areas during the Nutrient Treatment Period	· 310 -
Table A 10.7: Microcosm 11 Vegetation Areas during the Nutrient Treatment Period	· 311 -
Table A 10.8: Microcosm 12 Vegetation Areas during the Nutrient Treatment Period	· 312 -
Table A 11.1: Microcosms 13-16 Water Input during the Salinity Treatment Period	· 314 -
Table A 12.1: Microcosm 13 Vegetation Heights during the Salinity Treatment Period	· 316 -
Table A 12.2: Microcosm 14 Vegetation Heights during the Salinity Treatment Period	· 317 -
Table A 12.3: Microcosm 15 Vegetation Heights during the Salinity Treatment Period	· 318 -
Table A 12.4: Microcosm 16 Vegetation Heights during the Salinity Treatment Period	· 319 -

Table A 12.5: Microcosm 13 Vegetation Areas during the Salinity Treatment Period 320 -
Table A 12.6: Microcosm 14 Vegetation Areas during the Salinity Treatment Period 321 -
Table A 12.7: Microcosm 15 Vegetation Areas during the Salinity Treatment Period 322 -
Table A 12.8: Microcosm 16 Vegetation Areas during the Salinity Treatment Period 323 -
Table A 13.1: Microcosms 1-4 Nutrient Treatment Phase with Full Competition – Stem
Measurements for All Stems 325 -
Table A 13.2: Microcosms 1-4 Nutrient Treatment Phase with Full Competition – Volumes and
Weights for All Stems 326 -
Table A 13.3: Microcosms 1-4 Nutrient Treatment Phase with Full Competition – Weights (g) for All
Roots 326 -
Table A 14.1: Microcosms 5-8 Salinity Treatment Phase with Full Root Competition – Stem
Measurements for All Stems 328 -
Table A 14.2: Microcosms 5-8 Salinity Treatment Phase with Full Competition – Volumes and
Weights for All Stems 329 -
Table A 14.3: Microcosms 5-8 Salinity Treatment Phase with Full Competition – Weights (g) for All
Roots 329 -
Table A 17.1: Microcosms 9-12 Nutrient Treatment Phase with Restricted Root Competition – Stem
Measurements for All Stems 341 -
Table A 17.2: Microcosms 9-12 Nutrient Treatment Phase with Restricted Root Competition –
Volumes and Weights for All Stems 342 -
Table A 17.3: Microcosms 9-12 Nutrient Treatment Phase with Restricted Root Competition –
Weights (g) for All Roots 342 -
Table A 18.1: Microcosms 13-16 Salinity Treatment Phase with Restricted Root Competition –
Stem Measurements for All Stems 344 -
Table A 18.2: Microcosms 13-16 Salinity Treatment Phase with Restricted Root Competition –
Volumes and Weights for All Stems 345 -
Table A 18.3: Microcosms 13-16 Salinity Treatment Phase with Restricted Root Competition –
Weights (g) for All Roots 345 -
Table A 21.1: One Way ANOVA results for effects of different nutrient ratios on stem harvest
heights (Log10) for all microcosms not subject to increased salinity levels 365 -
Table A 21.2: One Way ANOVA results for effects of different nutrient ratios on stem harvest widths
(Log10) for all microcosms not subject to increased salinity levels 365 -
Table A 21.3: One Way ANOVA Results for Effects of Different Nutrient Ratios on Stem Harvest
Heights (Log10) for Microcosms 1-5 with Full Root Competition 374 -
Table A 21.4: One Way ANOVA Results for Effects of Different Nutrient Ratios on Stem Harvest
Widths (Log10) for Microcosms 1-5 with Full Root Competition 374 -
Table A 21.5: One Way ANOVA results for effects of different salinity ratios on surviving stem
harvest heights 383 -
Table A 21.6: One Way ANOVA results for effects of different salinity ratios on surviving stem
harvest widths 383 -
Table A 21.7: One Way ANOVA Results for Effects of Different Salinity Ratios on Stem Harvest
Heights (Log10) for Microcosms 1, 5-8 with Full Root Competition

Table A 21.8: One Way ANOVA Results for Effects of Different Salinity Ratios on Stem Harvest
Widths (Log10) for Microcosms 1, 5-8 with Full Root Competition
Table A 22.1: One Way ANOVA results for effects of different nutrient ratios on stem harvest
heights (Log10) for all microcosms not subject to increased salinity levels
Table A 22.2: One Way ANOVA results for effects of different nutrient ratios on stem harvest widths
(Log10) for all microcosms not subject to increased salinity levels
Table A 22.3: One Way ANOVA Results for Effects of Different Nutrient Ratios on Stem Harvest
Heights (Log10) for Microcosms 1-5 with Full Root Competition
Table A 22.4: One Way ANOVA Results for Effects of Different Nutrient Ratios on Stem Harvest
Widths (Log10) for Microcosms 1-5 with Full Root Competition 395 -
Table A 22.5: One Way ANOVA results for effects of different salinity ratios on surviving stem
harvest heights 396 -
Table A 22.6: One Way ANOVA results for effects of different salinity ratios on surviving stem
harvest widths 396 -
Table A 22.7: One Way ANOVA Results for Effects of Different Salinity Ratios on Stem Harvest
Heights (Log10) for Microcosms 1, 5-8 with Full Root Competition
Table A 22.8: One Way ANOVA Results for Effects of Different Salinity Ratios on Stem Harvest
Widths (Log10) for Microcosms 1, 5-8 with Full Root Competition
Table A 24.1: One Way ANOVA Results for Effects Of Different Nutrient Ratios on Stem Harvest
Heights (Log10) for Microcosms 9-13 with Restricted Root Competition
Table A 24.2: One Way ANOVA Results for Effects of Different Nutrient Ratios on Stem Harvest
Widths (Log10) for Microcosms 9-13 with Restricted Root Competition 416 -
Table A 24.3: One Way ANOVA Results for Effects of Different Salinity Ratios on Stem Harvest
Heights (Log10) for Microcosms 9, 13-16 with Restricted Root Competition 417 -
Table A 24.4: One Way ANOVA Results for Effects of Different Salinity Ratios on Stem Harvest
Widths (Log10) for Microcosms 9, 13-16 with Restricted Root Competition

Appendices Figure List

Figure A 15.1: Microcosm 1 Lythrum salicaria Root Spread	331 -
Figure A 15.2: Microcosm 1 Filipendula ulmaria Root Spread	331 -
Figure A 15.3: Microcosm 1 Mentha aquatica Root Spread	331 -
Figure A 15.4: Microcosm 2 Lythrum salicaria Root Spread	332 -
Figure A 15.5: Microcosm 2 Filipendula ulmaria Root Spread	332 -
Figure A 15.6: Microcosm 2 <i>Mentha aquatica</i> Root Spread	332 -
Figure A 15.7: Microcosm 3 Lythrum salicaria Root Spread	333 -
Figure A 15.8: Microcosm 3 Filipendula ulmaria Root Spread	
Figure A 15.9: Microcosm 3 <i>Mentha aquatica</i> Root Spread	333 -
Figure A 15.10: Microcosm 4 Lythrum salicaria Root Spread	
Figure A 15.11: Microcosm 4 Filipendula ulmaria Root Spread	334 -
Figure A 15.12: Microcosm 4 <i>Mentha aquatica</i> Root Spread	334 -
Figure A 16.1: Microcosm 5 Lythrum salicaria Root Spread	
Figure A 16.2: Microcosm 5 Filipendula ulmaria Root Spread	
Figure A 16.3: Microcosm 5 Mentha aquatica Root Spread	
Figure A 16.4: Microcosm 6 Lythrum salicaria Root Spread	337 -
Figure A 16.5: Microcosm 6 Filipendula ulmaria Root Spread	
Figure A 16.6: Microcosm 6 Mentha aquatica Root Spread	337 -
Figure A 16.7: Microcosm 7 Lythrum salicaria Root Spread	
Figure A 16.8: Microcosm 7 Filipendula ulmaria Root Spread	
Figure A 16.9: Microcosm 7 Mentha aquatica Root Spread	
Figure A 16.10: Microcosm 8 Lythrum salicaria Root Spread	
Figure A 16.11: Microcosm 8 Filipendula ulmaria Root Spread	
Figure A 16.12: Microcosm 8 Mentha aquatica Root Spread	339 -
Figure A 19.1: Microcosm 9 <i>Lythrum salicaria</i> Root Spread	347 -
Figure A 19.2: Microcosm 9 Filipendula ulmaria Root Spread	347 -
Figure A 19.3: Microcosm 9 <i>Mentha aquatica</i> Root Spread	347 -
Figure A 19.4: Microcosm 9 Phragmites australis Root Spread	347 -
Figure A 19.5: Microcosm 10 <i>Lythrum salicaria</i> Root Spread	348 -
Figure A 19.6: Microcosm 10 Filipendula ulmaria Root Spread	348 -
Figure A 19.7: Microcosm 10 <i>Mentha aquatica</i> Root Spread	348 -
Figure A 19.8: Microcosm 10 Phragmites australis Root Spread	348 -
Figure A 19.9: Microcosm 11 Lythrum salicaria Root Spread	349 -
Figure A 19.10: Microcosm 11 Filipendula ulmaria Root Spread	349 -
Figure A 19.11: Microcosm 11 <i>Mentha aquatica</i> Root Spread	349 -
Figure A 19.12: Microcosm 11 Phragmites australis Root Spread	349 -
Figure A 19.13: Microcosm 12 <i>Lythrum salicaria</i> Root Spread	350 -
Figure A 19.14: Microcosm 12 <i>Filipendula ulmaria</i> Root Spread	350 -
Figure A 19.15: Microcosm 12 <i>Mentha aquatica</i> Root Spread	350 -
Figure A 19.16: Microcosm 12 Phragmites australis Root Spread	350 -

Figure A 20.1: Microcosm 13 Lythrum salicaria Root Spread	352 -
Figure A 20.2: Microcosm 13 Filipendula ulmaria Root Spread	352 -
Figure A 20.3: Microcosm 13 Mentha aquatica Root Spread	352 -
Figure A 20.4: Microcosm 13 Phragmites australis Root Spread	352 -
Figure A 20.5: Microcosm 14 Lythrum salicaria Root Spread	353 -
Figure A 20.6: Microcosm 14 Filipendula ulmaria Root Spread	353 -
Figure A 20.7: Microcosm 14 Mentha aquatica Root Spread (Humus Layer Bottom Right)	353 -
Figure A 20.8: Microcosm 14 Phragmites australis Root Spread	353 -
Figure A 20.9: Microcosm 15 Lythrum salicaria Root Spread	354 -
Figure A 20.10: Microcosm 15 Filipendula ulmaria Root Spread	354 -
Figure A 20.11: Microcosm 15 Mentha aquatica Root Spread	354 -
Figure A 20.12: Microcosm 15 Phragmites australis Root Spread	354 -
Figure A 20.13: Microcosm 16 Lythrum salicaria Root Spread	355 -
Figure A 20.14: Microcosm 16 Filipendula ulmaria Root Spread	355 -
Figure A 20.15: Microcosm 16 Mentha aquatica Root Spread (Right Hand Side)	355 -
Figure A 20.16: Microcosm 16 Phragmites australis Root Spread	355 -
Figure A 21.1: Phragmites australis Histogram and Data of Stem Heights with Increasing	
Nutrients	357 -
Figure A 21.2: Phragmites australis Histogram and Data of Stem Widths with Increasing	
Nutrients	358 -
Figure A 21.3: Lythrum salicaria Histogram and Data of Stem Heights with Increasing	
Nutrients	359 -
Figure A 21.4: Lythrum salicaria Histogram and Data of Stem Widths with Increasing Nutrients	- 360 -
Figure A 21.5: Filipendula ulmaria Histogram and Data of Stem Heights with Increasing	
Nutrients	361 -
Figure A 21.6: Filipendula ulmaria Histogram and Data of Stem Widths with Increasing	
Nutrients	362 -
Figure A 21.7: Mentha aquatica Histogram and Data of Stem Heights with Increasing Nutrients	s- 363 -
Figure A 21.8: Mentha aquatica Histogram and Data of Stem Widths with Increasing Nutrients	- 364 -
Figure A 21.9: Phragmites australis Histogram and Data of Stem Heights with Increasing	
Nutrients for Microcosms 1-5 with Full Root Competition	366 -
Figure A 21.10: Phragmites australis Histogram and Data of Stem Widths with Increasing	
Nutrients for Microcosms 1-5 with Full Root Competition	367 -
Figure A 21.11: Lythrum salicaria Histogram and Data of Stem Heights with Increasing	
Nutrients for Microcosms 1-5 with Full Root Competition	368 -
Figure A 21.12: Lythrum salicaria Histogram and Data of Stem Widths with Increasing	
Nutrients for Microcosms 1-5 with Full Root Competition	369 -
Figure A 21.13: Filipendula ulmaria Histogram and Data of Stem Heights with Increasing	
Nutrients for Microcosms 1-5 with Full Root Competition	370 -
Figure A 21.14: Filipendula ulmaria Histogram and Data of Stem Widths with Increasing	

Figure A 21.15: Mentha aquatica Histogram and Data of Stem Heights with Increasing	
Nutrients for Microcosms 1-5 with Full Root Competition	372 -
Figure A 21.16: Mentha aquatica Histogram and Data of Stem Widths with Increasing	
Nutrients for Microcosms 1-5 with Full Root Competition	373 -
Figure A 21.17: Phragmites australis Histogram and Data of Stem Heights with Increasing	
Salinity	375 -
Figure A 21.18: Phragmites australis Histogram and Data of Stem Widths with Increasing	
Salinity	376 -
Figure A 21.19: Lythrum salicaria Histogram and Data of Stem Heights with Increasing Salinity	/- 377 -
Figure A 21.20: Lythrum salicaria Histogram and Data of Stem Widths with Increasing Salinity	- 378 -
Figure A 21.21: Filipendula ulmaria Histogram and Data of Stem Heights with Increasing	
Salinity	379 -
Figure A 21.22: Filipendula ulmaria Histogram and Data of Stem Widths with Increasing	
Salinity	380 -
Figure A 21.23: Mentha aquatica Histogram and Data of Stem Heights with Increasing Salinity	- 381 -
Figure A 21.24: Mentha aquatica Histogram and Data of Stem Widths with Increasing Salinity-	- 382 -
Figure A 21.25: Phragmites australis Histogram and Data of Stem Heights with Increasing	
Salinity for Microcosms 1, 5-8 with Full Root Competition	384 -
Figure A 21.26: Phragmites australis Histogram and Data of Stem Widths with Increasing	
Salinity for Microcosms 1, 5-8 with Full Root Competition	385 -
Figure A 21.27: Lythrum salicaria Histogram and Data of Stem Heights with Increasing Salinity	/
for Microcosms 1, 5-8 with Full Root Competition	386 -
Figure A 21.28: Lythrum salicaria Histogram and Data of Stem Widths with Increasing Salinity	
for Microcosms 1, 5-8 with Full Root Competition	387 -
Figure A 21.29: Filipendula ulmaria Histogram and Data of Stem Heights with Increasing	
Salinity for Microcosms 1, 5-8 with Full Root Competition	388 -
Figure A 21.30: Filipendula ulmaria Histogram and Data of Stem Widths with Increasing	
Salinity for Microcosms 1, 5-8 with Full Root Competition	389 -
Figure A 21.31: Mentha aquatica Histogram and Data of Stem Heights with Increasing Salinity	,
for Microcosms 1, 5-8 with Full Root Competition	390 -
Figure A 21.32: Mentha aquatica Histogram and Data of Stem Widths with Increasing Salinity	
for Microcosms 1, 5-8 with Full Root Competition	391 -
Figure A 23.1: Phragmites australis Histogram and Data of Stem Heights with Increasing	
Nutrients for Microcosms 9-13 with Restricted Root Competition	399 -
Figure A 23.2: Phragmites australis Histogram and Data of Stem Widths with Increasing	
Nutrients for Microcosms 9-13 with Restricted Root Competition	400 -
Figure A 23.3: Lythrum salicaria Histogram and Data of Stem Heights with Increasing	
Nutrients for Microcosms 9-13 with Restricted Root Competition	401 -
Figure A 23.4: Lythrum salicaria with Restricted Root Competition Histogram and Data of	
Stem Widths with Increasing Nutrients for Microcosms 9-13	402 -
Figure A 23.5: Filipendula ulmaria Histogram and Data of Stem Heights with Increasing	
Nutrients for Microcosms 9-13 with Restricted Root Competition	403 -

Figure A 23.6: Filipendula ulmaria Histogram and Data of Stem Widths with Increasing
Nutrients for Microcosms 9-13 with Restricted Root Competition
Figure A 23.7: Mentha aquatica Histogram and Data of Stem Heights with Increasing Nutrients
for Microcosms 9-13 with Restricted Root Competition 405 -
Figure A 23.8: Mentha aquatica Histogram and Data of Stem Widths with Increasing Nutrients
for Microcosms 9-13 with Restricted Root Competition 406 -
Figure A 23.9: Phragmites australis Histogram and Data of Stem Heights with Increasing
Salinity for Microcosms 9, 13-16 with Restricted Root Competition
Figure A 23.10: Phragmites australis Histogram and Data of Stem Widths with Increasing
Salinity for Microcosms 9, 13-16 with Restricted Root Competition
Figure A 23.11: Lythrum salicaria Histogram and Data of Stem Heights with Increasing Salinity
for Microcosms 9, 13-16 with Restricted Root Competition 409 -
Figure A 23.12: Lythrum salicaria Histogram and Data of Stem Widths with Increasing Salinity
for Microcosms 9, 13-16 with Restricted Root Competition 410 -
Figure A 23.13: Filipendula ulmaria Histogram and Data of Stem Heights with Increasing
Salinity for Microcosms 9, 13-16 with Restricted Root Competition
Figure A 23.14: Filipendula ulmaria Histogram and Data of Stem Widths with Increasing
Salinity for Microcosms 9, 13-16 with Restricted Root Competition
Figure A 23.15: Mentha aquatica Histogram and Data of Stem Heights with Increasing Salinity
for Microcosms 9 13-16 with Restricted Root Competition - 413 -
Figure A 23.16: <i>Mentha aquatica</i> Histogram and Data of Stem Widths with Increasing Salinity
Figure A 23.16: <i>Mentha aquatica</i> Histogram and Data of Stem Widths with Increasing Salinity for Microcosms 9, 13-16 with Restricted Root Competition

Appendix 1 Monthly Weather Data August 2007 to October 2010

Please see separate electronic folder within the appendices CD.

		Temp. (°C)			lumidity (%)		Pressure (hPa)			Wind (km/h)	Precip. (mm)
Date	High	Average	Low	High	Average	Low	High	Average	Low	High /	Average	Precipitation
August 2007	28	15.81	8	100	71.90	27	1030	1015.42	991	37	5	50
September 2007	24	14.10	5	100	75.33	37	1033	1020.50	998	45	5	31.7
October 2007	18	10.71	0	100	83.32	48	1038	1023.65	1009	93	2	42.8
November 2007	17	6.77	-4	100	83.90	49	1035	1019.87	992	35	3	50.6
December 2007	15	4.68	-4	100	87.10	58	1041	1019.35	975	52	2	57.6
January 2008	13	6.35	-1	100	86.45	50	1035	1010.29	975	53	5	92.3
February 2008	14	5.21	-6	100	80.86	42	1044	1022.14	988	47	3	27.1
March 2008	13	6.10	-1	100	75.71	39	1036	1005.81	958	58	6	64.1
April 2008	19	7.83	-2	100	79.93	40	1031	1010.13	988	45	5	68.4
May 2008	25	13.48	3	100	74.68	28	1026	1015.65	997	52	5	87.8
June 2008	25	14.63	7	100	70.47	34	1026	1015.80	1002	47	5	38.5
July 2008	28	16.45	7	100	77.90	36	1026	1012.68	994	35	5	91.4
August 2008	24	16.48	7	100	81.16	43	1022	1009.16	986	37	3	97.1
September 2008	21	13.40	4	100	82.70	46	1038	1016.57	985	40	3	100.2
October 2008	20	9.10	-4	100	82.39	44	1031	1013.61	994	40	5	62.5
November 2008	14	6.77	0	100	86.17	42	1034	1013.30	990	37	5	81.5
December 2008	12	3.68	-4	100	87.10	62	1041	1017.87	976	45	5	52.5
January 2009	10	2.61	-7	100	86.61	56	1033	1009.87	970	35	1	64.4
February 2009	13	4.57	-4	100	82.32	50	1033	1014.93	982	32	3	36.6
March 2009	15	8.00	-2	100	72.13	38	1037	1013.84	981	47	3	27
April 2009	19	10.77	4	100	70.93	32	1028	1012.57	992	39	3	37
May 2009	25	13.45	6	100	67.55	33	1032	1017.06	998	42	5	47.8
June 2009	29	16.20	7	100	68.03	28	1029	1017.13	1000	34	6	48.4
July 2009	30	17.19	9	100	72.03	33	1023	1010.77	999	35	6	103.9
August 2009	27	17.42	10	100	73.42	38	1023	1014.42	1003	40	3	44.9
September 2009	24	14.97	6	100	71.60	41	1039	1021.80	990	42	5	14.6
October 2009	20	11.94	2	100	80.26	48	1035	1015.45	994	52	2	49.7
November 2009	17	9.07	2	100	86.27	62	1021	998.73	982	55	5	98.1
December 2009	12	3.19	-5	100	91.84	72	1036	1006.58	985	43	3	55.9
January 2010	9	1.42	-7	100	90.94	59	1044	1016.48	992	41	0	61.6
February 2010	9	2.57	-2	100	91.21	62	1027	1004.14	980	54	5	60.8
March 2010	16	5.90	-6	100	82.03	37	1037	1017.23	981	56	4	50.9
April 2010	19	9.27	0	100	72.17	34	1036	1020.33	999	41	3	39.6
May 2010	27	11.03	0	100	72.90	38	1034	1018.74	1005	37	3	24.6
June 2010	27	15.83	5	100	72.57	29	1031	1018.67	1001	34	1	49.2
July 2010	28	17.39	10	97	73.58	37	1028	1015.61	998	43	2	39.8
August 2010	24	16.84	10	100	74.65	41	1027	1014.13	997	46	3	98.2
September 2010	21	14.70	5	100	76.03	45	1025	1014.13	999	40	3	57.4
October 2010	20	11.32	-1	100	80.29	43	1029	1012.16	989	34	3	51.1

Appendix 2 Harvest Stem Measurements

Please see separate electronic folder within the appendices CD.

Stem Number	Stem Width (mm)	Stem Height (mm)					
1	3.1	1399					
2	3.4	467					
3	1.5	712					
4	1.9	820					
5	2.4	448					
6	2.9	835					
7	4	1087					
8	4	1313					
9	3.1	819					
10	2	642					
11	2.7	799					
12	2.8	991					
13	2.4	1096					
14	2.7	290					
15	3.2	752					
16	2.6	902					
17	3.6	458					
18	1.9	637					
19	3.5	292					
20	2.8	485					
21	5	1199					
22	2.5	863					
23	2.2	764					
24	2	712					
25	2.4	1135					
26	2	651					
27	2.5	838					
28	2.4	582					
29	3.1	497					
30	2.6	743					
31	4.1	767					
32	3.1	405					
33	1.9	400					
34	2.5	231					
35	2	741					
36	3	1067					
37	3.1	1015					
38	2.3	844					
39	2.4	933					
40	2.3	536					
41	3.6	621					
42	3.2	1091					
43	2.4	974					
44	1.6	464					
45	2.8	1081					
46	2.1	352					
47	2.8	523					
48	2.2	500					
49	3.9	1017					
50	3	1175					
51	3.2	678					
52	2.6	628					
53	2.5	901					
54	3.3	853					
55	2.5	805					
56	3.5	1236					
57	2.8	675					
F0	2.3	1004					
50							
59	2.5	874					
58 59 60	2.5 1.9	874 711					
59 60 61	2.5 1.9 2.4	874 711 306					
50 59 60 61 62	2.5 1.9 2.4 2.2	874 711 306 880					
50 59 60 61 62 63	2.5 1.9 2.4 2.2 1.4	874 711 306 880 380					
50 59 60 61 62 63 64	2.5 1.9 2.4 2.2 1.4 2.8	874 711 306 880 380 372					

Table A2.1: Microcos	im 1: Phragmites austra	ils Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
66	2.7	800
67	2.0	604
67	2.9	604
68	2.9	755
69	2.4	786
70	3.5	1166
74	0.0	776
/1	2.3	//6
72	2.4	406
73	2.7	941
74	2.8	1060
74	2.0	1000
/5	4.5	1127
76	2.9	1184
77	2.4	246
78	2.0	215
70	2.5	215
79	3.5	993
80	2.3	649
81	1.8	616
01	1.0	704
82	2.2	764
83	1.6	539
84	2.1	785
85	27	671
00	2.1	0/1
86	2.7	263
87	2.7	942
88	2.7	999
80	2.7	1140
69	2.1	1149
90	4	1200
91	2.7	662
92	22	734
	2.2	104
93	3.2	886
94	4.2	926
95	3.7	1031
06	10	E62
90	1.9	505
97	3.4	233
98	3	1350
99	2.4	862
100	2.1	604
100	2.1	094
101	2	730
102	2.1	639
103	21	588
100	2.1	500
104	2.1	514
105	3.9	1721
106	2.6	1204
107	10	091
107	1.9	981
108	2.7	912
109	1.8	1013
110	2.5	1137
444	1.0	964
111	1.8	804
112	1.7	486
113	2.5	1040
114	2.2	070
114	2.3	0/0
115	1.6	504
116	2.2	249
117	2.5	507
110	2.0	1060
110	2.1	1000
119	2	855
120	2.2	459
121	27	980
121	4.1	300
122	2.8	1114
123	2.1	847
124	3.1	1398
405	0.1	1000
125	3	1337
126	2	1106
127	16	604
120	2.4	1020
128	2.4	1030
129	2	1022
130	1.8	257

Table A2.1: Microcos	m 1: Phragmites austra	ils Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
131	1.7	834
122	2.1	220
132	2.1	323
133	2	411
134	2.5	269
135	15	622
100	1.0	522
130	2.5	539
137	2.2	376
138	1.8	644
130	33	1586
153	3.5	1000
140	3.3	1068
141	3.1	1052
142	2.5	602
1/3	2.6	859
143	2.0	809
144	3.3	796
145	2.4	830
146	2.5	1070
140	2.0	1010
147	3.4	1319
148	3	1489
149	2.1	439
150	2.5	851
100	2.0	001
151	2.4	1216
152	2.6	1185
153	3.5	761
154	0.0	100
154	2.2	1228
155	2.1	1096
156	3.4	1007
157	4.2	453
107	4.2	400
158	3.Z	547
159	2.7	1020
160	2.9	1385
161	2.0	1110
101	2.9	1118
162	2.2	972
163	2.2	875
164	2.5	348
165	2.0	510 E33
165	3.1	532
166	3.5	560
167	2.1	778
168	27	1104
100	2.1	1104
169	2.6	906
170	3.3	1199
171	2.4	1015
172	2.7	120
172	2.1	430
173	2.3	904
174	2	681
175	2.8	1095
170	2.0	1000
1/0	2	1042
177	1.8	727
178	3.1	817
170	25	559
400	2.5	555
180	2.5	5/1
181	2.5	1139
182	2.8	1261
183	17	840
404	0.4	4040
184	3.4	1318
185	2.5	792
186	34	453
107	1 5	631
187	1.5	631
188	2.5	716
189	2.8	1219
100	2	1064
190	2	1004
191	2.4	374
192	2.4	427
103	2.2	367
100	4.4	501
194	1.9	0/0
195	4.1	1208

Stem Number	Stem Width (mm)	Stem Height (mm)
196	3	830
197	3	899
198	27	995
199	2.8	648
200	2.0	1048
200	2.5	605
201	2.5	701
202	2.5	1025
203	2.5	375
204	3.1	607
200	2.4	1012
200	2.4	1013
207	2.4	607
208	2.4	1286
209	3.0	1280
210	1.9	959
211	ు స	5/0
212	3	710
213	1.5	732
214	1.9	760
215	3.2	1391
216	2.5	1147
217	2.8	1111
218	3.1	1259
219	3.3	563
220	2.6	201
221	3.5	943
222	1.4	768
223	3	1005
224	3.1	1131
225	2	857
226	2.5	648
227	3.7	1039
228	2.8	945
229	2.9	867
230	2	983
231	2.8	891
232	3	990
233	3.1	1242
234	3.1	1267
235	1.8	941
236	2.5	767
237	2.3	725
238	3.5	1050
239	3.8	1327
240	3.2	1300
241	2.4	1021
242	2.9	883
243	4	1259
244	2.9	1101
245	2.5	324
246	1.4	576
247	1.8	476
248	3.4	637

Stem Number	Stem Width (mm)	Stem Height (mm)
249	2.9	252
250	3	976
251	1.8	497
252	2.7	1023
253	2.4	1445
254	3	1446
255	2.3	311
256	2.4	882
257	2.6	722
258	2.5	1287
259	2.4	825
260	2.2	692
261	2.7	707
262	3.1	930
263	3	1444
264	2.9	Median Height
265	2.6	480
266	2.6	1305
267	3	357
268	2.5	769
269	3.1	939
270	3.6	550
271	2.8	557
272	3.6	265
273	2	230
274	2	375
275	4.8	141
276	2.5	433
277	3.6	291
278	2.4	257
279	2.5	311
280	2.8	159
281	2.4	179
282	2.8	86
283	1.4	392
284	2.8	127
285	2.1	217
286	1.7	183

	Total Stems	Total Number of Stems	286
		Stems with Inflorescence	33
		Max Height	1721
	Heights (mm)	Min Height	86
		Mean Height	796.2097902
Ctomo		Mode Height	712
Stems		Median Height	810
	Widths (mm)	Max Width	5
		Min Width	1.4
		Mean Width	2.635314685
		Mode Width	2.5
		Median Width	2.5

- 21 -

Table A2.2: Microco	sm 2: Phragmites austra	alis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
1	2.1	808
2	3.4	1248
3	2.9	1052
4	2.0	1055
5	3.5	1200
7	2.9	090
/	3.5	1134
0	3.7	1201 510
9	3.5	510
10	3.5	1070
12	2.0	403
12	2.5	1042
14	3.5	1116
14	2	759
10	2	1111
17	3.2	1295
10	4.9	722
10	3.0	551
20	2.2	1039
20	2.1	1566
21	3.4	1300
22	3.5	1525
23	4.4	1/01
24	4.2	1491
20	3.7	1492
20	3.5	1402
21	3.5	1400
20	3.5	1450
29	4.1	1207
30	3.2	1387
22	1.0	1270
32	3.1	1370
34	2.0	1090
25	2.3	F27
30	2.9	1261
37	2.3	1151
38	2.1	867
30	3.2	720
40	3.2	528
40	2.4	520
42	2.4	97
43	2.7	1080
44	2.5	756
45	33	1188
46	2.6	509
47	2.0	762
48	24	454
49	19	891
50	24	1051
51	31	1214
52	31	905
53	1.8	332
54	3.2	1426
55	17	276
56	31	656
57	3.5	1477
58	37	532
59	2.4	644
60	3	898
61	28	419
62	3	871
63	35	331
64	2.5	380
04	2.0	JOU

Stem Value Stem Stem <thstem< th=""> Stem Stem <t< th=""><th>Table A2.2: Microco</th><th>sm 2: Phragmites austra</th><th>alis Stem Measurements.</th></t<></thstem<>	Table A2.2: Microco	sm 2: Phragmites austra	alis Stem Measurements.
0.0 2.0 $0/3$ 66 4 1385 67 3.4 704 68 2 425 69 2.2 318 70 2.9 1095 71 3.2 1316 72 4.7 13333 73 2.9 1197 74 3.4 1051 77 3.2 230 78 3.6 441 79 3.2 602 80 2 932 81 2.3 776 82 3.1 6622 83 3 911 84 2.6 134 86 2.5 1121 87 3 220 88 3.1 1279 89 3.3 11501 90 2.2 806 91 2.4 1196 <th>Stem Number</th> <th>Sterri wiath (mm)</th> <th></th>	Stem Number	Sterri wiath (mm)	
00 4 1365 67 3.4 704 68 2 425 69 2.2 318 70 2.9 1095 71 3.2 1316 72 4.7 1333 73 2.9 1197 74 3.4 1009 75 2.3 557 76 3.4 1061 77 3.2 602 80 2 932 81 2.3 776 82 3.1 652 83 3 911 84 2.6 134 85 3.8 1447 86 2.5 1121 87 3 260 88 3.1 1279 88 3.1 1279 90 2.2 806 92 <t< td=""><td>60</td><td>2.0</td><td>075</td></t<>	60	2.0	075
3.4 104 66 2 425 69 2.2 318 70 2.9 1095 71 3.2 1316 72 4.7 1393 73 2.9 1197 74 3.4 1019 75 2.3 557 76 3.4 1051 77 3.2 230 78 3.6 441 79 3.2 602 80 2 932 81 2.3 776 82 3.1 652 83 3 911 84 2.6 134 85 3.8 1447 86 2.5 1121 87 3 260 88 3.1 1279 89 3.3 1501 90 2.2 806 91 2.4 1196 92	67	2.4	1365
30 2.2 318 70 2.9 1095 71 3.2 1316 72 4.7 1393 73 2.9 1197 74 3.4 1009 76 3.4 1051 77 3.2 230 78 3.6 441 79 3.2 602 80 2 932 81 2.3 776 82 3.1 652 83 3 911 84 2.6 134 86 2.5 1121 87 3 260 88 3.1 1279 89 3.3 1501 90 2.2 806 91 2.4 1196 92 3.8 232 93 2.7 438 94	68	3.4	/04
30 2.4 0.0 70 2.9 1095 71 3.2 1316 72 4.7 1393 73 2.9 1197 74 3.4 1019 76 3.4 1051 76 3.4 1051 77 3.2 230 78 3.6 441 79 3.2 602 80 2 932 81 2.3 776 82 3.1 662 83 3 911 84 2.6 134 86 2.5 1121 86 3.1 1279 89 3.3 1501 90 2.2 806 91 2.4 1196 92 3.8 222 93 2.7 438 94	69	22	318
10 100 1000 71 3.2 1316 72 4.7 1393 73 2.9 1197 74 3.4 1019 75 2.3 557 76 3.4 1051 77 3.2 230 80 2 932 81 2.3 776 82 3.1 652 83 3 911 84 2.6 134 85 3.8 1447 86 2.5 1121 87 3 260 88 3.1 1279 89 3.3 1501 90 2.2 806 91 2.4 1196 92 3.8 232 93 2.7 438 94 3 1156 95 2 341 <	70	2.2	1095
72 4.7 1333 73 2.9 1197 74 3.4 1019 75 2.3 557 76 3.4 1051 77 3.2 230 78 3.6 441 79 3.2 602 80 2 932 81 2.3 776 82 3.1 652 83 3 911 84 2.6 134 85 3.8 1447 86 2.5 1121 87 3 260 88 3.1 1279 90 2.2 806 91 2.4 1196 92 3.8 232 93 2.7 438 94 3 1156 96 2 341 96	71	3.2	1316
12 102 73 2.9 1197 74 3.4 1019 75 2.3 557 76 3.4 1051 77 3.2 230 78 3.6 441 79 3.2 602 80 2 932 81 2.3 776 82 3.1 652 83 3 911 84 2.6 134 85 3.8 1447 86 2.5 1121 87 3 260 88 3.1 1279 89 3.3 1501 90 2.2 806 91 2.4 1196 92 3.8 232 93 2.7 438 94 3 1156 95 2	72	4.7	1393
12 134 1019 75 2.3 557 76 3.4 1051 77 3.2 230 78 3.6 441 79 3.2 602 80 2 932 81 2.3 776 82 3.1 652 83 3 911 84 2.6 134 85 3.8 1447 86 2.5 1121 87 3 260 88 3.1 1279 89 3.3 1501 90 2.2 806 91 2.4 1196 92 3.8 232 93 2.7 438 94 3 1156 95 2 341 96 2 182 97 $3.$	73	2.9	1197
17 100 75 2.3 557 76 3.4 1051 77 3.2 230 78 3.6 441 79 3.2 602 80 2 9332 81 2.3 776 82 3.1 652 83 3 911 84 2.6 134 85 3.8 1447 86 2.5 1121 87 3 260 88 3.1 1279 89 3.3 1501 90 2.2 806 91 2.4 1196 92 3.8 232 93 2.7 433 94 3 1156 95 2 182 97 3.4 947 98 2.2	74	3.4	1019
10 23 305 76 3.4 1051 77 3.2 230 80 2 932 80 2 932 80 2 932 81 2.3 776 82 3.1 652 83 3 911 84 2.6 134 85 3.8 1447 86 2.5 1121 87 3 260 88 3.1 1279 90 2.2 806 91 2.4 1196 92 3.8 232 93 2.7 438 94 3 1156 95 2 341 96 2 609 99 2.3 126 100 2.6 846 101 2.7 <td>75</td> <td>23</td> <td>557</td>	75	23	557
77 3.2 230 78 3.6 441 79 3.2 602 80 2 932 81 2.3 776 82 3.1 652 83 3 911 84 2.6 134 86 2.5 1121 87 3 260 88 3.1 1279 89 3.3 1501 90 2.2 806 91 2.4 1196 92 3.8 232 93 2.7 438 94 3 1156 95 2 341 96 2 182 97 3.4 947 98 2.2 609 99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668	76	3.4	1051
78 3.6 441 79 3.2 602 80 2 932 81 2.3 776 82 3.1 652 83 3 9111 84 2.6 134 85 3.8 1447 86 2.5 1121 87 3 260 88 3.1 1279 89 3.3 1501 90 2.2 806 91 2.4 1196 92 3.8 232 93 2.7 438 94 3 1156 95 2 341 96 2 182 97 3.4 947 98 2.2 609 99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668	77	3.2	230
10 3.2 602 80 2 932 81 2.3 776 82 3.1 652 83 3 911 84 2.6 134 85 3.8 1447 86 2.5 1121 87 3 260 88 3.1 1279 89 3.3 1501 90 2.2 806 91 2.4 1196 92 3.8 232 93 2.7 438 94 3 1156 95 2 182 97 3.4 947 98 2.2 609 99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668 103 2.5 959 104 2.8 540 <tr< td=""><td>78</td><td>3.6</td><td>441</td></tr<>	78	3.6	441
10 10 21 932 81 23 776 82 3.1 652 83 3 911 84 2.6 134 85 3.8 1447 86 2.5 1121 87 3 260 88 3.1 1279 89 3.3 1501 90 2.2 806 91 2.4 1196 92 3.8 232 93 2.7 438 94 3 1156 95 2 341 96 2 182 97 3.4 947 98 2.2 609 99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668 103	79	3.2	602
33 2.3 776 82 3.1 652 83 3 911 84 2.6 134 85 3.8 1447 86 2.5 1121 87 3 260 88 3.1 1279 89 3.3 1501 90 2.2 806 91 2.4 1196 92 3.8 232 93 2.7 438 94 3 1156 95 2 341 96 2 182 97 3.4 947 98 2.2 609 99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668 103 2.5 959 104 <t< td=""><td>80</td><td>2</td><td>932</td></t<>	80	2	932
31 652 83 3 911 84 2.6 134 85 3.8 1447 86 2.5 1121 87 3 260 88 3.1 1279 89 3.3 1501 90 2.2 806 91 2.4 1196 92 3.8 232 93 2.7 438 94 3 1156 95 2 341 96 2 182 97 3.4 947 98 2.2 609 99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668 103 2.5 959 104 2.8 540 105 2.1 <	81	23	776
32 33 911 84 2.6 134 85 3.8 1447 86 2.5 1121 87 3 260 88 3.1 1279 89 3.3 1501 90 2.2 806 91 2.4 1196 92 3.8 232 93 2.7 438 94 3 1156 95 2 341 96 2 182 97 3.4 947 98 2.2 609 99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668 103 2.5 959 104 2.8 540 105 2.1 1270 106	82	31	652
32 34 2.6 134 85 3.8 1447 86 2.5 1121 87 3 260 88 3.1 1279 89 3.3 1501 90 2.2 806 91 2.4 1196 92 3.8 232 93 2.7 438 94 3 1156 95 2 341 96 2 182 97 3.4 947 98 2.2 609 99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668 103 2.5 959 104 2.8 540 105 2.1 1270 106 2.6 188	83	3	911
2.2 10.4 85 3.8 1447 86 2.5 1121 87 3 260 88 3.1 1279 89 3.3 1501 90 2.2 806 91 2.4 1196 92 3.8 232 93 2.7 438 94 3 1156 95 2 341 96 2 182 97 3.4 947 98 2.2 609 99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668 103 2.5 959 104 2.8 540 105 2.1 1270 106 2.6 1188 107 4.3 1424 108 2.5 461 10	84	2.6	134
12 112 86 2.5 1121 87 3 260 88 3.1 1279 89 3.3 1501 90 2.2 806 91 2.4 1196 92 3.8 232 93 2.7 438 94 3 1156 95 2 341 96 2 182 97 3.4 947 98 2.2 609 99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668 103 2.5 959 104 2.8 540 105 2.1 1270 106 2.6 1188 107 4.3 1424 108 2.5 461 109 3.3 399 110<	85	3.8	1447
12 12 12 87 3 260 88 3.1 1279 89 3.3 1501 90 2.2 806 91 2.4 1196 92 3.8 232 93 2.7 438 94 3 1156 95 2 341 96 2 182 97 3.4 947 98 2.2 609 99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668 103 2.5 959 104 2.8 540 105 2.1 1270 106 2.6 1188 107 4.3 1424 108 2.5 461 109 3.3 399 110 2 833	86	2.5	1121
2.0 2.0 2.00 88 3.1 1279 89 3.3 1501 90 2.2 806 91 2.4 1196 92 3.8 232 93 2.7 438 94 3 1156 95 2 341 96 2 182 97 3.4 947 98 2.2 609 99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668 103 2.5 959 104 2.8 540 105 2.1 1270 106 2.6 1188 107 4.3 1424 108 2.5 461 109 3.3 399 110 2 833 111 2.6 1207 <td>87</td> <td></td> <td>260</td>	87		260
25 2.1 1213 90 2.2 806 91 2.4 1196 92 3.8 232 93 2.7 438 94 3 1156 95 2 341 96 2 182 97 3.4 947 98 2.2 609 99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668 103 2.5 959 104 2.8 540 105 2.1 1270 106 2.6 1188 107 4.3 1424 108 2.5 461 109 3.3 399 110 2 833 111 2.6 831 1114	88	31	1279
30 2.2 806 91 2.4 1196 92 3.8 232 93 2.7 438 94 3 1156 95 2 341 96 2 182 97 3.4 947 98 2.2 609 99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668 103 2.5 959 104 2.8 540 105 2.1 1270 106 2.6 1188 107 4.3 1424 108 2.5 461 109 3.3 399 110 2 833 111 2.6 1207 112 2.7 1150 113 2.11 602	89	3.3	1501
91 2.4 1196 92 3.8 232 93 2.7 438 94 3 1156 95 2 341 96 2 182 97 3.4 947 98 2.2 609 99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668 103 2.5 959 104 2.8 540 105 2.1 1270 106 2.6 1188 107 4.3 1424 108 2.5 461 109 3.3 399 110 2 833 111 2.6 1207 112 2.7 1150 113 2.1 602 114 2.3 1045	90	2.2	806
92 3.8 232 93 2.7 438 94 3 1156 95 2 341 96 2 182 97 3.4 947 98 2.2 609 99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668 103 2.5 959 104 2.8 540 105 2.1 1270 106 2.6 1188 107 4.3 1424 108 2.5 461 109 3.3 399 110 2 833 111 2.6 1207 112 2.7 1150 113 2.1 602 114 2.3 1045 115 2.6 831 116 2.6 718	91	2.4	1196
02 02 102 93 2.7 438 94 3 1156 95 2 341 96 2 182 97 3.4 947 98 2.2 609 99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668 103 2.5 959 104 2.8 540 105 2.1 1270 106 2.6 1188 107 4.3 1424 108 2.5 461 109 3.3 399 110 2 8333 111 2.6 1207 112 2.7 1150 113 2.1 602 114 2.3 1045 115 2.6 831 </td <td>92</td> <td>3.8</td> <td>232</td>	92	3.8	232
94 3 1156 95 2 341 96 2 182 97 3.4 947 98 2.2 609 99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668 103 2.5 959 104 2.8 540 105 2.1 1270 106 2.6 1188 107 4.3 1424 108 2.5 461 109 3.3 399 110 2 833 111 2.6 1207 112 2.7 1150 113 2.1 602 114 2.3 1045 115 2.6 831 116 2.6 718 117	93	2.7	438
95 2 341 96 2 182 97 3.4 947 98 2.2 609 99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668 103 2.5 959 104 2.8 540 105 2.1 1270 106 2.6 1188 107 4.3 1424 108 2.5 461 109 3.3 399 110 2 833 111 2.6 1207 112 2.7 1150 113 2.1 602 114 2.3 1045 115 2.6 831 116 2.6 718 117 1.9 792 118 2.3 1021 <td>94</td> <td>3</td> <td>1156</td>	94	3	1156
96 2 182 97 3.4 947 98 2.2 609 99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668 103 2.5 959 104 2.8 540 105 2.1 1270 106 2.6 1488 107 4.3 1424 108 2.5 461 109 3.3 399 110 2 833 111 2.6 1207 112 2.7 1150 113 2.1 602 114 2.3 1045 115 2.6 831 116 2.6 718 117 1.9 792 118 2.3 1021 119 2.8 236 120 3.2 956	95	2	341
97 3.4 947 98 2.2 609 99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668 103 2.5 959 104 2.8 540 105 2.1 1270 106 2.6 1188 107 4.3 1424 108 2.5 461 109 3.3 399 110 2 833 111 2.6 1207 112 2.7 1150 113 2.1 602 114 2.3 1045 115 2.6 831 116 2.6 718 117 1.9 792 118 2.3 1021 119 2.8 2.36	96	2	182
98 2.2 609 99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668 103 2.5 959 104 2.8 540 105 2.1 1270 106 2.6 1188 107 4.3 1424 108 2.5 461 109 3.3 399 110 2 833 111 2.6 1207 112 2.7 1150 113 2.1 602 114 2.3 1045 115 2.6 831 116 2.6 718 117 1.9 792 118 2.3 1021 119 2.8 236 120 3.2 956 121 2.6 <	97	3.4	947
99 2.3 126 100 2.6 846 101 2.7 704 102 2.4 668 103 2.5 959 104 2.8 540 105 2.1 1270 106 2.6 1188 107 4.3 1424 108 2.5 461 109 3.3 399 110 2 833 111 2.6 1207 112 2.7 1150 113 2.1 602 114 2.3 1045 115 2.6 831 116 2.6 718 117 1.9 792 118 2.3 1021 119 2.8 236 120 3.2 956 121 2.6 588 123 2.4 1260 124 3.4 1280<	98	2.2	609
100 2.6 846 101 2.7 704 102 2.4 668 103 2.5 959 104 2.8 540 105 2.1 1270 106 2.6 1188 107 4.3 1424 108 2.5 461 109 3.3 399 110 2 833 111 2.6 1207 112 2.7 1150 113 2.1 602 114 2.3 1045 115 2.6 831 116 2.6 718 117 1.9 792 118 2.3 1021 119 2.8 236 120 3.2 956 121 2.6 588 123 2.4 1280	99	2.3	126
101 2.7 704 102 2.4 668 103 2.5 959 104 2.8 540 105 2.1 1270 106 2.6 1188 107 4.3 1424 108 2.5 461 109 3.3 399 110 2 833 111 2.6 1207 112 2.7 1150 113 2.1 602 114 2.3 1045 115 2.6 831 116 2.6 718 117 1.9 792 118 2.3 1021 119 2.8 236 120 3.2 956 121 2.6 588 123 2.4 126 124 3.4 1280	100	2.6	846
102 2.4 668 103 2.5 959 104 2.8 540 105 2.1 1270 106 2.6 1188 107 4.3 1424 108 2.5 461 109 3.3 399 110 2 833 111 2.6 1207 112 2.7 1150 113 2.1 602 114 2.3 1045 115 2.6 831 116 2.6 718 117 1.9 792 118 2.3 1021 119 2.8 236 120 3.2 956 121 2.6 588 123 2.4 1267 124 3.4 1280 125 2.9 1175 <td< td=""><td>101</td><td>2.7</td><td>704</td></td<>	101	2.7	704
103 2.5 959 104 2.8 540 105 2.1 1270 106 2.6 1188 107 4.3 1424 108 2.5 461 109 3.3 399 110 2 833 111 2.6 1207 112 2.7 1150 113 2.1 602 114 2.3 1045 115 2.6 831 116 2.6 718 117 1.9 792 118 2.3 1021 119 2.8 236 120 3.2 956 121 2.6 588 123 2.4 1267 124 3.4 1280 125 2.9 1175 126 2.1 644	102	2.4	668
104 2.8 540 105 2.1 1270 106 2.6 1188 107 4.3 1424 108 2.5 461 109 3.3 399 110 2 833 111 2.6 1207 112 2.7 1150 113 2.1 602 114 2.3 1045 115 2.6 831 116 2.6 718 117 1.9 792 118 2.3 1021 119 2.8 236 120 3.2 956 121 2.6 588 123 2.4 126 124 3.4 1280 125 2.9 1175 126 2.1 644 127 2 701	103	2.5	959
105 2.1 1270 106 2.6 1188 107 4.3 1424 108 2.5 461 109 3.3 399 110 2 833 111 2.6 1207 112 2.7 1150 113 2.1 602 114 2.3 1045 115 2.6 831 116 2.6 718 117 1.9 792 118 2.3 1021 119 2.8 236 120 3.2 956 121 2.6 588 123 2.4 1267 124 3.4 1280 125 2.9 1175 126 2.1 644 127 2 701 128 1.7 843	104	2.8	540
106 2.6 1188 107 4.3 1424 108 2.5 461 109 3.3 399 110 2 833 111 2.6 1207 112 2.7 1150 113 2.1 602 114 2.3 1045 115 2.6 831 116 2.6 718 117 1.9 792 118 2.3 1021 119 2.8 236 120 3.2 956 121 2.6 588 123 2.4 1267 124 3.4 1280 125 2.9 1175 126 2.1 644 127 2 701 128 1.7 843 <td>105</td> <td>2.1</td> <td>1270</td>	105	2.1	1270
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	106	2.6	1188
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	107	4.3	1424
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	108	2.5	461
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	109	3.3	399
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	110	2	833
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	111	2.6	1207
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	112	2.7	1150
	113	2.1	602
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	114	2.3	1045
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	115	2.6	831
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	116	2.6	718
118 2.3 1021 119 2.8 236 120 3.2 956 121 2.6 1276 122 2.6 588 123 2.4 1267 124 3.4 1280 125 2.9 1175 126 2.1 644 127 2 701 128 1.7 843	117	1.9	792
119 2.8 236 120 3.2 956 121 2.6 1276 122 2.6 588 123 2.4 1267 124 3.4 1280 125 2.9 1175 126 2.1 644 127 2 701 128 1.7 843	118	2.3	1021
120 3.2 956 121 2.6 1276 122 2.6 588 123 2.4 1267 124 3.4 1280 125 2.9 1175 126 2.1 644 127 2 701 128 1.7 843	119	2.8	236
121 2.6 1276 122 2.6 588 123 2.4 1267 124 3.4 1280 125 2.9 1175 126 2.1 644 127 2 701 128 1.7 843	120	3.2	956
122 2.6 588 123 2.4 1267 124 3.4 1280 125 2.9 1175 126 2.1 644 127 2 701 128 1.7 843	121	2.6	1276
123 2.4 1267 124 3.4 1280 125 2.9 1175 126 2.1 644 127 2 701 128 1.7 843	122	2.6	588
124 3.4 1280 125 2.9 1175 126 2.1 644 127 2 701 128 1.7 843	123	2.4	1267
125 2.9 1175 126 2.1 644 127 2 701 128 1.7 843	124	3.4	1280
126 2.1 644 127 2 701 128 1.7 843	125	2.9	1175
127 2 701 128 1.7 843	126	2.1	644
128 1.7 843	127	2	701
	128	1.7	843

Table A2.2: Microco	sm 2: Phragmites austra	alis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
129	2.5	1332
130	3.5	622
131	3.4	1562
132	2	920
133	3.6	718
134	3	1241
135	2.5	1069
136	3.1	245
137	2.9	1362
138	2	1048
139	3.4	891
140	2.5	1429
141	2.5	829
142	2.5	1018
143	3	1323
144	3	1475
145	4	618
146	2.6	1616
147	2.7	819
148	2.9	1067
149	2	583
150	2.6	1383
151	1.7	561
152	3.9	274
153	2.9	367
154	2.0	323
155	2.0	520
155	1.6	/70
150	1.0	475
157	2.3	1266
100	3.4	1200
159	3.9	1027
160	3.4	1257
161	3.2	445
162	1.6	496
163	2.4	1064
164	3	1293
165	2.5	1288
166	3.1	1194
167	3.9	852
168	3.4	474
169	3	604
170	3.5	643
171	2.5	329
172	4.1	1525
173	4	671
174	3.9	860
175	2.4	955
176	3.4	1228
177	2	936
178	1.6	608
179	2.5	996
180	2.8	789
181	3.2	550
182	4.4	1605
183	4.1	1359
184	3.1	1109
185	2.9	985
186	3.1	1404
187	2.6	1100
188	3.5	646
189	3	923
190	3	720
101	35	1/20
102	3.0	1009
192	3.4	1000

Table A2.2: Microco	sm 2: Phragmites austra	alis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
193	2.4	1078
194	3.1	1058
195	2.5	708
196	3.8	1454
197	4.4	1308
198	2.5	902
199	3.1	444
200	2	972
201	3.7	403
202	1.8	609
203	2.5	321
204	3.4	1109
205	2.6	743
206	3.3	1077
207	2.2	921
208	4	1261
209	4.6	973
210	3.1	1334
211	2.4	975
212	2.6	1089
213	4.2	1513
214	2.6	1014
215	0	1111
216	27	1176
210	2.1	717
217	2.9	611
210	1.9	1001
219	3.6	1321
220	2.3	941
221	2.4	10/1
222	3.4	1656
223	4.8	262
224	2.8	1062
225	4.1	1372
226	2	899
227	3	1205
228	1.7	611
229	3.4	1335
230	2.9	360
231	1.9	390
232	1.9	1082
233	2.1	861
234	2.3	1121
235	3.5	507
236	1.8	585
237	1.4	320
238	2	934
239	2.5	268
240	2.6	1042
240	4.2	1371
241	7.2	910
2/2	3.8	517
243	2.0	907
244	2.9	00/
245	1./	121
240	2.5	312
247	3	1285
248	2	351
249	1.5	392
250	1.5	516
251	1.5	608
252	2.2	922
253	3.6	1452
254	0.9	304
255	3.1	132
256	1.9	798

Table A2.2: Microco	sm 2: Phragmites austra	alis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
257	1.3	491
258	3	1283
259	3.2	12/4
260	3.2	14/3
261	4.9	1094
262	3.8	1708
263	3.1	1459
264	1.9	Median Height
265	2.9	809
266	3	1141
267	3.3	1169
268	2.2	893
269	2.5	918
270	2.6	916
271	1.8	460
272	2.2	579
273	2.9	1394
274	2.5	1097
275	3	1170
276	2.2	968
277	3.2	1518
278	3.4	1121
279	2.8	1113
280	3	804
281	2.2	458
282	1.9	534
283	2.6	828
284	2.9	814
285	2.2	688
286	2.4	541
287	21	619
288	2.5	888
289	4.5	1539
290	4.4	1742
291	21	432
292	2.3	258
293	2.0	146
294	2.6	1204
205	2.5	1063
295	2.5	1102
207	13	1486
201	7.0	1121
290	2.4	815
233	2.1	010
300	3	012
301	25	012
302	2.0	1134
303	3.9	1000
304	4.2	1431
305	2.1	8/8
306	1.8	380
307	2.8	9/5
308	4.1	1220
309	4.1	780
310	2.1	504
311	3	1452
312	2.6	335
313	3.5	174
314	2.2	884
315	2.2	808
316	2.5	382
317	2.9	1195
318	2.7	1253
319	2.4	777
320	2.6	843

Table A2.2: Microco	sm 2: Phragmites austra	alis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
321	2.3	658
322	4.8	1265
323	2.5	718
324	2.8	823
325	2.6	851
326	2.2	890
327	3	1224
328	1.8	339
329	2.8	796
330	2.5	871
331	3.2	1291
332	2.6	939
333	3.3	1304
334	2.9	1296
335	2.8	432
336	3.2	1502
337	2.1	267
338	2.4	562
339	3.1	1144
340	2.8	491
341	2.0	332
342	3.6	332
242	0.0	701
343	2	261
344	3	301
345	3.5	952
346	4.1	1409
347	3.9	1414
348	2.7	468
349	3.1	532
350	2.4	1497
351	2.7	1009
352	3.4	1046
353	4.1	1199
354	2.4	185
355	3.3	318
356	2.9	221
357	3.4	217
358	22	393
350	3.1	325
360	4.6	590
361	4.0	798
362	1.1	604
302	1./	601
303	2.0	160
364	2.1	397
365	2.8	1021
366	2.3	947
367	2.1	853
368	2	852
369	2.3	854
370	3.8	1211
371	2.2	701
372	2.2	728
373	1.6	816
374	2.4	861
375	2.5	896
376	4.3	159
377	2	478
378	2.2	827
379	3.3	911
380	3.4	314
381	2.4	804
301	2.0	363
302	1.9	302
303	4	311
384	3.3	352

- 27 -

Table A2.2: Microcosm 2: Phragmites australis Stem Measurements.

Stem Number	Stem Width (mm)	Stem Height (mm)
385	2.1	367
386	2.4	191
387	2.4	266
388	3.7	170
389	2.2	125
390	1.8	361
391	2.4	388
392	3.4	522
393	3.5	518
394	2	618
395	3.6	280
396	17	334

	Total Stems	Total Number of Stems Stems with Inflorescence	<u>396</u> 44
	Heights (mm)	Max Height	1742
		Min Height	97
		Mean Height	863.6186869
Stome		Mode Height	1121
Stems		Median Height	874.5
	Widths (mm)	Max Width	4.9
		Min Width	0.9
		Mean Width	2.842929293
		Mode Width	2.5
		Median Width	2.8

Stem Number	Stem Width (mm)	Stem Height (mm)
1	3	1287
2	2.7	1374
3	3.2	1215
4	3.6	1691
5	3.6	1689
6	1.9	/16
7	2.4	886
8	2.2	899
9	3.4	1086
10	4.3	1924
11	4.3	1686
12	3.6	1932
13	4	1382
14	3	594
15	2.6	1062
16	3.4	1628
17	3.9	1578
18	4.4	953
19	2.3	1068
20	2.5	1018
21	2.0	1116
22	22	1008
23	3	888
20	20	1330
24	2.9	1139
20	2.0	1724
20	3.7	1724
27	2.6	518
28	4.8	1524
29	3.3	649
30	3	1109
31	2.4	1020
32	3.6	1892
33	3.7	92
34	3.4	1152
35	2.9	1601
36	3.9	1266
37	4	1806
38	3.6	1544
39	2.9	1278
40	3	1263
41	3.4	1401
42	2.9	1371
43	4	926
44	3.6	1359
45	3.2	1609
46	4.1	1842
47	2.9	1356
48	3.3	1709
49	3.4	1399
50	3.8	1855
51	4.3	1733
52	4.9	1519
53	2.9	739
54	2.9	1168
55	2.0	637
56	2.3	1062
57	2.4	1002
5/	3.3	1371
50 50	2.1	392
59	3.5	15/3
60	3.1	830
61	4.1	926
62	3.4	1620
63	3.6	1692
64	5.5	2088

Stem Number	Stem Width (mm)	Stem Height (mm)
65	1.3	627
66	2.7	1525
67	2.7	753
68	2.7	882
60	3.0	1801
70	3.9	1591
70	3.7	1522
71	4.1	059
72	2.3	950
73	3.3	910
74	2.0	1282
75	3.7	1671
76	3.3	1195
77	3.8	1/29
/8	3.1	/9/
79	2.9	804
80	3.3	821
81	4.2	1504
82	3.1	971
83	3.1	1402
84	3.2	314
85	2.6	810
86	3	1295
87	4.6	1467
88	3.5	1736
89	3.6	1596
90	3.8	1878
91	2.3	786
92	3.6	667
93	2.8	874
94	2.5	894
95	3.8	1815
96	4.3	1710
97	3.3	723
98	2.4	966
99	1.9	919
100	3.8	707
101	3.1	469
102	4.1	1778
103	3.1	301
104	3.3	885
105	4.3	698
106	2.6	640
107	3.1	1099
108	2.1	800
109	1.4	416
110	3.6	724
111	2.9	1019
112	3.9	1660
113	4.3	1792
114	4	1835
115	3.6	1402
116	3.8	1839
117	4	1772
118	3.5	824
119	4.2	1484
120	4 3	1721
120	т. Э К	1021
121	36	1500
122	3.0	1000
123	3.1	440 605
124	4.2	000
125	3.8	1620
126	4.2	/54
127	3.8	1/18
128	4.5	1911

Stom Number	sm 3: Phragmites austra	alls Stem Measurements.
Stem Number		Stell Height (mm)
129	4.4	810
130	3.8	//1
131	3.3	1295
132	3.8	13/1
133	4.2	1660
134	1.5	507
135	4.6	1069
136	3.8	910
137	3.6	1249
138	4.2	1576
139	3.3	1571
140	4.8	1911
141	3.5	1025
142	1.9	444
143	4	1450
144	3.6	1435
145	4	1797
146	2.4	564
147	4.1	1508
148	2.6	1331
149	2.9	911
150	3.6	1463
151	3.5	1328
152	3.6	686
153	4.1	1834
154	37	972
155	4	699
156	43	1501
157	3.0	1581
157	5.5	1722
150	3.1	1070
109	5.0	1070
160	5.1	1/52
161	4	1698
162	3.2	1056
163	3.9	811
164	3.5	695
165	3.6	615
166	3.7	1574
167	5.4	1978
168	4.1	1468
169	3.8	1661
170	4.6	1868
171	3.4	1302
172	3.7	1592
173	3.7	1520
174	3.5	1292
175	3.7	1672
176	4.5	2011
177	3.6	681
178	3.2	1310
179	3.2	1563
180	3.6	1420
181	4.6	904
182	4.4	1575
183	3.3	899
184	3.5	823
185	4	941
186	3.5	1104
187	4.6	1055
188	3.4	1756
189	3	863
190	41	906
101	4.2	1636
102	7.4	1400
192	3.4	1422

Table A2.3: Microco	sm 3: Phragmites austra	alis Stem Measurements.
Stem Number	Stem width (mm)	Stem Height (mm)
193	3.8	1470
194	4.2	1518
195	4	1170
190	2.4	024
197	4	1209
198	3.3	1393
199	3.8	1882
200	2.8	1128
201	5	1836
202	3.8	1686
203	3.7	1667
204	3.7	1154
205	3.4	1501
206	4.1	1455
207	3	680
208	4.2	1675
209	3.5	1621
210	3.4	1497
211	3.6	1616
212	3.9	1253
213	3.3	1287
214	3.8	1752
215	3.9	2021
216	4.1	1495
217	3	1736
218	4.5	2055
219	3.4	1259
220	3.6	1293
221	4.1	1534
222	3.8	1665
223	4.5	1012
224	4.2	1393
225	4	1769
226	3.2	1014
227	4	1506
228	5	1887
229	4.5	1832
230	32	1231
231	2.8	1221
232	3.5	1697
233	2	329
234	3.6	1521
235	4.6	1564
236	4.5	1292
230	3.4	1680
238	5	1925
230	35	1711
200	3.0	1744
240	3.1	1/44
241	3.0	1400
242	3.0 2.7	1000
243	2.1	1051
244	4.5	5/8
245	3.1	540
246	4.2	304
247	3.6	/86
248	3.9	2004
249	3.5	1438
250	4	1220
251	4.1	1579
252	2.2	888
253	3.5	1678
254	4.9	1263
255	2.5	720
256	3.1	1170

Table A2.3: Microco	sm 3: Phragmites austra	alls Stem Measurements.
Stem Number		Stem Height (mm)
257	2.8	6/7
258	3.4	819
259	3.1	1001
260	3.6	995
261	2.8	1125
262	3.1	1393
263	3.6	502
264	4.5	Median Height
265	2.4	1079
266	3.6	1403
267	3.6	1539
268	3.2	1432
269	3.6	1770
270	3.5	527
271	3.3	299
272	3	515
273	2.1	467
274	3.1	500
275	1.6	193
276	3.5	1229
277	4.2	1114
278	2.7	997
279	3.4	1018
280	2.4	636
281	4.7	435
282	3.3	1822
283	5	701
284	2.4	1041
285	3.3	1552
286	21	448
287	21	706
288	3.3	1681
289	4.2	1249
203	7.2	1245
201	2.0	1230
291	3.5	1574
292	3.5	1574
200	2.5	1365
294	2.5	1505
295	3.7	1642
290	4.4	2021
231	3.2	1000
230	3.0	10/1
233	3.5	1233
300	4.1	1720
301	3.1	1223
302	3.1	1/44
303	2.8	1450
304	3.5	1266
305	3.5	1648
306	3.6	1272
307	3	1282
308	2.9	1020
309	4	1853
310	3.6	1941
311	2.7	918
312	2	1209
313	3	1304
314	5	1850
315	3.5	1473
316	3.6	1811
317	2.7	920
318	2.8	1591
319	4.1	1945
320	2.2	1351
020		

Table A2.3: Microco	sm 3: Phragmites austra	alls Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
321	3.5	18/6
322	3	1481
323	4.2	1812
324	2.6	921
325	4.1	589
326	2.3	297
327	2.9	945
328	2.9	1005
329	2.8	1442
330	3	745
331	31	1403
332	3.6	1717
333	3.1	952
334	4.6	1602
225	4.0	1632
335	4.5	1632
336	4	1745
337	3.3	1620
338	4.3	1697
339	2.7	1014
340	3.3	1710
341	1.9	333
342	2.5	604
343	4.2	1887
344	3.1	1451
345	3.4	1446
346	2.2	1415
247	4.2	1410
2/0	7.2	1057
340	3.2	1045
349	2.5	1045
350	3.4	1570
351	4.5	508
352	3.9	577
353	3.3	1097
354	3.6	1163
355	2.6	1186
356	2.7	908
357	2.4	901
358	3.4	1317
359	4	1686
360	27	453
361	3.5	650
362	21	467
363	65	1640
364	0.0	075
265	26	920 1107
000	2.0	1197
300	3.1	0001
367	3.5	502
368	4.1	904
369	2.7	1278
370	3	409
371	2.3	1057
372	3.1	1232
373	3.4	1527
374	2.3	1117
375	3.1	524
376	2.5	912
377	3	374
378	26	1649
370	2.0	1832
200	0.4 0 F	1002
380	3.5	1827
381	<u>ئ.1</u>	1514
382	3.3	1501
383	2.5	841
384	3.7	1926

Table A2.3: Microco	sm 3: Phragmites austra	alis Stem Measurements.
Stem Number		Stem Height (mm)
385	2.9	1659
386	2.8	887
387	3.4	1696
388	2.5	1516
389	2	1231
390	4	1748
391	2.8	1007
392	2.4	659
393	3.9	1334
394	2.2	1293
395	3.1	1152
396	2.8	660
397	5.3	1981
398	2.5	317
399	2.7	987
400	3.1	839
401	2.9	1295
402	3.6	241
403	4	480
404	5	870
405	57	13/0
406	3.1	504
400	4	1600
407	3	1009
408	3.1	586
409	3	1805
410	2.4	955
411	3.5	1468
412	4.7	790
413	3	468
414	4.8	189
415	3.3	215
416	4.2	1740
417	3.1	166
418	2.5	1105
419	2.5	940
420	3.7	1275
421	2.7	1192
422	2.4	1049
423	3	1005
424	1.9	795
425	1.8	1141
426	2	326
427	2.8	358
428	2	491
429	4.5	638
430	2.6	1143
431	3.4	1753
432	26	400
433	2.5	1075
400	2.5	588
434	2.0	206
400	3.1	200
430	4.9	003
437	3	1043
438	2.9	1041
439	3	1396
440	2.8	406
441	2.4	1065
442	2.4	1206
443	3.1	1245
444	2.4	1042
445	3.5	501
446	1.8	1194
447	2.2	1404
448	2.7	1358

Table A2.3: Microco	sm 3: Phragmites austra	alis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
449	2.6	1758
450	2.7	1646
451	2.3	802
452	5	755
453	2.6	1624
454	2.1	1005
455	2.7	1205
456	3	1379
457	2.4	1315
458	2.1	765
459	1.7	1185
460	2.7	911
461	2.3	530
462	4.5	873
463	2.8	257
464	4.5	762
465	3.8	1060
466	2	578
467	26	605
407	2.0	110
408	2.0	110
409	1.9	520
470	3.5	280
471	2	704
472	2.9	445
473	3.3	333
474	3.5	373
475	4.5	428
476	2.5	255
477	2.9	247
478	4.3	270
479	3.2	285
480	3.3	277
481	4.1	495
482	2.3	310
483	22	988
484	27	1533
485	2.8	1485
400	3.4	1056
400	2	1102
407	51	1906
400	5.1	1800
409	5.4 F	1002
490	3	1439
491	2.1	14/0
492	6.2	1992
493	2.3	581
494	3.2	1626
495	3.7	1577
496	4	1730
497	4.2	1590
498	5.1	838
499	3.5	962
500	3	1498
501	3	1350
502	4.6	1110
503	3.1	930
504	3.7	1963
505	3.8	1842
506	5.4	1978
507	3.4	1543
508	2.9	1545
509	53	1964
510	3.3	1362
511	3.5	1/88
510	2.6	1061
512	2.0	1001

Stem Number	Stem Width (mm)	Stem Height (mm)
510		
513	3	1243
514	3.5	1570
515	2.3	1519
516	2.2	1058
517	1.8	655
518	2.2	546
519	2.7	321
520	2.8	818
521	3.4	459
522	2.4	682
523	3.3	546
524	4.2	364
525	3	744
526	3.2	318
527	2.2	301
528	4	123
529	2	451
530	3.6	300
531	3.9	499
532	3.4	192
533	4.5	276
534	3.6	181
535	4.9	513
536	3.8	602
537	2.3	612
538	2	690
539	2.6	470
540	5	170
541	4.5	128
542	4.3	194
543	3.2	172
544	2.9	285
545	3.3	209
546	3.5	432
547	3.4	472
548	2.6	158
549	3.1	392
550	3.7	316
551	2.2	211
552	3.6	215
553	3.6	246
554	3	427
555	4.9	366
556	2.6	652
557	3.3	349

Stem Number Stem Width (mm) Stem Height (mm)

	Total Stems	Total Number of Stems Stems with Inflorescence	557 67
		Max Height	2088
	Heights (mm)	Min Height	92
		Mean Height	1141.030521
Ctomo		Mode Height	1686
Sterns		Median Height	1186
	Widths (mm)	Max Width	6.5
		Min Width	1.3
		Mean Width	3.385251799
		Mode Width	3.6
		Median Width	3.4

Stom Number	sm 4: Phragmites austra	alls Stem Measurements.
3tem Number	3.8	1473
2	3.8	1473
3	2.6	968
4	3.2	1021
5	1.9	479
6	5.1	974
7		15/1
8	51	1178
9	3.1	1382
10	4.3	8/8
11	3.5	1646
12	3.0	1547
13	4	348
10	32	1303
15	2.7	374
16	4.7	1851
17	5.1	2131
18	3.5	1704
19	4.1	1047
20	26	1311
21	3.6	1713
21	3.6	1129
23	5.6	928
23	5.0	1791
24	2.6	1076
26	3.9	1543
20	3.0	547
21	3.3	/32
20	42	1584
30	4.5	934
31	2.0	1246
32	2.3	1240
33	4	837
34	2.7	1267
35	4	1029
36	43	688
37	4.0	1308
38	3.7	710
39	2.9	636
40	3.2	1311
40	4.4	1391
42	34	1445
43	3	1509
44	4.8	1962
45	3.4	1344
46	3.5	1414
47	6.5	1967
48	3.3	1226
49	4.3	1411
50	5.6	995
51	5.5	1647
52	37	1535
53	35	1562
54	2.4	537
55	1.9	906
56	2.3	560
57	2.0	652
58	3.5	1159
59	3.2	2035
60	3.6	1177
61	3.0	1125
62	3.5	1580
63	3.5	1700
64	4.0	008
04	1.ŏ	308

Stem Number	Stem Width (mm)	Stem Height (mm)
65	Stein Width (initi)	1310
66	2	1102
67	3	649
68	36	1675
60	3.0	1075
70	3.5	1230
70	3.2	1200
71	3.4	652
72	3.2	1942
73	3.0	1042
74	3.3	1411
75	3.4	1584
76	4.5	1654
77	3.9	1534
/8	3.3	1644
79	3.9	1801
80	5.4	1709
81	2.9	1589
82	3.2	902
83	2.3	1465
84	3.7	710
85	4.8	2129
86	5.4	1139
87	3	1101
88	4.2	1947
89	5.6	2270
90	2.8	538
91	4.1	1557
92	2.9	1535
93	2.6	1278
94	2.5	612
95	4.5	1228
96	5.1	1630
97	2.5	980
98	4.2	1471
99	3.4	1214
100	5.4	1651
101	5.3	1400
102	4.1	1401
103	3.9	1631
104	4.5	1686
105	27	921
106	5.2	1689
107	52	1811
108	3.4	1157
109	51	1747
110	17	597
111	36	1494
112	2.5	1073
112	2.0	1073
113	2.0	412
114	3.3	1195
110	4	100
110	4.2	1487
117	3.3	082
118	4.2	1225
119	2.5	1269
120	2.7	642
121	3.5	149
122	4.2	869
123	3.8	1211
124	4.4	1260
125	2.5	935
126	3.5	716
127	3.2	541
128	5.2	1673

Table A2.4: Microco	sm 4: Phragmites austra	alis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
129	4.6	1721
130	4.3	1879
131	3.9	1504
132	4.9	1877
133	2	665
134	2.7	1383
135	4.5	291
136	3	840
137	2.3	798
138	2.5	612
139	3.9	1368
140	3.6	1067
141	3.2	1506
142	3	1447
143	2.6	1251
144	3	1111
145	3.7	1442
146	2.8	1192
147	4.9	2088
148	2.2	1101
149	3.4	1220
150	2.8	1134
151	2.0	1502
157	2.5	11/3
152	2.1	1079
155	2.0	1972
154	3	1453
155	2.8	1246
156	4.3	2051
157	4.7	1504
158	6.8	2253
159	2.7	622
160	3.7	538
161	4.6	2037
162	5.2	374
163	3.6	1650
164	4.5	717
165	3.5	1541
166	3.5	1632
167	5.8	2178
168	5.8	2038
169	3.5	1417
170	2.1	362
171	3.2	288
172	3.2	814
173	4.3	1993
174	4.8	1891
175	4.8	960
176	2.4	1280
177	2.7	1125
178	2.0	836
170	2.1	030
100	2.0	302
100	3.2	1015
181	3.1	1218
182	<u>ئ.1</u>	1034
183	5./	1/2
184	3.8	441
185	5.6	1391
186	3.3	801
187	2.9	425
188	4	1217
189	3.2	1342
190	2.5	876
191	3.2	1014
192	3.1	1040
Table A2.4: Microco	sm 4: Phragmites austra	alis Stem Measurements.
---------------------	-------------------------	-------------------------
Stem Number	Stem Width (mm)	Stem Height (mm)
193	2.1	691
194	3.2	968
195	2.5	537
196	3.8	580
197	2.7	6/1
198	2.7	523
199	2.6	919
200	3.6	1179
201	4.3	1111
202	2.8	1354
203	3.2	1087
204	2.8	1257
205	3.9	1140
206	4.3	651
207	5.8	2096
208	2.7	499
209	2.5	990
210	4.1	1571
211	3.4	1068
212	2.2	291
213	17	1123
214	3	361
215	20	13/5
215	2.3	/30
210	2.2	450
217	2.4	403
210	2.1	1321
219	2.5	1142
220	3.5	290
221	1.6	341
222	3	744
223	2.8	1256
224	2.5	399
225	3.8	1652
226	1.7	945
227	4.3	647
228	5.7	2233
229	3.7	891
230	3.5	1189
231	2.8	1255
232	4.4	1445
233	3.1	365
234	5	291
235	2.2	359
236	2	307
237	3.5	450
238	2.5	195
239	15	320
240	5.4	1321
240	21	377
2/12	2.1	358
242	2.0	1102
243	2.1	1422
244	3	1433
245	4.5	914
246	3.5	1405
247	3.7	1321
248	3.2	1563
249	3.1	1437
250	2.5	1335
251	2.5	1360
252	3.3	1631
253	2.5	1191
254	1.2	335
255	1.8	264
256	3	1380
200		

Stem Number	Stem Width (mm)	Stem Height (mm)
257	35	1524
257	3.5	1324
200	3.5	1201
209	3.1	1205
260	3.5	1205
201	3.5	1470
262	3.7	14/0
263	3.8	1331 Madian Uninkt
264	2.5	Median Height
265	1.9	317
266	2.2	243
267	3.4	1565
268	3.3	1154
269	3.5	1200
270	3.6	1485
271	2.8	1198
272	4.3	1442
273	2.3	252
274	3.3	1143
275	2.3	602
276	3.1	971
277	5.5	1368
278	3.6	1009
279	4.5	197
280	5.8	1409
281	3	1464
282	1.7	384
283	2.8	944
284	3.4	1231
285	3.7	575
286	3.5	1550
287	2.7	1517
288	2.8	278
289	2.8	301
290	2.1	1083
291	4.6	975
292	2.9	1297
293	4.3	956
294	2.3	548
295	2.6	1061
296	3	1427
297	31	1609
298	4	1866
299	2.5	1471
300	1.8	1077
301	31	1294
302	4.6	1025
303	37	1534
304	2	97/
304	21	7/2
306	2.1	/ 42
300	0.0	403 874
307	2.3	0/4 50F
308	2.4	505
309	3.2	1027
310	2.5	967
311	2.6	498
312	3.6	799
313	3.9	1487
314	4	1383
315	4.9	1693
316	4	1451
317	3	1097
318	4.3	1483
319	4.6	1362
320	3.5	1133

Table A2.4: Microco	sm 4: Phragmites austra	alls Stem Measurements.
Stem Number	Stem width (mm)	Stem Height (mm)
321	5	1141
322	4	1500
323	3	1015
324	3.5	1106
325	2.1	504
326	3.1	950
327	2.2	372
328	3.7	1258
329	1.8	1012
330	2.6	864
331	4.2	1263
332	3.5	677
333	3.7	1448
334	2	692
335	22	807
336	3.2	989
227	4.2	670
220	4.2	1250
<u> </u>	3.8	1209
339	3.4	1/43
340	3.3	1250
341	2.1	264
342	3.6	478
343	4.5	1292
344	3.7	1583
345	2.6	1245
346	1.4	634
347	2.6	664
348	31	615
349	3.3	495
350	2.3	1071
251	2.5	1865
351	3.0	1605
352	3.4	1539
353	2.6	1761
354	4.4	1536
355	3.6	168
356	4.7	1935
357	3.9	1869
358	4	2007
359	2.3	1154
360	2.8	786
361	3.8	1700
362	2.2	473
363	2.9	1151
364	19	478
365	1.8	1115
366	2.9	641
367	2.3	1633
201	4	1000
300	3.3	1090
309	3.3	1159
370	2.6	1284
371	2.7	1231
372	2.8	1209
373	5.7	1838
374	2.9	951
375	5.4	1929
376	2.8	1386
377	3	1527
378	3.1	1401
379	4.2	1249
380	29	1311
381	2.3	1/86
201	2.0	076
302	2.3	0/0
303	2.5	1303
384	3.9	1422

Table A2.4: Microco	sm 4: Phragmites austra	alis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
385	3.5	1724
386	4.4	1782
387	4.6	1744
388	2.2	1100
389	3	1503
390	3.1	1771
391	3	1635
392	3.9	1035
393	2.5	1361
394	2.7	1181
395	3.5	1298
396	4.9	345
397	3	664
398	2.4	757
399	3.8	1132
400	3.8	708
401	3.1	1754
402	2.5	1231
403	5	1781
404	4	1661
405	3	1302
406	4	1539
407	30	1602
407	3.5	1722
400	4.0	207
409	3.0	397
410	3.2	1634
411	3.5	682
412	4.5	1626
413	4	1091
414	4.9	797
415	2.8	459
416	3	271
417	3.1	1467
418	2.3	567
419	2.8	921
420	3.4	1614
421	3.2	617
422	3.4	1395
423	3.1	1451
424	2.6	888
425	4.5	869
426	3.1	1001
427	2.6	650
428	2.5	468
429	4	571
430	3.1	802
431	2.5	1007
432	3.6	1372
433	3.0	760
433	3.0	321
404	J.1	1325
400	4.0	1100
430	2.1	1103
437	3.9	1294
438	2.5	1013
439	3.2	947
440	2.3	1039
441	4.2	1080
442	3.4	1600
443	3.5	371
444	2.5	568
445	2.2	1237
446	3.3	775
447	2	1094
448	3.6	1372

Table A2.4: Microco	sm 4: Phragmites austra	alis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
449	2	668
450	4	921
451	2.4	1029
452	5.1	1407
453	3	1375
454	3.7	1411
455	3.9	1632
456	2.4	432
457	3.8	441
458	3	1384
459	3.7	1356
460	3.4	1567
461	2.2	579
462	3.9	1289
463	1.8	433
464	3.4	1344
404	2.7	275
405	3.3	055
400	2.4	300 1500
407	3.1	1509
408	2.4	2/4
469	2.7	562
470	3.7	870
471	1.7	469
472	2.8	1205
473	2.2	842
474	4.2	1273
475	2.6	844
476	2.6	15
477	2	711
478	2	233
479	2.6	471
480	4.9	1627
481	2.4	883
482	4.3	1646
183	27	850
405	4.3	1/30
404	4.5	502
405	2.7	1111
400	3.1	200
487	2.4	392
488	4.3	1527
489	3.1	1481
490	3.9	1047
491	4.3	1582
492	3.5	1132
493	3.7	855
494	2.3	1182
495	3.4	1508
496	4.7	1583
497	3.7	1386
498	2.7	578
499	4.5	1417
500	5.1	1715
501	3.6	456
502	5.4	611
503	5.6	1371
504	3.2	1444
504	3.4	1062
505	3.5	1002
506	4.2	600
507	3.8	1499
508	4.2	723
509	3.3	1265
510	5.3	1331
511	3	1377
512	3	1287

Table A2.4: Microco	sm 4: Phragmites austra	alis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
513	2.4	1060
514	3.6	1332
515	3.2	1312
516	4.7	661
517	4.2	1116
518	5.1	1674
519	3.5	1254
520	4.2	1682
521	4.1	1281
522	1.7	358
523	2.6	988
524	2.8	912
525	3.9	1530
526	3	1002
527	2.5	1073
528	2.1	618
529	3.6	1271
530	4.1	452
531	3.8	289
532	2.6	1146
533	3.2	934
534	2.6	781
535	2.5	606
536	4.2	1277
537	7.2	703
529	2.0	703
530	2.0	192
539	1.9	651
540	4	1231
541	3.7	558
542	1.9	259
543	2.8	1463
544	3.1	397
545	2.7	1451
546	3.1	397
547	3.4	1562
548	2.8	994
549	3.2	1625
550	2.8	313
551	1.9	248
552	3.1	1304
553	2.5	312
554	2.5	607
555	1.9	789
556	3	1090
557	4.2	1544
558	2.4	1073
559	2.4	313
560	2	392
561	2.8	291
562	2.0	231
563	2.7	445
503	2.2	260
304	2.3	309
202	2.0	011
000	2.1	1047
567	1.4	2/1
568	2.5	1442
569	3.6	1280
570	3.1	450
571	3.9	1487
572	2.8	1275
573	2.1	712
574	2.5	1311
575	2.5	653
576	2.6	1150
		-

Table A2.4: Microco	sm 4: Phragmites austra	alis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
577	2.8	1395
578	2.9	1000
579	2.2	1090
581	2.2	202
501	2.4	132
502	2.4	347
203	1.0	209
505	0.2	1272
505	3	1321
586	3.4	1215
500	3.0	1302
500	2.1	911
509	2.0	552
590	3.0	470
591	1.8	211
592	1.8	278
593	2.2	291
594	2.9	146
595	2.2	104
596	2.1	281
597	2.1	280
598	1.7	704
599	2.2	/31
600	4.1	1532
601	4.9	1315
602	2.5	1363
603	2	994
604	4	356
605	1.8	864
606	2.5	842
607	3.2	1307
608	2.6	847
609	3.1	1113
610	3.4	427
611	2.1	659
612	3.1	431
613	4.9	11/1
614	3	1112
615	2.5	801
616	3.1	1287
617	2.4	395
618	3.1	521
619	3.5	1345
620	2.5	556
621	4.8	3/3
622	2.6	1220
623	2	241
624	3.3	344
625	2.4	345
620	2.1	1187
627	4	1007
628	4.3	1020
629	3.5	1286
050	2.4	405
631	2.7	433
632	3.3	1066
633	4.5	1299
634	3.7	1500
635	3.9	1418
636	4.7	1552
637	3.7	1314
638	2.4	704
639	3.3	1455
640	3.5	1036

Stem Number	Stem Width (mm)	Stem Height (mm)
641	3.4	917
642	3.3	690
643	4.3	560
644	3.6	201
645	5.3	417
646	4.3	422
647	4.6	1231
648	4	1327
649	3.5	1039
650	4.1	1574
651	4.8	1567
652	3.1	1343
653	3	1725
654	2.8	686
655	3.5	1274
656	4.4	711
657	2.4	413
658	2.8	997
659	2.1	414
660	2.3	639
661	2.7	734
662	3	675
663	3.7	1364
664	3.6	1444
665	4.4	1286
666	3.7	1530
667	3.6	594
668	2.7	1084
669	2.8	599
670	3.7	935
671	2.3	406
672	3.2	560
673	2.9	327
674	3.1	304
675	2.5	132
676	2.2	143
677	2.7	297
678	2	277
679	3.4	184
680	2.4	221
681	3.2	10/

Total Stems Total Number of Stems 681 Stems with Inflorescence 112 Heights (mm) Max Height 2270 Max Height 15 Mode Height 291 Mode Height 291 Max Width 6.8 Widths (mm) Min Width 1.2 Max Width 6.8 Min Width 1.2 Mean Width 3.328193833 Mode Width 2.5 Median Width 3.2				
Max Height 2270 Heights (mm) Min Height 15 Mode Height 1055.18649 Mode Height 291 Mode Height 291 Max Width 6.8 Widths (mm) Min Width 1.2 Mean Width 2.5 Median Width 3.2		Total Stems	Total Number of Stems	681 112
Max Height 2270 Min Height 15 Mean Height 1055.18649 Mode Height 291 Mean Height 1111 Max Width 6.8 Widths (mm) Min Width 1.2 Mean Width 3.328193833 Mode Width 2.5 Median Width 3.2			Sterns with innorescence	112
Heights (mm) Min Height Mean Height 15 Stems Mode Height 291 Mode Height 291 1111 Max Width 6.8 1.2 Widths (mm) Min Width 1.2 Mean Width 3.328193833 Mode Width Median Width 3.2			Max Height	2270
Mean Height 1055.18649 Stems Mode Height 291 Median Height 1111 Max Width 6.8 Widths (mm) Min Width 1.2 Mean Width 3.328193833 Mode Width 2.5 Median Width 3.2		Heights (mm)	Min Height	15
Mode Height 291 Median Height 1111 Max Width 6.8 Widths (mm) Min Width 1.2 Mean Width 3.328193833 Mode Width 2.5 Median Width 3.2			Mean Height	1055.18649
Median Height 1111 Max Width 6.8 Widths (mm) Min Width 1.2 Mean Width 3.328193833 Mode Width 2.5 Median Width 3.2	Ctomo		Mode Height	291
Max Width 6.8 Widths (mm) Min Width 1.2 Mean Width 3.328193833 Mode Width 2.5 Median Width 3.2	Sterns		Median Height	1111
Widths (mm) Min Width 1.2 Mean Width 3.328193833 Mode Width 2.5 Median Width 3.2		Widths (mm)	Max Width	6.8
Mean Width 3.328193833 Mode Width 2.5 Median Width 3.2			Min Width	1.2
Mode Width 2.5 Median Width 3.2			Mean Width	3.328193833
Median Width 3.2			Mode Width	2.5
			Median Width	3.2

Stem Number	Stem Width (mm)	Stem Height (mm)
1	2.8	1141
2	3.2	3/3
3	1.6	235
	1.0	200
4	1.0	203 610
5	3.2	619
6	0.4	175
/	2.4	933
8	2	552
y	3.7	1145
10	2	333
11	1.8	601
12	1.5	503
13	1.8	752
14	1.6	725
15	2	175
16	1.8	941
17	1.6	781
18	1.9	766
19	1.3	261
20	2.6	855
21	1.1	651
22	0.8	485
23	16	250
24	12	513
24	2.0	765
20	1.6	502
20	1.0	103
27	1.5	493
28	1.4	530
29	3	255
30	1.9	528
31	1.5	500
32	2.3	800
33	2.2	832
34	2.4	503
35	1.8	397
36	1.6	430
37	2.2	371
38	2.5	323
39	2.2	455
40	2	640
41	3.2	1184
42	1.5	718
43	1.8	376
44	1.5	595
45	25	379
46	2.0	7/6
40	17	770
40	1./	110
48	1.7	803
49	2	508
50	2.4	/40
51	1.8	642
52	1.5	708
53	1.9	730
54	1.3	548
55	1.8	785
56	3.3	1034
57	1.5	596
58	2.4	743
59	1.4	566
60	2.3	735
61	2.2	633
62	2.2	760
63	15	857
64	25	708
04	2.0	100

Stem Number	Stem Width (mm)	Stem Height (mm)
65	22	221
66	1.5	581
67	2.3	710
69	2.3	710
60	2.1	202
69	2.0	202
70	1.8	634
71	2.2	640
72	2.5	395
73	2.2	249
74	1.5	355
75	2.3	728
76	2.2	819
11	3.1	336
78	2.5	827
79	3.7	900
80	1.9	243
81	1.8	577
82	2.4	721
83	1.4	569
84	1.1	316
85	2.2	615
86	2	736
87	2	923
88	2.8	896
89	1.6	583
90	2.1	712
91	2.1	635
92	2.5	951
93	3.2	940
94	1.5	319
95	2.3	510
95	2.3	471
90	1.7	832
09	2	740
30	17	195
100	1.7	185
100	1.4	520
101	1.0	234
102	1.9	552
103	1.2	224
104	2.1	432
105	1.8	513
106	2.5	364
107	3.7	233
108	2.3	850
109	2.1	415
110	2.9	132
111	3	561
112	2.2	705
113	1.6	732
114	1.5	806
115	1.9	565
116	1.8	554
117	2.1	687
118	1.6	274
119	2	498
120	1.8	586
121	2.7	917
122	1.7	643
123	21	710
124	15	443
124	1.0	550
120	1.0	710
120	2.3	264
127	2.9	304
128	1.1	412

Stem Number	Stem Width (mm)	Stem Height (mm)
129	2.5	683
130	2.2	464
131	2.1	318
132	1.7	474
133	3.4	131
134	0.7	455
135	1.4	683
136	1.5	706
137	2.8	293
138	1.7	531
139	0.7	703
140	1.3	261
141	2.4	155
142	1.4	599
143	1.3	587
144	1.8	466
145	1.5	578
146	2	306
147	2.7	23
148	1	309
149	2	204
150	3.1	248
151	2.6	264
152	1.8	271
153	1.4	276
154	1	244
155	1.2	286
156	1.6	259
157	2.4	168
158	1.1	343
159	1	147
160	1.6	150
161	1.1	186
162	1.2	201
163	0.7	365
164	1.7	192
165	1.8	266
166	1.2	234
167	1.6	10
168	1.3	330
169	2.3	190
170	2.2	168
171	1.4	217
172	1.4	357
173	1.4	206

Table A2.5: Microcosm 5: Phragmites australis Stem Measurements.				
Stem Number Stem Width (mm) Stem Height (mm)				

	Total Stems	Total Number of Stems Stems with Inflorescence	173 20
		Max Height	1184
	Heights (mm)	Min Height	10
		Mean Height	519.416185
Ctomo		Mode Height	343
Stems		Median Height	528
	Widths (mm)	Max Width	3.7
		Min Width	0.7
		Mean Width	1.955491329
		Mode Width	1.8
		Median Width	1.9

Table A2.6: Microco	sm 6: Phragmites austra	alis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
1	4.4	1712
2	2.9	1201
3	1.0	752
4	2.0	610
5	3.5	106
7	1.9	120
1	3.9	616
0	2.3	616
9	4.3	590
11	2.1	722
12	2.3	102
12	3	520
14	24	943
15	2.4	496
16	3.8	215
10	3.0 / 1	1461
18	2.6	775
10	2.0	175
20	3.1	85
20	1.6	571
21	3.6	1205
22	2.0	406
23	2.3	11/2
24	2.1	591
25	3.5	1465
20	3.3	1103
28	1.5	230
20	3.3	686
30	3.8	569
30	3.0	1084
32	2.1	1069
32	2.0	1015
34	2.3	1013
35	2.7	884
36	2.1	860
37	3.3	1442
38	4.1	1024
30	2.2	555
40	1.8	319
40	1.0	577
42	3	1472
43	2.6	1396
44	2.6	1215
45	2	632
46	2.1	1004
47	1.7	212
48	1.6	357
49	2.5	647
50	2.2	948
51	2.3	912
52	2.8	226
53	2.4	575
54	2.7	800
55	2.4	261
56	2.6	470
57	2	561
58	4.2	605
59	3.9	1134
60	2.2	529
61	2.5	1090
62	2.2	622
63	3.9	1215
64	2.5	939
54		

Table A2.6: Microco	sm 6: Phragmites austra	alis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
65	2.1	642
67	2.1	1186
67	1.0	679
68	1.7	250
69	2.5	789
70	2.7	1007
71	2.4	/30
72	2.3	159
73	2.3	442
74	3.2	1266
75	4.9	982
/6	1.2	297
//	2.7	1081
/8	1./	286
79	1.6	667
80	2.8	1071
81	3.4	620
82	2.9	452
83	3.1	1185
84	2.8	943
85	2.2	960
86	2.4	699
87	3.1	1034
88	2.8	963
89	2.4	1001
90	3.4	939
91	2.1	814
92	2.6	306
93	3.4	1266
94	2.5	965
95	3.1	1257
96	2.8	1141
97	2.7	450
98	3.1	977
99	2.6	1099
100	3.9	1376
101	3.3	1222
102	2.9	1076
103	2.1	850
104	2.5	1087
105	2.6	943
106	2.4	914
107	2.4	294
108	2.6	1061
109	2.3	852
110	1.8	456
111	5	524
112	2.3	1000
113	2.9	1265
114	3.2	1075
115	2.5	655
116	2.0	843
117	2.5	746
118	1.8	375
119	2.5	882
120	3.4	1207
120	2.4	970
121	2.4	970
122	3.4	1007
123	2.9	1237
124	2.4	1013
125	2.6	551
126	2.7	1023
127	2.4	610
128	17	355

Table A2.6: Microco	sm 6: Phragmites austra	alis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
129	2.7	1037
130	1.9	526
131	2.4	697
132	1.5	367
133	2.3	1011
134	3.3	1368
135	3.3	1411
136	2.8	1060
137	2.1	866
138	2.5	889
139	2	714
140	2.9	236
141	3.2	1019
142	2.6	1094
143	2.1	912
144	3.4	509
145	2.5	1112
146	3.1	710
147	2.3	219
148	3.5	1242
149	2	310
150	2.4	555
151	3.1	1156
152	2.2	896
153	1.6	341
154	2.5	515
154	2.5	905
155	2.0	903
150	2.1	293
157	1.9	506
158	3	1124
159	2.6	1187
160	2.7	943
161	1.9	416
162	3.1	1100
163	3.4	988
164	2.8	711
165	3.2	619
166	3.2	1014
167	3.4	649
168	2.9	577
169	2.3	1012
170	2	379
171	2.4	834
172	1.9	171
173	2	1173
174	2.2	193
175	1.8	677
176	1.3	532
177	1.8	583
178	2	461
179	31	1137
180	2.4	964
181	19	815
182	2.5	618
183	1.5	680
103	2.5	000
104	2.0	300
185	2.4	1312
186	1.9	4/4
187	1.4	298
188	2.2	625
189	2.9	1212
190	3	1131
191	2.4	1109
192	3	895

Table A2.6: Microcosm 6: Phragmites australis Stem Measurements.

Stem Number	Stem Width (mm)	Stem Height (mm)
193	2.6	1314
194	2.9	1174
195	3.2	632
196	2.6	1068
197	2.6	866
198	3	1100
199	2.4	656
200	2.1	904
201	2.4	917
202	2.7	1223
203	1.6	568
204	1.9	786
205	1.7	589
206	1.8	676
207	1.9	535
208	1.7	407
209	2.2	565
210	0.9	429
211	1.8	372
212	1.6	286
213	1.9	102
214	1.2	184
215	1	137
216	1.9	104
217	1.2	105

	Total Stems	Total Number of Stems	217
		Stems with Inflorescence	30
	Heights (mm)	Max Height	1712
		Min Height	85
		Mean Height	784.5806452
Ctomo		Mode Height	943
Sterns		Median Height	814
	Widths (mm)	Max Width	5
		Min Width	0.9
		Mean Width	2.553456221
		Mode Width	2.4
		Median Width	2.5

Table A2.7: Microco	sm 7: Phragmites austra	alis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
1	2.5	438
2	2.9	1008
3	25	104
4	2.5	1232
5	4.2	1774
7	2.9	1595
/	3	1638
0	4.7	1641
9	4.1	1663
10	2.4	090
12	1.0	430
12	2.0	050
14	2.3	354
14	1.0	414
15	1.0	414
10	3	000
10	3.4	1420
10	4.4	402
19	1.2	004
20	1.9	024
21	2.0	540
22	3.0	021
23	4.2	113Z
24	3.7	527
20	1.4	519
20	3.4	695
27	2.2	792
28	2.6	1091
29	2.2	1092
30	2.0	1245
31	3.2	1102
32	2.8	520
33	2.0	1059
34	3.5	1214
35	0.0	984
36	2.3	942
37	2.5	474
30	3.4	521
39	2.2	1100
40	1.5	327
41	2.1	1024
42	2.0	300
40	3.2	590
44	1.4	09Z
C#	25	000
40	2.0	503
+/	26	600
40	2.0	012
49	3.7	313
50	3.7	370
52	3.2	025
52	3	920
53	1./	144
55	0.1	1104
50	2	1076
57	24	13/0
5/	2.4	1012
50	3.2	1013
29	1.0	115
00	1.9	838
60	2.4	1102
62	2.5	304
03	2.3	31/
64	1.9	267

Table A2.7: Microco	sm 7: Phragmites austra	alis Stem Measurements.
Stem Number	Stem wiath (mm)	
60	3.5	931
67	3.5	1054
67	1.9	812
68	2.2	873
69	2.4	000
70	4.1	143
71	2.6	125
72	2.4	949
73	3.9	375
74	3.2	823
75	2.6	218
/6	2.7	210
//	1.5	533
78	2	1002
79	1.6	321
80	2.3	876
81	3.1	306
82	2	931
83	2	685
84	2.7	521
85	3.5	1412
86	2.6	1354
87	1.8	510
88	2.6	1093
89	2.3	549
90	1.7	643
91	2.4	942
92	1.9	667
93	2.3	379
94	2	804
95	2.5	849
96	2	303
97	2.4	577
98	1.9	309
99	1.6	902
100	2	329
101	1.7	366
102	2.6	499
103	2.8	1024
104	2.2	851
105	1.2	167
106	3.8	1434
107	3	816
108	2.1	884
109	1.6	196
110	2.2	1000
111	1.4	420
112	3	1052
113	25	678
114	1.9	995
115	33	810
116	3.1	8/7
117	2.1	1095
118	2.0	813
110	1.4	806
120	1.0	1104
120	2.1	1194
121	2.3	1204
122	2.5	1115
123	0.8	331
124	2.7	1122
125	1.6	44
126	1.6	852
127	1.5	494
128	0.9	241

Table A2.7: Microco	sm 7: Phragmites austra	alis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
129	2	1085
130	1.2	505
131	1	470
132	2.2	1218
133	0.8	360
134	1.2	483
135	3.3	552
136	2.9	780
137	3.7	170
138	1.7	262
139	1.6	220
140	1.1	280
141	2	1045
142	3.1	1287
143	0.8	265
144	2.9	1362
145	17	351
146	23	918
1/7	2.0	1232
1/8	2.0	622
140	1.3	1212
149	2.4	1312
150	2.0	90
151	2.5	1145
152	1	170
153	1.2	481
154	0.8	328
155	0.7	322
156	3	991
157	2.8	717
158	3.2	1362
159	2.2	1164
160	3.2	1327
161	2.2	1083
162	1.9	772
163	2.9	1193
164	2.9	250
165	2.9	1017
166	3	318
167	2	551
168	1.8	906
169	2	1015
170	2.4	1169
171	1.3	587
172	2	540
173	15	450
174	12	818
175	22	1233
176	3.2	1182
177	1.8	102
178	3.5	812
170	3.5	652
1/9	0.1	000
180	3.3	094
181	2.2	/08
182	2.2	995
183	2.3	819
184	1.5	924
185	2.3	1200
186	2.8	1238
187	1.1	208
188	2.9	1261
189	2.7	1146
190	2.7	680
191	2.4	426
192	3.7	937

Stem Number	Stem Width (mm)	Stem Height (mm)
193	3.3	1316
194	2.3	1032
195	1.9	517
196	2.1	365
197	2.6	1312
198	1.7	716
199	3.2	1240
200	2	976
201	2.9	1277
202	2.6	1091
203	2.1	1016
204	3.2	1222
205	2.1	1043
206	2.2	485
207	1.8	816
208	2.2	1173
209	2.1	1303
210	2	951
211	2.6	1128
212	1.9	1092
213	2.9	773
214	2.5	396
215	2.2	1033
216	1.7	529
217	1.8	932
218	2	478
219	1.9	971
220	1.8	861
221	2.7	74
222	2.3	1098
223	1.7	641
224	2.2	946
225	1.8	967
226	1.8	724
227	1.1	442
228	1.6	806
229	2.5	1009
230	1.2	268
231	1.7	177
232	1.8	150
233	1.7	170
234	1.5	129
235	1.5	174
236	1.5	274
237	1	290
238	1.3	172
239	1.4	195
240	0.9	262
241	1.2	171

	Total Stems	Total Number of Stems Stems with Inflorescence	241 13
		Max Height	1774
	Heights (mm)	Min Height	44
		Mean Height	766.9170124
Ctomo		Mode Height	170
Sterns		Median Height	812
	Widths (mm)	Max Width	4.7
		Min Width	0.7
		Mean Width	2.294190871
		Mode Width	2
		Median Width	2.2

Stem Number	Stem Width (mm)	Stem Height (mm)
1	25	1157
2	2.5	800
2	2	100
3	2.3	190
4	2.2	330
5	2	370
6	3.5	278
/	3.9	342
8	2.2	365
g	2.2	309
10	4.1	230
11	2.9	166
12	3.6	1415
13	2.5	1260
14	3.3	224
15	2.1	940
16	2.7	1370
17	1.8	1124
18	1.9	118
19	3.1	350
20	1.8	1035
21	1.4	391
22	1.7	292
23	3.7	840
24	2.3	315
25	2.6	1245
26	4	782
27	4.6	681
28	2.8	404
29	1.8	566
30	1.0	744
31	3.2	435
32	2.1	670
33	1.8	195
34	1.0	906
25	1.0	274
30	4	977
27		1254
20	2.1	1254
30	2.0	1006
39	2.9	1086
40	3.8	1100
41	3.5	1381
42	4.8	1002
43	1.5	/35
44	2.1	961
45	2.5	216
46	2.4	904
47	1.8	858
48	2	559
49	1.5	406
50	2.4	415
51	4.4	1515
52	3	1284
53	3.4	267
54	1.3	339
55	2.9	1102
56	4.4	697
57	2.5	1246
58	2.7	1181
59	2.1	921
60	3	214
61	3.4	572
62	3.6	310
63	3.4	1375
64	2.1	645

Stop Number	sm 8: Phragmites austra	Stom Hoight (mm)
Stelli Nulliber		802
66	3.2	092
67	2.2	900
69	2.1	1290
60	20	1200
70	2.0	249
70	4	340
71	4.1	454
72	0.4	519
73	2.5	1046
74	3.8	527
75	0.1	/10
76	3.4	822
70	3.4	1425
78	3	1418
79	2.9	1192
80	1.9	562
81	2.7	11/3
82	3.9	300
83	3.9	479
84	3.1	1549
85	2.7	1161
86	3.3	389
87	2.1	929
88	3.3	1468
89	2.7	1328
90	2.9	1301
91	3.3	1265
92	3	429
93	3.2	658
94	3	292
95	3	1474
96	3.4	301
97	2.2	460
98	2.6	635
99	1.3	288
100	1.9	470
101	2	555
102	1.3	623
103	1.9	821
104	1.3	571
105	1.4	767
106	3.5	1112
107	1.5	756
108	1.8	616
109	0.8	354
110	1.9	712
111	1.3	516
112	1.6	816
113	2.5	552
114	4.8	1522
115	2.8	608
116	1.4	300
117	1.6	388
118	1.3	542
119	2.8	1231
120	47	1105
120	27	1245
127	2.1	<u>12</u> +3 <u>/</u> 58
122	2.0	400
120	2.0	200
124	3.5	000
125	2.6	956
126	2.5	911
127	3.8	12/3
128	2.7	1053

Stem Number Stem Width (mm) Stem Height (mm) 129 2.5 936 130 3.7 1519 131 2.5 1065 132 2.5 298 133 3.6 661 134 2.8 588 135 3.7 1027 136 3.1 1228 137 1.6 520 138 2.6 171 139 2.1 885 140 1.9 610 141 2.2 1000 143 2.1 850 144 1.8 911 145 2.6 1183 146 1.1 444 147 2.7 3358 148 1 368 148 1 368 149 1.6 402 150 3.6 823 151 2.5 947 152 <	Table A2.8: Microco	sm 8: Phragmites austra	alis Stem Measurements.
129 2.5 336 130 3.7 1519 131 2.5 1065 132 2.5 298 133 3.6 661 134 2.8 588 135 3.7 1027 136 3.1 1228 137 1.6 520 138 2.6 171 139 2.1 885 140 1.9 610 141 2.2 1000 142 3.3 1180 143 2.1 850 144 1.8 911 145 2.6 1183 146 1.1 444 147 2.7 358 148 1 366 149 1.6 402 150 3.6 823 151 2.5 947 152 2.6 1172 153 3.1 1404 154 3.4 118 155 2.7	Stem Number	Stem Width (mm)	Stem Height (mm)
130 3.7 1519 131 2.5 298 132 2.5 298 133 3.6 661 134 2.8 588 135 3.7 1027 136 3.1 1228 137 1.6 520 138 2.6 171 139 2.1 885 140 1.9 610 141 2.2 1000 142 3.3 1180 143 2.1 850 144 1.8 911 145 2.6 1183 144 1.8 911 145 2.6 1183 146 1.1 444 147 2.7 358 148 1 368 149 1.6 402 150 3.6 823 151 2.5 947 152 2.5 1172 153 3.1 1404 156 4.4	129	2.5	936
131 2.5 1065 132 2.5 298 133 3.6 661 134 2.8 588 135 3.7 1027 136 3.1 1228 137 1.6 520 138 2.6 171 139 2.1 885 140 1.9 610 141 2.2 1000 142 3.3 1180 144 1.8 911 145 2.6 1183 144 1.8 911 145 2.6 1183 146 1.1 444 147 2.7 358 148 1 368 149 1.6 402 150 3.6 823 151 2.5 947 152 2.5 1172 153 3.1 1404 156 2.7 1116 156 4.4 1430 157 2.2	130	3.7	1519
132 2.3 290 133 3.6 661 134 2.8 588 135 3.7 1027 136 3.1 1228 137 1.6 520 138 2.6 171 139 2.1 885 140 1.9 610 141 2.2 1000 142 3.3 1180 143 2.1 850 144 1.8 911 145 2.6 1183 146 1.1 444 147 2.7 358 148 1 368 149 1.6 402 150 3.6 823 151 2.5 947 152 2.5 1172 153 3.1 1404 154 3.4 118 155 2.7 1116 156 4.4 1430 157 2.2 941 158 1.8	131	2.5	1065
134 2.8 588 135 3.7 1027 136 3.1 1228 137 1.6 520 138 2.6 171 139 2.1 885 140 1.9 610 141 2.2 1000 142 3.3 1180 144 1.8 911 145 2.6 1183 144 1.8 911 145 2.6 1183 144 1.4 368 144 1.4 368 144 1.4 368 144 1.4 368 145 2.6 1183 146 1.1 444 147 2.7 358 148 1 368 149 1.6 402 150 3.6 823 151 2.5 947 152 2.7 1116 154 3.4 112 155 1.7	132	2.5	290
136 3.7 1027 136 3.1 1228 137 1.6 520 138 2.6 171 139 2.1 885 140 1.9 610 141 2.2 1000 142 3.3 1180 143 2.1 850 144 1.8 911 145 2.6 1183 144 1.8 911 145 2.6 1183 144 1.8 911 145 2.6 1183 144 1.8 911 145 2.6 1183 146 1.1 444 147 2.7 358 148 1 368 149 1.6 402 150 3.6 623 151 2.5 1172 153 3.1 1404 154 3.4 118 155 2.7 1116 158 1.8	133	3.0	500
133 3.7 1027 133 1.6 520 133 2.6 171 139 2.1 885 140 1.9 610 141 2.2 1000 142 3.3 1180 144 1.8 911 145 2.6 1183 146 1.1 444 147 2.7 358 148 1 368 149 1.6 402 150 3.6 823 151 2.5 947 152 2.5 1172 153 3.1 1404 154 3.4 118 155 2.7 1116 156 4.4 1430 157 2.2 941 158 1.8 1024 159 1.1 383 160 2.1 1356 163 4 1522 164 1.9 1064 165 1.8 <td>134</td> <td>2.0</td> <td>300</td>	134	2.0	300
130 3.1 1229 137 1.6 520 138 2.6 171 139 2.1 885 140 1.9 610 141 2.2 1000 142 3.3 1180 144 2.6 1183 145 2.6 1183 146 1.1 444 147 2.7 358 148 1 368 149 1.6 402 150 3.6 823 151 2.5 947 152 2.5 1172 153 3.1 1404 154 3.4 118 155 2.7 1116 156 4.4 1430 157 2.2 941 158 1.8 1024 159 1.1 383 160 2.1 1356 161 3 1464 162 2.4 1193 163 4	135	3.7	1027
131 132 2.6 171 133 2.1 885 140 1.9 610 141 2.2 1000 142 3.3 1180 143 2.1 850 144 1.8 911 145 2.6 1183 146 1.1 444 147 2.7 368 148 1 368 148 1 368 149 1.6 402 150 3.6 823 151 2.5 947 152 2.5 1172 153 3.1 1404 154 3.4 118 155 2.7 1116 156 4.4 1430 157 2.2 941 158 1.8 1024 159 1.1 383 160 2.1 1356 164 1.9 <td>130</td> <td>3.1</td> <td>F20</td>	130	3.1	F20
139 2.1 885 140 1.9 610 141 2.2 1000 142 3.3 1180 143 2.1 860 144 1.8 911 145 2.6 1183 146 1.1 444 147 2.7 358 148 1 368 149 1.6 402 150 3.6 823 151 2.5 947 152 2.5 1172 153 3.1 1404 154 3.4 118 155 2.7 1116 156 4.4 1430 157 2.2 941 158 1.8 1024 159 1.1 383 160 2.1 1356 161 3 1464 162 2.4 1193 163 4 1522 164 1.9 1064 165 1.8	137	1.0	520
139 2.1 063 140 1.9 610 141 2.2 1000 142 3.3 1180 143 2.1 850 144 1.8 911 145 2.6 1183 146 1.1 444 147 2.7 358 148 1 3668 149 1.6 402 150 3.6 823 151 2.5 947 152 2.5 1172 153 3.1 1404 154 3.4 118 155 2.7 1116 158 1.8 1024 159 1.1 383 160 2.1 1356 161 3 1464 162 2.4 1193 163 4 1522 164 1.9 1064 165 1.8 483 </td <td>130</td> <td>2.0</td> <td>995</td>	130	2.0	995
140 1.3 010 141 2.2 1000 142 3.3 1180 143 2.1 850 144 1.8 911 145 2.6 1183 146 1.1 444 147 2.7 358 148 1 368 149 1.6 402 150 3.6 823 151 2.5 947 152 2.5 1172 153 3.1 1404 154 3.4 118 155 2.7 1116 156 4.4 1430 157 2.2 941 158 1.8 1024 159 1.1 383 160 2.1 1356 161 3 1464 162 2.4 1193 163 4 1522 164 1.9 1064 </td <td>139</td> <td>2.1</td> <td>610</td>	139	2.1	610
141 2.2 1000 142 3.3 1180 143 2.1 850 144 1.8 911 145 2.6 1183 146 1.1 444 147 2.7 358 148 1 368 149 1.6 402 150 3.6 823 151 2.5 947 152 2.5 1172 153 3.1 1404 154 3.4 118 155 2.7 1116 156 4.4 1430 157 2.2 941 158 1.8 1024 159 1.1 383 160 2.1 1356 161 3 1464 162 2.4 1193 163 4 1522 164 1.9 0064 165 1.8 920 </td <td>140</td> <td>2.2</td> <td>1000</td>	140	2.2	1000
142 3.0 110 144 1.8 911 145 2.6 1183 146 1.1 444 147 2.7 358 148 1 366 149 1.6 402 150 3.6 823 151 2.5 947 152 2.5 1172 153 3.1 404 154 3.4 118 155 2.7 1116 156 4.4 1430 157 2.2 941 158 1.8 1024 159 1.1 383 160 2.1 1356 161 3 1464 162 2.4 1193 163 4 1522 164 1.9 963 166 1.8 920	141	3.3	1180
144 1.8 911 145 2.6 1183 146 1.1 4444 147 2.7 358 148 1 368 149 1.6 402 150 3.6 823 151 2.5 947 152 2.5 1172 153 3.1 1404 154 3.4 118 155 2.7 1116 156 4.4 1430 157 2.2 941 158 1.8 1024 159 1.1 383 160 2.1 1356 161 3 1464 162 2.4 1193 163 4 1522 164 1.9 1064 165 1.8 920 167 2.3 1255 168 2.6 142 169 1.9 953 </td <td>142</td> <td>2.1</td> <td>850</td>	142	2.1	850
145 160 1113 146 1.1 444 147 2.7 358 148 1 149 1.6 402 150 3.6 823 151 2.5 947 152 2.5 151 2.5 947 152 2.5 1172 153 3.1 1404 154 3.4 155 2.7 1116 156 4.4 1430 157 2.2 941 158 1.8 160 2.1 1366 161 3 160 2.1 162 2.4 1193 163 4 162 2.4 164 1.9 166 1.8 483 166 1.8 483 166 1.8 920 167 2.3 122 1118 170 1.6 575 171 2.8 812 172 2.2 1118 173 0.7 474 174 2 1138 177 3.7 1614 178 1.8 1123 180 1.6 123 186	143	1.8	911
146 1.1 444 147 2.7 358 148 1 368 149 1.6 402 150 3.6 823 151 2.5 947 152 2.5 1172 153 3.1 1404 154 3.4 118 155 2.7 1116 156 4.4 1430 157 2.2 941 158 1.8 1024 159 1.1 383 160 2.1 1356 161 3 1464 162 2.4 1193 166 4 1522 164 1.9 1064 165 1.8 483 166 1.8 920 167 2.3 1255 168 2.6 1442	144	2.6	1183
147 2.7 358 148 1 368 149 1.6 402 150 3.6 823 151 2.5 947 152 2.5 1172 153 3.1 1404 154 3.4 118 155 2.7 1116 156 4.4 1430 157 2.2 941 158 1.8 1024 159 1.1 383 160 2.1 1336 161 3 1464 162 2.4 1193 163 4 1522 164 1.9 1064 165 1.8 483 166 1.8 920 167 2.3 1255 168 2.6 142 169 1.9 953 170 1.6 575 171 2.8 812 172 2.2 1118 173 0.7 474 174 2 1138 175 4.7 899 176 5.4 4998 177 3.7 1614 178 1.8 1121 179 1.6 693 181 2.1 1003 182 2.3 1209 183 4.5 1612 184 3.1 1464 189 4.6 1475 190 2.3 1164	146	11	444
1.11 3.00 148 1 368 149 1.6 402 150 3.6 823 151 2.5 947 152 2.5 1172 153 3.1 1404 154 3.4 118 155 2.7 1116 156 4.4 1430 157 2.2 941 158 1.8 1024 159 1.1 383 160 2.1 1356 161 3 1464 162 2.4 1193 163 4 1522 164 1.9 1064 165 1.8 483 166 1.8 920 167 2.3 1255 168 2.6 142 169 1.9 953 170 1.6 575 <td>147</td> <td>27</td> <td>358</td>	147	27	358
149 1.6 300 150 3.6 823 151 2.5 947 152 2.5 1172 153 3.1 1404 154 3.4 118 155 2.7 1116 156 4.4 1430 157 2.2 941 158 1.8 1024 159 1.1 383 160 2.1 1356 161 3 1464 162 2.4 1193 163 4 1522 164 1.9 1064 165 1.8 483 166 1.8 920 167 2.3 1255 168 2.6 142 169 1.9 953 170 1.6 575 171 2.8 812	148	1	368
1.12 1.12 1.12 150 3.6 823 151 2.5 947 152 2.5 1172 153 3.1 1404 154 3.4 118 155 2.7 1116 156 4.4 1430 157 2.2 941 158 1.8 1024 159 1.1 383 160 2.1 1356 161 3 1464 162 2.4 1193 163 4 1522 164 1.9 1064 165 1.8 483 166 1.8 920 167 2.3 1255 168 2.6 142 169 1.9 953 170 1.6 575 171 2.8 812 172 2.2 11138	149	16	402
111 2.5 947 152 2.5 1172 153 3.1 1404 154 3.4 118 155 2.7 1116 156 4.4 1430 157 2.2 941 158 1.8 1024 159 1.1 383 160 2.1 1356 161 3 1464 162 2.4 1193 163 4 1522 164 1.9 1064 165 1.8 483 166 1.8 920 167 2.3 1255 168 2.6 142 169 1.9 953 170 1.6 575 171 2.8 812 172 2.2 1118 173 0.7 474 174 2 1138 175 4.7 899 </td <td>150</td> <td>3.6</td> <td>823</td>	150	3.6	823
152 2.5 3172 153 3.1 1404 154 3.4 118 155 2.7 1116 156 4.4 1430 157 2.2 941 158 1.8 1024 159 1.1 383 160 2.1 1356 161 3 1464 162 2.4 1193 163 4 1522 164 1.9 1064 165 1.8 483 166 1.8 920 167 2.3 1255 168 2.6 142 169 1.9 953 170 1.6 575 171 2.8 812 172 2.2 1118 173 0.7 474 174 2 1133 175 4.7 899 176 5.4 498 177 3.7 1614	151	2.5	947
112 112 153 3.1 1404 154 3.4 118 155 2.7 1116 156 4.4 1430 157 2.2 941 158 1.8 1024 159 1.1 383 160 2.1 1356 161 3 1464 162 2.4 1193 163 4 1522 164 1.9 1064 165 1.8 483 166 1.8 920 167 2.3 1255 168 2.6 142 169 1.9 953 170 1.6 575 171 2.8 812 172 2.2 1118 173 0.7 474 174 2 1138 175 4.7 899 176 5.4 4998 <tr< td=""><td>152</td><td>2.5</td><td>1172</td></tr<>	152	2.5	1172
155 3.4 118 155 2.7 1116 155 2.7 1116 155 2.7 1116 156 4.4 1430 157 2.2 941 158 1.8 1024 159 1.1 385 160 2.1 1356 161 3 1464 162 2.4 1193 163 4 1522 164 1.9 1064 165 1.8 483 166 1.8 920 167 2.3 1255 168 2.6 142 169 1.9 953 170 1.6 575 171 2.8 812 172 2.2 1118 173 0.7 474 174 2 1138 175 4.7 899 176 5.4 498 </td <td>153</td> <td>3.1</td> <td>1404</td>	153	3.1	1404
155 2.7 1116 156 4.4 1430 157 2.2 941 158 1.8 1024 159 1.1 383 160 2.1 1356 161 3 1464 162 2.4 1193 163 4 1522 164 1.9 1064 165 1.8 483 166 1.8 920 167 2.3 1255 168 2.6 142 169 1.9 953 170 1.6 575 171 2.8 812 172 2.2 1118 173 0.7 474 174 2 1138 175 4.7 899 176 5.4 498 177 3.7 1614 178 1.8 1121 179 1.6 1123<	154	3.4	118
156 1.4 1430 156 2.4 1430 157 2.2 941 158 1.8 1024 159 1.1 383 160 2.1 1356 161 3 1464 162 2.4 1193 163 4 1522 164 1.9 1064 165 1.8 483 166 1.8 920 167 2.3 1255 168 2.6 142 169 1.9 953 170 1.6 575 171 2.8 812 172 2.2 1118 173 0.7 474 174 2 1138 175 4.7 899 176 5.4 4998 177 3.7 1614 178 1.8 1121 179 1.6 693 181 2.1 1003 182 2.3 1209 183 4.5 1612 184 3.1 1463 186 3.2 1387 187 3.2 1255 188 3.4 4464 189 4.6 1475 190 2.3 1164 191 1.4 330 192 3.2 360	155	27	1116
157 2.2 941 158 1.8 1024 159 1.1 383 160 2.1 1366 161 3 1464 162 2.4 1193 163 4 1522 164 1.9 1064 165 1.8 483 166 1.8 920 167 2.3 1255 168 2.6 142 169 1.9 953 170 1.6 575 171 2.8 812 172 2.2 1118 173 0.7 474 174 2 1138 175 4.7 899 176 5.4 498 177 3.7 1614 178 1.8 1123 180 1.6 693	156	4.4	1430
158 1.8 1024 159 1.1 383 160 2.1 1366 161 3 1464 162 2.4 1193 163 4 1522 164 1.9 1064 165 1.8 483 166 1.8 920 167 2.3 1255 168 2.6 142 169 1.9 953 170 1.6 575 171 2.8 812 172 2.2 1118 173 0.7 474 174 2 1138 175 4.7 899 176 5.4 498 177 3.7 1614 178 1.8 1121 179 1.6 1123 180 1.6 693 181 2.1 1063 182 2.3 1209<	157	2.2	941
159 1.1 383 160 2.1 1356 161 3 1464 162 2.4 1193 163 4 1522 164 1.9 1064 165 1.8 483 166 1.8 920 167 2.3 1255 168 2.6 142 169 1.9 953 170 1.6 575 171 2.8 812 172 2.2 1118 173 0.7 474 174 2 1138 175 4.7 899 176 5.4 498 177 3.7 1614 178 1.8 1121 179 1.6 1123 180 1.6 693 181 2.1 1083 182 2.3 1209 183 4.5 1612<	158	1.8	1024
160 2.1 1356 161 3 1464 162 2.4 1193 163 4 1522 164 1.9 1064 165 1.8 483 166 1.8 920 167 2.3 1255 168 2.6 142 169 1.9 953 170 1.6 575 171 2.8 812 172 2.2 1118 173 0.7 474 174 2 1138 175 4.7 899 176 5.4 498 177 3.7 1614 178 1.8 1123 180 1.6 693 181 2.1 1083 182 2.3 1209 184 3.1 1443	159	1.1	383
161 3 1464 162 2.4 1193 163 4 1522 164 1.9 1064 165 1.8 483 166 1.8 920 167 2.3 1255 168 2.6 142 169 1.9 953 170 1.6 575 171 2.8 812 172 2.2 1118 173 0.7 474 174 2 1138 175 4.7 899 176 5.4 498 177 3.7 1614 178 1.8 1121 179 1.6 1123 180 1.6 693 181 2.1 1083 182 2.3 1209 183 4.5 1612 184 3.1 1483 185 4.4 1403	160	2.1	1356
162 2.4 1193 163 4 1522 164 1.9 1064 165 1.8 483 166 1.8 920 167 2.3 1255 168 2.6 142 169 1.9 953 170 1.6 575 171 2.8 812 172 2.2 1118 173 0.7 474 174 2 1138 175 4.7 899 176 5.4 498 177 3.7 1614 178 1.8 1123 180 1.6 693 181 2.1 1083 182 2.3 1209 183 4.5 1612 184 3.1 1483 185 4.4 1403	161	3	1464
1634 1522 164 1.9 1064 165 1.8 483 166 1.8 920 167 2.3 1255 168 2.6 142 169 1.9 953 170 1.6 575 171 2.8 812 172 2.2 1118 173 0.7 474 174 2 1133 175 4.7 899 176 5.4 498 177 3.7 1614 178 1.8 1123 180 1.6 693 181 2.1 1083 182 2.3 1209 183 4.5 1612 184 3.1 1483 185 4.4 1403 186 3.2 1237 187 3.2 1253 188 3.4 1464 189 4.6 1475 190 2.3 1164 191 1.4 330 192 3.2 360	162	2.4	1193
164 1.9 1064 165 1.8 483 166 1.8 920 167 2.3 1255 168 2.6 142 169 1.9 953 170 1.6 575 171 2.8 812 172 2.2 1118 173 0.7 474 174 2 1138 175 4.7 899 176 5.4 498 177 3.7 1614 178 1.8 1121 179 1.6 1123 180 1.6 693 181 2.1 1083 182 2.3 1209 183 4.5 1612 184 3.1 1443 185 4.4 1403 186 3.2 1387 187 3.2 1253 188 3.4 1464 189 4.6 1475 190 2.3 1164 191 1.4 330 192 3.2 360	163	4	1522
165 1.8 483 166 1.8 920 167 2.3 1255 168 2.6 142 169 1.9 953 170 1.6 675 171 2.8 812 172 2.2 1118 173 0.7 474 174 2 1138 175 4.7 899 176 5.4 498 177 3.7 1614 178 1.8 1121 180 1.6 693 181 2.1 1083 182 2.3 1209 183 4.5 1612 184 3.1 1483 185 4.4 1403 186 3.2 1387 187 3.2 1253 188 3.4 1464 189 4.6 1475 190 2.3 1164 191 1.4 330 192 3.2 360	164	1.9	1064
166 1.8 920 167 2.3 1255 168 2.6 142 169 1.9 953 170 1.6 575 171 2.8 812 172 2.2 1118 173 0.7 474 174 2 1133 175 4.7 899 176 5.4 498 177 3.7 1614 178 1.8 1123 180 1.6 693 181 2.1 1083 182 2.3 1209 183 4.5 1612 184 3.1 1433 185 4.4 1403 186 3.2 1287 188 3.4 1464 189 4.6 1475 190 2.3 1164 191 1.4 330 192 3.2 360	165	1.8	483
167 2.3 1255 168 2.6 142 169 1.9 953 170 1.6 575 171 2.8 812 172 2.2 1118 173 0.7 474 174 2 1138 175 4.7 899 176 5.4 498 177 3.7 1614 178 1.8 1121 179 1.6 1123 180 1.6 693 181 2.1 1083 182 2.3 1209 183 4.5 1612 184 3.1 1483 185 4.4 1403 186 3.2 1387 187 3.2 1253 188 3.4 1464 189 4.6 1475 190 2.3 1164 191 1.4 330 192 3.2 360	166	1.8	920
168 2.6 142 169 1.9 953 170 1.6 575 171 2.8 812 172 2.2 1118 173 0.7 474 174 2 1138 175 4.7 899 176 5.4 498 177 3.7 1614 178 1.8 1121 179 1.6 693 181 2.1 1083 182 2.3 1209 183 4.5 1612 184 3.1 1483 185 4.4 1403 186 3.2 1387 187 3.2 1253 188 3.4 1464 189 4.6 1475 190 2.3 1164 191 1.4 330 192 3.2 360	167	2.3	1255
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	168	2.6	142
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	169	1.9	953
171 2.8 812 172 2.2 1118 173 0.7 474 174 2 1138 175 4.7 899 176 5.4 498 177 3.7 1614 178 1.8 1121 179 1.6 693 181 2.1 1083 182 2.3 1209 183 4.5 1612 184 3.1 1483 185 4.4 1403 186 3.2 1253 187 3.2 1253 188 3.4 1464 189 4.6 1475 190 2.3 1164 191 1.4 330 192 3.2 360 <td>170</td> <td>1.6</td> <td>575</td>	170	1.6	575
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	171	2.8	812
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	172	2.2	1118
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	173	0.7	474
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	174	2	1138
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	175	4.7	899
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	176	5.4	498
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	177	3.7	1614
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	178	1.8	1121
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	179	1.6	1123
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	180	1.6	693
182 2.3 1209 183 4.5 1612 184 3.1 1483 185 4.4 1403 186 3.2 1387 187 3.2 1253 188 3.4 1464 189 4.6 1475 190 2.3 1164 191 1.4 330 192 3.2 360	181	2.1	1083
183 4.5 1612 184 3.1 1483 185 4.4 1403 186 3.2 1387 187 3.2 1253 188 3.4 1464 189 4.6 1475 190 2.3 1164 191 1.4 330 192 3.2 360	182	2.3	1209
184 3.1 1483 185 4.4 1403 186 3.2 1387 187 3.2 1253 188 3.4 1464 189 4.6 1475 190 2.3 1164 191 1.4 330 192 3.2 360	183	4.5	1612
185 4.4 1403 186 3.2 1387 187 3.2 1253 188 3.4 1464 189 4.6 1475 190 2.3 1164 191 1.4 330 192 3.2 360	184	3.1	1483
186 3.2 1387 187 3.2 1253 188 3.4 1464 189 4.6 1475 190 2.3 1164 191 1.4 330 192 3.2 360	185	4.4	1403
187 3.2 1253 188 3.4 1464 189 4.6 1475 190 2.3 1164 191 1.4 330 192 3.2 360	186	3.2	1387
188 3.4 1464 189 4.6 1475 190 2.3 1164 191 1.4 330 192 3.2 360	187	3.2	1253
189 4.6 1475 190 2.3 1164 191 1.4 330 192 3.2 360	188	3.4	1464
190 2.3 1164 191 1.4 330 192 3.2 360	189	4.6	1475
191 1.4 330 192 3.2 360	190	2.3	1164
192 3.2 360	191	1.4	330
	192	3.2	360

Table A2.8: Microco	sm 8: Phragmites austra	alis Stem Measurements.
Stem Number	Stern width (mm)	Stem rieight (mm)
193	3.4	1366
194	2.3	1054
195	4.1	342
196	2.2	648
197	2.1	847
198	3	1272
199	4.7	939
200	1.6	247
201	2.8	1231
202	2	326
203	1.2	492
204	2	677
205	2	576
206	1.2	375
207	2.5	450
208	4.8	1163
200	4.0	069
209	2.1	900
210	3	1310
211	0.5	433
212	3	1309
213	3	1304
214	2.4	205
215	2.6	1051
216	2.3	1098
217	1.6	852
218	2.2	1214
219	1.9	1193
220	1.4	595
221	1.1	310
222	3.4	1165
223	19	595
224	21	596
225	0.9	412
226	2.5	780
220	2.5	275
221	4.2	375
220	4.3	412
229	1.0	524
230	1.3	726
231	2.5	912
232	2.8	1225
233	1.9	585
234	1.8	938
235	2.9	268
236	1.4	446
237	1.1	200
238	1	583
239	2.3	794
240	2	987
241	1.9	782
242	1.8	750
243	1.7	794
244	3.3	593
245	4.8	851
246	2.4	1014
240	2.7	1258
241	2.3	200 805
240	2.0	500
249	2.0	322
250	2.9	210
251	3.1	1194
252	3.2	1040
253	2.5	1181
254	1.6	200
255	1.9	232
256	1.9	203

Stem Number	Stem Width (mm)	Stem Height (mm)
257	3.1	1076
258	3.5	813
259	3	790
260	1.6	945
261	1.8	832
262	2.5	417
263	2.1	163
264	2	Median Height
265	2	1062
266	1.9	679
267	1.9	239
268	2.1	679
269	1.6	719
270	1.2	671
271	2	640
272	1.7	880
273	2	315
274	1.6	866
275	1.6	841
276	2.9	877
277	2.6	849
278	1.8	780
279	1.5	860
280	2.4	338
281	1.8	344
282	2.1	373
283	2.2	117
284	1.5	545
285	3	170
286	1.5	154
287	1.2	159
288	1.7	267
289	1.5	251
290	2.2	217
291	1.4	211
292	1.3	147
293	1.3	173
294	1	181
295	1.1	173
296	2.2	116
297	2.3	120
298	2.4	254
299	1.7	201
300	1.3	222
301	1	196

	Total Stems	Total Number of Stems Stems with Inflorescence	<u>301</u> 12
	Heights (mm)	Max Height	1892
		Min Height	116
		Mean Height	760.5946844
Ctomo		Mode Height	342
Sterns		Median Height	756
	Widths (mm)	Max Width	5.4
		Min Width	0.5
		Mean Width	2.5
		Mode Width	1.9
		Median Width	2.4

Table A2.9: Microco	sm 9: Phragmites austra	alis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
1	3	1187
2	2.8	1046
3	1.5	561
4	1	326
5	1.9	344
6	1.5	341
7	2.7	350
8	1.8	351
9	2.1	142
10	1.9	283
11	1.7	200
12	2.1	478
13	1.7	738
14	1.4	646
15	2	718
16	1.5	643
17	1.5	653
18	1.1	476
19	1.8	598
20	2	609
21	16	767
22	2	691
22	37	1269
23	2.6	1168
24	2.0	1207
25	2.4	1207
20	2.4	000
27	2.4	899
28	2.5	876
29	2.3	853
30	2.1	865
31	2.6	1131
32	2.4	1114
33	2.5	1108
34	2.6	1119
35	2.6	669
36	2	1063
37	1.3	543
38	2.1	910
39	2.4	904
40	3.3	1208
41	2.4	967
42	2	958
43	2.5	932
44	2.6	926
45	2	800
46	2.9	924
47	1.9	978
48	0.9	342
49	27	976
50	2.8	996
51	2.0	866
50	2.1	000
52	2.3	091
53	1.8	123
54	1.9	912
55	2	8//
56	1.9	831
57	1.9	640
58	2.1	862
59	2	832
60	3	826
61	1.8	822
62	1.5	643
63	2.3	617
64	1.9	799

Stop Number	Sin 9: Priraginites austra	Stem Height (mm)
Stelli Nulliber		
65	2.3	//1
66	2.1	841
67	1.7	609
68	1.8	5/5
69	1.7	695
70	1.3	416
71	1.1	445
72	1.8	573
73	2.4	661
74	2.1	358
75	1.8	474
76	2.2	865
77	2.4	799
78	2.2	479
79	1.1	353
80	1.3	413
81	2.1	606
82	1.7	832
83	2	510
84	2	772
85	2	794
86	2.1	821
87	2.3	580
88	1.6	486
89	1.9	435
90	1.6	709
91	1.0	771
02	2	618
03	1.4	511
04	1.4	700
94 05	1.9	769
95	4.0	769
96	1.8	660
97	2	489
98	1.8	740
99	1.8	122
100	1.5	411
101	2.8	541
102	2.6	803
103	2	573
104	2.1	792
105	2.3	782
106	2.6	784
107	2.3	761
108	1.3	612
109	1.9	763
110	2.8	646
111	2.6	811
112	1.6	639
113	2.3	450
114	1.2	574
115	2.2	652
116	2.1	679
117	1.8	641
118	1.5	696
119	1.5	679
120	2	764
121	1.2	434
122	1.9	687
123	2.1	813
124	1.7	567
125	1.8	829
126	1.0	635
127	16	702
120	1.0	602
120	1.4	003

Table A2.9: Microco	sm 9: Phragmites austra	alis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
129	1.9	307
130	1.5	328
131	1.7	675
132	1.9	560
133	2.6	536
134	2	689
135	1.4	503
136	2.3	761
137	2	691
138	1.4	400
139	1.8	622
140	2.4	731
141	2.1	765
142	2.1	818
143	1.2	535
144	1.9	656
145	2.2	740
146	2	496
147	1	280
148	1.3	592
149	1.8	382
150	1.6	732
151	2.1	763
157	1.1	543
152	1.0	343
153	1.3	704
154	1.4	544
155	1.3	415
156	1.8	570
157	1.5	660
158	2.3	837
159	2.1	628
160	1.2	602
161	2	747
162	1.9	755
163	1.6	725
164	1.5	624
165	2.3	768
166	1.6	432
167	1.5	300
168	0.7	341
169	1.3	550
170	2	608
171	22	727
172	19	689
172	1.0	600
17/	2.2	764
175	1.7	446
170	1.7	747
170	4	141
177	1.1	330
1/8	1	3/1
1/9	1.6	589
180	1.9	480
181	2.3	478
182	1.6	608
183	1.6	581
184	1.7	559
185	1.8	709
186	1.7	660
187	1.7	749
188	2.8	571
189	1.7	775
190	2.4	883
191	2.1	716
192	11	443
132	1.1	440

Table A2.9: Microco	sm 9: Phragmites austra	alis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
193	1.7	657
194	1.4	520
195	2.5	868
196	1.2	481
197	2.3	455
198	1.4	379
199	1.2	421
200	2.4	494
201	1.2	558
202	3.1	538
203	1.3	600
204	1.9	304
205	1.6	393
206	1.8	682
207	1.8	712
208	0.4	354
209	1.2	444
210	1.7	645
211	1.3	391
212	1.6	676
213	1	194
214	2.1	540
215	1.8	605
216	1.8	369
210	1.0	460
217	1.4	480
210	1.7	407
219	2.2	407
220	1.8	4/7
221	1.4	601
222	1.9	5/1
223	2.3	715
224	1.7	707
225	1.3	542
226	1.3	348
227	1.8	493
228	1.4	672
229	1.8	721
230	1.5	437
231	2.6	637
232	1.9	472
233	2.1	365
234	1.3	195
235	1.7	688
236	1.7	290
237	1.3	389
238	2.2	597
239	1.9	572
240	1.5	695
240	12	535
241	1.2	<u> </u>
2/12	1.2	580
240	1.7	500
244	1.8	233
245	1.9	620
246	2.1	362
247	2	398
248	1.7	528
249	1.5	506
250	1	440
251	1.1	498
252	1.8	471
253	1.9	569
254	1.7	431
255	1.4	380
256	1.5	435

Stom Number	sm 9: Phragmites austra	alls Stem Measurements.
Stem Number	Stem width (mm)	Stem Height (mm)
25/	1.5	512
258	1.6	2/1
259	1.4	285
260	3	333
261	2	622
262	1.5	295
263	1.3	401
264	1.6	Median Height
265	2.4	344
266	1	386
267	1.4	501
268	1.3	444
269	2	556
270	1.8	382
271	1	280
272	19	638
273	1.0	374
274	17	271
217	1.7	/70
210	1.0	4/0
2/0	2.3	430
211	0.7	342
278	0.7	246
279	1.8	281
280	1.1	365
281	1.6	454
282	1.1	409
283	1.4	377
284	1.9	407
285	1.2	434
286	2.7	211
287	1.8	305
288	1.8	447
289	4 1	341
290	1.8	266
200	2	381
202	1.0	222
292	1.0	476
293	1.4	470
234	1.4	405
295	1.7	386
296	0.9	398
297	2.2	352
298	1.4	390
299	1.8	329
300	2.1	440
301	1.8	243
302	1	342
303	2	243
304	1.9	431
305	1.4	438
306	1.6	329
307	2.4	477
308	1.4	439
309	1.2	283
310	1.4	366
311	0.9	321
312	1.6	205
312	1.0	230 AEG
313	1.0	400
314	0.6	201
315	1.3	4/2
316	1.5	326
317	2.9	281
318	1.9	384
319	1.6	566
320	1.3	342

Table A2.9: Microco	sm 9: Phragmites austra	alis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
321	1.2	352
322	1.2	339
323	1.1	262
324	1.8	354
325	2.6	301
326	1.3	380
327	1.7	223
328	2.2	295
329	2.8	244
330	1.2	385
331	2.5	377
332	1.1	365
333	1.4	537
334	2.7	338
335	1.5	511
336	0.5	446
337	2.2	317
338	1.4	387
339	1.8	184
340	1.3	428
341	1.3	307
342	1.3	317
343	1	316
344	0.8	256
345	11	296
346	2.3	306
247	2.5	353
347	1.4	200
340	1.3	396
349	2.5	429
350	1.1	297
351	0.6	209
352	2	360
353	2.2	396
354	2.8	221
355	2.1	172
356	2.3	198
357	1.2	198
358	1.3	362
359	2.4	280
360	2.9	256
361	1.3	377
362	1	245
363	1.1	254
364	1.2	270
365	0.7	275
366	1.9	368
367	2.4	235
368	1.4	370
369	2.2	71
370	1.6	393
371	1	224
370	14	334
372	1.7	254
374	2	256
375	2	200
076	2.1	470
3/0	2	1/8
3//	1.3	359
378	0.8	240
379	1.9	305
380	0.7	175
381	1.3	235
382	1.4	316
383	1.4	368
384	0.5	221

Stems	Total Stems	Total Number of Stems Stems with Inflorescence	<u>384</u> 10
	Heights (mm)	Max Height	1269
		Min Height	71
		Mean Height	536.6328125
		Mode Height	342
		Median Height	499.5
	Widths (mm)	Max Width	4.1
		Min Width	0.4
		Mean Width	1.78359375
		Mode Width	1.8
		Median Width	1.8

Stem Number	Stem Width (mm)	Stem Height (mm)
1	3 0	2016
2	3.9	1970
3	3.0	1701
1	3	1701
	3.4	1725
6	5.4	1003
7	0.4	1902
1	2.0	1574
0	2.7	1016
9	2.0	1016
10	3.4	917
10	2.0	1013
12	2.6	1013
13	3.5	/23
14	2.2	000
15	2.2	623
16	3.1	589
17	2.8	1168
18	2.5	1237
19	2.8	1290
20	2.7	1153
21	3.7	1342
22	3.9	1570
23	3.8	1522
24	3	1399
25	2.6	1158
26	2	728
27	3.5	1470
28	2.1	756
29	3.1	1724
30	3.3	1716
31	2.4	1173
32	2.4	1104
33	4.1	1769
34	2.8	1644
35	3	1580
36	3.5	1612
37	3.8	1778
38	3.9	1526
39	2.6	1040
40	3.8	1366
41	3.5	1314
42	3	1137
43	2.7	1087
44	2.6	911
45	2.3	827
46	4	1411
47	2.9	1443
48	3.8	1474
49	1.6	338
50	3	1684
51	3.8	1565
52	37	1604
53	3.3	1718
54	3.5	1675
55	2.6	1603
56	3.2	1670
57	3.2	1500
57	3	1300
00	2.0	1437
59	2.8	1406
64	2.5	1548
61	2.6	589
62	3.2	948
63	2.6	1106
<i>a</i> ·		940
Table A2.10: Microc	osm 10: Phragmites aus	stralis Stem Measurements.
---------------------	------------------------	----------------------------
Stem Number	Stem Width (mm)	Stem Height (mm)
65	4	515
67	4	547
69	2.0	1073
60	3.2	1360
70	2.1	1388
70	3.5	937
70	2	1029
72	2.1	1142
73	2.4	1143
74	2.5	1184
75	2.0	1164
70	3.3	1450
79	3.3	1360
70	2.0	1203
79	2.9	/24
81	2.2	1220
81	2.9	1329
0Z	2.4	112
83	3.4	1040
84	3.0	1095
85	2.5	1027
07	2.2	9/3
87	2.2	886
88	2.7	1166
89	2.5	902
90	1.8	661
91	2	926
92	2	562
93	3	1335
94	2.8	936
95	2.3	800
96	2.5	1325
97	1.8	765
98	1.8	604
99	2.5	1233
100	2.3	1239
101	2.7	1200
102	3.3	462
103	2.4	1169
104	2.5	1262
105	2.8	1306
106	2.4	1227
107	2.1	11/6
108	2.3	424
109	2.5	10/1
110	2.1	1301
111	3.3	1215
112	3	1290
113	3.4	808
114	Z.1	202
115	1.5	832
116	2	913
117	3.5	1548
118	2.0	999
119	2.2	1304
120	1	521
121	1.8	845
122	2.6	1488
123	3.6	12/1
124	2.9	1222
125	1	520
126	2.4	9/2
127	2.7	1419
128	4.1	1390

Table A2.10: Microco	osm 10: Phragmites aus	stralis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
129	2.2	975
130	1.9	910
131	2.3	1043
132	1.9	1276
133	2.6	1274
134	2.7	389
135	2.7	1345
136	4	1332
137	2.7	1011
138	2.2	1372
139	4.3	1461
140	2.5	965
141	3.3	1422
142	2.6	649
143	1.8	866
144	2.5	1231
145	3	1386
146	2.0	1375
1/7	2.0	1005
14/	2.0	1446
148	2.0	1410
149	2.4	1089
150	2.8	1181
151	4.5	1555
152	2.4	761
153	3.5	1410
154	3.7	1514
155	3.1	1260
156	2.8	1234
157	4.1	1478
158	3.4	962
159	2.4	868
160	2	1131
161	2.2	974
162	2.6	1120
163	32	1294
164	2.9	1196
165	2.5	1244
166	17	535
167	2.1	1314
169	2.1	516
100	2.1	510
170	2.3	005
170	2.1 1 F	000
1/1	1.5	310
1/2	2.3	940
1/3	2.9	665
174	3.2	1457
175	2.5	976
176	2.4	1139
177	1.9	618
178	2.8	1089
179	2.8	1144
180	2.3	1001
181	2	1015
182	2.5	864
183	3.5	871
184	2.6	983
185	2.4	567
186	2.7	989
187	2.6	1328
188	31	1411
189	4.8	1346
100	3.1	1228
101	3.1	1220
102	27	1301
192	2.1	1282

Stem Number	Stem Width (mm)	Stem Height (mm)
Stem Number	Stem width (mm)	Stein Height (mm)
193	3.2	1425
194	1.2	496
195	2.1	1276
196	1./	796
197	2.4	1065
198	2.9	1095
199	2.1	981
200	2.5	1177
201	2.1	1058
202	3	1505
203	2.5	1015
204	2.5	1297
205	3.4	1213
206	2.1	980
207	2.5	1525
208	2.2	1002
209	2.5	815
210	2.1	576
211	2.5	925
212	3.2	1385
213	2.8	1256
214	2.1	814
215	19	805
216	21	980
210	3.2	1456
217	1.8	1430
210	2.4	940
219	2.4	949
220	3.0	093
221	2.3	10/1
222	2.4	1127
223	2.7	1270
224	2.2	621
225	3.1	669
226	2.9	1311
227	2.9	1129
228	2.8	979
229	2.7	718
230	2.7	1253
231	2.2	1121
232	3.5	1237
233	1.5	871
234	2.6	1010
235	2.3	1075
236	2.7	990
237	3.2	948
238	2.2	1050
239	2.5	1149
240	2.9	760
241	2.3	1154
242	2.4	1143
243	2.9	1332
244	2.4	1124
245	2.2	1162
246	2.3	1133
247	2.1	725
248	3.3	1300
249	2.3	881
250	15	342
251	1.0	805
252	3.6	1224
252	2.0	1286
255	2.3	1127
255	2.4	1069
200	2.0	1003
200	3	1280

Stem Number	Stem Width (mm)	Stem Height (mm)
OF7		
257	1.8	423
258	2.3	/41
259	2.2	1066
260	4	1437
261	2.7	1228
262	3	1315
263	2.9	1260
264	3.3	Median Height
265	3.7	932
266	3.2	1310
267	4.1	999
268	2.6	1006
269	2.5	1127
270	2.1	1086
271	2	969
272	2.8	816
273	3.3	762
274	3	418
275	2.3	502
276	2	701
277	2.5	684
278	3.2	815
279	2.1	903
280	1.9	813
281	3.3	742
282	21	752
283	2.1	756
284	2.2	710
285	2.1	817
205	2.5	575
200	26	373
207	2.0	797
288	2.3	721
289	2.2	/15
290	2.4	673
291	2	810
292	1.5	453
293	2.1	289
294	1.6	670
295	3.1	634
296	1.9	493
297	3.6	454
298	1.8	497
299	2.8	626
300	1.8	353
301	2.3	880
302	2.6	590
303	3.4	407
304	2.5	488
305	1.7	411
306	1.9	502
307	2.2	285
308	2.9	480
309	1.1	432
310	3	587
311	2	650
312	2.7	365
313	2.6	774
314	21	707
315	2.1	471
316	1.6	555
217	1.0	000
210	1.0	447
310	1./	312
319	1.3	382
320	1.1	444

Stom Number	Stom Width (mm)	Stem Height (mm)
Stem Number	Stem Width (mm)	Stem Height (mm)
321	2.6	524
322	3.7	774
323	2	544
324	2.6	758
325	1.8	454
326	3.3	410
327	2.3	457
328	1.3	563
329	2.4	516
330	2.4	370
331	2.4	407
332	2.9	560
333	2.2	744
334	1.7	408
335	2.5	297
336	1.9	614
337	1.9	320
338	2.5	313
339	2	567
340	2.3	266
341	1.2	270
342	2.6	530
343	1.5	218
344	19	210
345	1.0	309
346	2.2	259
247	2.2	259
347	2.3	353
348	2	493
349	2	427
350	2.6	687
351	2	660
352	2	401
353	2.5	406
354	1.9	465
355	1.7	269
356	2.2	411
357	1.2	432
358	2.6	474
359	2.6	657
360	2.9	656
361	3.1	248
362	2.6	233
363	3.7	146
364	1.6	224
365	2.5	105
366	3.2	704
367	2.8	634
368	2.7	354
369	2.2	159
370	2.8	623
371	2.7	362
372	2.8	243
373	21	539
374	27	626
375	1.8	229
376	2.5	136
377	2.0	450
3//	2	234
3/8	2	419
3/9	2.3	2/2
380	2.6	313
381	2.1	287
382	2.8	322
		101
383	Z.Z	131

- 82 -

Table A2.10: Microcosm 10: Phragmites australis Stem Measurements.

Stem Number	Stem Width (mm)	Stem Height (mm)
385	3.8	162
386	1.9	239
387	1.8	265
388	3.1	331
389	2.6	466
390	2.5	516
391	2.9	385
392	2.2	340
393	1.6	215
394	1.7	481
395	2.9	346
396	1.4	261
397	2.3	228
398	2.7	264
399	1.6	209
400	1.9	175
401	1.4	160
402	1.4	230
403	2.9	909
404	1.2	355

	Total Stems	Total Number of Stems Stems with Inflorescence	404 36
		Max Height	2016
	Heights (mm)	Min Height	105
		Mean Height	910.2054455
Ctomo		Mode Height	1228
Sterns		Median Height	936.5
	Widths (mm)	Max Width	5.4
		Min Width	1
		Mean Width	2.59009901
		Mode Width	2.5
		Median Width	2.5

Stem Number	Stem Width (mm)	Stem Height (mm)
1	4.7	1615
2	5.1	1748
3	3.2	1294
4	3.9	486
5	3.8	1754
6	4.8	1476
7	5.3	1118
8	3.9	534
9	4.5	386
10	1.7	801
11	3.6	495
12	2.3	1246
13	3.4	1446
14	2.3	923
15	2.3	1037
16	2.4	932
17	3.5	1692
18	3.3	1401
19	1.7	518
20	2.1	1168
21	3	1364
22	3.3	1551
23	3.2	1482
24	1.6	400
25	2.1	1024
26	2.5	837
27	2	249
28	2.7	768
29	4.2	1674
30	1.8	1034
31	2.5	1168
32	1.8	984
33	4	1687
34	2	768
35	1.7	580
36	1.7	990
37	2.2	677
38	1.5	528
39	5.9	1490
40	2	463
41	5.2	1873
42	2.7	914
43	1.9	718
44	3.5	1233
45	3	1453
46	3.7	709
47	4.9	1291
48	2.5	974
49	2.9	1327
50	3.8	616
51	1.8	646
52	2.1	646
53	2.5	145
54	3.8	382
55	2.8	1294
56	2.2	390
5/	2.5	1333
50	4.2	7/18
59	4.6	/55
60	4.4	567
61	2.9	1151
62	3.6	1434
63	2.4	511
64	2.7	1125

Construct Construction Construction 66 2.6 1264 67 5.4 677 68 3.5 1668 69 2.5 1108 70 1.9 637 71 2.7 1277 72 4.6 1817 73 1.6 729 74 3.3 1346 75 1.8 779 76 3.9 1665 0 1.4 561 78 1 490 79 1.7 560 81 1.8 764 82 2.7 1000 83 2.6 934 84 3.2 1357 85 2.1 667 86 4.5 1407 87 4.7 1975 88 2.9 1268 89 5 1829 90 4.3 317<	Stem Number	Stem Width (mm)	Stem Height (mm)
03 3.7 32.4 67 5.4 677 68 3.5 1668 69 2.5 1108 70 1.9 637 71 2.7 1277 72 4.6 1817 73 1.6 729 74 3.3 1346 75 1.8 779 76 3.9 1665 0 1.4 561 78 1 490 79 1.7 560 80 2 956 81 1.8 764 82 2.7 1000 83 2.6 934 84 3.2 1357 85 2.1 667 86 4.5 1407 87 4.7 1975 88 2.9 1268 89	65	3.7	027
30 2.0 12.0^{+} 67 5.4 677 68 3.5 1668 69 2.5 1108 70 1.9 637 71 2.7 1277 72 4.6 1817 73 1.6 729 74 3.3 1346 75 1.8 779 76 3.9 1665 0 1.4 561 78 1 490 79 1.7 560 80 2 956 81 1.8 764 82 2.7 1000 83 2.6 934 84 3.2 1357 85 2.1 667 86 4.5 1407 87 4.7 1975 88 2.9 1268 89	66	2.6	1264
37 37 37 68 3.5 1668 69 2.5 1108 70 1.9 637 71 2.7 1277 72 4.6 1817 73 1.6 729 74 3.3 1346 75 1.8 779 76 3.9 16655 0 1.4 561 78 1 490 79 1.7 560 80 2 956 81 1.8 764 82 2.7 1000 83 2.6 934 84 3.2 1357 85 2.1 667 86 4.5 1407 87 4.7 1975 88 2.9 1268 89 5 1829 90	67	5.4	677
03 3.2 100 69 2.5 1108 70 1.9 637 71 2.7 1277 72 4.6 1817 73 1.6 729 74 3.3 1346 75 1.8 779 76 3.9 1665 0 1.4 561 78 1 490 79 1.7 560 80 2 956 81 1.8 764 82 2.7 1000 83 2.6 934 84 3.2 1357 85 2.1 667 86 4.5 1407 87 4.7 1975 88 2.9 1268 89 5 1829 90 4.3 317 91	68	3.4	1668
03 2.3 1100 70 1.9 637 71 2.7 1277 72 4.6 1817 73 1.6 729 74 3.3 1346 75 1.8 779 76 3.9 1665 0 1.4 561 78 1 490 79 1.7 560 80 2 956 81 1.8 764 82 2.7 1000 83 2.6 934 84 3.2 1357 85 2.1 667 86 4.5 1407 87 4.7 1975 88 2.9 1268 89 5 1829 90 4.3 317 91 3.4 574 92 <	60	3.5	1108
10 1.3 63 71 2.7 1277 72 4.6 1817 73 1.6 729 74 3.3 1346 75 1.8 779 76 3.9 1665 0 1.4 561 78 1 490 79 1.7 560 80 2 956 81 1.8 764 82 2.7 1000 83 2.6 934 84 3.2 1357 85 2.1 667 86 4.5 1407 87 4.7 1975 88 2.9 1268 89 5 1829 90 4.3 317 91 3.4 574 92 2.7 1382 93 3.9 1605 94 4.4 1657	70	2.0	627
71 2.7 127 72 4.6 1817 73 1.6 729 74 3.3 1346 75 1.8 779 76 3.9 1665 0 1.4 561 78 1 490 79 1.7 560 80 2 956 81 1.8 764 82 2.7 1000 83 2.6 934 84 3.2 1357 85 2.1 667 86 4.5 1407 87 4.7 1975 88 2.9 1268 89 5 1829 90 4.3 317 91 3.4 574 92 2.7 1382 93 3.9 1605 94 4.4 1657 95 3.3 1415 <t< td=""><td>70</td><td>1.9</td><td>1077</td></t<>	70	1.9	1077
72 4.6 1617 73 1.6 729 74 3.3 1346 75 1.8 779 76 3.9 1665 0 1.4 561 78 1 490 79 1.7 5660 80 2 956 81 1.8 764 82 2.7 1000 83 2.6 934 84 3.2 1357 85 2.1 667 86 4.5 1407 87 4.7 1975 88 2.9 1268 89 5 1829 90 4.3 317 91 3.4 574 92 2.7 1382 93 3.9 1605 94 4.4 1657 95 3.3 1415 96 3.1 1516	70	2.1	12/7
73 1.6 729 74 3.3 1346 75 1.8 779 76 3.9 1665 0 1.4 561 78 1 490 79 1.7 560 80 2 956 81 1.8 764 82 2.7 1000 83 2.6 934 84 3.2 1357 85 2.1 667 86 4.5 1407 87 4.7 1975 88 2.9 1268 89 5 1829 90 4.3 317 91 3.4 574 92 2.7 1382 93 3.9 1605 94 4.4 1667 95 3.3 14155 96	72	4.0	720
74 3.3 1340 75 1.8 779 76 3.9 1665 0 1.4 561 78 1 490 79 1.7 560 80 2 956 81 1.8 764 82 2.7 1000 83 2.6 934 84 3.2 1357 85 2.1 667 86 4.5 1407 87 4.7 1975 88 2.9 1268 89 5 1829 90 4.3 317 91 3.4 574 92 2.7 1382 93 3.9 1605 94 4.4 1657 95 3.3 1415 96 3.1 1516 97 4 774 98 2.7 1275	73	1.0	129
75 1.8 779 76 3.9 1665 0 1.4 561 78 1 490 79 1.7 560 80 2 956 81 1.8 764 82 2.7 1000 83 2.6 934 84 3.2 1357 85 2.1 667 86 4.5 1407 87 4.7 1975 88 2.9 1268 89 5 1829 90 4.3 317 91 3.4 574 92 2.7 1382 93 3.9 1605 94 4.4 1657 95 3.3 1415 96 3.1 1516 97 4 774 98	74	3.3	1346
7b 3.9 1665 0 1.4 561 78 1 490 79 1.7 560 80 2 956 81 1.8 764 82 2.7 1000 83 2.6 934 84 3.2 1357 85 2.1 667 86 4.5 1407 87 4.7 1975 88 2.9 1268 89 5 1829 90 4.3 317 91 3.4 574 92 2.7 1382 93 3.9 1605 94 4.4 1667 95 3.3 1415 96 3.1 1516 97 4 774 98 2.7 1275 99 4 1685	75	1.8	119
0 1.4 561 78 1 4490 79 1.7 560 80 2 956 81 1.8 764 82 2.7 1000 83 2.6 934 84 3.2 1357 85 2.1 667 86 4.5 1407 87 4.7 1975 88 2.9 1268 89 5 1829 90 4.3 317 91 3.4 574 92 2.7 1382 93 3.9 1605 94 4.4 1657 95 3.3 1415 96 3.1 1516 97 4 774 98 2.7 1275 99 4 1685 100 2.9 1314 101 2.8 691	/6	3.9	1665
78 1 490 79 1.7 560 80 2 956 81 1.8 764 82 2.7 1000 83 2.6 934 84 3.2 1357 85 2.1 667 86 4.5 1407 87 4.7 1975 88 2.9 1268 89 5 1829 90 4.3 317 91 3.4 574 92 2.7 1382 93 3.9 1605 94 4.4 1657 95 3.3 1415 96 3.1 1516 97 4 774 98 2.7 1275 99 4 1685 100 2.9 1314 101 <	0	1.4	561
79 1.7 560 80 2 956 81 1.8 764 82 2.7 1000 83 2.6 934 84 3.2 1357 85 2.1 667 86 4.5 1407 87 4.7 1975 88 2.9 1268 89 5 1829 90 4.3 317 91 3.4 574 92 2.7 1382 93 3.9 1605 94 4.4 1657 95 3.3 1415 96 3.1 1516 97 4 774 98 2.7 1275 99 4 1685 100 2.9 1314 101 2.8 691 102 1.6 58 103 1.4 825 104 1.3 749 <t< td=""><td>78</td><td>1</td><td>490</td></t<>	78	1	490
80 2 956 81 1.8 764 82 2.7 1000 83 2.6 934 84 3.2 1357 85 2.1 667 86 4.5 1407 87 4.7 1975 88 2.9 1268 89 5 1829 90 4.3 317 91 3.4 574 92 2.7 1382 93 3.9 1605 94 4.4 1657 95 3.3 1415 96 3.1 1516 97 4 774 98 2.7 1275 99 4 1685 100 2.9 1314 101 2.8 691 102 1.6 58 104	79	1.7	560
81 1.8 764 82 2.7 1000 83 2.6 934 84 3.2 1357 85 2.1 667 86 4.5 1407 87 4.7 1975 88 2.9 1268 89 5 1829 90 4.3 317 91 3.4 574 92 2.7 1382 93 3.9 1605 94 4.4 1657 95 3.3 1415 96 3.1 1516 97 4 774 98 2.7 1275 99 4 1685 100 2.9 1314 101 2.8 691 102 1.6 58 103 1.4 825 104 1.3 749 105 1.8 1011 110 2.1 866 <	80	2	956
82 2.7 1000 83 2.6 934 84 3.2 1357 85 2.1 667 86 4.5 1407 87 4.7 1975 88 2.9 1268 89 5 1829 90 4.3 317 91 3.4 574 92 2.7 1382 93 3.9 1605 94 4.4 1657 95 3.3 1415 96 3.1 1516 97 4 774 98 2.7 1275 99 4 1685 100 2.9 1314 101 2.8 691 102 1.6 58 103 1.4 825 104 1.3 749 105 1.8 1011 106 2.2 1043 107 2 746	81	1.8	764
83 2.6 934 84 3.2 1357 85 2.1 667 86 4.5 1407 87 4.7 1975 88 2.9 1268 89 5 1829 90 4.3 317 91 3.4 574 92 2.7 1382 93 3.9 1605 94 4.4 1667 95 3.3 1415 96 3.1 1516 97 4 774 98 2.7 1275 99 4 1685 100 2.9 1314 101 2.8 691 102 1.6 58 103 1.4 825 104 1.3 749 105 1.8 1011 116 <td>82</td> <td>2.7</td> <td>1000</td>	82	2.7	1000
84 3.2 1357 85 2.1 667 86 4.5 1407 87 4.7 1975 88 2.9 1268 89 5 1829 90 4.3 317 91 3.4 574 92 2.7 1382 93 3.9 1605 94 4.4 1657 95 3.3 1415 96 3.1 1516 97 4 774 98 2.7 1275 99 4 1685 100 2.9 1314 101 2.8 691 102 1.6 58 103 1.4 825 104 1.3 749 105 1.8 857 106 2.2 1043 107 </td <td>83</td> <td>2.6</td> <td>934</td>	83	2.6	934
85 2.1 667 86 4.5 1407 87 4.7 1975 88 2.9 1268 89 5 1829 90 4.3 317 91 3.4 574 92 2.7 1382 93 3.9 1605 94 4.4 1657 95 3.3 1415 96 3.1 1516 97 4 774 98 2.7 1275 99 4 1685 100 2.9 1314 101 2.8 691 102 1.6 58 103 1.4 825 104 1.3 749 105 1.8 1011 106 2.2 1043 107 2 746 108 <td>84</td> <td>3.2</td> <td>1357</td>	84	3.2	1357
86 4.5 1407 87 4.7 1975 87 4.7 1975 88 2.9 1268 89 5 1829 90 4.3 317 91 3.4 574 92 2.7 1382 93 3.9 1605 94 4.4 1657 95 3.3 1415 96 3.1 1516 97 4 774 98 2.7 1275 99 4 1685 100 2.9 1314 101 2.8 691 102 1.6 58 103 1.4 825 104 1.3 749 105 1.8 857 106 2.2 1043 107 2 746 108 1.4 506 1111	85	2.1	667
87 4.7 1975 88 2.9 1268 89 5 1829 90 4.3 317 91 3.4 574 92 2.7 1382 93 3.9 1605 94 4.4 1667 95 3.3 1415 96 3.1 1516 97 4 774 98 2.7 1275 99 4 1685 100 2.9 1314 101 2.8 691 102 1.6 58 103 1.4 825 104 1.3 749 105 1.8 857 106 2.2 1043 107 2 746 108 1.4 506 109 1.8 1011 110 </td <td>86</td> <td>4.5</td> <td>1407</td>	86	4.5	1407
88 2.9 1268 89 5 1829 90 4.3 317 91 3.4 574 92 2.7 1382 93 3.9 1605 94 4.4 1657 95 3.3 1415 96 3.1 1516 97 4 774 98 2.7 1275 99 4 1685 100 2.9 1314 101 2.8 691 102 1.6 58 103 1.4 825 104 1.3 749 105 1.8 857 106 2.2 1043 107 2 746 108 1.4 506 109 1.8 1011 110 2.1 866 1111 2.8 <td>87</td> <td>4.7</td> <td>1975</td>	87	4.7	1975
89 5 1829 90 4.3 317 91 3.4 574 92 2.7 1382 93 3.9 1605 94 4.4 1667 95 3.3 1415 96 3.1 1516 97 4 774 98 2.7 1275 99 4 1685 100 2.9 1314 101 2.8 691 102 1.6 58 103 1.4 825 104 1.3 749 105 1.8 857 106 2.2 1043 107 2 746 108 1.4 506 111 2.8 974 112 4.9 1900 113 2.1 519 114 3.5 1334 <td>88</td> <td>2.9</td> <td>1268</td>	88	2.9	1268
90 4.3 317 91 3.4 574 92 2.7 1382 93 3.9 1605 94 4.4 1667 95 3.3 1415 96 3.1 1516 97 4 774 98 2.7 1275 99 4 1685 100 2.9 1314 101 2.8 691 102 1.6 58 103 1.4 825 104 1.3 749 105 1.8 857 106 2.2 1043 107 2 746 108 1.4 506 109 1.8 1011 110 2.1 866 111 2.8 974 112 4.9 1900 113 2.1 519 114 3.5 1334 </td <td>89</td> <td>5</td> <td>1829</td>	89	5	1829
91 3.4 574 92 2.7 1382 93 3.9 1605 94 4.4 1657 95 3.3 1415 96 3.1 1516 97 4 774 98 2.7 1275 99 4 1685 100 2.9 1314 101 2.8 691 102 1.6 58 103 1.4 825 104 1.3 749 105 1.8 857 106 2.2 1043 107 2 746 108 1.4 506 109 1.8 1011 110 2.1 866 111 2.8 974 112 4.9 1900 113 2.1 519 114 3.5 1334	90	4.3	317
92 2.7 1382 93 3.9 1605 94 4.4 1657 95 3.3 1415 96 3.1 1516 97 4 774 98 2.7 1275 99 4 1685 100 2.9 1314 101 2.8 691 102 1.6 58 103 1.4 825 104 1.3 749 105 1.8 857 106 2.2 1043 107 2 746 108 1.4 506 109 1.8 1011 110 2.1 866 111 2.8 974 112 4.9 1900 113 2.1 519 114 3.5 1334 115 2.3 1198 116 1.7 825 <	91	3.4	574
93 3.9 1605 94 4.4 1657 95 3.3 1415 96 3.1 1516 97 4 774 98 2.7 1275 99 4 1685 100 2.9 1314 101 2.8 691 102 1.6 58 103 1.4 825 104 1.3 749 105 1.8 857 106 2.2 1043 107 2 746 108 1.4 506 109 1.8 1011 110 2.1 866 111 2.8 974 112 4.9 1900 113 2.1 519 114 3.5 1334 115 2.3 1198 116 1.7 8	92	2.7	1382
94 4.4 1657 95 3.3 1415 96 3.1 1516 97 4 774 98 2.7 1275 99 4 1685 100 2.9 1314 101 2.8 691 102 1.6 58 103 1.4 825 104 1.3 749 105 1.8 857 106 2.2 1043 107 2 746 108 1.4 506 109 1.8 1011 110 2.1 866 111 2.8 974 112 4.9 1900 113 2.1 519 114 3.5 1334 115 2.3 1198 116 1.7 825 117 3.2 1344 118 2.8 912	93	3.9	1605
95 3.3 1415 96 3.1 1516 97 4 774 98 2.7 1275 99 4 1685 100 2.9 1314 101 2.8 691 102 1.6 58 103 1.4 825 104 1.3 749 105 1.8 857 106 2.2 1043 107 2 746 108 1.4 506 1109 1.8 1011 110 2.1 866 111 2.8 974 112 4.9 1900 113 2.1 519 114 3.5 1334 115 2.3 1198 116 1.7 825 117 3.2 1344 118 2.8 912 <	94	4.4	1657
96 3.1 1516 97 4 774 98 2.7 1275 99 4 1685 100 2.9 1314 101 2.8 691 102 1.6 58 103 1.4 825 104 1.3 749 105 1.8 857 106 2.2 1043 107 2 746 108 1.4 506 109 1.8 1011 110 2.1 866 111 2.8 974 112 4.9 1900 113 2.1 519 114 3.5 1334 115 2.3 1198 116 1.7 825 117 3.2 1344 118 2.8 912 <td< td=""><td>95</td><td>3.3</td><td>1415</td></td<>	95	3.3	1415
97 4 774 98 2.7 1275 99 4 1685 100 2.9 1314 101 2.8 691 102 1.6 58 103 1.4 825 104 1.3 749 105 1.8 857 106 2.2 1043 107 2 746 108 1.4 506 109 1.8 1011 110 2.1 866 111 2.8 974 112 4.9 1900 113 2.1 519 114 3.5 1334 115 2.3 1198 116 1.7 825 117 3.2 1344 118 2.8 912 119 2.3 1072	96	3.1	1516
98 2.7 1275 99 4 1685 100 2.9 1314 101 2.8 691 102 1.6 58 103 1.4 825 104 1.3 749 105 1.8 857 106 2.2 1043 107 2 746 108 1.4 506 109 1.8 1011 110 2.1 866 111 2.8 974 112 4.9 1900 113 2.1 519 114 3.5 1334 115 2.3 1198 116 1.7 825 117 3.2 1344 118 2.8 912 119 2.3 1072 120 1.3 753 121 3.5 1576 122 4.8 1810 <td>97</td> <td>4</td> <td>774</td>	97	4	774
9941685100 2.9 1314 101 2.8 691 102 1.6 58 103 1.4 825 104 1.3 749 105 1.8 857 106 2.2 1043 107 2 746 108 1.4 506 109 1.8 1011 110 2.1 866 111 2.8 974 112 4.9 1900 113 2.1 519 116 1.7 825 117 3.2 1344 118 2.8 912 119 2.3 1072 120 1.3 753 121 3.5 1576 122 4.8 1810 123 2 836	98	2.7	1275
100 2.9 1314 101 2.8 691 102 1.6 58 103 1.4 825 104 1.3 749 105 1.8 857 106 2.2 1043 107 2 746 108 1.4 506 109 1.8 1011 110 2.1 866 111 2.8 974 112 4.9 1900 113 2.1 519 114 3.5 1334 115 2.3 1198 116 1.7 825 117 3.2 1344 118 2.8 912 119 2.3 1072 120 1.3 753 121 3.5 1576 122 4.8 1810	99	4	1685
101 2.8 691 102 1.6 58 103 1.4 825 104 1.3 749 105 1.8 857 106 2.2 1043 107 2 746 108 1.4 506 109 1.8 1011 110 2.1 866 111 2.8 974 112 4.9 1900 113 2.1 519 114 3.5 1334 115 2.3 1198 116 1.7 825 117 3.2 1344 118 2.8 912 119 2.3 1072 120 1.3 753 121 3.5 1576 122 4.8 1810 123 2 836	100	2.9	1314
102 1.6 58 103 1.4 825 104 1.3 749 105 1.8 857 106 2.2 1043 107 2 746 108 1.4 506 109 1.8 1011 110 2.1 866 111 2.8 974 112 4.9 1900 113 2.1 519 114 3.5 1334 115 2.3 1198 116 1.7 825 117 3.2 1344 118 2.8 912 119 2.3 1072 120 1.3 753 121 3.5 1576 122 4.8 1810 123 2 836 <td>101</td> <td>2.8</td> <td>691</td>	101	2.8	691
103 1.4 825 104 1.3 749 105 1.8 857 106 2.2 1043 107 2 746 108 1.4 506 109 1.8 1011 110 2.1 866 111 2.8 974 112 4.9 1900 113 2.1 519 114 3.5 1334 115 2.3 1198 116 1.7 825 117 3.2 1344 118 2.8 912 119 2.3 1072 120 1.3 753 121 3.5 1576 122 4.8 1810 123 2 836	102	1.6	58
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	103	1.4	825
105 1.8 857 106 2.2 1043 107 2 746 108 1.4 506 109 1.8 1011 110 2.1 866 111 2.8 974 112 4.9 1900 113 2.1 519 114 3.5 1334 115 2.3 1198 116 1.7 825 117 3.2 1344 118 2.8 912 119 2.3 1072 120 1.3 753 121 3.5 1576 122 4.8 1810 123 2 836 124 5.6 1999	104	1.3	749
106 2.2 1043 107 2 746 108 1.4 506 109 1.8 1011 110 2.1 866 111 2.8 974 112 4.9 1900 113 2.1 519 114 3.5 1334 115 2.3 1198 116 1.7 825 117 3.2 1344 118 2.8 912 119 2.3 1072 120 1.3 753 121 3.5 1576 122 4.8 1810 123 2 836 124 5.6 1999	105	1.8	857
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	106	2.2	1043
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	107	2	746
109 1.8 1011 110 2.1 866 111 2.8 974 112 4.9 1900 113 2.1 519 114 3.5 1334 115 2.3 1198 116 1.7 825 117 3.2 1344 118 2.8 912 119 2.3 1072 120 1.3 753 121 3.5 1576 122 4.8 1810 123 2 836 124 5.6 1992	108	14	506
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	109	1.8	1011
111 2.8 974 112 4.9 1900 113 2.1 519 114 3.5 1334 115 2.3 1198 116 1.7 825 117 3.2 1344 118 2.8 912 119 2.3 1072 120 1.3 753 121 3.5 1576 122 4.8 1810 123 2 836 124 5.6 1992	110	2.1	866
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	111	2.8	974
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	112	4.9	1900
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	113	21	519
115 2.3 1054 115 2.3 1198 116 1.7 825 117 3.2 1344 118 2.8 912 119 2.3 1072 120 1.3 753 121 3.5 1576 122 4.8 1810 123 2 836 124 5.6 1992	114	35	1334
110 2.3 1130 116 1.7 825 117 3.2 1344 118 2.8 912 119 2.3 1072 120 1.3 753 121 3.5 1576 122 4.8 1810 123 2 836 124 5.6 1992	115	23	1198
110 1.7 3.2 1344 118 2.8 912 119 2.3 1072 120 1.3 753 121 3.5 1576 122 4.8 1810 123 2 836 124 5.6 1992	116	1.7	825
111 3.2 1344 118 2.8 912 119 2.3 1072 120 1.3 753 121 3.5 1576 122 4.8 1810 123 2 836 124 5.6 1992	117	3.2	1344
110 2.0 912 119 2.3 1072 120 1.3 753 121 3.5 1576 122 4.8 1810 123 2 836 124 5.6 1992	110	2.2	010
10 2.3 10/2 120 1.3 753 121 3.5 1576 122 4.8 1810 123 2 836 124 5.6 1992	110	2.0	312 1072
1.20 1.3 753 121 3.5 1576 122 4.8 1810 123 2 836 124 5.6 1992	119	2.3	10/2
121 3.5 15/6 122 4.8 1810 123 2 836 124 5.6 1992	120	1.3	/53
122 4.8 1810 123 2 836 124 5.6 1992	121	3.5	15/6
123 2 836 124 5.6 1992	122	4.8	1810
124 5.6 1992	123	2	836
	124	5.6	1992
125 3.1 872	125	3.1	872
126 4.6 1768	126	4.6	1768
127 4.2 479	127	4.2	479
128 2.6 456	128	2.6	456

Stem Number	Otama Milable (mana)	Otaura II.a iaribė (uraura)
100	Stem Width (mm)	Stem Height (mm)
129	1.4	678
130	4	1546
131	4.5	1820
132	5.6	1594
133	2.1	1059
134	3.5	1394
135	4.1	1689
136	4.8	2037
137	6.3	1512
138	4	1201
139	4.1	1699
140	4.7	1886
141	4	573
142	3.6	1548
143	3	1283
144	3.3	1387
145	2.1	449
146	4.8	2037
147	3.2	1194
148	1.2	355
149	1.8	526
150	2.5	1279
151	4.6	1248
152	 4	1864
152	42	1604
153	4.2	1099
104	5.4	1380
155	5.4	1010
156	4.4	1896
157	4.2	1539
158	1.8	731
159	3	560
160	3.5	1489
161	4.3	1546
162	3.3	1239
163	1.4	451
164	1.3	329
165	1.2	379
166	3.3	1493
167	2.5	974
168	3	1642
169	4.4	1724
170	4.6	1889
171	4.1	1764
172	4.8	1457
173	5.2	1052
174	3.9	1573
175	3.1	806
176	3.9	1774
177	3.5	1662
178	2.2	1227
179	2.4	1134
180	2.3	966
181	19	724
182	1.8	874
182	2	1210
103	1.6	1213
104	0.1	43/
100	3.1	13/3
180	2.8	1104
100	∠.1	1354
187	<u> </u>	1/22
187 188	3.4	1436
187 188 189	3.4 4	1436 1568
187 187 188 189 190	3.4 4 4.2	1436 1568 986
187 187 188 189 190 191	3.4 4 4.2 2.2	1436 1568 986 1207

Ciam Number	Stom Width (mm)	Stam Hoight (mm)
Stem Number	Stem wiath (mm)	Stem Height (mm)
193	3.6	14/6
194	2.8	1239
195	2.3	929
196	2	1156
197	2	480
198	3.2	1538
199	4.5	1674
200	3.8	1779
200	4	1719
201	20	021
202	2.9	931
203	2.5	1149
204	2.9	1418
205	3.5	1490
206	5	1731
207	4.5	1231
208	6.2	1850
209	3	1164
210	4	1594
211	4	1792
212	35	1554
212	3.5	1770
213	4.3	17/9
214	3.5	1583
215	3.4	1464
216	3.9	1622
217	3.8	1702
218	2.7	1178
219	2	468
220	2.1	731
221	4	1384
221	3	1329
222	20	1529
223	2.0	1000
224	2.5	1012
225	2.9	1232
226	3.4	1618
227	1.5	818
228	3	1063
229	3.5	980
230	2.6	1136
231	22	1124
201	2.0	1265
202	5.3	1207
200	0.1	1307
234	3.2	1327
235	3./	1618
236	2.1	1064
237	3.1	1373
238	2	969
239	3.5	1612
240	3.3	1286
241	2.7	1112
242	33	779
2/3	3.5	1072
240	3	10/2
244	4.3	1224
245	3	1236
246	3.2	1428
247	3.3	1296
248	2.4	1172
249	2.2	1069
250	2.8	1078
251	23	984
201	2.5	1075
202	2.1	10/5
253	2.5	11/8
254	1.8	780
	2.2	107/
255	3.3	12/4

Stom Number	Stom Width (mm)	Stem Hoight (mm)
OF7		
257	1.5	182
258	4	566
259	2.8	1147
260	1.8	1065
261	3.1	1225
262	2.7	1288
263	2	827
264	2.8	Median Height
265	2.1	750
266	3.2	1436
267	1.7	917
268	4.8	761
269	3.8	1324
270	2.9	1065
271	1.8	774
272	3.6	1347
273	2.2	828
274	2.7	1237
275	2.6	1024
276	2.6	1135
277	2.2	1114
278	27	1262
270	2.1	131/
280	2.0	1300
200	2.0	1030
201	2.4	1276
202	2.3	1015
283	2.4	1322
284	2.5	1138
285	3.1	1354
286	1.9	1108
287	3.3	1125
288	4.2	578
289	2.2	882
290	4.1	1055
291	2.6	1034
292	2.1	758
293	3.3	837
294	2.2	856
295	2.2	710
296	1.1	677
297	2.1	1094
298	2	636
299	1.5	832
300	1.6	655
301	2.7	995
302	2.5	773
303	1.4	773
304	2.5	1212
305	2	984
306	2	1004
307	1.9	1036
308	2	992
309	21	485
310	3.5	1117
311	2.5	1104
212	2.0	1020
312	2.0	1023
313	1.8	898
314	2.1	1051
315	1.4	518
316	2.2	871
317	1.5	894
318	2.3	1009
319	1.8	887
320	2.3	663

Table A2.11: Microc	osm 11: Phragmites aus	stralis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
321	2	395
322	1.6	639
323	4.1	755
324	3.1	240
325	3.4	268
326	3.4	423
327	2.6	874
328	2.7	935
329	2.1	598
330	1.6	463
331	1.5	619
332	1.7	668
333	1.7	736
334	1.3	686
335	24	760
336	2.6	959
337	1.7	715
220	1.7	F72
220	1.0	312
339	1./	408
340	1.5	404
341	1.8	665
342	1.4	5/0
343	3	793
344	1.8	825
345	1.2	376
346	1.7	885
347	2.6	788
348	1	322
349	1.8	567
350	2.7	503
351	1.9	283
352	1.8	746
353	1.4	337
354	1.3	272
355	14	256
356	1.4	1005
357	1.5	412
358	1.5	589
350	1.0	363
309	1.9	201
360	1.0	555
301	2.4	302
362	2	193
363	2.8	524
364	1.8	623
365	5.6	810
366	2	804
367	3.1	1140
368	1.9	701
369	2.3	524
370	1.9	662
371	2.7	761
372	3.8	469
373	2	362
374	1.2	423
375	1.8	434
376	1.7	609
377	1.8	556
378	2	346
379	16	250
380	1.0	200
201	21	234
200	2.1	201
302	3.4	333
383	2.4	314
384	1.3	571

Stom Number	osm 11: Phragmites au	stralls Stem Measurements.
Stem Number		Stelli Height (mm)
385	2.4	922
386	1.2	359
387	1.2	352
388	2.4	452
389	1.3	385
390	3.9	418
391	1.5	400
392	4.6	426
393	2.6	710
394	2.7	634
395	2.5	657
396	1.7	395
397	3.5	481
398	2.1	882
399	31	640
400	1.3	322
400	1.0	736
401	1.7	470
402	1.7	4/3
403	2.5	113
404	2.2	/20
405	2.8	638
406	1.7	636
407	2.6	350
408	1.8	400
409	1.8	679
410	1.8	411
411	2.3	937
412	1.4	574
413	2	521
414	1.4	427
415	3.6	305
416	1.9	425
417	3.8	370
417	2.5	205
410	2.5	200
419	26	204
420	2.0	325
421	1.3	447
422	3	416
423	1.4	283
424	2.8	1489
425	2.2	506
426	3.8	421
427	1.7	373
428	3.4	458
429	2	586
430	4.7	207
431	3.9	315
432	1.8	323
433	1.3	515
434	2	452
435	2.4	355
436	2.3	543
437	3	695
438	1.8	Q10
430	1.0	585
440	1.3	467
440	3.3	40/
441	2.6	425
442	1.8	682
443	1.8	470
444	2.8	375
445	2.3	565
446	2.5	423
447	1.4	545
448	1.1	284

- 90 -

Table Az. IT. WICIOC	osin in. r mayinites aus	siralis Sterri Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
449	1	416
450	1.4	618
451	1.4	232
452	1.3	310
453	1.5	489
454	1.9	570
455	1.9	506
456	2.6	205
457	1.6	407
458	2.1	160
459	2	262
460	3.9	91
461	2.3	180
462	1.8	110
463	4.2	341
464	2.1	361
465	3.4	318
466	1.5	409
467	4.4	85
468	1.8	192
469	4.2	118
470	1.9	349
471	2.3	526
472	4.7	262
473	1.2	410
474	1.4	461
475	3.5	387
476	3.3	289
477	1.5	415
478	2.9	144
479	2.1	186
480	2.1	1491
481	1	216
482	1.3	465
483	2.7	193
484	2.8	375
485	1.8	351
486	1.8	281
487	2	219
488	2.1	449
489	2.1	1158
490	2.3	571
491	1.7	771

Stem Number Stem Width (mm) Stem Height (mm)

	Total Stems	Total Number of Stems	491
		Stems with Inflorescence	29
	Heights (mm)	Max Height	2037
		Min Height	58
		Mean Height	906.7678208
Stome		Mode Height	400
Sterns		Median Height	837
	Widths (mm)	Max Width	6.3
		Min Width	1
		Mean Width	2.723625255
		Mode Width	1.8
		Median Width	2.5

Stem Number	Stem Width (mm)	Stem Height (mm)
1	5.1	2127
2	2.0	1975
3	2.0	1875
	2.3	1222
4	52	1333
5	0.0	1450
7	3	1459
1	2.8	1200
8	3.4	929
9	4.9	1445
10	2.6	1245
11	4.9	1458
12	3.8	793
13	2.8	1092
14	4	1463
15	2.1	887
16	2.6	445
17	4.7	1475
18	3.3	1617
19	2.4	1243
20	2	905
21	2.5	873
22	1.8	639
23	2.1	716
24	5.1	1255
25	4.7	1088
26	2.5	1156
27	2.8	1568
28	2.7	901
29	4.8	1323
30	5	1772
31	2.2	885
32	3.2	1354
33	4.6	1929
34	3	1485
35	3.2	1373
36	3.7	1652
37	2.4	785
38	2.8	1149
39	2.8	1245
40	1.8	621
41	4.2	1087
42	2.4	974
43	1.9	322
44	22	1253
45	2.2	812
46	16	284
47	3.4	1328
48	3	1341
40	22	127/
	2.3	1152
51	3.0	701
50	3.9	191
52	3	1400
53	3	1930
54	2.9	10/1
55	1.0	594
56	2	1132
57	1.5	245
58	1.6	319
59	2.5	1447
60	2.3	1048
61	3.2	915
62	2.1	774
63	1.7	666

Stem Number	Stem Width (mm)	Stem Height (mm)
Stem Humber	27	1600
66	2.7	1009
67	2.9	1347
67	3.3	1431
68	2.2	902
69	2.2	1286
70	2.7	1236
/1	2.6	1189
72	2.6	160
73	3	406
74	2.7	304
75	2.5	1017
76	1.3	396
77	2.2	1053
78	2.4	992
79	2.1	659
80	2.5	135
81	4.7	1362
82	2.4	1165
83	1.8	352
84	3	973
85	2.8	485
86	2	452
87	2	135
88	3.7	121
89	2.5	1150
90	3.9	1302
91	2.6	1451
92	3.4	783
93	2	521
94	2.1	863
95	2.2	965
96	2.2	1085
97	2.1	953
98	2.3	971
99	4.2	1669
100	21	199
101	3.3	1098
102	2.4	1074
102	4.7	81/
104	2.4	138/
105	2.4	1538
105	22	1330
107	2.2	11202
107	2.2	1620
100	3.3	027
110	2.5	11/6
110	2.0	1/40
110	2.4	14/2
112	2.9	1044
113	2.4	1419
114	2.8	1066
115	2.3	1034
116	1.9	427
117	2.4	704
118	2.7	1241
119	2.5	432
120	2.9	460
121	2	441
122	1	439
123	2.8	763
124	2.1	1136
125	1.7	447
126	2.3	1303
127	2.4	1239
128	2.2	711

Stom Number	osm 12: Phragmites au	stralls Stem Measurements.
120		
129	2.4	1010
130	1.7	1190
131	2.3	1109
132	3	616
133	2.2	530
134	3.9	/44
135	2.5	657
136	3.1	1468
137	2.6	662
138	2.4	456
139	2.7	437
140	2.5	706
141	3	1304
142	2.8	1226
143	2.2	1333
144	3.3	1613
145	2.9	1147
146	2.3	695
147	3.2	1139
148	2.2	1149
149	2.2	695
150	2.7	708
151	2.5	1252
152	3.4	1482
153	3.3	1562
154	2.7	1059
155	3.2	1329
156	2.9	1022
157	2.6	808
158	27	618
159	3	1394
160	31	1524
161	23	1148
162	1.9	594
163	2.5	290
164	1.6	230
165	2.3	300
166	1.5	297
167	1.0	207
169	3.0	374
168	4.2	982
109	3	1234
170	2.9	669
1/1	4.3	8/2
172	2.7	699
173	2.6	1629
174	2.1	695
175	1.6	473
176	2.2	1235
177	2.3	1314
178	2	800
179	3	967
180	3.9	1171
181	2.2	1211
182	3.6	1136
183	3.8	1386
184	2.3	1163
185	2.2	1111
186	4.1	1581
187	2.6	1815
188	2.3	1276
189	2.0	1134
190	17	244
101	25	1246
102	2.0	346
192	2.1	340

- 95 -

193		Otama Ulaimht (mana)
193	Stem Width (mm)	Stem Height (mm)
<i>a</i> () <i>a</i>	2.4	1260
194	3.5	1529
195	5.5	1775
196	3.1	1606
197	3.8	1644
198	1.9	1128
199	2.3	1041
200	4.4	1345
201	2.4	1533
202	2.5	1282
203	5.6	1865
204	3.3	1303
205	3.2	392
206	2.6	518
207	2.1	882
208	1.7	736
209	1.6	271
210	1.9	791
211	2.1	1157
212	2.3	714
213	2.3	507
214	3.7	1505
215	2	975
216	2,7	1371
210	3.2	390
218	2.4	1426
210	2.4	1121
213	2.4	1230
220	2.1	726
221	2.4	120
222	2.0	1140
223	2.0	321
224	2.4	1340
225	2.9	1212
226	2.2	1423
227	4	1252
228	2.6	1159
229	3.7	723
230	3	526
231	2.8	919
232	2.2	821
233	2.6	593
234	3.5	635
235	2.2	375
236	2.8	1009
237	1.8	262
238	2.5	572
239	2	826
240	1.7	784
241	2.1	916
242	4.1	1338
243	2.8	1156
244	2.5	1132
245	3,1	1328
246	2.8	1164
247	3.3	1378
248	3.0	1047
240	1.7	333
.7/14	1.1	1676
249	4.0	10/0
249 250	2.4	475
249 250 251	3.4	475
249 250 251 252	3.4 3.1	475 846
249 250 251 252 253	3.4 3.1 2.6	475 846 824
249 250 251 252 253 254 254	3.4 3.1 2.6 3.5	475 846 824 894
249 250 251 252 253 253 254 255	3.4 3.1 2.6 3.5 2.9	475 846 824 894 602

Stom Number	Stom Width (mm)	Stem Hoight (mm)
Stem Number	Stem width (mm)	Stein Height (mm)
257	2.8	1375
258	2.7	1582
259	4.6	1540
260	2.7	1386
261	3	1212
262	3.6	1236
263	3	1454
264	3.5	Median Height
265	3.3	372
266	2.8	1708
267	2.8	1374
268	4	1465
269	3.1	1364
270	2.8	1351
271	2.9	1696
272	4.1	1194
273	1.7	952
274	1.8	327
275	1.2	529
276	2.1	1058
277	1.8	1105
278	3.7	1298
279	2.8	1213
280	2.2	212
281	1.2	321
282	2.3	354
283	1.9	364
284	2.1	734
285	1.6	690
286	2.3	322
287	14	277
288	22	642
289	2.5	927
200	2.0	979
200	2.0	1/33
202	3.4	1433
202	2.4	1370
204	2.4	500
294	1.0	500
295	1.0	720
290	2.1	739
297	2.4	542
298	2.2	200
299	2.2	1055
300	1.8	696
301	1.4	262
302	2.1	857
303	2.2	323
304	2.1	994
305	2.2	746
306	2.5	811
307	2.2	857
308	1.8	291
309	2.2	300
310	1	178
311	1.3	527
312	3	1187
313	1.7	642
314	2.1	802
315	2	599
316	2.2	382
317	2.2	865
318	2.3	672
319	2	878
320	2.2	1691

Stom Number	osm 12: Phragmites aus	stralls Stem Measurements.
Stem Number	Stem width (mm)	Stein Height (mm)
321	2.2	1325
322	2.8	642
323	3	751
324	2.4	539
325	2.9	1109
326	2.5	1638
327	2.6	1174
328	2.2	754
329	1.4	614
330	2.6	1012
331	2.9	1208
332	4.8	962
333	2.1	721
334	1.3	279
335	3	912
336	2	806
337	1.2	280
338	0.9	407
339	3.5	994
340	1.3	467
341	2.6	1024
342	2.3	924
343	1.5	562
344	2.1	460
345	3	1191
346	21	510
347	2.6	1179
3/8	3.1	1207
3/0	1.8	835
250	2.5	1017
350	2.0	1017
351	2	509
352	2.5	663
353	2.0	632
354	1.7	570
355	2.1	561
356	2.5	506
357	1.9	625
358	2.1	1086
359	1.7	527
360	1.8	833
361	2.3	233
362	2.2	707
363	2.3	714
364	2.1	723
365	4.1	1372
366	2.5	1652
367	3.6	1437
368	3.5	1509
369	3.7	1667
370	3	1491
371	3.7	1343
372	2.2	1402
373	2.4	985
374	2.6	1717
375	3.4	804
376	2.2	564
377	2.5	751
378	2.8	1016
379	2.3	1104
380	4.3	771
381	4.5	757
382	4.1	1689
383	2.3	1406
384	37	1242
004	0.1	1272

- 98 -

Table A2.12: Microc	osm 12: Phragmites aus	stralis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
385	3.1	610
386	2.8	1086
387	3.3	1331
388	2.8	1453
389	2	603
390	2.1	703
391	3.1	690
392	2.3	1272
393	2.9	1365
394	2	400
395	1.9	575
396	2.9	1012
397	2.8	1124
398	4.8	1679
399	3	1114
400	22	768
400	1.9	710
401	2.4	710
402	4	1560
403	4	1000
404	2.1	13/2
405	1.6	319
406	2.5	1665
407	2.1	603
408	1.8	503
409	2.6	901
410	2.9	789
411	2	1060
412	3.3	620
413	2.2	1349
414	2.1	680
415	1	220
416	1.6	544
417	2	306
418	2	502
419	19	685
420	1.0	445
420	3.5	1253
421	2.8	1200
422	2.0	916
423	2.2	510
424	2.4	330
425	4.1	1/12
420	2.2	1042
427	1.9	/28
428	2.6	616
429	2.1	813
430	2.6	1116
431	3.4	1345
432	2.1	335
433	2.7	315
434	3.7	937
435	3.1	1097
436	3.3	1261
437	2.9	1246
438	3.5	748
439	3.6	1332
440	2.5	761
441	2.5	723
442	13	414
443	21	240
444	2.1	1275
444	2	1220
445	2.1	000
446	2.3	388
447	2.3	869
448	2.7	1086

- 99 -

Table A2.12: Microc	osm 12: Phragmites au	stralis Stem Measurements.
Stem Number	Stem width (mm)	Stem Height (mm)
449	2.6	523
450	3.5	592
451	2.9	639
452	2.6	1708
453	3	710
454	2.7	911
455	2.8	275
456	1	211
457	3.2	603
458	2.3	795
459	2.8	827
460	3.2	366
461	2.3	895
462	1.4	436
463	3	673
464	3	1536
465	2.9	684
466	2.6	1272
467	2.2	802
468	2.2	516
469	2.1	513
470	3.2	864
471	1.9	726
472	2.6	1299
473	2.6	929
474	2.5	1304
475	3.1	1404
476	2.3	1153
470	3.5	1710
477	2.1	1596
470	2.1	1330
479	3.1	722
400	2.1	732
401	4.1	1638
402	3.3	1038
403	2.4	1315
484	3.1	/65
400	4.9	1516
486	3.1	1653
487	3.9	1468
488	2.3	1586
489	2.2	985
490	2.4	1129
491	3.5	1/14
492	2.1	911
493	2.4	520
494	2.1	955
495	2.9	1674
496	2	1045
497	1.6	1054
498	1.2	426
499	4.3	1710
500	2.3	705
501	1.2	306
502	2	966
503	2.1	622
504	3	1218
505	1.9	286
506	3.1	444
507	2	348
508	3.2	1357
509	1.6	515
510	2.6	461
511	3.3	515
512	1.1	182
• • =		· • •

Stom Number	osm 12: Phragmites au	stralls Stem Measurements.
Stem Number	Stem width (mm)	Stell Height (IIIII)
513	3.3	234
514	1.1	294
515	0.8	435
516	2.7	297
517	1.4	294
518	2	866
519	2.5	1354
520	2	1134
521	1.6	260
522	2.6	251
523	1.6	299
524	1.8	481
525	1.9	215
526	2.6	460
527	2.3	441
528	3.6	1202
529	2.7	271
530	1.2	225
531	3.7	1615
532	2.7	881
533	2.8	1294
534	3	1304
535	1.8	232
536	2	1150
537	1.1	255
538	4.3	1216
539	23	1016
540	2.0	586
541	3.1	1224
542	3.3	/37
542	2.2	1255
543	3.5	1200
544	2.0	308
545	1.7	396
546	1.7	246
547	2.9	1533
548	2.6	1023
549	3.1	542
550	2.8	1251
551	2	785
552	2.3	1015
553	2.5	1543
554	2.6	1263
555	2.3	1330
556	2.7	442
557	2.4	1380
558	3.7	578
559	2.1	1050
560	3.1	459
561	2.9	1430
562	4.4	1735
563	3	668
564	2.7	1851
565	2.8	1775
566	3.2	1074
567	2.7	1192
568	2.6	807
569	4.5	687
570	2.5	1375
571	2.9	1644
572	2.9	488
573	2.3	1625
574	3.6	1718
575	2	8/1
576	10	022
0/0	1.9	922

Table A2.12: Microc	osm 12: Phragmites au	stralis Stem Measurements.
Stem Number	Stem width (mm)	Stem Height (mm)
577	2.1	222
578	3.5	1192
579	3.2	1686
580	2.7	1078
581	3.1	630
582	2.9	1381
583	4.1	1778
584	3.4	1329
585	2.5	1132
586	6.2	1712
587	2.8	1520
588	4.1	1535
589	2.8	696
590	4.8	1846
591	2.2	1084
592	4.2	1284
593	5.3	1677
594	2.4	1336
595	2.8	804
596	6.2	1792
597	6.5	1894
598	2.2	975
599	2.9	534
600	5	1504
601	2.8	1503
602	4.1	765
603	32	1258
604	2.3	673
605	2.3	1245
606	2.0	1618
607	3.4	1533
608	2.3	1380
609	2.5	1103
610	2.7	738
611	1.6	225
612	1.0	525
612	3.3	1000
613	2.9	103
014	1.9	193
010	2.1	1091
616	2.4	1324
610	1.0	087
618	2.3	1235
619	3.8	525
620	2.6	1206
621	1.7	527
622	2.2	284
623	3.4	1073
624	3.5	386
625	3.6	985
626	3.9	1283
627	3.7	1452
628	2.8	1166
629	2	947
630	2.1	875
631	2.7	1756
632	4	1701
633	3.3	1575
634	4.6	986
635	2.1	696
636	2.7	1258
637	2.7	1794
638	3.3	1372
639	2.8	1367
640	3.5	1041
0-10	0.0	1071

Table A2.12: Microc	osm 12: Phragmites au	stralis Stem Measurements.
Stem Number	Stem width (mm)	Stem Height (mm)
641	1.6	120
642	2.4	1050
643	4.2	1572
644	3.6	1202
645	2.5	1192
646	3.3	1518
647	2.7	407
648	4	1504
649	3.5	1/11
650	2.5	1134
651	3.1	1472
652	2.2	814
653	2.4	398
654	2.6	927
655	4	1476
656	4.7	1675
657	2.6	716
658	2	901
659	3.7	1486
660	2.8	457
661	3	1565
662	2.2	822
663	2.5	237
664	2.5	287
665	2.6	171
666	3	776
667	2.7	1349
668	2.6	1273
669	2.8	727
670	2.3	1146
671	3.5	198
672	2.6	890
673	2.0	693
674	2.4	1315
675	2.4	1010
676	3.1	1237
677	3.5	1242
679	2.5	1022
676	2.7	1712
679	2	1016
680	2.4	204
681	1./	813
682	3	253
683	3	1195
684	3.9	1011
685	3	973
686	4	1672
687	3	359
688	4.1	1015
689	1.1	797
690	2.5	1476
691	2.9	1444
692	2.6	1266
693	3	1499
694	2	1006
695	3.2	1826
696	3.1	1630
697	3.7	1252
698	2.8	1307
699	3.1	273
700	32	675
701	3.8	1736
702	20	1730
703	2.3	1/2/
704	3.3	1470
704	3	8001

Stem Number	Stem Width (mm)	Stem Height (mm)
705	2.4	1292
706	2	1253
707	2.5	1550
708	2.8	1685
709	2.7	1197
710	3.7	1530
711	3.7	336
712	2.6	1258
713	2.7	684
714	2.6	1348
715	1.8	816
716	1.9	472
717	2.7	627
718	3.6	1399
719	2.8	1223
720	2.0	1283
721	2	819
722	2	1295
723	29	901
724	4	605
725	24	555
726	19	389
727	2.5	1016
728	2.5	1183
720	2.1	022
729	2.2	933
730	2.2	772
731	3.1	112
732	2.0	450
733	3.0	224
734	5.5	177
735	3.5	555
730	3.0	659
729	2.3	524
730	3.7	324
739	1.7	242
740	2.1	800
741	2.7	292
742	2.7	399
743	2.1	420
744	1.0	402
740	3.0	200
740	3.1	309
740	<u> </u>	402
748	5.2	348
749	1./	201
750	2.2	317
/51	2.8	380
/52	1.3	410
/53	3.1	319
/54	2.5	438
/55	2.8	153
756	2.9	283
757	2.6	309
758	2.5	300
759	2.6	300
760	1.9	284
761	1.3	339

Table A2.12: Microcosm 12: Phragmites australis Stem Measurements.

Stem Number	Stem Width (mm)	Stem Height (mm)	
Stome		Mode Height	901
Sterns		Median Height	971
		Max Width	6.5
	Widths (mm)	Min Width	0.8
		Mean Width	2.714323259
		Mode Width	2.2
		Median Width	2.6

Stom Number	Stom Width (mm)	Stom Hoight (mm)
	Stem width (mm)	Stem Height (mm)
1	3	464
2	2.5	1264
3	3.3	522
4	3	1196
5	2.5	917
6	5.3	1054
7	2	452
8	2.5	1093
9	3.5	1118
10	4.5	1328
11	2.3	794
12	1.3	475
13	0.7	416
14	3.9	520
15	2.4	417
16	2.6	794
17	1.4	629
18	2	1115
10	2	856
19	2 4	000
20	2.4	1013
21	2.0	/62
22	2.2	937
23	1.5	444
24	2.3	902
25	3.2	1647
26	3	1303
27	2.2	604
28	4.1	1014
29	2.9	1146
30	2.3	997
31	3.1	831
32	4.1	1312
33	4.6	588
34	2.5	1087
35	3.2	1248
36	3.6	1174
37	2	727
20	21	1200
30	0.1	F70
40	1.2	572
40	1.3	320
41	2.0	1098
42	2.4	1047
43	3.1	11/5
44	2.5	692
45	1.9	837
46	2.4	687
47	3.1	1207
48	2.6	341
49	2	708
50	2.2	1017
51	3.4	1053
52	2	431
53	2.1	643
54	1.7	853
55	3.1	1020
56	19	774
57	2.8	1284
50	2.0	600
50	1.4	003
59	2.1	000
60	2	831
61	2.3	542
62	2.7	859
0.7	<u>.</u>	000
63	2.4	839

Table A2.13: Microc	osm 13: Phragmites aus	stralis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
65	2	746
67	1.7	305
69	1.9	247
60	4.0	601
70	3.1	719
70	2.5	/10
70	2.0	1100
72	1.0	200
73	1.9	690
75	3.2	254
75	1.7	1175
70	2.7	621
70	2.1	1102
70	3.1	911
79	2.1	710
00	<u> </u>	/10
01	1.5	331
02	24	421
83	2.4	093
84 0F	3.5	δUδ 1000
00	2.5	1009
00	2.2	1017
87	2.3	1033
88	3.1	954
89	3.6	1134
90	3	659
91	1.9	706
92	3.1	979
93	2.6	1056
94	2.6	8/8
95	2.1	773
96	4.2	/33
97	2.5	1237
90	1.0	642
99	2.2	415
100	2.5	1087
101	2.3	339
102	2.2	910
103	2.9	1100
104	3	932
105	1.4	423
107	0.9	420
107	1.3	909 605
100	2.0	396 CRO
110	2.5	873
111	2.0 <u>4</u> 1	1740
110	4.1	022
112	2.4	332 1102
113	2.0	705
114	1.7	249
110	20	243 0F4
110	2.0	1657
110	0.4 o	1007
110	16	1531
120	4.0	1400
120	J.I 2	12420
121	3	1342
122	2.1	1400
123	2.0	1110
124	3.6	1162
125	3.5	1018
120	2.1	995
127	3.5	400
128	2.2	391

Stem Number	Stem Width (mm)	Stem Height (mm)
120		
129	3.4	820
130	2.3	030
101	1.1	329
132	2.5	1195
133	1.8	888
134	2.9	810
135	2.6	/8/
136	2.8	539
137	6	578
138	5.7	809
139	1.8	521
140	1.4	334
141	1	355
142	2.3	476
143	2.5	1125
144	2.9	1265
145	2.8	1144
146	2.8	1215
147	3.9	1159
148	2.4	1163
149	2	1061
150	3.1	1201
151	3.3	1311
152	2.9	1112
153	2.1	985
154	3	1025
155	2.6	930
156	2.0	1166
157	3	1057
158	2	1052
150	27	1110
160	3.1	11/1
161	3.1	1016
162	2.0	1102
162	2.1	1162
103	2.2	907
164	2.5	1141
165	2	1014
166	2.5	1198
167	1.8	891
168	2.6	1129
169	3	1170
170	2.7	1039
1/1	2	952
172	3.5	940
173	3.9	1074
174	2.6	927
175	2.2	1039
176	1.5	792
177	2.9	1105
178	2.1	842
179	3.6	1034
180	2.1	837
181	2.4	926
182	2.1	1004
183	3.1	1034
184	3.7	1025
185	2.7	1087
186	4.2	1189
187	3.7	959
188	3.2	1006
189	3.4	997
190	2.5	862
191	2.2	878
192	2.9	891
	2.0	

Table A2.13: Microc	osm 13: Phragmites au	stralis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
193	3.5	847
194	2.6	1083
195	2.1	801
196	1.9	953
197	2.7	1085
198	2.4	771
199	1.9	847
200	5.2	1016
201	2.1	677
202	2.8	986
203	2.3	911
204	2	542
205	1.7	745
206	2.4	901
207	2.8	611
208	1.8	655
209	2.1	865
210	2.2	736
211	5.4	1032
212	2.4	679
213	4	974
214	1.5	700
214	2.3	595
215	4 3	342
210	4.5	696
217	1.9	464
210	4.7	404
219	3.2	698
220	1.1	546
221	2.3	1093
222	1.9	740
223	1.5	799
224	2.5	980
225	3.3	546
226	3	924
227	2	795
228	2	1056
229	2.3	849
230	3.1	1005
231	2.4	699
232	2.4	575
233	3.3	675
234	1.8	851
235	1.4	587
236	2.3	577
237	1.8	692
238	0.9	489
239	2	697
240	1.7	721
241	1.2	556
242	14	500
243	17	767
244	1.4	330
2/5	1.7	382
240	2.2	690
240	2.0	967
247	2.2	30/
248	2.5	81/
249	2	6/4
250	2.8	587
251	2.4	846
252	2.1	823
253	3.7	1027
254	2.8	740
255	3.4	790
256	1.9	892

Stem Number	Stem Width (mm)	Stem Height (mm)
257	1.7	676
258	1.9	530
259	2	734
260	2.6	670
261	2.3	792
262	1.6	726
263	1.6	582
264	1.6	Median Height
265	1.7	445
266	2.3	782
267	2.3	676
268	1.7	585
269	2.2	538
270	1.4	373
271	16	635
272	2.8	623
273	1.6	302
274	2.3	751
275	2	369
276	15	352
277	1.6	510
278	1.0	399
270	0.8	262
280	3	1038
281	25	947
282	1.2	554
283	1.2	503
284	2.7	585
285	1.2	697
286	2	879
287	17	619
288	1.7	510
289	1.5	422
203	3.1	535
200	2.4	327
201	0.8	475
292	1.1	469
294	1	307
295	2.6	514
296	3.4	218
200	3.5	210
298	2	217
200	1.8	394
233	1.0	220
201	1.3	320
307	1.4	301
302	1.9	252
204	1.2	332
304	1.2	304
305	0.2	201

Table 42.13: Microcosm 13: Phragmites australis Stem Measurements

Table A2.13: Microcosm 13: Phragmites australis Stem Measurements.			
Stem Number Stem Width (mm)		Stem Height (mm)	

Stems	Total Stems	Total Number of Stems	305
		Stems with Inflorescence	32
	Heights (mm)	Max Height	1740
		Min Height	218
		Mean Height	808.8098361
		Mode Height	464
		Median Height	811
	Widths (mm)	Max Width	6
		Min Width	0.2
		Mean Width	2.459344262
		Mode Width	2
		Median Width	2.4

Stem Number	Stem Width (mm)	Stem Height (mm)
1	44	1413
2	3.1	1248
3	2.9	1135
4	2.5	1112
5	2.5	1364
5	3.0	1304
7	3.2	1020
1	2.9	1069
0	2.4	1060
9	1.7	642
10	2.2	523
11	2.7	1124
12	2.6	1042
13	3	1258
14	3.9	1115
15	3.4	1270
16	3.6	1323
17	3.1	1102
18	2.9	1075
19	3.6	1206
20	3.7	1220
21	2.2	973
22	2.2	903
23	3	1139
24	3.1	1068
25	2.2	891
26	4.1	1147
27	2.9	1108
28	1.9	952
29	2.2	886
30	2.5	935
31	17	859
32	1.8	815
33	3	1139
34	27	982
35	1.7	778
36	2.4	1082
27	2.4	621
20	1.0	861
30	1.0	1061
39	2.9	1061
40	3.2	934
41	2.4	971
42	2.4	8/8
43	2.8	805
44	2.6	912
45	2.5	996
46	2.2	903
47	2.7	876
48	1.4	735
49	3	916
50	2.5	520
51	1.2	421
52	1	365
53	0.8	321
54	2	381
55	5.1	969
56	2.2	826
57	2.7	977
58	3.1	1007
59	2.5	922
60	2	865
61	21	783
62	11	295
63	23	1055
64	2.5	088
04	2.1	300

Stem Number	Stem Width (mm)	Stem Height (mm)
65		
60	2.5	9/7
66	1.8	800
67	3.2	992
68	2	731
69	2	940
70	2.2	790
71	3.2	910
72	1.6	689
72	1.0	850
73	2.2	852
74	2.6	965
75	2.4	935
76	2.1	1007
77	2.6	970
78	2.2	762
79	1.7	946
80	21	862
81	17	856
01	1.7	530 E1E
62	1.7	515
83	1./	/26
84	2.7	926
85	2	951
86	2	885
87	2.1	692
88	2.9	785
89	2.2	705
90	2.2	774
01	2.1	808
91	2	020
92	2.8	887
93	2.5	801
94	2.3	881
95	1.8	830
96	2.4	862
97	2.1	835
98	2.6	683
00	17	623
100	1.7	770
100	1.5	110
101	3.7	844
102	2.2	/58
103	2.1	639
104	2	492
105	2.6	437
106	3.4	775
107	1.8	676
108	15	711
109	2.6	481
110	2.0	281
110	0.9	201
111	1.3	556
112	1.7	791
113	1.6	467
114	2.2	840
115	3.2	584
116	2.2	572
117	21	831
118	10	340
110	1.3	004
119	2.2	881
120	2.5	771
121	2.3	685
122	1.9	694
	13	559
123	1.0	
123 124	1.5	643
123 124 125	1.5	643
123 124 125	1.5 1.4	643 589
123 124 125 126	1.5 1.4 1.9	643 589 659
123 124 125 126 127	1.5 1.4 1.9 0.5	643 589 659 364
Stom Number	Shi 14. Filidynilles aus	Stans Stem Measurements.
-------------	--------------------------	--------------------------
120		
129	1./	615
130	2.4	568
131	1.8	634
132	1.7	831
133	2.1	865
134	2.8	698
135	1.5	480
136	4.5	834
137	2.3	871
138	1	299
139	1.8	641
140	1.8	766
141	2.9	725
142	2	754
143	1.6	535
144	0.9	416
145	2.1	663
146	1.8	613
147	1.8	632
148	1.8	476
149	1.5	539
150	2.9	685
151	1.8	602
152	1.6	604
153	2	532
154	15	239
154	1.0	233
155	1.4	597
150	1.4	525
157	1.5	677
100	1.7	677
159	2.3	598
160	1.9	595
161	1.9	581
162	2.9	561
163	1.6	700
164	1.4	480
165	3	249
166	2.2	240
167	1.9	531
168	2.1	596
169	1.4	560
170	1.4	547
171	1	470
172	1.2	463
173	1.9	489
174	2.3	433
175	1.1	364
176	1.9	788
177	1	392
178	2	444
179	1.5	567
180	1.6	439
181	0.8	227
182	2.1	397
183	1.8	310
184	3.1	237
185	1.8	770
186	1.0	623
100	1.2	025
107	1.0	400 540
188	2	519
189	2.2	425
190	1.8	670
191	1./	121
192	1.5	547

Stem Number	Stem Width (mm)	Stem Height (mm)
193	1.2	440
194	1.2	539
195	1.4	447
196	1.4	481
197	1.1	424
198	15	346
100	1.5	416
200	2.1	15/
200	2.1	385
201	1.0	503
202	1.0	593
203	2.5	392
204	0.8	306
205	1.2	506
206	1	442
207	1.9	374
208	0.9	394
209	1.1	405
210	2	717
211	1.6	397
212	2	465
213	1	505
214	1.5	385
214	1.0	524
215	1.4	324
210	1.3	465
217	4.7	242
218	1.7	331
219	0.7	154
220	1.7	697
221	1	557
222	2.9	537
223	3.8	110
224	2.7	203
225	1.3	417
226	2.6	461
227	1.2	382
228	19	312
229	2	338
230	12	259
231	2.2	522
201	2.4	620
232	2.4	50U
200	1.0	201
234	1	35/
235	1.3	228
236	1.1	319
237	2.5	225
238	1.1	439
239	1	374
240	1.4	324
241	1.2	322
242	1.4	418
243	2.4	419
244	2.3	234
245	11	267
245	2	103
240	12	250
241	1.0	330
248	1.1	349
249	1.2	442
250	1.6	282
251	0.8	214

Total Stoms	Total Number of Stems	251
Total Sterns	Stems with Inflorescence	9
	Max Height	1413

Table A2.14: Microcosm 14: Phragmites australis Stem Measurements.			
Stem Number	Stem Width (mm)	Stem Width (mm) Stem Height (mm)	
	Heights (mm)	Min Height	110
		Mean Height	662.4860558
Ctomo		Mode Height	397
Sterns		Median Height	634
		Max Width	5.1
	Widths (mm)	Min Width	0.5
		Mean Width	2.052191235
		Median Height	2.2
		Median Width	2

Stem Number	Stem Width (mm)	Stem Height (mm)
1	2.5	933
2	2.4	971
3	5	431
4	4.3	941
5	5.7	1656
6	5.3	1015
7	4.6	1525
8	5.3	1581
9	3.7	591
10	4.3	1448
11	8.3	1665
12	5.1	1677
13	5.2	1294
14	2.7	579
15	4.3	715
16	4	1258
17	6.3	1651
18	3.2	815
19	6.4	1729
20	5.7	1634
21	4.4	1332
22	2.8	1079
23	2.6	1111
24	1.8	437
25	5.6	1510
26	4.5	1359
20	7.8	1000
28	8.5	1520
20	0.5	1378
29	4.1	1409
30	0.7	1408
31	4.1	/88
32	8.4	1696
33	8.7	1780
34	9.2	1643
35	6.9	1799
36	2.9	855
37	3.7	1198
38	3.7	700
39	3.9	772
40	5.8	1524
41	4.3	1339
42	1.8	853
43	3.5	406
44	3.9	1675
45	5.2	1372
46	2.4	1034
47	4.3	1545
48	2.6	393
49	4.9	1509
50	1.6	614
51	0.9	337
52	3.8	713
53	3.1	438
54	1.7	717
55	3.6	1280
56	3.4	1352
57	1.6	343
58	3.6	1275
59	2	708
60	1.8	1025
61	1.8	609
62	2.9	681
62	2.3	<u>47</u> 2
64	2.0	772
04	4	904

Table A2.31: Microcosm 15: Lythrum salicaria Stem Measurements.

Stem Number	Stem Width (mm)	Stem Height (mm)
65	2.3	560
66	5	488
67	2.9	636
68	2.4	376
69	2.1	266
70	2.6	312
71	3	302
72	1.4	303
73	1.8	524
74	1.3	302
75	3.2	608
76	2	424
77	1.5	230
78	2	300
79	2.1	160
80	1.7	221

	Total Stems	Total Number of Stems	80
		Sterns with milorescence	32
	Heights (mm)	Max Height	1926
		Min Height	160
		Mean Height	969.625
Stome		Mode Height	302
Sterns		Median Height	918.5
	Widths (mm)	Max Width	9.2
		Min Width	0.9
		Mean Width	3.8375
		Mode Width	4.3
		Median Width	3.6

Table A2.16: Microc	osm 16: Phragmites aus	stralis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
1	2.4	1065
2	2.1	1082
3	4.2	1068
4	2.9	1186
5	2.4	1687
6	3.6	1287
7	3.5	1253
8	3.7	1145
9	2.6	1125
10	3.3	1170
11	2.5	1035
12	3.5	1141
13	2.7	993
14	3.2	1067
15	2.5	1047
16	3	934
17	21	957
18	31	967
10	2.1	954
19	2.4	304 006
20	3	330
21	2.1	88/
22	2.2	9/6
23	1.8	906
24	2.2	929
25	1.8	879
26	2.1	896
27	1.5	736
28	1.6	706
29	2.2	799
30	3.8	848
31	2.4	904
32	2.8	827
33	2.1	740
34	1.9	860
35	27	981
36	17	661
37	2	017
20	17	671
30	1.7	007
39	1.7	827
40	3.9	843
41	1.3	654
42	1.7	863
43	2	817
44	2.7	804
45	2.8	880
46	2.2	265
47	1.5	560
48	1.9	665
49	2	790
50	2.2	804
51	1.7	790
52	2	580
53	1.7	682
54	1.4	227
55	27	760
56	3.5	649
57	1.0	040 810
50	1.0	012
58	2.1	<u> </u>
59	1.9	/62
60	3.5	757
61	1.1	350
62	2.8	804
63	1.6	634
64	1.9	765

Gen Gen <thgen< th=""> <thgen< th=""> <thgen< th=""></thgen<></thgen<></thgen<>	Stem Number	Stem Width (mm)	Stem Height (mm)
63 1.4 60^4 67 1.3 496 67 1.3 496 68 3 812 69 1.8 731 70 1.8 692 71 2 815 72 1.9 429 73 1.2 633 76 1.2 623 76 1.2 255 78 1.2 437 79 1.5 5633 80 2 691 81 1.8 602 82 1.4 340 83 1.2 744 84 1.5 570 85 0.8 417 86 1.1 465 87 1.6 566 90 1 365 91 1.1 297 92 1.6	Stem Number		Stell Height (IIIII)
00 1.1 440 67 1.3 496 68 3 812 69 1.8 731 70 1.8 662 71 2 815 72 1.9 429 73 1.2 399 74 1 590 75 1.2 623 76 1.8 293 77 1.2 255 78 1.2 437 79 1.5 563 80 2 691 81 1.8 602 82 1.4 340 83 1.2 744 84 1.5 570 85 0.8 417 86 1.1 4465 87 1.6 599 88 1.8 572 89 1.6 566 90 1 361 96	60	1.4	420
67 1.3 493 68 3 812 69 1.8 731 70 1.8 692 71 2 815 72 1.9 429 73 1.2 399 74 1 590 75 1.2 623 76 1.8 293 77 1.2 255 78 1.2 437 79 1.5 563 80 2 691 81 1.8 602 82 1.4 340 83 1.2 744 84 1.5 570 85 0.8 417 86 1.1 465 87 1.6 599 88 1.8 572 89 1.6 566 90 1 365 91 1.1 297 92 <td>67</td> <td>1.1</td> <td>420</td>	67	1.1	420
68 3 812 70 1.8 731 70 1.8 692 71 2 815 72 1.9 429 73 1.2 999 74 1 590 75 1.2 623 77 1.2 255 78 1.2 437 79 1.5 563 80 2 691 81 1.8 602 82 1.4 340 83 1.2 744 84 1.5 570 85 0.8 417 86 1.1 465 87 1.6 599 88 1.8 572 89 1.6 368 90 1 365 91 1.1 297 92 1.6	67	1.3	496
69 1.8 73 70 1.8 692 71 2 815 72 1.9 4429 73 1.2 399 74 1 590 75 1.2 623 76 1.8 293 77 1.2 255 78 1.2 437 79 1.5 563 80 2 691 81 1.8 602 82 1.4 340 83 1.2 744 84 1.5 570 85 0.8 417 86 1.1 465 87 1.6 566 90 1 365 91 1.1 297 92 1.6 368 93 2.1 731 94 1.2 361 95 1.2 361 96<	68	3	812
70 1.8 642 71 2 815 72 1.9 429 73 1.2 399 74 1 590 75 1.2 623 76 1.8 293 77 1.2 255 78 1.2 437 79 1.5 563 80 2 691 81 1.8 602 82 1.4 340 83 1.2 744 84 1.5 570 85 0.8 417 86 1.1 465 87 1.6 596 90 1 365 91 1.1 297 92 1.6 368 93 2.1 731 94 1.2 446 95 1.2 361 96 0.9 283 9	69	1.8	731
71 2 815 72 1.9 429 73 1.2 399 74 1 590 76 1.8 293 76 1.8 293 77 1.2 255 78 1.2 437 79 1.5 563 80 2 691 81 1.8 602 82 1.4 340 83 1.2 744 84 1.5 570 85 0.8 417 86 1.1 465 87 1.6 599 88 1.8 572 89 1.6 368 91 1.1 297 91 1.1 297 92 1.6 368 93 2.1 731 94 1.2 361 96 0.9 2336	70	1.8	692
72 1.9 429 73 1.2 399 74 1 590 75 1.2 623 76 1.8 293 77 1.2 255 78 1.2 437 79 1.5 563 80 2 691 81 1.8 602 82 1.4 340 83 1.2 744 84 1.5 570 85 0.8 417 86 1.1 465 87 1.6 566 90 1 365 91 1.1 297 92 1.6 366 90 1 365 91 1.1 297 92 1.6 366 94 1.2 361 96 0.9 283 97 1.3 523 <	71	2	815
73 1.2 399 76 1.2 623 76 1.8 293 77 1.2 255 78 1.2 437 79 1.5 563 80 2 691 81 1.8 602 82 1.4 340 83 1.2 744 84 1.5 570 85 0.8 417 86 1.1 465 87 1.6 599 86 1.8 572 89 1.6 566 90 1 365 91 1.1 297 92 1.6 366 93 2.1 731 94 1.2 361 95 1.2 361 96 0.9 283 97 1.3 523 99 1.7 406	72	1.9	429
74 1 590 75 1.2 623 76 1.8 293 77 1.2 255 78 1.2 437 79 1.5 563 80 2 691 81 1.8 602 82 1.4 340 83 1.2 744 84 1.5 570 86 0.8 417 86 0.8 417 86 1.1 465 87 1.6 599 88 1.8 572 89 1.6 566 90 1 365 91 1.1 297 92 1.6 368 93 2.1 731 94 1.2 446 95 1.2 361 96 0.9 283 97 1.3 523 98 2.2 580 100 <	73	1.2	399
75 1.2 623 76 1.8 293 77 1.2 255 78 1.2 437 79 1.5 563 80 2 691 81 1.8 602 82 1.4 340 83 1.2 744 84 1.5 570 85 0.8 417 86 1.1 465 87 1.6 599 88 1.8 572 89 1.6 566 90 1 365 91 1.1 297 92 1.6 368 93 2.1 731 94 1.2 361 96 0.9 283 97 1.3 523 98 2.2 580 99 1.7 496 100 1.7 498	74	1	590
76 1.8 293 77 1.2 255 78 1.2 437 79 1.5 563 80 2 691 81 1.8 602 82 1.4 340 83 1.2 744 84 1.5 570 85 0.8 417 86 1.1 465 87 1.6 599 88 1.8 572 89 1.6 566 90 1 365 91 1.1 297 92 1.6 368 93 2.1 731 94 1.2 446 95 1.2 361 96 0.9 283 97 1.3 523 98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 361 102	75	1.2	623
77 1.2 255 78 1.2 437 79 1.5 563 80 2 691 81 1.8 602 82 1.4 340 83 1.2 744 84 1.5 570 85 0.8 417 86 1.1 465 87 1.6 599 88 1.8 572 89 1.6 566 90 1 365 91 1.1 297 92 1.6 368 93 2.1 731 94 1.2 361 96 0.9 283 97 1.3 523 98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 580 99 1.7 496 100 <t< td=""><td>76</td><td>1.8</td><td>293</td></t<>	76	1.8	293
78 1.2 437 79 1.5 563 80 2 691 81 1.8 602 82 1.4 340 83 1.2 744 84 1.5 570 85 0.8 417 86 1.1 465 87 1.6 599 88 1.8 572 89 1.6 566 90 1 365 91 1.1 297 92 1.6 368 93 2.1 731 94 1.2 446 95 1.2 361 96 0.9 283 97 1.3 523 98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104	77	1.2	255
79 1.5 563 80 2 661 81 1.8 602 82 1.4 340 83 1.2 744 84 1.5 570 85 0.8 4117 86 1.1 465 87 1.6 599 88 1.8 572 89 1.6 566 90 1 365 91 1.1 297 92 1.6 368 93 2.1 731 94 1.2 361 95 1.2 361 96 0.9 283 97 1.3 523 99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445	78	1.2	437
80 2 691 81 1.8 602 82 1.4 340 83 1.2 744 84 1.5 570 85 0.8 417 86 1.1 465 87 1.6 599 88 1.8 572 89 1.6 566 90 1 365 91 1.1 297 92 1.6 368 93 2.1 731 94 1.2 446 95 1.2 361 96 0.9 283 97 1.3 523 98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103	79	1.5	563
81 1.8 602 82 1.4 340 83 1.2 744 84 1.5 570 85 0.8 417 86 1.1 465 87 1.6 599 88 1.8 572 89 1.6 566 90 1 365 91 1.1 297 92 1.6 368 93 2.1 731 94 1.2 361 96 0.9 283 97 1.3 523 98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445 105 1.6 569 106 1	80	2	691
82 1.4 340 83 1.2 744 84 1.5 570 85 0.8 417 86 1.1 465 87 1.6 599 88 1.8 572 89 1.6 566 90 1 3655 91 1.1 297 92 1.6 368 93 2.1 731 94 1.2 361 95 1.2 361 96 0.9 283 97 1.3 523 98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445 107 1	81	1.8	602
83 1.2 744 84 1.5 570 85 0.8 417 86 1.1 465 87 1.6 599 88 1.8 572 89 1.6 566 90 1 365 91 1.1 297 92 1.6 368 93 2.1 731 94 1.2 446 95 1.2 361 96 0.9 283 97 1.3 523 98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445 105 1.6 569 106 1.3 254 107 1<	82	1.4	340
84 1.5 570 85 0.8 417 86 1.1 465 87 1.6 599 88 1.8 572 89 1.6 566 90 1 365 91 1.1 297 92 1.6 368 93 2.1 731 94 1.2 361 96 0.9 283 97 1.3 523 98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445 105 1.6 569 106 1.3 254 107 1 472 108	83	1.2	744
85 0.8 417 86 1.1 465 87 1.6 599 88 1.8 572 89 1.6 566 90 1 3655 91 1.1 297 92 1.6 368 93 2.1 731 94 1.2 446 95 1.2 361 96 0.9 283 97 1.3 523 98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445 105 1.6 569 106 1.2 443 109 2 362 110 1.5	84	1.5	570
86 1.1 465 87 1.6 599 88 1.8 572 89 1.6 566 90 1 365 91 1.1 297 92 1.6 368 93 2.1 731 94 1.2 361 96 0.9 283 97 1.3 523 98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445 105 1.6 569 106 1.3 254 107 1 472 108 1.2 443 109 2 362 111 1.1 398 113	85	0.8	417
37 1.6 599 88 1.8 572 89 1.6 566 90 1 365 91 1.1 297 92 1.6 368 93 2.1 731 94 1.2 361 95 1.2 361 96 0.9 283 97 1.3 523 98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445 105 1.6 569 106 1.3 254 107 1 472 108 1.2 443 109 2 362 111	86	1.1	465
1.6 363 88 1.8 572 89 1.6 566 90 1 3655 91 1.1 297 92 1.6 368 93 2.1 731 94 1.2 446 95 1.2 361 96 0.9 283 97 1.3 523 98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445 105 1.6 569 106 1.2 443 109 2 362 110 1.5 510 111 1.1 398 113 1 362 114 2.1 288 115 <td>87</td> <td>16</td> <td>599</td>	87	16	599
32 312 89 1.6 566 90 1 365 91 1.1 297 92 1.6 368 93 2.1 731 94 1.2 446 95 1.2 361 96 0.9 283 97 1.3 523 98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445 105 1.6 569 106 1.3 254 107 1 472 108 1.2 443 109 2 362 111 1.1 398 113 1 362 114 2.1 288 115	88	1.0	572
300 1.0 300 90 1 365 91 1.1 297 92 1.6 368 93 2.1 731 94 1.2 446 95 1.2 361 96 0.9 283 97 1.3 523 98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445 105 1.6 569 106 1.3 254 107 1 472 108 1.2 443 109 2 362 110 1.5 510 111 1.1 398 113 1 362 <td>89</td> <td>1.0</td> <td>566</td>	89	1.0	566
30 1 300 91 1.1 297 92 1.6 368 93 2.1 731 94 1.2 446 95 1.2 361 96 0.9 283 97 1.3 523 98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445 105 1.6 569 106 1.3 254 107 1 472 108 1.2 443 109 2 362 110 1.5 510 111 1.1 390 112 1 398 113 1 362 114 2.1 288	90	1.0	365
31 1.1 237 92 1.6 368 93 2.1 731 94 1.2 446 95 1.2 361 96 0.9 283 97 1.3 523 98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445 105 1.6 569 106 1.3 254 107 1 472 108 1.2 443 109 2 362 110 1.5 510 111 1.1 398 113 1 362 114 2.1 288 115	01	11	305
92 1.0 300 93 2.1 731 94 1.2 446 95 1.2 361 96 0.9 283 97 1.3 523 98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445 105 1.6 569 106 1.3 254 107 1 472 108 1.2 443 109 2 362 110 1.5 510 111 1.1 390 112 1 398 113 1 362 114 2.1 288 115 0.9 310 116 1.2 375 <tr< td=""><td>91</td><td>1.1</td><td>297</td></tr<>	91	1.1	297
93 2.1 731 94 1.2 446 95 1.2 361 96 0.9 283 97 1.3 523 98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445 105 1.6 569 106 1.3 254 107 1 472 108 1.2 443 109 2 362 110 1.5 510 111 1.1 398 113 1 362 114 2.1 288 115 0.9 310 116 1.2 375 117 1.9 305 118 2 846 <t< td=""><td>92</td><td>1.6</td><td>300</td></t<>	92	1.6	300
94 1.2 446 95 1.2 361 96 0.9 283 97 1.3 523 98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445 105 1.6 569 106 1.3 254 107 1 472 108 1.2 443 109 2 362 110 1.5 510 111 1.1 390 112 1 398 113 1 362 114 2.1 288 115 0.9 310 116 1.2 375 117 1.9 305 118 2 846	93	2.1	731
95 1.2 361 96 0.9 283 97 1.3 523 98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445 105 1.6 569 106 1.3 254 107 1 472 108 1.2 443 109 2 362 110 1.5 510 111 1.1 390 112 1 398 113 1 362 114 2.1 288 115 0.9 310 116 1.2 375 117 1.9 305 118 2 846 119 1.1	94	1.Z	446
96 0.9 283 97 1.3 523 98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445 105 1.6 569 106 1.3 254 107 1 472 108 1.2 443 109 2 362 110 1.5 510 111 1.1 390 112 1 398 113 1 362 114 2.1 288 115 0.9 310 116 1.2 375 117 1.9 305 118 2 846 119	95	1.2	361
97 1.3 523 98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445 105 1.6 569 106 1.3 254 107 1 472 108 1.2 443 109 2 362 110 1.5 510 111 1.1 390 112 1 398 113 1 362 114 2.1 288 115 0.9 310 116 1.2 375 117 1.9 305 118 2 846 119 1.1 292 120 1.3 212 121 2.9 478 <t< td=""><td>96</td><td>0.9</td><td>283</td></t<>	96	0.9	283
98 2.2 580 99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445 105 1.6 569 106 1.3 254 107 1 472 108 1.2 443 109 2 362 110 1.5 510 111 1.1 390 112 1 398 113 1 362 114 2.1 288 115 0.9 310 116 1.2 375 117 1.9 305 118 2 846 119 1.1 292 120 1.3 212 121 2.9 478 122 1.3 513 <	97	1.3	523
99 1.7 406 100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445 105 1.6 569 106 1.3 254 107 1 472 108 1.2 443 109 2 362 110 1.5 510 111 1.1 398 112 1 398 113 1 362 114 2.1 288 115 0.9 310 116 1.2 375 117 1.9 305 118 2 846 119 1.1 292 120 1.3 212 121 2.9 478 122 1.3 513 123 1.1 221	98	2.2	580
100 1.7 498 101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445 105 1.6 569 106 1.3 254 107 1 472 108 1.2 443 109 2 362 110 1.5 510 111 1.1 390 112 1 398 113 1 362 114 2.1 288 115 0.9 310 116 1.2 375 117 1.9 305 118 2 846 119 1.1 292 120 1.3 212 121 2.9 478 122 1.3 513 123 1.1 221 124 2.1 800	99	1.7	406
101 2.2 315 102 1.4 550 103 1.8 760 104 1.1 445 105 1.6 569 106 1.3 254 107 1 472 108 1.2 443 109 2 362 110 1.5 510 111 1.1 390 112 1 398 113 1 362 114 2.1 288 115 0.9 310 116 1.2 375 117 1.9 305 118 2 846 119 1.1 292 120 1.3 212 121 2.9 478 122 1.3 513 123 1.1 221 124 2.1 800 125 1.6 231	100	1.7	498
102 1.4 550 103 1.8 760 104 1.1 445 105 1.6 569 106 1.3 254 107 1 472 108 1.2 443 109 2 362 110 1.5 510 111 1.1 390 112 1 398 113 1 362 114 2.1 288 115 0.9 310 116 1.2 375 117 1.9 305 118 2 846 119 1.1 292 120 1.3 212 122 1.3 513 123 1.1 221 124 2.1 800 125 1.6 231 126 <td>101</td> <td>2.2</td> <td>315</td>	101	2.2	315
103 1.8 760 104 1.1 445 105 1.6 569 106 1.3 254 107 1 472 108 1.2 443 109 2 362 110 1.5 510 111 1.1 390 112 1 398 113 1 362 114 2.1 288 115 0.9 310 116 1.2 375 117 1.9 305 118 2 846 119 1.1 292 120 1.3 212 121 2.9 478 122 1.3 513 123 1.1 221 124 2.1 800 125 1.6 231 126 1 217 126 1 217 <tr< td=""><td>102</td><td>1.4</td><td>550</td></tr<>	102	1.4	550
104 1.1 445 105 1.6 569 106 1.3 254 107 1 472 108 1.2 443 109 2 3622 110 1.5 510 111 1.1 390 112 1 398 113 1 362 114 2.1 288 115 0.9 310 116 1.2 375 117 1.9 305 118 2 846 119 1.1 292 120 1.3 212 121 2.9 478 122 1.3 513 123 1.1 221 124 2.1 800 125 1.6 231 126 1 217 127 <td>103</td> <td>1.8</td> <td>760</td>	103	1.8	760
105 1.6 569 106 1.3 254 107 1 472 108 1.2 443 109 2 362 110 1.5 510 111 1.1 390 112 1 398 113 1 362 114 2.1 288 115 0.9 310 116 1.2 375 117 1.9 305 118 2 846 119 1.1 292 120 1.3 212 121 2.9 478 122 1.3 513 123 1.1 221 124 2.1 800 125 1.6 231 126 1 217 126 1 217 122	104	1.1	445
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	105	1.6	569
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	106	1.3	254
108 1.2 443 109 2 362 110 1.5 510 111 1.1 390 112 1 398 113 1 362 114 2.1 288 115 0.9 310 116 1.2 375 117 1.9 305 118 2 846 119 1.1 292 120 1.3 212 122 1.3 513 123 1.1 221 123 1.1 221 124 2.1 800 125 1.6 231 126 1 217 127 2.2 688 128 1.2 523	107	1	472
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	108	1.2	443
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	109	2	362
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	110	1.5	510
112 1 398 113 1 362 114 2.1 288 115 0.9 310 116 1.2 375 117 1.9 305 118 2 846 119 1.1 292 120 1.3 212 121 2.9 478 122 1.3 513 123 1.1 221 124 2.1 800 125 1.6 231 126 1 217 127 2.2 688 128 1.2 523	111	1.1	390
112 1 333 113 1 362 114 2.1 288 115 0.9 310 116 1.2 375 117 1.9 305 118 2 846 119 1.1 292 120 1.3 212 121 2.9 478 122 1.3 513 123 1.1 221 124 2.1 800 125 1.6 231 126 1 217 127 2.2 688 128 1.2 523	112	1	398
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	113	1 1	362
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	114	21	288
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	114	2.1	200
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	110	0.9	310
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	110	1.2	3/3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	117	1.9	305
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	118	2	840
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	119	1.1	292
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	120	1.3	212
122 1.3 513 123 1.1 221 124 2.1 800 125 1.6 231 126 1 217 127 2.2 688 128 1.2 523	121	2.9	478
123 1.1 221 124 2.1 800 125 1.6 231 126 1 217 127 2.2 688 128 1.2 523	122	1.3	513
124 2.1 800 125 1.6 231 126 1 217 127 2.2 688 128 1.2 523	123	1.1	221
125 1.6 231 126 1 217 127 2.2 688 128 1.2 523	124	2.1	800
126 1 217 127 2.2 688 128 1.2 523	125	1.6	231
127 2.2 688 128 1.2 523	126	1	217
128 1.2 523	127	2.2	688
	128	1.2	523

Table A2.16: Microc	osm 16: Phragmites aus	stralis Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
129	1.5	561
130	1.8	520
131	2	741
132	2	291
133	1.4	253
134	3.6	389
135	1.9	768
136	1.3	249
137	1	432
138	2	567
139	0.8	326
140	4.1	804
141	1.3	329
142	11	333
143	0.5	487
143	1.8	324
144	1.0	759
145	2.3	756
140	1.5	107
147	1.6	/62
148	1.3	540
149	1.6	542
150	2.2	786
151	1	461
152	2.2	702
153	0.7	215
154	1.8	777
155	2.9	560
156	1.4	168
157	0.9	245
158	13	230
150	1.0	200
160	1.0	2/4
161	1.0	341
101	1.9	472
102	1.2	303
163	1.1	395
164	2	276
165	1.1	406
166	0.6	250
167	1.9	712
168	1.3	349
169	3.4	490
170	1	245
171	2	696
172	1.3	402
173	1.5	753
174	2.2	591
175	1.2	294
176	16	599
177	1.6	481
179	0.0	486
170	0.3	700 /F1
100	1	401
180	3	04/
181	2.1	/32
182	2.5	5/8
183	2.2	724
184	1.7	457
185	1.7	679
186	2.3	824
187	1.7	647
188	2.4	495
189	1.9	704
190	2.7	412
191	1.6	512
192	14	179
1.72		110

Stem Number	Stem Width (mm)	Stem Height (mm)
103	15	639
104	1.0	539 580
194	2.4	780
195	3.4	780
196	1.4	595
197	1.5	567
198	1.5	476
199	1	443
200	2.8	560
201	0.9	560
202	1.4	444
203	1.6	476
204	2.7	364
205	1.8	317
206	1.5	407
207	3.8	331
208	2.9	203
209	1.8	317
210	24	232
210	2.1	362
212	4. 4	274
212	1.3	2/4
213	3.7	97
214	2.0	523
215	1.4	361
216	2.6	315
217	2	398
218	1.5	304
219	2.4	304
220	2	226
221	2	391
222	3.3	70
223	2	394
224	2.6	454
225	1.2	220
226	1.1	328
227	14	241
228	1.4	253
220	0.9	451
220	1.6	218
230	1.0	210
231	2.2	271
232	1.9	321
233	1	200
234	1.4	325
235	1.4	194
236	1	316
237	3.1	339
238	2.5	266
239	1.3	395
240	1	431
241	3	230
242	1.4	481
243	1.8	77
244	2.5	105
245	21	232
246	12	431
240	1.4	195
240	2.2	262
240	4.2	302
249	1	43/
250	2.1	2/4
251	1.6	248
252	1.2	185
253	1.1	294
254	1.5	136
204		

Stem Number Stem Width (mm) Stem Height (mm)

	Total Stems	Total Number of Stems Stems with Inflorescence	255 4
		Max Height	1687
	Heights (mm)	Min Height	70
		Mean Height	546.8745098
Ctomo		Mode Height	804
Sterns		Median Height	495
	Widths (mm)	Max Width	4.2
		Min Width	0.5
		Mean Width	1.872941176
		Mode Width	2
		Median Width	1.8

Stem Number	Stem Width (mm)	Stem Height (mm)
1	5.4	305
2	2.9	1202
3	2	806
4	6.1	1322
5	3.4	1515
6	4.1	1362
7	7.4	1569
8	4.7	1643
9	3.1	688
10	6.8	571
11	7.2	1725
12	2.5	1298
13	4	1673
14	4.6	1376
15	3.8	13/2
10	7.0	975
17	7.0	1175
17	0.2	1175
18	4./	1129
19	3	1262
20	5.1	1565
21	3.8	1437
22	5.6	1496
23	8	1454
24	3.5	1310
25	2.9	544
26	6.5	1472
27	3.6	289
28	3.6	1149
29	5.5	795
30	0.0	1640
21	61	1617
22	5.9	1772
32	3.0	904
33	2.1	694
34	2.7	1459
35	2	935
36	1.9	11/2
37	1.9	601
38	1.8	623
39	5.5	139
40	5	1682
41	8.7	1937
42	3.4	1296
43	4.7	1429
44	5.9	1076
45	1.5	685
46	4.2	1423
47	2.1	968
48	2.6	1131
40	2.0	1057
50	5.5	1607
50	0.0	1007
50	4	1001
52	1.0	082
53	1.5	661
54	3.1	1062
55	6.8	1777
56	1.9	822
57	7.2	1778
58	4.6	1349
59	2.9	1306
60	2.7	1242

Stem Number	Stem Width (mm)	Stem Height (mm)
62	7.3	1572
63	5	1694
64	1.9	1115
65	1.8	565
66	2	769
67	2.6	1199
68	3.8	1348
69	1.6	836
70	2.8	475
71	2.3	950
72	2.7	595
73	2.2	578
74	1.4	612
75	3.5	989
76	2.2	326
77	3.5	1434
78	2.1	947
79	4	361
80	2.3	912
81	1.3	772
82	4.3	476
83	2.9	1345
84	2.2	839
85	3.4	1209
86	3.3	1457
87	3.5	1346
88	3.2	1382
89	1.5	911
90	3.9	1739
91	1.9	1136
92	3.3	1191
93	1.7	685
94	2.6	1002
95	3.8	125
96	3.4	1179
97	2.1	640
98	2.7	1006
99	1.7	804
100	4.3	1511
101	2.8	830
102	1.4	736
103	7.6	1525
104	2.4	1086
105	7	1820
106	3.1	1217
107	3.3	1366
108	2.4	812
109	4	1360
110	23	914
111	2.3	671
112	1.8	901
113	33	1235
114	5.9	1436
115	3.4	625
116	3. 4 2	623
110	2	1074
110	2.0	024
110	4.1	934
119	2	142
120	2.0	309
121	3.4	1400
122	∠	1106

Stem Number	Stem Width (mm)	Stem Height (mm)
123	2.6	1162
124	2.1	983
125	3.5	1146
126	4	1280
127	5.8	1668
128	1.7	879
129	2.9	1260
130	3.4	1364
131	2.7	1174
132	3.2	1058
133	4.9	1378
134	4.3	1483
135	3	1231
136	27	881
137	6.1	1542
138	6	270
139	53	1693
140	3.3	1523
141	5	1556
142	4.8	1486
143	4.0	1253
143	7.3	1602
144	3.1	1212
145	4.4	515
140	5.5	1176
147	4.0	1217
140	2.3	503
149	4.3	617
150	3.5	1299
151	2.5	579
152	2.0	270
155	2.0	900
154	3.5	437
155	2.7	917
150	1.9	1221
157	3.0	1406
150	3.5	1490
159	1.5	090
160	2.1	003
161	1.0	993
162	2.2	587
163	1.8	1197
104	1.8	300
100	2.4	200
100	2.8	/ 84
107	1.4	525
108	4	382
109	2.8	1124
170	2.8	∠95
1/1	2.5	203
1/2	3	897
1/3	1.4	/1/
1/4	2.3	1055
1/5	2.1	1060
1/6	1.8	690
1//	1.9	489
1/8	1./	5/2
179	2.6	1180
180	3	1175
181	2.1	967
182	1.5	811
183	3.5	375

Table A2.17: Microco	osm 1: Lythrum salicaria	Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
184	2.8	929
185	2	946
186	31	1206
100	3.1	1200
187	2.8	1003
188	2	734
189	1.8	838
190	4	254
191	2.2	739
192	2.5	134
102	2.5	429
195	3.5	428
194	2	331
195	2.6	349
196	2	872
197	1.6	285
198	2	575
199	2.8	282
200	2.0	270
200	2.1	370
201	2.4	229
202	1.5	591
203	3.2	201
204	2.4	818
205	16	571
206	2	784
200	2	661
207	2	001
208	1.8	3/1
209	1.7	805
210	2.7	308
211	1.5	539
212	1.8	736
213	1.8	637
213	1.0	461
214	2	401
215	2	/56
216	1.8	160
217	2.5	199
218	1.6	662
219	1.5	765
220	2	779
220	1.6	460
221	1.0	469
222	1.3	672
223	1.2	524
224	1.4	686
225	2	336
226	1.4	740
227	1.3	533
228	1.0	470
220	1.2	470 E70
229	1	2/4
230	1.7	611
231	1.4	320
232	1.1	440
233	1.6	258
234	1.8	319
235	12	175
200	1.2	100
230	2.3	000
237	0.8	338
238	1.1	145
239	1.9	171
240	1.1	142
241	15	296
2/2	0.0	200
242	0.3	210
243	1.4	188

Stem Number Stem Width (mm) Stem Height (mm)

	Total Stems	Total Number of Stems	243
		Stems with Inflorescence	105
	Heights (mm)	Max Height	1937
		Min Height	125
		Mean Height	922.600823
Champa		Mode Height	571
Stems		Median Height	900
	Widths (mm)	Max Width	8.7
		Min Width	0.8
		Mean Width	3.07654321
		Mode Width	2
		Median Width	2.7

Table A2.18: Microc	osm 2: Lythrum salicaria	a Stem Measurements.
Stem Number	Stem width (mm)	Stem Height (mm)
2	3.0	450
3	2.2	247
4	1.9	520
	3.4	315
6	2.0	846
7	2.3	362
8	5	1472
9	5.2	839
10	3.6	1481
11	2.7	788
12	3.9	1454
13	3.6	924
14	3.1	1162
15	4.3	1153
16	4.3	1440
17	5.3	1522
18	6.4	1644
19	4.2	505
20	۳.۷ ۲	1380
20	35	1130
22	3.5	1060
22	6.9	1817
23	0.0 <u>4</u> Q	1651
25	- 1 .0	1665
26	5.5	1578
20	3.3	1376
20	2.7	1303
20	7.0	1738
29	5	1152
21	16	1/10
22	4.0	1418
32	3.0	077
24	3.0	1202
25	6.4	1440
30	0.4	1102
37	6.5	1702
38	3.2	1169
30	2.5	1176
40	2.5	850
40	2.9	1220
42	3	1057
43	33	1008
44	4	265
45	41	1460
46	3.6	1197
47	3.6	1569
48	4	1848
49	2.6	435
50	2.8	1411
51	13	738
52	3	1321
53	35	1369
54	4.3	1507
55	6.3	1103
56	2.4	1233
57	4	1522
58	6.9	1644
59	5.7	1816
60	4 7	1647
61	11	614
62	11.5	271
63	2.7	961
64	23	641
~	2.0	110

Table A2.18: Microci	osm 2: Lythrum salicaria	a Stem Measurements.
Stem Number		Stem Height (mm)
65	2.3	597
67	3.2	756
69	9.0	1502
60	0.0	1592 594
70	3.5	353
70	1.5	353
71	3.2	852
72	4	1541
73	3.3	1248
74	5.5	1443
75	3.2	976
76	4.2	1435
70	1.9	609
78	3.2	953
79	3.2	1022
80	5.2	743
81	3.1	310
82	4.5	114/
83	2	421
84	2.3	572
85	6.3	2005
86	3.6	1123
87	2.8	1042
88	1.6	867
89	6.7	1504
90	4.8	1633
91	3	1022
92	4.5	1216
93	2.6	1118
94	2.6	1301
95	4.1	1431
96	3.5	1290
97	5.2	1257
98	6.5	1752
99	4.6	1277
100	2.8	317
101	5.2	1672
102	4.4	1426
103	6.6	1851
104	10.6	1311
105	3.7	634
106	3	1071
107	3	1401
108	2.1	1027
109	2.5	977
110	5.2	1463
111	3.4	817
112	5.5	2077
113	1.9	909
114	3.6	1416
115	3.7	267
116	4.8	1749
117	4.4	1353
118	3.4	1321
119	5.3	1547
120	3.4	1099
121	4.6	1414
122	4.0	1/77
122	7.4	888
120	2.0	1504
124	5.4	1004
125	0.0	10/2
120	3.4	901
127	3.1	1001
128	4.1	1191

Stem Number	Stem Width (mm)	Stem Height (mm)
129	4.9	709
130	5.3	1504
131	2.7	1147
132	3.5	1223
133	7.2	1914
134	6	1472
135	5.1	1499
136	3.8	1334
137	3.3	1237
138	7.6	1684
139	6.1	1852
140	6	1713
141	2.2	918
142	3.4	1072
143	57	1757
144	57	1331
145	3.6	1427
146	5	1318
147	23	641
148	2.9	477
149	2.0	997
150	3.8	1412
151	43	928
152	5	1280
153	37	1323
154	2.5	1081
155	1.6	807
155	1.0	674
157	2	489
158	15	317
159	2	557
160	11	362
161	4.1	222
162	3.5	947
163	3.4	1151
164	1	582
165	14	679
166	31	451
167	2.9	788
168	2.0	724
169	2	507
170	3.2	511
171	2.8	742
172	2.0	960
173	2.5	771
174	2.5	1025
175	2.1	689
176	3.4	251
177	2.8	231
178	2.5	210
179	2.8	161
180	2.6	162
181	1.8	327
101	1.0	521

Stem Number Stem Width (mm) Stem Height (mm)

	Total Stems	Total Number of Stems	181
		Stems with innoiescence	90
	Heights (mm)	Max Height	2077
		Min Height	161
		Mean Height	1090.127072
Ctomo		Mode Height	1504
Sterns		Median Height	1147
	Widths (mm)	Max Width	11.5
		Min Width	1
		Mean Width	3.874033149
		Mode Width	3.6
		Median Width	3.5

Table A2.19: Microc	osm 3: Lythrum salicaria	a Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
1	3	606
2	1.9	298
3	<u>۲</u>	210
5	5.0	1666
5	2.1	047
7	2.2	1450
8	4.4	1439
0	6.1	1/23
10	7.5	1430
10	5.6	1470
12	5.1	836
13	4.1	1051
14	1.9	1121
15	4.7	1034
16	1.8	956
17	3	1388
18	2	974
19	4.1	1301
20	2.2	875
21	5.8	1427
22	1.9	847
23	1.8	343
24	2.5	1054
25	2.9	1147
26	2.3	914
27	2.8	91
28	2	718
29	4.6	1080
30	5.4	1432
31	1.5	402
32	2	623
33	2.5	1171
34	4.5	1383
35	3.4	935
36	3.3	1131
37	1.7	752
38	3.7	944
39	2.4	1162
40	5.8	1689
41	3.7	522
42	5.3	1428
43	2.6	1047
44	1.4	/92
45	3.5	343
40	4.4	440
4/	2.1	249
48	2.4	1017
49	1.7	<u>∠0∠</u> 1580
51	22	968
57	3.6	1//06
53	3.0	949
54	61	1455
55	4	1171
56	4.6	1356
57	3.8	1389
58	2.5	821
59	7	1619
60	57	1687
61	3.8	1444
62	2.7	591
63	2.8	402
64	4 7	1539
U 7	7.7	1000

Table A2.19: Microc	osm 3: Lythrum salicaria	a Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
65	3.5	1078
66	4.7	1311
67	3.9	1129
68	2.6	1046
69	3.6	914
70	3.2	1190
71	2.5	531
72	2.6	1053
73	2.4	1151
74	3.3	1187
75	2.6	741
76	4	312
77	1	627
78	3.3	604
79	8.1	1875
80	8.3	1619
81	2.8	974
82	9.3	1805
83	6.4	1490
84	4.1	407
85	3.9	1317
86	4.5	777
87	1.1	334
88	2.4	1138
89	9.5	1923
90	6.1	1634
91	2.3	799
92	3.7	934
93	6.1	1512
94	7.6	1795
95	57	989
96	4.3	1348
97	6.8	1582
98	2.7	1289
99	1.3	294
100	27	1176
101	27	814
102	2.5	181
102	2.0	261
100	3.6	186
105	3.3	257
106	2.4	263
107	2.7	1072
102	2.0 A	557
109	35	1184
110	4 4	920
111	4.5	1530
112	4.0	280
112	5.4	200
113	1.5	824
114	1.0	100
110	1.0	199
110	1.9	140
117	1.0	103
110	1.0	244
119	1.5	182
120	2.4	215
121	2.8	709
122	4.2	1431
123	5.5	1450
124	6.2	1530
125	4.1	1117
126	5.7	1693
127	4.1	1554
128	3.5	921

Stem Number	Stem Width (mm)	Stem Height (mm)
129	1.6	667
130	6.1	1463
131	5.5	1666
132	5.2	1571
133	3.5	1382
134	1.5	816
135	2	183
136	4.8	1677
137	3.5	896
138	2.8	1442
139	3	1311
140	4.1	1254
141	3.3	1468
142	6.5	1463
143	8.7	1748
144	3.7	1462
145	5.3	1499
146	8.1	1697
147	3	1184
148	2.3	842
149	3.9	876
150	1.3	648
151	2.5	748
152	3.1	919
153	2.9	1012
154	2.6	1187
155	1.7	517
156	2.5	346
157	2.1	534
158	2.5	291
159	2.8	205
160	2.2	147
161	19	192

	Total Stems	Total Number of Stems	161
		Stems with Inflorescence	70
		Max Height	1923
	Heights (mm)	Min Height	91
		Mean Height	979.3229814
Stome		Mode Height	261
Stems		Median Height	1017
	Widths (mm)	Max Width	9.5
		Min Width	1
		Mean Width	3.666459627
		Mode Width	2.5
		Median Width	3.3

Table A2.20: Microc	osm 4: Lythrum salicaria	a Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
1	5	117
2	4.1	954
3	2.8	594
4	4.8	1091
5	1.4	420
5	2.4	/18
/	2.6	484
8	3.9	/44
9	3.0	1329
10	4.2	1159
10	5.5	1340
12	2.2	1349
13	4.Z	1230
14	5	1200
15	1.9	865
16	4.2	921
17	3.8	1283
10	2.1	003
19	2.3	<u>54/</u>
20	3	202
21	4.3	415
22	2.1	1283
23	0.7	/19
24	3.2	1103
25	3.9	857
26	2.7	1276
27	5.2	1407
28	2.8	119
29	4.1	1178
30	3.8	1202
31	1.6	581
32	2.2	968
33	4.8	1322
34	5.5	1361
35	1.9	351
36	6.2	1215
37	2.4	530
30	1.0	402
39	Z.4	969
40	5	301
41	2.4	000
42	4.1	313
40	0.9	1469
44	0.9	1400
C+P	J.9 1 9	101
40	5.8	1/80
+/	0.0	716
40	1.0	020
49	3.0	300 AEE
50	1.0	400
50	0.7	402
52	0.1	1020
54	4.5	1286
55	4.1	1200
55	2.0	401
57	0.4	1317
57	3.9	1021
50	2.0	264
03	2.J	<u>∠04</u> 1540
61	4.5	1513
60	5.2	204
62	1.2	348
63	0.4	1001
64	5.9	1285

Stom Number	osm 4: Lytnrum salicaria	a Stem Measurements.
65		653
66	2.9	910
67	3.0	1271
68	3.3 4	1271
69	34	882
70	17	954
71	2.1	842
72	5.4	1317
73	6.8	1560
74	2.3	991
75	2.5	1189
76	3.5	476
77	4.2	583
78	4	1324
79	2.4	1007
80	4.2	684
81	3.6	1659
82	3.9	1294
83	2	1132
84	4.3	889
85	4.8	1190
86	2.8	867
87	5.1	1534
88	7.2	1567
89	6.2	1156
90	6.1	1234
91	2.7	540
92	2.9	1131
93	5.8	1391
94	2.6	702
95	7	1365
96	3.2	1317
97	3.4	1221
98	2.8	1313
99	1.1	602
100	5	888
101	5.9	1376
102	5.3	1387
103	2.5	934
104	6.1	1490
105	6.8	1226
106	3.5	1517
107	3.3	1514
108	2.7	360
109	1.4	298
110	3.5	438
111	2	681
112	1.5	475
113	1.7	910
114	3	832
115	3.4	1218
116	5.7	1622
117	5.8	1//
118	2.7	14/3
119	4	597
120	4.2	632
121	8.4	1429
122	4.2	8/2
123	3.7	1031
124	4	713
125	3.5	1121
126	2.4	1161
127	2.4	381
128	5.7	1200

Table A2.20: Microc	osm 4: Lythrum salicaria	a Stem Measurements.
Stem Number	Stem width (mm)	Stem Height (mm)
129	2.2	592
130	5.6	1707
131	5.8	1026
132	4.3	1362
133	4	1196
134	1.7	245
135	2.2	448
136	0.8	559
137	4.3	1184
138	4.7	1365
139	3.5	1204
140	1.1	744
141	2.5	586
142	1.8	747
143	5	1465
144	4.4	1827
145	3.3	1365
146	2.8	606
147	1.8	828
148	8.4	1719
149	1.8	1097
150	2.6	1003
151	2	514
152	22	1223
153	2.2	609
153	20	500 529
154	2.0	558
100	2.1	554
156	3.5	490
157	5.6	1/5/
158	1.8	731
159	0.9	572
160	1.8	475
161	6.8	417
162	5.8	1503
163	3.9	1394
164	3.2	58
165	6.7	1867
166	6.2	1808
167	5.3	1350
168	5.2	979
169	6.9	1778
170	2.6	812
171	1.8	901
172	2.9	602
173	3	217
174	1.8	189
175	2.1	131
176	1.9	847
177	4.6	182
178	3.3	259
179	4.9	1636
180	е. г	1055
181	63	1711
192	0.0	177
102	4.0	274
103	1.0	105
184	4.8	105
185	2.5	267
186	2.9	293
187	2.7	181
188	2.6	215
189	2	308
190	1.8	251
191	2.7	223
192	1.8	212

Table A2.20: Microcosm 4: Lythrum salicaria Stem Measurements.

Stem Number	Stem Width (mm)	Stem Height (mm)
193	3.3	472
194	1.2	721
195	6.7	856
196	2.7	1040
197	6	1272
198	2.6	306
199	5.2	1224
200	4.6	1248
201	5.6	1697
202	3.3	249
203	2.5	565
204	2.4	1087
205	1.6	644
206	30	467
207	2.3	798
208	3.2	581
209	3.6	904
210	3	374
211	2.4	485
212	2.8	136
213	3.7	212
214	1.9	810
215	1.6	690
216	2.1	185

	Total Stems	Total Number of Stems Stems with Inflorescence	216 81
		Max Height	1867
	Heights (mm)	Min Height	58
		Mean Height	887.7472527
Stome		Mode Height	1317
Sterns		Median Height	866
	Widths (mm)	Max Width	30
		Min Width	0.7
		Mean Width	3.754166667
		Mode Width	1.8
		Median Width	3.3

Table A2.21: Microc	osm 5: Lythrum salicaria	a Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
1	3.5	1253
2	2.5	1075
3	4.2	954
4	5.9	1595
5	2.1	004
5	5.3	871
/	3.8	1214
8	3.6	1244
9	3.9	/56
10	3.7	1326
11	2.8	919
12	5.6	1425
13	3.2	1162
14	3.8	1384
15	3.4	948
16	3.1	1069
17	2.2	//5
18	5.7	1137
19	3.8	864
20	1.9	467
21	2.8	995
22	5.2	643
23	2.5	1037
24	3.6	1174
25	4.1	1344
26	5.3	804
27	1.3	691
28	1.3	565
29	1.8	665
30	1.4	598
31	1.7	460
32	4.9	515
33	4.1	919
34	3.3	936
35	6.5	799
36	4.2	1186
37	3.1	1672
38	3.8	1009
39	1.4	586
40	4	1106
41	4.9	1535
42	4.8	1526
43	2.8	1099
44	5.4	1644
45	2.5	1045
46	5.7	1488
47	4.2	1006
48	4.5	1529
49	4.9	898
50	3.1	1017
51	9	872
52	2.7	1114
53	6.8	869
54	3.7	1228
55	4.8	918
56	5.5	935
57	10.1	1514
58	6	1494
59	12	537
60	25	1051
61	2.0	632
62	2.1	625
62	1.6	020 507
03	1.0	097
04	2.4	845

Table A2.21: Microc	osm 5: Lythrum salicaria	a Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
65	3.1	1117
67	1.9	849
69	1.2	077
60	2.4	977
70	2.9	104
70	2.9	024
71	3.0	034
72	4.9	625
74	3.0	620
74	2.7	1000
75	2.7	1016
70	2.0	374
78	3.8	883
70	0.7	1012
80	0.7	220
81	3.4	906
82	1.2	516
83	3.1	030
84	3.1	1031
04 85	37	1031
88	22	836
87	1.6	826
88	2.1	575
80	2.1	070
90	3.5	1128
01	1.0	200
91	2.0	834
03	2.5	886
90	2.0	677
94	2.5	899
90	2.5	961
90	2.8	803
08	0.0	A77
90	0.3	596
100	1	296
100	1.8	476
107	1.0	499
102	1	400
103	2.4	1015
105	3.4	1192
106	2.3	964
107	3.2	940
108	2	553
109	0.4	290
110	2.4	901
111	2.3	791
112	2.6	845
113	3.4	874
114	4.4	909
115	4.9	913
116	2.5	915
117	4.2	914
118	1.3	904
119	3.3	957
120	1.1	567
121	2.8	1094
122	2.2	122
123	3.4	1126
124	3.5	1357
125	4.8	866
126	2.9	1112
127	3.9	1404
128	2.7	339
.20		

Stop Number	Stom Width (mm)	Stem Measurements.
Jumper		
129	4.4	1182
130	2.5	326
131	2.4	627
132	2.4	742
133	2.3	771
134	3.2	1012
135	3.6	497
136	0.2	284
137	2.5	819
138	1.1	167
139	3	977
140	4.1	973
141	3.2	1136
142	5	959
143	29	706
143	2.5	100
144	0.8	440
140	3.∠	1259
140	3.8	1358
147	3	841
148	1.2	553
149	0.8	472
150	0.9	597
151	2.2	358
152	2.5	893
153	0.9	349
154	4.8	1086
155	2.8	461
156	17	772
157	1.6	196
158	2.4	859
150	2.4	706
109	25	790
160	2.5	920
161	1.5	831
162	1.4	231
163	2.4	849
164	1.5	635
165	1.9	837
166	2	710
167	2.4	797
168	2.5	891
169	2.7	915
170	1.4	446
171	1.9	447
172	1.5	264
173	1.7	305
174	1.4	431
175	0.9	311
176	27	736
170	2.1	707
170	2.5	101
170	2.4	5/1
1/9	2.1	100
180	2.6	1/2
181	2.8	354
182	1.4	502
183	1.3	445
184	1.2	422
185	1.8	451
186	1.2	234
	1	050
187	1.1	252

Total Stome	Total Number of Stems	188
Total Sterns	Stems with Inflorescence	55

 Stem Number
 Stem Width (mm)
 Stem Height (mm)

	Heights (mm)	Max Height	1672
		Min Height	122
		Mean Height	823.787234
Stome		Mode Height	919
Sterns		Median Height	854
	Widths (mm)	Max Width	12.5
		Min Width	0.2
		Mean Width	3.003191489
		Mode Width	2.5
		Median Width	2.7

Table A2.22: Microc	osm 6: Lythrum salicaria	a Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
1	3.0	206
2	5./	016
3	2.0	910
4	3.2	1137
5	4.3	1140
7	3.2	020
0	2.0	920
0	2.5	1055
9	3.5	45
11	2.3	1457
12	3.7	662
12	1.1	002
14	2.5	1154
14	1.9	202
10	1.0	1260
17	22	627
10	2.2	1099
10	5.5	1602
19	0./ 2.1	0/1
20	2.1	<u></u>
21	2.0	1097
22	2.0	908
23	2.0	030
24	2.7	160
25	1.0	1650
20	4.0	1107
21	0.0	572
20	1.0	1729
29	26	1110
30	2.0	1120
22	4.2	1427
32	4.2	1437
34	2.0	1215
25	2.3	1070
30	2.4	1070
37	3	856
38	22	449
30	17	1696
40	4.7	720
40	59	1800
42	11	371
43	4	1525
44	3.5	1440
45	4.2	1105
46	2.1	402
47	0.5	155
48	11	402
49	1.9	927
50	1.5	695
51	5.6	655
52	2.8	1387
53	21	936
54	2.7	1108
55	3.3	837
56	4.6	1472
57	27	858
58	4	1048
59	4	1593
60	27	1257
61	3.4	1392
62	7.4	1955
63	3.2	736
64	12	52
~	2	JL JL

Ctore Neverbar	Store Width (mm)	Ctars Usinkt (mm)
Stem Number	Stem Width (mm)	Stem Height (mm)
65	5.4	1742
66	24	835
67	1.2	432
07	1.2	432
68	1.7	841
69	4	1126
70	31	1083
71	2.6	092
/1	2.0	962
72	3.2	425
73	3.2	1255
74	2	913
75	0.7	075
75	2.7	8/5
76	2.1	749
77	3.1	1202
78	3	1235
70	0.7	121
79	2.1	421
80	4.5	1228
81	2.3	965
82	13	480
02	2.0	
83	2.2	671
84	1.5	330
85	2.1	754
90	1.4	411
00	1.4	411
87	3.6	1358
88	3.6	1314
89	22	886
00	1.0	340
90	1.9	349
91	3.8	1376
92	3.1	1079
02	2.4	204
93	2.4	394
94	3.8	505
95	3.3	1226
96	39	1220
07	0.0	004
97	2	904
98	2.1	1114
99	2.6	1076
100	1.6	608
100	1.0	090
101	3.3	1170
102	1.3	505
103	5.1	1312
104	2.7	1012
104	3.7	1047
105	2.6	381
106	3.3	1142
107	2.6	269
109	2.2	090
100	2.3	900
109	2.4	1004
110	3	395
111	2	524
110		807
112	2.1	007
113	2.4	256
114	2.5	369
115	31	174
440	0.1	
116	2.4	892
117	3	85
118	3	897
110	2.5	340
113	2.0	340
120	1.1	611
121	1.7	763
122	23	705
100	1.0	226
123	1.9	336
124	2.1	311
125	1.9	422
126	2.2	224
120	2.2	334
127	1.3	268
128	1.6	232

Table A2.22: Microcosm 6: Lythrum salicaria Stem Measurements.

Stem Number	Stem Width (mm)	Stem Height (mm)	
129	2.1	190	
130	1.4	43	

	Total Stems	Total Number of Stems	130
		Stems with Inflorescence	47
	Heights (mm)	Max Height	1955
		Min Height	43
		Mean Height	876.8692308
Stome		Mode Height	1137
Sterns		Median Height	914.5
	Widths (mm)	Max Width	7.4
		Min Width	0.5
		Mean Width	2.909230769
		Mode Width	2.1
		Median Width	2.6

Table A2.23. MICTOCOS	sm /: Lythrum saiicaria	Stem measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
1	32	1060
-	0.2	1000
2	2.8	830
3	2.4	220
4	2.2	640
5	2.2	006
5	2.2	990
6	2.7	623
7	3.5	1158
9	2	412
8	3	412
9	1.7	532
10	3.3	1073
11	3.0	1312
11	5.9	1912
12	3	1095
13	4	1009
14	2	922
14	10	322
15	4.9	1204
16	2.8	1070
17	2.8	1054
10	2.0	1000
18	5.7	1528
19	3.5	1314
20	3.8	1237
21	3 5	1064
21	3.5	1004
22	2.7	559
23	6.4	1423
24	3.5	1131
24	3.0	1131
25	3.8	132
26	2.4	902
27	3.2	1109
21	5.2	1109
28	2	/28
29	2.4	1037
30	47	423
00	4.1	420
31	3.9	1129
32	2.8	924
33	49	1492
24	3.3	1048
- 34	3.3	1048
35	2.3	1146
36	3.4	1382
37	21	038
57	2.1	950
38	7.5	1714
39	3.1	977
40	3.2	554
40	0.2	555
41	2.9	1135
42	6.8	1721
43	6.3	1556
44	0.0	1555
44	3.6	964
45	4	485
46	2.6	1036
10	61	1540
4/	0.1	1049
48	2.3	/3
49	1.7	734
50	1.8	376
50	15	600
51	1.5	002
52	3.6	1568
53	1.7	781
E4	4.2	1312
	4.3	1312
55	1.5	312
56	2	906
F7	25	909
57	2.0	300
58	3.8	1215
59	2.2	916
60	9.5	1723
00	3.0	1123
61	5.2	1437
62	7.4	1673
63	29	1052
64	4.0	1405
64	4.9	1485
65	3.5	1158
66	3.9	1198
67	2.0	100
0/	3.2	1330
68	3.1	1028
69	6	1399

Table A2.23: Microco	sm 7: Lythrum salicaria	Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
71	2.5	516
72	6.2 1658	
73	6.4	1316
74	3.1	963
75	2.5	1270
76	3.2	942
77	3.3	945
78	1.8	451
80	2.8	420
81	4.3	1263
82	3.6	1584
83	7.1	1550
84	3.6	878
85	1.8	293
86	3.2	1132
87	1.1	510
80	5.2	721
90	2.6	1042
91	5.4	1316
92	8.6	1296
93	3.5	1346
94	3.4	1234
95	3	700
96	4.4	1222
97	1.8	183
90	4.2	1470
100	4.1	881
100	3.7	1134
102	5.4	1506
103	3.7	1338
104	6	622
105	4.1	1397
106	4.4	1250
107	3.3	531
109	2.8	1232
110	3	981
111	2	708
112	4.4	558
113	1.1	510
114	2	245
115	1.6	424
110	4	01/ 588
118	2.6	873
119	1.2	497
120	2.6	874
121	2.7	724
122	1.8	526
123	0.8	460
124	3	861
125	2.9	417
120	4.1	595
128	2.8	716
129	2	960
130	3.9	927
131	3.7	502
132	1.9	689
133	5	102
134	3.4	411
135	1.8	/ 1b 902
137	2.6	1023
138	6.2	649

Table A2.23: Microcosm 7: Lythrum salicaria Stem Measurements.

Stem Number	Stem Width (mm)	Stem Height (mm)
139	3.1	595
140	2.1	342
141	1.5	352
142	2.1	430
143	2.6	235
144	3.4	910
145	1.8	371
146	1.7	333
147	0.9	324
148	1.4	409
149	0.9	377
150	1.6	223
151	3	219
152	1.1	327
153	1.2	457
154	0.6	340
155	2.5	286
156	2.1	262
157	2	339
158	1.1	208
159	1.5	282
160	2.9	244

	Total Stems	Total Number of Stems	160
		Stems with Inflorescence	50
	Heights (mm)	Max Height	1824
		Min Height	73
		Mean Height	882.41875
Champa		Mode Height	1158
Stems		Median Height	919
	Widths (mm)	Max Width	9.5
		Min Width	0.6
		Mean Width	3.29125
		Mode Width	2
		Median Width	3
Table A2.24: Microcosm 8 Lythrum salicaria Stem Measurements.

There were no surviving Lythrum salicaria within Microcosm 8.

Table A2.25: Microc	osm 9: Lythrum salicaria	a Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
1	3.0	1544
2	4	1346
3	1.9	1045
4	0.2	020
5	5.0	950
7	5.2	1674
0	5.7	1402
0	4.5	1577
10	4.5	1000
10	2.0	1000
12	4.0	1120
12	3.1	1125
13	3.1	1232
14	3.3	1190
10	5.5	1201
10	3.4	825
18		620
10	24	466
20	2.4	870
20	2.4	805
21	5.9	1085
22	4 /	1337
23	4.4	1011
24	55	1267
25	2.5	025
20	2.5	1224
28	3.7	516
20	2	351
30	24	865
21	1.7	551
32	3	833
33	85	1244
34	2.7	1136
35	4.2	845
36	4.2	422
37	0.9	330
38	1.5	413
39	1	468
40	3.4	440
41	1.6	536
42	2.2	605
43	0.8	327
44	2 1	271
45	1.8	966
46	2.3	917
47	1.9	592
48	2.8	904
49	3.3	1022
50	1.6	707
51	1.4	515
52	2.3	943
53	3	1128
54	5.7	1079
55	2.6	673
56	1.9	595
57	1.5	605
58	1.4	645
59	1.4	524
60	2	756
61	4.1	1336
62	1.2	170
63	1.5	719
64	2.5	1001

Table A2.25: Microc	osm 9: Lythrum salicaria	a Stem Measurements.
Stem Number		Stelli Height (mm)
65	2.9	1260
66	2.9	1122
67	2.4	1036
68	4.4	1228
69	3.2	1252
70	5	1209
71	5	811
72	1.1	370
73	1.7	713
74	2.4	467
75	2.3	766
76	1.9	630
77	2.9	1117
78	5.3	1191
79	1.8	992
80	2.7	1100
81	1	460
82	1.7	817
83	2.6	793
84	2.2	844
85	3.6	1263
86	4.7	308
87	1.4	494
88	0.7	300
89	4	1249
90	6	1016
91	2.2	263
92	2.1	877
93	3.3	1145
94	1.9	522
95	2	957
96	41	1358
97	6.6	1404
98	1.2	605
99	4.6	1267
100	2.8	386
100	2.0	1466
102	1.5	672
102	2	672
103	26	1207
104	3.0	11597
105	3	1396
100	4	620
107	20	1179
100	2.9	1020
109	3.9 A F	1030
110	4.5	1385
111	2.1	919
112	1.6	/88
113	3.8	1387
114	1.8	885
115	3.5	1134
116	1.2	510
117	2	609
118	2.3	880
119	4.3	1444
120	2.1	817
121	8.2	1334
122	5.1	1181
123	2.8	1176
124	2.4	1091
125	2.5	986
126	2.1	849
127	5	1193
128	3	1241
	, v	

Stom Number	Stom Width (mm)	Ptom Height (mm)
Stem Number		Stell Height (IIIII)
129	1.6	578
130	2.8	945
131	2.2	607
132	1.7	725
133	2.9	1080
134	2.3	693
135	1.7	868
136	3.5	1079
100	1.0	644
137	1.9	044
138	2.1	628
139	2.8	1077
140	1.9	796
141	2.9	1007
142	2.7	960
143	2.7	1000
144	16	549
145	2.6	046
140	2.0	340
146	3.5	740
147	3.2	347
148	1.9	701
149	1.8	820
150	3.7	953
151	4	744
152	4.4	600
152	4.4	345
153	0.7	345
154	1.2	360
155	2.2	420
156	2.5	540
157	1.9	594
158	1.3	569
159	12	486
160	2.2	654
161	4.4	466
101	1.1	400
162	1.9	557
163	1.3	320
164	0.8	382
165	1.7	367
166	1.6	876
167	23	616
168	2.0	688
160	2.5	710
169	2.5	710
170	1.6	822
171	2.1	550
172	2.4	708
173	1	415
174	0.7	473
175	1.2	516
176	0.9	288
177	1.3	200
170	1.5	220
1/8	2.5	852
179	2.2	8/5
180	2	740
181	1.4	646
182	1.9	547
183	2	528
184	13	429
185	1.0	355
100	1.0	000
186	4.6	253
187	1.1	416
188	1.5	195
189	0.9	188
190	3.1	443

 Stem Number
 Stem Width (mm)
 Stem Height (mm)

		· · · · · · · · · · · · · · · · · · ·	
	Total Stems	Total Number of Stems	190
		Stems with Inflorescence	63
		Max Height	1674
	Heights (mm)	Min Height	170
		Mean Height	827.4473684
Stome		Mode Height	605
Siens		Median Height	817
	Widths (mm)	Max Width	8.5
		Min Width	0.7
		Mean Width	2.698947368
		Mode Width	1.9
		Median Width	2.35

Table A2.26: Microc	osm 10: Lythrum salicar	ria Stem Measurements.
Jenn Number		Stelli neight (mm)
2	2.5	1192
2	0.0	1416
3	6.0	1410
5	6.1	1366
6	67	1608
7	7.6	1625
8	5.5	1264
9	4.2	1334
10	3.1	950
11	1.6	796
12	0.5	411
13	4.7	1592
14	4.5	1658
15	0.9	492
16	2.1	934
17	3.4	1278
18	3.2	1120
19	3.3	918
20	4.5	1084
21	6.6	1762
22	2.2	1150
23	2.4	1126
24	3.6	1339
25	5.1	1586
26	2.9	1251
27	2	972
28	4.8	1563
29	6.5	1385
30	3.6	1058
31	6.6	1514
32	3	823
33	1.6	583
34	2	1064
35	2.1	1103
36	6.6	1529
37	2.2	442
38	2.6	768
39	0.6	362
40	2.8	789
41	2.9	<u>۲</u> 4
42	2.4	900 014
40	2.4	914 620
44	2.2	029 867
40	3. <u>2</u> 2.1	822
40	16	602
48	1.8	757
49	2.9	1112
50	17	863
51	4.1	934
52	4.2	1089
53	1.3	746
54	3.7	1387
55	3.5	1303
56	3.2	721
57	3.5	972
58	3.2	1018
59	1	513
60	0.8	485
61	2.2	997
62	1.6	531
63	2.7	857
64	2.8	1278
		-

Stem Number	Stem Width (mm)	Stem Height (mm)
65	2.4	1140
66	2.5	913
67	5.4	1510
68	6.5	1344
69	1.5	335
70	1.5	422
71	2.5	785
72	4.8	1028
73	2	698
74	3.2	798
75	6	1825
76	3.1	655
77	2.5	1051
78	1.7	1125
79	1.4	458
80	6.1	1632
81	7.3	1405
82	4.9	1382
83	27	846
84	3	1386
85	21	1012
86	1.1	857
00	1.4	001 101E
ŏ/	3.2	1215
88	5.5	1829
89	4	1266
90	0.5	737
91	1.5	715
92	1.2	412
93	3	1194
94	4.3	1578
95	3.2	1530
96	3.7	1493
97	4	1665
98	3.5	1674
99	4.1	1432
100	4	1249
101	4.8	1648
102	5.2	1525
103	37	1275
104	2.2	1288
105	1.5	101
106	1.0	1262
107	25	857
109	£.0	1679
100	0.0	10/0
110	2.0	1340
110	4./	11/2
111	3.5	1458
112	4	1512
113	3	1458
114	3.5	1354
115	2.1	1364
116	3.7	1496
117	2.6	1108
118	2.6	1532
119	4.6	1337
120	3.5	1104
121	2.4	1364
122	2.9	905
123	3.3	907
124	1.7	818
125	42	584
126	27	952
127	23	894
100	2.0	800
120	2.9	023

Table A2.26: Microc	osm 10: Lythrum salicar	ria Stem Measurements.
Stem Number	Stem width (mm)	Stem Height (mm)
129	2	917
130	3.4	1261
131	4.3	1158
132	4.3	1338
133	2.7	1402
134	1.8	1052
135	5.6	1389
136	3.7	1420
137	5.7	1237
138	3.8	1434
139	2	972
140	1.9	1134
141	1.6	884
142	2.9	1284
143	3.8	1266
144	5.5	1225
145	3.9	1104
146	3.7	1204
147	5.5	1532
148	4.3	1299
149	1.2	472
150	1.2	633
151	2.5	952
152	3.6	1355
153	2.1	1045
154	4.2	741
155	9.7	1100
155	2.7	627
150	1.3	800
157	1.4	609
100	0.9	650
159	1.2	/35
160	1.3	635
161	2	735
162	1.4	517
163	2.4	846
164	4.4	1183
165	3.4	1034
166	2.7	922
167	2.6	916
168	2.2	641
169	1.1	934
170	1.4	946
171	3.9	1064
172	2.6	883
173	2.3	1107
174	3.7	1042
175	2.6	1221
176	2.3	1042
177	2.2	1164
178	2.5	752
179	2.5	934
180	3.4	785
181	0.7	691
182	1.3	668
183	2.4	957
184	0.5	381
185	1.2	821
186	1.8	964
187	2.2	714
188	1.6	630
180	1.0	501
100	1.0	651
101	2.1	540
100	0.0	540
192	1.4	539

Stem Number	Stem Width (mm)	Stem Height (mm)
193	0.8	405
194 1.2		458
195	3.2	912
196	3	705
197	3.1	816
198	0.8	465
199	1.6	844
200	1	657
201	1	318
202	1.4	781
203	0.9	553
204	2.1	556
205	1.7	481
206	2	580
207	2	418
208	2.9	348
209	0.5	131
210	1.5	757
211	1.6	493
212	1.7	439
213	2.1	364
214	1.4	580
215	1.2	596
216	3	525
217	1	408
218	0.7	487
219	2.6	395
220	0.7	407
221	1	315
222	0.7	339
223	0.4	379
224	1.6	235
225	0.6	220

	Total Stems	Total Number of Stems	225
		Stems with Inflorescence	78
	Heights (mm)	Max Height	1829
		Min Height	101
		Mean Height	968.1644444
Stome		Mode Height	934
Sterns		Median Height	934
	Widths (mm)	Max Width	7.6
		Min Width	0.4
		Mean Width	2.824888889
		Mode Width	1.6
		Median Width	2.6

Stem Number	Stem Width (mm)	Stem Height (mm)
1	5.2	1900
2	6.7	17/0
3	0.7	1703
4	7.4	1200
5	3.0	1390
7	3.9	1144
/	4.1	144
8	3.7	1487
9	2.4	1316
10	2.8	815
11	5.5	1189
12	3	947
13	4.3	1200
14	3.0	1159
15	5	814
16	4.5	1300
17	3.7	849
18	3.2	1024
19	2.6	1384
20	2.7	1153
21	2	946
22	2.8	6/1
23	2.5	376
24	4.8	1138
25	3.5	1337
26	2.7	1110
27	2.8	1347
28	5.1	1317
29	3.6	1112
30	2.1	567
31	3.9	1428
32	2.7	973
33	3.2	1182
34	3	1159
35	1.5	699
36	5.1	1540
37	1.8	1302
38	3.4	1335
39	3.4	1275
40	1.8	948
41	2.8	1463
42	3.4	1144
43	3.2	932
44	3.8	941
45	2.5	338
46	2.7	1155
47	2.2	1425
48	5	1286
49	5.7	1385
50	1.6	656
51	2.4	761
52	1.2	704
53	2.2	1052
54	2	459
55	3.4	949
56	3.7	1080
57	2.5	1415
58	3.6	946
59	3.7	946
60	2	624
61	3.2	1384
62	2.5	1012
63	47	1302
64	2.6	870
0 1	2.0	010

Stem Number	Stem Width (mm)	Stem Height (mm)
65		745
66	1.9	1107
67	4.0	1704
69	7.1	1/04
60	5.0	1419
70	10	1402
70	4.9	1549
71	3	1093
72	4.7	1673
73	5.4	1609
74	3.6	1215
75	2.1	1001
76	3.7	1158
77	5	1325
78	2.4	1225
79	4.6	153
80	2	964
81	2.5	1129
82	2	1143
83	3.3	1018
84	2.1	421
85	4.1	1435
86	2.2	1212
87	4.4	1421
88	3.6	1208
89	3.7	1449
90	5	1462
91	2.9	1152
92	4.7	1426
93	3	1444
94	5.1	1442
95	4	1556
96	3.8	974
97	3.1	1293
98	2.4	1205
99	5.3	1389
100	3.7	1523
101	2.7	1401
102	2.7	1371
103	2.6	1225
104	3	554
105	2.2	1061
106	5.7	1688
107	3.2	871
108	1.6	972
109	2.5	515
110	2.1	407
111	3.2	640
112	1.2	815
113	11	894
114	3.3	1016
115	3.9	1327
116	3.4	975
117	27	955
118	2.1	840
110	3.4	1215
120	J.2 1 G	1210
120	4.0 E	1000
121	25	1300
122	2.5	/64
123	2.1	1432
124	1.5	739
125	4.1	145/
126	2.5	847
127	6.3	1558
128	4.3	1487

Table A2.27: Microo	cosm 11: Lythrum salica	ria Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
129	5.2	1412
130	3.1	1049
131	4	275
132	2.4	474
133	1.8	772
134	2.8	502
135	2.9	989
136	2.7	397
137	1.6	299
138	2.1	282
139	2.9	1084
140	2.6	1405
141	2.8	648
142	1.4	440
143	1.6	831
144	2.4	295
145	3.5	528
146	5.2	1468
147	1.7	808
148	3.3	1086
149	3.8	862
150	2.8	849
151	1.9	832
152	2	276
153	1.6	598
154	1.8	389
155	2.2	472
156	2.6	1063
157	1.5	332
158	47	1318
159	4	1382
160	22	712
161	2.4	928
162	27	1012
163	2.8	1476
164	5.5	1382
165	3.5	1318
166	0.0	442
167	3.6	1047
168	2.0	/79
160	2.5	413
170	2.0	927
171	2.0	1228
170	J.Z A	1220
172	1.8	1010
173	1.0	078
175	2.1	1257
176	2.1	1207
170	2 2 2	910
170	4.2	012
170	1.7	000
1/9	1.4	337
180	1./	420
181	1	551
182	1.6	559
183	1.4	/25
184	1.4	572
185	2.1	358
186	3.2	596
187	1.8	447
188	1.9	677
189	2.2	372
190	1.6	698
191	1.8	694
192	1.3	596

Table A2.27: Microcosm 11: Lythrum salicaria Stem Measurements.

Stem Number	Stem Width (mm)	Stem Height (mm)
193	1.8	418
194	2.1	489
195	1.6	536
196	1	677
197	1.7	314
198	1.6	286
199	1.4	342
200	0.4	333
201	1.8	154

	Total Stems	Total Number of Stems	201
		Stems with Inflorescence	69
		Max Height	1908
	Heights (mm)	Min Height	153
		Mean Height	991.7462687
Ctomo		Mode Height	946
Stems		Median Height	1012
	Widths (mm)	Max Width	7.4
		Min Width	0.4
		Mean Width	3.074626866
		Mode Width	2.7
		Median Width	2.8

Table A2.28: Microc	osm 12: Lythrum salical	na Stem Measurements.
Stem Number	Stem width (mm)	Stem Height (mm)
2	5.0	1064
2	5.9	1448
3	4.0	486
-	4.8	973
6	5.4	1206
7	8	1628
8	22	694
9	7.6	1654
10	7	1584
11	41	1372
12	4.1	1380
13	6.8	1709
14	2.6	664
15	1.8	691
16	2.4	334
17	2.4	594
18	5	611
10	42	111
20	4.2 5.5	125/
20	3.0	1058
21	2.3	456
22	4.7	400
23	1.3	492
24	3.7	090
20	1.5	047
20	1.5	554
27	3.5	871
28	1.8	913
29	2.5	433
30	3.3	857
31	3.5	907
32	3.7	834
33	3	1014
34	3.4	525
35	3.2	971
36	5.4	1230
37	5.5	1816
30	0	041
39	3.7	1153
40	8.7	1605
41	3.2	544
42	2.1	813
43	3	1243
44	2.8	1100
45	3.1	1134
40	1.0	700
4/	5.1	182
48	0.4	1525
49	3.9	930
50	4	1158
51	5.9	1490
52	2.9	6/8
53	1.1	/84
54	6	1396
55	2.2	283
56	2.9	906
57	3.2	1013
58	1.2	310
59	5.8	921
60	2	707
61	3.8	932
62	2	506
63	1.8	450
64	3.9	1206

Table A2.28: Microc	osm 12: Lythrum salicar	ria Stem Measurements.
Stem Number		
66	5.7	1087
67	4.7	1328
68	4.7	1430
69	17	431
70	2.1	075
70	2.1	701
72	2.0	960
73	3.8	1090
74	1.8	586
75	4	1163
76	17	1018
77	7.2	1458
78	2.6	1308
79	3	1106
80	2.8	890
81	13	643
82	3.8	572
83	4.4	1209
84	3.6	1203
85	3.5	1203
86	4 9	1338
87	4.0	1800
88	69	1303
89	4.3	1052
90	3.7	1629
91	1.4	777
02	2.6	824
92	4.7	1289
94	2.6	977
95	6.3	1174
96	2.4	965
97	2.4	756
98	3.8	1011
99	5.1	1625
100	2	764
100	64	1572
102	4.2	1345
103	69	1713
104	4	1211
105	32	758
106	3.4	1589
107	5	971
108	8.1	1262
109	5.8	1001
110	3.2	624
111	4.6	1601
112	5	1086
113	2.2	861
114	7.1	1331
115	3	443
116	5.5	490
117	2.5	883
118	1.8	1109
119	5.8	1542
120	2.3	1086
121	1.9	694
122	1.6	600
123	1.9	910
124	2.2	612
125	4.5	1378
126	1.4	167
127	2.9	931
128	4.7	1172
120	7.7	1116

Stem Number	Stem Width (mm)	Stem Height (mm)
129	3	1019
130	2.8	1208
131	3	1108
132	3.2	917
133	3.6	990
134	3.7	1134
135	1.1	464
136	1.8	369
137	3.3	1208
138	22	774
139	1.3	621
140	3.4	1142
141	2.8	729
142	2.7	1165
143	1.5	790
144	2.3	790
145	2.4	461
146	4.3	1448
147	5	756
148	22	917
149	12	625
150	1.8	935
151	27	684
152	2.1	355
153	1.5	432
154	5.2	1054
155	3.8	1189
156	2.5	1135
157	4	1156
158	2.4	1154
159	26	784
160	2.8	867
161	2	667
162	1.8	832
163	1.8	905
164	3.2	1425
165	1	631
166	4.2	987
167	1.7	520
168	2.5	604
169	1.7	449
170	2.7	337
171	1.7	829
172	2.5	1069
173	2.7	911
174	3	795
175	1.8	490
176	1.8	586
177	1.4	381
178	2.2	294
179	3.8	1174

Stem Number Stem Width (mm) Stem Height (mm)

	Total Stems	Total Number of Stems	179
		Stems with inflorescence	48
		Max Height	1816
	Heights (mm)	Min Height	111
		Mean Height	953.4748603
Ctomo		Mode Height	1206
Sterns		Median Height	935
	Widths (mm)	Max Width	8.7
		Min Width	1
		Mean Width	3.437430168
		Mode Width	1.8
		Median Width	3.1

Table A2.29: Microco	osm 13: Lythrum salican	ia Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
1	2.7	867
2	2	607
3	4.7	1337
4	2.4	680
5	4.2	1204
6	4.2	919
7	5.9	1184
8	2.4	705
9	4	1286
10	5.6	1300
11	3.6	1254
12	4.9	1529
13	4	1051
14	3.3	1181
15	4.3	1376
16	3.2	1121
17	2.2	727
18	2.2	506
19	3.8	1124
20	1.8	577
21	3.2	1213
22	4.9	1643
23	3	974
24	6.7	1542
25	2.5	1002
26	3.7	911
27	7.4	1778
28	3.3	1257
29	2.4	986
30	5.7	1219
31	5.4	1638
32	3.1	1057
33	1.5	948
34	1.5	436
35	1.3	513
36	1.1	684
37	3	1005
38	1.8	535
39	3	1010
40	2.5	802
41	2.5	883
42	1.7	624
43	5.6	1734
44	3.8	1443
45	2.3	483
46	3.6	1337
47	1.9	656
48	2.6	865
49	5.5	1658
50	3.2	1672
51	2.5	697
52	2	567
53	2.3	792
54	1.9	783
55	2	749
56	2.1	479
57	2.9	964
58	2	480
59	2.2	385
60	2.2	836
61	1.9	667
62	6.1	1612
63	4.8	1605
64	3.3	1109

Table A2.29: Microco	osm 13: Lythrum salicar	ia Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
65	4.5	1010
66	3.8	1164
67	1.8	640
68	2.6	839
69	1.8	596
70	2	735
71	2	801
72	2.4	1208
73	1.5	524
74	4	365
75	2.9	691
76	5.4	973
77	4.8	1536
78	1.9	684
79	1	566
80	1.8	742
81	4.2	1335
82	3.6	1266
83	2.2	972
84	2.2	768
85	0.8	418
86	1.0	769
87	2	532
88	22	1081
80	3.3	F28
00	3.2	974
90	2.1	874
91	2.4	1070
92	5.6	1481
93	3.6	587
94	1.4	570
95	2.2	500
96	3	984
97	2.4	731
98	1.7	871
99	2.6	630
100	3.4	1153
101	1.7	713
102	1.2	746
103	1.8	714
104	2.7	1232
105	2.4	921
106	2.2	1118
107	4.5	1115
108	3.6	1067
109	1.3	653
110	2	692
111	1.5	677
112	11	441
112	21	769
11/	17	705
115	5.8	1580
110	0.0	000
110	3	330
117	3.1	505
118	1.8	196
119	2.6	858
120	2.9	1115
121	3.6	1162
122	2.9	937
123	3.2	1140
124	2.5	853
125	4.8	1402
126	4.2	1223
127	2	471
128	5	718

Table A2.29: Microco	osm 13: Lythrum salicar	ia Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
129	1.9	893
130	1.5	481
131	0.7	421
132	2.8	980
133	3.5	937
134	1.1	316
135	1.9	574
136	1.6	431
137	1.4	741
138	2.2	532
139	4.2	1341
140	2.3	811
141	2.5	763
142	1.8	587
143	1.3	672
144	2	578
145	1.4	680
146	0.9	587
147	2.5	805
148	3.2	755
149	2.4	470
150	3.2	790
151	2.5	954
152	1.5	702
153	2.3	827
154	2.8	682
155	1.6	527
156	2.3	615
157	2.1	470
158	1.5	764
159	1.1	506
160	2.4	744
161	2.9	769
162	0.9	446
163	2.2	571
164	2.4	773
165	1.7	666
166	0.9	366
167	2.8	499
168	3.9	958
169	2.5	514
170	3	1113
171	2.2	626
172	2.5	1122
173	4	1299
174	2.3	706
175	2.2	745
176	5.6	797
177	2	659
178	1.7	595
179	1.5	597
180	7.6	545
181	1.0	587
182	6.5	662
183	1.6	601
184	2.6	1012
185	1.5	311
186	1.0	<u> </u>
187	3.6	232
107	0.5	202 //PE
100	0.0	400
109	2.0	706
190	1.0	007
191	2.0	3U0 677
192	1.8	6//

Table A2.29: Microcosm 13: Lythrum salicaria Stem Measurements.

Stem Number	Stem Width (mm)	Stem Height (mm)
193	3	306
194	3	1104
195	4	1317
196	1.2	281
197	2.5	865
198	1	350
199	1.6	327
200	3.5	1270
201	3.7	566
202	2.5	1069
203	4.3	707
204	2	242
205	1.3	378
206	2	250
207	0.6	384
208	0.9	244
209	1.3	290
210	0.3	204

	Total Stems	Total Number of Stems Stems with Inflorescence	210 54
	Heights (mm)	Max Height Min Height	1778 204
		Mean Height	830.5142857
Stome		Mode Height	587
Sterns		Median Height	763.5
	Widths (mm)	Max Width	7.6
		Min Width	0.3
-		Mean Width	2.728571429
		Mode Width	2
	[Median Width	2.4

Table A2.30: Microc	osm 14: Lythrum salica	ria Stem Measurements.
Jem Number		
2	1.1	414
2	2.4	445
3	4.5	700
	49	1357
6	6.4	1753
7	22	719
8	2.6	909
9	6.8	1624
10	3.2	1044
11	3.2	1161
12	6.1	1404
13	3	1048
14	3.7	1322
15	2.2	699
16	5.5	1469
17	5.7	1515
18	5.7	1512
19	5.2	1481
20	2.4	830
21	1.7	649
22	5.3	1517
23	4.1	1387
24	3.8	1357
25	4.2	1302
26	4.2	1358
27	3.5	1377
28	2.7	1045
29	3.6	895
30	2.4	949
31	2.8	1031
32	4.2	1286
33	3.3	1353
34	2.6	597
35	3.1	1036
36	2.2	753
37	1.9	725
38	2.6	/54
39	3.2	793
40	2.3	896
41	3.1	975
42	2.5	030
40	2.7	/ 14 576
44	1.9	070
46	4.9	1160
40	1.5	527
48	3.9	1272
49	19	564
50	32	1061
51	4	368
52	5.8	1287
53	3.4	1066
54	2.1	615
55	3.4	1117
56	1.9	695
57	3	1080
58	2.5	285
59	2.8	1001
60	3.8	956
61	6.1	875
62	2.4	593
63	2.5	827
64	2.5	1010

Stem Number	Stem Width (mm)	Stem Height (mm)
65	1.9	564
66	2.6	735
67	2.1	911
68	3.2	863
69	2.5	608
70	2	554
71	2.8	433
72	2.1	401
73	2.5	580
74	2.3	543
75	2.5	755
76	1.6	640
77	1.9	507
78	1.7	450
79	19	771
80	22	540
81	12	645
82	22	836
83	2.2	087
84	2.5	387
85	2.0	568
00	2.1	204
07	2	534
0/	2.0	517
00	1.3	407
00	1.7	302
90	1.5	761
91	1.5	401
92	2	329
93	1.9	465
94	2.6	565
95	4.1	375
96	2.5	587
97	3.2	424
98	1.9	417
99	2.5	204
100	1.9	266
101	1.7	296
102	1	315
103	1.5	405
104	1.5	350
105	1.9	274
106	0.9	300
107	2	376
108	2.6	199
109	1.7	240
110	0.4	402
111	1.6	289
112	1.1	204
113	2.1	259
114	1.8	185
115	1.1	250
116	1.4	350

- 172 -

Stem Number Stem Width (mm) Stem Height (mm)

	Total Stems	Total Number of Stems	117
		Stems with Inflorescence	44
		Max Height	1753
	Heights (mm)	Min Height	148
		Mean Height	760.6239316
Ctomo		Mode Height	1517
Sterns		Median Height	700
	Widths (mm)	Max Width	6.8
		Min Width	0.4
		Mean Width	2.766666667
		Mode Width	1.9
		Median Width	2.5

Table A2.31: Microc	osm 15: Lythrum salicar	ria Stem Measurements.
2	2.5	933
3	5	431
4	43	941
5	5.7	1656
6	5.3	1015
7	4.6	1525
8	5.3	1581
9	3.7	591
10	4.3	1448
11	8.3	1665
12	5.1	1677
13	5.2	1294
14	2.7	579
15	4.3	715
16	4	1258
17	6.3	1651
18	3.2	815
19	6.4	1729
20	5.7	1634
21	4.4	1332
22	2.8	1079
23	2.6	1111
24	1.8	437
25	5.6	1510
26	4.5	1359
27	7.8	1926
28	8.5	1578
29	4.1	1360
30	6.7	1408
31	4.1	788
32	8.4	1696
33	8.7	1780
34	9.2	1643
35	6.9	1799
36	2.9	855
37	3.7	1198
38	3.7	700
39	3.9	772
40	5.8	1524
41	4.3	1339
42	1.8	853
43	3.5	406
44	3.9	1675
45	5.2	1372
46	2.4	1034
47	4.3	1545
48	2.6	393
49	4.9	1509
50	1.6	614
51	0.9	33/
52	3.8	/13
53	3.1	438
54	1./	/1/
55	3.0	1280
50	3.4	1352
5/	1.0	343
58	3.0	12/3
59	2	1005
61	1.8	1025
62	1.8	604
62	2.9	472
64	2.0	4/2
64	۷ ک	904

Table A2.31: Microcosm 15: Lythrum salicaria Stem Measurements.

Stem Number	Stem Width (mm)	Stem Height (mm)
65	2.3	560
66	5	488
67	2.9	636
68	2.4	376
69	2.1	266
70	2.6	312
71	3	302
72	1.4	303
73	1.8	524
74	1.3	302
75	3.2	608
76	2	424
77	1.5	230
78	2	300
79	2.1	160
80	1.7	221

	Total Stems	Total Number of Stems Stems with Inflorescence	
	Heights (mm)	Max Height	1926
		Min Height	160
		Mean Height	969.625
Stome		Mode Height	302
Sterns		Median Height	918.5
	Widths (mm)	Max Width	9.2
		Min Width	0.9
		Mean Width	3.8375
		Mode Width	4.3
		Median Width	3.6

Table A2.32: Microcosm 16 Lythrum salicaria Stem Measurements.

There were no surviving *Lythrum salicaria* within Microcosm 16.

Table A2.33: Microc	osm 1: Filipendula ulma	ria Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
1	5.7	649
2	1.6	486
3	1.9	447
4	1.2	208
5	1.2	425
6	0.5	284
7	1	372
8	3.2	546
9	1.1	468
10	1.1	274
11	1.1	677
12	1	134
13	3.3	384
14	0.8	450
15	1.1	225
16	0.3	189
17	1	189
18	1.1	462
19	1.2	285
20	1.8	521
21	1.1	340
22	0.7	73
23	0.7	179
23	1	550
24	0.5	224
20	0.5	324
20	1.1	400
27	0.5	235
28	1.8	424
29	0.6	311
30	1.2	327
31	1	344
32	0.5	205
33	1.7	222
34	1.1	355
35	1.1	382
36	1.3	521
37	0.7	265
38	1.2	277
39	1.3	357
40	1	264
41	0.5	331
42	1.5	478
43	1	366
44	11	327
45	0.4	170
46	12	197
47	0.7	203
18	1	135
-0-	11	100
43	1.1	423
50	12	102
51	0.9	401
52	1./	332
53	0.8	137
54	1.2	387
55	0.8	232
56	0.8	256
57	1.3	461
58	1.3	338
59	1.2	392
60	1	254
61	0.7	119
62	1	312
63	1.2	346
64	1.5	506

Stom Number	Stom Midth (mm)	Rtom Height (mm)
65	0.9	231
66	1.2	198
67	2.4	440
68	0.4	48
69	0.8	514
70	0.9	274
71	2	442
72	1.5	406
72	1.0	400
73	1.1	420
/4	1.3	230
75	0.6	293
76	0.7	325
77	1.3	444
78	0.8	405
79	0.9	419
80	0.9	96
81	0.8	337
01	0.0	202
62	0.7	302
83	1.2	351
84	1.2	426
85	1.5	312
86	0.6	239
87	1.2	276
88	1.4	291
89	1.7	389
90	17	547
01	0.0	201
91	0.9	291
92	1	444
93	1.2	376
94	1.1	234
95	1.1	295
96	1.2	325
97	0.5	311
98	1.5	496
gg	0.7	292
100	0.0	411
100	0.9	411
101	0.9	301
102	1.5	493
103	0.5	275
104	0.8	368
105	0.8	421
106	1.5	341
107	1	328
108	13	373
109	13	429
110	1.0	190
110	4.0	109
111	0.6	2/9
112	1.2	397
113	0.5	231
114	0.5	236
115	0.8	393
116	0.9	312
117	0.8	239
118	11	238
110	1.1	200
119	1.1	292
120	1.2	352
121	1.4	398
122	1	140
123	0.7	262
124	1	256
125	1.6	409
126	12	295
127	0.0	230
127	0.9	201
128	0.9	212

10010712:00:10101000		na otem measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
129	1.1	186
130	1	138
104	4.4	130
131	1.1	33
132	0.6	279
133	0.7	208
124	1.1	180
134	1.1	160
135	0.5	145
136	0.3	166
137	11	206
107	1.1	200
138	0.7	185
139	1	236
140	0.6	219
144	1.1	276
141	1.1	276
142	3	452
143	2.2	244
144	2	390
144	2	590
145	2.4	228
146	1.2	367
147	1	198
140	10	205
148	1.0	395
149	0.5	256
150	0.9	169
151	0.5	221
101	0.5	231
152	1.3	225
153	1.5	401
154	0.6	244
104	0.0	277
155	0.9	279
156	1	419
157	0.8	192
159	0.7	201
156	0.7	201
159	1.2	385
160	1.5	397
161	1.4	231
101	1.4	231
162	1.4	165
163	1.7	345
164	0.8	310
104	0.0	400
165	0.5	180
166	0.6	359
167	11	401
169	0.0	224
100	0.9	224
169	1.4	284
170	0.6	300
171	11	233
470	4.0	200
172	1.2	313
173	0.7	333
174	2.9	318
175	1	284
170		204
176	0.1	112
177	1.2	412
178	00	205
170	1.0	200
179	1.3	204
180	1.5	399
181	1.5	389
192	0.7	175
102	0.7	1/5
183	0.8	201
184	1.1	183
195	0.5	301
C01	0.5	301
186	0.6	115
187	2.1	305
189	0 0	107
100	0.3	137
189	1	240
190	1.8	191
191	0.3	182
100	0.5	00
192	0.5	88

Stem Number	Stem Width (mm)	Stem Height (mm)
193	0.4	186
194	0.9	123
195	0.7	241
196	0.6	120
197	0.8	145
198	1.6	381
199	1.2	346
200	1.7	219
201	1.1	237
202	1.2	205
203	1	58
204	0.1	75
205	1.1	304
206	1.1	245
207	1	158
208	0.9	40
209	0.7	43
210	0.8	235
211	0.7	227
212	0.9	165
213	2	141
214	1.1	317
215	1	266
216	1.3	232
217	0.5	216
218	0.9	325
219	1.5	171
220	0.3	285
221	1.1	278
222	0.6	193
223	1	157
224	0.8	149
225	0.8	141
226	0.6	164
227	0.9	186
228	0.5	28
229	0.4	64
230	1.2	167
231	0.7	187
232	0.6	182
233	0.9	239
234	0.9	204
235	1.1	174
236	1.8	152
237	0.6	178
238	1.5	224
239	0.4	169
240	0.6	211

Table A2.33: Microcosm 1: Filipendula ulmaria Stem Measurements.

Table A2.33: Microcosm 1: Filipendula ulmaria Stem Measurements.

L	Stem Number	Stem Width (mm)	Stem Height (mm)
-			

	Total Stems	Total Number of Stems Stems with Inflorescence	240 0
	Heights (mm)	Max Height	677
		Min Height	28
		Mean Height	281.975
Ctomo		Mode Height	231
Sterns		Median Height	274.5
	Widths (mm)	Max Width	12
		Min Width	0.1
		Mean Width	1.13625
		Mode Width	1.1
		Median Width	1

10010 7 (2:04: 10101000	sili z. Tiliperiuula ulitia	na Stem weasurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
1	5.5	515
2	5.0	1497
2	5.9	1487
3	6.3	1602
4	1	144
5	1	621
6	17	502
6	1.7	592
7	2.3	219
8	1.7	67
0	1	111
3		441
10	1.7	200
11	3.9	99
12	12	138
12	1.1	444
13	1.1	444
14	5.6	1484
15	1.6	310
16	1.1	645
10	1.1	045
17	1.1	578
18	0.9	391
10	1.2	300
19	1.4	4050
20	3.8	1252
21	5.2	1402
22	0.7	449
22	0.7	400
23	0.7	423
24	2.2	244
25	1.4	386
26	12	352
20	1.2	
27	4.3	1072
28	0.8	248
29	47	1168
20	4.1	07
30	9.2	67
31	1.2	256
32	3.3	1174
20	0.0	202
33	0.9	283
34	5.7	1349
35	3.6	985
26	1 1	72
30	1.1	73
37	1.4	345
38	0.7	347
30	0.7	345
	0.7	343
40	0.8	377
41	1.2	461
42	4.1	1215
40		1079
43	5	1078
44	4.3	436
45	1.1	517
10	0.0	215
40	0.5	210
47	1.2	582
48	0.8	481
10	1	296
49	0.0	230
50	U.6	200
51	0.6	141
52	1	326
52	1 5	250
53	1.5	300
54	0.7	362
55	0.4	223
50	1 5	405
56	1.5	495
57	1	513
58	1.2	361
50	1.2	450
59	1.2	409
60	1.8	164
61	0.9	206
60	0.5	104
62	0.5	104
63	0.9	322
04	0.0	204

Table A2.34. Microco	sm 2: Filipendula ulma	ina Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
65	3.9	1114
66	0.5	116
00	0.5	440
67	1.7	821
68	4.7	263
69	0.7	302
70	7.0	1509
70	1.3	1596
71	1.4	269
72	1.1	396
73	17	213
13	1.7	215
/4	1.2	463
75	1.1	492
76	0.5	86
70	0.0	100
11	0.4	122
78	0.8	84
79	11	126
90	0.5	214
00	0.5	214
81	0.9	226
82	1	452
02	0.1	330
03	0.1	328
84	1	314
85	0.6	493
88	0.5	90
00	0.0	
87	1.2	1/1
88	1.2	459
89	21	646
00	1.0	E07
90	1.2	507
91	0.4	325
92	1.3	221
02	1.2	400
93	1.2	409
94	3.7	503
95	1.1	332
96	1.5	185
30	1.5	100
97	1	356
98	0.7	173
99	0.9	384
100	0.4	38F
100	0.4	200
101	1.2	171
102	0.5	283
102	0.7	194
103	0.7	104
104	2.6	639
105	4.8	247
106	0.2	101
100	0.2	400
107	1	438
108	2.8	209
109	2.9	360
100	0.0	247
110	0.0	347
111	2.7	942
112	0.7	354
112	2.6	372
113	2.0	312
114	0.9	412
115	0.6	398
116	0.7	342
110	0.7	04
117	0.9	84
118	1.7	182
119	19	419
110	1.0	410
120	1.5	616
121	0.9	52
100	13	595
122	2.4	220
123	3.1	220
124	1.3	536
125	11	322
120	1.1	610
126	1.8	010
127	0.5	251
128	0.7	387
120	· · ·	

Table A2.34. Microco	SIII 2. I Iliperidula ultra	na Stem weasurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
129	1.4	427
130	1	513
130	0.0	201
131	0.9	291
132	0.7	264
133	1.8	26
124	12	160
134	42	160
135	5.8	10
136	0.5	245
137	11	332
107	1.1	011
138	1.1	244
139	0.8	179
140	1.4	452
141	0.6	202
141	0.0	303
142	0.3	205
143	0.6	216
144	03	196
144	0.0	150
145	0.4	314
146	1	485
147	0.6	238
147	0.7	£30
148	0.7	330
149	1.5	42
150	1	185
151	0.6	16
151	0.0	10
152	3.2	134
153	1	239
154	0.7	257
104	4.7	14
155	1.7	14
156	0.5	227
157	2.6	168
150	0.6	170
100	0.0	170
159	0.8	222
160	1.8	226
161	11	2/3
101	1.1	245
162	1.2	442
163	1.5	314
164	0.6	497
104	0.0	200
105	0.6	266
166	1.1	460
167	1.5	170
100	1.0	304
100	1.2	394
169	0.6	192
170	1.1	246
171	0.8	179
171	0.0	075
172	0.5	2/5
173	0.4	82
174	0.1	61
175	11	150
175	1.1	130
176	0.3	174
177	0.7	218
178	0.7	86
470	0.5	120
179	0.5	139
180	1.1	298
181	1.2	302
100	0.6	166
182	0.0	001
183	0.7	280
184	0.8	207
105	0.0	304
100	0.9	304
186	0.5	82
187	0.6	285
199	0.4	147
100	0.4	045
189	0.9	215
190	1.2	226
191	0.7	206
101	1.6	200
192	1.0	314

Stem Number	Stem Width (mm)	Stem Height (mm)
193	0.6	155
194	0.9	274
195	0.8	114
196	1	276
197	1.1	356
198	1.5	233
199	1.1	263
200	1.2	272
201	2.9	119
202	0.7	272
203	1.1	161
204	0.5	273
205	1.1	297
206	1.2	192
207	0.6	269
208	0.7	156
209	0.2	86
210	1.6	161
211	1.4	155
212	0.7	143
213	0.4	62
214	0.4	513
215	0.6	44
216	0.6	312
217	1.2	242
218	0.5	319
219	0.5	264
220	0.8	219
221	1.5	134
222	1.4	160
223	1.2	226
224	0.5	111
225	0.8	189
226	0.5	115
227	1.3	294
228	0.6	156
229	1.2	418
230	1.1	221
231	0.8	156
232	0.4	122
233	1.1	125

Stems	Total Stems	Total Number of Stems	233
		Stems with Inflorescence	9
	Heights (mm)	Max Height	1602
		Min Height	10
		Mean Height	345.6523605
		Mode Height	226
		Median Height	273
	Widths (mm)	Max Width	42
		Min Width	0.1
		Mean Width	1.591416309
		Mode Width	1.2
		Median Width	1
Table A2.35. Microco	Sin 5. Tilipendula ulma	na Stein Weasurements.	
----------------------	---	------------------------	
Stem Number	Stem Width (mm)	Stem Height (mm)	
1	3.6	1001	
2	87	978	
2	5.5	1164	
3	5.5	1164	
4	7.1	1509	
5	5.4	1258	
6	19	1/66	
0	4.3	1400	
1	8.7	665	
8	5.5	1100	
9	51	1184	
40	4.0	005	
10	4.3	605	
11	4.9	1419	
12	3.2	688	
13	3	925	
10	50	011	
14	5.2	311	
15	2	338	
16	1.2	382	
17	2.7	606	
17	2.1	090	
18	3.7	310	
19	2	204	
20	23	269	
20	2.5	101	
21	2.5	191	
22	1.6	213	
23	2.2	162	
24	1.0	212	
24	1.0	312	
25	1.4	184	
26	2.5	368	
27	13	19/	
21	1.3	194	
28	1.8	188	
29	2	82	
30	16	121	
01	0.0	04	
31	2.2	91	
32	1.2	378	
33	2	126	
34	1.6	240	
04	1.0	240	
35	2.3	194	
36	1.8	242	
37	24	277	
29	4.4	202	
30	1.1	303	
39	1.5	226	
40	3.1	236	
41	0.0	246	
41	0.9	240	
42	1.6	2/1	
43	2	316	
44	1.8	244	
45	2	104	
45	۷ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	134	
46	1.6	95	
47	2	161	
49	26	201	
40	2.0	291	
49	1.9	163	
50	1.5	130	
51	1.9	285	
50	17	17	
52	1.7	17	
53	1.4	462	
54	1.2	227	
55	1.4	214	
	1.4	214	
56	1.9	688	
57	0.8	142	
58	2	228	
50	1 5	410	
28	1.5	413	
60	1.3	266	
61	0.5	376	
62	0.6	267	
02	0.0	20/	
63	1.1	335	
64	0.5	256	
		~~	

Stom Number	Stom Width (mm)	Stom Height (mm)
Stem Number	Stem width (mm)	Stem Height (mm)
65	1.2	412
66	1.1	408
67	1.9	290
68	11	267
60	1	201
09		334
70	0.6	270
71	0.7	255
72	0.7	402
73	0.6	314
74	0.0	255
74	0.9	335
/5	1.2	380
76	0.5	264
77	1	413
78	0.5	212
79	0.5	276
13	0.0	270
00	0.9	3/4
81	0.8	385
82	1.6	440
83	1.3	12
84	0.6	198
95	0.0	3/1
60	0.9	341
86	1.1	241
87	1.1	375
88	0.8	212
89	1.1	365
00	1.1	454
90	1.1	404
91	0.5	151
92	1.1	258
93	0.7	71
94	0.7	201
05	0.6	242
90	0.0	342
96	0.8	169
97	1.3	36
98	1.6	430
99	0.7	315
100	1	252
100	0.4	102
101	0.4	132
102	0.5	296
103	0.7	323
104	0.7	462
105	0.7	139
106	0.5	214
100	0.0	214
107	0.3	228
108	0.5	206
109	0.9	85
110	1.2	268
111	13	366
110	1.0	007
112	1	231
113	1	122
114	0.8	237
115	0.9	192
116	0.8	195
117	0.6	205
117	0.5	203
118	0.8	307
119	0.6	197
120	0.4	188
121	1	241
121	10	460
122	1.9	462
123	0.8	294
124	0.7	206
125	1	119
126	0.8	109
107	0.0	405
127	0.9	405
128	0.8	293

Ctore Norshan	Sterre Mindela (mark)	Otem Medaurementa.
stem Number	stem width (mm)	Stem Height (mm)
129	0.9	189
130	1.3	223
131	13	1/9
122	1.5	272
132	1.5	312
133	1.2	285
134	0.5	267
135	0.9	308
136	0.9	209
100	1.2	102
137	1.2	192
138	1.5	339
139	0.6	245
140	1.5	390
141	0.9	161
1/2	0.4	102
142	0.4	192
143	1	132
144	0.5	241
145	0.5	250
146	0.4	109
147	0.4	296
147	0.4	200
148	1	262
149	0.8	253
150	1.6	225
151	0.7	246
152	0.5	1/8
152	0.0	148
153	0.9	145
154	1.2	260
155	0.6	395
156	1.2	117
157	15	181
157	1.5	140
158	1.3	140
159	1	187
160	0.6	90
161	0.5	119
162	0.5	1/1
102	0.0	141
163	0.4	105
164	0.6	106
165	0.7	99
166	0.8	205
167	0.5	34
107	0.5	454
168	0.5	151
169	0.6	97
170	0.7	215
171	0.5	223
172	0.4	91
172	0.7	120
1/3	0.3	138
174	0.7	151
175	0.3	87
176	0.9	121
177	0.4	93
170	0.4	224
1/0	0.5	224
179	0.2	192
180	1.4	196
181	1.4	181
182	0.7	133
192	0.5	1/2
103	0.5	143
184	0.2	191
185	1.6	172
186	0.4	97
187	1	182
100	0.6	162
168	0.6	163
189	2.2	239
190	0.5	119
191	0.4	140
192	0.3	52
132	0.5	JL

Stem Number Stem Width (mm) Stem Height (mm)

	Total Stems	Total Number of Stems	192
		Stems with Inflorescence	5
		Max Height	1509
	Heights (mm)	Min Height	12
		Mean Height	292.1770833
Ctomo		Mode Height	192
Sterns		Median Height	236.5
	Widths (mm)	Max Width	8.7
		Min Width	0.2
		Mean Width	1.4078125
		Mode Width	0.5
		Median Width	1

10010 7 (2.00. 10101000	Sill 4. Tiliperidula ultra	na Stem weasurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
1	6.3	889
	4.7	751
2	4.7	731
3	4.6	506
4	7.2	1416
5	9.1	1385
6	6.1	1200
0	0.1	1200
1	6.1	365
8	4.3	341
Q	43	534
	4.0	505
10	3.5	595
11	5.1	152
12	3.3	700
12	2.4	127
13	3.4	437
14	2.8	255
15	7.3	492
16	2	172
10	2	000
17	0.6	262
18	3	456
19	2.3	407
13	1.5	702
20	1.5	123
21	0.7	455
22	0.7	469
	1	625
23		025
24	3.9	175
25	5	310
26	23	385
20	2.0	550
27	1.2	552
28	2	199
29	17	218
20	1.2	500
30	1.2	522
31	0.4	414
32	1.9	417
22	0.2	202
	0.2	282
34	1.3	483
35	1.5	896
36	3.1	310
50	5.1	510
37	1.2	380
38	1	434
39	0.8	395
00	0.0	030
40	0.7	345
41	0.8	302
42	0.9	310
40	0.6	555
43	0.0	202
44	1.2	620
45	0.5	112
16	07	557
40	0.1	551
47	1.1	551
48	1	560
49	1.1	591
40	1.0	422
50	1.0	432
51	1.4	520
52	1.1	574
E0	11	562
53	1.1	002
54	1.3	397
55	1.4	200
56	1 8	465
50	1.0	400
57	1.5	428
58	1.6	492
50	16	652
	1.0	002
60	1.4	482
61	0.7	465
62	1.2	205
60	0.7	410
63	U./	419
64	1.3	160

Table A2.36: Microcosm 4: Filipendula ulmari	a Stem Measurements.

Stem Number	Stem Width (mm)	Stem Height (mm)
65	1.2	212
66	2.6	349
67	1.3	75
68	1.1	561
69	1.8	394
70	1.1	605
71	0.8	503
72	0.3	270
73	3.2	173
74	1.2	512
75	0.3	146
76	2.4	177
77	1.2	375
78	1.4	371
79	0.8	265
80	1.5	401
81	1.3	221
82	0.7	56
83	0.5	206
84	0.6	335
85	0.7	416
86	1	326
87	1	272
88	1.1	265
89	1	498
90	0.5	213
91	0.5	203
92	0.8	118
93	1.8	113
94	0.5	205
95	1	345
96	1.1	330
97	1.8	387
98	1.5	271
99	1.9	350
100	0.9	456
101	1.3	300
102	0.3	212
103	11	576
104	1	282
105	0.8	504
105	0.9	335
100	1	538
107	0.5	168
100	1.2	364
109	11	112
110	0.8	211
110	0.0	373
112	0.3	82
113	1.0	654
114	2.2	171
110	2.2	229
110	0.9	320
117	0.0	302
118	0.7	302
119	0.9	308
120	0.9	40
121	1	291
122	1.2	444
123	1.2	134
124	0.6	365
125	2.6	315
126	1.1	473
127	0.7	396
128	1.5	600

	otem maar (mm)	Stelli Height (IIIII)
129	1.7	512
130	1	334
131	0.9	503
132	0.7	402
133	1.2	540
134	2.1	531
135	1.2	322
136	2.3	86
137	1.4	558
138	0.7	380
139	0.5	41
140	1.2	230
141	0.8	302
142	0.0	312
143	0.5	269
145	0.9	520
146	1	312
147	3.7	566
148	4.6	208
149	5.8	165
150	3	174
151	0.8	365
152	0.9	614
153	1.7	410
154	1.4	506
155	0.5	191
156	0.5	213
157	0.8	486
158	1.6	594
159	0.8	569
160	0.7	301
161	1.2	332
162	1.1	407
163	0.7	391
164	0.7	312
100	0.7	210
167	20	524
168	1	175
160	15	132
170	2.9	359
170	1	450
172	0.6	481
173	0.5	106
174	1.1	168
175	0.7	376
176	1	516
177	1.6	418
178	1	243
179	0.9	223
180	1.9	306
181	2	289
182	0.4	77
183	0.7	453
184	0.6	207
185	1	467
186	1	552
187	1.5	486
188	1	189
189	1.1	325
190	0.7	314
191	2.1	250
192	1.2	213

Stem Number	Stem Width (mm)	Stem Height (mm)
193	1.2	316
1.5	1.4	120
195	0.6	297
196	0.7	287
197	1.6	234
198	0.5	82
199	1	264
200	3.6	169
201	1.2	91
202	0.4	52
203	1	371
204	1.1	384
205	0.7	256
206	0.5	90
207	0.6	318
208	0.3	26
209	1.4	459
210	0.8	362
211	0.4	247
212	2.6	179
213	0.5	51
214	0.3	192
215	1.9	146
216	4.3	185
217	1.2	153
218	0.4	33
219	0.5	112
220	1.5	481
221	1.3	493
222	1.4	361
223	1.6	150
224	0.2	143
225	0.8	145
226	2.5	345
227	0.2	91
228	1.3	482
229	0.6	281
230	0.9	338
231	0.6	242
232	1.1	232
233	0.6	192
234	1.6	12/
005	0.5	A/1

	Total Stems	Total Number of Stems	235
		Stems with Inflorescence	7
	Heights (mm)	Max Height	1416
		Min Height	26
		Mean Height	354.4468085
Stome		Mode Height	365
Sterns		Median Height	335
	Widths (mm)	Max Width	9.1
		Min Width	0.2
		Mean Width	1.489361702
		Mode Width	1
		Median Width	1.1

Table A2.37: Microcosm 5: Filipendula ulmaria Stem Measurements.

Stem Number	Stem Width (mm)	Stem Height (mm)
1	8.6	1555
2	5.6	1171
3	8.4	1584
4	6.3	969
5	5.5	862

	Total Stems	Total Number of Stems	5
		Stems with Inflorescence	0
		Max Height	1584
	Heights (mm)	Min Height	862
		Mean Height	1228.2
Ctomo		Mode Height	#N/A
Sterns		Median Height	1171
	Widths (mm)	Max Width	8.6
		Min Width	5.5
		Mean Width	6.88
		Mode Width	#N/A
		Median Width	6.3

Table A2.38: Microcosm 6: Filipendula ulmaria Stem Measurements.

Stem Number	Stem Width (mm)	Stem Height (mm)
1	5.1	1041
2	5.2	889
3	6.1	987
4	3.2	1074
5	1.1	404
6	1.4	381

	Total Stems	Total Number of Stems Stems with Inflorescence	6 0
	Heights (mm)	Max Height Min Height	1074 381
		Mean Height	796
Ctomo		Mode Height	#N/A
Sterns		Median Height	938
	Widths (mm)	Max Width	6.1
		Min Width	1.1
		Mean Width	3.683333333
		Mode Width	#N/A
		Median Width	4.15

Table A2.39: Microcosm 7 Filipendula ulmaria Stem Measurements.

There were no surviving Filipendula ulmaria within Microcosm 7.

Table A2.40: Microcosm 8 Filipendula ulmaria Stem Measurements.

There were no surviving Filipendula ulmaria within Microcosm 8.

Stem Number	Stem Width (mm)	Stem Height (mm)
1		229
0	0.5	230
2	1	228
3	1.2	386
4	1	437
5	0.5	296
6	0.8	324
7	2	571
8	1.8	472
9	1	370
10	0.5	345
11	1.1	388
12	0.7	393
12	0.1	344
14	1.1	262
14	1.1	202
15	0.8	258
16	3.6	716
17	1	211
18	1.1	266
19	1.2	336
20	0.5	267
21	0.9	312
22	0.7	335
23	1.1	277
20	1.1	284
24	1.4	204
20	0.5	200
26	0.5	266
27	1	219
28	0.7	268
29	1	236
30	0.3	288
31	0.9	239
32	0.9	293
33	0.3	251
34	0.7	207
35	0.8	310
36	0.6	280
37	0.0	243
20	0.0	243
30	0.5	373
39	1.5	239
40	0.7	216
41	0.7	141
42	1	180
43	0.6	158
44	0.4	169
45	0.7	152
46	1	307
47	0.7	192
48	0.6	222
49	0.7	132
50	1	234
51	0.8	186
50	0.0	100
52	0.5	1/4
53	0.9	199
54	0.2	120
55	0.4	149
56	0.8	137
57	0.7	185
58	0.4	139
59	0.8	155

Table A2.41: Microcosm 9: Filipendula ulmaria Stem Measurements.

L	Stem Number	Stem Width (mm)	Stem Height (mm)
-			

	Total Stems	Total Number of Stems Stems with Inflorescence	59 2
		Max Height	716
	Heights (mm)	Min Height	120
		Mean Height	268.5254237
Ctomo		Mode Height	266
Sterns		Median Height	258
		Max Width	3.6
	Widths (mm)	Min Width	0.2
		Mean Width	0.86440678
		Mode Width	0.7
		Median Width	0.8

Stem Number	Stem Width (mm)	Stem Height (mm)
1	59	1403
2	5.9	1403
2	4.3	021
3	3	925
4	1.1	1062
5	4.1	1344
6	3.5	484
7	4	1265
8	6.3	850
9	1.8	871
10	0.4	279
11	1.1	204
12	0.3	200
13	4.1	646
14	2.7	554
15	0.7	209
16	1.8	697
17	0.5	417
10	0.5	417
10	0.0	410
19	0.8	4/5
20	1.3	428
21	0.9	368
22	0.8	438
23	1.1	274
24	0.4	296
25	0.8	329
26	0.7	245
27	0.9	340
28	0.6	154
29	0.8	396
30	0.8	210
31	0.8	210
31	0.7	337
32	1.6	364
33	1.2	423
34	0.6	221
35	0.1	154
36	0.9	252
37	0.7	467
38	0.7	402
39	1.1	336
40	0.6	340
41	0.7	269
42	1	294
43	1.1	288
44	0.8	225
44	0.0	223
40	0.0	201
40	0.0	20
4/	0.9	488
48	0.8	247
49	2.3	279
50	0.7	186
51	0.5	263
52	0.8	208
53	1.1	179
54	1.1	139
55	0.5	215
56	0.3	339
57	0.3	320
50	0.4	323
50	0.9	323
59	0.5	158
60	0.7	255
61	0.6	331

Table A2.42: Microcosm 10: Filipendula ulmaria Stem Measurements.

Stem Number	Stem Width (mm)	Stem Height (mm)

	Total Stems	Total Number of Stems Stems with Inflorescence	61 0
		Max Height	1403
	Heights (mm)	Min Height	28
		Mean Height	413.295082
Ctomo		Mode Height	279
Sterns		Median Height	329
	Widths (mm)	Max Width	7.7
		Min Width	0.1
		Mean Width	1.439344262
		Mode Width	0.7
		Median Width	0.8

Table A2.43: Microc	osm 11: Filipendula ulm	aria Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
1	5.6	944
2	5.9	1102
3	3.6	973
4	6.8	895
5	3.4	585
6	3.5	1053
7	6.6	944
8	4.5	1251
9	6.5	1316
10	4.2	751
11	2.5	822
12	2.8	733
13	1	425
14	3.1	558
15	1.6	583
16	1.1	199
17	1.6	402
18	1.5	462
19	1.6	300
20	0.9	448
21	1.8	350
22	1.4	485
23	12	460
20	13	370
25	1.0	421
25	12	300
20	1.2	
21	1.2	495
28	0.8	384
29	0.6	413
30	0.6	330
31	0.8	452
32	1.1	400
33	0.4	396
34	1.1	332
35	0.7	375
36	1	376
37	0.5	464
38	0.6	346
39	1	250
40	0.9	315
41	1	418
42	0.7	470
43	1.3	430
44	1	506
45	1	105
46	0.6	337
47	1.2	325
48	0.6	461
40	1	429
50	0.7	302
51	13	
50	1.0	101
52	1.2	400
53	4	210
54	07	325
55	0.7	432
56	1.1	412
57	0.9	480
58	1	475
59	0.5	340
60	0.5	300
61	0.4	279
62	1.2	224
63	0.7	410
64	1.3	254

tem Number Stem Width (mm)		Stem Height (mm)	
65	1.3	275	
66	1	454	
67	0.7	332	
68	0.8	221	
69	0.9	414	
70	0.5	270	
71	0.3	342	
72	1	363	
73	0.5	203	
74	0.5	338	
75	0.8	190	
76	0.8	253	
77	0.3	312	
78	0.9	154	
79	0.6	141	
80	0.9	387	
81	0.5	410	
82	0.7	220	
83	0.5	372	
84	0.5	246	
85	1	241	
86	0.4	251	
87	0.7	339	
88	0.3	246	
89	0.7	200	
90	0.7	386	
91	0.8	159	
92	0.5	200	
93 0.8		291	
94 0.4		296	
95	0.7	86	
96	0.8	203	
97	0.6	135	
98	0.4	329	
99	0.5	202	
100	0.3	212	
101	1	195	
102	0.8	247	

	Total Stems	Total Number of Stems	102
		Stems with Inflorescence	0
		Max Height	1316
	Heights (mm)	Min Height	86
		Mean Height	407.3431373
Ctomo		Mode Height	944
Sterns		Median Height	366.5
	Widths (mm)	Max Width	6.8
		Min Width	0.3
		Mean Width	1.321568627
		Mode Width	1
		Median Width	0.9

Stem Number	Stem Width (mm)	Stem Height (mm)
1	0.7	527
2	0.6	231
3	0.9	571
4	0.5	413
5	1	520
6	1	251
7	0.5	471
8	1.1	350
9	0.5	429
10	1	640
11	0.7	323
12	1.2	513
13	0.2	305
14	1.1	350
15	1.1	447
16	0.9	540
17	1.7	294
18	1.3	388
19	1.6	489
20	1.1	274
21	0.9	190
22	1.2	318
23	2.6	654
24	0.5	326
25	1.9	242
26	1.1	801
27	1.5	315
28	1.9	417
29	0.5	437
30	1.4	519
31	0.7	216
32	1	370
33	1.2	467
34	4.6	1260
35	47	487
36	37	863
37	28	909
38	47	842
39	19	875
40	4	985
41	27	456
42	2.9	518
43	19	502
44	1.8	454
45	1.0	492
75	1.0	772

	Total Stems	Total Number of Stems	46
		Stems with Inflorescence	0
		Max Height	1260
	Heights (mm)	Min Height	190
	- · ·	Mean Height	487.6956522
Ctomo		Mode Height	350
Sterns		Median Height	455
	Widths (mm)	Max Width	4.7
		Min Width	0.2
		Mean Width	1.639130435
		Mode Width	0.5
		Median Width	1.2

Stem Number Stem Width (mm) Stem Height (mm) 1 1 430 2 0.7 340 3 0.9 469 4 0.8 413 5 0.7 426 6 1.1 363 7 1.4 484 8 1.7 644 10 1 437 11 1.7 621 12 1.9 428 13 0.6 485 14 1.2 522 15 1 395 16 2 421 17 1 473 18 0.7 238 19 0.8 292 20 0.8 401 21 1.4 503 22 1 346 23 1.1 300 24 1.5 439 25	Table A2.45: Microc	osm 13: Filipendula ulm	aria Stem Measurements.
1 1 430 2 0.7 340 3 0.9 469 4 0.8 413 5 0.7 426 6 1.1 363 7 1.4 484 8 1.7 433 9 1.7 644 10 1 437 11 1.7 521 12 1.9 428 13 0.6 485 14 1.2 522 15 1 395 16 2 421 17 1 473 18 0.7 228 19 0.8 292 20 0.8 401 21 1.4 503 22 1 346 23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28	Stem Number	Stem Width (mm)	Stem Height (mm)
2 0.7 340 3 0.9 469 4 0.8 413 5 0.7 426 6 1.1 363 7 1.4 484 8 1.7 644 10 1 437 11 1.7 644 12 1.9 428 13 0.6 485 14 1.2 522 15 1 395 16 2 421 17 1 473 18 0.7 238 19 0.8 292 20 0.8 401 21 1.4 503 22 1 346 23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 339 </td <td>1</td> <td>1</td> <td>430</td>	1	1	430
3 0.9 469 4 0.8 413 5 0.7 426 6 1.1 363 7 1.4 484 8 1.7 433 9 1.7 644 10 1 437 11 1.7 521 12 1.9 428 13 0.6 485 14 1.2 522 15 1 395 16 2 421 17 1 473 18 0.7 2238 19 0.8 292 20 0.8 401 21 1.4 503 22 1 346 23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28 8.339	2	0.7	340
4 0.8 413 5 0.7 426 6 1.1 363 7 1.4 484 8 1.7 634 9 1.7 644 10 1 437 11 1.7 521 12 1.9 428 13 0.6 485 14 1.2 522 15 1 395 16 2 421 17 1 473 18 0.7 238 19 0.8 292 20 0.8 401 21 1.4 503 22 1 346 23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 309 30 1.7 402	3	0.9	469
5 0.7 426 6 1.1 363 7 1.4 484 8 1.7 644 10 1 433 9 1.7 644 10 1 437 11 1.7 521 12 1.9 428 13 0.6 485 14 1.2 522 15 1 395 16 2 421 17 1 473 18 0.7 238 19 0.8 292 20 0.8 401 21 1.4 503 22 1 346 23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 309 29 1.8 502	4	0.8	413
6 1.1 363 7 1.4 484 8 1.7 644 10 1 437 11 1.7 521 12 1.9 428 13 0.6 485 14 1.2 522 15 1 395 16 2 421 17 1 473 18 0.7 238 19 0.8 292 20 0.8 401 21 1.4 503 22 1 346 23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36	5	0.7	426
7 1.4 484 8 1.7 433 9 1.7 644 10 1 437 11 1.7 521 11 1.7 521 12 1.9 428 13 0.6 485 14 1.2 522 15 1 395 16 2 421 17 1 473 18 0.7 238 19 0.8 292 20 0.8 401 21 1.4 503 22 1 346 23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 309 29 1.8 502 30 1.7 402 31 1.2 410 32 0.8 339 34	6	1.1	363
8 1.7 433 9 1.7 644 10 1 437 11 1.7 521 12 1.9 428 13 0.6 485 14 1.2 522 15 1 395 16 2 421 17 1 473 18 0.7 238 19 0.8 292 20 0.8 401 21 1.4 503 22 1 346 23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 309 29 1.8 502 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 <td>7</td> <td>1.4</td> <td>484</td>	7	1.4	484
9 1.7 644 10 1 437 11 1.7 521 12 1.9 428 13 0.6 485 14 1.2 522 15 1 395 16 2 421 17 1 473 18 0.7 238 19 0.8 292 20 0.8 401 21 1.4 503 22 1 346 23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 309 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5	8	1.7	433
10 1 437 11 1.7 521 12 1.9 428 13 0.6 485 14 1.2 522 15 1 395 16 2 421 17 1 473 18 0.7 238 19 0.8 292 20 0.8 401 21 1.4 503 22 1 346 23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 309 29 1.8 502 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36 1 564	9	1.7	644
11 1.7 521 12 1.9 428 13 0.6 485 14 1.2 522 15 1 395 16 2 421 17 1 473 18 0.7 238 19 0.8 292 20 0.8 401 21 1.4 503 22 1 346 23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 309 29 1.8 502 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36 1 564 37 3.6 1049	10	1	437
12 1.9 428 13 0.6 485 14 1.2 522 15 1 395 16 2 421 17 1 473 18 0.7 238 19 0.8 292 20 0.8 401 21 1.4 503 22 1 346 23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 309 29 1.8 502 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487	11	1.7	521
13 0.6 485 14 1.2 522 151 395 162 421 171 473 18 0.7 238 19 0.8 292 20 0.8 401 21 1.4 503 22 1 346 23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 309 29 1.8 502 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 340 41 0.5 392 42 0.5 230 43 1.1 409 44 1.1 334 45 0.5 190 46 0.2 279 47 1.5 285 48 1.3 292 49 0.7 246 50 1.2 225 51 2.2 190 52 0.5 310 53 0.7 228 59 0.5 243 60 1 243 <td>12</td> <td>1.9</td> <td>428</td>	12	1.9	428
14 12 522 15 1 395 16 2 421 17 1 473 18 0.7 238 19 0.8 292 20 0.8 401 21 1.4 503 22 1 346 23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 309 29 1.8 502 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487 39 1 412 <td>13</td> <td>0.6</td> <td>485</td>	13	0.6	485
151 395 16 2 421 17 1 473 18 0.7 238 19 0.8 292 20 0.8 401 21 1.4 503 22 1 346 23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 309 29 1.8 502 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 334 45 0.5 230 43 1.1 409 44 1.1 334 45 0.5 190 46 0.2 279 47 1.5 285 48 1.3 292 49 0.7 246 50 1.2 225 51 2.2 190 52 0.5 310 53 0.7 226 57 1.5 408 58 0.7 228 59 0.5 243 <t< td=""><td>14</td><td>1.2</td><td>522</td></t<>	14	1.2	522
16 2 421 17 1 473 18 0.7 238 19 0.8 292 20 0.8 401 21 1.4 503 22 1 346 23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 309 29 1.8 502 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 340 41	15	1	395
171 473 18 0.7 238 19 0.8 292 20 0.8 401 21 1.4 503 22 1 346 23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 309 29 1.8 502 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 340 41 0.5 392 42 0.5 230 43 1.1 409 44 1.1 334 45 0.5 190 46 0.2 279 47 1.5 285 48 1.3 292 49 0.7 246 50 1.2 225 51 2.2 190 52 0.5 310 53 0.7 226 57 1.5 408 58 0.7 226 57 1.5 408 58 0.7 226 <td>16</td> <td>2</td> <td>421</td>	16	2	421
18 0.7 238 19 0.8 292 20 0.8 401 21 1.4 503 22 1 346 23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 309 29 1.8 502 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 340 41 0.5 392	17	1	473
19 0.8 292 20 0.8 401 21 1.4 503 22 1 346 23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 309 29 1.8 502 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487 40 1.1 340 41 0.5 392 42 0.5 230 43 1.1 409 44 1.1 334 45 0.5 190 46 0.2 279 47 1.5 285 48 1.3 292 49 0.7 246 50 1.2 225 51 2.2 190 52 0.5 310 53 0.7 226 57 1.5 408 58 0.7 228 59 0.5 243 60 1 243 61 1.2 353 62 0.8 176 63 0.7 555 64	18	0.7	238
20 0.8 401 21 1.4 503 22 1 346 23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 309 29 1.8 502 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 340 41 0.5 392 42 0.5 230 43 1.1 409 44 1.1 334 45 0.5 190 46 0.2 279 47 1.5 285 48 1.3 292 49 0.7 246 50 1.2 225 51 2.2 190 52 0.5 310 53 0.7 226 57 1.5 408 58 0.7 228 59 0.5 243 60 1 243 61 1.2 353 62 0.8 176 63 0.7 555 <	19	0.8	292
21 1.4 503 22 1 346 23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 309 29 1.8 502 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 340 41 0.5 392 42 0.5 230 43 1.1 334 45 0.5 190	20	0.8	401
22 1 346 23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 309 29 1.8 502 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 340 41 0.5 392 42 0.5 230 43 1.1 409 44 1.1 334 45 0.5 190 46 0.2 279 47	21	1.4	503
23 1.1 300 24 1.5 439 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 309 29 1.8 502 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 344 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 340 41 0.5 392 42 0.5 230 43 1.1 409 44 1.1 334 45 0.5 190 46 0.2 279 47 1.5 285 4	22	1	346
22 1.5 339 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 309 29 1.8 502 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 340 41 0.5 392 42 0.5 230 43 1.1 409 41 0.5 190 46 0.2 279 47 1.5 285 51 2.2	23	11	300
-1 -10 -10 25 0.6 397 26 0.9 343 27 2.5 311 28 0.8 309 29 1.8 502 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 340 41 0.5 392 42 0.5 230 43 1.1 409 44 1.1 334 45 0.5 190 46 0.2 279 47 1.5	24	15	439
26 0.9 343 27 2.5 311 28 0.8 309 29 1.8 502 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 340 41 0.5 392 42 0.5 230 43 1.1 409 44 1.1 334 45 0.5 190 44 1.1 344 41 0.7 246 50 1.2 225 51 2.2	25	0.6	307
20 3.5 345 27 2.5 311 28 0.8 309 29 1.8 502 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 340 41 0.5 392 42 0.5 230 43 1.1 409 44 1.1 334 45 0.5 190 46 0.2 279 47 1.5 285 48 1.3 292 49 0.7 246 <	26	0.0	3/3
27 2.3 311 28 0.8 309 29 1.8 502 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 340 41 0.5 392 42 0.5 230 43 1.1 409 44 1.1 334 45 0.5 190 44 0.7 285 48 1.3 292 49 0.7 246 50 1.2 225 51 2.2 190 52 0.5 310	20	0.3	211
28 0.6 309 29 1.8 502 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 340 41 0.5 392 42 0.5 230 43 1.1 344 41 0.5 392 42 0.5 190 44 1.1 334 45 0.5 190 44 1.1 334 45 0.5 190 50 1.2 225 51 2.2	21	2.5	311
29 1.3 302 30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 340 41 0.5 392 42 0.5 230 43 1.1 409 44 1.1 334 45 0.5 190 46 0.2 279 47 1.5 285 48 1.3 292 49 0.7 246 50 1.2 225 51 2.2 190 52 0.5 310 53 0.7 226	20	0.0	509
30 1.7 402 31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 340 41 0.5 392 42 0.5 230 43 1.1 409 44 1.1 334 45 0.5 190 46 0.2 279 47 1.5 285 48 1.3 292 49 0.7 246 50 1.2 225 51 2.2 190 52 0.5 310 53 0.7 226 57 1.5 408	29	1.8	502
31 1.2 410 32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 340 411 0.5 392 42 0.5 230 43 1.1 409 44 0.5 190 44 0.5 190 46 0.2 279 47 1.5 285 48 1.3 292 49 0.7 246 50 1.2 225 51 2.2 190 52 0.5 310 53 0.7 276 54 1.5 214 55 1 450	30	1.7	402
32 0.8 339 33 1.3 297 34 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 340 41 0.5 230 42 0.5 230 43 1.1 409 44 0.5 190 46 0.2 279 47 1.5 285 48 1.3 292 49 0.7 246 50 1.2 225 51 2.2 190 52 0.5 310 53 0.7 276 54 1.5 214 55 1 450 56 0.7 <	31	1.2	410
33 1.3 297 34 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 340 41 0.5 392 42 0.5 230 43 1.1 409 44 1.1 334 45 0.5 190 44 1.1 334 45 0.5 190 44 1.1 334 45 0.5 190 46 0.2 279 47 1.5 285 48 1.3 292 49 0.7 246 50 1.2 225 51 2.2 190 52 0.5 310 53 0.7 226	32	0.8	339
34 1.5 400 35 3 458 36 1 564 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 340 411 0.5 392 42 0.5 230 43 1.1 409 44 1.1 334 45 0.5 190 46 0.2 279 47 1.5 285 48 1.3 292 49 0.7 246 50 1.2 225 51 2.2 190 52 0.5 310 53 0.7 276 54 1.5 214 55 1 450 58 0.7 228 59 0.5 243 61 1.2 353 62 <	33	1.3	297
35 3 458 36 1 564 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 340 41 0.5 230 42 0.5 230 43 1.1 409 44 1.1 334 45 0.5 190 46 0.2 279 47 1.5 285 48 1.3 292 49 0.7 246 50 1.2 225 51 2.2 190 52 0.5 310 53 0.7 276 54 1.5 214 55 1 450 56 0.7 228 59 0.5 243 61 1.2	34	1.5	400
36 1 564 37 3.6 1049 38 1.7 487 39 1 412 40 1.1 340 41 0.5 392 42 0.5 230 43 1.1 409 44 1.1 334 45 0.5 190 46 0.2 279 47 1.5 285 48 1.3 292 49 0.7 246 50 1.2 225 51 2.2 190 52 0.5 310 52 0.5 310 53 0.7 276 54 1.5 214 55 1 450 56 0.7 228 59 0.5 243 60 1	35	3	458
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	1	564
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	37	3.6	1049
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38	1.7	487
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39	1	412
41 0.5 392 42 0.5 230 43 1.1 409 44 1.1 334 45 0.5 190 46 0.2 279 47 1.5 285 48 1.3 292 49 0.7 246 50 1.2 225 51 2.2 190 52 0.5 310 53 0.7 276 54 1.5 214 55 1 450 56 0.7 326 57 1.5 408 58 0.7 228 59 0.5 243 60 1 243 61 1.2 353 62 0.8 176 63 0.7 155 64 0.9 147	40	1.1	340
42 0.5 230 43 1.1 409 44 1.1 334 45 0.5 190 46 0.2 279 47 1.5 285 48 1.3 292 49 0.7 246 50 1.2 225 51 2.2 190 52 0.5 310 53 0.7 276 54 1.5 214 55 1 450 56 0.7 326 57 1.5 408 58 0.7 228 59 0.5 243 60 1 243 61 1.2 353 62 0.8 176 63 0.7 155 64 0.9 147	41	0.5	392
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	42	0.5	230
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	43	1.1	409
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	44	1.1	334
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	45	0.5	190
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	46	0.2	279
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	47	1.5	285
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	48	1.3	292
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49	0.7	246
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	1.2	225
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	2.2	190
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52	0.5	310
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53	0.7	276
51 1.0 2.17 55 1 450 56 0.7 326 57 1.5 408 58 0.7 228 59 0.5 243 60 1 243 61 1.2 353 62 0.8 176 63 0.7 155 64 0.9 147	54	1.5	214
56 0.7 326 57 1.5 408 58 0.7 228 59 0.5 243 60 1 243 61 1.2 353 62 0.8 176 63 0.7 155 64 0.9 147	55	1.0	450
50 0.7 320 57 1.5 408 58 0.7 228 59 0.5 243 60 1 243 61 1.2 353 62 0.8 176 63 0.7 155 64 0.9 147	56	0.7	326
57 1.3 400 58 0.7 228 59 0.5 243 60 1 243 61 1.2 353 62 0.8 176 63 0.7 155 64 0.9 147	57	0.7	320
30 0.7 220 59 0.5 243 60 1 243 61 1.2 353 62 0.8 176 63 0.7 155 64 0.9 147	50	1.3	400
D3 0.5 243 60 1 243 61 1.2 353 62 0.8 176 63 0.7 155 64 0.9 147	58	0.7	228
60 1 243 61 1.2 353 62 0.8 176 63 0.7 155 64 0.9 147	59	0.5	243
b1 1.2 353 62 0.8 176 63 0.7 155 64 0.9 147	60	1	243
62 0.8 176 63 0.7 155 64 0.9 147	61	1.2	353
63 0.7 155 64 0.9 147	62	0.8	176
64 0.9 147	63	0.7	155
	64	0.9	147

Stem Number	Stem Width (mm)	Stem Height (mm)
65	1	248
66	1.2	240
67	0.9	193
68	1.2	257
69	0.9	362
70	0.7	206
71	1.4	340
72	1.3	355
73	1.2	274
74	0.7	233
75	1.3	231
76	0.5	339
77	0.6	356
78	2.8	246
79	0.9	199
80	0.5	225
81	0.8	320
82	0.9	287
83	1.2	200
84	0.9	95
85	1	384
86	0.9	258
87	0.6	168
88	0.5	174
89	0.8	257
90	0.3	233
91	0.8	153
92	1.5	202
93	0.9	204
94	0.9	302
95	0.8	193
96	0.7	20
97	1.1	288
98	0.9	219
99	1.2	196
100	0.5	180
101	1.1	149
102 0.9		126
103	1.1	145

	Total Stems	Total Number of Stems	103
	Total Stems	Stems with Inflorescence	6
		Max Height	1049
	Heights (mm)	Min Height	20
		Mean Height	319.2330097
Ctomo		Mode Height	340
Sterns		Median Height	302
	Widths (mm)	Max Width	3.6
		Min Width	0.2
		Mean Width	1.088349515
		Mode Width	0.9
		Median Width	1

Table A2.46: Microcosm 14 Filipendula ulmaria Stem Measurements.

There were no surviving Filipendula ulmaria within Microcosm 14.

Table A2.47: Microcosm 15 Filipendula ulmaria Stem Measurements.

There were no surviving Filipendula ulmaria within Microcosm 15.

Table A2.48: Microcosm 16 Filipendula ulmaria Stem Measurements.

There were no surviving *Filipendula ulmaria* within Microcosm 16.

Table A2.49: Microc	osm 1: Mentha aquatica	Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
1	1.3	435
2	1.5	508
3	2	584
4	1.5	411
5	1.5	486
6	1.8	452
7	1.2	301
8	1.1	314
9	2.1	387
10	1.9	402
11	1.3	201
12	1.4	186
13	1.4	377
14	1.1	494
15	0.8	185
16	0.8	624
17	3.8	295
18	2.6	413
19	0.8	320
20	1	433
21	1.6	694
22	22	498
22	2.2	375
23	1.1	375
24	1.7	076
20	1.2	270
20	1.3	190
27	0.8	193
28	0.9	14
29	0.6	115
30	0.8	255
31	1.5	370
32	1.8	346
33	1.4	517
34	3.3	247
35	1.3	201
36	1.3	472
37	1.7	299
38	1.2	362
39	1.2	320
40	1.9	531
41	0.7	203
42	1.7	691
43	1.4	588
44	2.1	723
45	1.3	455
46	0.8	145
47	1.4	677
48	0.5	215
40	1.9	100
	0.7	280
51	0.7	543
50	0.0	175
52	1.3	1/5
53	0.7	183
54	2.2	209
55	1.6	285
56	1.4	357
57	1	344
58	0.7	265
59	2.1	201
60	1.5	414
61	1.2	161
62	1.2	71
63	1	376
64	0.5	59

Table A2.49: Microco	osm 1: Mentha aquatica	Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
65	1.3	182
66	0.8	233
67	0.8	421
68	1.1	531
69	1.3	223
70	1.9	220
71	0.9	190
72	2.2	143
73	1.4	287
74	3.3	170
75	1.2	189
76	3.4	202
77	0.9	695
78	1.3	370
79	1.4	262
80	0.6	142
81	0.9	309
82	1.1	598
83	0.8	596
84	0.4	306
85	1.1	295
86	0.5	171
87	1	243
88	1.3	435
89	1	401
90	0.9	405
91	0.8	178
92	1.3	209
93	0.7	68
94	0.6	53
95	1.8	374
96	0.8	135
97	1.2	385
98	0.8	159
99	1.9	342
100	0.8	217
101	0.3	20
102	0.8	207
103	1.4	344
104	0.8	284
105	1.7	410
106	1.6	252
107	1.2	307
108	2	324
109	1.3	230
110	1.7	349
111	1.4	322
112	1.3	255
113	1.2	235
114	2.7	228
115	12	234
116	0.7	233
117	0.8	152
118	11	326
119	11	192
120	0.8	245
120	0.0	308
100	0.0	303
122	0.0	300
123	1.0	200
124	1.1	209
120	1.2	409
120	1.3	401
127	1	302
128	U.8	108

- 211 -

Stom Number	Stom Width (mm)	Ream Height (mm)
Stem Number	Stem Width (mm)	Stem Height (mm)
129	0.7	73
130	0.8	245
101	1.0	210
131	1.0	405
132	1.6	409
133	2	527
13/	1	324
104	4.0	000
135	1.3	202
136	2.8	109
137	0.7	151
128	4.5	112
130	1.5	113
139	1	225
140	1.3	368
141	0.7	185
142	1.0	604
142	1.2	624
143	1.1	470
144	1.1	290
145	1.1	212
145	1.1	213
146	1.6	191
147	3	218
148	0.6	183
140	0.0	100
149	1.3	168
150	0.7	271
151	1.5	241
152	1.0	265
102	1.ð	602
153	2.8	181
154	1.9	133
165	1.2	152
155	1.3	152
156	0.6	192
157	0.9	199
158	17	136
100	4.4	100
159	1.1	268
160	2.8	145
161	0.7	165
162	2	427
102	3	421
163	1.7	526
164	1.6	461
165	12	618
100	1.2	010
166	1.2	671
167	1.8	565
168	1.5	577
100	1.0	071
169	0.9	671
170	3.4	362
171	1.3	331
170	2.0	395
172	2.0	300
1/3	1.9	250
174	1	199
175	12	305
470	0	140
170	3	110
177	1.4	482
178	1.6	239
170	0.9	76
1/9	0.0	10
180	1.2	502
181	0.9	168
182	13	189
102	1.0	103
183	1.4	406
184	0.7	310
185	17	171
100	0.5	100
180	0.5	182
187	1.6	426
188	1.4	338
100	0.0	200
109	0.9	332
190	1.7	462
191	1.4	456
102	10	631
132	1.5	007

Stem Number	Stem Width (mm)	Stem Height (mm)
102	1.2	
193	1.2	239
194	1	200
195	1.4	336
196	1.4	462
197	1	305
198	1.2	382
199	1.3	261
200	0.9	195
200	2.7	149
201	3.7	148
202	2.2	185
203	2.1	140
204	1.1	210
205	0.9	284
206	1.1	166
207	1.3	172
208	1.0	205
200	0.7	205
209	0.7	199
210	0.9	142
211	1.2	145
212	0.8	316
213	1.3	164
214	1.3	95
215	0.8	207
215	1	1//
210	1.0	144
217	1.Z	121
218	1	109
219	0.8	196
220	1	96
221	1.4	126
222	14	216
222	2.2	252
223	2.2	333
224	1.4	119
225	1.2	231
226	1.6	151
227	1.9	120
228	0.5	96
229	1.4	153
230	29	59
200	1	142
231	1.0	143
232	1.6	160
233	0.7	123
234	1	225
235	1	122
236	0.9	181
237	0.7	131
238	0.6	262
200	1.0	107
239	1.9	127
240	0.7	143
241	2.6	134
242	2.1	82
243	1.9	137
244	1.7	101
245	2.5	91
2/6	1.6	00
240	1.0	5U
247	1.2	180
248	2.9	83
249	1	126
250	1.4	86
251	1.3	86
252	11	93
252	0.7	62
200	0.7	02
∠54	0.8	190
255	0.4	75

Stem Number Stem Width (mm) Stem Height (mm)

	Total Stems	Total Number of Stems Stems with Inflorescence	<u>255</u> 54
		Max Height	723
	Heights (mm)	Min Height	14
		Mean Height	277.2470588
Ctomo		Mode Height	201
Sterns		Median Height	239
	Widths (mm)	Max Width	3.8
		Min Width	0.3
		Mean Width	1.355686275
		Mode Width	1.3
		Median Width	1.3

Stem Number	Stem Width (mm)	Stem Height (mm)
1	1.2	414
2 0.5		74
3	0.7	63
4	1.4	282
5	1.2	395
6	1.2	466
7	0.7	76
8	1	264
9	0.7	252
10	1.1	376
11	1.2	350
12	1.7	593
13	1.3	221
14	0.5	173
15	1.5	317
16	1.5	172
17	0.8	129
18	0.7	347
19	0.8	394
20	1.1	312
21	1.8	212
22	1.2	205
23	1.1	274
24	0.6	288
25	1.2	252
26	1	135
27	1	164
28	1.2	160
29	2	69
30	0.8	65
31	0.7	85
32	0.6	266
33	0.4	209
34	0.7	175
35	0.6	128
36	0.6	140
37	1.8	94
38	1	93
39	0.7	94
40	0.6	124
41	0.7	66

	Total Stems	Total Number of Stems	41
	Total Otema	Stems with Inflorescence	1
		Max Height	593
	Heights (mm)	Min Height	63
		Mean Height	218.7317073
Ctomo		Mode Height	252
Sterns		Median Height	205
	Widths (mm)	Max Width	2
		Min Width	0.4
		Mean Width	1.002439024
		Mode Width	0.7
		Median Width	1

Stem Number	Stem Width (mm)	Stem Height (mm)
1	1.3	437
2	1.1	205
3	1	281
4	1.5	154
5	0.7	235
6	0.7	227
7	0.7	254
8	0.8	372
9	0.8	437
10	0.6	323
10	0.9	240
12	0.9	207
13	0.7	360
14	1.2	239
15	1.2	461
16	1.2	282
10	1.1	283
18	1.5	315
19	1.0	466
20	1	621
20	1	272
27	12	265
23	1.2	287
20	1.2	296
25	11	219
26	1.1	299
27	0.8	256
28	0.5	175
29	0.9	125
30	0.5	96
31	1.1	229
32	0.8	225
33	0.8	137
34	1	240
35	0.6	87
36	0.6	237
37	0.7	241
38	1	176
39	1.2	60
40	0.5	106
41	0.3	148
42	0.6	168
43	0.6	161
44	0.5	128
45	0.8	165
46	0.6	176
47	0.6	119
48	0.2	115
49	1.3	55
50	0.6	115
51	2.4	40
52	0.6	116

Stem Number Stem Width (mm) Stem Height (mm)

	Total Stems	Total Number of Stems	52
	Total Otenia	Stems with Inflorescence	6
		Max Height	621
	Heights (mm)	Min Height	40
		Mean Height	229.4807692
Ctomo		Mode Height	437
Sterns		Median Height	228
		Max Width	2.4
	Widths (mm)	Min Width	0.2
	Ň	Mean Width	0.898076923
		Mode Width	0.6
		Median Width	0.85

Table A2.52: Microc	osm 4: Mentha aquatica	a Stem Measurements.
Stem Number	Stem width (mm)	Stem Height (mm)
1	1./	4/8
2	1.6	623
3	1.2	530
4	0.8	267
5	1.2	368
6	0.7	579
7	0.9	245
8	1.2	446
9	2.6	163
10	1.3	562
11	1.5	294
12	0.5	179
13	1.5	447
14	0.8	353
15	1.2	379
16	1.4	381
17	2.4	306
10	2.4	405
10	0.9	400
19	0.9	680
20	0.4	152
21	1.5	539
22	0.4	215
23	2	610
24	1.3	582
25	1.1	529
26	1	876
27	1.3	812
28	0.9	521
29	1.8	315
30	1	189
31	13	389
32	1.0	615
33	2	262
34	1	335
25	12	202
30	1.4	393
30	1.1	404
37	0.7	430
38	1.1	142
39	0.5	128
40	1.5	348
41	1.7	413
42	1.1	484
43	0.9	235
44	0.8	212
45	1.8	278
46	1	460
47	0.5	337
48	0.8	149
49	0.6	226
50	1	180
51	1	77
52	0.5	74
53	1.5	185
5/	2	170
54	0.0	105
50	0.9	100
57	0.0	183
5/	0.4	109
58	1	120
59	0.9	184
60	1	166
61	1.2	322
62	1.1	140
63	0.8	192
64	2.8	99

Table A2.52: Microcosm 4: Mentha aquatica Stem Measurements.

Stem Number	Stem Width (mm)	Stem Height (mm)
65	1.5	97
66	0.6	87
67	1.7	142
68	1.5	144
69	1	133
70	0.6	382
71	1	132
72	0.6	186
73	1.5	318
74	1.7	110
75	1.2	63
76	1.5	87
77	0.7	87
78	0.4	177
79	1.3	169
80	1	116
81	1	95
82	0.5	111
83	0.8	102
84	1.3	82
85	0.7	109
86	0.6	107

	Total Stems	Total Number of Stems Stems with Inflorescence	<u>86</u> 6
	Heights (mm)	Max Height Min Height	876 63
		Mean Height	289.6860465
Ctomo		Mode Height	87
Sterns		Median Height	220.5
	Widths (mm)	Max Width	3
		Min Width	0.4
		Mean Width	1.141860465
		Mode Width	1
		Median Width	1

Table A2.53: Microco	osm 5: Mentha aquatica	a Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
1	1.2	164
2	0.8	105
3	0.8	119
4	0.6	116
5	0.2	23
6	0.4	86
7	0.5	91
8	0.4	64
9	0.6	175
10	0.6	358
11	0.5	106
12	0.4	175
13	0.5	48
14	0.8	214
15	11	442
16	0.6	73
17	0.0	382
18	0.5	156
10	0.7	188
19	0.7	100
20	0.0	55
21	0.3	43
22	0.5	182
23	1.1	257
24	0.5	208
25	0.4	53
26	0.9	532
27	0.6	188
28	1.5	114
29	1.6	356
30	0.9	60
31	1.1	250
32	0.5	312
33	0.9	159
34	0.5	186
35	0.8	221
36	0.9	256
37	0.9	266
38	1.4	381
39	1.2	165
40	0.7	83
41	0.7	205
42	0.6	226
43	0.5	190
44	1.3	167
45	1.3	410
46	0.5	136
47	0.6	175
48	11	434
0 /0	0.6	122
50	1.1	348
51	0.8	312
51	0.0	107
52	0.0	107
55	0.7	000
54	0.7	320
55	0.8	216
56	1.2	298
57	0.9	105
58	0.8	306
59	0.9	233
60	0.9	272
61	1.6	392
62	1	99
63	0.5	60
64	1.2	276

Stem Number	Stem Width (mm)	Stem Height (mm)	
65	0.8	185	
66	1.9	121	
67	0.5	241	
68	0.9	141	
69	0.9	245	
70	0.9	194	
71	0.3	94	
72	0.5	170	
73	0.3	44	
74	0.5	218	
75	0.8	183	
76	0.0	170	
70	0.5	133	
78	0.5	218	
70	0.0	210	
19	0.9	01	
00	0.7	131	
01	0.8	84	
82	1	134	
83	0.5	41	
84	0.9	150	
85	0.6	122	
86	0.5	185	
87	0.6	107	
88	0.7	174	
89	0.9	354	
90	0.7	89	
91	0.5	108	
92	0.5	44	
93	0.7	154	
94	0.3	195	
95	0.5	85	
96	0.5	130	
97	0.9	218	
98	0.7	120	
99	0.3	86	
100	0.8	131	
101	0.5	69	
102	0.7	52	
103	0.5	284	
104	0.9	235	
105	0.2	72	
106	0.7	68	
107	0.7	181	
108	0.7	53	
100	0.7	120	
110	0.9	123	
111	0.4	142	
110	0.7	142	
112	0.4	1/5	
113	0.5	89	
Table A2.53: Microcosm 5: Mentha aquatica Stem Measurements.			
--	--	--	--
Stem Number Stem Width (mm) Stem Height (mm)			

	Total Stems	Total Number of Stems	114
		Stems with Inflorescence	0
		Max Height	532
	Heights (mm)	Min Height	23
		Mean Height	179.2192982
Ctomo		Mode Height	175
Sterns		Median Height	166
	Widths (mm)	Max Width	1.9
		Min Width	0.2
		Mean Width	0.733333333
		Mode Width	0.5
		Median Width	0.7

Table A2.54: Microcosm 6 Mentha aquatica Stem Measurements.

There were no surviving Mentha aquatica within Microcosm 6.

Table A2.55: Microcosm 7 Mentha aquatica Stem Measurements.

There were no surviving Mentha aquatica within Microcosm 7.

Table A2.56: Microcosm 8 Mentha aquatica Stem Measurements.

There were no surviving Mentha aquatica within Microcosm 8.

Table A2.57: Microo	cosm 9: Mentha aquatio	a Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
1	2.1	772
2	1.1	498
3	0.8	408
4	1.7	444
5	0.9	235
6	0.7	312
7	2.1	459
8	1.5	123
9	2.0	4//
10	1.4	751 E19
12	1.3	516
12	2.6	843
10	0.6	286
15	1.8	512
16	1.3	250
17	1.6	472
18	1.5	440
19	2.7	740
20	1	622
21	1.5	538
22	1.2	426
23	1.3	500
24	1.9	433
25	1.2	394
26	1.3	422
27	1.8	365
28	1.2	276
29	1.4	386
30	1.9	540
31	1.3	408
32	0.7	329
33	0.9	434
34	2.1	691
35	1.1	525
37	1.3	488
38	1.5	338
39	21	649
40	17	388
40	1.7	390
42	1.5	478
43	1	653
44	1.7	746
45	2.9	350
46	1	465
47	1	472
48	1.8	309
49	1.2	376
50	1.1	747
51	1.9	702
52	1.8	679
53	1.8	429
54	1.4	/26
55	1.7	129
56	1.5	/65
5/	1.5	519
58	1.2	040
59	1.0	233
61	0.6	3/3
62	13	<u> </u>
63	0.6	398
64	1.4	466
54	1.4	400

Table A2.57: Microo	cosm 9: Mentha aquatic	a Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
65	2	702
66	1.6	173
67	1.6	403
68	1.3	514
69	1.3	424
70	1.7	180
71	2.7	459
72	1.5	587
73	1.3	382
74	1.5	306
75	1.9	265
76	1.1	385
77	1.1	244
78	2.3	211
79	0.6	463
80	1.3	290
81	0.9	276
82	1.1	191
83	0.9	225
84	0.9	319
85	1.4	424
86	1.4	204
87	0.9	310
07	0.9	510
00	0.4	570
00	0.9	405
90	1.4	412
91	1	371
92	1.3	167
93	1	216
94	1.2	155
95	1	400
96	0.7	227
97	0.4	285
98	0.6	185
99	1.2	145
100	1.6	210
101	1.5	163
102	1.2	315
103	0.4	165
104	0.7	268
105	0.8	201
106	1.1	145
107	0.7	194
108	0.8	15
109	0.6	194
110	0.7	139
111	1.1	137
112	1	264
113	1.5	146
114	1	116
115	1	195
116	0.6	234
117	0.6	231
118	1	96
119	11	148
120	0.7	166
120	0.7	165
121	0.9	CO1 930
122	0.9	300
123	0.8	1012
124	0.5	250
125	0.8	243
126	1	100
127	0.9	2/4
128	0.8	123

Table A2.57: Microc	cosm 9: Mentha aquatic	a Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
129	0.6	48
130	0.4	46
131	0.8	94
132	0.2	60
133	0.6	53
134	0.8	53
135	1.1	198
136	0.8	281
137	0.5	129
138	0.7	115
139	0.7	218
140	0.7	68
141	0.6	280
142	0.6	119
143	0.4	121
144	0.4	171
145	0.9	265
146	0.5	68
147	1	119
148	0.9	106
149	1	119
150	0.5	172
151	0.7	252
152	0.7	76
153	0.6	137
154	0.8	125
155	0.8	214
156	1.1	76
150	0.6	122
158	0.0	130
150	0.0	00
159	0.7	121
161	0.5	165
162	0.9	265
162	1.0	203
163	0.5	144
104	1.1	94
100	1.1	103
100	0.8	169
167	1.3	114
168	1.2	396
169	1.1	133
170	0.7	336
171	0.7	170
172	0.9	254
173	1.2	255
174	0.7	194
175	0.8	70
176	0.7	135
177	0.6	147
178	0.8	185
179	0.7	168
180	0.7	76
181	0.7	179
182	0.9	221
183	0.3	300
184	1	162
185	0.7	119
186	1	207
187	0.7	189
188	0.6	218
189	0.7	242
190	0.4	140
191	0.9	118
192	0.9	220

Table A2.57: Microo	cosm 9: Mentha aquatic	a Stem Measurements.
Stem Number	Stem Width (mm)	Stem Height (mm)
193	0.5	154
194	0.7	287
195	1.1	133
196	1	66
197	0.8	69
198	0.6	304
199	1.1	328
200	0.6	244
201	0.9	323
202	1.5	167
203	1.3	412
204	0.8	216
205	0.7	272
206	0.8	149
207	0.9	186
208	1.3	236
209	0.7	158
210	0.7	291
211	0.5	487
212	1.2	182
213	1.3	407
214	0.7	132
215	0.3	190
216	0.4	53
217	1	162
218	1.2	163
219	0.6	60
220	0.0	215
220	0.0	143
2221	0.7	145
222	0.0	194
223	1.1	123
224	0.7	210
225	0.7	210
220	0.0	205
227	0.7	110
220	0.5	103
229	0.4	193
230	0.4	198
231	0.8	95
232	0.8	1059
233	0.4	197
234	0.4	89
235	0.7	84
236	0.7	125
237	0.5	66
238	1	255
239	0.9	211
240	0.4	226
241	0.9	394
242	0.9	308
243	1.6	115
244	0.7	94
245	0.5	195
246	0.6	234
247	0.4	173
248	0.6	163
249	0.9	56
250	1.5	104
251	1.4	197
252	0.7	71
253	0.7	81
254	0.5	125
255	0.6	63
256	0.7	40
200	0	10

Table A2.57: Microcosm 9: Mentha aquatica Stem Measurements.

Table A2.57: Microcosm 9: Mentha aquatica Stem Measurements.			
Stem Number	Stem Width (mm)	Stem Height (mm)	
257	0.8	60	
258	1.1	43	

	Total Stoms	Total Number of Stems	258
	Total Sterns	Stems with Inflorescence	22
		Max Height	1059
	Heights (mm)	Median Height	15
		Mean Height	278.8372093
Ctomo		Mode Height	119
Sterns		Median Height	218
	Widths (mm)	Max Width	2.9
		Min Width	0.2
		Mean Width	1.026356589
		Mode Width	0.7
		Median Width	0.9

Stem Number Stem Width (mm) Stem Height (mm) 1 1.2 467 2 1.8 1091 3 2.5 621 4 1.9 383 5 1.2 251 6 1 221.7 7 0.8 295 8 1 130.9 9 1 98 10 1.8 495 11 0.5 123 12 0.9 230 13 2.6 684 14 0.7 160 18 255 598 19 1.3 386 20 0.8 190 21 0.6 182 23 0.7 258 24 0.9 144 25 1.4 501 26 1.4 501 29 1.5 807 30 1.6 904 <	Table A2.58: Microc	osm 10: Mentha aquatio	ca Stem Measurements.
1 1.2 467 2 1.8 1081 3 2.5 621 4 1.9 383 5 1.2 251 6 1 221 7 0.8 295 8 1 130 9 1 98 10 1.8 495 11 0.5 123 12 0.9 230 13 2.6 684 14 0.7 160 15 1.8 627 16 1.8 188 17 1.1 101 18 2.5 598 20 0.8 190 21 0.8 83 22 0.6 182 23 0.7 228 24 0.9 144 25 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 <th>Stem Number</th> <th>Stem Width (mm)</th> <th>Stem Height (mm)</th>	Stem Number	Stem Width (mm)	Stem Height (mm)
2 1.8 1081 3 2.5 621 4 1.9 383 5 1.2 2251 6 1 221 7 0.8 296 8 1 130 9 1 98 10 1.8 495 11 0.5 123 12 0.9 230 13 2.6 684 14 0.7 160 15 1.8 627 16 1.8 188 17 1.1 101 18 2.5 596 19 1.3 386 20 0.8 190 21 0.8 83 22 0.6 182 23 0.7 258 24 0.9 144 25 1.4 501 26 1.4 270 27 1.1 69 28 1.4 115 29 </td <td>1</td> <td>1.2</td> <td>467</td>	1	1.2	467
3 2.5 621 4 1.9 383 5 1.2 251 6 1 221 7 0.8 295 8 1 130 9 1 98 10 1.8 495 11 0.5 123 12 0.9 230 13 2.6 684 14 0.7 160 15 1.8 627 16 1.8 188 17 1.1 101 18 2.5 598 19 1.3 386 20 0.8 190 21 0.8 83 22 0.6 182 23 0.7 258 24 0.9 144 25 1.4 501 26 1.4 210 27 1.1 69 33 3.3 857 34 </td <td>2</td> <td>1.8</td> <td>1081</td>	2	1.8	1081
4 1.9 383 5 1.2 251 6 1 221 7 0.8 295 8 1 130 9 1 98 10 1.8 495 11 0.5 123 12 0.9 230 13 2.6 684 14 0.7 160 15 1.8 627 16 1.8 188 17 1.1 101 18 2.5 598 19 1.3 386 20 0.8 190 21 0.8 83 22 0.6 182 23 0.7 258 24 0.9 144 25 1.4 501 26 1.4 270 27 1.1 69 28 1.4 955 33 3.3 3.3 36 <	3	2.5	621
5 1.2 251 6 1 221 7 0.8 295 8 1 130 9 1 98 10 1.8 495 11 0.5 123 12 0.9 230 13 2.6 684 14 0.7 160 15 1.8 627 16 1.8 188 17 1.1 101 18 2.5 598 19 1.3 386 20 0.8 190 21 0.8 83 22 0.6 182 23 0.7 258 24 0.9 144 25 1.4 501 26 1.4 270 27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32<	4	1.9	383
6 1 221 7 0.8 295 8 1 130 9 1 98 10 1.8 495 11 0.5 123 12 0.9 230 13 2.6 684 14 0.7 160 15 1.8 627 16 1.8 188 20 0.8 190 21 0.8 190 22 0.6 182 23 0.7 258 24 0.9 144 25 1.4 501 26 1.4 270 27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 744 31 2.1 769 32 1 955 33 3.3 857 34	5	1.2	251
7 0.8 295 8 1 130 9 1 98 10 1.8 495 11 0.5 123 12 0.9 230 13 2.6 684 14 0.7 160 15 1.8 627 16 1.8 168 17 1.1 101 18 2.5 598 19 1.3 386 20 0.8 190 21 0.8 83 22 0.6 182 23 0.7 258 24 0.9 144 25 1.4 270 27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 704 31 2.1 769 32 1 955 33 3.3 3.3 36 1 <	6	1	221
8 1 130 9 1 98 10 1.8 495 11 0.5 123 12 0.9 230 13 2.6 684 14 0.7 160 15 1.8 627 16 1.8 188 20 0.8 190 21 0.8 83 20 0.8 190 21 0.8 83 22 0.6 182 23 0.7 258 24 0.9 144 25 1.4 501 26 1.4 270 27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 1 955 33 3.3 3.3 35 1.9 736 36 1 842 37<	7	0.8	295
9 1 98 10 1.8 495 11 0.5 123 12 0.9 230 13 2.6 684 14 0.7 160 15 1.8 627 16 1.8 188 17 1.1 101 18 2.5 598 19 1.3 386 20 0.8 190 21 0.8 83 22 0.6 182 23 0.7 258 24 0.9 144 25 1.4 210 27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 1 842 37 2.8 802 36 1 842 37	8	1	130
10 1.8 495 11 0.5 123 12 0.9 230 13 2.6 684 14 0.7 160 15 1.8 627 16 1.8 188 17 1.1 101 18 2.5 598 20 0.8 190 21 0.8 83 22 0.6 182 23 0.7 258 24 0.9 144 25 1.4 501 26 1.4 270 27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 1 955 33 3.3 857 34 1.6 718 35 1.9 736 36 1 842 37 2.8 802	9	1	98
11 0.5 123 12 0.9 230 13 2.6 684 14 0.7 160 15 1.8 627 16 1.8 188 17 1.1 101 18 2.5 598 19 1.3 386 20 0.8 190 21 0.8 83 22 0.6 182 23 0.7 258 24 0.9 144 25 1.4 270 27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 1 955 33 3.3 857 34 1.6 718 35 1.9 736 36 1 842 37 <td>10</td> <td>1.8</td> <td>495</td>	10	1.8	495
12 0.9 230 13 2.6 684 14 0.7 160 15 1.8 627 16 1.8 188 17 1.1 101 18 2.5 598 19 1.3 386 20 0.8 190 21 0.6 182 23 0.7 258 24 0.9 144 25 1.4 501 26 1.4 270 27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 1 955 33 3.3 857 34 1.6 718 35 1.9 736 36 1 842 37 2.8 634 42 1.3 658	11	0.5	123
13 2.6 684 14 0.7 160 15 1.8 627 16 1.8 188 17 1.1 101 18 2.5 598 19 1.3 386 20 0.8 190 21 0.8 83 22 0.6 182 23 0.7 258 24 0.9 144 25 1.4 501 26 1.4 270 27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 1 955 33 3.3 857 34 1.6 718 35 1.9 736 36 1 842 37 2.8 602 38 2	12	0.9	230
14 0.7 160 15 1.8 627 16 1.8 188 17 1.1 101 18 2.5 598 19 1.3 386 20 0.8 190 21 0.8 83 22 0.6 182 23 0.7 258 24 0.9 144 25 1.4 501 26 1.4 270 27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 1 955 33 3.3 857 34 1.6 718 35 1.9 736 36 1 842 37 2.8 634 42 1.3 658 43 2.9 747	13	2.6	684
15 1.8 627 16 1.8 188 17 1.1 101 18 2.5 598 19 1.3 386 20 0.8 190 21 0.8 83 22 0.6 182 23 0.7 258 24 0.9 144 25 1.4 501 26 1.4 270 27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 1 955 33 3.3 857 34 1.6 718 35 1.9 736 36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 <td< td=""><td>14</td><td>0.7</td><td>160</td></td<>	14	0.7	160
16 1.8 188 17 1.1 101 18 2.5 598 19 1.3 386 20 0.8 190 21 0.6 83 22 0.6 182 23 0.7 258 24 0.9 144 25 1.4 501 26 1.4 270 27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 1 955 33 3.3 857 34 1.6 718 35 1.9 736 36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41	15	1.8	627
17 1.1 101 18 2.5 598 19 1.3 386 20 0.8 190 21 0.8 83 22 0.6 182 23 0.7 258 24 0.9 144 25 1.4 501 26 1.4 270 27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 1 965 33 3.3 857 34 1.6 718 35 1.9 736 36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 668 43 2.9 742 44 1.7 633 45 2.9 595 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 56 2.3 549 60 2.5 549 61 0.8 561 62 1 512 63 0.7 421	16	1.8	188
18 2.5 598 19 1.3 386 20 0.8 190 21 0.8 83 22 0.6 182 23 0.7 258 24 0.9 144 25 1.4 501 26 1.4 270 27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 1 955 33 3.3 857 34 1.6 718 35 1.9 736 36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 658 43	17	1.1	101
191.338620 0.8 19021 0.8 83 22 0.6 182 23 0.7 258 24 0.9 144 25 1.4 501 26 1.4 270 27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 1 955 33 3.3 857 34 1.6 718 35 1.9 736 36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 658 43 2.9 742 44 1.7 633 45 2.9 596 46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 56 2.3 549 61 0.8 541 59 1 546 62 1 512 63 0.7 421	18	2.5	598
20 0.8 190 21 0.8 83 22 0.6 182 23 0.7 258 24 0.9 144 25 1.4 501 26 1.4 270 27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 1 955 33 3.3 857 34 1.6 718 35 1.9 736 36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 658 43 2.9 595	19	1.3	386
21 0.8 83 22 0.6 182 23 0.7 258 24 0.9 144 25 1.4 501 26 1.4 270 27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 1 955 33 3.3 867 34 1.6 718 355 1.9 736 36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 658 43 2.9 742 44 1.7 633	20	0.8	190
1 10 182 22 0.6 182 23 0.7 258 24 0.9 144 25 1.4 501 26 1.4 270 27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 1 955 33 3.3 857 34 1.6 718 35 1.9 736 36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 658 43 2.9 742 44 1.7 633 <t< td=""><td>21</td><td>0.8</td><td>83</td></t<>	21	0.8	83
$$ $$ 23 0.7 258 24 0.9 144 25 1.4 501 26 1.4 270 27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 1 955 33 3.3 857 34 1.6 718 35 1.9 736 36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 658 43 2.9 9595 46 1.5 613 47 3.2 612	22	0.6	182
23 0.9 144 25 1.4 501 26 1.4 270 27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 1 955 33 3.3 857 34 1.6 718 35 1.9 736 36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 658 43 2.9 742 44 1.7 633 45 2.9 595 46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 <td>22</td> <td>0.7</td> <td>258</td>	22	0.7	258
2.7 3.3 144 25 1.4 501 26 1.4 270 27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 1 955 33 3.3 857 34 1.6 718 35 1.9 736 36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 658 43 2.9 742 44 1.7 633 45 2.9 595 46 1.5 613 47 3.2 612 48 1.9 643 <td< td=""><td>23</td><td>0.0</td><td>1//</td></td<>	23	0.0	1//
26 1.4 270 27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 1 955 33 3.3 857 34 1.6 718 35 1.9 736 36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 658 43 2.9 742 44 1.7 633 45 2.9 595 46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 <t< td=""><td>25</td><td>1 /</td><td>501</td></t<>	25	1 /	501
27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 1 955 33 3.3 857 34 1.6 718 35 1.9 736 36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 658 43 2.9 742 44 1.7 633 45 2.9 595 46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 <t< td=""><td>20</td><td>1.4</td><td>270</td></t<>	20	1.4	270
27 1.1 69 28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 1 955 33 3.3 857 34 1.6 718 35 1.9 736 36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 668 43 2.9 742 44 1.7 633 45 2.9 595 46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54	20	1.4	210
28 1.4 115 29 1.5 807 30 1.6 904 31 2.1 769 32 1 955 33 3.3 857 34 1.6 718 355 1.9 736 36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 658 43 2.9 742 44 1.7 633 45 2.9 595 46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 <td>27</td> <td>1.1</td> <td>69</td>	27	1.1	69
29 1.5 807 30 1.6 904 31 2.1 769 32 1 955 33 3.3 857 34 1.6 718 35 1.9 736 36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 658 43 2.9 742 44 1.7 633 45 2.9 595 46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 56 <	28	1.4	115
30 1.6 904 31 2.1 769 32 1 955 33 3.3 857 34 1.6 718 35 1.9 736 36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 658 43 2.9 742 44 1.7 633 45 2.9 595 46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 56 2.3 484 <	29	1.5	807
31 2.1 769 32 1 955 33 3.3 857 34 1.6 718 355 1.9 736 36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 658 43 2.9 742 44 1.7 633 45 2.9 595 46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 <t< td=""><td>30</td><td>1.6</td><td>904</td></t<>	30	1.6	904
32 1 955 33 3.3 857 34 1.6 718 35 1.9 736 36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 658 43 2.9 742 44 1.7 633 45 2.9 596 46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 56 2.3 541	31	2.1	769
33 3.3 857 34 1.6 718 35 1.9 736 36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 658 43 2.9 742 44 1.7 633 45 2.9 595 46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 56 2.3 484 57 0.8 602 58 0.8 541 59 1 546 <	32	1	955
34 1.6 718 35 1.9 736 36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 658 43 2.9 742 44 1.7 633 45 2.9 595 46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 57 0.8 602 58 0.8 541 59 1 546 60 2.5 549 61	33	3.3	857
35 1.9 736 36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 658 43 2.9 742 44 1.7 633 45 2.9 595 46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 56 2.3 484 57 0.8 602 58 0.8 541 59 1 546 60	34	1.6	718
36 1 842 37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 658 43 2.9 742 44 1.7 633 45 2.9 595 46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 56 2.3 484 57 0.8 602 58 0.8 541 59 1 <td>35</td> <td>1.9</td> <td>736</td>	35	1.9	736
37 2.8 802 38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 658 43 2.9 742 44 1.7 633 45 2.9 595 46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 57 0.8 602 58 0.8 541 59 1 546 60 2.5 549 61 0.8 450 62 1 512 63 0.7 421	36	1	842
38 2 747 39 2.7 927 40 2 900 41 2.8 634 42 1.3 658 43 2.9 742 44 1.7 633 45 2.9 595 46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 56 2.3 484 57 0.8 602 58 0.8 541 59 1 546 60 2.5 549 61 0.8 <td>37</td> <td>2.8</td> <td>802</td>	37	2.8	802
39 2.7 927 40 2 900 41 2.8 634 42 1.3 658 43 2.9 742 44 1.7 633 45 2.9 595 46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 56 2.3 484 57 0.8 602 58 0.8 541 59 1 546 60 2.5 549 61 0.8 450 62 1	38	2	747
40 2 900 41 2.8 634 42 1.3 658 43 2.9 742 44 1.7 633 45 2.9 595 46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 56 2.3 484 57 0.8 602 58 0.8 541 59 1 546 60 2.5 549 61 0.8 450 62 1 512 63 0.7 421 64 2.3 <	39	2.7	927
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	2	900
42 1.3 658 43 2.9 742 44 1.7 633 45 2.9 595 46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 56 2.3 484 57 0.8 602 58 0.8 541 59 1 546 60 2.5 549 61 0.8 450 62 1 512 63 0.7 421 64 2.3 556	41	2.8	634
43 2.9 742 44 1.7 633 45 2.9 595 46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 56 2.3 643 57 0.8 602 58 0.8 541 59 1 546 60 2.5 549 61 0.8 450 62 1 512 63 0.7 421 64 2.3 556	42	1.3	658
44 1.7 633 45 2.9 595 46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 56 2.3 484 57 0.8 602 58 0.8 541 59 1 546 60 2.5 549 61 0.8 450 62 1 512 63 0.7 421 64 2.3 556	43	2.9	742
45 2.9 595 46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 56 2.3 484 57 0.8 602 58 0.8 541 59 1 546 60 2.5 549 61 0.8 450 62 1 512 63 0.7 421 64 2.3 556	44	1.7	633
46 1.5 613 47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 56 2.3 484 57 0.8 602 58 0.8 541 59 1 546 60 2.5 549 61 0.8 450 62 1 512 63 0.7 421 64 2.3 556	45	2.9	595
47 3.2 612 48 1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 56 2.3 484 57 0.8 602 58 0.8 541 59 1 546 60 2.5 549 61 0.8 450 62 1 512 63 0.7 421	46	1.5	613
1.9 643 49 2.3 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 56 2.3 484 57 0.8 602 58 0.8 541 59 1 546 60 2.5 549 61 0.8 450 62 1 512 63 0.7 421 64 2.3 556	47	3.2	612
12 132 528 50 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54 1.8 416 55 3.4 498 56 2.3 484 57 0.8 602 58 0.8 541 59 1 546 60 2.5 549 61 0.8 450 62 1 512 63 0.7 421 64 2.3 556	48	1.9	643
1.7 583 51 1.7 583 51 1.4 664 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 56 2.3 484 57 0.8 602 58 0.8 541 59 1 546 60 2.5 549 61 0.8 450 62 1 512 63 0.7 421 64 2.3 556	49	2.3	528
50 1.4 664 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 56 2.3 484 57 0.8 602 58 0.8 541 59 1 546 60 2.5 549 61 0.8 450 62 1 512 63 0.7 421 64 2.3 556	50	17	583
51 1.9 607 52 1.9 424 53 1.1 490 54 1.8 415 55 3.4 498 56 2.3 484 57 0.8 602 58 0.8 541 59 1 546 60 2.5 549 61 0.8 450 62 1 512 63 0.7 421 64 2.3 556	51	1.4	664
32 1.3 424 53 1.1 490 54 1.8 415 55 3.4 498 56 2.3 484 57 0.8 602 58 0.8 541 602 55 549 61 0.8 450 62 1 512 63 0.7 421 64 2.3 556	52	1.4	424
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52	1.3	424
3^{44} 1.0 415 55 3.4 498 56 2.3 484 57 0.8 602 58 0.8 541 59 1 546 60 2.5 549 61 0.8 450 62 1 512 63 0.7 421 64 2.3 556	55	1.1	430
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54	1.0	410
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55	3.4	498
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56	2.3	484
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	57	0.8	602
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	58	0.8	541
60 2.5 549 61 0.8 450 62 1 512 63 0.7 421 64 2.3 556	59	1	546
61 0.8 450 62 1 512 63 0.7 421 64 2.3 556	60	2.5	549
62 1 512 63 0.7 421 64 2.3 556	61	0.8	450
63 0.7 421 64 2.3 556	62	1	512
64 2.3 556	63	0.7	421
	64	2.3	556

Table A2.58: Microc	osm 10: Mentha aquatio	ca Stem Measurements. Stem Height (mm)
Stem Number		
60	3.0	232
67	3.7	505
68	2.4	505
60	1.4	504
70	0.7	492
70	0.7	402
70	2	570
72	1.0	570
73	1.0	430
74	1.0	421
75	1.2	300
76	1.0	300
70	1.0	2/0
70	3	213
79	2.4	330
80	1.9	400
81	1.1	405
82	1.7	501
83	2.9	1/4
84	0.8	235
85	1.4	130
86	1.1	226
87	1.5	185
88	1.6	369
89	1.3	386
90	1.2	512
91	1.6	296
92	1.2	232
93	1.8	194
94	2	433
95	1.1	273
96	0.7	418
97	0.7	463
98	1.3	594
99	1.4	126
100	1	287
101	0.9	205
102	1.2	237
103	1	346
104	1.1	331
105	0.7	307
106	1.2	256
107	1	382
108	1.3	240
109	1.1	232
110	1.3	246
111	0.7	137
112	1.4	240
113	1	285
114	1.1	230
115	1.4	187
116	1.3	332
117	0.6	175
118	0.7	206
119	0.8	234
120	0.7	228
120	0.7	197
122	0.7	217
122	0.9	175
120	11	110
124	1.1	110
125	1.2	১৩ <i>/</i> ২০০
120	1.1	209
12/	1.1	2/4
128	1.3	/0

Stem Number	Stem Width (mm)	Stem Height (mm)
129	1.1	173
130	0.9	235
131	1.6	189
132	1.3	234
133	0.8	117
134	1.1	184
135	1	190
136	0.9	255
137	1	112
138	1	223
139	1.3	233
140	1.1	277
141	1	282
142	0.8	190
143	1	132
144	0.9	124
145	0.8	156
146	0.7	224
147	1.5	200
148	0.7	132
140	0.0	165
150	0.0	163
151	0.7	78
152	0.7	70
152	0.7	230
153	0.7	105
154	0.0	277
155	0.9	144
150	1.2	270
157	1.2	115
150	0.9	142
109	0.6	143
161	0.6	242
162	1.2	179
162	1.2	178
103	1.4	110
104	0.9	62
100	0.7	02
100	1.1	72
107	0.0	13
100	0.0	0U 54
109	0.0	04 172
170	0.9	1/3
170	0.9	100
172	1.2	97
173	0.0	202
175	1.5	302
1/5	1.5	304
1/6	1.6	267
1//	1.4	300
178	1.3	370
1/9	1.5	210
180	0.5	225

Stem Number Stem Width (mm) Stem Height (mm)

	Total Stems	Total Number of Stems Stems with Inflorescence	<u>180</u> 11
		Max Height	1081
	Heights (mm)	Min Height	54
		Mean Height	340.844444
Stome		Mode Height	190
Sterns		Median Height	268.5
	Widths (mm)	Max Width	3.7
		Min Width	0.5
		Mean Width	1.360555556
		Mode Width	1
		Median Width	1.2

Stem Number	Stem Width (mm)	Stem Height (mm)
1	2.2	674
2	2.2	0/4
2	0.9	1//
3	1.1	//
4	1	502
5	0.6	180
6	1.9	766
7	1.2	591
8	1	158
9	0.5	140
10	0.7	286
11	1	139
12	2.5	756
13	3	484
14	0.5	265
15	0.8	395
16	1.4	182
17	2.2	728
10	4.1	120
10	4.1	402
19	0.4	228
20	1	596
21	1.7	628
22	0.8	136
23	1	251
24	1	157
25	2.9	628
26	1.1	562
27	1	440
28	0.6	97
29	0.5	132
30	0.4	96
31	0.4	75
32	1.1	502
33	0.5	107
34	22	427
35	1 1	230
36	1.1	106
27	1.4	279
37	1.6	578
30	1.0	616
39	1	220
40	0.7	191
41	0.5	70
42	0.4	331
43	1	294
44	0.5	134
45	0.7	145
46	2.6	734
47	0.9	160
48	3.5	356
49	4.1	224
50	1	519
51	0.5	55
52	0.3	131
53	2.5	706
54	13	194
55	1.5	80
55	1.5	129
50	0.5	138
5/	1	40
58	0.5	243
59	0.6	208
60	0.4	97
61	0.4	438

Stem Number Stem Width (mm) Stem Height (mm)

	Total Stems	Total Number of Stems Stems with Inflorescence	61 6
		Max Height	766
	Heights (mm)	Min Height	40
		Mean Height	312.5245902
Stome		Mode Height	502
Sterns		Median Height	228
	Widths (mm)	Max Width	4.1
		Min Width	0.3
		Mean Width	1.224590164
		Mode Width	1
		Median Width	1

Table A2.60: Microcosm 12: Mentha aquatica Stem Measurements.

Stem Number	Stem Width (mm)	Stem Height (mm)
1	0.9	391
2	0.9	51
3	0.8	48
4	1.2	438
5	0.9	25
6	0.7	58
7	1.1	279
8	0.9	32
9	0.9	41

	Total Stems	Total Number of Stems	9
	rotal Otenia	Stems with Inflorescence	0
		Max Height	438
	Heights (mm)	Min Height	25
		Mean Height	151.444444
Stome		Mode Height	#N/A
Sterns		Median Height	51
	Widths (mm)	Max Width	1.2
		Min Width	0.7
		Mean Width	0.922222222
		Mode Width	0.9
		Median Width	0.9

Stem Number	Stem Width (mm)	Stem Height (mm)	213
1	0.9	480	7
2	1.9	674	1049
3	2.2	581	33
4	2.6	551	208.1173709
5	2	435	63
6	2.1	481	180
7	1.1	1049	2.6
8	1.6	476	0.2
9	1.7	447	1.009389671
10	0.7	377	1
11	1.3	300	1
12	1.3	421	
13	1	586	
14	1.2	308	
15	2	260	
10	1.4	300	
18	1.0	266	
19	12	350	
20	1.7	353	
21	1.6	229	1
22	1.6	382	1
23	1.3	507	
24	1	544	1
25	1.2	407	1
26	1.2	297	
27	1.4	297	
28	1.6	393	
29	1.2	367	
30	1.5	527	
31	1.3	259	
32	1.4	369	
33	1.7	2/2	
34	1.2	224	
35	11	420	
37	1.1	324	
38	1.2	208	
39	1.7	218	
40	1.4	267	
41	1	260	
42	1.2	344	1
43	1.1	243	
44	0.7	156	
45	0.8	218	
46	0.8	257	
47	1	269	
48	1.1	244	
49	1.6	386	
50	1.2	252	
51	0.5	213	
52	0.8	339	
53	15	207	
55	1.0	510	
56	15	310	1
57	0.9	412	
58	0.7	290	1
59	0.9	370	
60	1.3	422	1
61	1.6	268	1
62	1.6	246	1
63	0.6	281	
64	0.9	226]

Table A2 61	Microcosm	13	Mentha a	quatica	Stem	Measurements
Table A2.01.	WIICIOCOSIII	10.	menuna au	yuauca	Sterri	measurements.

Table A2.01. MICIOC	Usili 13. Menula aqualic	a Sterri Medaurerrierita.	
Stem Number	Stem Width (mm)	Stem Height (mm)	213
65	1.5	315	
66	0.9	186	
67	0.8	205	
68	0.7	189	
69	1	302	
70	0.8	174	
71	0.7	194	
72	1.2	408	
73	1.5	211	
73	1.5	149	
75	0.8	257	
75	0.0	212	
70	0.0	213	
70	0.9	250	
70	0.5	255	
79	0.7	268	
80	0.5	259	
81	0.6	282	
82	0.4	142	
83	1	311	
84	0.7	404	
85	2	201	
86	1	187	
87	0.7	224	
88	1.4	114	
89	0.8	186	
90	0.6	43	
91	0.5	63	
92	1.4	193	
93	0.6	101	
94	0.7	92	
95	0.5	111	
96	0.8	110	
97	0.6	212	
98	0.5	249	
99	12	222	
100	0.6	142	
100	0.5	45	
101	0.5	45	
102	1	207	
104	0.9	251	
104	0.0	179	
105	1.1	76	
100	0.0	70	
107	0.9	243	
100	07	10	
109	0.7	1/2	
110	0.0	40	
111	0.7	330	
112	1.1	337	
113	0.5	424	
114	0.8	135	
115	1.1	232	
116	0.8	127	
117	0.8	63	
118	1.3	154	
119	0.7	255	
120	0.4	63	
121	1.3	152	
122	0.9	118	
123	0.5	167	
124	0.9	225	
125	1.1	312	
126	0.5	164	
127	1.5	92	
128	1.1	128	

Table A2 61: Microcosm	3: Montha aquatica Stem Measu	romonts
TADIE AZ.01. WILLIUCUSII	3. Werning aqualica Stern Weasu	rements.

Table A2.01. MICTOC	Usili 13. Menula aqualic	a Sterri Medaurerrierita.	
Stem Number	Stem Width (mm)	Stem Height (mm)	213
129	0.5	79	
130	0.6	188	
131	0.9	285	
132	0.5	180	
133	1.4	76	
134	16	124	
135	1	53	
136	0.5	47	
137	0.0	280	
138	1.4	60	
120	1.4	55	
140	0.2	154	
140	0.3	04	
141	0.2	54	
142	0.3	100	
143	1	307	
144	1.1	140	
145	1.6	124	
146	1	47	
147	1.5	69	
148	0.9	56	
149	0.6	71	
150	0.5	156	
151	0.7	98	
152	1.6	117	
153	0.6	95	
154	1.2	87	
155	1.1	64	
156	0.7	80	
157	1.2	122	
158	0.6	124	
159	0.9	112	
160	0.8	52	
161	1.5	74	
162	0.4	49	
163	11	103	
164	0.9	148	
165	1.4	37	
166	0.9	108	
167	1.9	96	
169	1.5	140	
160	1.1	62	
170	0.9	63	
170	0.0	60	
170	0.0	192	
172	0.5	183	
173		90	
1/4	1	60	
1/5	0.5	94	
176	1.2	127	
177	0.8	120	
178	0.7	53	
179	0.6	112	
180	0.7	243	
181	1.1	55	
182	1.3	110	
183	1.2	42	
184	0.8	48	
185	0.9	122	
186	0.8	170	
187	0.6	119	
188	0.7	224	
189	0.5	70	
190	0.7	114	
191	0.9	82	
192	0.4	33	

Table A2.61: Microcosm 13: Mentha aquatica Stem Measurements.

Stem Number	Stem Width (mm)	Stem Height (mm)	213
193	0.6	146	
194	0.4	50	
195	1.3	74	
196	0.7	160	
197	0.9	63	
198	1	42	
199	1.2	70	
200	1.3	78	
201	0.8	70	
202	1.5	65	
203	1.1	46	
204	0.3	158	
205	1	51	
206	1	61	
207	0.2	120	
208	0.8	46	
209	1.4	52	
210	1	74	
211	0.5	61	
212	0.6	85	
213	0.6	54	

	Total Stems	Total Number of Stems Stems with Inflorescence
		Max Height
	Heights (mm)	Min Height
		Mean Height
Stome		Mode Height
Sterns		Median Height
	Widths (mm)	Max Width
		Min Width
		Mean Width
		Mode Width
		Median Width

Table A2.62: Microcosm 14: Mentha aquatica Stem Measurements.

Stem Number	Stem Width (mm)	Stem Height (mm)	
1	0.7	138	
2	0.9	75	
3	1.3	69	
4	0.6	25	
5	1	18	
6	1	76	
7	1	95	
8	1	42	
9	0.9	52	
10	0.8	46	
11	0.9	24	
12	1.8	229	
13	1	54	
14	1.1	42	
15	1.4	52	
16	0.7	50	
17	0.7	34	
18	0.3	9	

	Total Stoma	Total Number of Stems	18
	Total Sterns	Stems with Inflorescence	0
		Max Height	229
	Heights (mm)	Min Height	9
		Mean Height	62.7777778
Stomo		Mode Height	42
Sterris		Median Height	51
		Max Width	1.8
	Widths (mm)	Min Width	0.3
		Mean Width	0.95
		Mode Width	1
	[Median Width	0.95

Table A2.63: Microcosm 15 Mentha aquatica Stem Measurements.

There were no surviving Mentha aquatica within Microcosm 15.

Table A2.64: Microcosm 16 Mentha aquatica Stem Measurements.

There were no surviving Mentha aquatica within Microcosm 16.

Appendix 3 Water Input during the Acclimatisation and Establishment Period

							Т	otal Wate	r Added pe	er Month (L	itres)			
Voar	Microcosm													
Tear	Number		January	February	March	April	Мау	June	July	August	September	October	November	December
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	27.47	42.54	33.93	5.92	0.00
	1	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	54.39	59.62	56.98	33.17	31.02
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	27.47	40.93	32.85	7.00	0.00
	2	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	54.39	58.00	55.90	34.25	31.02
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	23.70	36.62	29.62	4.85	0.00
	3	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	50.62	53.69	52.67	32.10	31.02
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	32.85	51.16	40.93	7.00	0.00
	4	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
2007		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	59.78	68.23	63.98	34.25	31.02
2007		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	33.93	50.08	39.85	8.08	0.00
	5	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	60.85	67.16	62.90	35.33	31.02
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	24.77	37.16	29.08	4.85	0.00
	6	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	51.70	54.23	52.13	32.10	31.02
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	27.47	41.47	33.93	5.92	0.00
	7	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	54.39	58.54	56.98	33.17	31.02
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22.62	35.54	28.54	5.92	0.00
	8	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	49.55	52.61	51.59	33.17	31.02
		Artificial Water Added	0.00	0.00	0.00	71.63	153.47	177.72	197.10	N/A	N/A	N/A	N/A	N/A
	1	Natural Rainfall Added	49.71	14.59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	N/A
		Total Input	49.71	14.59	34.52	108.46	200.76	198.45	246.33	N/A	N/A	N/A	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	70.93	147.32	168.02	185.79	N/A	N/A	N/A	N/A	N/A
	2	Natural Rainfall Added	49.71	14.59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	N/A
		Total Input	49.71	14.59	34.52	107.76	194.60	188.76	235.02	N/A	N/A	N/A	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	77.44	143.79	169.64	189.56	N/A	N/A	N/A	N/A	N/A
	3	Natural Rainfall Added	49.71	14.59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	N/A
		Total Input	49.71	14.59	34.52	114.27	191.07	190.37	238.79	N/A	N/A	N/A	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	73.47	158.90	178.79	194.95	N/A	N/A	N/A	N/A	N/A
	4	Natural Rainfall Added	49.71	14.59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	N/A
		Total Input	49.71	14.59	34.52	110.30	206.19	199.53	244.17	N/A	N/A	N/A	N/A	N/A
2008		Artificial Water Added	0.00	0.00	0.00	68.47	152.24	171.79	188.49	N/A	N/A	N/A	N/A	N/A
	5	Natural Rainfall Added	49.71	14.59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	N/A
		Total Input	49.71	14.59	34.52	105.30	199.52	192.53	237.71	N/A	N/A	N/A	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	71.09	148.17	182.02	199.26	N/A	N/A	N/A	N/A	N/A
	6	Natural Rainfall Added	49.71	14 59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	
	Ũ	Total Input	49.71	14.59	34.52	107.92	195.45	202.76	248.48	N/A	N/A	N/A	N/A	
		Artificial Water Added	0.00	0.00	0.00	78.07	155.78	182.56	195.41	N/A	N/A	N/A	N/A	N/A
	7	Natural Rainfall Added	49.71	14.59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	N/A
		Total Input	49.71	14.59	34.52	114.91	203.06	203.30	244.63	N/A	N/A	N/A	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	73.24	155.47	171 70	188.49	N/A	N/A	N/A	N/A	N/A
	Q	Natural Painfall Added	49.71	14 59	34.52	36.84	47.28	20.73	49.22	N/A		N/A		
	0		40.71	14.50	34.52	110.09	202.76	102.53	237 71					
		rotar input	43.71	14.08	04.0Z	110.00	202.70	192.00	201.11	IN/A	N/A	IN/A	IN/A	IN/A

Table A 3.1: Microcosms 1-8 Water Input during the Acclimatisation and Establishment Period.

							Tota	Water A	dded per	Month (L	itres)			
Year	Microcosm Number		January	February	March	April	Мау	June	July	August	September	October	November	December
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	23.70	35.54	29.08	6.46	0.00
	9	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	50.62	52.61	52.13	33.71	31.02
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22.62	33.93	26.39	5.92	0.00
	10	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	49.55	51.00	49.44	33.17	31.02
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	33.39	51.70	40.93	7.54	0.00
	11	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	60.32	68.77	63.98	34.79	31.02
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	28.00	45.24	35.54	6.46	0.00
	12	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
2007		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	54.93	62.31	58.59	33.71	31.02
2007		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	27.47	43.62	35.00	7.00	0.00
	13	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	54.39	60.69	58.05	34.25	31.02
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22.08	35.54	27.47	5.92	0.00
	14	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	49.01	52.61	50.51	33.17	31.02
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	20.46	30.16	24.23	5.92	0.00
	15	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	47.39	47.23	47.28	33.17	31.02
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.39	30.70	23.70	5.39	0.00
	16	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26.93	17.07	23.05	27.25	31.02
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	46.31	47.77	46.74	32.64	31.02
		Artificial Water Added	0.00	0.00	0.00	71.63	137.56	167.48	182.56	N/A	N/A	N/A	N/A	N/A
	9	Natural Rainfall Added	49.71	14.59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	N/A
		Total Input	49.71	14.59	34.52	108.46	184.84	188.22	231.79	N/A	N/A	N/A	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	71.09	144.87	169.10	180.95	N/A	N/A	N/A	N/A	N/A
	10	Natural Rainfall Added	49.71	14.59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	N/A
		Total Input	49.71	14.59	34.52	107.92	192.15	189.83	230.17	N/A	N/A	N/A	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	67.85	143.94	163.71	175.02	N/A	N/A	N/A	N/A	N/A
	11	Natural Rainfall Added	49.71	14.59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	N/A
		Total Input	49.71	14.59	34.52	104.68	191.22	184.45	224.25	N/A	N/A	N/A	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	69.47	148.63	173.95	190.10	N/A	N/A	N/A	N/A	N/A
	12	Natural Rainfall Added	49.71	14.59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	N/A
2009		Total Input	49.71	14.59	34.52	106.31	195.91	194.68	239.32	N/A	N/A	N/A	N/A	N/A
2008		Artificial Water Added	0.00	0.00	0.00	67.32	153.47	172.87	185.79	N/A	N/A	N/A	N/A	N/A
	13	Natural Rainfall Added	49.71	14.59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	N/A
		Total Input	49.71	14.59	34.52	104.15	200.75	193.60	235.02	N/A	N/A	N/A	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	74.86	147.47	179.33	191.18	N/A	N/A	N/A	N/A	N/A
	14	Natural Rainfall Added	49.71	14.59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	N/A
		Total Input	49.71	14.59	34.52	111.69	194.75	200.07	240.40	N/A	N/A	N/A	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	65.16	146.63	159.94	178.79	N/A	N/A	N/A	N/A	N/A
	15	Natural Rainfall Added	49.71	14.59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	N/A
		Total Input	49.71	14.59	34.52	102.00	193.92	180.68	228.02	N/A	N/A	N/A	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	75.08	150.79	166.41	186.33	N/A	N/A	N/A	N/A	N/A
	16	Natural Rainfall Added	49.71	14.59	34.52	36.84	47.28	20.73	49.22	N/A	N/A	N/A	N/A	N/A
		Total Input	49.71	14.59	34.52	111.92	198.07	187.14	235.56	N/A	N/A	N/A	N/A	N/A

 Table A 3.2: Microcosms 9-16 Water Input during the Acclimatisation and Establishment Period.

Appendix 4Vegetation Heights and Area Coverage during theAcclimatisation and Establishment Period

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1022	749	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	723	608	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	881	0	0
2007	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	655	0	0
2007	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	501	438	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	379	390	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	572	337	73
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	455	162	35
	Phragmites	Maximum Height	0	0	0	182	891	1281	1514	1644	N/A	N/A	N/A	N/A
	australis	General Height	0	0	0	107	793	1109	1291	1397	N/A	N/A	N/A	N/A
	Lythrum	Maximum Height	0	0	89	165	621	1437	1651	1948	N/A	N/A	N/A	N/A
2000	salicaria	General Height	0	0	58	142	516	1280	1549	1748	N/A	N/A	N/A	N/A
2008	Filipendula	Maximum Height	0	0	52	260	737	1443	1493	1535	N/A	N/A	N/A	N/A
	ulmaria	General Height	0	0	42	112	560	1207	1277	1329	N/A	N/A	N/A	N/A
	Mentha	Maximum Height	71	70	70	100	214	444	526	613	N/A	N/A	N/A	N/A
	aquatica	General Height	41	37	36	67	199	292	318	328	N/A	N/A	N/A	N/A

 Table A 4.1: Microcosm 1 Vegetation Heights during the Acclimatisation and Establishment Period.

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	810	264	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	592	515	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	861	821	0
2007	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	654	736	0
2007	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	489	420	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	427	228	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	739	246	67
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	317	188	35
	Phragmites	Maximum Height	0	0	50	194	922	1303	1503	1587	N/A	N/A	N/A	N/A
	australis	General Height	0	0	50	101	813	1103	1308	1398	N/A	N/A	N/A	N/A
	Lythrum	Maximum Height	0	0	76	171	645	1398	1734	1983	N/A	N/A	N/A	N/A
0000	salicaria	General Height	0	0	50	105	588	1235	1509	1639	N/A	N/A	N/A	N/A
2008	Filipendula	Maximum Height	0	0	86	265	732	1370	1591	1633	N/A	N/A	N/A	N/A
	ulmaria	General Height	0	0	75	100	645	1208	1358	1482	N/A	N/A	N/A	N/A
	Mentha	Maximum Height	66	58	55	95	246	392	524	643	N/A	N/A	N/A	N/A
	aquatica	General Height	34	30	30	66	152	291	348	381	N/A	N/A	N/A	N/A

 Table A 4.2: Microcosm 2 Vegetation Heights during the Acclimatisation and Establishment Period.

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	842	827	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	585	582	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	721	850	0
2007	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	530	652	0
2007	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	491	516	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	417	219	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	393	446	68
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	164	203	42
	Phragmites	Maximum Height	0	0	85	178	916	1296	1607	1682	N/A	N/A	N/A	N/A
	australis	General Height	0	0	65	102	805	1187	1429	1586	N/A	N/A	N/A	N/A
	Lythrum	Maximum Height	0	0	75	155	688	1403	1684	1829	N/A	N/A	N/A	N/A
2000	salicaria	General Height	0	0	57	136	614	1263	1521	1646	N/A	N/A	N/A	N/A
2000	Filipendula	Maximum Height	0	0	119	202	734	1356	1706	1808	N/A	N/A	N/A	N/A
	ulmaria	General Height	0	0	102	176	551	1063	1320	1504	N/A	N/A	N/A	N/A
	Mentha	Maximum Height	70	62	58	82	291	417	544	778	N/A	N/A	N/A	N/A
	aquatica	General Height	41	33	32	64	187	332	361	379	N/A	N/A	N/A	N/A

 Table A 4.3: Microcosm 3 Vegetation Heights during the Acclimatisation and Establishment Period.

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	811	726	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	612	612	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	861	819	0
0007	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	654	713	0
2007	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	482	502	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	404	384	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	406	420	64
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	264	316	43
	Phragmites	Maximum Height	0	0	50	185	919	1308	1531	1677	N/A	N/A	N/A	N/A
	australis	General Height	0	0	50	114	807	1104	1435	1603	N/A	N/A	N/A	N/A
	Lythrum	Maximum Height	0	0	88	170	672	1297	1635	1804	N/A	N/A	N/A	N/A
0000	salicaria	General Height	0	0	56	107	545	1251	1442	1692	N/A	N/A	N/A	N/A
2008	Filipendula	Maximum Height	0	0	153	293	721	1427	1703	1762	N/A	N/A	N/A	N/A
	ulmaria	General Height	0	0	134	119	672	1101	1418	1640	N/A	N/A	N/A	N/A
	Mentha	Maximum Height	70	62	56	82	223	430	689	826	N/A	N/A	N/A	N/A
	aquatica	General Height	44	43	41	65	170	308	402	485	N/A	N/A	N/A	N/A

Table A 4.4: Microcosm 4 Vegetation Heights during the Acclimatisation and Establishment Period.

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	857	851	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	614	599	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	849	868	0
0007	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	603	774	0
2007	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	518	564	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	398	431	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	354	489	64
,	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	190	187	42
	Phragmites	Maximum Height	0	0	0	169	894	1295	1428	1498	N/A	N/A	N/A	N/A
	australis	General Height	0	0	0	95	791	1100	1215	1304	N/A	N/A	N/A	N/A
	Lythrum	Maximum Height	0	0	73	151	644	1398	1681	1877	N/A	N/A	N/A	N/A
2000	salicaria	General Height	0	0	40	106	577	1258	1354	1607	N/A	N/A	N/A	N/A
2008	Filipendula	Maximum Height	0	0	75	217	705	1445	1881	1921	N/A	N/A	N/A	N/A
	ulmaria	General Height	0	0	65	127	644	1119	1434	1649	N/A	N/A	N/A	N/A
	Mentha	Maximum Height	60	58	53	87	214	465	511	316	N/A	N/A	N/A	N/A
	aquatica	General Height	45	37	37	62	185	248	263	282	N/A	N/A	N/A	N/A

Table A 4.5: Microcosm 5 Vegetation Heights during the Acclimatisation and Establishment Period.

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	841	839	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	645	643	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	817	924	0
0007	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	698	826	0
2007	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	579	623	402
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	566	561	341
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	676	337	73
F	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	285	251	46
	Phragmites	Maximum Height	0	0	40	201	928	1321	1430	1501	N/A	N/A	N/A	N/A
	australis	General Height	0	0	40	116	823	1120	1182	1331	N/A	N/A	N/A	N/A
	Lythrum	Maximum Height	0	0	73	175	629	1353	1749	1912	N/A	N/A	N/A	N/A
0000	salicaria	General Height	0	0	42	98	608	1265	1501	1638	N/A	N/A	N/A	N/A
2008	Filipendula	Maximum Height	0	0	91	235	660	1338	1832	1870	N/A	N/A	N/A	N/A
	ulmaria	General Height	0	0	68	140	629	1248	1472	1592	N/A	N/A	N/A	N/A
	Mentha	Maximum Height	75	70	66	98	249	475	573	740	N/A	N/A	N/A	N/A
	aquatica	General Height	53	47	46	53	165	296	331	356	N/A	N/A	N/A	N/A

Table A 4.6: Microcosm 6 Vegetation Heights during the Acclimatisation and Establishment Period.

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	797	679	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	585	536	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	943	948	0
0007	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	634	855	0
2007	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	493	498	182
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	415	399	144
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	745	372	98
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	161	248	42
	Phragmites	Maximum Height	0	0	40	177	904	1292	1453	1506	N/A	N/A	N/A	N/A
	australis	General Height	0	0	40	99	801	1094	1218	1299	N/A	N/A	N/A	N/A
	Lythrum	Maximum Height	0	0	82	155	624	1349	1530	1735	N/A	N/A	N/A	N/A
2000	salicaria	General Height	0	0	53	132	547	1294	1458	1612	N/A	N/A	N/A	N/A
2008	Filipendula	Maximum Height	0	0	145	253	748	1477	1895	1983	N/A	N/A	N/A	N/A
	ulmaria	General Height	0	0	108	134	624	1126	1410	1661	N/A	N/A	N/A	N/A
	Mentha	Maximum Height	85	80	73	95	232	443	563	705	N/A	N/A	N/A	N/A
	aquatica	General Height	43	38	37	55	163	330	351	390	N/A	N/A	N/A	N/A

Table A 4.7: Microcosm 7 Vegetation Heights during the Acclimatisation and Establishment Period.

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	784	609	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	602	550	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	903	850	0
2007	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	593	767	0
2007	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	497	523	209
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	385	414	209
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	375	268	73
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	199	179	34
	Phragmites	Maximum Height	0	0	40	178	913	1296	1447	1685	N/A	N/A	N/A	N/A
	australis	General Height	0	0	40	102	808	1108	1271	1325	N/A	N/A	N/A	N/A
	Lythrum	Maximum Height	0	0	92	153	665	1283	1634	1804	N/A	N/A	N/A	N/A
	salicaria	General Height	0	0	43	115	524	1209	1505	1646	N/A	N/A	N/A	N/A
2008	Filipendula	Maximum Height	0	0	147	293	644	1418	1821	1855	N/A	N/A	N/A	N/A
	ulmaria	General Height	0	0	111	173	665	1104	1456	1479	N/A	N/A	N/A	N/A
	Mentha	Maximum Height	75	66	59	90	256	412	519	670	N/A	N/A	N/A	N/A
	aquatica	General Height	31	39	34	62	181	282	392	429	N/A	N/A	N/A	N/A

Table A 4.8: Microcosm 8 Vegetation Heights during the Acclimatisation and Establishment Period.

Year	Species	Cover (%)	January	February	March	April	Мау	June	July	August	September	October	November	December
2007	Phragmites australis	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	5	0
		Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0
		Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	5	0
	Lythrum salicaria	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	37	0	0
		Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	8	0	0
		Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	45	0	0
	Filipendula ulmaria	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	30	17	0
		Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	4	4	0
		Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	34	21	0
	Mentha aquatica	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	23	14	11
		Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	6	2	0
		Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	29	16	11
	Standing Dead or Dormant Vegetation	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	19	22
		Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	1	1
		Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	20	23
	Bare Ground or													
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	45	67
2008	Phragmites australis	Inside Microcosm	0	0	0	1	7	9	9	9	N/A	N/A	N/A	N/A
		Outside Microcosm	0	0	0	0	0	0	0	0	N/A	N/A	N/A	N/A
		Combined	0	0	0	1	7	9	9	9	N/A	N/A	N/A	N/A
	Lythrum salicaria	Inside Microcosm	0	0	2	6	23	26	37	37	N/A	N/A	N/A	N/A
		Outside Microcosm	0	0	0	0	15	14	17	18	N/A	N/A	N/A	N/A
		Combined	0	0	2	6	38	40	54	55	N/A	N/A	N/A	N/A
	Filipendula ulmaria	Inside Microcosm	0	0	2	14	24	25	22	22	N/A	N/A	N/A	N/A
		Outside Microcosm	0	0	0	0	7	8	8	8	N/A	N/A	N/A	N/A
		Combined	0	0	2	14	31	33	30	30	N/A	N/A	N/A	N/A
	Mentha aquatica	Inside Microcosm	11	11	12	28	21	22	19	18	N/A	N/A	N/A	N/A
		Outside Microcosm	0	0	0	0	2	3	2	2	N/A	N/A	N/A	N/A
		Combined	11	11	12	28	23	25	21	20	N/A	N/A	N/A	N/A
	Standing Dead	Inside Microcosm	22	22	22	22	16	9	4	5	N/A	N/A	N/A	N/A
	or Dormant	Outside Microcosm	1	1	1	1	0	0	0	0	N/A	N/A	N/A	N/A
	Vegetation	Combined	23	23	23	23	16	9	4	5	N/A	N/A	N/A	N/A
	Bare Ground or Leaf Litter	Inside Microcosm	67	67	62	29	9	9	9	9	N/A	N/A	N/A	N/A

 Table A 4.9: Microcosm 1 Vegetation Areas during the Acclimatisation and Establishment Period.
Year	Species	Cover (%)	January	February	March	April	May	June	July	August	September	October	November	December
	Phroamiton	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	5	0
	Pilidyinites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0
	austrans	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	5	0
	Lythrum	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	52	24	0
	Lyunun salicaria	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	14	4	0
	Salicalia	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	66	28	0
	Filipondulo	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19	19	0
	riliperidula	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	6	0
2007	umana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26	25	0
	Maratha	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	18	19	8
	nenina	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2	0	0
	aqualica	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	20	19	8
	Standing Dead	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	14	21
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	1	1
	Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	15	22
	Bare Ground or													
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	6	19	71
	Phroamites	Inside Microcosm	0	0	1	1	5	7	7	7	N/A	N/A	N/A	N/A
	australis	Outside Microcosm	0	0	0	0	0	0	0	0	N/A	N/A	N/A	N/A
	austrans	Combined	0	0	1	1	5	7	7	7	N/A	N/A	N/A	N/A
	Lythrum	Inside Microcosm	0	0	1	4	21	27	42	42	N/A	N/A	N/A	N/A
	Lyunun salicaria	Outside Microcosm	0	0	0	0	6	7	11	12	N/A	N/A	N/A	N/A
	Salicalia	Combined	0	0	1	4	27	34	53	54	N/A	N/A	N/A	N/A
	Filipondulo	Inside Microcosm	0	0	2	5	15	17	17	16	N/A	N/A	N/A	N/A
	riliperidula ulmaria	Outside Microcosm	0	0	0	0	2	4	5	5	N/A	N/A	N/A	N/A
2008	umana	Combined	0	0	2	5	17	21	22	21	N/A	N/A	N/A	N/A
	Montho	Inside Microcosm	8	7	8	12	14	18	18	16	N/A	N/A	N/A	N/A
	nenina	Outside Microcosm	0	0	0	0	0	3	3	3	N/A	N/A	N/A	N/A
	aqualica	Combined	8	7	8	12	14	21	21	19	N/A	N/A	N/A	N/A
	Standing Dead	Inside Microcosm	21	20	20	20	11	4	4	7	N/A	N/A	N/A	N/A
	or Dormant	Outside Microcosm	1	1	1	1	0	0	0	0	N/A	N/A	N/A	N/A
	Vegetation	Combined	22	21	21	21	11	4	4	7	N/A	N/A	N/A	N/A
	Bare Ground or Leaf Litter	Inside Microcosm	71	73	68	58	34	27	12	12	N/A	N/A	N/A	N/A
	200, 2,00,			10	00	00	0.	21	12	12	1 1/7 1	1.1// 1	1 1/7 1	14/7

 Table A 4.10: Microcosm 2 Vegetation Areas during the Acclimatisation and Establishment Period.

Phragmites australis Inside Microcosm N/A N/A </th <th>Year</th> <th>Species</th> <th>Cover (%)</th> <th>January</th> <th>February</th> <th>March</th> <th>April</th> <th>Мау</th> <th>June</th> <th>July</th> <th>August</th> <th>September</th> <th>October</th> <th>November</th> <th>December</th>	Year	Species	Cover (%)	January	February	March	April	Мау	June	July	August	September	October	November	December
Phragrimes Outside Microcosm N/A N/A <td></td> <td>Phroamiton</td> <td>Inside Microcosm</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>5</td> <td>5</td> <td>0</td>		Phroamiton	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	5	0
Joshama Combined N/A N/A <t< td=""><td></td><td>Priraginites</td><td>Outside Microcosm</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>0</td><td>0</td><td>0</td></t<>		Priraginites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0
Lythrum salicaria Inside Microcosm N/A N		australis	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	5	0
Lymruin selicaria Outside Microcosm N/A		L , the man	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	44	11	0
Same and a combined N/A		Lytrirum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	11	2	0
Filipendula ulmaria Inside Microcosm N/A N/A <th< td=""><td></td><td>Salicalia</td><td>Combined</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>55</td><td>13</td><td>0</td></th<>		Salicalia	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	55	13	0
Philpendular ulmaria Outside Microcosm Combined N/A		Filinendule	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	21	18	0
2007 Unitainal Mentha aquatica Combined Nia N/A		Filipendula	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	14	5	0
Mentha aquatica Inside Microcosm N/A	2007	uinana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	35	23	0
Menting aguatica aguatica Outside Microcosm Combined N/A N/A<		Mantha	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22	18	15
adjuitude Combined N/A		Mentha	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3	1	0
Standing Dead or Dormant Vegetation Inside Microcosm Outside Microcosm N/A N/A <td></td> <td>aqualica</td> <td>Combined</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>25</td> <td>19</td> <td>15</td>		aqualica	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	25	19	15
or Dormant Vegetation Outside Microcosm Combined N/A		Standing Dead	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	14	16
Vegetation Combined N/A		or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	3	2
Bare Ground or Leaf Litter Inside Microcosm N/A		Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	17	18
Leaf Litter Inside Microcosm N/A N/A <td></td> <td>Bare Ground or</td> <td></td>		Bare Ground or													
Phragmites australis Inside Microcosm 0 0 1 1 6 9 9 9 N/A N/A N/A N/A N/A Outside Microcosm 0 0 0 0 0 0 0 0 0 0 0 0 0 N/A N/A <td></td> <td>Leaf Litter</td> <td>Inside Microcosm</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>8</td> <td>34</td> <td>69</td>		Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	8	34	69
Prinagrines australis Outside Microcosm 0		Phroamiton	Inside Microcosm	0	0	1	1	6	9	9	9	N/A	N/A	N/A	N/A
Addition Combined 0 0 1 1 6 9 9 9 N/A		Pilidyinites	Outside Microcosm	0	0	0	0	0	0	0	0	N/A	N/A	N/A	N/A
Lythrum salicaria Inside Microcosm 0 0 2 4 18 26 41 41 N/A N/A N/A N/A adicaria Outside Microcosm 0 0 0 0 9 13 14 14 N/A N/A N/A N/A Combined 0 0 0 2 4 27 39 55 55 N/A N/A N/A N/A Bilipendula ulmaria Inside Microcosm 0 0 2 15 15 19 19 16 N/A N/A N/A N/A Outside Microcosm 0 0 0 6 7 7 5 N/A N/A <td></td> <td>australis</td> <td>Combined</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>6</td> <td>9</td> <td>9</td> <td>9</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td>		australis	Combined	0	0	1	1	6	9	9	9	N/A	N/A	N/A	N/A
Lythruhri salicaria Outside Microcosm 0 0 0 0 9 13 14 14 N/A N/A N/A N/A salicaria Combined 0 0 2 4 27 39 55 55 N/A N/A N/A N/A N/A Filipendula ulmaria Inside Microcosm 0 0 2 15 15 19 19 16 N/A N/A N/A N/A Mentha aquatica Inside Microcosm 0 0 0 0 6 7 7 5 N/A N/A N/A N/A Mentha aquatica Inside Microcosm 15 14 14 17 19 20 21 19 N/A N/A N/A N/A Standing Dead or Dormant Vegetation Inside Microcosm 16 12 12 12 23 21 N/A N/A N/A N/A Bare Ground or Leaf Litter Inside Microcosm		Lythrum	Inside Microcosm	0	0	2	4	18	26	41	41	N/A	N/A	N/A	N/A
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Lytrirum	Outside Microcosm	0	0	0	0	9	13	14	14	N/A	N/A	N/A	N/A
Bilipendula ulmaria Inside Microcosm 0 0 2 15 15 19 19 16 N/A N/A N/A N/A 2008		Salicalia	Combined	0	0	2	4	27	39	55	55	N/A	N/A	N/A	N/A
Philperidula ulmaria Outside Microcosm 0 0 0 6 7 7 5 N/A		Filinandula	Inside Microcosm	0	0	2	15	15	19	19	16	N/A	N/A	N/A	N/A
2008 Unifaiting Combined 0 0 2 15 21 26 26 21 N/A N/A </td <td></td> <td>riliperidula</td> <td>Outside Microcosm</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>6</td> <td>7</td> <td>7</td> <td>5</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td>		riliperidula	Outside Microcosm	0	0	0	0	6	7	7	5	N/A	N/A	N/A	N/A
Mentha Inside Microcosm 15 14 14 17 19 20 21 19 N/A N/A N/A N/A N/A aquatica Outside Microcosm 0 0 0 0 1 2 2 N/A N/A N/A N/A N/A Combined 15 14 14 17 19 21 23 21 N/A N	2008	uinana	Combined	0	0	2	15	21	26	26	21	N/A	N/A	N/A	N/A
Mientina aquatica Outside Microcosm 0 0 0 0 1 2 2 N/A N/A N/A N/A aquatica Combined 15 14 14 17 19 21 23 21 N/A N/A N/A N/A N/A Standing Dead or Dormant Vegetation Inside Microcosm 2 1 1 1 0 0 0 0 N/A N/A N/A N/A Bare Ground or Leaf Litter Inside Microcosm 69 74 69 51 38 22 6 6 N/A N/A N/A N/A		Montha	Inside Microcosm	15	14	14	17	19	20	21	19	N/A	N/A	N/A	N/A
Adjustical Combined 15 14 14 17 19 21 23 21 N/A		Mentha	Outside Microcosm	0	0	0	0	0	1	2	2	N/A	N/A	N/A	N/A
Standing Dead or Dormant Inside Microcosm 16 12 12 12 4 4 9 N/A N/A N/A N/A N/A Or Dormant Vegetation Outside Microcosm 2 1 1 0 0 0 0 N/A N/A N/A N/A Bare Ground or Leaf Litter Inside Microcosm 69 74 69 51 38 22 6 6 N/A N/A N/A N/A		aqualica	Combined	15	14	14	17	19	21	23	21	N/A	N/A	N/A	N/A
or Dormant Vegetation Outside Microcosm 2 1 1 0 0 0 0 N/A N/A N/A N/A Vegetation Combined 18 13 13 13 4 4 4 9 N/A N/A N/A N/A Bare Ground or Leaf Litter Inside Microcosm 69 74 69 51 38 22 6 6 N/A N/A N/A		Standing Dead	Inside Microcosm	16	12	12	12	4	4	4	9	N/A	N/A	N/A	N/A
Vegetation Combined 18 13 13 4 4 9 N/A N/A N/A N/A Bare Ground or Leaf Litter Inside Microcosm 69 74 69 51 38 22 6 6 N/A N/A N/A N/A		or Dormant	Outside Microcosm	2	1	1	1	0	0	0	0	N/A	N/A	N/A	N/A
Bare Ground or Leaf Litter Inside Microcosm 69 74 69 51 38 22 6 6 N/A N/A N/A		Vegetation	Combined	18	13	13	13	4	4	4	9	N/A	N/A	N/A	N/A
		Bare Ground or Leaf Litter	Inside Microcosm	69	74	69	51	38	22	6	6	N/A	N/A	N/A	N/A

 Table A 4.11: Microcosm 3 Vegetation Areas during the Acclimatisation and Establishment Period.

Year	Species	Cover (%)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phroamiton	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	5	0
	Prilayinites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0
	australis	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	5	0
	Lythrum	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	66	6	0
	Lyunun salicaria	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	11	2	0
	Salicalia	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	77	8	0
	Filinandula	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	16	16	0
	riliperidula	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	12	8	0
2007	uimana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	28	24	0
	Maratha	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	11	13	13
	Mentha	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	4	2	0
	aqualica	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	15	15	13
	Standing Dead	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	24	29
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	5	3
	Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	29	32
	Bare Ground or													
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2	36	58
	Phroamiton	Inside Microcosm	0	0	1	1	3	6	8	8	N/A	N/A	N/A	N/A
	Prilayinites	Outside Microcosm	0	0	0	0	0	0	0	0	N/A	N/A	N/A	N/A
	australis	Combined	0	0	1	1	3	6	8	8	N/A	N/A	N/A	N/A
	Lythrum	Inside Microcosm	0	0	1	4	21	27	45	45	N/A	N/A	N/A	N/A
	Lytinum	Outside Microcosm	0	0	0	0	14	8	12	12	N/A	N/A	N/A	N/A
	Salicalia	Combined	0	0	1	4	35	35	57	57	N/A	N/A	N/A	N/A
	Filinendule	Inside Microcosm	0	0	3	14	17	22	20	17	N/A	N/A	N/A	N/A
	Filipendula	Outside Microcosm	0	0	0	0	8	8	8	8	N/A	N/A	N/A	N/A
2008	uinana	Combined	0	0	3	14	25	30	28	25	N/A	N/A	N/A	N/A
	Maratha	Inside Microcosm	13	12	15	18	19	21	18	18	N/A	N/A	N/A	N/A
	Mentha	Outside Microcosm	0	0	0	0	3	4	5	5	N/A	N/A	N/A	N/A
	aqualica	Combined	13	12	15	18	22	25	23	23	N/A	N/A	N/A	N/A
	Standing Dead	Inside Microcosm	26	24	24	21	12	7	4	8	N/A	N/A	N/A	N/A
	or Dormant	Outside Microcosm	2	1	1	1	0	0	0	0	N/A	N/A	N/A	N/A
	Vegetation	Combined	28	25	25	22	12	7	4	8	N/A	N/A	N/A	N/A
	Bare Ground or Leaf Litter	Inside Microcosm	61	64	56	42	28	17	5	4	N/A	N/A	N/A	N/A

 Table A 4.12: Microcosm 4 Vegetation Areas during the Acclimatisation and Establishment Period.

Year	Species	Cover (%)	January	February	March	April	May	June	July	August	September	October	November	December
	Phroamitoo	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	5	0
	australis	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0
	austrans	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	5	0
	Lythrum	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	41	26	0
	Lyunum salicaria	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	15	8	0
	Sancana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	56	34	0
	Eilinondulo	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26	26	0
	ulmaria	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	7	0
2007	uimana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	33	33	0
	Mantha	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	24	24	11
	Mentha	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1	1	0
	aqualica	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	25	25	11
[Standing Dead	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	9	24
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	2	3
	Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	11	27
	Bare Ground or													
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	4	10	65
	Phraamites	Inside Microcosm	0	0	0	1	3	6	7	7	N/A	N/A	N/A	N/A
	australis	Outside Microcosm	0	0	0	0	0	0	0	0	N/A	N/A	N/A	N/A
	austrans	Combined	0	0	0	1	3	6	7	7	N/A	N/A	N/A	N/A
	Lythrum	Inside Microcosm	0	0	1	5	20	29	34	34	N/A	N/A	N/A	N/A
	Lyunun salicaria	Outside Microcosm	0	0	0	0	4	8	9	9	N/A	N/A	N/A	N/A
	Salicaria	Combined	0	0	1	5	24	37	43	43	N/A	N/A	N/A	N/A
	Filinandula	Inside Microcosm	0	0	3	28	21	25	24	22	N/A	N/A	N/A	N/A
	ulmaria	Outside Microcosm	0	0	0	1	4	7	7	7	N/A	N/A	N/A	N/A
2008	uimana	Combined	0	0	3	29	25	32	31	29	N/A	N/A	N/A	N/A
	Montho	Inside Microcosm	9	7	8	12	14	18	19	20	N/A	N/A	N/A	N/A
	Nentra	Outside Microcosm	0	0	0	0	0	2	3	4	N/A	N/A	N/A	N/A
	aqualica	Combined	9	7	8	12	14	20	22	24	N/A	N/A	N/A	N/A
[Standing Dead	Inside Microcosm	22	21	21	21	13	6	5	6	N/A	N/A	N/A	N/A
	or Dormant	Outside Microcosm	2	2	2	2	0	0	0	0	N/A	N/A	N/A	N/A
	Vegetation	Combined	24	23	23	23	13	6	5	6	N/A	N/A	N/A	N/A
	Bare Ground or													
	Leaf Litter	Inside Microcosm	69	72	67	33	29	16	11	11	N/A	N/A	N/A	N/A

 Table A 4.13: Microcosm 5 Vegetation Areas during the Acclimatisation and Establishment Period.

Year	Species	Cover (%)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phroamitoo	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	6	6	0
	Filiaginiles	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0
	australis	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	6	6	0
	Lythrum	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	41	2	0
	Lyunun salicaria	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13	0	0
	Sancaria	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	54	2	0
	Filinondulo	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	27	26	4
	ulmaria	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	12	8	0
2007	umana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	39	34	4
	Montho	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	21	20	13
	Mentha	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3	1	0
	aqualica	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	24	21	13
	Standing Dead	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	19	26
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	4	4
	Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	23	30
	Bare Ground or													
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	27	57
	Phraamites	Inside Microcosm	0	0	1	1	4	5	6	6	N/A	N/A	N/A	N/A
	Filiaginiles	Outside Microcosm	0	0	0	0	0	0	0	0	N/A	N/A	N/A	N/A
	austrans	Combined	0	0	1	1	4	5	6	6	N/A	N/A	N/A	N/A
	Lythrum	Inside Microcosm	0	0	2	5	14	19	32	32	N/A	N/A	N/A	N/A
	Lyunun salicaria	Outside Microcosm	0	0	0	0	5	7	9	9	N/A	N/A	N/A	N/A
	Sancaria	Combined	0	0	2	5	19	26	41	41	N/A	N/A	N/A	N/A
	Filinandula	Inside Microcosm	0	0	3	26	25	29	29	28	N/A	N/A	N/A	N/A
	ulmaria	Outside Microcosm	0	0	0	1	9	10	10	10	N/A	N/A	N/A	N/A
2008	uimana	Combined	0	0	3	27	34	39	39	38	N/A	N/A	N/A	N/A
	Montho	Inside Microcosm	12	11	11	11	15	18	18	19	N/A	N/A	N/A	N/A
	Merilina	Outside Microcosm	0	0	0	0	1	1	2	3	N/A	N/A	N/A	N/A
	aqualica	Combined	12	11	11	11	16	19	20	22	N/A	N/A	N/A	N/A
	Standing Dead	Inside Microcosm	25	24	24	24	14	6	4	4	N/A	N/A	N/A	N/A
	or Dormant	Outside Microcosm	2	1	1	1	0	0	0	0	N/A	N/A	N/A	N/A
	Vegetation	Combined	27	25	25	25	14	6	4	4	N/A	N/A	N/A	N/A
	Bare Ground or													
	Leaf Litter	Inside Microcosm	63	65	59	33	28	23	11	11	N/A	N/A	N/A	N/A

 Table A 4.14: Microcosm 6 Vegetation Areas during the Acclimatisation and Establishment Period.

			January	rebiuary	Warch	April	мау	June	July	August	September	October	November	December
	Phroamitoo	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	5	0
	Priraginites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0
	australis	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	5	0
	Lythrum	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	51	22	0
	Lytinuni	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	12	0	0
	Salicalia	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	63	22	0
	Filinandula	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	21	21	5
	rilipendula	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	11	0	0
2007	uimana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	32	21	5
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19	22	21
	Mentha	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2	1	0
	aqualica	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	21	23	21
S S	Standing Dead	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	15	22
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	3	3
	Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	18	25
В	Bare Ground or													
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	4	15	52
	Phroamitoo	Inside Microcosm	0	0	1	1	6	9	9	9	N/A	N/A	N/A	N/A
	australis	Outside Microcosm	0	0	0	0	0	0	0	0	N/A	N/A	N/A	N/A
	australis	Combined	0	0	1	1	6	9	9	9	N/A	N/A	N/A	N/A
	Lythrum	Inside Microcosm	0	0	2	8	17	28	39	39	N/A	N/A	N/A	N/A
	Lytinuni	Outside Microcosm	0	0	0	0	7	10	14	14	N/A	N/A	N/A	N/A
	Salicalia	Combined	0	0	2	8	24	38	53	53	N/A	N/A	N/A	N/A
	Filinandula	Inside Microcosm	0	0	3	21	26	24	23	22	N/A	N/A	N/A	N/A
	riliperidula	Outside Microcosm	0	0	0	1	12	14	15	15	N/A	N/A	N/A	N/A
2008	uimana	Combined	0	0	3	22	38	38	38	37	N/A	N/A	N/A	N/A
	Maratha	Inside Microcosm	18	17	18	19	20	21	21	20	N/A	N/A	N/A	N/A
	Mentha	Outside Microcosm	0	0	0	0	2	2	2	3	N/A	N/A	N/A	N/A
	aqualica	Combined	18	17	18	19	22	23	23	23	N/A	N/A	N/A	N/A
S	Standing Dead	Inside Microcosm	19	17	17	17	9	4	3	5	N/A	N/A	N/A	N/A
	or Dormant	Outside Microcosm	2	1	1	1	0	0	0	0	N/A	N/A	N/A	N/A
	Vegetation	Combined	21	18	18	18	9	4	3	5	N/A	N/A	N/A	N/A
B	Bare Ground or Leaf Litter	Inside Microcosm	63	66	59	34	22	14	5	5	N/A	N/A	N/A	N/A

 Table A 4.15: Microcosm 7 Vegetation Areas during the Acclimatisation and Establishment Period.

Year	Species	Cover (%)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phroamitoo	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	6	6	0
	Filiaginiles	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26	0	0
	australis	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	32	6	0
	Lythrum	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	46	6	0
	Lyunun salicaria	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	3	0
	Sancaria	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	53	9	0
	Filinondulo	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	27	27	5
	ulmaria	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	7	0
2007	umana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	34	34	5
	Maratha	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19	19	11
	Mentha	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	3	0
	aqualica	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19	22	11
	Standing Dead	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	19	22
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	8	4
	Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	27	26
	Bare Ground or													
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2	23	62
	Phraamites	Inside Microcosm	0	0	1	1	5	7	7	7	N/A	N/A	N/A	N/A
	australis	Outside Microcosm	0	0	0	0	0	0	0	0	N/A	N/A	N/A	N/A
	austrans	Combined	0	0	1	1	5	7	7	7	N/A	N/A	N/A	N/A
	Lythrum	Inside Microcosm	0	0	2	5	18	28	36	36	N/A	N/A	N/A	N/A
	Lyunun salicaria	Outside Microcosm	0	0	0	0	11	12	14	15	N/A	N/A	N/A	N/A
	Sancaria	Combined	0	0	2	5	29	40	50	51	N/A	N/A	N/A	N/A
	Filinandula	Inside Microcosm	0	0	3	16	25	26	26	25	N/A	N/A	N/A	N/A
	riliperidula	Outside Microcosm	0	0	0	0	6	7	7	6	N/A	N/A	N/A	N/A
2008	uimana	Combined	0	0	3	16	31	33	33	31	N/A	N/A	N/A	N/A
	Montho	Inside Microcosm	9	9	11	12	16	19	20	20	N/A	N/A	N/A	N/A
	Merilina	Outside Microcosm	0	0	0	0	2	2	3	3	N/A	N/A	N/A	N/A
	aqualica	Combined	9	9	11	12	18	21	23	23	N/A	N/A	N/A	N/A
	Standing Dead	Inside Microcosm	19	18	18	18	8	4	3	4	N/A	N/A	N/A	N/A
	or Dormant	Outside Microcosm	3	1	1	1	0	0	0	0	N/A	N/A	N/A	N/A
	Vegetation	Combined	22	19	19	19	8	4	3	4	N/A	N/A	N/A	N/A
	Bare Ground or													
	Leaf Litter	Inside Microcosm	72	73	65	48	28	16	8	8	N/A	N/A	N/A	N/A

 Table A 4.16: Microcosm 8 Vegetation Areas during the Acclimatisation and Establishment Period.

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	661	532	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	470	484	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	718	798	0
2007	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	610	615	0
2007	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	519	464	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	424	409	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	304	582	80
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	168	227	33
	Phragmites	Maximum Height	0	0	0	202	849	1342	1512	1601	N/A	N/A	N/A	N/A
	australis	General Height	0	0	0	186	583	1163	1289	1368	N/A	N/A	N/A	N/A
	Lythrum	Maximum Height	0	0	109	156	627	1408	1613	1752	N/A	N/A	N/A	N/A
2000	salicaria	General Height	0	0	51	92	511	1288	1438	1584	N/A	N/A	N/A	N/A
2008	Filipendula	Maximum Height	0	0	69	199	671	1395	1534	1626	N/A	N/A	N/A	N/A
	ulmaria	General Height	0	0	60	194	627	1248	1431	1551	N/A	N/A	N/A	N/A
	Mentha	Maximum Height	72	67	67	100	256	395	531	652	N/A	N/A	N/A	N/A
	aquatica	General Height	37	38	36	58	169	316	309	298	N/A	N/A	N/A	N/A

 Table A 4.17: Microcosm 9 Vegetation Heights during the Acclimatisation and Establishment Period.

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	809	491	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	624	453	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	950	860	0
0007	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	593	706	0
2007	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	459	398	201
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	411	285	175
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	485	555	77
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	194	234	41
	Phragmites	Maximum Height	0	0	0	225	839	1331	1518	1677	N/A	N/A	N/A	N/A
	australis	General Height	0	0	0	197	578	1138	1410	1578	N/A	N/A	N/A	N/A
	Lythrum	Maximum Height	0	0	76	158	596	1408	1722	1878	N/A	N/A	N/A	N/A
0000	salicaria	General Height	0	0	52	135	497	1193	1517	1630	N/A	N/A	N/A	N/A
2008	Filipendula	Maximum Height	0	0	81	261	584	1368	1535	1684	N/A	N/A	N/A	N/A
	ulmaria	General Height	0	0	61	112	521	1055	1262	1398	N/A	N/A	N/A	N/A
	Mentha	Maximum Height	72	67	66	98	276	415	538	729	N/A	N/A	N/A	N/A
	aquatica	General Height	39	38	34	67	164	288	375	372	N/A	N/A	N/A	N/A

Table A 4.18: Microcosm 10 Vegetation Heights during the Acclimatisation and Establishment Period.

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	811	559	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	593	479	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	813	810	0
0007	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	641	604	0
2007	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	626	611	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	392	362	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	349	357	72
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	237	198	36
	Phragmites	Maximum Height	0	0	0	212	822	1347	1700	1828	N/A	N/A	N/A	N/A
	australis	General Height	0	0	0	179	569	1162	1428	1607	N/A	N/A	N/A	N/A
	Lythrum	Maximum Height	0	0	72	178	685	1381	1614	1859	N/A	N/A	N/A	N/A
2000	salicaria	General Height	0	0	60	111	563	1249	1538	1647	N/A	N/A	N/A	N/A
2008	Filipendula	Maximum Height	0	0	91	283	707	1376	1436	1500	N/A	N/A	N/A	N/A
	ulmaria	General Height	0	0	68	173	632	1237	1322	1361	N/A	N/A	N/A	N/A
	Mentha	Maximum Height	69	68	62	95	231	458	613	702	N/A	N/A	N/A	N/A
	aquatica	General Height	35	33	33	55	181	307	385	381	N/A	N/A	N/A	N/A

Table A 4.19: Microcosm 11 Vegetation Heights during the Acclimatisation and Establishment Period.

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	820	796	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	643	581	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	785	789	0
0007	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	671	594	0
2007	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	487	499	248
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	430	431	206
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	360	196	64
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	244	133	36
	Phragmites	Maximum Height	0	0	0	231	851	1334	1530	1664	N/A	N/A	N/A	N/A
	australis	General Height	0	0	0	204	590	1139	1377	1455	N/A	N/A	N/A	N/A
	Lythrum	Maximum Height	0	0	110	173	643	1534	1762	2043	N/A	N/A	N/A	N/A
2000	salicaria	General Height	0	0	57	130	519	1220	1699	1869	N/A	N/A	N/A	N/A
2008	Filipendula	Maximum Height	0	0	122	290	757	1438	1532	1693	N/A	N/A	N/A	N/A
	ulmaria	General Height	0	0	97	193	632	1188	1399	1606	N/A	N/A	N/A	N/A
	Mentha	Maximum Height	66	60	55	94	246	432	505	613	N/A	N/A	N/A	N/A
	aquatica	General Height	39	36	15	63	170	325	381	431	N/A	N/A	N/A	N/A

Table A 4.20: Microcosm 12 Vegetation Heights during the Acclimatisation and Establishment Period.

Year	Species	Height (mm)	January	February	March	April	May	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	783	748	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	616	598	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	806	901	0
0007	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	533	783	0
2007	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	447	319	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	410	265	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	599	257	83
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	269	166	39
	Phragmites	Maximum Height	0	0	0	183	809	1340	1480	1552	N/A	N/A	N/A	N/A
	australis	General Height	0	0	0	171	565	1142	1261	1339	N/A	N/A	N/A	N/A
	Lythrum	Maximum Height	0	0	94	169	670	1408	1582	1641	N/A	N/A	N/A	N/A
0000	salicaria	General Height	0	0	55	94	575	1170	1409	1520	N/A	N/A	N/A	N/A
2008	Filipendula	Maximum Height	0	0	0	193	755	1352	1537	1668	N/A	N/A	N/A	N/A
	ulmaria	General Height	0	0	0	122	685	1136	1291	1430	N/A	N/A	N/A	N/A
	Mentha	Maximum Height	88	78	62	90	255	442	551	717	N/A	N/A	N/A	N/A
	aquatica	General Height	40	39	33	57	159	293	337	364	N/A	N/A	N/A	N/A

Table A 4.21: Microcosm 13 Vegetation Heights during the Acclimatisation and Establishment Period.

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	803	660	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	639	582	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	766	921	0
0007	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	584	681	0
2007	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	504	487	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	401	432	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	571	518	116
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	314	275	59
	Phragmites	Maximum Height	0	0	0	210	837	1353	1462	1534	N/A	N/A	N/A	N/A
	australis	General Height	0	0	0	176	593	1157	1298	1371	N/A	N/A	N/A	N/A
	Lythrum	Maximum Height	0	0	67	159	667	1306	1582	1674	N/A	N/A	N/A	N/A
2000	salicaria	General Height	0	0	47	138	544	1253	1493	1575	N/A	N/A	N/A	N/A
2008	Filipendula	Maximum Height	0	0	146	239	680	1457	1558	1596	N/A	N/A	N/A	N/A
	ulmaria	General Height	0	0	86	185	643	1177	1273	1410	N/A	N/A	N/A	N/A
	Mentha	Maximum Height	112	87	78	89	247	388	608	717	N/A	N/A	N/A	N/A
	aquatica	General Height	60	54	46	59	152	288	310	389	N/A	N/A	N/A	N/A

Table A 4.22: Microcosm 14 Vegetation Heights during the Acclimatisation and Establishment Period.

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	822	726	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	685	640	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	810	820	0
0007	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	607	611	0
2007	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	494	451	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	427	376	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	683	338	82
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	319	254	55
	Phragmites	Maximum Height	0	0	30	199	828	1339	1478	1543	N/A	N/A	N/A	N/A
	australis	General Height	0	0	30	169	562	1149	1291	1352	N/A	N/A	N/A	N/A
	Lythrum	Maximum Height	0	0	83	154	647	1408	1673	1817	N/A	N/A	N/A	N/A
0000	salicaria	General Height	0	0	56	117	610	1227	1505	1601	N/A	N/A	N/A	N/A
2008	Filipendula	Maximum Height	0	0	74	279	734	1493	1543	1690	N/A	N/A	N/A	N/A
	ulmaria	General Height	0	0	58	188	670	1054	1255	1397	N/A	N/A	N/A	N/A
	Mentha	Maximum Height	73	63	61	97	253	421	676	793	N/A	N/A	N/A	N/A
	aquatica	General Height	44	41	35	57	162	346	361	413	N/A	N/A	N/A	N/A

Table A 4.23: Microcosm 15 Vegetation Heights during the Acclimatisation and Establishment Period.

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	799	619	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	592	511	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	919	599	0
0007	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	616	486	0
2007	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	510	388	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	424	290	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	565	231	79
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	220	129	42
	Phragmites	Maximum Height	0	0	0	170	840	1329	1492	1544	N/A	N/A	N/A	N/A
	australis	General Height	0	0	0	161	573	1132	1331	1445	N/A	N/A	N/A	N/A
	Lythrum	Maximum Height	0	0	111	178	643	1408	1638	1694	N/A	N/A	N/A	N/A
0000	salicaria	General Height	0	0	47	136	543	1265	1490	1543	N/A	N/A	N/A	N/A
2008	Filipendula	Maximum Height	0	0	125	283	739	1449	1618	1676	N/A	N/A	N/A	N/A
	ulmaria	General Height	0	0	84	104	667	1183	1268	1448	N/A	N/A	N/A	N/A
	Mentha	Maximum Height	72	67	61	84	212	401	674	896	N/A	N/A	N/A	N/A
	aquatica	General Height	54	42	40	56	168	324	350	442	N/A	N/A	N/A	N/A

Table A 4.24: Microcosm 16 Vegetation Heights during the Acclimatisation and Establishment Period.

Year	Species	Cover (%)	January	February	March	April	May	June	July	August	September	October	November	December
	Dhua avaita a	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	9	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0
	australis	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	9	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26	17	0
	Lythrum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	14	4	0
	Salicalia	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	40	21	0
	Eilinandula	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26	24	0
	ulmaria	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	6	0
2007	uimana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	33	30	0
	Mantha	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	25	8	6
		Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3	1	0
	aqualica	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	28	9	6
	Standing Dead	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	6	13
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	2	1
	Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	8	14
	Bare Ground or													
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	14	36	81
	Phraamites	Inside Microcosm	0	0	0	1	4	6	7	7	N/A	N/A	N/A	N/A
	australis	Outside Microcosm	0	0	0	0	0	0	0	0	N/A	N/A	N/A	N/A
		Combined	0	0	0	1	4	6	7	7	N/A	N/A	N/A	N/A
	Lythrum	Inside Microcosm	0	0	1	2	7	31	47	47	N/A	N/A	N/A	N/A
	salicaria	Outside Microcosm	0	0	0	0	3	8	11	13	N/A	N/A	N/A	N/A
		Combined	0	0	1	2	10	39	58	60	N/A	N/A	N/A	N/A
	Filinendula	Inside Microcosm	0	0	1	2	8	14	14	13	N/A	N/A	N/A	N/A
	ulmaria	Outside Microcosm	0	0	0	0	2	6	6	6	N/A	N/A	N/A	N/A
2008		Combined	0	0	1	2	10	20	20	19	N/A	N/A	N/A	N/A
	Mentha	Inside Microcosm	4	3	3	3	5	9	11	11	N/A	N/A	N/A	N/A
	aquatica	Outside Microcosm	0	0	0	0	0	0	2	2	N/A	N/A	N/A	N/A
		Combined	4	3	3	3	5	9	13	13	N/A	N/A	N/A	N/A
	Standing Dead	Inside Microcosm	10	8	8	8	5	4	4	5	N/A	N/A	N/A	N/A
	or Dormant	Outside Microcosm	1	0	0	0	0	0	0	0	N/A	N/A	N/A	N/A
	Vegetation	Combined	11	8	8	8	5	4	4	5	N/A	N/A	N/A	N/A
	Bare Ground or Leaf Litter	Inside Microcosm	86	89	87	84	71	36	17	17	N/A	N/A	N/A	N/A

Table A 4.25: Microcosm 9 Vegetation Areas during the Acclimatisation and Establishment Period.

Year	Species	Cover (%)	January	February	March	April	May	June	July	August	September	October	November	December
	Dhua avaita a	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	8	8	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0
	australis	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	8	8	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	27	6	0
	Lythrum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	11	2	0
	Salicalia	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	38	8	0
	Eilinandula	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	27	27	3
	ulmaria	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	7	0
2007	uimana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	36	34	3
	Montho	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	25	21	10
		Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2	1	0
	aqualica	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	27	22	10
	Standing Dead	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	15	10
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	5	2
	Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	20	12
	Bare Ground or													
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13	23	77
	Phraamites	Inside Microcosm	0	0	0	1	3	6	6	9	N/A	N/A	N/A	N/A
	australis	Outside Microcosm	0	0	0	0	0	0	0	0	N/A	N/A	N/A	N/A
		Combined	0	0	0	1	3	6	6	9	N/A	N/A	N/A	N/A
	Lythrum	Inside Microcosm	0	0	1	10	22	28	32	32	N/A	N/A	N/A	N/A
	salicaria	Outside Microcosm	0	0	0	0	12	13	14	14	N/A	N/A	N/A	N/A
		Combined	0	0	1	10	34	41	46	46	N/A	N/A	N/A	N/A
	Filinendula	Inside Microcosm	0	0	2	10	18	22	22	22	N/A	N/A	N/A	N/A
	ulmaria	Outside Microcosm	0	0	0	0	2	6	6	6	N/A	N/A	N/A	N/A
2008		Combined	0	0	2	10	20	28	28	28	N/A	N/A	N/A	N/A
	Mentha	Inside Microcosm	6	5	6	6	8	9	11	11	N/A	N/A	N/A	N/A
	aquatica	Outside Microcosm	0	0	0	0	0	1	2	2	N/A	N/A	N/A	N/A
		Combined	6	5	6	6	8	10	13	13	N/A	N/A	N/A	N/A
	Standing Dead	Inside Microcosm	8	7	7	7	2	2	2	2	N/A	N/A	N/A	N/A
	or Dormant	Outside Microcosm	1	0	0	0	0	0	0	0	N/A	N/A	N/A	N/A
	Vegetation	Combined	9	7	7	7	2	2	2	2	N/A	N/A	N/A	N/A
	Bare Ground or Leaf Litter	Inside Microcosm	86	88	84	66	47	33	27	24	N/A	N/A	N/A	N/A

 Table A 4.26: Microcosm 10 Vegetation Areas during the Acclimatisation and Establishment Period.

Year	Species	Cover (%)	January	February	March	April	May	June	July	August	September	October	November	December
	Dhua avaita a	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	8	8	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0
	australis	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	8	8	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	29	8	0
	Lylinum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	14	2	0
	Salicalia	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	43	10	0
	Filipopdulo	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	25	21	0
	riipenuula	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	12	7	0
2007	uimana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	37	28	0
	Montho	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26	14	8
		Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	4	1	0
	aqualica	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	30	15	8
	Standing Dead	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	16	14
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	5	1
	Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	21	15
	Bare Ground or													
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	12	33	78
	Phraamites	Inside Microcosm	0	0	0	1	6	9	9	9	N/A	N/A	N/A	N/A
	australis	Outside Microcosm	0	0	0	0	0	0	0	0	N/A	N/A	N/A	N/A
		Combined	0	0	0	1	6	9	9	9	N/A	N/A	N/A	N/A
	Lythrum	Inside Microcosm	0	0	1	10	25	27	32	32	N/A	N/A	N/A	N/A
	salicaria	Outside Microcosm	0	0	0	0	4	9	13	13	N/A	N/A	N/A	N/A
		Combined	0	0	1	10	29	36	45	45	N/A	N/A	N/A	N/A
	Filinendula	Inside Microcosm	0	0	3	8	16	24	23	22	N/A	N/A	N/A	N/A
	ulmaria	Outside Microcosm	0	0	0	1	2	6	5	4	N/A	N/A	N/A	N/A
2008		Combined	0	0	3	9	18	30	28	26	N/A	N/A	N/A	N/A
	Mentha	Inside Microcosm	3	2	2	4	6	7	9	10	N/A	N/A	N/A	N/A
	aquatica	Outside Microcosm	0	0	0	0	0	1	2	2	N/A	N/A	N/A	N/A
		Combined	3	2	2	4	6	8	11	12	N/A	N/A	N/A	N/A
	Standing Dead	Inside Microcosm	10	8	8	8	2	2	3	3	N/A	N/A	N/A	N/A
	or Dormant	Outside Microcosm	0	0	0	0	0	0	0	0	N/A	N/A	N/A	N/A
	Vegetation	Combined	10	8	8	8	2	2	3	3	N/A	N/A	N/A	N/A
	Bare Ground or Leaf Litter	Inside Microcosm	87	90	86	69	45	31	24	24	N/A	N/A	N/A	N/A

 Table A 4.27: Microcosm 11 Vegetation Areas during the Acclimatisation and Establishment Period.

Year	Species	Cover (%)	January	February	March	April	May	June	July	August	September	October	November	December
	Dhua avaita a	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	9	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0
	australis	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	9	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	27	12	0
	Lythrum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	11	6	0
	Salicalia	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	38	18	0
	Eilinandula	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	29	29	4
	ulmaria	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	12	10	0
2007	uimana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	41	39	4
	Mantha	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22	13	6
		Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0
	aqualica	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22	13	6
	Standing Dead	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	10	13
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	2	0
	Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	12	13
	Bare Ground or													
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13	27	77
	Phraamites	Inside Microcosm	0	0	0	1	5	9	9	9	N/A	N/A	N/A	N/A
	australis	Outside Microcosm	0	0	0	0	0	0	0	0	N/A	N/A	N/A	N/A
		Combined	0	0	0	1	5	9	9	9	N/A	N/A	N/A	N/A
	Lythrum	Inside Microcosm	0	0	1	10	28	32	34	34	N/A	N/A	N/A	N/A
	salicaria	Outside Microcosm	0	0	0	0	19	20	23	24	N/A	N/A	N/A	N/A
		Combined	0	0	1	10	47	52	57	58	N/A	N/A	N/A	N/A
	Filinendula	Inside Microcosm	0	0	2	12	25	25	25	24	N/A	N/A	N/A	N/A
	ulmaria	Outside Microcosm	0	0	0	0	5	6	6	6	N/A	N/A	N/A	N/A
2008		Combined	0	0	2	12	30	31	31	30	N/A	N/A	N/A	N/A
	Mentha	Inside Microcosm	5	2	2	4	9	10	14	14	N/A	N/A	N/A	N/A
	aquatica	Outside Microcosm	0	0	0	0	0	1	2	2	N/A	N/A	N/A	N/A
		Combined	5	2	2	4	9	11	16	16	N/A	N/A	N/A	N/A
	Standing Dead	Inside Microcosm	12	8	8	8	3	2	2	3	N/A	N/A	N/A	N/A
	or Dormant	Outside Microcosm	0	0	0	1	0	0	0	0	N/A	N/A	N/A	N/A
	Vegetation	Combined	12	8	8	9	3	2	2	3	N/A	N/A	N/A	N/A
	Bare Ground or Leaf Litter	Inside Microcosm	83	90	87	65	30	22	16	16	N/A	N/A	N/A	N/A

 Table A 4.28: Microcosm 12 Vegetation Areas during the Acclimatisation and Establishment Period.

Year	Species	Cover (%)	January	February	March	April	May	June	July	August	September	October	November	December
	Dhuro gunaita a	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	8	8	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0
	australis	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	8	8	0
	L , the way	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	29	10	0
	Lytrirum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	4	4	0
	Salicalia	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	33	14	0
	Filipondulo	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	29	27	0
	riliperidula	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	6	6	0
2007	umana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	35	33	0
	Montho	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	24	18	11
	aguatica	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1	1	0
	aqualica	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	25	19	11
	Standing Dead	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	13	15
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	3
	Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	13	18
	Bare Ground or													
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	10	24	74
	Phraamites	Inside Microcosm	0	0	0	1	5	11	12	12	N/A	N/A	N/A	N/A
	australis	Outside Microcosm	0	0	0	0	0	0	0	0	N/A	N/A	N/A	N/A
		Combined	0	0	0	1	5	11	12	12	N/A	N/A	N/A	N/A
	Lythrum	Inside Microcosm	0	0	1	8	30	31	36	35	N/A	N/A	N/A	N/A
	salicaria	Outside Microcosm	0	0	0	0	6	8	11	11	N/A	N/A	N/A	N/A
	Galibalia	Combined	0	0	1	8	36	39	47	46	N/A	N/A	N/A	N/A
	Filinendula	Inside Microcosm	0	0	0	1	12	14	14	14	N/A	N/A	N/A	N/A
	ulmaria	Outside Microcosm	0	0	0	0	2	4	4	4	N/A	N/A	N/A	N/A
2008	amana	Combined	0	0	0	1	14	18	18	18	N/A	N/A	N/A	N/A
	Mentha	Inside Microcosm	7	5	7	12	14	16	17	18	N/A	N/A	N/A	N/A
	aquatica	Outside Microcosm	0	0	0	0	1	1	3	3	N/A	N/A	N/A	N/A
		Combined	7	5	7	12	15	17	20	21	N/A	N/A	N/A	N/A
	Standing Dead	Inside Microcosm	8	4	4	4	1	1	1	1	N/A	N/A	N/A	N/A
	or Dormant	Outside Microcosm	3	1	1	1	0	0	0	0	N/A	N/A	N/A	N/A
	Vegetation	Combined	11	5	5	5	1	1	1	1	N/A	N/A	N/A	N/A
	Bare Ground or Leaf Litter	Inside Microcosm	85	91	88	74	38	27	20	20	N/A	N/A	N/A	N/A

 Table A 4.29: Microcosm 13 Vegetation Areas during the Acclimatisation and Establishment Period.

Year	Species	Cover (%)	January	February	March	April	May	June	July	August	September	October	November	December
	Dhuro evenito o	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	7	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0
	australis	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	7	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	28	9	0
	Lytrirum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	6	0
	Salicalia	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	35	15	0
	Filipopdulo	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	28	24	0
	riliperidula	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	7	0
2007	unnana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	35	31	0
	Montho	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	25	21	18
	aquatica	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2	2	2
	aqualica	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	27	23	20
	Standing Dead	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	14	17
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	2
	Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	14	19
	Bare Ground or													
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	12	25	65
	Phraamites	Inside Microcosm	0	0	0	1	4	7	8	8	N/A	N/A	N/A	N/A
	australis	Outside Microcosm	0	0	0	0	0	0	0	0	N/A	N/A	N/A	N/A
		Combined	0	0	0	1	4	7	8	8	N/A	N/A	N/A	N/A
	Lythrum	Inside Microcosm	0	0	2	11	25	31	36	36	N/A	N/A	N/A	N/A
	salicaria	Outside Microcosm	0	0	0	0	6	12	15	15	N/A	N/A	N/A	N/A
		Combined	0	0	2	11	31	43	51	51	N/A	N/A	N/A	N/A
	Filinendula	Inside Microcosm	0	0	2	11	28	27	26	25	N/A	N/A	N/A	N/A
	ulmaria	Outside Microcosm	0	0	0	0	4	7	7	7	N/A	N/A	N/A	N/A
2008		Combined	0	0	2	11	32	34	33	32	N/A	N/A	N/A	N/A
	Mentha	Inside Microcosm	16	15	18	24	26	25	25	25	N/A	N/A	N/A	N/A
	aquatica	Outside Microcosm	1	1	1	0	2	4	5	5	N/A	N/A	N/A	N/A
	aquation	Combined	17	16	19	24	28	29	30	30	N/A	N/A	N/A	N/A
	Standing Dead	Inside Microcosm	9	7	7	7	2	2	2	3	N/A	N/A	N/A	N/A
	or Dormant	Outside Microcosm	1	0	0	0	0	0	0	0	N/A	N/A	N/A	N/A
	Vegetation	Combined	10	7	7	7	2	2	2	3	N/A	N/A	N/A	N/A
	Bare Ground or Leaf Litter	Inside Microcosm	75	78	71	46	15	8	3	3	N/A	N/A	N/A	N/A

 Table A 4.30: Microcosm 14 Vegetation Areas during the Acclimatisation and Establishment Period.

Year	Species	Cover (%)	January	February	March	April	May	June	July	August	September	October	November	December
	Dhua avaita a	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	9	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0
	australis	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	9	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	28	19	0
	Lythrum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3	3	0
	Salicalia	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31	22	0
	Eilinandula	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26	26	0
	riiperiouia	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	6	6	0
2007	uimana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	32	32	0
	Mantha	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	25	25	19
		Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	3	1
	aqualica	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	25	28	20
	Standing Dead	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	4	12
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	3
	Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	4	15
	Bare Ground or													
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	12	17	69
	Phraamites	Inside Microcosm	0	0	1	1	7	8	11	11	N/A	N/A	N/A	N/A
	australis	Outside Microcosm	0	0	0	0	0	0	0	0	N/A	N/A	N/A	N/A
		Combined	0	0	1	1	7	8	11	11	N/A	N/A	N/A	N/A
	Lythrum	Inside Microcosm	0	0	2	8	24	27	33	33	N/A	N/A	N/A	N/A
	salicaria	Outside Microcosm	0	0	0	0	4	8	12	12	N/A	N/A	N/A	N/A
		Combined	0	0	2	8	28	35	45	45	N/A	N/A	N/A	N/A
	Filinendula	Inside Microcosm	0	0	1	7	15	21	21	21	N/A	N/A	N/A	N/A
	ulmaria	Outside Microcosm	0	0	0	0	2	4	3	3	N/A	N/A	N/A	N/A
2008		Combined	0	0	1	7	17	25	24	24	N/A	N/A	N/A	N/A
	Mentha	Inside Microcosm	13	12	12	14	21	22	24	24	N/A	N/A	N/A	N/A
	aquatica	Outside Microcosm	0	0	0	0	0	2	2	3	N/A	N/A	N/A	N/A
		Combined	13	12	12	14	21	24	26	27	N/A	N/A	N/A	N/A
	Standing Dead	Inside Microcosm	9	8	8	8	1	1	1	1	N/A	N/A	N/A	N/A
	or Dormant	Outside Microcosm	2	1	1	1	0	0	0	0	N/A	N/A	N/A	N/A
	Vegetation	Combined	11	9	9	9	1	1	1	1	N/A	N/A	N/A	N/A
	Bare Ground or Leaf Litter	Inside Microcosm	78	80	76	62	32	21	10	10	N/A	N/A	N/A	N/A

 Table A 4.31: Microcosm 15 Vegetation Areas during the Acclimatisation and Establishment Period.

Year	Species	Cover (%)	January	February	March	April	May	June	July	August	September	October	November	December
	Dhua avaita a	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	7	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0
	australis	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	7	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	32	14	0
	Lythrum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19	8	0
	Salicalia	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	51	22	0
	Eilinandula	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	29	22	0
	riiperiouia	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3	3	0
2007	uimana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	32	25	0
	Mantha	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	25	19	15
		Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1	2	0
	aqualica	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26	21	15
	Standing Dead	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	11	14
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	2	3
	Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	13	17
	Bare Ground or													
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	27	71
	Phraamites	Inside Microcosm	0	0	0	2	3	6	7	7	N/A	N/A	N/A	N/A
	australis	Outside Microcosm	0	0	0	0	0	0	0	0	N/A	N/A	N/A	N/A
		Combined	0	0	0	2	3	6	7	7	N/A	N/A	N/A	N/A
	Lythrum	Inside Microcosm	0	0	2	8	28	34	37	36	N/A	N/A	N/A	N/A
	salicaria	Outside Microcosm	0	0	0	0	22	26	27	27	N/A	N/A	N/A	N/A
		Combined	0	0	2	8	50	60	64	63	N/A	N/A	N/A	N/A
	Filinendula	Inside Microcosm	0	0	2	10	18	17	17	16	N/A	N/A	N/A	N/A
	ulmaria	Outside Microcosm	0	0	0	0	3	5	5	5	N/A	N/A	N/A	N/A
2008		Combined	0	0	2	10	21	22	22	21	N/A	N/A	N/A	N/A
	Mentha	Inside Microcosm	13	13	13	18	24	21	22	22	N/A	N/A	N/A	N/A
	aquatica	Outside Microcosm	0	0	0	0	0	1	1	3	N/A	N/A	N/A	N/A
		Combined	13	13	13	18	24	22	23	25	N/A	N/A	N/A	N/A
	Standing Dead	Inside Microcosm	8	7	7	7	2	2	2	4	N/A	N/A	N/A	N/A
	or Dormant	Outside Microcosm	0	0	0	0	0	0	0	0	N/A	N/A	N/A	N/A
	Vegetation	Combined	8	7	7	7	2	2	2	4	N/A	N/A	N/A	N/A
	Bare Ground or Leaf Litter	Inside Microcosm	79	80	76	55	25	20	15	15	N/A	N/A	N/A	N/A

 Table A 4.32: Microcosm 16 Vegetation Areas during the Acclimatisation and Establishment Period.

Appendix 5Water Input during the Nutrient Treatment Period for the FullCompetition Microcosms

							Tota	l Water A	dded per	Month (Li	itres)			
Year	Microcosm Number		January	February	March	April	Mav	June	Julv	August	September	October	November	December
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	181.13	104.48	75.24	35.54	0.00
	1	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	52.29	53.96	33.66	43.89	28.27
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	233.42	158.44	108.90	79.43	28.27
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	171.69	94.78	78.80	31.24	0.00
	2	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	52.29	53.96	33.66	43.89	28.27
0000		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	223.99	148.74	112.45	75.13	28.27
2008		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	178.89	93.71	79.16	30.16	0.00
	3	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	52.29	53.96	33.66	43.89	28.27
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	231.18	147.67	112.82	74.05	28.27
[Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	182.46	103.94	70.47	28.54	0.00
	4	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	52.29	53.96	33.66	43.89	28.27
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	234.75	157.90	104.13	72.43	28.27
		Artificial Water Added	0.00	0.00	0.00	87.68	160.85	191.72	213.25	201.41	107.71	90.90	0.00	0.00
	1	Natural Rainfall Added	34.68	19.71	14.54	19.93	25.74	26.07	55.95	24.18	7.86	26.77	52.83	30.10
		Total Input	34.68	19.71	14.54	107.61	186.59	217.78	269.20	225.59	115.57	117.67	52.83	30.10
		Artificial Water Added	0.00	0.00	0.00	84.15	164.52	209.41	231.82	209.87	120.63	90.69	0.00	0.00
	2	Natural Rainfall Added	34.68	19.71	14.54	19.93	25.74	26.07	55.95	24.18	7.86	26.77	52.83	30.10
		Total Input	34.68	19.71	14.54	104.08	190.27	235.47	287.78	234.05	128.49	117.45	52.83	30.10
2009		Artificial Water Added	0.00	0.00	0.00	67.24	181.04	210.40	235.96	216.71	100.71	65.39	0.00	0.00
	3	Natural Rainfall Added	34.68	19.71	14.54	19.93	25.74	26.07	55.95	24.18	7.86	26.77	52.83	30.10
		Total Input	34.68	19.71	14.54	87.16	206.78	236.47	291.92	240.89	108.57	92.16	52.83	30.10
		Artificial Water Added	0.00	0.00	0.00	72.61	193.27	242.64	265.48	239.31	112.55	74.23	0.00	0.00
	4	Natural Rainfall Added	34.68	19.71	14.54	19.93	25.74	26.07	55.95	24.18	7.86	26.77	52.83	30.10
		Total Input	34.68	19.71	14.54	92.54	219.01	268.71	321.43	263.49	120.42	101.00	52.83	30.10
		Artificial Water Added	0.00	0.00	0.00	80.93	162.65	192.26	207.41	194.41	110.94	64.90	N/A	N/A
	1	Natural Rainfall Added	33.17	32.74	27.41	21.33	13.25	26.50	21.43	52.88	30.91	27.52	N/A	N/A
		Total Input	33.17	32.74	27.41	102.26	175.90	218.75	228.84	247.30	141.85	92.42	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	79.20	170.30	192.26	215.33	200.34	118.48	69.39	N/A	N/A
	2	Natural Rainfall Added	33.17	32.74	27.41	21.33	13.25	26.50	21.43	52.88	30.91	27.52	N/A	N/A
		Total Input	33.17	32.74	27.41	100.53	183.55	218.75	236.76	253.22	149.39	96.91	N/A	N/A
2010		Artificial Water Added	0.00	0.00	0.00	64.62	144.25	197.64	219.78	206.03	103.40	47.93	N/A	N/A
	3	Natural Rainfall Added	33.17	32.74	27.41	21.33	13.25	26.50	21.43	52.88	30.91	27.52	N/A	N/A
	-	Total Input	33.17	32.74	27.41	85.95	157.50	224.14	241.22	258.91	134.31	75.45	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	74.31	159.78	215.71	238.19	218.78	103.94	47.93	N/A	N/A
	4	Natural Rainfall Added	33.17	32.74	27.41	21.33	13.25	26.50	21.43	52.88	30.91	27.52	N/A	N/A
		Total Input	33.17	32.74	27.41	95.64	173.02	242.21	259.63	271.67	134.85	75.45	N/A	N/A

Table A 5.1: Microcosms 1-4 Water Input during the Nutrient Treatment Period.

Appendix 6Vegetation Heights and Area Coverage during the NutrientTreatment Period for the Full Competition Microcosms

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1644	1619	1575	0	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1397	1426	1428	0	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1948	1919	1732	0	0
2008	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1748	1678	1433	0	0
2008	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1535	1474	1367	401	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1329	1458	1354	296	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	613	618	633	624	76
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	328	341	299	227	50
	Phragmites	Maximum Height	0	0	0	149	687	1465	1606	1693	1731	1647	0	0
	australis	General Height	0	0	0	81	560	1214	1436	1489	1492	1459	0	0
	Lythrum	Maximum Height	0	0	0	43	563	1538	1567	1621	1673	1624	0	0
2000	salicaria	General Height	0	0	0	36	518	1287	1484	1542	1530	1355	0	0
2009	Filipendula	Maximum Height	0	0	0	224	497	1018	1431	1462	1344	708	0	0
	ulmaria	General Height	0	0	0	122	394	688	916	950	935	681	0	0
	Mentha	Maximum Height	66	62	57	146	136	386	776	888	968	771	706	99
	aquatica	General Height	43	43	42	58	74	137	237	514	606	618	588	77
	Phragmites	Maximum Height	0	0	0	170	772	1012	1488	1597	1641	1567	0	N/A
	australis	General Height	0	0	0	96	473	814	1196	1268	1310	1313	0	N/A
	Lythrum	Maximum Height	0	0	0	49	512	927	1164	1468	1472	1460	0	N/A
2010	salicaria	General Height	0	0	0	44	286	766	989	1130	1130	1061	0	N/A
2010	Filipendula	Maximum Height	0	0	88	176	507	709	1113	1351	762	801	794	N/A
	ulmaria	General Height	0	0	49	149	469	537	747	766	725	720	719	N/A
	Mentha	Maximum Height	98	92	91	89	94	142	562	700	609	588	173	N/A
	aquatica	General Height	69	62	50	48	62	106	229	312	305	273	112	N/A

 Table A 6.1: Microcosm 1 Vegetation Heights during the Nutrient Treatment Period.

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1587	1572	1496	1479	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1398	1463	1447	1311	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1983	2082	1634	0	0
2000	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1639	1699	1355	0	0
2008	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1633	1751	1739	322	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1482	1552	1522	208	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	643	844	881	409	81
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	381	378	417	111	50
	Phragmites	Maximum Height	0	0	0	182	789	1709	1832	1861	1877	1801	0	0
	australis	General Height	0	0	0	116	603	1316	1554	1615	1620	1575	0	0
	Lythrum	Maximum Height	0	0	0	47	733	1547	1753	1791	1789	1780	0	0
2000	salicaria	General Height	0	0	0	35	648	1372	1604	1629	1608	1601	0	0
2009	Filipendula	Maximum Height	0	0	0	210	472	1510	1638	1692	1675	869	0	0
	ulmaria	General Height	0	0	0	109	383	1118	1266	1328	1284	680	0	0
	Mentha	Maximum Height	71	66	56	137	142	246	420	628	665	583	570	105
	aquatica	General Height	43	41	37	48	68	172	325	431	444	357	168	76
	Phragmites	Maximum Height	0	0	0	153	618	1196	1484	1643	1684	1665	0	N/A
	australis	General Height	0	0	0	115	471	918	1337	1430	1481	1478	0	N/A
	Lythrum	Maximum Height	0	0	0	50	455	928	1390	1516	1524	1485	0	N/A
0010	salicaria	General Height	0	0	0	39	303	773	1178	1303	1297	1103	0	N/A
2010	Filipendula	Maximum Height	0	0	92	175	430	652	1101	725	786	775	777	N/A
	ulmaria	General Height	0	0	55	145	358	524	594	573	556	550	546	N/A
	Mentha	Maximum Height	100	100	99	84	88	148	199	262	326	343	88	N/A
	aquatica	General Height	63	61	58	52	55	109	114	156	164	150	65	N/A

Table A 6.2: Microcosm 2 Vegetation Heights during the Nutrient Treatment Period.

Year	Species	Height (mm)	January	February	March	April	May	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1682	1790	1843	1826	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1586	1667	1669	1567	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1829	1926	1356	0	0
2000	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1646	1802	1157	0	0
2000	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1808	1881	1810	884	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1504	1536	1493	618	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	778	804	816	546	92
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	379	381	470	455	48
	Phragmites	Maximum Height	0	0	0	193	953	1749	2027	2095	2118	2113	0	0
	australis	General Height	0	0	0	124	809	1588	1748	1816	1857	1803	0	0
	Lythrum	Maximum Height	0	0	0	53	721	1184	1744	1793	1798	0	0	0
2000	salicaria	General Height	0	0	0	42	687	1103	1602	1665	1639	0	0	0
2009	Filipendula	Maximum Height	0	0	0	186	622	1184	1396	1467	1461	0	0	0
	ulmaria	General Height	0	0	0	141	497	729	957	1008	1000	0	0	0
	Mentha	Maximum Height	71	71	66	72	144	458	712	784	779	296	192	109
	aquatica	General Height	47	43	41	61	93	225	305	319	281	178	132	78
	Phragmites	Maximum Height	0	0	0	241	657	1371	1771	1884	1904	1853	0	N/A
	australis	General Height	0	0	0	145	628	1074	1518	1672	1719	1706	0	N/A
	Lythrum	Maximum Height	0	0	0	53	356	976	1314	1482	1473	0	0	N/A
2010	salicaria	General Height	0	0	0	55	268	794	1263	1372	1370	0	0	N/A
2010	Filipendula	Maximum Height	0	0	70	192	475	662	529	588	607	600	518	N/A
-	ulmaria	General Height	0	0	52	157	411	534	526	542	495	491	428	N/A
	Mentha	Maximum Height	103	97	96	91	124	209	219	389	400	392	99	N/A
	aquatica	General Height	71	61	53	51	82	58	68	62	52	48	40	N/A

Table A 6.3: Microcosm 3 Vegetation Heights during the Nutrient Treatment Period.

Year	Species	Height (mm)	January	February	March	April	May	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1677	1789	1740	1683	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1603	1686	1682	1466	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1804	1882	1831	0	0
2000	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1692	1709	1403	0	0
2008	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1762	1598	1537	1333	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1640	1583	1478	1295	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	826	1051	1022	527	86
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	485	539	561	162	50
	Phragmites	Maximum Height	0	0	0	207	919	1824	2062	2189	2272	2091	0	0
	australis	General Height	0	0	0	155	772	1640	1877	1956	1982	1935	0	0
	Lythrum	Maximum Height	0	0	0	52	814	1256	1691	1732	1727	0	0	0
2000	salicaria	General Height	0	0	0	39	728	1162	1582	1611	1583	0	0	0
2009	Filipendula	Maximum Height	0	0	0	247	679	819	1103	1164	1135	0	0	0
	ulmaria	General Height	0	0	0	198	611	673	684	703	697	0	0	0
	Mentha	Maximum Height	78	71	65	58	233	497	750	825	732	327	311	104
	aquatica	General Height	35	30	35	43	157	244	315	304	212	149	129	70
	Phragmites	Maximum Height	0	0	0	111	719	1266	1703	2015	2061	2030	0	N/A
	australis	General Height	0	0	0	64	580	1127	1398	1718	1842	1829	0	N/A
	Lythrum	Maximum Height	0	0	0	49	402	958	1487	1486	1461	0	0	N/A
2010	salicaria	General Height	0	0	0	44	264	863	1192	1307	1302	0	0	N/A
2010	Filipendula	Maximum Height	0	0	98	175	573	697	659	685	737	890	884	N/A
	ulmaria	General Height	0	0	45	165	447	632	647	656	674	670	670	N/A
	Mentha	Maximum Height	96	92	85	85	119	206	244	459	483	427	249	N/A
	aquatica	General Height	66	64	64	63	78	54	63	69	52	45	43	N/A

Table A 6.4: Microcosm 4 Vegetation Heights during the Nutrient Treatment Period.

Year	Species	Cover (%)	January	February	March	April	Мау	June	July	August	September	October	November	December
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	9	9	0	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0	0	0
	australis	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	9	9	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	37	37	35	0	0
	Lythrum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	18	16	15	0	0
	Salicaria	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	55	53	50	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22	20	20	19	0
	Filipendula	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	8	6	6	4	0
2008	uinana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	30	26	26	23	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	18	16	16	14	11
	Mentha	Outside Microcosm	N/A	N/A	Ν/Δ	Ν/Δ	Ν/Δ	Ν/Δ	Ν/Δ	2	2	2	2	1
	aquatica	Combined	N/A	N/A	N/A	N/A		N/A	N/A	20	18	18	16	12
	Standing Dood	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	7	8	41	44
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	, 0	0	41	5
	Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	7	8	45	49
	Bara Ground or	Combined												40
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	11	12	26	45
		Inside Microcosm	0	0	0	1	5	8	10	10	10	8	0	0
	Phragmites	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
	australis	Combined	0	0	0	1	5	8	10	10	10	8	0	0
		Inside Microcosm	0	0	0	1	11	19	23	24	22	12	0	0
	Lythrum	Outside Microcosm	0	0	0	0	1	4	7	7	6	2	0	0
	salicaria	Combined	0	0	0	1	12	23	30	31	28	14	0	0
		Inside Microcosm	0	0	0	6	26	27	28	28	27	25	0	0
	Filipendula	Outside Microcosm	0	0	0	0	3	5	6	6	5	3	0	0
2009	umana	Combined	0	0	0	6	29	32	34	34	32	28	0	0
		Inside Microcosm	6	2	2	6	7	14	17	19	15	11	10	8
	Mentha	Outside Microcosm	0	0	0	0	0	0	1	1	1	1	1	1
	aqualica	Combined	6	2	2	6	7	14	18	20	16	12	11	9
	Standing Dead	Inside Microcosm	39	38	38	38	19	8	8	8	8	11	24	17
	or Dormant	Outside Microcosm	3	3	3	2	1	1	0	0	0	3	4	3
	Vegetation	Combined	42	41	41	40	20	9	8	8	8	14	28	20
	Bare Ground or													
	Leaf Litter	Inside Microcosm	55	60	60	48	32	24	14	11	18	33	66	75
	Phraamites	Inside Microcosm	0	0	0	1	5	12	19	19	19	8	0	N/A
	australis	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
		Combined	0	0	0	1	5	12	19	19	19	8	0	N/A
	Lythrum	Inside Microcosm	0	0	0	1	6	16	18	18	16	3	0	N/A
	salicaria	Outside Microcosm	0	0	0	0	0	2	3	3	1	0	0	N/A
		Combined	0	0	0	1	6	18	21	21	17	3	0	N/A
	Filipendula	Inside Microcosm	0	0	1	8	24	31	35	35	32	21	12	N/A
	ulmaria	Outside Microcosm	0	0	0	1	2	3	6	6	4	3	1	N/A
2010		Combined	0	0	1	9	26	34	41	41	36	24	13	N/A
	Mentha	Inside Microcosm	6	5	5	6	6	8	14	15	12	12	9	N/A
	aquatica	Outside Microcosm	0	0	0	0	0	0	3	2	1	1	1	N/A
		Combined	6	5	5	6	6	8	17	17	13	13	10	N/A
	Standing Dead	Inside Microcosm	14	12	12	12	12	9	9	9	13	32	48	N/A
	or Dormant Vegetation	Outside Microcosm	2	1	1	1	1	0	0	0	0	1	2	N/A
	v egetation	Combined	16	13	13	13	13	9	9	9	13	33	50	N/A
	Bare Ground or Leaf Litter	Inside Microcosm	80	83	82	72	47	24	5	4	8	24	31	N/A

 Table A 6.5: Microcosm 1 Vegetation Areas during the Nutrient Treatment Period.

Year	Species	Cover (%)	January	February	March	April	Мау	June	July	August	September	October	November	December
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	7	7	3	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0	0	0
	australis	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	7	7	3	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	42	41	35	0	0
	Lythrum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	12	11	8	0	0
	Salicalia	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	54	52	43	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	16	13	13	10	0
	Filipendula	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	4	3	1	0
2008	uinana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	21	17	16	11	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	16	15	15	15	9
	Mentha	Outside Microcosm	N/A	N/A	Ν/Δ	Ν/Δ	N/A	Ν/Δ	Ν/Δ	3	3	2	1	0
	aquatica	Combined	N/A	N/A	N/A	N/A	N/A	N/A		19	18	17	16	9
	Standing Dood	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	8	12	51	55
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	,	0	2	4	4
	Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	8	14	55	59
	Para Cround or	Combined	11// (11/7	1.1/1				Ŭ	17	00	00
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	12	16	18	21	36
		Inside Microcosm	0	0	0	1	6	19	20	20	20	18	0	0
	Phragmites	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
	australis	Combined	0	0	0	1	6	19	20	20	20	18	0	0
		Inside Microcosm	0	0	0	2	13	27	27	27	24	14	0	0
	Lythrum	Outside Microcosm	0	0	0	0	1	6	7	7	6	2	0	0
	salicaria	Combined	0	0	0	2	14	33	34	34	30	16	0	0
		Inside Microcosm	0	0	0	8	32	33	33	32	28	15	0	0
	Filipendula	Outside Microcosm	0	0	0	0	5	7	7	7	7	1	0	0
2009	umana	Combined	0	0	0	8	37	40	40	39	35	16	0	0
		Inside Microcosm	5	3	3	5	7	5	5	6	6	5	6	4
	Mentha	Outside Microcosm	0	0	0	0	0	0	0	1	1	0	0	0
	aqualica	Combined	5	3	3	5	7	5	5	7	7	5	6	4
	Standing Dead	Inside Microcosm	41	38	37	37	16	14	14	14	15	33	53	42
	or Dormant	Outside Microcosm	3	2	2	2	0	0	0	0	0	3	4	3
	Vegetation	Combined	44	40	39	39	16	14	14	14	15	36	57	45
	Bare Ground or													
	Leaf Litter	Inside Microcosm	54	59	60	47	26	2	1	1	7	15	41	54
	Phraamites	Inside Microcosm	0	0	0	3	8	10	24	24	24	10	0	N/A
	australis	Outside Microcosm	0	0	0	0	0	0	3	3	3	1	0	N/A
		Combined	0	0	0	3	8	10	27	27	27	11	0	N/A
	Lythrum	Inside Microcosm	0	0	0	1	6	9	16	16	15	5	0	N/A
	salicaria	Outside Microcosm	0	0	0	0	0	1	5	5	2	0	0	N/A
		Combined	0	0	0	1	6	10	21	21	17	5	0	N/A
	Filipendula	Inside Microcosm	0	0	1	9	27	27	28	28	24	22	17	N/A
	ulmaria	Outside Microcosm	0	0	0	0	1	2	3	3	1	1	1	N/A
2010		Combined	0	0	1	9	28	29	31	31	25	23	18	N/A
	Mentha	Inside Microcosm	4	4	4	5	6	7	15	16	13	13	11	N/A
	aquatica	Outside Microcosm	0	0	0	0	0	0	2	2	1	0	0	N/A
		Combined	4	4	4	5	6	7	17	18	14	13	11	N/A
	Standing Dead	Inside Microcosm	36	29	28	24	18	13	13	13	19	37	51	N/A
	or Dormant	Outside Microcosm	1	1	1	1	1	1	0	0	0	3	4	N/A
	vegetation	Combined	37	30	29	25	19	14	13	13	19	40	55	N/A
	Bare Ground or Leaf Litter	Inside Microcosm	60	67	67	58	35	34	4	3	5	13	21	N/A

 Table A 6.6: Microcosm 2 Vegetation Areas during the Nutrient Treatment Period.

Year	Species	Cover (%)	January	February	March	April	Мау	June	July	August	September	October	November	December
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	9	9	7	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0	0	0
	australis	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	9	9	7	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	41	40	24	0	0
	Lythrum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	14	14	6	0	0
	Salicalia	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	55	54	30	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	16	13	13	13	0
	Filipendula	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	4	4	4	0
2008	unnana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	21	17	17	17	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19	18	18	16	9
	Mentha	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2	2	2	1	1
	aquatica	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	21	20	20	. 17	10
	Standing Dead	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	9	16	41	50
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	3	5	6
	Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	9	19	46	56
	Bare Ground or	0011101100												
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	6	11	20	23	41
		Inside Microcosm	0	0	0	1	11	22	23	23	23	17	0	0
	Phragmites	Outside Microcosm	0	0	0	0	0	1	1	1	1	1	0	0
	australis	Combined	0	0	0	1	11	23	24	24	24	18	0	0
		Inside Microcosm	0	0	0	3	12	26	27	27	13	0	0	0
	Lythrum	Outside Microcosm	0	0	0	0	1	8	9	9	8	0	0	0
	salicaria	Combined	0	0	0	3	13	34	36	36	21	0	0	0
		Inside Microcosm	0	0	0	9	18	23	24	24	9	0	0	0
	Filipendula	Outside Microcosm	0	0	0	0	5	6	6	6	4	0	0	0
2009	umana	Combined	0	0	0	9	23	29	30	30	13	0	0	0
		Inside Microcosm	6	3	3	8	21	14	14	14	11	5	5	5
	Mentha	Outside Microcosm	0	0	0	0	0	2	3	2	2	0	0	0
	aqualica	Combined	6	3	3	8	21	16	17	16	13	5	5	5
	Standing Dead	Inside Microcosm	48	48	48	46	17	11	11	11	35	68	85	69
	or Dormant	Outside Microcosm	5	5	4	3	0	0	0	0	0	4	5	3
	Vegetation	Combined	53	53	52	49	17	11	11	11	35	72	90	72
	Bare Ground or		10	40	10		01				0	40	10	00
	Leat Litter	Inside Microcosm	40	49	49	33	21	4	1	20	9	10	10	20
	Phragmites	Outside Microcosm	0	0	0	4	15	24	29	29 5	29	0	0	N/A
	australis	Combined	0	0	0		15	3 27	24	24	22	4	0	N/A
			0	0	0	4	0	12	18	18	10	0	0	N/A
	Lythrum	Outside Microcosm	0	0	0	0	9	12	5	5	10	0	0	N/A
	salicaria	Combined	0	0	0	2	Q	16	23	23	11	0	0	N/A
		Inside Microcosm	0	0	1	9	23	21	26	26	11	8	6	N/A
	Filipendula	Outside Microcosm	0	0	0	0	1	1	20	20	0	0	0	N/A
2010	ulmaria	Combined	0	0	1	q	24	22	28	28	11	8	6	N/A
		Inside Microcosm	5	5	6	6	7	10	13	14	10	8	6	N/A
	Mentha	Outside Microcosm	0	Õ	Õ	0	0	0	1	1	1	1	0	N/A
	aquatica	Combined	5	5	6	6	7	10	14	15	. 11	9	6	N/A
	Standing Dead	Inside Microcosm	43	40	38	35	27	15	11	11	26	52	62	N/A
	or Dormant	Outside Microcosm	2	2	2	2	2	2	0	0	4	4	6	N/A
	Vegetation	Combined	45	42	40	37	29	17	11	11	30	56	68	N/A
	Bare Ground or													
	Leaf Litter	Inside Microcosm	52	55	55	44	19	18	3	2	14	24	26	N/A

 Table A 6.7: Microcosm 3 Vegetation Areas during the Nutrient Treatment Period.

Year	Species	Cover (%)	January	February	March	April	Мау	June	July	August	September	October	November	December
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	8	8	8	7	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0	0	0
	austrans	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	8	8	8	7	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	45	42	17	0	0
	Lythrum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	12	11	5	0	0
	salicaria	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	57	53	22	0	0
		Inside Microcosm	Ν/Δ	Ν/Α	Ν/Δ	Ν/Δ	Ν/Δ	Ν/Δ	Ν/Δ	17	17	17	16	0
	Filipendula	Outside Microcosm		N/A	N/A	N/A	N/A	N/A		8	7	7	2	0
2008	ulmaria	Combined								25	24	24	18	0
										19	19	19	16	7
	Mentha			N/A						-	- 10	10 -	10	7
	aquatica		N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	5	5	0	0
		Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	23	23	23	16	/
	Standing Dead	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	8	8	21	41	51
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	3	5	5
	vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	8	8	24	46	56
	Bare Ground or	la sida Ndiana sa sa	N1/A	N1/A	N1/A	N1/A	N1/A	N1/A	N 1/A		7	10	00	10
	Leat Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	4	7	19	20	42
	Phragmites	Inside Microcosm	0	0	0	1	14	25	25	25	25	22	0	0
	australis	Outside Microcosm	0	0	0	0	0	6	6	6	6	5	0	0
		Combined	0	0	0	1	14	31	31	31	31	27	0	0
	Lvthrum	Inside Microcosm	0	0	0	5	15	29	29	29	14	0	0	0
	salicaria	Outside Microcosm	0	0	0	0	3	8	8	8	3	0	0	0
		Combined	0	0	0	5	18	37	37	37	17	0	0	0
	Filipendula	Inside Microcosm	0	0	0	17	24	22	22	22	6	0	0	0
2009	Filipendula ulmaria	Outside Microcosm	0	0	0	0	9	6	6	6	2	0	0	0
2009		Combined	0	0	0	17	33	28	28	28	8	0	0	0
	Mentha	Inside Microcosm	6	5	5	13	23	18	18	18	8	6	6	6
	aquatica	Outside Microcosm	0	0	0	0	0	3	3	3	3	0	0	0
		Combined	6	5	5	13	23	21	21	21	11	6	6	6
	Standing Dead	Inside Microcosm	45	42	41	39	9	5	5	5	41	61	83	62
	or Dormant	Outside Microcosm	5	4	4	3	1	1	1	1	2	3	6	4
	Vegetation	Combined	50	46	45	42	10	6	6	6	43	64	89	66
	Bare Ground or													
	Leaf Litter	Inside Microcosm	49	53	54	25	15	1	1	1	6	11	11	32
		Inside Microcosm	0	0	0	3	18	31	38	38	38	3	0	N/A
	Phragmites	Outside Microcosm	0	0	0	0	1	4	7	7	7	7	0	N/A
	austrans	Combined	0	0	0	3	19	35	45	45	45	10	0	N/A
		Inside Microcosm	0	0	0	1	8	11	14	14	11	0	0	N/A
	Lythrum	Outside Microcosm	0	0	0	0	0	5	7	7	4	0	0	N/A
	Sancana	Combined	0	0	0	1	8	16	21	21	15	0	0	N/A
		Inside Microcosm	0	0	1	13	28	27	24	24	22	18	12	N/A
	Filipendula	Outside Microcosm	0	0	0	1	2	2	2	2	2	2	1	N/A
2010	uinana	Combined	0	0	1	14	30	29	26	26	24	20	13	N/A
		Inside Microcosm	6	6	7	9	11	10	11	11	11	9	8	N/A
	Mentha	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
	aquatica	Combined	6	6	7	9	11	10	11	11	11	9	8	N/A
	Standing Dead	Inside Microcosm	53	49	42	37	32	18	13	13	15	31	39	N/A
	or Dormant	Outside Microcosm	3	3	2	2	2	2	0	0	0	2	9	N/A
	Vegetation	Combined	56	52	44	30	34	20	13	13	15	33	48	N/A
	Poro Cround or	Combined	00	02	77	00	04	20	10	10	10	00	-10	11// 3
	Leaf Litter	Inside Microcosm	41	45	50	37	3	3	0	0	3	39	41	N/A

 Table A 6.8: Microcosm 4 Vegetation Areas during the Nutrient Treatment Period.

Appendix 7 Water Input during the Salinity Treatment Period for the Full Competition Microcosms

			Total Water Added per Month (Litres)											
Year	Microcosm Number		January	February	March	April	Мау	June	July	August	September	October	November	December
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	172.62	95.32	42.01	35.54	0.00
	5	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	52.29	53.96	33.66	43.89	28.27
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	224.91	149.28	75.66	79.43	28.27
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	172.85	89.40	45.78	0.00	0.00
	6	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	52.29	53.96	33.66	43.89	28.27
0000		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	225.14	143.36	79.43	43.89	28.27
2008		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	164.78	77.55	42.01	0.00	0.00
	7	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	52.29	53.96	33.66	43.89	28.27
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	217.07	131.51	75.66	43.89	28.27
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	152.41	70.01	40.93	0.00	0.00
	8	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	52.29	53.96	33.66	43.89	28.27
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	204.70	123.97	74.59	43.89	28.27
		Artificial Water Added	0.00	0.00	0.00	85.47	151.56	192.26	209.02	198.18	106.09	75.78	0.00	0.00
	5	Natural Rainfall Added	34.68	19.71	14.54	19.93	25.74	26.07	55.95	24.18	7.86	26.77	52.83	30.10
		Total Input	34.68	19.71	14.54	105.40	177.30	218.32	264.97	222.36	113.95	102.54	52.83	30.10
		Artificial Water Added	0.00	0.00	0.00	47.93	114.17	149.71	175.56	129.79	77.01	0.00	0.00	0.00
	6	Natural Rainfall Added	34.68	19.71	14.54	19.93	25.74	26.07	55.95	24.18	7.86	26.77	52.83	30.10
		Total Input	34.68	19.71	14.54	67.86	139.91	175.78	231.52	153.97	84.87	26.77	52.83	30.10
2009		Artificial Water Added	0.00	0.00	0.00	30.70	86.17	122.25	152.94	105.01	68.39	0.00	0.00	0.00
	7	Natural Rainfall Added	34.68	19.71	14.54	19.93	25.74	26.07	55.95	24.18	7.86	26.77	52.83	30.10
		Total Input	34.68	19.71	14.54	50.62	111.91	148.31	208.90	129.19	76.26	26.77	52.83	30.10
		Artificial Water Added	0.00	0.00	0.00	28.00	73.78	103.94	129.25	82.93	38.77	0.00	0.00	0.00
	8	Natural Rainfall Added	34.68	19.71	14.54	19.93	25.74	26.07	55.95	24.18	7.86	26.77	52.83	30.10
		Total Input	34.68	19.71	14.54	47.93	99.52	130.00	185.20	107.11	46.64	26.77	52.83	30.10
		Artificial Water Added	0.00	0.00	0.00	76.06	154.78	185.79	202.49	182.02	100.71	57.31	N/A	N/A
	5	Natural Rainfall Added	33.17	32.74	27.41	21.33	13.25	26.50	21.43	52.88	30.91	27.52	N/A	N/A
		Total Input	33.17	32.74	27.41	97.39	168.02	212.29	223.92	234.91	131.62	84.83	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	50.62	104.48	141.63	167.48	122.25	75.93	0.00	N/A	N/A
	6	Natural Rainfall Added	33.17	32.74	27.41	21.33	13.25	26.50	21.43	52.88	30.91	27.52	N/A	N/A
		Total Input	33.17	32.74	27.41	71.95	117.72	168.13	188.92	175.13	106.85	27.52	N/A	N/A
2010		Artificial Water Added	0.00	0.00	0.00	29.08	72.70	120.63	143.25	95.86	65.16	0.00	N/A	N/A
	7	Natural Rainfall Added	33.17	32.74	27.41	21.33	13.25	26.50	21.43	52.88	30.91	27.52	N/A	N/A
		Total Input	33.17	32.74	27.41	50.41	85.95	147.13	164.68	148.74	96.07	27.52	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	29.62	75.39	97.47	127.63	75.93	42.54	0.00	N/A	N/A
	8	Natural Rainfall Added	33.17	32.74	27.41	21.33	13.25	26.50	21.43	52.88	30.91	27.52	N/A	N/A
	-	Total Input	33.17	32.74	27.41	50.95	88.64	123.97	149.07	128.82	73.46	27.52	N/A	N/A

 Table A 7.1: Microcosms 5-8 Water Input during the Salinity Treatment Period.
Appendix 8Vegetation Heights and Area Coverage during the SalinityTreatment Period for the Full Competition Microcosms

Year	Species	Height (mm)	January	February	March	April	May	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1498	1437	1416	1319	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1304	1358	1326	1294	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1877	1859	1613	0	0
2000	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1607	1672	1399	0	0
2000	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1921	1829	1769	449	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1649	1636	1539	368	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	316	363	462	320	97
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	282	319	334	189	56
	Phragmites	Maximum Height	0	0	0	97	491	1461	1692	1773	1820	1793	0	0
	australis	General Height	0	0	0	53	435	1287	1448	1546	1589	1512	0	0
	Lythrum	Maximum Height	0	0	0	42	518	1254	1577	1631	1620	1620	0	0
2000	salicaria	General Height	0	0	0	34	426	1023	1448	1552	1549	1474	0	0
2009	Filipendula	Maximum Height	0	0	52	182	414	879	1386	1430	1402	697	0	0
	ulmaria	General Height	0	0	45	66	357	581	823	901	893	566	0	0
	Mentha	Maximum Height	86	86	77	58	103	378	528	586	684	660	331	120
	aquatica	General Height	46	43	43	45	59	170	408	473	482	479	177	70
	Phragmites	Maximum Height	0	0	0	147	329	959	1366	1431	1444	1409	0	N/A
	australis	General Height	0	0	0	94	261	589	1107	1237	1291	1288	0	N/A
	Lythrum	Maximum Height	0	0	0	52	416	836	1192	1243	1228	1225	0	N/A
2010	salicaria	General Height	0	0	0	44	276	755	977	1232	1207	1135	0	N/A
2010	Filipendula	Maximum Height	0	0	90	195	406	648	698	710	729	730	725	N/A
	ulmaria	General Height	0	0	46	143	285	513	554	607	612	604	597	N/A
	Mentha	Maximum Height	118	116	112	112	151	163	331	449	467	462	426	N/A
	aquatica	General Height	57	47	34	42	79	103	152	222	247	241	132	N/A

Table A 8.1: Microcosm 5 Vegetation Heights during the Salinity Treatment Period.

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1501	1661	1641	0	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1331	1620	1610	0	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1912	1965	1537	0	0
2000	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1638	1689	1133	0	0
2000	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1870	1648	1328	0	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1592	1595	1194	0	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	740	706	749	341	89
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	356	397	438	63	47
	Phragmites	Maximum Height	0	0	0	116	687	1291	1652	1732	1790	1787	0	0
	australis	General Height	0	0	0	63	563	1215	1475	1550	1596	1584	0	0
	Lythrum	Maximum Height	0	0	0	46	465	1209	1596	1653	1730	1722	0	0
2000	salicaria	General Height	0	0	0	35	326	1105	1442	1511	1574	1485	0	0
2009	Filipendula	Maximum Height	0	0	0	124	301	619	961	1065	1072	0	0	0
	ulmaria	General Height	0	0	0	57	204	461	818	901	899	0	0	0
	Mentha	Maximum Height	73	66	57	58	102	310	761	1003	1104	1167	593	105
	aquatica	General Height	44	43	40	45	67	139	249	365	439	449	441	77
	Phragmites	Maximum Height	0	0	0	96	630	1210	1467	1547	1484	1458	0	N/A
	australis	General Height	0	0	0	48	485	956	1185	1382	1396	1388	0	N/A
	Lythrum	Maximum Height	0	0	0	127	437	859	1334	1339	1348	1117	0	N/A
2010	salicaria	General Height	0	0	0	64	384	761	1142	1251	1267	863	0	N/A
2010	Filipendula	Maximum Height	0	0	84	146	376	411	618	704	693	691	681	N/A
	ulmaria	General Height	0	0	61	122	296	238	471	514	464	427	314	N/A
	Mentha	Maximum Height	0	0	0	0	38	69	138	0	0	0	0	N/A
	aquatica	General Height	0	0	0	0	38	46	102	0	0	0	0	N/A

 Table A 8.2: Microcosm 6 Vegetation Heights during the Salinity Treatment Period.

Year	Species	Height (mm)	January	February	March	April	May	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1506	1582	1513	0	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1299	1455	1438	0	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1735	1845	1469	0	0
2000	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1612	1722	1380	0	0
2008	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1983	1996	940	0	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1661	1671	796	0	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	705	614	309	68	65
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	390	303	124	68	65
	Phragmites	Maximum Height	0	0	0	139	653	1437	1621	1676	1705	1709	0	0
	australis	General Height	0	0	0	85	523	1252	1433	1489	1512	1498	0	0
	Lythrum	Maximum Height	0	0	0	61	219	901	1302	1476	1491	1420	0	0
2000	salicaria	General Height	0	0	0	35	121	652	1224	1371	1388	1267	0	0
2009	Filipendula	Maximum Height	0	0	0	0	109	569	0	0	0	0	0	0
	ulmaria	General Height	0	0	0	0	58	299	0	0	0	0	0	0
	Mentha	Maximum Height	65	65	82	86	93	0	0	0	0	0	0	0
	aquatica	General Height	65	65	76	736	81	0	0	0	0	0	0	0
	Phragmites	Maximum Height	0	0	0	103	819	1334	1714	1776	1774	1600	0	N/A
	australis	General Height	0	0	0	64	763	1109	1397	1496	1491	1488	0	N/A
	Lythrum	Maximum Height	0	0	0	157	429	612	987	1110	1161	1006	0	N/A
2010	salicaria	General Height	0	0	0	105	238	476	925	1084	1123	954	0	N/A
2010	Filipendula	Maximum Height	0	0	0	0	0	0	0	0	0	0	0	N/A
	ulmaria	General Height	0	0	0	0	0	0	0	0	0	0	0	N/A
	Mentha	Maximum Height	0	0	0	0	0	0	0	0	0	0	0	N/A
	aquatica	General Height	0	0	0	0	0	0	0	0	0	0	0	N/A

 Table A 8.3: Microcosm 7 Vegetation Heights during the Salinity Treatment Period.

Year	Species	Height (mm)	January	February	March	April	May	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1685	1896	1765	0	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1325	1441	1433	0	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1804	1856	0	0	0
2000	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1646	1669	0	0	0
2008	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1855	1724	0	0	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1479	1496	0	0	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	670	552	0	0	0
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	429	275	0	0	0
	Phragmites	Maximum Height	0	0	0	148	609	1077	1341	1420	1462	1305	0	0
	australis	General Height	0	0	0	76	548	975	1151	1232	1230	1219	0	0
	Lythrum	Maximum Height	0	0	0	0	0	0	0	0	0	0	0	0
2000	salicaria	General Height	0	0	0	0	0	0	0	0	0	0	0	0
2009	Filipendula	Maximum Height	0	0	0	0	0	0	0	0	0	0	0	0
	ulmaria	General Height	0	0	0	0	0	0	0	0	0	0	0	0
	Mentha	Maximum Height	0	0	0	0	0	0	0	0	0	0	0	0
	aquatica	General Height	0	0	0	0	0	0	0	0	0	0	0	0
	Phragmites	Maximum Height	0	0	0	71	721	1209	1523	1588	1609	1581	0	N/A
	australis	General Height	0	0	0	29	642	1084	1235	1372	1365	1350	0	N/A
	Lythrum	Maximum Height	0	0	0	0	0	0	0	0	0	0	0	N/A
2010	salicaria	General Height	0	0	0	0	0	0	0	0	0	0	0	N/A
2010	Filipendula	Maximum Height	0	0	0	0	0	0	0	0	0	0	0	N/A
	ulmaria	General Height	0	0	0	0	0	0	0	0	0	0	0	N/A
	Mentha	Maximum Height	0	0	0	0	0	0	0	0	0	0	0	N/A
	aquatica	General Height	0	0	0	0	0	0	0	0	0	0	0	N/A

 Table A 8.4: Microcosm 8 Vegetation Heights during the Salinity Treatment Period.

•

Year	Species	Cover (%)	January	February	March	April	Мау	June	July	August	September	October	November	December
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	7	7	4	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0	0	0
	austrans	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	7	7	4	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	34	31	26	0	0
	Lythrum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	8	6	0	0
	Salicalia	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	43	39	32	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22	20	20	8	0
	Filipendula	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	6	6	0	0
2008	umana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	29	26	26	8	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	20	18	18	11	9
	Mentha	Outside Microcosm	Ν/Δ	Ν/Δ	Ν/Δ	Ν/Δ	Ν/Δ	Ν/Δ	Ν/Δ	1	2	2	0	0
	aquatica	Combined								24	20	20	11	0
	Otanadinan Dalad		N/A							6	12	15	24	33
	or Dormant	Outside Microcosm		N/A	N/A				N/A	0	3	3	5	5
	Vegetation	Combined								6	15	18	20	38
	David Original an	Combined								0	15	10	23	
	Bare Ground or	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	11	12	14	53	58
	200. 2.00.	Inside Microcosm	0	0	0	1	5	8	9	10	10	9	0	0
	Phragmites	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
	australis	Combined	0	0	0	1	5	8	9	10	10	9	0	0
		Inside Microcosm	0	0	0	1	22	29	30	30	28	12	0	0
	Lythrum	Outside Microcosm	0	0	0	0	3	5	5	4	3	3	0	0
	salicaria	Combined	0	0	0	1	25	34	35	34	31	15	0	0
		Inside Microcosm	0	0	1	6	26	28	29	29	24	22	0	0
	Filipendula	Outside Microcosm	0	0	0	0	1	3	3	3	2	1	0	0
2009	uimana	Combined	0	0	1	6	27	31	32	32	26	23	0	0
		Inside Microcosm	7	6	6	10	19	19	20	20	17	11	11	11
	Mentha	Outside Microcosm	0	0	0	0	0	0	0	0	0	1	0	0
	aqualica	Combined	7	6	6	10	19	19	20	20	17	12	11	11
	Standing Dead	Inside Microcosm	32	32	32	31	13	8	8	8	11	23	33	27
	or Dormant	Outside Microcosm	3	2	2	0	0	0	0	0	1	1	2	2
	Vegetation	Combined	35	34	34	31	13	8	8	8	12	24	35	29
	Bare Ground or													
	Leaf Litter	Inside Microcosm	61	62	61	51	15	8	4	3	10	23	56	62
	Phroamitoo	Inside Microcosm	0	0	0	1	6	6	14	14	14	13	0	N/A
	australis	Outside Microcosm	0	0	0	0	0	0	1	1	1	1	0	N/A
		Combined	0	0	0	1	6	6	15	15	15	14	0	N/A
	Lythrum	Inside Microcosm	0	0	0	2	11	20	21	22	18	11	0	N/A
	salicaria	Outside Microcosm	0	0	0	0	0	3	5	5	4	1	0	N/A
		Combined	0	0	0	2	11	23	26	27	22	12	0	N/A
	Filinendula	Inside Microcosm	0	0	1	7	18	31	28	28	26	22	12	N/A
	ulmaria	Outside Microcosm	0	0	0	0	1	3	6	6	2	1	1	N/A
2010		Combined	0	0	1	7	19	34	34	34	28	23	13	N/A
	Mentha	Inside Microcosm	11	11	11	12	14	15	16	18	15	14	9	N/A
	aquatica	Outside Microcosm	0	0	0	0	0	0	2	2	2	1	1	N/A
		Combined	11	11	11	12	14	15	18	20	17	15	10	N/A
	Standing Dead	Inside Microcosm	21	21	19	19	12	9	9	9	11	21	53	N/A
	or Dormant	Outside Microcosm	1	1	1	0	0	0	0	0	0	2	3	N/A
	vegetation	Combined	22	22	20	19	12	9	9	9	11	23	56	N/A
	Bare Ground or													
	Leaf Litter	Inside Microcosm	68	68	69	59	39	19	12	9	16	19	26	N/A

 Table A 8.5: Microcosm 5 Vegetation Areas during the Salinity Treatment Period.

Year	Species	Cover (%)	January	February	March	April	Мау	June	July	August	September	October	November	December
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	6	6	6	0	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0	0	0
	austrans	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	6	6	6	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	32	27	15	0	0
	Lythrum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	6	3	0	0
	Salicalia	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	41	33	18	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	28	12	8	0	0
	Filipendula	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	10	0	0	0	0
2008	umana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	38	12	8	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19	16	16	16	9
	Mentha	Outside Microcosm	NI/A	NI/A	Ν/Δ	Ν/Δ	Ν/Δ	Ν/Δ	Ν/Δ	3	0	0	0	0
	aquatica	Combined		N/A						22	16	16	16	0
	Otomalina: Dood									1	13	21	20	32
	or Dormant	Outside Microcosm	N/A	N/A	N/A				N/A		5	6	23	32
	Vegetation	Combined	N/A	N/A						1	18	27	32	35
	Barra Oracunad arr	Combined									10	21	52	
	Bare Ground or	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	11	26	34	55	59
		Inside Microcosm	0	0	0	1	5	7	8	8	8	6	0	0
	Phragmites	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
	australis	Combined	0	0	0	1	5	7	8	8	8	6	0	0
		Inside Microcosm	0	0	0	1	8	13	15	12	7	4	0	0
	Lythrum	Outside Microcosm	0	0	0	0	0	3	4	4	3	0	0	0
	salicaria	Combined	0	0	0	1	8	16	19	16	10	4	0	0
		Inside Microcosm	0	0	0	1	6	16	21	11	1	0	0	0
	Filipendula	Outside Microcosm	0	0	0	0	0	1	1	1	1	0	0	0
2009	uimana	Combined	0	0	0	1	6	17	22	12	2	0	0	0
		Inside Microcosm	8	6	6	9	10	3	6	4	3	2	1	1
	Mentha	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
	aqualica	Combined	8	6	6	9	10	3	6	4	3	2	1	1
	Standing Dead	Inside Microcosm	31	31	31	31	16	8	8	9	10	12	19	19
	or Dormant	Outside Microcosm	1	1	1	0	0	0	0	0	0	0	0	0
	Vegetation	Combined	32	32	32	31	16	8	8	9	10	12	19	19
	Bare Ground or													
	Leaf Litter	Inside Microcosm	61	63	63	57	55	53	42	56	71	76	80	80
	Dhra amita a	Inside Microcosm	0	0	0	1	6	6	13	13	13	13	0	N/A
	australis	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
		Combined	0	0	0	1	6	6	13	13	13	13	0	N/A
	Lythrum	Inside Microcosm	0	0	0	1	6	9	14	14	14	11	0	N/A
	salicaria	Outside Microcosm	0	0	0	0	0	1	2	2	0	0	0	N/A
		Combined	0	0	0	1	6	10	16	16	14	11	0	N/A
	Filipendula	Inside Microcosm	0	0	1	3	8	25	19	17	17	17	8	N/A
	ulmaria	Outside Microcosm	0	0	0	0	0	0	1	1	1	0	0	N/A
2010		Combined	0	0	1	3	8	25	20	18	18	17	8	N/A
	Mentha	Inside Microcosm	0	0	0	0	1	1	1	0	0	0	0	N/A
	aquatica	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
		Combined	0	0	0	0	1	1	1	0	0	0	0	N/A
	Standing Dead	Inside Microcosm	18	18	18	17	11	8	8	8	9	11	21	N/A
	or Dormant	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
	vegetation	Combined	18	18	18	17	11	8	8	8	9	11	21	N/A
	Bare Ground or	Inside Microcosm	82	82	81	78	68	51	45	48	47	48	71	NI/A
L	Leai Lillei		02	02	01	10	00	51	45	40	4/	40	71	IN/A

Table A 8.6: Microcosm 6 Vegetation Areas during the Salinity Treatment Period.

Year	Species	Cover (%)	January	February	March	April	Мау	June	July	August	September	October	November	December
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	9	7	0	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0	0	0
	austrans	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	9	7	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	39	10	4	0	0
	Lythrum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	14	4	1	0	0
	Salicalia	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	53	14	5	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22	8	4	0	0
	Filipendula	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	15	0	0	0	0
2008	umana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	37	8	4	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	20	7	4	4	3
	Mentha	Outside Microcosm	NI/A	NI/A	NI/A	Ν/Δ	Ν/Δ	Ν/Δ	Ν/Δ	3	0	0	0	0
	aquatica	Combined								23	7	4	0	3
	Standing Dood									5	11	10	26	26
	or Dormant	Outside Microcosm		N/A			N/A		N/A	0	6	7	20	20
	Vegetation	Combined		N/A						5	17	26	30	30
	Dava Graund ar	Combined								<u> </u>	17	20		50
	Bare Ground or Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	55	62	70	71
		Inside Microcosm	0	0	0	1	4	5	5	5	5	5	0	0
	Phragmites	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
	australis	Combined	0	0	0	1	4	5	5	5	5	5	0	0
		Inside Microcosm	0	0	0	1	5	6	8	8	5	1	0	0
	Lythrum	Outside Microcosm	0	0	0	0	0	2	2	2	2	0	0	0
	salicaria	Combined	0	0	0	1	5	8	10	10	7	1	0	0
		Inside Microcosm	0	0	0	0	3	1	0	0	0	0	0	0
	Filipendula	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
2009	umana	Combined	0	0	0	0	3	1	0	0	0	0	0	0
		Inside Microcosm	2	2	2	5	3	0	0	0	0	0	0	0
	Mentha	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
	aqualica	Combined	2	2	2	5	3	0	0	0	0	0	0	0
	Standing Dead	Inside Microcosm	23	23	23	21	17	7	7	7	10	10	15	15
	or Dormant	Outside Microcosm	3	3	3	1	1	1	1	1	1	1	1	0
	Vegetation	Combined	26	26	26	22	18	8	8	8	11	11	16	15
	Bare Ground or													
	Leaf Litter	Inside Microcosm	75	75	75	72	68	81	80	80	80	84	85	85
	Bhrogmitop	Inside Microcosm	0	0	0	1	5	5	12	12	12	10	0	N/A
	australis	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
		Combined	0	0	0	1	5	5	12	12	12	10	0	N/A
	Lythrum	Inside Microcosm	0	0	0	1	6	7	7	5	4	2	0	N/A
	salicaria	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
		Combined	0	0	0	1	6	7	7	5	4	2	0	N/A
	Filinendula	Inside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
	ulmaria	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
2010		Combined	0	0	0	0	0	0	0	0	0	0	0	N/A
	Menthe	Inside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
	aguatica	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
		Combined	0	0	0	0	0	0	0	0	0	0	0	N/A
	Standing Dead	Inside Microcosm	15	12	12	12	9	9	8	9	9	12	22	N/A
	or Dormant	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
ļļ	vegetation	Combined	15	12	12	12	9	9	8	9	9	12	22	N/A
	Bare Ground or Leaf Litter	Inside Microcosm	85	88	88	86	80	79	73	74	75	76	78	N/A

 Table A 8.7: Microcosm 7 Vegetation Areas during the Salinity Treatment Period.

Year	Species	Cover (%)	January	February	March	April	Мау	June	July	August	September	October	November	December
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	7	7	0	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0	0	0
	austrans	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	7	7	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	36	8	0	0	0
	Lythrum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	15	4	0	0	0
	Salicalia	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	51	12	0	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	25	6	0	0	0
	Filipendula	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	6	0	0	0	0
2008	umana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31	6	0	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	20	2	0	0	0
	Mentha	Outside Microcosm	Ν/Δ	Ν/Δ	Ν/Δ	Ν/Δ	Ν/Δ	Ν/Δ	Ν/Δ	3	0	0	0	0
	aquatica	Combined								23	2	0	0	0
	Otorodinar Dood	Inside Microcosm								<u>25</u>	10	21	28	28
	or Dormant	Outside Microcosm		N/A	N/A		N/A		N/A		6	7	20	20
	Vegetation	Combined		N/A						1	25	28	30	30
	Barra Oray and an	Combined									20	20		50
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	8	58	72	72	72
		Inside Microcosm	0	0	0	1	3	3	5	3	3	3	0	0
	Phragmites	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
	australis	Combined	0	0	0	1	3	3	5	3	3	3	0	0
		Inside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
	Lythrum	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
	salicaria	Combined	0	0	0	0	0	0	0	0	0	0	0	0
		Inside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
	Filipendula	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
2009	uinana	Combined	0	0	0	0	0	0	0	0	0	0	0	0
		Inside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
	Mentha	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
	aqualica	Combined	0	0	0	0	0	0	0	0	0	0	0	0
	Standing Dead	Inside Microcosm	25	24	24	21	16	7	7	9	9	9	12	12
	or Dormant	Outside Microcosm	1	1	1	0	0	0	0	0	0	0	0	0
	Vegetation	Combined	26	25	25	21	16	7	7	9	9	9	12	12
	Bare Ground or													
	Leaf Litter	Inside Microcosm	75	76	76	78	81	90	88	88	88	88	88	88
	Phroamitoo	Inside Microcosm	0	0	0	1	5	6	10	10	10	10	0	N/A
	australis	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
		Combined	0	0	0	1	5	6	10	10	10	10	0	N/A
	Lythrum	Inside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
	salicaria	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
		Combined	0	0	0	0	0	0	0	0	0	0	0	N/A
	Filinendula	Inside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
	ulmaria	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
2010		Combined	0	0	0	0	0	0	0	0	0	0	0	N/A
	Mentha	Inside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
	aquatica	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
		Combined	0	0	0	0	0	0	0	0	0	0	0	N/A
	Standing Dead	Inside Microcosm	9	9	9	9	7	7	6	6	6	6	16	N/A
	or Dormant	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
	vegetation	Combined	9	9	9	9	7	7	6	6	6	6	16	N/A
	Bare Ground or	Incido Microscom	01	01	01	00	00	07	04	04	0.4	0.4	04	N1/A
	Leat Litter	Inside Microcosm	91	91	91	90	88	87	84	84	84	84	84	N/A

 Table A 8.8: Microcosm 8 Vegetation Areas during the Salinity Treatment Period.

Appendix 9Water Input during the Nutrient Treatment Period for the
Restricted Competition Microcosms

							Tota	I Water A	dded per	Month (Li	itres)			
Year	Microcosm													
	Number		January	February	March	April	Мау	June	July	August	September	October	November	December
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	165.70	93.71	74.86	35.00	0.00
	9	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	52.29	53.96	33.66	43.89	28.27
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	217.99	147.67	108.51	78.90	28.27
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	170.54	90.47	67.32	38.24	0.00
	10	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	52.29	53.96	33.66	43.89	28.27
2008		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	222.83	144.44	100.98	82.13	28.27
2008		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	160.25	94.78	64.62	31.77	0.00
	11	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	52.29	53.96	33.66	43.89	28.27
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	212.54	148.74	98.28	75.66	28.27
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	178.29	98.55	70.01	36.62	0.00
	12	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	52.29	53.96	33.66	43.89	28.27
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	230.58	152.51	103.67	80.51	28.27
		Artificial Water Added	0.00	0.00	0.00	85.07	159.55	195.49	210.80	196.49	114.71	81.79	0.00	0.00
	9	Natural Rainfall Added	34.68	19.71	14.54	19.93	25.74	26.07	55.95	24.18	7.86	26.77	52.83	30.10
		Total Input	34.68	19.71	14.54	105.00	185.29	221.55	266.75	220.67	122.57	108.56	52.83	30.10
		Artificial Water Added	0.00	0.00	0.00	77.32	164.70	196.57	216.71	199.56	114.71	84.96	0.00	0.00
	10	Natural Rainfall Added	34.68	19.71	14.54	19.93	25.74	26.07	55.95	24.18	7.86	26.77	52.83	30.10
		Total Input	34.68	19.71	14.54	97.24	190.44	222.63	272.67	223.74	122.57	111.73	52.83	30.10
2009		Artificial Water Added	0.00	0.00	0.00	63.01	170.63	208.64	231.28	210.64	107.17	56.01	0.00	0.00
	11	Natural Rainfall Added	34.68	19.71	14.54	19.93	25.74	26.07	55.95	24.18	7.86	26.77	52.83	30.10
		Total Input	34.68	19.71	14.54	82.93	196.37	234.70	287.24	234.82	115.03	82.77	52.83	30.10
		Artificial Water Added	0.00	0.00	0.00	70.24	170.68	226.01	252.14	230.15	114.17	58.70	0.00	0.00
	12	Natural Rainfall Added	34.68	19.71	14.54	19.93	25.74	26.07	55.95	24.18	7.86	26.77	52.83	30.10
		Total Input	34.68	19.71	14.54	90.16	196.42	252.07	308.09	254.34	122.03	85.47	52.83	30.10
		Artificial Water Added	0.00	0.00	0.00	77.31	135.17	174.49	195.49	178.79	98.01	55.24	N/A	N/A
	9	Natural Rainfall Added	33.17	32.74	27.41	21.33	13.25	26.50	21.43	52.88	30.91	27.52	N/A	N/A
		Total Input	33.17	32.74	27.41	98.63	148.42	200.98	216.92	231.68	128.93	82.75	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	79.16	149.32	185.26	200.34	184.72	104.48	50.62	N/A	N/A
	10	Natural Rainfall Added	33.17	32.74	27.41	21.33	13.25	26.50	21.43	52.88	30.91	27.52	N/A	N/A
		Total Input	33.17	32.74	27.41	100.49	162.56	211.75	221.77	237.60	135.39	78.14	N/A	N/A
2010		Artificial Water Added	0.00	0.00	0.00	67.55	150.94	188.49	212.02	196.57	92.09	36.08	N/A	N/A
	11	Natural Rainfall Added	33.17	32.74	27.41	21.33	13.25	26.50	21.43	52.88	30.91	27.52	N/A	N/A
		Total Input	33.17	32.74	27.41	88.87	164.19	214.98	233.46	249.45	123.00	63.60	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	70.39	162.33	209.64	234.47	214.95	107.71	37.16	N/A	N/A
	12	Natural Rainfall Added	33.17	32.74	27.41	21.33	13.25	26.50	21.43	52.88	30.91	27.52	N/A	N/A
		Total Input	33.17	32.74	27.41	91.71	175.58	236.13	255.90	267.83	138.62	64.68	N/A	N/A

 Table A 9.1: Microcosms 9-12 Water Input during the Nutrient Treatment Period.

Appendix 10Vegetation Heights and Area Coverage during the NutrientTreatment Period for the Restricted Competition Microcosms

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1601	1698	1650	0	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1368	1562	1557	0	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1752	1788	1682	0	0
2008	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1584	1637	1366	0	0
2000	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1626	1590	1507	738	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1551	1516	1381	327	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	652	981	801	710	86
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	298	291	295	257	47
	Phragmites	Maximum Height	0	0	0	102	560	1428	1666	1737	1782	1742	0	0
	australis	General Height	0	0	0	55	423	1293	1521	1613	1635	1594	0	0
	Lythrum	Maximum Height	0	0	0	42	518	1182	1475	1592	1643	1623	0	0
2000	salicaria	General Height	0	0	0	38	421	892	1379	1507	1496	1464	0	0
2009	Filipendula	Maximum Height	0	0	58	146	442	1067	1385	1409	1388	1209	0	0
	ulmaria	General Height	0	0	52	117	366	632	862	913	926	549	0	0
	Mentha	Maximum Height	81	76	70	103	119	245	559	768	809	810	793	86
	aquatica	General Height	53	50	48	63	78	104	190	398	537	558	489	75
	Phragmites	Maximum Height	0	0	0	221	532	1032	1263	1457	1548	1460	0	N/A
	australis	General Height	0	0	0	100	441	827	999	1165	1261	1248	0	N/A
	Lythrum	Maximum Height	0	0	0	46	337	776	1199	1260	1269	1265	0	N/A
2010	salicaria	General Height	0	0	0	36	280	544	903	1197	1168	1038	0	N/A
2010	Filipendula	Maximum Height	0	0	90	159	326	673	682	738	657	642	462	N/A
	ulmaria	General Height	0	0	60	118	258	482	519	560	584	585	411	N/A
	Mentha	Maximum Height	82	81	79	75	154	197	602	874	871	855	318	N/A
	aquatica	General Height	72	61	46	44	103	154	469	463	412	343	47	N/A

 Table A 10.1: Microcosm 9 Vegetation Heights during the Nutrient Treatment Period.

Year	Species	Height (mm)	January	February	March	April	May	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1677	1801	1786	1419	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1578	1756	1745	936	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1878	1896	1674	0	0
0000	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1630	1684	1156	0	0
2008	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1684	1589	1588	759	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1398	1455	1334	604	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	729	792	842	544	96
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	372	342	328	281	53
	Phragmites	Maximum Height	0	0	0	251	937	1984	2080	2088	2119	2108	0	0
	australis	General Height	0	0	0	147	661	1540	1737	1801	1832	1806	0	0
	Lythrum	Maximum Height	0	0	0	56	551	1376	1726	1820	1815	1814	0	0
2000	salicaria	General Height	0	0	0	44	498	1085	1519	1594	1565	1550	0	0
2009	Filipendula	Maximum Height	0	0	74	172	494	1214	1545	1724	1683	0	0	0
	ulmaria	General Height	0	0	52	143	398	860	1158	1214	1224	0	0	0
	Mentha	Maximum Height	79	79	78	104	243	706	830	824	811	747	604	97
	aquatica	General Height	47	45	40	64	165	305	453	487	496	487	381	79
	Phragmites	Maximum Height	0	0	0	135	616	1124	1508	1720	1640	1639	0	N/A
	australis	General Height	0	0	0	74	532	1072	1366	1503	1547	1536	0	N/A
	Lythrum	Maximum Height	0	0	0	53	372	1016	1378	1391	1395	1387	0	N/A
0010	salicaria	General Height	0	0	0	37	319	784	1135	1252	1251	1131	0	N/A
2010	Filipendula	Maximum Height	0	0	76	161	368	681	701	755	761	756	682	N/A
	ulmaria	General Height	0	0	58	110	305	574	592	572	553	545	515	N/A
	Mentha	Maximum Height	96	92	90	90	257	343	528	659	677	641	226	N/A
	aquatica	General Height	72	57	54	56	134	224	353	437	453	360	53	N/A

Table A 10.2: Microcosm 10 Vegetation Heights during the Nutrient Treatment Period.

Year	Species	Height (mm)	January	February	March	April	May	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1828	2083	2071	2031	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1607	1760	1757	1244	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1859	1916	1580	0	0
2000	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1647	1672	1341	0	0
2000	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1500	1530	1498	468	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1361	1369	1240	394	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	702	725	751	680	91
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	381	382	374	359	61
	Phragmites	Maximum Height	0	0	0	338	895	1789	2091	2163	2185	2176	0	0
	australis	General Height	0	0	0	197	804	1640	1820	1859	1889	1882	0	0
	Lythrum	Maximum Height	0	0	0	62	668	1535	1804	1892	1889	0	0	0
2000	salicaria	General Height	0	0	0	48	555	1302	1718	1786	1714	0	0	0
2009	Filipendula	Maximum Height	0	0	68	229	503	1038	1439	1568	1534	0	0	0
	ulmaria	General Height	0	0	61	187	472	757	1002	1055	1031	0	0	0
	Mentha	Maximum Height	74	66	62	89	246	465	635	659	611	418	340	92
	aquatica	General Height	53	46	43	63	128	249	329	336	334	183	130	72
	Phragmites	Maximum Height	0	0	0	140	641	1511	1863	1927	1960	1838	0	N/A
	australis	General Height	0	0	0	106	572	1159	1455	1742	1795	1790	0	N/A
	Lythrum	Maximum Height	0	0	0	50	415	999	1562	1498	1491	0	0	N/A
2010	salicaria	General Height	0	0	0	37	326	780	1246	1371	1368	0	0	N/A
2010	Filipendula	Maximum Height	0	0	97	195	429	628	810	901	887	886	673	N/A
	ulmaria	General Height	0	0	54	153	348	602	698	719	703	640	564	N/A
	Mentha	Maximum Height	82	78	73	70	158	317	827	776	822	799	63	N/A
	aquatica	General Height	61	55	52	51	94	193	206	231	237	218	35	N/A

Table A 10.3: Microcosm 11 Vegetation Heights during the Nutrient Treatment Period.

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1664	1891	1862	1506	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1455	1515	1502	1268	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2043	1909	1778	0	0
2000	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1869	1783	1469	0	0
2000	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1693	1674	1666	491	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1606	1563	1410	362	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	613	678	720	719	110
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	431	443	536	352	58
	Phragmites	Maximum Height	0	0	0	269	868	1832	2141	2229	2289	2274	0	0
	australis	General Height	0	0	0	231	819	1728	1865	1919	1930	1922	0	0
	Lythrum	Maximum Height	0	0	0	63	636	1517	1883	1963	1948	0	0	0
2000	salicaria	General Height	0	0	0	47	564	1365	1727	1820	1746	0	0	0
2009	Filipendula	Maximum Height	0	0	55	317	598	996	1193	1254	1210	0	0	0
	ulmaria	General Height	0	0	51	224	473	584	621	636	630	0	0	0
	Mentha	Maximum Height	70	65	63	132	324	854	905	1012	688	341	208	107
	aquatica	General Height	47	47	46	68	196	640	625	579	391	169	116	78
	Phragmites	Maximum Height	0	0	0	123	781	1377	1784	1957	2051	1938	0	N/A
	australis	General Height	0	0	0	81	669	1281	1556	1790	1894	1875	0	N/A
	Lythrum	Maximum Height	0	0	0	48	570	1160	1397	1504	1489	0	0	N/A
2010	salicaria	General Height	0	0	0	48	365	1114	1318	1387	1338	0	0	N/A
2010	Filipendula	Maximum Height	0	0	97	180	527	751	918	726	841	832	715	N/A
	ulmaria	General Height	0	0	45	150	415	598	641	648	615	608	591	N/A
	Mentha	Maximum Height	101	97	91	85	93	289	812	753	840	831	273	N/A
	aquatica	General Height	75	61	58	53	61	185	239	235	183	133	54	N/A

Table A 10.4: Microcosm 12 Vegetation Heights during the Nutrient Treatment Period.

•

Year	Species	Cover (%)	January	February	March	April	Мау	June	July	August	September	October	November	December
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	7	7	0	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0	0	0
	austrans	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	7	7	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	47	43	41	0	0
	Lythrum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13	12	12	0	0
	Salicalia	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	60	55	53	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13	11	11	8	0
	Filipendula	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	6	5	5	2	0
2008	uinana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19	16	16	10	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	11	11	11	12	12
	Mentha	Outside Microcosm	N/A	N/A	NI/A	N/A	N/A	N/A	N/A	2	1	1	1	1
	aquatica	Combined	N/A	N/A	N/A	N/A	N/Δ	N/A		13	12	12	13	13
	Standing Dood	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	9	10	33	36
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	1	1	3	3
	Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	10	11	36	39
	Poro Cround or	Combined					14/7 (1 4/7 4					00	
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	17	19	20	47	52
		Inside Microcosm	0	0	0	2	9	11	13	13	13	13	0	0
	Phragmites	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
	australis	Combined	0	0	0	2	9	11	13	13	13	13	0	0
		Inside Microcosm	0	0	0	2	21	26	27	27	25	9	0	0
	Lythrum	Outside Microcosm	0	0	0	0	1	4	4	4	4	1	0	0
	salicaria	Combined	0	0	0	2	22	30	31	31	29	10	0	0
		Inside Microcosm	0	0	1	7	28	28	29	29	28	23	0	0
	Filipendula	Outside Microcosm	0	0	0	0	4	5	5	5	5	3	0	0
2009	uimana	Combined	0	0	1	7	32	33	34	34	33	26	0	0
		Inside Microcosm	11	11	11	13	17	20	22	21	23	17	17	17
	Mentha	Outside Microcosm	0	0	0	0	3	2	2	3	3	3	0	0
	aqualica	Combined	11	11	11	13	20	22	24	24	26	20	17	17
	Standing Dead	Inside Microcosm	36	36	36	28	9	4	4	4	5	15	32	28
	or Dormant	Outside Microcosm	3	3	3	1	1	1	1	1	1	1	2	2
	Vegetation	Combined	39	39	39	29	10	5	5	5	6	16	34	30
	Bare Ground or													
	Leaf Litter	Inside Microcosm	53	53	52	48	16	11	5	6	6	23	51	55
	Phraomites	Inside Microcosm	0	0	0	2	8	13	21	21	21	15	0	N/A
	australis	Outside Microcosm	0	0	0	0	0	0	3	3	3	3	0	N/A
		Combined	0	0	0	2	8	13	24	24	24	18	0	N/A
	Lythrum	Inside Microcosm	0	0	0	1	11	17	19	19	18	13	0	N/A
	salicaria	Outside Microcosm	0	0	0	0	0	3	5	5	2	0	0	N/A
		Combined	0	0	0	1	11	20	24	24	20	13	0	N/A
	Filipendula	Inside Microcosm	0	0	1	6	15	27	28	28	26	21	6	N/A
	ulmaria	Outside Microcosm	0	0	0	0	1	4	5	5	2	0	1	N/A
2010		Combined	0	0	1	6	16	31	33	33	28	21	7	N/A
	Mentha	Inside Microcosm	15	15	16	18	21	22	20	21	20	18	12	N/A
	aquatica	Outside Microcosm	0	0	0	0	1	2	2	2	2	1	0	N/A
		Combined	15	15	16	18	22	24	22	23	22	19	12	N/A
	Standing Dead	Inside Microcosm	24	23	21	21	12	9	9	9	11	33	52	N/A
	or Dormant Vegetation	Outside Microcosm	2	1	1	1	1	1	0	0	0	2	5	N/A
	vegetation	Combined	26	24	22	22	13	10	9	9	11	35	57	N/A
	Bare Ground or Leaf Litter	Inside Microcosm	61	62	62	52	33	12	3	2	4	0	30	N/A

 Table A 10.5: Microcosm 9 Vegetation Areas during the Nutrient Treatment Period.

Year	Species	Cover (%)	January	February	March	April	Мау	June	July	August	September	October	November	December
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	9	9	5	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0	0	0
	austrans	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	9	9	5	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	32	29	23	0	0
	Lythrum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	14	11	6	0	0
	Salicalia	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	46	40	29	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22	21	19	12	0
	Filipendula	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	6	5	4	2	0
2008	uinana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	28	26	23	14	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	11	10	10	11	11
	Mentha	Outside Microcosm	Ν/Δ	Ν/Δ	Ν/Δ	Ν/Δ	N/A	N/A	N/A	2	1	1	1	0
	aquatica	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13	11	11	12	11
	Standing Dood	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2	6	8	28	33
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	3	4	4	4
	Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2	9	12	32	37
	Bare Cround or	Combined					14/7 (1 4/7 4	14/7 (02	0.
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	24	25	31	44	56
		Inside Microcosm	0	0	0	3	15	18	21	21	21	14	0	0
	Phragmites	Outside Microcosm	0	0	0	0	0	2	2	2	2	1	0	0
	australis	Combined	0	0	0	3	15	20	23	23	23	15	0	0
		Inside Microcosm	0	0	0	3	23	26	27	27	15	4	0	0
	Lythrum	Outside Microcosm	0	0	0	0	4	4	5	4	2	1	0	0
	Salicalia	Combined	0	0	0	3	27	30	32	31	17	5	0	0
	, ,	Inside Microcosm	0	0	1	13	23	23	24	24	12	0	0	0
	Filipendula	Outside Microcosm	0	0	0	1	3	3	3	3	1	0	0	0
2009	unnana	Combined	0	0	1	14	26	26	27	27	13	0	0	0
		Inside Microcosm	11	11	12	14	21	19	21	20	16	11	11	11
	Mentha	Outside Microcosm	0	0	0	0	3	2	2	3	2	0	0	0
	uqualica	Combined	11	11	12	14	24	21	23	23	18	11	11	11
	Standing Dead	Inside Microcosm	32	29	29	16	5	4	4	4	13	24	39	34
	or Dormant	Outside Microcosm	3	3	3	1	1	0	0	0	1	3	3	2
	Vegetation	Combined	35	32	32	17	6	4	4	4	14	27	42	36
	Bare Ground or													
	Leaf Litter	Inside Microcosm	57	60	58	51	13	10	3	4	23	47	50	55
	Phragmites	Inside Microcosm	0	0	0	6	22	26	27	27	27	19	0	N/A
	australis	Outside Microcosm	0	0	0	0	0	0	3	3	3	3	0	N/A
		Combined	0	0	0	6	22	26	30	30	30	22	0	N/A
	Lythrum	Inside Microcosm	0	0	0	5	18	24	25	25	24	10	0	N/A
	salicaria	Outside Microcosm	0	0	0	0	1	4	6	6	6	3	0	N/A
		Combined	0	0	0	5	19	28	31	31	30	13	0	N/A
	Filipendula	Inside Microcosm	0	0	2	12	21	22	24	24	23	19	14	N/A
0040	ulmaria	Outside Microcosm	0	0	0	1	2	3	4	4	2	1	2	N/A
2010		Combined	0	0	2	13	23	25	28	28	25	20	16	N/A
	Mentha	Inside Microcosm	11	11	12	14	16	19	17	16	16	12	9	N/A
	aquatica	Outside Microcosm	0	0	0	0	1	6	5	6	6	3	2	N/A
		Combined	11	11	12	14	17	25	22	22	22	15	11	N/A
	Standing Dead	Inside Microcosm	21	26	23	23	15	9	/	8	1	31	5/	N/A
	Vegetation		1	1	1	1	1	1	0	0	0	3		N/A
	. egotation	Combined	28	27	24	24	16	10	/	8	/	34	64	N/A
	Bare Ground or Leaf Litter	Inside Microcosm	62	63	63	40	8	0	0	0	3	9	20	N/A

 Table A 10.6: Microcosm 10 Vegetation Areas during the Nutrient Treatment Period.

Year	Species	Cover (%)	January	February	March	April	Мау	June	July	August	September	October	November	December
	0	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	9	9	7	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0	0	0
	austrans	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	9	9	7	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	32	26	13	0	0
	Lythrum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13	8	5	0	0
	Salicaria	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	45	34	18	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22	17	15	12	0
	Filipendula	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	4	1	1	0	0
2008	umaria	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26	18	16	12	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	10	8	10	11	11
	Mentha	Outaida Miaraaam			NI/A					າບ ວ	0	0	1	0
	aquatica	Combined			IN/A					2 10	0	10	10	11
			N/A	N/A	N/A	N/A	N/A	N/A		12	8	10	12	11
	Standing Dead	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3	7	13	24	31
	Vegetation		N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	5	5	3	3
	rogotation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3	12	18	27	34
	Bare Ground or	Incida Microcom			NI/A		N1/A			24	22	40	46	59
	Lear Liller	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	24	33	40	40	56
	Phragmites	Outside Microsom	0	0	0	4	22	25	Z1 E	20 E	20 F	21	0	0
	australis	Combined		0	0	0	2	4	20	2	2	1	0	0
		Logido Microscom	0	0	0	4	24	29	32	27	11	22	0	0
	Lythrum	Outoide Microcosm	0	0	0	3	24	24	21	21		0	0	0
	salicaria		0	0	0	0	2	0	8	8	3	0	0	0
			0	0	0	3	26	30	35	35	14	0	0	0
	Filipendula	Inside Microcosm	0	0	1	12	23	22	22	- 22	8	0	0	0
2009	ulmaria		0	0	0	10	/	0	7	7	2	0	0	0
2005			11	0	10	13	30	28	29	29	10	0	0	0
	Mentha	Inside Microcosm	11	11	12	15	14	13	13	13	9	8	8	8
	aquatica		0	0	10	10	1	<u> </u>	2	<u>ک</u>	2	0	0	0
			11	24	12	10	15	15	15	15	11	07	8	8
	Standing Dead	Outoide Microcosm	20	24	24	14	2	2	2	2	18	21	40	40
	Vegetation	Outside Microcosm	<u> </u>	3	<u></u>	2	<u>і</u>	0	0	0	2	1	0 F0	50
		Combined	29	21	21	16	3	2	2	2	20	34	00	52
	Bare Ground or	Incido Microcosm	62	65	63	52	15	14	0	0	26	11	11	16
	Lear Liller		03	05	03	52	15	14	9	0	20	44	44	40
	Phragmites	Outoide Microcosm	0	0	0	7	17	21	31	्रा	31	10	0	N/A
	australis	Combined	0	0	0	7	17	4	27	27	27	4	0	N/A
			0	0	0	1	17	25	37	25	17	0	0	N/A
	Lythrum	Outside Microsom	0	0	0	2	13	23 E	25	25	17	0	0	N/A
	salicaria	Combined	0	0	0	0	12	20	7	1	3	0	0	N/A
			0	0	1	2	10	30	32	32	20	0	12	N/A
	Filipendula	Outside Microsom	0	0	1	0	0 10	31	29	29	21	Z I 1	12	N/A
2010	ulmaria	Combined	0	0	1		ა ე1	4	4	4	 	1 22	12	N/A
2010			0	0	0	9	21	35	33	33	28	22	13	N/A
	Mentha	Outeide Microcosm	ð	ð	9		12	14	12	12	13	1	11	N/A
	aquatica	Combined	0	0	0	11	12	10	3	2	15	10	10	N/A
	.		8	8	9	20	13	10	15	14	15	12	12	N/A
	Standing Dead	Outeide Microcosm	30	33	32	29	19	3	3	3	9	45	59	N/A
	Vegetation	Outside Microcosm	4	3	3	3	3	2	1	1	2	2	4	N/A
	. egotation	Compined	40	36	35	32	22	5	4	4	11	47	63	N/A
	Bare Ground or Leaf Litter	Inside Microcosm	56	59	58	43	21	0	0	0	3	13	18	N/A

 Table A 10.7: Microcosm 11 Vegetation Areas during the Nutrient Treatment Period.

Year	Species	Cover (%)	January	February	March	April	Мау	June	July	August	September	October	November	December
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	9	9	9	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0	0	0
	austrans	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	9	9	9	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	34	26	8	0	0
	Lythrum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	24	17	6	0	0
	Salicalia	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	58	43	14	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	24	16	16	15	0
	Filipendula	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	6	0	0	1	0
2008	umana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	30	16	16	16	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	14	15	16	18	18
	Mentha	Outside Microcosm	N/A	Ν/Δ	N/A	Ν/Δ	N/A	N/A	N/A	2	3	3	1	1
	aquatica	Combined		N/A			N/A		N/A	16	18	10	10	10
	Standing Dood									3	9	12	16	25
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/Δ	0	6	8	4	25 4
	Vegetation	Combined					N/A		N/A	3	15	20	20	20
	Barra Graund ar	Combined								5	10	20	20	23
	Bare Ground or	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	16	25	39	42	57
	Loui Lilloi	Inside Microcosm	0	0	0	6	24	27	28	28	21	3	0	0
	Phragmites	Outside Microcosm	0	0	0	0	9	6	6	6	4	0	0	0
	australis	Combined	0	0	0	6	33	33	34	34	25	3	0	0
		Inside Microcosm	0	0	0	4	24	29	29	29	12	0	0	0
	Lythrum	Outside Microcosm	0	0	0	0	3	12	12	12	4	0	0	0
	salicaria	Combined	0	0	0	4	27	41	41	41	16	0	0	0
		Inside Microcosm	0	0	1	17	22	21	21	21	7	0	0	0
	Filipendula	Outside Microcosm	0	0	0	1	4	4	4	4	2	0	0	0
2009	ulmaria	Combined	0	0	1	18	26	25	25	25	9	0	0	0
		Inside Microcosm	18	18	20	26	26	19	18	18	8	5	4	4
	Mentha	Outside Microcosm	0	0	1	1	3	10	10	10	3	0	0	0
	aquatica	Combined	18	18	21	27	29	29	28	28	11	5	4	4
	Standing Dead	Inside Microcosm	22	20	19	6	2	2	2	2	36	63	66	54
	or Dormant	Outside Microcosm	2	2	2	0	0	0	0	0	6	11	10	8
	Vegetation	Combined	24	22	21	6	2	2	2	2	42	74	76	62
	Bare Ground or													
	Leaf Litter	Inside Microcosm	60	62	60	41	2	2	2	2	16	29	30	42
		Inside Microcosm	0	0	0	7	21	32	39	39	39	8	0	N/A
	Phragmites	Outside Microcosm	0	0	0	0	0	8	8	8	7	2	0	N/A
	austrans	Combined	0	0	0	7	21	40	47	47	46	10	0	N/A
		Inside Microcosm	0	0	0	6	19	18	18	18	7	0	0	N/A
	Lythrum	Outside Microcosm	0	0	0	0	0	6	4	4	1	0	0	N/A
	Salicalia	Combined	0	0	0	6	19	24	22	22	8	0	0	N/A
		Inside Microcosm	0	0	2	9	22	23	22	22	13	10	3	N/A
	Filipendula	Outside Microcosm	0	0	0	1	3	3	4	4	2	0	0	N/A
2010	unnana	Combined	0	0	2	10	25	26	26	26	15	10	3	N/A
	A 4 4	Inside Microcosm	4	4	5	6	6	12	12	12	10	8	8	N/A
	Mentha	Outside Microcosm	0	0	0	0	0	0	1	1	0	0	0	N/A
	aqualica	Combined	4	4	5	6	6	12	13	13	10	8	8	N/A
	Standing Dead	Inside Microcosm	41	35	34	31	21	14	8	8	24	57	67	N/A
	or Dormant	Outside Microcosm	6	5	3	3	3	0	0	0	3	9	11	N/A
	Vegetation	Combined	47	40	37	34	24	14	8	8	27	66	78	N/A
	Bare Ground or													
	Leaf Litter	Inside Microcosm	55	61	59	41	11	1	1	1	7	17	22	N/A

Table A 10.8: Microcosm 12 Vegetation Areas during the Nutrient Treatment Period.

Appendix 11Water Input during the Salinity Treatment Period for the
Restricted Competition Microcosms

							Tota	l Water A	dded per	Month (Li	itres)			
Year	Microcosm Number		January	February	March	April	Мау	June	July	August	September	October	November	December
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	170.54	100.17	78.43	29.62	0.00
	13	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	52.29	53.96	33.66	43.89	28.27
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	222.83	154.13	112.09	73.51	28.27
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	169.08	84.01	44.70	0.00	0.00
	14	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	52.29	53.96	33.66	43.89	28.27
2008		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	221.38	137.97	78.36	43.89	28.27
2000		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	143.25	74.86	40.39	0.00	0.00
	15	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	52.29	53.96	33.66	43.89	28.27
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	195.54	128.82	74.05	43.89	28.27
		Artificial Water Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	154.56	58.70	36.08	0.00	0.00
	16	Natural Rainfall Added	N/A	N/A	N/A	N/A	N/A	N/A	N/A	52.29	53.96	33.66	43.89	28.27
		Total Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	206.85	112.66	69.74	43.89	28.27
		Artificial Water Added	0.00	0.00	0.00	81.30	164.46	182.56	203.03	189.03	100.71	82.61	0.00	0.00
	13	Natural Rainfall Added	34.68	19.71	14.54	19.93	25.74	26.07	55.95	24.18	7.86	26.77	52.83	30.10
		Total Input	34.68	19.71	14.54	101.23	190.20	208.63	258.98	213.21	108.57	109.38	52.83	30.10
		Artificial Water Added	0.00	0.00	0.00	47.39	105.55	141.10	164.25	120.09	67.86	0.00	0.00	0.00
	14	Natural Rainfall Added	34.68	19.71	14.54	19.93	25.74	26.07	55.95	24.18	7.86	26.77	52.83	30.10
		Total Input	34.68	19.71	14.54	67.32	131.29	167.16	220.21	144.27	75.72	26.77	52.83	30.10
2009		Artificial Water Added	0.00	0.00	0.00	27.47	81.32	116.32	138.40	93.17	65.70	0.00	0.00	0.00
	15	Natural Rainfall Added	34.68	19.71	14.54	19.93	25.74	26.07	55.95	24.18	7.86	26.77	52.83	30.10
		Total Input	34.68	19.71	14.54	47.39	107.06	142.39	194.36	117.35	73.56	26.77	52.83	30.10
		Artificial Water Added	0.00	0.00	0.00	25.85	68.39	95.32	118.48	70.55	45.24	0.00	0.00	0.00
	16	Natural Rainfall Added	34.68	19.71	14.54	19.93	25.74	26.07	55.95	24.18	7.86	26.77	52.83	30.10
		Total Input	34.68	19.71	14.54	45.78	94.14	121.39	174.43	94.73	53.10	26.77	52.83	30.10
		Artificial Water Added	0.00	0.00	0.00	72.07	143.79	177.72	189.56	178.26	94.78	62.32	N/A	N/A
	13	Natural Rainfall Added	33.17	32.74	27.41	21.33	13.25	26.50	21.43	52.88	30.91	27.52	N/A	N/A
		Total Input	33.17	32.74	27.41	93.40	157.04	204.21	211.00	231.14	125.69	89.84	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	45.78	104.48	140.02	161.02	120.63	71.63	0.00	N/A	N/A
	14	Natural Rainfall Added	33.17	32.74	27.41	21.33	13.25	26.50	21.43	52.88	30.91	27.52	N/A	N/A
		Total Input	33.17	32.74	27.41	67.10	117.72	166.52	182.46	173.52	102.54	27.52	N/A	N/A
2010		Artificial Water Added	0.00	0.00	0.00	30.16	75.39	105.55	129.79	87.78	61.39	0.00	N/A	N/A
	15	Natural Rainfall Added	33.17	32.74	27.41	21.33	13.25	26.50	21.43	52.88	30.91	27.52	N/A	N/A
		Total Input	33.17	32.74	27.41	51.48	88.64	132.05	151.22	140.67	92.30	27.52	N/A	N/A
		Artificial Water Added	0.00	0.00	0.00	23.16	59.24	91.01	115.79	67.86	39.31	0.00	N/A	N/A
	16	Natural Rainfall Added	33.17	32.74	27.41	21.33	13.25	26.50	21.43	52.88	30.91	27.52	N/A	N/A
		Total Input	33.17	32.74	27.41	44.48	72.49	117.51	137.22	120.74	70.22	27.52	N/A	N/A

 Table A 11.1: Microcosms 13-16 Water Input during the Salinity Treatment Period.

Appendix 12Vegetation Heights and Area Coverage during the SalinityTreatment Period for the Restricted Competition Microcosms.

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1552	1807	1801	0	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1339	1467	1460	0	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1641	1668	1627	0	0
2008	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1520	1573	1536	0	0
2000	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1668	1672	1593	463	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1430	1489	1312	331	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	717	695	932	912	86
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	364	342	416	405	70
	Phragmites	Maximum Height	0	0	0	250	567	1529	1729	1811	1819	1732	0	0
	australis	General Height	0	0	0	72	485	1206	1444	1509	1527	1511	0	0
	Lythrum	Maximum Height	0	0	0	41	517	1318	1682	1762	1779	1740	0	0
2000	salicaria	General Height	0	0	0	35	378	1100	1542	1622	1621	1599	0	0
2009	Filipendula	Maximum Height	0	0	57	199	478	745	1386	1467	1481	831	0	0
	ulmaria	General Height	0	0	53	93	435	606	865	935	941	392	0	0
	Mentha	Maximum Height	77	69	68	65	162	462	622	758	861	865	674	108
	aquatica	General Height	56	55	54	53	116	409	461	545	561	546	366	73
	Phragmites	Maximum Height	0	0	0	143	528	1151	1553	1630	1482	1465	0	N/A
	australis	General Height	0	0	0	107	478	908	1198	1261	1301	1289	0	N/A
	Lythrum	Maximum Height	0	0	0	59	351	777	1036	1201	1209	1206	0	N/A
2010	salicaria	General Height	0	0	0	36	210	667	958	1082	1065	980	0	N/A
2010	Filipendula	Maximum Height	0	0	83	192	488	786	1078	1105	1030	1028	682	N/A
	ulmaria	General Height	0	0	58	123	350	651	749	755	679	671	566	N/A
	Mentha	Maximum Height	101	97	96	76	84	259	434	798	821	804	718	N/A
	aquatica	General Height	59	53	42	40	63	177	322	509	520	487	52	N/A

 Table A 12.1: Microcosm 13 Vegetation Heights during the Salinity Treatment Period.

Year	Species	Height (mm)	January	February	March	April	May	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1534	1595	1590	0	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1371	1448	1442	0	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1674	1763	1471	0	0
2000	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1575	1535	1369	0	0
2000	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1596	1981	1637	0	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1410	1523	993	0	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	717	766	928	914	104
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	389	513	533	494	74
	Phragmites	Maximum Height	0	0	0	174	682	1294	1746	1812	1830	1749	0	0
	australis	General Height	0	0	0	58	449	992	1470	1613	1656	1648	0	0
	Lythrum	Maximum Height	0	0	0	68	244	1012	1522	1612	1668	1637	0	0
2000	salicaria	General Height	0	0	0	41	209	778	1418	1579	1606	1561	0	0
2009	Filipendula	Maximum Height	0	0	0	0	222	563	1282	1431	1415	0	0	0
	ulmaria	General Height	0	0	0	0	159	350	645	833	841	0	0	0
	Mentha	Maximum Height	85	85	76	81	132	144	172	208	286	278	218	92
	aquatica	General Height	45	45	41	47	109	121	139	180	178	159	138	72
	Phragmites	Maximum Height	0	0	0	98	689	1241	1430	1502	1514	1493	0	N/A
	australis	General Height	0	0	0	55	516	693	978	1344	1427	1426	0	N/A
	Lythrum	Maximum Height	0	0	0	124	311	758	1408	1413	1399	1190	0	N/A
2010	salicaria	General Height	0	0	0	57	241	594	1253	1287	1295	963	0	N/A
2010	Filipendula	Maximum Height	0	0	85	137	168	208	249	433	0	0	0	N/A
	ulmaria	General Height	0	0	54	78	103	167	213	240	0	0	0	N/A
	Mentha	Maximum Height	85	84	81	79	109	94	254	285	279	230	89	N/A
	aquatica	General Height	62	60	54	52	69	63	136	162	105	61	46	N/A

Table A 12.2: Microcosm 14 Vegetation Heights during the Salinity Treatment Period.

Year	Species	Height (mm)	January	February	March	April	Мау	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1543	1686	1685	0	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1352	1428	1401	0	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1817	1933	1392	0	0
2008	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1601	1713	1169	0	0
2000	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1690	0	0	0	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1397	0	0	0	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	793	747	0	0	0
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	413	365	0	0	0
	Phragmites	Maximum Height	0	0	0	134	525	1193	1547	1610	1651	1503	0	0
	australis	General Height	0	0	0	73	346	933	1335	1459	1478	1558	0	0
	Lythrum	Maximum Height	0	0	0	0	71	531	915	1013	1055	1067	0	0
2000	salicaria	General Height	0	0	0	0	43	497	872	926	964	913	0	0
2009	Filipendula	Maximum Height	0	0	0	0	0	0	0	0	0	0	0	0
	ulmaria	General Height	0	0	0	0	0	0	0	0	0	0	0	0
	Mentha	Maximum Height	0	0	0	0	98	0	0	0	0	0	0	0
	aquatica	General Height	0	0	0	0	98	0	0	0	0	0	0	0
	Phragmites	Maximum Height	0	0	0	86	748	1322	1593	1660	1670	1627	0	N/A
	australis	General Height	0	0	0	29	691	1053	1223	1472	1540	1534	0	N/A
	Lythrum	Maximum Height	0	0	0	123	398	584	711	848	862	718	0	N/A
2010	salicaria	General Height	0	0	0	55	232	391	559	741	756	609	0	N/A
2010	Filipendula	Maximum Height	0	0	0	0	0	0	0	0	0	0	0	N/A
	ulmaria	General Height	0	0	0	0	0	0	0	0	0	0	0	N/A
	Mentha	Maximum Height	0	0	0	0	0	0	0	0	0	0	0	N/A
	aquatica	General Height	0	0	0	0	0	0	0	0	0	0	0	N/A

 Table A 12.3: Microcosm 15 Vegetation Heights during the Salinity Treatment Period.

Year	Species	Height (mm)	January	February	March	April	May	June	July	August	September	October	November	December
	Phragmites	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1544	1609	1557	0	0
	australis	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1445	1512	1516	0	0
	Lythrum	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1694	1792	0	0	0
2000	salicaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1543	1613	0	0	0
2000	Filipendula	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1676	0	0	0	0
	ulmaria	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1448	0	0	0	0
	Mentha	Maximum Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	896	764	491	342	61
	aquatica	General Height	N/A	N/A	N/A	N/A	N/A	N/A	N/A	442	351	109	74	61
	Phragmites	Maximum Height	0	0	0	182	539	975	1288	1410	1439	1440	0	0
	australis	General Height	0	0	0	139	431	653	1117	1205	1228	1223	0	0
	Lythrum	Maximum Height	0	0	0	0	0	57	0	0	0	0	0	0
2000	salicaria	General Height	0	0	0	0	0	49	0	0	0	0	0	0
2009	Filipendula	Maximum Height	0	0	0	0	0	0	0	0	0	0	0	0
	ulmaria	General Height	0	0	0	0	0	0	0	0	0	0	0	0
	Mentha	Maximum Height	54	46	48	51	49	0	0	0	0	0	0	0
	aquatica	General Height	54	46	48	51	49	0	0	0	0	0	0	0
	Phragmites	Maximum Height	0	0	0	81	715	1160	1515	1696	1504	1486	0	N/A
	australis	General Height	0	0	0	26	604	847	1236	1274	1291	1277	0	N/A
	Lythrum	Maximum Height	0	0	0	0	0	0	0	0	0	0	0	N/A
2010	salicaria	General Height	0	0	0	0	0	0	0	0	0	0	0	N/A
2010	Filipendula	Maximum Height	0	0	0	0	0	0	0	0	0	0	0	N/A
	ulmaria	General Height	0	0	0	0	0	0	0	0	0	0	0	N/A
	Mentha	Maximum Height	0	0	0	0	0	0	0	0	0	0	0	N/A
	aquatica	General Height	0	0	0	0	0	0	0	0	0	0	0	N/A

Table A 12.4: Microcosm 16 Vegetation Heights during the Salinity Treatment Period.

Year	Species	Cover (%)	January	February	March	April	Мау	June	July	August	September	October	November	December
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	12	12	12	0	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0	0	0
	australis	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	12	12	12	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	35	32	31	0	0
	Lythrum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	11	9	9	0	0
	Salicalia	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	46	41	40	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	14	13	13	13	0
	Filipendula	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	4	2	2	1	0
2008	unnana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	18	15	15	14	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	18	17	16	14	10
	Mentha	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3	3	3	1	1
	aquatica	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	21	20	19	15	11
	Standing Dead	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1	3	4	22	25
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	3	3	4	4
	Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1	6	7	26	29
	Bare Ground or	0011101100												
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	20	23	24	51	65
		Inside Microcosm	0	0	0	1	11	15	17	17	17	15	0	0
	Phragmites	Outside Microcosm	0	0	0	0	0	2	2	2	2	2	0	0
	australis	Combined	0	0	0	1	11	17	19	19	19	17	0	0
		Inside Microcosm	0	0	0	1	17	22	24	24	22	8	0	0
	Lythrum	Outside Microcosm	0	0	0	0	1	4	5	5	4	2	0	0
	Salicaria	Combined	0	0	0	1	18	26	29	29	26	10	0	0
		Inside Microcosm	0	0	1	8	22	23	25	25	25	21	0	0
	Filipendula	Outside Microcosm	0	0	0	0	8	6	7	7	7	6	0	0
2009	uinana	Combined	0	0	1	8	30	29	32	32	32	27	0	0
		Inside Microcosm	8	8	9	19	18	18	19	20	20	15	13	12
	Mentha	Outside Microcosm	0	0	0	0	0	4	5	5	5	2	1	0
	aqualica	Combined	8	8	9	19	18	22	24	25	25	17	14	12
	Standing Dead	Inside Microcosm	23	23	23	13	6	4	4	4	5	14	37	33
	or Dormant	Outside Microcosm	3	3	2	0	0	0	0	0	1	2	5	3
	Vegetation	Combined	26	26	25	13	6	4	4	4	6	16	42	36
	Bare Ground or													
	Leaf Litter	Inside Microcosm	69	69	67	58	26	18	11	10	11	27	50	55
	Phragmites	Inside Microcosm	0	0	0	2	8	10	19	19	19	17	0	N/A
	australis	Outside Microcosm	0	0	0	0	0	1	3	3	3	3	0	N/A
			0	0	0	2	8	11	22	22	22	20	0	N/A
	Lythrum	Inside Microcosm	0	0	0	3	12	17	19	19	8	6	0	N/A
	salicaria		0	0	0	0	10	4	8	8	8	6	0	N/A
		Logida Microscom	0	0	0	3	12	21	21	27	10	12	11	N/A
	Filipendula	Outside Microcosm	0	0	1	11 2	21	32	<u>ः</u>	30	30	20	2	N/A
2010	ulmaria	Combined	0	0	1	12	22	<i>'</i>	0	7	7	24	3	IN/A
2010			12	11	12	14	15	39	39	22	21	20	14	N/A
	Mentha	Outside Microcosm	0	0	0	0	13	22	20	22	21	20	1	
	aquatica	Combined	12	11	12	1/	16	2	2	2	24	23	17	
	Stonding Deed	Inside Microcosm	22	10	12	14	0	0	7	7	11	15	/1	
	Standing Dead	Outside Microcosm	22	19 2	2	2	3	3	1	1	2	5	41	
	Vegetation	Combined	2/	21	20	18	2 11	10	8	R	13	20	50	N/A
	-	Combined	24	21	20	10		10	0	0	15	20	50	IN/A
	ваге Ground or Leaf Litter	Inside Microcosm	66	70	69	54	29	10	4	3	11	14	32	N/A

 Table A 12.5: Microcosm 13 Vegetation Areas during the Salinity Treatment Period.

Year	Species	Cover (%)	January	February	March	April	Мау	June	July	August	September	October	November	December
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	8	8	8	0	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0	0	0
	australis	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	8	8	8	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	36	31	17	0	0
	Lythrum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	15	12	7	0	0
	salicaria	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	51	43	24	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	25	17	11	0	0
	Filipendula	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	3	2	0	0
2008	umana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	32	20	13	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	25	19	16	13	13
	Mentha	Outside Microcosm	N/A	N/A	Ν/Δ	Ν/Δ	N/A	Ν/Δ	Ν/Δ	5	5	5	3	2
	aquatica	Combined	N/A	N/A	N/A	N/A	N/A	N/A		30	24	21	16	15
	Standing Dood	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3	5	13	21	21
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	5	6	3	3
	Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3	10	19	24	24
	Bare Ground or	Combined												21
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3	20	35	66	66
		Inside Microcosm	0	0	0	1	6	6	7	7	6	6	0	0
	Phragmites	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
	australis	Combined	0	0	0	1	6	6	7	7	6	6	0	0
		Inside Microcosm	0	0	0	1	6	7	9	7	6	3	0	0
	Lythrum	Outside Microcosm	0	0	0	0	0	2	3	3	2	1	0	0
	Salicaria	Combined	0	0	0	1	6	9	12	10	8	4	0	0
		Inside Microcosm	0	0	0	0	3	3	3	1	1	0	0	0
	Filipendula	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
2009	unnana	Combined	0	0	0	0	3	3	3	1	1	0	0	0
		Inside Microcosm	13	13	15	17	18	6	9	8	8	7	6	6
	Mentha	Outside Microcosm	0	0	0	0	0	1	1	1	1	1	0	0
	aqualica	Combined	13	13	15	17	18	7	10	9	9	8	6	6
	Standing Dead	Inside Microcosm	21	19	19	11	9	6	6	6	7	8	15	15
	or Dormant	Outside Microcosm	2	2	2	2	0	0	0	0	0	0	0	0
	Vegetation	Combined	23	21	21	13	9	6	6	6	7	8	15	15
	Bare Ground or	Incido Microcoom	66	69	66	70	59	70	66	71	70	76	70	70
	Lear Liller	Inside Microcosm	00	00	00	1	- 30 - 7	7	10	10	10	70	79	79 N/A
	Phragmites	Outside Microcosm	0	0	0	і 0	, 0	0	0	0	0	, 0	0	N/A
	australis	Combined	0	0	0	1	7	7	10	10	10	7	0	N/A
		Inside Microcosm	0	0	0	4	13	13	13	11	9	6	0	N/A
	Lythrum	Outside Microcosm	0	0	0	0	0	3	3	2	2	0	0	N/A
	salicaria	Combined	0	0	0	4	13	16	16	13	11	6	0	N/A
		Inside Microcosm	0	0	1	1	2	5	1	1	0	0	0	N/A
	Filipendula	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
2010	ulmaria	Combined	0	0	1	1	2	5	1	1	0	0	0	N/A
		Inside Microcosm	5	5	5	5	5	9	7	4	3	3	3	N/A
	Mentha	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
	aquatica	Combined	5	5	5	5	5	9	7	4	3	3	3	N/A
	Standing Dead	Inside Microcosm	14	14	14	14	7	7	7	9	9	15	24	N/A
	or Dormant	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	1	N/A
	Vegetation	Combined	14	14	14	14	7	7	7	9	9	15	25	N/A
	Bare Ground or													
	Leaf Litter	Inside Microcosm	81	81	80	75	66	59	62	65	69	69	73	N/A

 Table A 12.6: Microcosm 14 Vegetation Areas during the Salinity Treatment Period.

Year	Species	Cover (%)	January	February	March	April	Мау	June	July	August	September	October	November	December
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	11	11	11	0	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0	0	0
	australis	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	11	11	11	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	33	26	9	0	0
	Lythrum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	12	0	0	0	0
	Salicaria	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	45	26	9	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	21	0	0	0	0
	Filipendula	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3	0	0	0	0
2008	ulmaria	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	24	0	0	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	24	18	0	0	0
	Mentha	Outside Microcosm	N/A	N/A	Ν/Δ		Ν/Δ	NI/A	Ν/Δ	2	3	0	0	0
	aquatica	Combined		N/A							21	0	0	0
	Otanalia a Daad									1	8	16	30	29
	Standing Dead	Outside Microcosm								0	8	0	30	29
	Vegetation	Combined								1	16	9 25	3/	32
	Barra Orray and an	Combined	IN/A	IN/A	IN/A	IN/A	IN/A	IN/A	IN/A	1	10	25		52
	Bare Ground or	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	10	37	64	70	71
	Lear Litter	Inside Microcosm	0	0	0	1		6	7	7	7	7	0	0
	Phragmites	Outside Microcosm	0	0	0	0	0	0	0	,	, 0	,	0	0
	australis	Combined	0	0	0	1	4	6	7	7	7	7	0	0
		Inside Microcosm	0	0	0	0	3	1	5	5	4	4	0	0
	Lythrum	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
	salicaria	Combined	0	0	0	0	3	1	5	5	4	4	0	0
		Inside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
	Filipendula	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
2009	ulmaria	Combined	0	0	0	0	0	0	0	0	0	0	0	0
		Inside Microcosm	0	0	0	0	1	0	0	0	0	0	0	0
	Mentha	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
	aqualica	Combined	0	0	0	0	1	0	0	0	0	0	0	0
	Standing Dead	Inside Microcosm	25	22	22	17	12	8	8	8	9	9	16	15
	or Dormant	Outside Microcosm	2	1	1	0	0	0	0	0	0	0	0	0
	Vegetation	Combined	27	23	23	17	12	8	8	8	9	9	16	15
	Bare Ground or													
	Leaf Litter	Inside Microcosm	75	78	78	82	80	85	80	80	80	80	84	85
	Dhura anna ita a	Inside Microcosm	0	0	0	1	5	8	9	9	9	7	0	N/A
	Phragmites	Outside Microcosm	0	0	0	0	0	1	1	1	1	0	0	N/A
	austrans	Combined	0	0	0	1	5	9	10	10	10	7	0	N/A
	L , et la re una	Inside Microcosm	0	0	0	1	1	5	6	4	3	1	0	N/A
	salicaria	Outside Microcosm	0	0	0	0	0	1	1	0	0	0	0	N/A
	cancana	Combined	0	0	0	1	1	6	7	4	3	1	0	N/A
	Filipopdulo	Inside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
	ulmaria	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
2010		Combined	0	0	0	0	0	0	0	0	0	0	0	N/A
	Montha	Inside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
	aquatica	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
		Combined	0	0	0	0	0	0	0	0	0	0	0	N/A
	Standing Dead	Inside Microcosm	13	13	13	13	8	8	8	9	9	11	19	N/A
	or Dormant	Outside Microcosm	0	0	0	0	0	0	0	0	0	1	1	N/A
	Vegetation	Combined	13	13	13	13	8	8	8	9	9	12	20	N/A
	Bare Ground or													
	Leaf Litter	Inside Microcosm	87	87	87	85	86	79	77	78	79	81	81	N/A

 Table A 12.7: Microcosm 15 Vegetation Areas during the Salinity Treatment Period.

Year	Species	Cover (%)	January	February	March	April	Мау	June	July	August	September	October	November	December
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	7	7	0	0
	Phragmites	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0	0	0
	australis	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	7	7	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	36	18	0	0	0
	Lythrum	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	27	11	0	0	0
	salicaria	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	63	29	0	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	16	0	0	0	0
	Filipendula	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	0	0	0	0
2008	umana	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	21	0	0	0	0
		Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22	4	4	2	2
	Mentha	Outside Microcosm	NI/A	NI/A	NI/A	Ν/Δ	Ν/Δ	Ν/Δ	ΝΙ/Δ	2	0	0	0	0
	aquatica	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	25	4	4	2	2
	Standing Dood	Inside Microcosm	N/A	N/A	N/A	N/A		N/A		4	31	36	37	23
	or Dormant	Outside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	9	12	6	6
	Vegetation	Combined	N/A	N/A	N/A	N/A	N/A	N/A	N/A	4	40	48	43	29
	Bara Ground or	Combined	11// (-10	-10		20
	Leaf Litter	Inside Microcosm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	15	40	53	61	75
		Inside Microcosm	0	0	0	1	3	3	3	3	3	3	0	0
	Phragmites	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
	australis	Combined	0	0	0	1	3	3	3	3	3	3	0	0
		Inside Microcosm	0	0	0	0	0	1	0	0	0	0	0	0
	Lythrum	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
	salicaria	Combined	0	0	0	0	0	1	0	0	0	0	0	0
		Inside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
	Filipendula	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
2009	umana	Combined	0	0	0	0	0	0	0	0	0	0	0	0
		Inside Microcosm	2	2	2	1	1	0	0	0	0	0	0	0
	Mentha aquatica	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	0
	aqualica	Combined	2	2	2	1	1	0	0	0	0	0	0	0
	Standing Dead	Inside Microcosm	18	16	12	11	10	9	9	9	9	9	12	12
	or Dormant	Outside Microcosm	4	2	2	1	1	1	1	1	1	1	1	1
	Vegetation	Combined	22	18	14	12	11	10	10	10	10	10	13	13
	Bare Ground or	Incide Microscom	80	80	00	07	96	07	00	00	00	00	00	00
	LearLiller	Inside Microcosm	0	02	00	07	- 6 0	0/ 7	00	00	00	00	00	00
	Phragmites	Outside Microcosm	0	0	0	1	5	7	0	0	0	4	0	IN/A
	australis	Combined	0	0	0	1	5	7	0	0	0	1	0	N/A
		Inside Microcosm	0	0	0	0	0	0	0	0	0	- 4	0	N/A
	Lythrum	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
	salicaria	Combined	0	0	0	0	0	0	0	0	0	0	0	N/A
		Inside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
	Filipendula	Outside Microcosm	0	0	0	0	0	0	0	0 0	0	0 0	0	N/A
2010	ulmaria	Combined	0	0	0	0	0	0	0	0	0	0	0	N/A
		Inside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
	Mentha	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
	aquatica	Combined	0	0	0	0	0	0	0	0	0	0	0	N/A
	Standing Dead	Inside Microcosm	10	10	10	10	7	7	7	7	7	11	15	N/A
	or Dormant	Outside Microcosm	0	0	0	0	0	0	0	0	0	0	0	N/A
	Vegetation	Combined	10	10	10	10	7	7	7	7	7	11	15	N/A
	Bare Ground or													
	Leaf Litter	Inside Microcosm	90	90	90	89	88	86	85	85	85	85	85	N/A

 Table A 12.8: Microcosm 16 Vegetation Areas during the Salinity Treatment Period.

Appendix 13 Harvest Measurements for the Full Competition Microcosms with Nutrient Treatment

Chaoling	Baramatar		Microcosm					
Species		Parameter	1	2	3	4		
		Total Number of Stems	286	396	557	681		
	Total Stems	Stems with Evidence of Previous Inflorescence	33	44	67	112		
Bhrogmitoo	Heights	Max Height	1721.00	1742.00	2088.00	2270.00		
australis	(mm)	Min Height	86.00	97.00	92.00	15.00		
	()	Mean Height	796.21	863.62	1141.03	1055.19		
	Widths	Max Width	5.00	4.90	6.50	6.80		
	(mm)	Min Width	1.40	0.90	1.30	1.20		
	. ,	Mean Width	2.64	2.84	3.39	3.33		
		Total Number of Stems	243	181	161	216		
	Total Stems	Stems with Evidence of Previous Inflorescence	105	90	70	81		
L v the surres	Heights (mm)	Max Height	1937.00	2077.00	1923.00	1867.00		
Lytnrum salicaria		Min Height	125.00	161.00	91.00	58.00		
Gundana		Mean Height	922.60	1090.13	979.32	897.00		
	Widths	Max Width	8.70	11.50	9.50	30.00		
	(mm)	Min Width	0.80	1.00	1.00	0.70		
	()	Mean Width	3.08	3.87	3.67	3.75		
		Total Number of Stems	240	233	192	235		
	Total Stems	Stems with Evidence of Previous Inflorescence	0	9	5	7		
	Heights (mm)	Max Height	677.00	1602.00	1509.00	1416.00		
Filipendula		Min Height	28.00	10.00	12.00	26.00		
uinana		Mean Height	281.98	345.65	292.18	354.45		
	Widths (mm)	Max Width	12.00	42.00	8.70	9.10		
		Min Width	0.10	0.10	0.20	0.20		
		Mean Width	1.14	1.59	1.41	1.49		
		Total Number of Stems	255	41	52	86		
	Total Stems	Stems with Evidence of Previous Inflorescence	54	1	6	6		
	l la indata	Max Height	723.00	593.00	621.00	876.00		
Mentha	(mm) *	Min Height	14.00	63.00	40.00	63.00		
aquatica		Mean Height	277.25	218.73	229.48	289.69		
		Max Width	3.80	2.00	2.40	3.00		
	(mm)	Min Width	0.30	0.40	0.20	0.40		
	(1111)	Mean Width	1.36	1.00	0.90	1.14		

* = this is the length of the stoloniferous live material present and is not the height Notes: above ground as the stolons had set roots along the procumbent stems.

Table A 13.1: Microcosms 1-4 Nutrient Treatment Phase with Full Competition – Stem Measurements for All Stems.

		Microcosm						
Species	Parameter	1	2	3	4			
	volume (ml)	1025.00	1930.00	3050.00	4570.00			
Phragmites australis	weight (g)	253.86	418.90	629.18	997.39			
	g per ml	0.248	0.217	0.206	0.218			
	volume (ml)	1840.00	1965.00	1580.00	1873.00			
Lythrum salicaria	weight (g)	567.44	546.97	490.79	592.09			
	g per ml	0.308	0.278	0.311	0.316			
	volume (ml)	220.00	570.00	330.00	390.00			
Filipendula ulmaria	weight (g)	63.45	136.49	78.77	95.97			
	g per ml	0.288	0.239	0.239	0.246			
	volume (ml)	345.00	18.00	21.00	47.00			
Mentha aquatica	weight (g)	82.91	3.72	4.87	13.58			
	a per ml	0 240	0 207	0 232	0 289			

 Table A 13.2: Microcosms 1-4 Nutrient Treatment Phase with Full Competition – Volumes and Weights for All Stems.

	Microcosm Number					
Species	1	2	3	4		
Phragmites australis	425.89	711.97	1159.49	2168.09		
Mentha aquatica	16.88	0.7	0.85	2.12		
Filipendula ulmaria	186.54	360.45	199.47	221.71		
Lythrum salicaria	661.24	422.72	258.48	252.65		

 Table A 13.3: Microcosms 1-4 Nutrient Treatment Phase with Full Competition – Weights (g) for All Roots.

Appendix 14 Harvest Measurements for the Full Competition Microcosms with Salinity Treatment

Cracico	Parameter		Microcosm					
Species		Parameter	5	6	7	8		
		Total Number of Stems	173	217	241	301		
	Total Stems	Stems with Evidence of Previous Inflorescence	20	30	13	12		
Dhrasmitaa	Hoights	Max Height	1184.00	1712.00	1774.00	1892.00		
australis	(mm)	Min Height	10.00	85.00	44.00	116.00		
lucuuno	()	Mean Height	519.42	784.58	766.92	760.59		
	Widthe	Max Width	3.70	5.00	4.70	5.40		
	(mm)	Min Width	0.70	0.90	0.70	0.50		
	()	Mean Width	1.96	2.55	2.29	2.50		
		Total Number of Stems	188	130	160	b		
	Total Stems	Stems with Evidence of Previous Inflorescence	55	47	50	b		
	Heights (mm)	Max Height	1672.00	1955.00	1824.00	b		
Lythrum		Min Height	122.00	43.00	73.00	b		
Sancana		Mean Height	823.79	876.87	882.42	b		
		Max Width	12.50	7.40	9.50	b		
	(mm)	Min Width	0.20	0.50	0.60	b		
	()	Mean Width	3.00	2.91	3.29	b		
		Total Number of Stems	5	6	b	b		
	Total Stems	Stems with Evidence of Previous Inflorescence	0	0	b	b		
		Max Height	1584.00	1074.00	b	b		
Filipendula	Heights (mm)	Min Height	862.00	381.00	b	b		
uinaria		Mean Height	1228.20	796.00	b	b		
	Widths (mm)	Max Width	8.60	6.10	b	b		
		Min Width	5.50	1.10	b	b		
		Mean Width	6.88	3.68	b	b		
		Total Number of Stems	114	b	b	b		
	Total Stems	Stems with Evidence of Previous Inflorescence	0	b	b	b		
		Max Height	532.00	b	b	b		
Mentha	Heights	Min Height	23.00	b	b	b		
aquatica	(((((((((((((((((((((((((((((((((((((((Mean Height	179.22	b	b	b		
		Max Width	1.90	b	b	b		
	Widths	Min Width	0.20	b	b	b		
	(((((((((((((((((((((((((((((((((((((((Mean Width	0.73	b	b	b		
e								

Notes:

* = this is the length of the stoloniferous live material present and is not the height above ground as the stolons had set roots along the procumbent stems.

b = no plants present

Table A 14.1: Microcosms 5-8 Salinity Treatment Phase with Full Root Competition – Stem
Measurements for All Stems.

Species
Phragmites australis
Mentha aquatica
Filipendula ulmaria
Lythrum salicaria

 Table A 14.2: Microcosms 5-8 Salinity Treatment Phase with Full Competition – Volumes and Weights for All Stems.

	Microcosm Number						
Species	5 6 7 8						
Phragmites australis	121.15	308.22	277.41	418.06			
Mentha aquatica	2.09	0	0	0			
Filipendula ulmaria	176.02	39.9	0	0			
Lythrum salicaria	430.14	192.56	314.9	0			

 Table A 14.3: Microcosms 5-8 Salinity Treatment Phase with Full Competition – Weights (g) for All Roots.

Appendix 15 Root Spread Photographs for the Full Competition Microcosms with Nutrient Treatment

Figure A 15.1: Microcosm 1 *Lythrum salicaria* Root Spread

Figure A 15.2: Microcosm 1 *Filipendula ulmaria* Root Spread

Figure A 15.3: Microcosm 1 *Mentha aquatica* Root Spread

Figure A 15.4: Microcosm 2 *Lythrum salicaria* Root Spread

Figure A 15.5: Microcosm 2 *Filipendula ulmaria* Root Spread

Figure A 15.6: Microcosm 2 *Mentha aquatica* Root Spread

Figure A 15.7: Microcosm 3 *Lythrum salicaria* Root Spread

Figure A 15.8: Microcosm 3 *Filipendula ulmaria* Root Spread

Figure A 15.9: Microcosm 3 *Mentha aquatica* Root Spread

Figure A 15.10: Microcosm 4 *Lythrum salicaria* Root Spread

Figure A 15.12: Microcosm 4 *Mentha aquatica* Root Spread

Figure A 15.11: Microcosm 4 *Filipendula ulmaria* Root Spread

Appendix 16 Root Spread Photographs for the Full Competition Microcosms with Salinity Treatment

Figure A 16.1: Microcosm 5 *Lythrum salicaria* Root Spread

Figure A 16.2: Microcosm 5 *Filipendula ulmaria* Root Spread

Figure A 16.3: Microcosm 5 *Mentha aquatica* Root Spread

Figure A 16.4: Microcosm 6 *Lythrum salicaria* Root Spread

Figure A 16.5: Microcosm 6 *Filipendula ulmaria* Root Spread

Figure A 16.6: Microcosm 6 *Mentha aquatica* Root Spread

Figure A 16.7: Microcosm 7 *Lythrum salicaria* Root Spread

Figure A 16.8: Microcosm 7 *Filipendula ulmaria* Root Spread

Figure A 16.9: Microcosm 7 *Mentha aquatica* Root Spread

Figure A 16.10: Microcosm 8 *Lythrum salicaria* Root Spread

Figure A 16.11: Microcosm 8 *Filipendula ulmaria* Root Spread

Figure A 16.12: Microcosm 8 *Mentha aquatica* Root Spread

Appendix 17 Harvest Measurements for the Restricted Competition Microcosms with Nutrient Treatment

Cracico	Descurator		Microcosm			
Species		Parameter	9	10	11	12
		Total Number of Stems	384	404	491	761
	Total Stems	Stems with Evidence of Previous Inflorescence	10	36	29	84
Dhragmitaa	Hoighto	Max Height	1269.00	2016.00	2037.00	2127.00
australis	(mm)	Min Height	71.00	105.00	58.00	121.00
uuouuno	()	Mean Height	536.63	910.21	906.77	959.14
	Widths	Max Width	4.10	5.40	6.30	6.50
	(mm)	Min Width	0.40	1.00	1.00	0.80
	~ ,	Mean Width	1.78	2.59	2.72	2.71
		Total Number of Stems	190	225	201	179
	Total Stems	Stems with Evidence of Previous Inflorescence	63	78	69	48
	Llaimhta	Max Height	1674.00	1829.00	1908.00	1816.00
Lythrum	(mm)	Min Height	170.00	101.00	153.00	111.00
Sancaria	(((((((((((((((((((((((((((((((((((((((Mean Height	827.45	968.16	991.75	935.47
	Widths (mm)	Max Width	8.50	7.60	7.40	8.70
		Min Width	0.70	0.40	0.40	1.00
		Mean Width	2.70	2.82	3.07	3.44
		Total Number of Stems	59	61	102	46
	Total Stems	Stems with Evidence of Previous Inflorescence	2	0	0	0
	Llaimhta	Max Height	716.00	1403.00	1316.00	1260.00
Filipendula	Heights (mm)	Min Height	120.00	28.00	86.00	190.00
uiinana	(((((((((((((((((((((((((((((((((((((((Mean Height	268.53	413.30	407.34	487.70
		Max Width	3.60	7.70	6.80	4.70
		Min Width	0.20	0.10	0.30	0.20
	()	Mean Width	0.86	1.44	1.32	1.64
		Total Number of Stems	258	180	61	9
	Total Stems	Stems with Evidence of Previous Inflorescence	22	11	6	0
		Max Height	1059.00	1081.00	766.00	438.00
Mentha	(mm) *	Min Height	15.00	54.00	40.00	25.00
aquatica	(((((((((((((((((((((((((((((((((((((((Mean Height	278.83	340.84	312.52	151.44
		Max Width	2.90	3.70	4.10	1.20
	Widths	Min Width	0.20	0.50	0.30	0.70
	(((((((((((((((((((((((((((((((((((((((Mean Width	1.03	1.36	1.22	0.92

* = this is the length of the stoloniferous live material present and is not the height above ground as the stolons had set roots along the procumbent stems.

Table A 17.1: Microcosms 9-12 Nutrient Treatment Phase with Restricted Root Competition – Stem Measurements for All Stems.

		Microcosm				
Species	Parameter	9	10	11	12	
	volume (ml)	840.00	2339.00	3180.00	4910.00	
Phragmites australis	weight (g)	173.15	468.55	638.96	1027.20	
	g per ml	0.206	0.200	0.201	0.209	
Mentha aquatica	volume (ml)	272.00	244.00	55.00	27.00	
	weight (g)	63.47	56.09	11.12	6.28	
	g per ml	63.47 56.09 11.12 0.233 0.230 0.202	0.233			
	volume (ml)	25.00	135.00	169.00	104.00	
Filipendula ulmaria	weight (g)	9.25	39.82	51.47	29.95	
	g per ml	0.370	0.295	0.305	0.288	
	volume (ml)	1060.00	1735.00	1570.00	1740.00	
Lythrum salicaria	weight (g)	305.43	556.96	455.43	460.30	
	a per ml	0.288	0.321	0 290	0 265	

 Table A 17.2: Microcosms 9-12 Nutrient Treatment Phase with Restricted Root Competition

 – Volumes and Weights for All Stems.

	Microcosm Number					
Species	9	10	11	12		
Phragmites australis	307.04	830.04	1210.4	2220.77		
Mentha aquatica	14.22	13.45	2.07	1.01		
Filipendula ulmaria	27.09	105.17	128.86	71.77		
Lythrum salicaria	382.21	878.79	652.35	703.3		

 Table A 17.3: Microcosms 9-12 Nutrient Treatment Phase with Restricted Root Competition

 – Weights (g) for All Roots.

Appendix 18Harvest Measurements for the Restricted CompetitionMicrocosms with Salinity Treatment

Species Decomptor	Microcosm			
Species Parameter 13 14	15	16		
Total Number of Stems 305 251	367	255		
Total StemsStems with Evidence of Previous Inflorescence32	19	4		
Phragmitos Heights Max Height 1740.00 1413.0	0 1675.00	1687.00		
australis (mm) Min Height 218.00 110.0	0 30.00	70.00		
Mean Height 808.81 662.4	9 706.08	546.87		
Widths Max Width 6.00 5.10	5.60	4.20		
(mm) Min Width 0.20 0.50	0.60	0.50		
Mean Width 2.46 2.05	2.04	1.87		
Total Number of Stems 210 117	80	b		
Total Stems Stems with Evidence of Previous Inflorescence 54 44	32	b		
Max Height 1778.00 1753.0	0 1926.00	b		
Salicaria (mm) Min Height 204.00 148.0	0 160.00	b		
Mean Height 830.51 760.6	2 969.63	b		
Max Width 7.60 6.80	9.20	b		
(mm) Min Width 0.30 0.40	0.90	b		
Mean Width 2.73 2.77	3.84	b		
Total Number of Stems 103 b	b	b		
Total StemsStems with Evidence ofPrevious Inflorescence6	b	b		
Max Height 1049.00 b	b	b		
Filipendula Heights Min Height 20.00 b	b	b		
Mean Height 319.23 b	b	b		
Max Width 3.60 b	b	b		
(mm) Min Width 0.20 b	b	b		
Mean Width 1.09 b	b	b		
Total Number of Stems21318	b	b		
Total StemsStems with Evidence of Previous Inflorescence70	b	b		
Max Height 1049.00 229.0	0 b	b		
Mentha Heights (mm) * Min Height 33.00 9.00	b	b		
Aqualica (1111) Mean Height 208.12 62.78	3 b	b		
Max Width 2.60 1.80	b	b		
Widths (mm) Min Width 0.20 0.30	b	b		
Mean Width 1.01 0.95	b	b		

* = this is the length of the stoloniferous live material present and is not the height above ground as the stolons had set roots along the procumbent stems.

b = no plants present

Notes:

Table A 18.1:	Microcosms 13-16 Salinity Treatment Phase with Restricted Root Competition
	 Stem Measurements for All Stems.

		Microcosm			
Species	Parameter	13	14	15	16
	volume (ml)	1480.00	810.00	1390.00	690.00
Phragmites australis	weight (g)	284.96	163.53	265.40	121.14
	g per ml	0.193	0.202	0.191	0.176
	volume (ml)	109.00	29.00	no stems	no stems
Mentha aquatica	weight (g)	26.98	6.31	no stems	no stems
	g per ml	0.248	0.218	no stems	no stems
	volume (ml)	135.00	no stems	no stems	no stems
Filipendula ulmaria	weight (g)	29.21	no stems	no stems	no stems
	g per ml	0.216	no stems	no stems	no stems
	volume (ml)	1205.00	700.00	937.00	no stems
Lythrum salicaria	weight (g)	329.94	190.08	308.72	no stems
	g per ml	0.274	0.272	0.329	no stems

 Table A 18.2: Microcosms 13-16 Salinity Treatment Phase with Restricted Root Competition

 – Volumes and Weights for All Stems.

	Microcosm Number							
Species	13	13 14 15 16						
Phragmites australis	499.86	234.53	361.06	160.83				
Mentha aquatica	6.23	1.49	0	0				
Filipendula ulmaria	86.66	0	0	0				
Lythrum salicaria	403.58	201.87	296.34	0				

 Table A 18.3: Microcosms 13-16 Salinity Treatment Phase with Restricted Root Competition

 – Weights (g) for All Roots.

Appendix 19 Root Spread Photographs for the Restricted Competition Microcosms with Nutrient Treatment

Figure A 19.2: Microcosm 9 *Filipendula ulmaria* Root Spread

Figure A 19.4: Microcosm 9 *Phragmites australis* Root Spread

Figure A 19.1: Microcosm 9 *Lythrum salicaria* Root Spread

Figure A 19.3: Microcosm 9 *Mentha aquatica* Root Spread

Figure A 19.5: Microcosm 10 *Lythrum salicaria* Root Spread

Figure A 19.7: Microcosm 10 *Mentha aquatica* Root Spread

Figure A 19.6: Microcosm 10 *Filipendula ulmaria* Root Spread

Figure A 19.8: Microcosm 10 *Phragmites australis* Root Spread

Figure A 19.9: Microcosm 11 *Lythrum salicaria* Root Spread

Figure A 19.11: Microcosm 11 *Mentha aquatica* Root Spread

Figure A 19.10: Microcosm 11 *Filipendula ulmaria* Root Spread

Figure A 19.12: Microcosm 11 *Phragmites australis* Root Spread

Figure A 19.13: Microcosm 12 *Lythrum salicaria* Root Spread

Figure A 19.15: Microcosm 12 *Mentha aquatica* Root Spread

Figure A 19.14: Microcosm 12 *Filipendula ulmaria* Root Spread

Figure A 19.16: Microcosm 12 *Phragmites australis* Root Spread

Appendix 20Root Spread Photographs for the Restricted CompetitionMicrocosms with Salinity Treatment

Figure A 20.1: Microcosm 13 *Lythrum salicaria* Root Spread

Figure A 20.3: Microcosm 13 *Mentha aquatica* Root Spread

Figure A 20.2: Microcosm 13 *Filipendula ulmaria* Root Spread

Figure A 20.4: Microcosm 13 *Phragmites australis* Root Spread

Figure A 20.5: Microcosm 14 *Lythrum salicaria* Root Spread

Figure A 20.7: Microcosm 14 *Mentha aquatica* Root Spread (Humus Layer Bottom Right)

Figure A 20.6: Microcosm 14 *Filipendula ulmaria* Root Spread

Figure A 20.8: Microcosm 14 *Phragmites australis* Root Spread

Figure A 20.9: Microcosm 15 *Lythrum salicaria* Root Spread

Figure A 20.11: Microcosm 15 *Mentha aquatica* Root Spread

Figure A 20.10: Microcosm 15 *Filipendula ulmaria* Root Spread

Figure A 20.12: Microcosm 15 *Phragmites australis* Root Spread

Figure A 20.13: Microcosm 16 *Lythrum salicaria* Root Spread

Figure A 20.15: Microcosm 16 *Mentha aquatica* Root Spread (Right Hand Side)

Figure A 20.14: Microcosm 16 *Filipendula ulmaria* Root Spread

Figure A 20.16: Microcosm 16 *Phragmites australis* Root Spread

Appendix 21 Histogram and Data Heights for All Microcosms and Full Competition Microcosms

Figure A 21.1: *Phragmites australis* Histogram and Data of Stem Heights with Increasing Nutrients

Figure A 21.2: *Phragmites australis* Histogram and Data of Stem Widths with Increasing Nutrients

Figure A 21.3: *Lythrum salicaria* Histogram and Data of Stem Heights with Increasing Nutrients

Figure A 21.4: *Lythrum salicaria* Histogram and Data of Stem Widths with Increasing Nutrients

Figure A 21.5: *Filipendula ulmaria* Histogram and Data of Stem Heights with Increasing Nutrients

Figure A 21.6: *Filipendula ulmaria* Histogram and Data of Stem Widths with Increasing Nutrients

Figure A 21.7: *Mentha aquatica* Histogram and Data of Stem Heights with Increasing Nutrients

Figure A 21.8: *Mentha aquatica* Histogram and Data of Stem Widths with Increasing Nutrients
Stem Heights of		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	76.432	3	25.477	217.991	.000
All Stems	Within Groups	1048.699	8973	.117		
	Total	1125.130	8976			
	Between Groups	22.053	3	7.351	114.853	.000
Phragmites australis	Within Groups	283.790	4434	.064		
	Total	305.842	4437			
	Between Groups	1.891	3	.630	11.042	.000
Lythrum salicaria	Within Groups	113.579	1990	.057		
	Total	115.470	1993			
	Between Groups	1.069	3	.356	4.638	.003
Filipendula ulmaria	Within Groups	97.672	1272	.077		
	Total	98.741	1275			
	Between Groups	2.395	3	.798	8.644	.000
Mentha aquatica	Within Groups	116.855	1265	.092		
_	Total	119.251	1268			

 Table A 21.1: One Way ANOVA results for effects of different nutrient ratios on stem harvest heights (Log10) for all microcosms not subject to increased salinity levels

Stem widths of		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	53.491	3	17.830	249.840	.000
All Stems	Within Groups	640.382	8973	.071		
	Total	693.873	8976			
	Between Groups	16.351	3	5.450	267.701	.000
Phragmites australis	Within Groups	90.273	4434	.020		
	Total	106.623	4437			
	Between Groups	3.211	3	1.070	21.265	.000
Lythrum salicaria	Within Groups	100.173	1990	.050		
	Total	103.384	1993			
	Between Groups	1.162	3	.387	4.513	.004
Filipendula ulmaria	Within Groups	109.159	1272	.086		
	Total	110.321	1275			
	Between Groups	1.444	3	.481	11.125	.000
Mentha aquatica	Within Groups	54.743	1265	.043		
	Total	56.188	1268			

 Table A 21.2: One Way ANOVA results for effects of different nutrient ratios on stem harvest widths (Log10) for all microcosms not subject to increased salinity levels

Figure A 21.9: *Phragmites australis* Histogram and Data of Stem Heights with Increasing Nutrients for Microcosms 1-5 with Full Root Competition

Figure A 21.10: *Phragmites australis* Histogram and Data of Stem Widths with Increasing Nutrients for Microcosms 1-5 with Full Root Competition

Figure A 21.11: *Lythrum salicaria* Histogram and Data of Stem Heights with Increasing Nutrients for Microcosms 1-5 with Full Root Competition

Figure A 21.12: *Lythrum salicaria* Histogram and Data of Stem Widths with Increasing Nutrients for Microcosms 1-5 with Full Root Competition

Figure A 21.13: *Filipendula ulmaria* Histogram and Data of Stem Heights with Increasing Nutrients for Microcosms 1-5 with Full Root Competition

Figure A 21.14: *Filipendula ulmaria* Histogram and Data of Stem Widths with Increasing Nutrients for Microcosms 1-5 with Full Root Competition

Figure A 21.15: *Mentha aquatica* Histogram and Data of Stem Heights with Increasing Nutrients for Microcosms 1-5 with Full Root Competition

Figure A 21.16: *Mentha aquatica* Histogram and Data of Stem Widths with Increasing Nutrients for Microcosms 1-5 with Full Root Competition

Stem Heights of		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	28.094	3	9.365	70.663	.000
All Stems	Within Groups	600.468	4531	.133		
	Total	628.561	4534			
	Between Groups	14.225	3	4.742	70.003	.000
Phragmites australis	Within Groups	141.500	2089	.068		
	Total	155.725	2092			
	Between Groups	1.411	3	.470	6.607	.000
Lythrum salicaria	Within Groups	70.097	985	.071		
	Total	71.507	988			
	Between Groups	1.277	3	.426	5.028	.002
Filipendula ulmaria	Within Groups	76.311	901	.085		
	Total	77.588	904			
	Between Groups	.404	3	.135	1.729	.160
Mentha aquatica	Within Groups	42.383	544	.078		
	Total	42 787	547			

 Table A 21.3: One Way ANOVA Results for Effects of Different Nutrient Ratios on Stem Harvest Heights (Log10) for Microcosms 1-5 with Full Root Competition

Stem Widths of		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	20.703	3	6.901	83.679	.000
All Stems	Within Groups	373.679	4531	.082		
	Total	394.382	4534			
	Between Groups	8.265	3	2.755	190.716	.000
Phragmites australis	Within Groups	30.177	2089	.014		
	Total	38.442	2092			
	Between Groups	2.610	3	.870	18.532	.000
Lythrum salicaria	Within Groups	46.236	985	.047		
	Total	48.846	988			
	Between Groups	.332	3	.111	1.238	.295
Filipendula ulmaria	Within Groups	80.482	901	.089		
	Total	80.813	904			
	Between Groups	.435	3	.145	3.201	.023
Mentha aquatica	Within Groups	24.620	544	.045		
	Total	25.055	547			

 Table A 21.4: One Way ANOVA Results for Effects of Different Nutrient Ratios on Stem

 Harvest Widths (Log10) for Microcosms 1-5 with Full Root Competition

Figure A 21.17: *Phragmites australis* Histogram and Data of Stem Heights with Increasing Salinity

Figure A 21.18: *Phragmites australis* Histogram and Data of Stem Widths with Increasing Salinity

Salinity

Figure A 21.20: *Lythrum salicaria* Histogram and Data of Stem Widths with Increasing Salinity

Figure A 21.21: *Filipendula ulmaria* Histogram and Data of Stem Heights with Increasing Salinity

Figure A 21.22: *Filipendula ulmaria* Histogram and Data of Stem Widths with Increasing Salinity

Height		
100- Mean = 246.90	N Valid	840
Std. Dev. = 163.49 N = 840	Missing	ol
	Mean	246.9024
	Std. Error of Mean	5.64096
	Median	205.0000
	Std. Deviation	163.49049
	Variance	26729.142
	Range	1045.00
	Minimum	14.00
	Maximum	1059.00
0.00 200.00 400.00 600.00 1000.00 1200.00 Height	10 mg/L Nitrogen and <0	.05 ‰ Salinity
Height		
5- Mean = 62.78	N Valid	18
N = 18	Missing	0
4-	Mean	62.7778
	Std. Error of Mean	12.12181
	Median	51.0000
	Std. Deviation	51.42848
	Variance	2644.889
	Range	220.00
	Minimum	9.00
	Maximum	229.00
0 0.00 50.00 100.00 150.00 200.00 250.00 Height	10 mg/L Nitrogen and s	5 ‰ Salinity
		N1/A
	N Valid	N/A
	Missing	N/A
	Mean Std. Error of Moon	N/A
	Std. Error of Mean	IN/A
No Surviving Plants.	Std Deviation	N/A
	Variance	N/A
	Range	N/A
	Minimum	N/A
	Maximum	N/A
	10 mg/L Nitrogen and 1	0 ‰ Salinity
	N Valid	N/A
		NI/A
	Missing	N/A
	Missing Mean	N/A N/A
No Surviving Plants	Missing Mean Std. Error of Mean	N/A N/A N/A
No Surviving Plants.	Missing Mean Std. Error of Mean Median	N/A N/A N/A
No Surviving Plants.	Missing Mean Std. Error of Mean Median Std. Deviation	N/A N/A N/A N/A N/A
No Surviving Plants.	Missing Mean Std. Error of Mean Median Std. Deviation Variance	N/A N/A N/A N/A N/A
No Surviving Plants.	Missing Mean Std. Error of Mean Median Std. Deviation Variance Range	N/A N/A N/A N/A N/A N/A
No Surviving Plants.	Missing Mean Std. Error of Mean Median Std. Deviation Variance Range Minimum	N/A N/A N/A N/A N/A N/A N/A

Figure A 21.23: *Mentha aquatica* Histogram and Data of Stem Heights with Increasing Salinity

Figure A 21.24: *Mentha aquatica* Histogram and Data of Stem Widths with Increasing Salinity

Stem Heights of		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	34.982	3	11.661	112.185	.000
All Stems	Within Groups	557.642	5365	.104		
	Total	592.624	5368			
	Between Groups	1.243	3	.414	6.942	.000
Phragmites australis	Within Groups	165.640	2776	.060		
	Total	166.883	2779			
	Between Groups	.423	2	.212	3.417	.033
Lythrum salicaria	Within Groups	81.410	1315	.062		
	Total	81.833	1317			
	Between Groups	1.126	1	1.126	23.073	.000
Filipendula ulmaria	Within Groups	20.055	411	.049		
	Total	21.181	412			
	Between Groups	6.526	1	6.526	69.985	.000
Mentha aquatica	Within Groups	79.815	856	.093		
	Total	86.341	857			

 Table A 21.5: One Way ANOVA results for effects of different salinity ratios on surviving stem harvest heights

Stem Widths of		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	22.824	3	7.608	129.266	.000
All Stems	Within Groups	315.752	5365	.059		
	Total	338.576	5368			
	Between Groups	.264	3	.088	3.297	.020
Phragmites australis	Within Groups	74.196	2776	.027		
	Total	74.460	2779			
	Between Groups	1.347	2	.673	13.961	.000
Lythrum salicaria	Within Groups	63.432	1315	.048		
	Total	64.779	1317			
	Between Groups	1.469	1	1.469	25.404	.000
Filipendula ulmaria	Within Groups	23.775	411	.058	-	
	Total	25.244	412			
	Between Groups	.021	1	.021	.473	.492
Mentha aquatica	Within Groups	37.246	856	.044		
	Total	37.266	857			

 Table A 21.6: One Way ANOVA results for effects of different salinity ratios on surviving stem harvest widths

Figure A 21.25: *Phragmites australis* Histogram and Data of Stem Heights with Increasing Salinity for Microcosms 1, 5-8 with Full Root Competition

Figure A 21.26: *Phragmites australis* Histogram and Data of Stem Widths with Increasing Salinity for Microcosms 1, 5-8 with Full Root Competition

Figure A 21.28: *Lythrum salicaria* Histogram and Data of Stem Widths with Increasing Salinity for Microcosms 1, 5-8 with Full Root Competition

Figure A 21.29: *Filipendula ulmaria* Histogram and Data of Stem Heights with Increasing Salinity for Microcosms 1, 5-8 with Full Root Competition

Figure A 21.30: *Filipendula ulmaria* Histogram and Data of Stem Widths with Increasing Salinity for Microcosms 1, 5-8 with Full Root Competition

Height		
60- Naan = 246.96 Nation = 246.96	N Valid	369
N=369	Missing	0
50-	Mean	246.9621
	Std. Error of Mean	7.66165
	Median	207.0000
	Std. Deviation	147.17547
	Variance	21660.618
	Range	709.00
	Minimum	14.00
	Maximum	723.00
	10 mg/L Nitrogen and <0	.05 ‰ Salinity
	(Microcosm 1 a	nd 5)
Height		
	N Valid	N/A
	Missina	N/A
	Mean	N/A
	Std. Error of Mean	N/A
	Median	N/A
No Surviving Plants.	Std. Deviation	N/A
	Variance	N/A
	Range	N/A
	Minimum	N/A
	Maximum	N/A
	10 mg/L Nitrogen and	5 ‰ Salinity
	(Microcosm	6)
	N Valid	NI/A
	N Valid	
	Moon	N/A
	Std Error of Mean	N/A N/A
	Median	N/A
No Surviving Plants.	Std Deviation	N/A
	Variance	N/A
	Range	N/A
	Minimum	N/A
	Maximum	N/A
	10 mg/L Nitrogen and 1	0 ‰ Salinity
	(Microcosm	7)
	N Valid	N/A
	Missing	N/A
	Mean	N/A
	Std. Error of Mean	N/A
	Median	N/A
No Surviving Plants.	Std. Deviation	N/A
	Variance	N/A
	Range	N/A
	Minimum	N/A
	Maximum	N/A
	10 mg/L Nitrogen and 1	5 % Salinity
	(Microcosm	8)
		~,

Figure A 21.31: *Mentha aquatica* Histogram and Data of Stem Heights with Increasing Salinity for Microcosms 1, 5-8 with Full Root Competition

Width		
80	N Valid	369
Std. Dev. = 0.623 N = 369	Missing	o
	Mean	1.1634
60-	Std. Error of Mean	.03244
	Median	1.0000
	Std. Deviation	.62318
	Variance	.388
	Range	3.60
	Minimum	.20
	Maximum	3.80
	10 mg/L Nitrogon and <0	05% Solipity
	(Microcosm 1 a	nd 5)
0.00 1.00 2.00 3.00 4.00 Width		
	N Valid	N/A
	Missing	N/A
	Mean	N/A
	Std. Error of Mean	N/A
	Median	N/A
No Surviving Plants.	Std. Deviation	N/A
	Variance	N/A
	Range	N/A
	Minimum	N/A
	Maximum	N/A
	10 mg/L Nitrogen and	5 ‰ Salinity
	(Microcosm	6)
	N Valid	N/A
	Missing	N/A
	Mean	N/A
	Std. Frror of Mean	N/A
	Median	N/A
No Surviving Plants.	Std. Deviation	N/A
	Variance	N/A
	Range	N/A
	Minimum	N/A
	Maximum	N/A
	10 mg/L Nitrogen and 1	0 ‰ Salinity
	(MICrocosm	()
	N Valid	N/A
	Missing	N/A
	Mean	N/A
	Std. Error of Mean	N/A
No Supiniar Dianta	Median	N/A
INO SURVIVING Plants.	Std. Deviation	N/A
	Variance	N/A
	Range	N/A
	Minimum	N/A
	Maximum	N/A
	10 mg/L Nitrogen and 1	5 % Salinity
	(Microcosm	8)
	(microcosiii	~,

Figure A 21.32: *Mentha aquatica* Histogram and Data of Stem Widths with Increasing Salinity for Microcosms 1, 5-8 with Full Root Competition

Stem Heights of	-	Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	23.369	3	7.790	72.758	.000
All Stems	Within Groups	273.550	2555	.107		
	Total	296.919	2558			
	Between Groups	.514	3	.171	2.290	.077
Phragmites australis	Within Groups	90.926	1214	.075		
	Total	91.440	1217			
	Between Groups	.086	2	.043	.592	.553
Lythrum salicaria	Within Groups	52.061	718	.073		
	Total	52.147	720			
	Between Groups	1.159	1	1.159	20.622	.000
Filipendula ulmaria	Within Groups	13.998	249	.056		
	Total	15.157	250			
	Between Groups	N/A	N/A	N/A	N/A	N/A
Mentha aquatica***	Within Groups	N/A	N/A	N/A	N/A	N/A
	Total	N/A	N/A	N/A	N/A	N/A

Notes: *** Only surviving in a single microcosm therefore one-way ANOVA is not feasible.

Table A 21.7: One Way ANOVA Results for Effects of Different Salinity Ratios on Stem Harvest Heights (Log10) for Microcosms 1, 5-8 with Full Root Competition

Stem Widths of		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	14.792	3	4.931	83.008	.000
All Stems	Within Groups	151.763	2555	.059		
	Total	166.555	2558			
	Between Groups	.364	3	.121	5.599	.001
Phragmites australis	Within Groups	26.332	1214	.022		
	Total	26.696	1217			
	Between Groups	.220	2	.110	2.277	.103
Lythrum salicaria	Within Groups	34.686	718	.048		
	Total	34.906	720			
	Between Groups	1.333	1	1.333	20.154	.000
Filipendula ulmaria	Within Groups	16.464	249	.066		
	Total	17.796	250			
	Between Groups	N/A	N/A	N/A	N/A	N/A
Mentha aquatica***	Within Groups	N/A	N/A	N/A	N/A	N/A
	Total	N/A	N/A	N/A	N/A	N/A

Notes: *** Only surviving in a single microcosm therefore one-way ANOVA is not feasible.

Table A 21.8: One Way ANOVA Results for Effects of Different Salinity Ratios on Stem Harvest Widths (Log10) for Microcosms 1, 5-8 with Full Root Competition

Appendix 22 One Way ANOVA Results for All Microcosms and Full Competition Microcosms

Stem Heights of		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	76.432	3	25.477	217.991	.000
All Stems	Within Groups	1048.699	8973	.117	-	
	Total	1125.130	8976			
	Between Groups	22.053	3	7.351	114.853	.000
Phragmites australis	Within Groups	283.790	4434	.064		
	Total	305.842	4437			
	Between Groups	1.891	3	.630	11.042	.000
Lythrum salicaria	Within Groups	113.579	1990	.057		
	Total	115.470	1993			
	Between Groups	1.069	3	.356	4.638	.003
Filipendula ulmaria	Within Groups	97.672	1272	.077		
	Total	98.741	1275			
	Between Groups	2.395	3	.798	8.644	.000
Mentha aquatica	Within Groups	116.855	1265	.092		
	Total	119.251	1268			

 Table A 22.1: One Way ANOVA results for effects of different nutrient ratios on stem harvest heights (Log10) for all microcosms not subject to increased salinity levels

Stem widths of		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	53.491	3	17.830	249.840	.000
All Stems	Within Groups	640.382	8973	.071		
	Total	693.873	8976			
	Between Groups	16.351	3	5.450	267.701	.000
Phragmites australis	Within Groups	90.273	4434	.020		
_	Total	106.623	4437			
	Between Groups	3.211	3	1.070	21.265	.000
Lythrum salicaria	Within Groups	100.173	1990	.050		
	Total	103.384	1993			
	Between Groups	1.162	3	.387	4.513	.004
Filipendula ulmaria	Within Groups	109.159	1272	.086		
-	Total	110.321	1275			
Mentha aquatica	Between Groups	1.444	3	.481	11.125	.000
	Within Groups	54.743	1265	.043		
	Total	56.188	1268			

 Table A 22.2: One Way ANOVA results for effects of different nutrient ratios on stem harvest widths (Log10) for all microcosms not subject to increased salinity levels

Stem Heights of		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	28.094	3	9.365	70.663	.000
All Stems	Within Groups	600.468	4531	.133		
	Total	628.561	4534			
	Between Groups	14.225	3	4.742	70.003	.000
Phragmites australis	Within Groups	141.500	2089	.068		
	Total	155.725	2092			
	Between Groups	1.411	3	.470	6.607	.000
Lythrum salicaria	Within Groups	70.097	985	.071		
	Total	71.507	988			
	Between Groups	1.277	3	.426	5.028	.002
Filipendula ulmaria	Within Groups	76.311	901	.085		
	Total	77.588	904			
	Between Groups	.404	3	.135	1.729	.160
Mentha aquatica	Within Groups	42.383	544	.078		
	Total	42.787	5 <u>4</u> 7			

 Table A 22.3: One Way ANOVA Results for Effects of Different Nutrient Ratios on Stem

 Harvest Heights (Log10) for Microcosms 1-5 with Full Root Competition

Stem Widths of		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	20.703	3	6.901	83.679	.000
All Stems	Within Groups	373.679	4531	.082		
	Total	394.382	4534			
	Between Groups	8.265	3	2.755	190.716	.000
Phragmites australis	Within Groups	30.177	2089	.014		
	Total	38.442	2092			
	Between Groups	2.610	3	.870	18.532	.000
Lythrum salicaria	Within Groups	46.236	985	.047		
	Total	48.846	988			
	Between Groups	.332	3	.111	1.238	.295
Filipendula ulmaria	Within Groups	80.482	901	.089		
	Total	80.813	904			
	Between Groups	.435	3	.145	3.201	.023
Mentha aquatica	Within Groups	24.620	544	.045		
-	Total	25.055	547			

 Table A 22.4: One Way ANOVA Results for Effects of Different Nutrient Ratios on Stem

 Harvest Widths (Log10) for Microcosms 1-5 with Full Root Competition

Stem Heights of		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	34.982	3	11.661	112.185	.000
All Stems	Within Groups	557.642	5365	.104		
	Total	592.624	5368			
	Between Groups	1.243	3	.414	6.942	.000
Phragmites australis	Within Groups	165.640	2776	.060		
	Total	166.883	2779			
	Between Groups	.423	2	.212	3.417	.033
Lythrum salicaria	Within Groups	81.410	1315	.062		
	Total	81.833	1317			
	Between Groups	1.126	1	1.126	23.073	.000
Filipendula ulmaria	Within Groups	20.055	411	.049		
	Total	21.181	412			
	Between Groups	6.526	1	6.526	69.985	.000
Mentha aquatica	Within Groups	79.815	856	.093		
	Total	86.341	857			

 Table A 22.5: One Way ANOVA results for effects of different salinity ratios on surviving stem harvest heights

Stem Widths of		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	22.824	3	7.608	129.266	.000
All Stems	Within Groups	315.752	5365	.059		
	Total	338.576	5368			
	Between Groups	.264	3	.088	3.297	.020
Phragmites australis	Within Groups	74.196	2776	.027		
	Total	74.460	2779			
	Between Groups	1.347	2	.673	13.961	.000
Lythrum salicaria	Within Groups	63.432	1315	.048		
	Total	64.779	1317			
	Between Groups	1.469	1	1.469	25.404	.000
Filipendula ulmaria	Within Groups	23.775	411	.058	-	
	Total	25.244	412			
	Between Groups	.021	1	.021	.473	.492
Mentha aquatica	Within Groups	37.246	856	.044		
	Total	37.266	857			

 Table A 22.6: One Way ANOVA results for effects of different salinity ratios on surviving stem harvest widths

Stem Heights of		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	23.369	3	7.790	72.758	.000
All Stems	Within Groups	273.550	2555	.107		
	Total	296.919	2558			
	Between Groups	.514	3	.171	2.290	.077
Phragmites australis	Within Groups	90.926	1214	.075		
	Total	91.440	1217			
	Between Groups	.086	2	.043	.592	.553
Lythrum salicaria	Within Groups	52.061	718	.073		
	Total	52.147	720			
	Between Groups	1.159	1	1.159	20.622	.000
Filipendula ulmaria	Within Groups	13.998	249	.056		
	Total	15.157	250			
Mentha aquatica***	Between Groups	N/A	N/A	N/A	N/A	N/A
	Within Groups	N/A	N/A	N/A	N/A	N/A
	Total	N/A	N/A	N/A	N/A	N/A

Notes: *** Only surviving in a single microcosm therefore one-way ANOVA is not feasible.

Table A 22.7: One Way ANOVA Results for Effects of Different Salinity Ratios on Stem Harvest Heights (Log10) for Microcosms 1, 5-8 with Full Root Competition

Stem Widths of	-	Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	14.792	3	4.931	83.008	.000
All Stems	Within Groups	151.763	2555	.059		
	Total	166.555	2558			
	Between Groups	.364	3	.121	5.599	.001
Phragmites australis	Within Groups	26.332	1214	.022		
	Total	26.696	1217			
Lythrum salicaria	Between Groups	.220	2	.110	2.277	.103
	Within Groups	34.686	718	.048		
	Total	34.906	720			
	Between Groups	1.333	1	1.333	20.154	.000
Filipendula ulmaria	Within Groups	16.464	249	.066		
	Total	17.796	250			
Mentha aquatica***	Between Groups	N/A	N/A	N/A	N/A	N/A
	Within Groups	N/A	N/A	N/A	N/A	N/A
	Total	N/A	N/A	N/A	N/A	N/A

Notes: *** Only surviving in a single microcosm therefore one-way ANOVA is not feasible.

Table A 22.8: One Way ANOVA Results for Effects of Different Salinity Ratios on Stem Harvest Widths (Log10) for Microcosms 1, 5-8 with Full Root Competition

Appendix 23 Histogram and Data Heights for Restricted Competition Microcosms

Figure A 23.1: *Phragmites australis* Histogram and Data of Stem Heights with Increasing Nutrients for Microcosms 9-13 with Restricted Root Competition

Figure A 23.2: *Phragmites australis* Histogram and Data of Stem Widths with Increasing Nutrients for Microcosms 9-13 with Restricted Root Competition

Figure A 23.3: *Lythrum salicaria* Histogram and Data of Stem Heights with Increasing Nutrients for Microcosms 9-13 with Restricted Root Competition

Figure A 23.4: *Lythrum salicaria* with Restricted Root Competition Histogram and Data of Stem Widths with Increasing Nutrients for Microcosms 9-13

Figure A 23.5: *Filipendula ulmaria* Histogram and Data of Stem Heights with Increasing Nutrients for Microcosms 9-13 with Restricted Root Competition

Figure A 23.6: *Filipendula ulmaria* Histogram and Data of Stem Widths with Increasing Nutrients for Microcosms 9-13 with Restricted Root Competition

Figure A 23.7: *Mentha aquatica* Histogram and Data of Stem Heights with Increasing Nutrients for Microcosms 9-13 with Restricted Root Competition

Figure A 23.8: *Mentha aquatica* Histogram and Data of Stem Widths with Increasing Nutrients for Microcosms 9-13 with Restricted Root Competition

Figure A 23.9: *Phragmites australis* Histogram and Data of Stem Heights with Increasing Salinity for Microcosms 9, 13-16 with Restricted Root Competition

Figure A 23.10: *Phragmites australis* Histogram and Data of Stem Widths with Increasing Salinity for Microcosms 9, 13-16 with Restricted Root Competition

Figure A 23.11: *Lythrum salicaria* Histogram and Data of Stem Heights with Increasing Salinity for Microcosms 9, 13-16 with Restricted Root Competition

Figure A 23.12: *Lythrum salicaria* Histogram and Data of Stem Widths with Increasing Salinity for Microcosms 9, 13-16 with Restricted Root Competition

Height		
40- Mean = 300.77	N Valid	162
Stitl. Letty. = 1/25.512 N = 162	Missing	0
	Mean	300.7654
	Std. Error of Mean	10.09689
	Median	279.5000
	Std. Deviation	128.51239
	Variance	16515.435
	Range	1029.00
	Minimum	20.00
	Maximum	1049.00
0 200.00 400.00 600.00 1000.00 1200.00 Height	10 mg/L Nitrogen and <0 (Microcosm 9 ar	.05 ‰ Salinity nd 13)
	N Valid	N/A
	Missing	N/A
	Mean	N/A
	Std. Error of Mean	N/A
No Surviving Plants	Median Std. Dovietion	
NO Surviving Flams.	Std. Deviation	N/A
	Pango	
	Minimum	N/A N/A
	Maximum	N/A
	10 mg/L Nitrogen and (Microcosm 1	5 ‰ Salinity I4)
	10 mg/L Nitrogen and 9 (Microcosm 1	5 ‰ Salinity 4)
	10 mg/L Nitrogen and s (Microcosm 1 N Valid	5 ‰ Salinity 4) N/A
	10 mg/L Nitrogen and s (Microcosm 1 N Valid Missing	5 ‰ Salinity 4)
	10 mg/L Nitrogen and s (Microcosm 1 N Valid Missing Mean	5 ‰ Salinity 4) /A /A /A
	10 mg/L Nitrogen and s (Microcosm 1 N Valid Missing Mean Std. Error of Mean	5 ‰ Salinity 4) N/A N/A N/A N/A
No Surviving Plants	10 mg/L Nitrogen and s (Microcosm 1 N Valid Missing Mean Std. Error of Mean Median Std. Deviation	5 ‰ Salinity 4) N/A N/A N/A N/A N/A
No Surviving Plants.	10 mg/L Nitrogen and s (Microcosm 1 N Valid Missing Mean Std. Error of Mean Median Std. Deviation Variance	5 ‰ Salinity 4) N/A N/A N/A N/A N/A N/A
No Surviving Plants.	10 mg/L Nitrogen and s (Microcosm 1 N Valid Missing Mean Std. Error of Mean Median Std. Deviation Variance Range	5 ‰ Salinity 4) N/A N/A N/A N/A N/A N/A N/A N/A
No Surviving Plants.	10 mg/L Nitrogen and s (Microcosm 1 N Valid Missing Mean Std. Error of Mean Median Std. Deviation Variance Range Minimum	5 ‰ Salinity 4) N/A N/A N/A N/A N/A N/A N/A N/A
No Surviving Plants.	10 mg/L Nitrogen and s (Microcosm 1) N Valid Missing Mean Std. Error of Mean Median Std. Deviation Variance Range Minimum Maximum	5 ‰ Salinity 4) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
No Surviving Plants.	10 mg/L Nitrogen and solution N Valid Missing Mean Std. Error of Mean Median Std. Deviation Variance Range Minimum Maximum 10 mg/L Nitrogen and 1 (Microcosm 1)	5 ‰ Salinity 4) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
No Surviving Plants.	10 mg/L Nitrogen and s N Valid Missing Mean Std. Error of Mean Median Std. Deviation Variance Range Minimum Maximum	5 ‰ Salinity 14) N/A N/A N/A N/A N/A N/A N/A N/A
No Surviving Plants.	10 mg/L Nitrogen and a (Microcosm 1) N Valid Missing Mean Std. Error of Mean Median Std. Deviation Variance Range Minimum Maximum 10 mg/L Nitrogen and 1 (Microcosm 1)	5 ‰ Salinity 14) N/A N/A N/A N/A N/A N/A N/A N/A
No Surviving Plants.	10 mg/L Nitrogen and s N Valid Missing Mean Std. Error of Mean Median Std. Deviation Variance Range Minimum Maximum 10 mg/L Nitrogen and 1 (Microcosm 1) N Valid Missing	5 ‰ Salinity 14) N/A N/A N/A N/A N/A N/A N/A N/A
No Surviving Plants.	10 mg/L Nitrogen and s N Valid Missing Mean Std. Error of Mean Median Std. Deviation Variance Range Minimum Maximum 10 mg/L Nitrogen and 1 (Microcosm 1) N Valid Missing Mean Oth F	5 ‰ Salinity 14) N/A N/A N/A N/A N/A N/A N/A N/A
No Surviving Plants.	10 mg/L Nitrogen and s N Valid Missing Mean Std. Error of Mean Median Std. Deviation Variance Range Minimum Maximum 10 mg/L Nitrogen and 1 (Microcosm 1) N Valid Missing Mean Std. Error of Mean	5 ‰ Salinity 14) N/A N/A N/A N/A N/A N/A N/A N/A
No Surviving Plants.	10 mg/L Nitrogen and state N Valid Missing Mean Std. Error of Mean Median Std. Deviation Variance Range Minimum Maximum 10 mg/L Nitrogen and 1 (Microcosm 1) N Valid Missing Mean Std. Error of Mean Missing Mean Std. Error of Mean Mean Std. Error of Mean Median Std. Error of Mean Median	5 ‰ Salinity 14) N/A N/A N/A N/A N/A N/A N/A N/A
No Surviving Plants.	10 mg/L Nitrogen and state N Valid Missing Mean Std. Error of Mean Median Std. Deviation Variance Range Minimum Maximum 10 mg/L Nitrogen and 1 (Microcosm 1) N Valid Missing Mean Std. Error of Mean Median Std. Error of Mean Median Std. Deviation Variance	5 ‰ Salinity 14) N/A N/A N/A N/A N/A N/A N/A N/A
No Surviving Plants.	10 mg/L Nitrogen and s N Valid Missing Mean Std. Error of Mean Median Std. Deviation Variance Range Minimum Maximum 10 mg/L Nitrogen and 1 (Microcosm 1) N Valid Missing Mean Std. Error of Mean Median Std. Error of Mean Median Std. Deviation Variance Pange	5 ‰ Salinity 14) N/A N/A N/A N/A N/A N/A N/A N/A
No Surviving Plants.	10 mg/L Nitrogen and s N Valid Missing Mean Std. Error of Mean Median Std. Deviation Variance Range Minimum Maximum 10 mg/L Nitrogen and 1 (Microcosm 1) N Valid Missing Mean Std. Error of Mean Median Std. Error of Mean Median Std. Deviation Variance Range Minimum	5 ‰ Salinity 14) N/A N/A N/A N/A N/A N/A N/A N/A

Figure A 23.13: *Filipendula ulmaria* Histogram and Data of Stem Heights with Increasing Salinity for Microcosms 9, 13-16 with Restricted Root Competition

Width		
40- Mean = 1.01	N Valid	162
Sto. Lev. = 0.537 N = 162	Missing	0
	Mean	1.0068
30-	Std. Error of Mean	.04222
	Median	.9000
	Std. Deviation	.53743
	Variance	.289
	Range	3.40
	Minimum	.20
	Maximum	3.60
	10 mg/L Nitrogen and <0	.05 ‰ Salinity
	(Microcosm 9 ar	nd 13)
Width		
	N Valid	N/A
	Missina	N/A
	Mean	N/A
	Std. Error of Mean	N/A
	Median	N/A
No Surviving Plants.	Std. Deviation	N/A
	Variance	N/A
	Range	N/A
	Minimum	N/A
	Maximum	N/A
	10 mg/L Nitrogen and	5 ‰ Salinity
	(Microcosm 1	14)
	N Valid	N/A
	Missing	N/A
	Mean	N/A
	Std. Error of Mean	N/A
	Median	N/A
No Surviving Plants.	Std. Deviation	N/A
	Variance	N/A
	Range	N/A
	IVIINIMUM	N/A
	waximum	N/A
	10 mg/L Nitrogen and 1 (Microcosm 1	0 ‰ Salinity 15)
		-
	N Valid	N/A
	Missing	N/A
	Mean	N/A
	Std. Error of Mean	N/A
No Surviving Plants	Neglan	
	Sid. Deviation	
	Pango	
	Minimum	
	Maximum	IN/A
	10 mg/L Nitrogen and 1	5 ‰ Salinity
	(Microcosm 1	16)

Figure A 23.14: *Filipendula ulmaria* Histogram and Data of Stem Widths with Increasing Salinity for Microcosms 9, 13-16 with Restricted Root Competition

Figure A 23.15: *Mentha aquatica* Histogram and Data of Stem Heights with Increasing Salinity for Microcosms 9, 13-16 with Restricted Root Competition

Appendix 24 One Way ANOVA Results for Restricted Competition Microcosms

Stem Heights of		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	53.187	3	17.729	177.790	.000
All Stems	Within Groups	442.551	4438	.100		
	Total	495.738	4441			
	Between Groups	9.033	3	3.011	50.880	.000
Phragmites australis	Within Groups	138.534	2341	.059		
	Total	147.567	2344			
	Between Groups	1.116	3	.372	8.705	.000
Lythrum salicaria	Within Groups	42.771	1001	.043		
	Total	43.887	1004			
	Between Groups	1.872	3	.624	13.383	.000
Filipendula ulmaria	Within Groups	17.113	367	.047		
	Total	18.985	370			
	Between Groups	4.981	3	1.660	16.664	.000
Mentha aquatica	Within Groups	71.440	717	.100		
	Total	76.421	720			

 Table A 24.1: One Way ANOVA Results for Effects Of Different Nutrient Ratios on Stem

 Harvest Heights (Log10) for Microcosms 9-13 with Restricted Root Competition

Stem Widths of		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	33.247	3	11.082	186.802	.000
All Stems	Within Groups	263.288	4438	.059		
	Total	296.535	4441			
	Between Groups	6.890	3	2.297	103.244	.000
Phragmites australis	Within Groups	52.075	2341	.022		
	Total	58.965	2344			
	Between Groups	1.930	3	.643	12.835	.000
Lythrum salicaria	Within Groups	50.172	1001	.050		
	Total	52.102	1004			
	Between Groups	.948	3	.316	4.127	.007
Filipendula ulmaria	Within Groups	28.104	367	.077	_	
	Total	29.052	370			
	Between Groups	2.076	3	.692	17.074	.000
Mentha aquatica	Within Groups	29.057	717	.041		
	Total	31,132	720			

 Table A 24.2: One Way ANOVA Results for Effects of Different Nutrient Ratios on Stem

 Harvest Widths (Log10) for Microcosms 9-13 with Restricted Root Competition

Stem Heights of		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	14.085	3	4.695	47.041	.000
All Stems	Within Groups	280.050	2806	.100		
	Total	294.135	2809			
	Between Groups	2.256	3	.752	16.193	.000
Phragmites australis	Within Groups	72.348	1558	.046		
	Total	74.604	1561			
	Between Groups	.498	2	.249	5.074	.007
Lythrum salicaria	Within Groups	29.164	594	.049		
	Total	29.662	596			
	Between Groups	N/A	N/A	N/A	N/A	N/A
Filipendula ulmaria***	Within Groups	N/A	N/A	N/A	N/A	N/A
	Total	N/A	N/A	N/A	N/A	N/A
	Between Groups	6.171	1	6.171	59.886	.000
Mentha aquatica	Within Groups	50.186	487	.103		
	Total	56.357	488			

Notes: *** Only surviving in a single microcosm therefore one-way ANOVA is not feasible.

Table A 24.3: One Way ANOVA Results for Effects of Different Salinity Ratios on Stem Harvest Heights (Log10) for Microcosms 9, 13-16 with Restricted Root Competition

Stem Widths of		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	8.759	3	2.920	52.038	.000
All Stems	Within Groups	157.434	2806	.056		
	Total	166.193	2809			
	Between Groups	.444	3	.148	5.411	.001
Phragmites australis	Within Groups	42.590	1558	.027		
	Total	43.034	1561			
	Between Groups	1.490	2	.745	15.766	.000
Lythrum salicaria	Within Groups	28.067	594	.047		
	Total	29.557	596			
	Between Groups	N/A	N/A	N/A	N/A	N/A
Filipendula ulmaria***	Within Groups	N/A	N/A	N/A	N/A	N/A
	Total	N/A	N/A	N/A	N/A	N/A
	Between Groups	.004	1	.004	.106	.745
Mentha aquatica	Within Groups	18.391	487	.038		
	Total	18.395	488			

Notes: *** Only surviving in a single microcosm therefore one-way ANOVA is not feasible.

 Table A 24.4: One Way ANOVA Results for Effects of Different Salinity Ratios on Stem

 Harvest Widths (Log10) for Microcosms 9, 13-16 with Restricted Root Competition