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As the demand for information rate grows on a daily basis, new ways of improving the
efficiency of fibre-optic communication systems, the backbone of the global data network,
are highly anticipated. Nonlinear Fourier transform (NFT) is one of the newly emerged
techniques showing promising results in recent studies both in simulation and experiment.
Along this path, this method has shown its potential to overcome some difficulties of the
fibre-optic communication regarding nonlinear distortions, especially the crosstalk between
the user’s bands in wavelength division multiplexing (WDM) systems.

NFT-based systems, however, in the conventional, widely considered case of vanishing
boundary signals, have exhibited some drawbacks related to the computational complexity
and spectral efficiency. Both problems are the direct consequences of large signal duration
ensued from the vanishing boundary condition. Considering periodic solutions to the nonlin-
ear Schrödinger equation is among attempts to solve this problem. It helps to decrease the
processing window at the receiver and gives full control over the communication-related pa-
rameters of the signal. Periodic NFT (PNFT) can also be implemented through fast numerical
methods which makes it yet more appealing.

In this thesis, a general framework to implement PNFT in fibre-optic communication
systems is proposed. As the most challenging part of such a system, the inverse transformation
stage is particularly taken attention to, and a few ways to perform it are put forward. From
the simplest signals with analytically known nonlinear spectrum to a complete periodic
solution with arbitrary, finite number of degrees of freedom, several system configurations
are conferred and evaluated in terms of their performance. Common measures such as bit
error rate, quality factor and mutual information are considered in scrutinising the systems.
Based on simulation results, we conclude that the PNFT can, in fact, improve the mutual
information by overcoming some shortcomings of the vanishing boundary NFT.

Keywords: Optical communications, Nonlinear Fourier transform, Riemann-Hilbert
problem, Periodic nonlinear Fourier transform





To Azi





Acknowledgements

I would like to thank my supervisor Professor Sergei Turitsyn for everything.
This work is the result of his encouragement and personal support, insightful discussions,

brilliant suggestions and ideas, and in cases, detailed calculations. The environment he has
made for me was by no means what I expected and had seen. What I have learnt from him is
beyond science and engineering.

I would also like to thank my associate supervisor and friend, Dr Yaroslav Prilepsky. He
is involved in all the details of all works in this thesis and more. His constant support and
suggestions made this work possible.

I would also want to thank all my friends and colleagues at Aston University and Aston
Institute of Photonic Technologies who make studying enjoyable.

Some parts of Chapter 2 and Chapter 4 is done in collaboration with Yaroslav Prilepsky,
Dmitry Shepelsky and Anastasiia Vasylchenkova and I am grateful to them.





Table of contents

Nomenclature xii

List of figures xiii

1 Introduction 1
1.1 Fibre-optic communication . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Organisation of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Nonlinear Fourier transform 17
2.1 Integrable NPDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Lax pair for NLSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Nonlinear spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Inverse transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Algebro-geometric approach . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Riemann-Hilbert problem . . . . . . . . . . . . . . . . . . . . . . 33
2.4.3 Numerical methods for the periodic NFT . . . . . . . . . . . . . . 36

2.5 Vanishing boundary signals . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.1 A few challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 NFT-based communication 41
3.1 A brief review of NFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Vanishing boundary signals . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Digital back propagation using NFT . . . . . . . . . . . . . . . . . 43
3.2.2 Modulating discrete/continuous spectrum . . . . . . . . . . . . . . 44
3.2.3 NFT in dual-polarisation systems . . . . . . . . . . . . . . . . . . 45
3.2.4 Signal processing tools in the nonlinear spectrum . . . . . . . . . . 46
3.2.5 Capacity of an NFT-based system . . . . . . . . . . . . . . . . . . 47



x Table of contents

3.3 Comparing vanishing boundary and periodic NFT . . . . . . . . . . . . . . 48
3.4 Periodic NFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Analytical formula . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.2 Perturbed plane wave . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.3 Simplified algebro-geometric approach . . . . . . . . . . . . . . . 54
3.4.4 1-cut Riemann-Hilbert problem . . . . . . . . . . . . . . . . . . . 54
3.4.5 Multi-cut Riemann-Hilbert problem . . . . . . . . . . . . . . . . . 55

4 Simulation results 57
4.1 A communication system based on the RHP with a 1-cut spectrum . . . . . 58

4.1.1 Constructing the signal . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.2 Numerical accuracy of the direct and inverse transformation . . . . 60
4.1.3 Choosing eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.4 Transmission simulation results . . . . . . . . . . . . . . . . . . . 64

4.2 A communication system based on the algebro-geometric approach . . . . 67
4.2.1 Constructing the signal . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.2 Numerical accuracy of the direct and inverse transformation . . . . 69
4.2.3 Transmission simulation results . . . . . . . . . . . . . . . . . . . 70

5 Discussion, future works and conclusion 75

References 79

Appendix A Algebro-geometric approach for a special nonlinear spectrum 89

Appendix B Numerical calculation of the Riemann theta function 93

Appendix C Numerical routines of finding the nonlinear spectrum 95

Appendix D A multi-soliton solution as an special case of a finite-gap one 101



Nomenclature

Acronyms / Abbreviations

2D Two-dimensional

ASE Amplified spontaneous emission

AWGN Additive white Gaussian noise

B2B Back-to-back

BER Bit error rate

DBP Digital back-propagation

DCT Discrete cosine transform

DSP Digital signal processing

EDFA Erbium-doped fibre amplifier

EVM Error vector magnitude

FWM Four-wave mixing

Gbps Billions of bits per second

GLME Gelfand-Levitan-Marchenko equation

IM/DD Intensity modulated/direct detection

ISI Inter-symbol interference

IST Inverse scattering transform

KdV Korteweg-de Vries



xii Nomenclature

LMMSE Linear minimum mean-square estimator

LO Local oscillator

MI Mutual information

NFT Nonlinear Fourier transform

NIS Nonlinear inverse synthesis

NLSE Nonlinear Schrödinger equation

NPDE nonlinear partial differential equations

NS Nonlinear spectrum

OFDM Orthogonal frequency-division multiplexing

OLDE Ordinary linear differential equation

OPC Optical phase conjugation

PDF Probability density function

PDM Polarisation-division multiplexing

PMD Polarisation-mode dispersion

QAM Quadrature amplitude modulation

QPSK Quadrature Phase Shift Keying

RHP Riemann-Hilbert problem

SDM Space-division multiplexing

SMF Single-mode fibre

SNR Signal to noise ratio

SPM Self-phase modulation

WDM Wavelength-division multiplexed

XPM Cross-phase modulation

ZSS Zakharov-Shabat system

PNFT Periodic nonlinear Fourier transform



List of figures

1.1 A schematic of a coherent receiver whre Es is the received signal and N is
the additive noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Theoretically achievable data rate in an AWGN channel and a comparison
between different modulation formats in a nonlinear medium against SNR [1]. 6

1.3 A schematic of the NFT. The nonlinear signal evolution in the time domain
is mapped into a linear evolution of the nonlinear spectrum in the nonlinear
Fourier domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 The main spectrum consisting of invariant real numbers E j and auxiliary
spectrum as the dynamic points λi of a solution to the KdV equation. . . . 19

2.2 The main spectrum consisting of invariant real numbers E j and auxiliary
spectrum as the dynamic points λi of a solution to the NLSE. . . . . . . . . 20

2.3 The positive imaginary part of the spectrum of a finite-gap (a 3-gap example
here) solution with crosses representing the discrete spectrum connected by
curves of continuous spectrum. . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 The main spectrum and its cuts after rearranging the elements of the Baker-
Akhiezer function to get an RHP with piece-wise constant jumps. . . . . . 23

2.5 The imaginary part of
√

P(λ ) in (2.24). . . . . . . . . . . . . . . . . . . . 27

2.6 A Riemann surface of genus 3 with three points of auxiliary spectrum. . . 27

3.1 Different scenarios of using NFT in a fibre-optic communication system. . 42

3.2 Nonlinear spectrum of a signal with vanishing boundary condition. . . . . 43

3.3 Nonlinear spectrum of a finite-gap signal where green dots represent the
main spectrum and segments of the continuous spectrum are shown. . . . . 49

3.4 Using cyclic extension, only the original data-bearing part of the signal
requires to be processed at the receiver in PNFT. . . . . . . . . . . . . . . 50



xiv List of figures

3.5 The two-phase signal in Eq. (3.1) with λ1 = 1.2 i (see the explanations in
the text) and the time period T0 = 3 defining the remaining values λ2,3 (left).
The corresponding main spectrum is shown in the right panel. . . . . . . . 51

3.6 a) The main spectrum of a plane wave with one simple eigenvalue (blue
cross) and two degenerate (red cross) ones, b) splitting up the degenerate
eigenvalues into two non-degenerate ones, and c) a QAM constellation from
which ε1,2 can be drawn. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 The schematic of a communications system with the DSP processing mod-
ules at transmitter and receiver. In particular, for our research the DSP
at the transmitter side includes the RHP solution or the reduced algebro-
geometric procedure, while at the receiver side the processing is described in
Appendix C is used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Adding cyclic extension. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 The NS of a 1-gap solution and the defined oriented cuts. . . . . . . . . . . 59

4.4 The numerical error in a B2B scenario as a function of the number of time
samples, N, and the number of spectral samples, n. . . . . . . . . . . . . . 61

4.5 a) signal power (a.u. logarithmic scale), and b) signal bandwidth (a.u. loga-
rithmic scale) verses the difference between the real parts of the eigenvalues
and the imaginary part of the eigenvalues when ℑλ0 = ℑλ1, and c) signal
power (a.u. logarithmic scale), and d) signal bandwidth (a.u. logarithmic
scale) verses the difference between the real parts of the eigenvalues and
the imaginary part of the eigenvalues when ℑλ0 = 0.7. ∆ℜλ = |ℜλ1−ℜλ0|
and ℑλ in the vertical axis is ℑλ1. . . . . . . . . . . . . . . . . . . . . . . 62

4.6 The numerical error as the absolute difference between the expected and
calculated eigenvalues, in a B2B scenario showing the influence of the
imaginary parts of the eigenvalues (signal power) on the performance when
a) ℑλ0 =ℑλ1, and b) ℑλ0 = 0.7. ∆ℜλ = |ℜλ1−ℜλ0| and ℑλ in the vertical
axis is ℑλ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 a) The 4-QAM receiver constellation at the optimum power, b) the 4-QAM re-
ceiver constellation at power P =−13.1 dBm, c) Q2-factor for a 0.8 Gsym/s
signal in a 880 km link with EDFA and ASE noise for various sizes of con-
stellation, d) The 64-QAM, and e) the 16-QAM receiver constellation at the
optimum power where the signal bandwidth is BW = 4.8 GHz. . . . . . . . 65



List of figures xv

4.8 The impact of changing the number of time samples, N, in the overall
performance of a 2 Gsym/s system in a 1000 km link, showing that it is
possible to improve the efficiency by increasing the oversampling ratio at the
expense of higher computational complexity. . . . . . . . . . . . . . . . . 65

4.9 The impact of changing the nonlinearity, γ in the overall performance of a 0.8
Gsym/s system in a 880 km link. This graph shows that although in theory
the performance of the NFT-based communication is independent of the link
parameters, fibre loss and additive ASE noise influence the integrability of
the system and cause the the optimum point to lower as the nonlinearity
parameter grows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.10 a) The received constellation at 580 km, b) the received constellation at
1120 km, and c) Q2-factor for a 4-QAM 1 Gsym/s signal with −5 dBm
power against distance. We used ideal Raman amplification (blue) and EDFA
(red), Lspan = 80 km, adding ASE noise. . . . . . . . . . . . . . . . . . . 67

4.11 a) A 2D histogram of the received constellation of a 1024-QAM system at
distance z = 680 km and signal power P =−5 dBm, and a close up for two
parts of the constellation attributed to b) the highest and c) the lowest signal
power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.12 The achievable mutual information versus the link length. . . . . . . . . . 68

4.13 A Riemann surface of genus 2 with three points of auxiliary spectrum. . . 69

4.14 B2B error as the average of the absolute difference between the expected and
calculated eigenvalues, for different locations of the eigenvalue with ℜλ = a,
ℑλ = b and a, b defined in Fig. 4.13. . . . . . . . . . . . . . . . . . . . . . 71

4.15 Signal power for different locations of the eigenvalue with ℜλ=a, ℑλ=b
and a, b defined in Fig. 4.13. . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.16 a) the Q2-factor calculated from the EVM, and b) directly calculated BER
against distance for 64-QAM with uniform and non-uniform transmitter
symbol probability with average P =−2.72 dBm signal power. . . . . . . 71

4.17 The received constellation at z = 1120 km for a 64-QAM signal with power
P =−2.72 dBm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.18 Achievable mutual information versus distance for a signal with average
power of P =−2.72 dBm with uniform and non-uniform probability distri-
bution of the transmitted symbols. . . . . . . . . . . . . . . . . . . . . . . 72

C.1 a) The main spectrum of a plane wave with µ = 3 and q0 = 5, and b) a
rectangular pulse train with T1 = 2, A = 3 and T = 2π . . . . . . . . . . . . 98



xvi List of figures

C.2 a) error in calculating the main spectrum of a plane wave using three algo-
rithms; Ablowitz-Ladik, Spectral and layer-peeling, and b) the normalised
runtime (per sample) for the Ablowitz-Ladik and Spectral methods. . . . . 99

C.3 a) error in calculating the main spectrum of a rectangular pulse wave us-
ing three algorithms; Ablowitz-Ladik, Spectral and layer-peeling, and b)
the normalised runtime (per sample) for the Ablowitz-Ladik and Spectral
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

D.1 a) the main spectrum of a finite-gap solution, b) the result of the limit (D.1),
and c) the a- and b-cycles on the new main spectrum. . . . . . . . . . . . . 103



Chapter 1

Introduction

1.1 Fibre-optic communication

Fibre-optic communication is the backbone of the global communication network. A reliable
fibre-optic communication capable of meeting the daily increasing demand for a higher data
rate is necessary. Since its early days in the 1970s, and despite its impressive service, once in
a while, a new technology supersedes the previous ones, promising better quality and data
rates. With each new technology, new opportunities emerge for ideas and plans which were
perceived as impossible or far-fetched. In the early years of fibre-optic communication, the
fibre loss was a major constraint for data rate and reach. The invention of erbium-doped fibre
amplifier (EDFA) [2] to compensate the loss, made it possible to have transpacific optical
links at a much reduced cost. Making use of the five available dimensions to multiplex data;
time, space, wavelength, polarisation and quadrature, new systems emerged with higher and
higher information rate in the 1990s. The wavelength-division multiplexed (WDM) system
with intensity modulated/direct detection (IM/DD) configuration equipped with novel codes,
dispersion managed links and polarisation-division multiplexing (PDM) [3] could manage
to deliver up to 1 Tb/s communication in a laboratory demonstration [1, 4, 5]. The first
commercial WDM system with two wavelengths, each at 1.7 Gb/s, was made available in
1989. But a significant improvement in data-rate was only realised when instead of using
standard SMF, a dispersion managed link was deployed which rendered a data-rate up to 20
Gb/s. By 1999 commercial systems could carry 40 wavelengths at 10 Gb/s amounting to an
overall data-rate of 400 Gb/s.

Although an IM/DD communication system can provide a high data rate [6], the appear-
ance of the coherent receivers can be considered as a great leap to the future of the modern
fibre-optic communication. It made it possible to revisit the ways light was treated at the
receiver and opened the door to countless solutions to the problems of the fibre coming from
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Fig. 1.1 A schematic of a coherent receiver whre Es is the received signal and N is the
additive noise.

other branches of linear communications. Digital coherent receivers combine the benefits
of the simplicity of the analogue heterodyne receiver with the small required bandwidth
of homodyne receivers. With the use of a local oscillator, the signal is brought down to
near baseband. In a coherent communication, both amplitude and phase information of
the received signal is used to retrieve the transmitted data. As is shown in Fig. 1.1, the
noisy signal is passed through an optical 90-degree hybrid which mixes the signal with a
local oscillator (LO). The four optical outputs of the hybrid is then detected by two pairs
of balanced photodetectors. The electrical outputs of the square-law detection is then used
to find the in-phase and quadrature components of the received signal, see Fig. 1.1 and the
signal labels and relations in it. The noise term N(t) is mainly the ASE noise added by the
amplifier whose power depends on the type of amplifier. Implementing coherent receivers,
quadratic modulation and PDM were enabled. On top of that, now it is possible to use digital
signal processing (DSP) to compensate some chromatic dispersion, PMD, nonlinear effects,
etc. This new possibility led to the emergence of the first commercial transponder with 100
Gb/s data-rate on a single wavelength [5].

Since the available bandwidth cannot be increased any more due to the amplifier lim-
itations and the low-loss window of fibre, the next step to increase the throughput of the
link is to implement space-division multiplexing (SDM) [7]. In an SDM system, paral-
lelism in space is taken to be the solution to increase the fibre utility where different spatial
paths are used. These spatial paths can be through different fibres in a bundle, cores in a
multi-core fibre or modes in a multi-mode enabled fibre. A superchannel can be made by
putting together many spatial channels which combined with the spectral superchannel can
provide a hybrid one. This hybrid supperchannel makes a WDM × SDM matrix in which
each cell represents one spatial path at one wavelength transmission. The spatial channel is
already available in submarine cables and data centre connections where up to thousands of
fibres are deployed in a single cable installation. Of course, integration is one of the most
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crucial requirements of modern fibre-optic systems in form of array subsystems such as
amplifier arrays, transponder arrays, optical switch arrays, etc. A more compact integration
of parallel paths can be achieved through implementing multi-core fibre [8] and few-mode
fibres [9]. Spectral superchannels have some benefits such as closer subcarrier spacing in
optically routed networks and possibility of nonlinear crosstalk compensation by means of
DSP. However, its requirement for accurate tuning of the frequency comb and gain-flattened
amplification pose some implementation challenges for such a system. On the other hand,
in a spatial superchannel, only a single laser is needed and also it is possible to overcome
linear crosstalk ensued from densely integrated paths can be reduced through multiple input-
multiple output (MIMO) DSP [5]. The latest research experimental transmission with WDM
× SDM utilised a 6−mode, 19−core fibre on C+L bands with the overall 84246 channels
which amounts to a 10 Petab/s rate [10]. An essential aspect of the above-mentioned systems
is still the array integration of optical components which still seems a big challenge regarding
implementation. Available reconfigurable optical add-drop multiplexers (ROADM) are more
beneficial in terrestrial networks with spectral superchannels rather than the spatial ones [5].

Using the available cells in the WDM × SDM matrix, another solution for improving
the throughput is to increase the spectral efficiency. This increase entails more sophisticated
DSP to overcome some fibre impairments such as chromatic dispersion and various nonlinear
distortions. Most of the available DSP techniques which are adopted in the fibre-optic
communication are designed for linear channels such as wireless and twisted cooper with
Additive white Gaussian noise (AWGN). As opposed to these linear media, increasing signal
power does not lead to a larger error-free data rate in an optical fibre communication. This
nonlinearity adds to the Amplified spontaneous emission (ASE) an interference proportional
to the signal power which dominates the system performance at high signal powers [11, 12].
The main challenge in the fibre-optic communication seems to be the nonlinear signal-noise
interaction. Therefore, there has been a great amount of research carried out on mitigating
the nonlinear effects of fibre.

The nonlinear interference in fibre can be mainly divided into two categories; signal-
noise and signal-signal interaction. Since the signal-signal nonlinear interference is more
significant that the signal-noise one, most proposed algorithms are dedicated to overcome
this kind of distortion. This interference can be further split into two classes; in-band which
is the self-phase modulation (SPM) and out-of-band interference containing cross-phase
modulation (XPM) and four-wave mixing (FWM) which are particularly problematic in
WDM systems. The master model governing the light propagation in a single-mode fibre is
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the nonlinear Schrödinger equation (NLSE):

iqz −
β2

2
qtt + γ|q|2q =− iα

2
q, (1.1)

where q is the slow varying amplitude of the signal envelope, β2, γ and α are the chromatic
dispersion, Kerr nonlinearity and attenuation parameter of the fibre, respectively. This, (1.1),
is a valid model for a single mode fibre (SMF) as long as the nonlinearity can be treated as
a perturbation and also the signal bandwidth is small enough to ignore higher order linear
dispersions and nonlinear effects such as Raman scattering [13]. The chromatic dispersion
with parameter β acts as a linear filter when nonlinearity is negligible. Assume Eq. (1.1)
with α = 0 and γ = 0, i.e. only with chromatic dispersion:

iqz =
β2

2
qtt . (1.2)

Taking a Fourier transform from both side yields:

Qz(ω,z) = iω2 β2

2
Q(ω,z) → Q(ω,z) = Q(ω,0)eiω2 β2

2 z, (1.3)

where Q(ω,z) is the Fourier transform of q(t,z) with respect to t and the boundary condition
Q(ω,0). This solution shows that chromatic dispersion changes the spectral components
of the signal depending on the frequency and distance and acts like an all-pass filter with
the impulse response of H(ω) = eiω2 β2

2 z. This effect can be compensated at the receiver
by passing the signal through a filter with an inverse impulse response Hc(ω) = H−1(ω).
The Kerr nonlinearity (or the instantaneous nonlinearity) is a reflection of the nonlinear
dependence of the susceptibility tensor of the fibre to the incident electromagnetic field.
This nonlinear (mainly third order) susceptibility leads to an induced polarisation, nonlin-
ear with the electromagnetic field which shows itself in an intensity-dependent refractive
index, n(ω) = n0(ω)+ n2|q|2, where n0 is the linear term and n2 is the nonlinear index
coefficient [13]. To see the impact of the Kerr nonlinearity on the signal, let us ignore loss
and dispersion terms to arrive at:

qz = iγ|q|2q. (1.4)

The invariance of power implies that the signal phase is the only parameter to change as

φ(z) = φ(0)− γ|q(0)|2z, (1.5)

where the signal power-dependent phase change is called the SPM. The time-dependent
nature of this phase also leads to a frequency shift and spectral broadening. While SPM is
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an in-band interference, the term XPM is referred to the interference from any other field
with different characteristics which make it out-of-band such as polarisation, wavelength, or
direction. Assume a field with two frequency components ω1 and ω2:

q = q1e−iω1t +q2e−iω2t +{complex conjugate term}. (1.6)

The phase shift induced at the field with frequency ω1 is

∆φ =
2π

λ
n2z
(
|q1|2 +2|q2|2

)
, (1.7)

where λ is the wavelength and the second term in the RHS of Eq. (1.7) is called the XPM. This
effect is twice as large as the SPM and is responsible for the asymmetric spectral broadening
of the signal. Another important nonlinear interference is the FWM. In a quantum mechanic
framework, the FWM can be explained as the annihilation of one or two photons and creation
of new ones with the energy and momentum conserved. Different configurations are possible
when three photons transfer they energy into a new one or when two photons give rise to
two other ones with different frequencies. For FWM to take place a phase match condition
between these fields should be met which is not always easy to satisfy. FWM and XPM
are of great influence in wideband communication such as WDM where different channel
on different parts of the spectrum can carry other users data. While SPM can partly or
entirely eliminate with some DSP algorithms at the receiver, it is often difficult to mitigate
the distortion caused by FWM and XPM [14].

One of the most widely suggested methods of dealing with the nonlinear interference of
fibre is the digital back-propagation (DBP) [14]. DBP can be implemented at the transmitter
or receiver and can numerically take place by means of split-step method or on a perturbation
base approach in the time domain [13, 15]. The split-step approach in particular is studied
extensively and experimental demonstrations have shown its potential[14]. In this approach,
the received signal is taken as the boundary condition of a NLSE with the same dispersion
and nonlinear parameters as the fibre but with the opposite signs. This NLSE is then solved
numerically to find the back-propagated signal. An important limit to the performance of
a DBP system is the signal-noise interaction. In a perturbation framework in which an
approximate time-domain solution of the NLSE with a Gaussian signal as the boundary
condition is calculated, one can study the impact of different fibre parameters on the signal.
Assuming an equal average transmission power across all frequency channels and with a
first-order perturbation analysis, the received SNR after one span can be read as [16]

SNRDBP =
P

PASE +P3PS +P2PS−ASE
, (1.8)
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Fig. 1.2 Theoretically achievable data rate in an AWGN channel and a comparison between
different modulation formats in a nonlinear medium against SNR [1].

where P is the signal power in the channel of interest, PASE is the accumulated ASE noise
power. In Eq. (1.8), PS is the residual signal-signal nonlinear interference power as a function
of the signal bandwidth and the number of channels considered in the back-propagation
calculations, and PS−ASE is the signal-noise interaction nonlinear factor. The effective SNR
at the receiver (1.8) can explain the achievable information rate in fibre communication in
compared to the Shannon limit for linear channels, see Fig. 1.2. In this figure, the analytical
Shannon limit for a linear communication can only be approached in low SNR. As the
signal power increases, the impact of the nonlinear effects such as the residual signal-signal
nonlinear interference (Ps) or signal noise nonlinear interaction (PS−ASE) dominates the noise
and limits the achievable data rate [1, 12].

In Eq. (1.8), the exact dependency of Ps on system parameters vary based on the adopted
model. The GN model, in which the signal is treated as a Gaussian noise [17], can provide
a closed-form expression for Ps but other models considering the modulation format can
predict the performance more accurately. DBP can only reduce PS and leaves the other
terms intact [14, 16]. In a noiseless link, DBP can mitigate all the linear and nonlinear fibre
impacts, however, particularly in a wideband system such as WDM, it is required to have
the whole signal as the input. That means, processing a huge number of samples in a multi-
channel communication system which leads to a considerable computational complexity.
This implies considering only a few channels in a sub-optimum settings. It has been shown
that the gain can significantly improve by increasing the number of back-propagated channels.
For example, in [16] is reported that while back-propagating a single channel in a 31×32
Gbaud 16QAM system over a 40×80 km link delivers a maximum performance of 13 dB
SNR, a 31 channel DBP can achieve a 20 dB SNR.
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Despite these limitations, DBP is still one of the most widely used approach in eliminating
the nonlinear impacts of the fibre, a 2.4 dB improvement in the system Q-factor in a 0.5
Tb/s transmission over a 2890 link is of the bests experimentally demonstrated results of this
method [18]. Another nonlinear compensation method is the optical phase conjugation (OPC)
where the back-propagation is carried out by means of conjugating the signal and sending
it into a similar fibre link. This method also suffers from the interference coming ensued
by the signal-noise interaction but, as opposed to the DBP, is implemented in the optical
domain, therefore there is no bandwidth and computational complexity limitations. OPC can
significantly improve the system performance especially is a multiple OPC configuration [19],
although with a smaller compensation efficiency. Although a symmetric link is one of the
requirements of an effective OPC system, it has been shown that much improvement can
be achieved, for example, an enhancement of 24% for a WDM system with a 8×112 Gb/s
signal in a link with discrete amplification is reported in [19]. Also, a 5.3 dB improvement in
the system Q-factor is experimentally demonstrated in a 0.8 Tb/s transmission over a 2000
link using 12 OPCs [20].

Another nonlinear compensation scheme is to use a Volterra series model for the fibre and
invert its effects. In this model, the NLSE is solved in the frequency domain in which a set of
nonlinear transfer functions represent the evolution of signal in fibre. By estimating these
nonlinear functions, one can reduce the nonlinear impacts up to a decided order of the transfer
functions. It is shown that in a low sampling frequency regime, a 3rd order Volterra nonlinear
compensator can outperform a split-step DBP one. The high computational complexity of a
Volterra series-based nonlinear compensation scheme is its major drawback [16, 21].

Combined with other novel DSP algorithms such as advanced modulation and coding
schemes, nonlinear compensation can provide high information rates in transoceanic links.
A 70.4 Tb/s transmission over 7600 km in a wideband system is an example of a recent high
speed system [22].

As projected by considering the ever-increasing demand and the pace at which new
technology is emerging, there is a capacity crunch in sight where the installed fibres are
used at capacity [23]. There are a few routes to increase the information rate all with their
limits, one of which is to increase the spectral efficiency of the communication systems. New
algorithms and settings to increase the efficiency of the channel make small steps towards the
right direction to avoid the crunch as much as possible. Using nonlinear Fourier transform is
an attempt along this direction in which the fibre is considered with a new insight. In this
view, linear and nonlinear distortions are not detrimental impacts of the channel but some
characteristics of the medium which can be used. The idea is not new; it was around in
the form of soliton communication. A soliton is a waveform which retains or periodically
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recovers its shape as it propagates through the fibre due to a balance between the chromatic
dispersion and Kerr nonlinearity (or any other nonlinear phenomenon for that matter).

In general, in a communication system, there is a library of signals, from which one
is drawn according to the random data to be transmitted. The selected signal is then sent
to the channel and reaches the receiver where the same look-up table is used to recognise
the transmitted random data. In a high capacity communication system, the size of this
library is large, therefore, this process of choosing signals and checking the look-up table
is usually replaced by parametrising a general signal with a set of parameters. This set
of parameters will be modulated by the random data and the resulting signal is sent to
the channel. In a fibre-optic communication, this general signal needs to be a solution to
the NLSE. A solution to the NLSE is a two-dimensional function dependent on two free
variables t and z. Any cross-section (i.e z = constant) of this solution which is a function of
time, t, uniquely determines this solution. So, at the receiver, when the signal is received
(hence, one cross-section of the solution to the NLSE is known), the drawn solution from the
above-mentioned library of solutions is recognised and the random data is retrieved. In order
to recognise the solution to the NLSE from one cross-section (a boundary condition), one
needs to solve the NLSE which is a difficult task. This is where a soliton can be useful.

What is special about solitons? A soliton is a known solution to the NLSE, Eq. (1.1)
with a trivial dependence to z. This means, it is easy to know any cross-section of this
two-dimensional solution at a fixed distance z as a function of time, t. If one knows the
value of a cross-section at a distance z, given this trivial evolution along z, it is possible to
find any cross-section at any other distance. If it is known that the transmitted signal is a
soliton, there are a few parameters to check at the receiver to fully determine the signal. For
a fundamental soliton there is one parameter, for higher order solitons there are more. In this
way, the communication is actually turned into a system in which these parameters carry
the random data from the transmitter to receiver; at the transmitter, the set of parameters are
modulated by the random data and the solution to the NLSE with these particular values
for the parameters is made. At the receiver, using the signal, the values of the parameters is
calculated and the random data is understood. Since the received signal is a cross-section of
the solution at an arbitrary distance, it is helpful if the dependence of this set of parameters
to z is trivial.

The main issue with this communication scheme is to come up with a set of parameters
with trivial evolution in z which uniquely determine a general solution to the NLSE. Nonlinear
Fourier transform (NFT) is a tool which projects a solution of the NLSE to a set of such
parameters, called nonlinear spectrum (NS). This representation for a solution of the NLSE
makes a one-to-one relation between the NS and the signal which can be used to solve the



1.1 Fibre-optic communication 9

NLSE. Working with the solution of the NLSE means that the communication system is
particularly designed for the channel in use which is the fibre. This is the main advantage of a
communication system based on NFT. As opposed to other systems in which the nonlinearity
is avoided by means of various sub-optimum methods, in an NFT-based system, the fibre
channel is considered with its nonlinear characteristic. On top of that, the evolution of the NS
as the signal propagates through the fibre is linear which turns the nonlinear channel into a
familiar, linear one. In this linear channel, it is possible to have "nonlinear frequency" division
multiplexing which unlike the original signal in the time domain, does not encounter cross-
talk [24]. This absence of cross-talk in the multiplexing space leads to better performance
compared with conventional multiplexing systems such as WDM [25].

As long as the NLSE is a suitable model for the fibre (or any other integrable partial
differential equation for that matter), NFT helps to design the communication system match-
ing the characteristics and traits of the medium. Basically, NFT decomposes the solution of
the NLSE into the invariant (solitonic) and dynamic (dispersive) components. No matter
what the fibre parameters are, there are elements of the signal for which the fibre distortions
balance each other out leading to a persistent waveform. Other elements, although changing
as propagate through the fibre, have some hidden linearity. This linearity shows itself in the
NS, see Fig. 1.3. This gives rise to another potential advantage of an NFT-based system
which is its tolerance to one of the most limiting characteristics of fibre; Kerr nonlinearity. As
the signal power increases, the system performance is expected to improve for the effective
SNR increases. But the nonlinear effects of fibre as shown in Eq. (1.8) start to dominate the
ASE noise to the extent that adding more power has a detrimental effect. On the other hand,
nonlinearity in an integrable system is merely another characteristic of the dynamics of that
system which, in theory, does not influence the quality of the signal in the nonlinear Fourier
domain. These potentials need to be investigated through simulations and experimental
demonstrations.

The process of going from the time domain to the nonlinear Fourier domain, i.e. calcu-
lating the NS is called the direct transform and the one taking the NS from the nonlinear
Fourier domain back to the time domain is called the inverse transform.

A soliton communication is a simple case of a system based on NFT in which the set
of parameters, i.e the NS, only consists of a few invariant complex numbers. In its original
form, a soliton is susceptible to the fibre loss or any other effect that distorts this balance.
However, the concept of a guiding centre soliton, which instead of being a solution to the
NLSE is a solution to an average model of it, can rectify this problem to a great extent [26].
Soliton communication suffers from some challenges such as timing jitter and Gordon-Haus
effect, and soliton interactions. These challenges make the spectral efficiency of the system
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Fig. 1.3 A schematic of the NFT. The nonlinear signal evolution in the time domain is mapped
into a linear evolution of the nonlinear spectrum in the nonlinear Fourier domain.

quite limited [26, 27]. A more general NFT, on the other hand, takes full advantage of the
physics behind the NLSE and the nonlinear dynamics of light in the fibre.

The basics of NFT is as follows. For integrable nonlinear partial differential equations
(NPDE) such as the NLSE, there is an associate ordinary linear differential equation (OLDE)
with the solution to the NPDE playing the role of potential. The interesting bit is where the
spectrum of the OLDE shows some invariance (or linear evolution) as its potential, i.e. the
solution to the NPDE, evolves. This means that, while the evolution of a solution to the
NPDE involves complicated, nonlinear dynamics, the spectrum of the associate OLDE has a
linear behaviour, more details in Chapter 2 and [28].

Of course, NFT is not the only approach to solve the NLSE. There are several ways to
numerically solve the NLSE among which the most widely used are the split-step Fourier
and finite element methods [13]. There are also several models for the fibre each with their
merits and constraints. These models usually contain some approximations for the nonlinear
impacts of the fibre [11, 29]. The numerical approximation is inevitable but a realistic model
with discrete components is computationally expensive and in all cases ignores some effects.

To be the solution to the capacity crunch, NFT needs to provide better spectral efficiency.
Compared to the best, even commercial fibre-optic communication systems, NFT still has
a long way to go. However, recent progress and experimentally demonstrated capabilities
and potential of an NFT-based system, put NFT among the promising ideas for the future
fibre-optic communication [30].

In solving the NLSE through the NFT in communication applications, the signal is usually
assumed to decay fast as time grows. Most of the studies on NFT-based communication
revolve around this assumption which although show promising performance, portray some
inherent limitations. To satisfy the fast decay criteria, the signal length is usually large which
leads to high computational complexity and small spectral efficiency. In this thesis, we
argue that using periodic signals can help resolve some of these problems. Periodic signals
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have been investigated in the concept of IST for years now [31, 32]. It has been suggested
that periodic signals can describe better the dynamics of some nonlinear systems such as
in multi-mode fibres [33], deep-water gravity waves [34], etc. Applications of periodic
signals in predicting oceanic rogue wave [35–37] and also optical nonlinear media [38]
have been explored. As will be shown in the following chapters, particularly in fibre-optic
communication application, using periodic signals is beneficial in terms of the computational
complexity of the transmitter and the size of the processing window at the receiver.

1.2 Contributions of the thesis

For several years now, the conventional NFT-based communication system is a system where
the NS of a signal with vanishing boundary condition is modulated. Although there are some
promising results, both in numerical simulations and experimental demonstrations, showing
the NFT’s potential as a framework to transfer data, we argue that using periodic signals has
some advantages. In this thesis, for the first time in the fibre-optic community, we propose a
mathematical paradigm in which a periodic signal can be constructed from a NS suitable for
a fibre-optic communication. The requirements of a communication system is having control
over the signal duration, its power and having enough degrees of freedom to transfer data.

The mathematics of constructing a periodic signal is in general more complicated and
demanding than the one for vanishing boundary signals, therefore, a step-by-step approach
to performing the inverse transformation is provided. The computational complexity of two
main algorithms to carry out the inverse transformation is discussed and compared for the
first time. Simulation results of the proposed communication systems with exact inverse
transformation stages are reported and the achievable mutual information of such systems
are shown.

The contribution of this thesis in investigating the potentials of a fibre-optic communica-
tion system based on the PNFT can be summarised as follows:

• The mathematical foundation of the inverse transformation for a finite-gap solution to
the NLSE in an Algebro-geometric approach is explained in a detailed and step-by-step
manner,

• Several solutions to construct a periodic signal from a given main spectrum to replace
the inverse transformation stage is proposed. At first, a simple system made up by
a signal with analytically known NS is suggested. This system provides only a one-
dimensional constellation, and thus, has somewhat limited performance. Further, this
system is developed into a more advanced case when a two-dimensional constellation is
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available. This system involves a perturbation of a plane wave and renders one complex
degree of freedom for modulation. However, it has also revealed some limitations
related to the size of the constellation, bandwidth, and signal power,

• A reduced Algebro-geometric approach to construct a periodic signal with one free
complex number in its main spectrum to modulate is proposed. This approach leads
to a decrease in the computational complexity of the inverse transformation stage by
avoiding numerical evaluation of the Riemann theta function. This system delivers a
mutual information of MI = 7.1 bits/symbol up to 700 km,

• A general Riemann-Hilbert problem-based approach to perform the inverse transfor-
mation is adopted to circumvent numerical evaluation of the Riemann theta function.
For an example of a 2-cut spectrum, this system delivers a mutual information of
MI = 7.6 bits/symbol up to 700 km. This method is not only an alternative to the
previous reduced Algebro-geometric approach but also can be generalised to signals
with a higher order main spectrum,

• Numerical routines of calculating the NS of a periodic signal are compared regarding
their accuracy and runtime,

• Simulation results have been carried out to investigate the efficiency and performance
of the proposed communication systems and find their achievable mutual information
by implementing some known algorithms in linear communication systems.

The following publication are the results of the current research and directly or indirectly
relate to different chapters of this thesis:

[MK1] M. Kamalian, J. Prilepsky, S. Derevyanko, S. Le, and S. Turitsyn. Nonlin-
ear Fourier based spectral filtering. In Lasers and Electro-Optics (CLEO),
Conference on. IEEE, 2017.

[MK2] M. Kamalian, J. Prilepsky, S. Derevyanko, S. Le, and S. Turitsyn. Out-of-band
nonlinear spectral filtering for nonlinear Fourier inverse synthesis communica-
tion. In Progress in Electromagnetics Research Symposium (PIERS). IEEE,
2017.

[MK3] M. Kamalian, A. Vasylchenkova, J. Prilepsky, D. Shepelsky, and S. Turitsyn.
Communication system based on periodic nonlinear Fourier transform with
exact inverse transformation. In ECOC 2018; 44nd European Conference on
Optical Communication; Proceedings of. page Tu3A.2, 2018.
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[MK4] M. Kamalian, J. Prilepsky, S. Le, and S. Turitsyn. Optical communication
based on the periodic nonlinear Fourier transform signal processing. In Pho-
tonics (ICP), 2016 IEEE 6th International Conference on. pages 1–3. IEEE,
2016.

[MK5] M. Kamalian, J. Prilepsky, S. Le, and S. Turitsyn. Periodic nonlinear Fourier
transform for fibre-optic communications, part i: theory and numerical meth-
ods. In Optics express, 24(16):18353–18369, 2016.

[MK6] M. Kamalian, J. Prilepsky, S. Le, and S. Turitsyn. Spectral efficiency estimation
in periodic nonlinear Fourier transform based communication systems. In
Optical Fiber Communications Conference and Exhibition (OFC), pages 1–3.
IEEE, 2017.

[MK7] M. Kamalian, J. Prilepsky, S. Le, and S. Turitsyn. Periodic nonlinear Fourier
transform for fibre-optic communications, part ii: eigenvalue communication.
Optics express, 24 (16):18370–18381, 2016.

[MK8] M. Kamalian, D. Shepelsky, A. Vasylchenkova, J. Prilepsky, and S. Turitsyn.
Communication system using periodic nonlinear Fourier transform based
on Riemann-Hilbert problem. ECOC 2018; 44nd European Conference on
Optical Communication; Proceedings of, page Tu3A.3, Rome, 2018.

[MK9] M. Kamalian, A. Vasylchenkova, D. Shepelsky, J. Prilepsky, and S. Turitsyn.
Periodic nonlinear Fourier transform communication solving the Riemann-
Hilbert problem. Accepted to the Journal of Lightwave Technology, 2018.

[MK10] M. Kamalian, J. Prilepsky, S. Le, and S. Turitsyn. On the design of NFT-based
communication systems with lumped amplification. Journal of Lightwave
Technology, 35(24):5464–5472, 2017.

[MK11] M. Kamalian, S. Le, J. Prilepsky, and S. Turitsyn. Statistical analysis of a
communication system based on the periodic nonlinear Fourier transform.
Australian Conference on Optical Fibre Technology, pages ATh1C–4, 2017.

[MK12] M. Kamalian, S. Le, J. Prilepsky, and S. Turitsyn. Periodic Nonlinear Fourier
Transform Based Transmissions with High Order QAM Formats. ECOC
2016; 42nd European Conference on Optical Communication; Proceedings of,
Dusseldorf, 2016.

[MK13] M. Kamalian, S. Le, J. Prilepsky, and S. Turitsyn. Periodic nonlinear Fourier
transform based optical communication systems in a band-limited regime.
Optical Sensors Conference, page JTu4A. 34, Vancouver, 2016.
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[MK14] M. Kamalian, S. Le, J. Prilepsky, and S. Turitsyn. Optimal Launch and Detec-
tion Points for the NFT-based Communication System with Lumped Amplifi-
cation. ECOC 2017; 43nd European Conference on Optical Communication;
Proceedings of, Gothenburg, 2017.

[MK15] M. Kamalian, J. Prilepsky, S. Derevyanko, S. Le, S. Turitsyn. Energy based
transmission optimisation in nonlinear Fourier domain. CLEO/Europe-EQEC,
2017 Conference on), Munich, 2017.

1.3 Organisation of the thesis

This thesis is organised as follows.

• In Chapter 3, a brief introduction to the NFT-based communication is presented.
Different proposed systems are mentioned, and a review of what has been achieved
in vanishing boundary NFT is given. This chapter also includes a discussion on the
capacity analysis of such a system in the literature. Then, we discuss some advantages
of the periodic NFT (PNFT) over the vanishing boundary NFT. Having introduced the
basics of utilising NFT in communication, we propose a simple system based on the
PNFT in which a signal with analytically known NS is used and discuss its drawbacks
and limitations. We further this proposed system to a more general one in which a
plane wave is perturbed by an appropriate function. This gives rise to a communication
system with more degrees of freedom than the previous one. However, the latter system
still suffers from inaccuracy in high power/high bandwidth regimes.

Therefore, a third system is conferred. Since the procedure of constructing a periodic
signal, in general, is explained in some length later, we briefly explain how a simple
system with enough number of degrees of freedom can be constructed in an algebro-
geometric paradigm. We explain that due to some numerical difficulties it is better to
modify the calculations and restrict the NS to a particular form, which in turn, puts a
cap on the achievable performance.

We replace the system mentioned above with yet more general system based on solving
a Riemann-Hilbert problem (RHP). We explain the system in a few words and leave
a full description to the following chapters. Finally, a natural generalisation of this
system is also proposed which since we do not present any simulation results for it, it
is mentioned briefly and only as a suggestion for future works.
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• Chapter 2 presents a general description of the NFT to find a finite-gap solution to
the NLSE. We introduce the NS and a standard way to construct finite-gap solutions
for the NLSE. As an alternative, we also put forward a numerically more favourable
method to construct such a signal, namely, the RHP approach. We explain these two
approaches to some details but leave more technical calculations and discussions to
the appendices.

In this chapter also, a quick argument on how to arrive at a vanishing signal from the
definitions of a finite-gap analysis is given.

• The two proposed systems of Chapter 2 are scrutinised through some simulations in
terms of their quality factor, BER and mutual information for different transmission
distance, signal power, constellation sizes, etc. in Chapter 4. The numerical accuracy
of the calculations are also shown, and a discussion on the optimum operating points
is made.

• The thesis concludes with some discussions and suggested future works in Chapter 5.

• This work contains some essential appendices. Appendix A depicts the steps to reduce
the mentioned algebro-geometric approach into a simple one for a particular case of
Section 4.2. Appendix B makes a discussion on the computational complexity of
evaluating the Riemann theta function. We show that the complexity of the available
algorithms to evaluate the Riemann theta function is higher than what is appropriate
for the current application; this is the main reason to resort to the RHP approach.
Appendix C explains the used Ablowitz-Ladik routine of calculating the NS. Finally,
since the claim is that the finite-gap approach is the most general way of looking at the
solutions of the NLSE, appendix D illustrates the steps to get a multi-soliton solution
to the NLSE from a finite-gap one.





Chapter 2

Nonlinear Fourier transform

The notion of NFT (or in a historical context, IST) is entangled with solitons; signals
which retain their shapes as they propagate through a nonlinear medium. It was only until
1960s when an analytical approach to describe solitons was proposed and a method to
solve the Korteweg-de Vries (KdV) equation was discovered [39]. This discovery was
further generalised to a framework to solve some nonlinear differential equations with very
important physical relevance in the seminal work of Lax [40]. This was just a beginning to
many nonlinear systems discovered to be solvable by means of the IST. At the heart of the
IST is the notion of integrability; defined and investigated from many points of views since
the IST was born.

In this chapter, NFT is briefly introduced. The concept of NS and how to calculate it, and
also, transition between the time domain and the nonlinear Fourier domain is reviewed. A
discussion on the numerical methods to carry out these calculations is also presented.

2.1 Integrable NPDE

So far there is no general way available to solve a nonlinear partial differential equation
(NPDE). However, for some particular NPDEs such as KdV, sine-Gordon, and Nonlinear
Schrödinger equation (NLSE)., one can find the solutions by means of the inverse IST. For
some particular cases, this might even yield the solution in terms of elementary functions.
A very interesting aspect of the IST is that it explains the special solutions to such NPDEs,
i.e. solitons. However, there is more to IST than only the solitons; it provides a complete
transformation from the time-domain into the nonlinear Fourier domain in which the evolution
of the image of the solution is linear. This, in fact, is the base on which a communication
system can be built.
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The IST formalism in a nutshell is as follows; for an integrable NPDE, there is a linear
ordinary differential equation LODE (or system of equations) with a spectral parameter, λ ,
in which, while the solution to the NPDE plays the role of potential, λ is invariant. In fact,
the NPDE can be seen as a compatibility condition between two LODEs, called Lax pair (see
the following).

2.2 Lax pair for NLSE

Our main attention in this thesis is to the integrable cubic self-focusing nonlinear Schrödinger
equation known to govern many important nonlinear phenomena from deep-water gravity
waves to light propagation in optical fibres. We consider a normalised NLSE as follows:

iqz +qtt +2|q|2q = 0, (2.1)

which is Eq. (1.1) with normalised parameters

t → t
Ts
, z → z

Zs
, q → q

Qs
, (2.2)

where, if the NLSE governs the light propagation in a fibre, one of the parameters, Ts, Qs, or
Zs are free to choose. If Ts is chosen we have

Zs =
T 2

s
|β2|

, Qs =
2γ

Zs
. (2.3)

Therefore, in (2.1), t represents the normalised retarded time and z is the normalised distance
in fibre. The fibre parameters are chosen to be β2 = −20 ps2/km, α = 0.2 dB/Km, and
γ = 1.3 W−1Km−1. For Eq. (2.1) as the NPDE in Section 2.1, it has been shown that the Lax
pair is [41]

Φz =V (λ , t,z)Φ, and Φt =U(λ , t,z)Φ (2.4)

where

V (λ , t,z) =−2iλ 2σ3 +2zQ+Q(0), and U(λ , t,z) = Q− iλσ3 (2.5)

with

Q =

[
0 q(t,z)

−q∗(t,z) 0

]
, Q(0) =−i

(
Q2 +Qt

)
σ3, σ3 =

[
1 0
0 −1

]
. (2.6)
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Fig. 2.1 The main spectrum consisting of invariant real numbers E j and auxiliary spectrum
as the dynamic points λi of a solution to the KdV equation.

In (2.4), the solution to the NLSE, q(t,z), is a potential. If Φ is a solution to both equations
in (2.4) then the compatibility condition, Φtz = Φzt which is equivalent to the zero-curvature
relation, Uz −Vt +[U,V ] = 0, is only satisfied iff q(t,z) satisfies the NLSE where [U,V ] =

UV −VU is the matrix commutator. In this case, λz = 0. IST is involved with the spectral
analysis of the Dirichlet problem of Eq. (2.4). Since the operator U is a bounded one, its
spectrum consists of two parts: places where

• U −λ I fails to be invertible, or

• U −λ I is not bijective.

Hereafter, the spectrum mentioned above and/or other quantities equivalent to them, which
come from the spectral analysis of the operator in Eq. (2.4), are considered to be defined in a
domain called the nonlinear Fourier domain. Since a vast amount of work has been done in
the IST formalism for fast decaying solutions to the NLSE, to understand the concept of IST
and definitions of terms, in this section, we sometimes address this kind of signals. The next
chapter is entirely dedicated to the IST producing different types of solution.

2.3 Nonlinear spectrum

To understand the concept of the NS of a finite-gap solution, let us start from the KdV
equation which historically is of a great importance. For KdV, the auxiliary equation (Lax
equation) is the linear Schrödinger equation whose spectrum plays the leading role in an
NFT analysis. This spectrum consists of real line with some gaps, see Fig. 2.1. In addition to
these gaps, there are some eigenvalues lying in the gaps which move as the signal propagates
through the medium. These eigenvalues, collectively called the auxiliary spectrum, are
considered as the dynamic part of the NS and the invariant end-points of the gaps, called
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Fig. 2.2 The main spectrum consisting of invariant real numbers E j and auxiliary spectrum
as the dynamic points λi of a solution to the NLSE.

main spectrum, are the static part of it. If there is a finite number of these gaps, the associate
solution to the KdV is called a finite-gap solution.

For the NLSE on the other hand, the auxiliary equation is the Zakharov-Shabat system
of differential equations Eq. (2.4). As opposed to the spectrum of the linear Schrödinger
equation, the spectrum of the ZSS can contain complex numbers so the spectrum consists
of some curves on the continuous spectrum. Like KdV, here the end-points of these curves
are invariant and there are some eigenvalues (the auxiliary spectrum) moving around on the
complex plane as the signal evolves along the propagation dimension, see Fig. 2.2. As before,
if there is a finite number of these curves, the associate solution to the NLSE is called a
finite-gap solution. To make up a finite-gap solution, one needs to start from a set of auxiliary
and main spectrum points and construct the solutions to the ZSS, called Bloch functions, and
use these functions to form a solution.

To see the relation between the NS as a solution, we start by solving the Dirichlet
boundary condition problem in (2.4) to find normalised Jost solutions Φ with boundary
condition Φ± = Φ0 as t →±∞ where Φ0 = e−(iλ t+2iλ 2z)σ3 is the solution associated to the
zero background [42]. From this solution, one can find Q, hence, the solution to the NLSE
via Q = i[σ3,Φ1], and

Φ
±(t,z;λ ) =

(
I+

Φ1(t,z)
λ

+ · · ·
)

Φ
0(t,z;λ ), as t →±∞. (2.7)

Since Φ±(t,z;λ ) are bounded at λ ∈ R, the real axis is a part of the spectrum. For other
members of the spectrum defined as below:

σc ≡ {λ ∈ C|Φ is bounded for∀t} , (2.8)
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Φ±(t,z;λ ) being independent solutions of the Lax pair, it is possible to form a problem as
below

Φ
−(t,z;λ ) = Φ

+(t,z;λ )S(λ ), λ ∈ σc, (2.9)

In this regard, to find a solution to the NLSE given a boundary condition q(t,0), one can
calculate Φ±(t,0;λ ) and find the time and space-independent scattering matrix S(λ ) from
(2.9). For any z, this S(λ ) can be used, and the associated RHP (2.9) can be solved to find
Φ±(t,z;λ ) from which q(t,z) is retrieved. Hereafter, we assume q(t,0)= q(t+T,0) for some
period T . Let solve (2.4) and form the fundamental matrix for a boundary condition [43]:

Φ(t0, t0;λ ) =

[
1 0
0 1

]
, at a base point t0. (2.10)

This fundamental matrix evaluated at one period after the base point is called the monodromy
matrix, M = Φ(t0, t0 +T ;λ ) with detM = 1 and the trace ∆(λ ) = TrM , called the dis-
criminant, independent of the base point. In the Floquet theory for the Zakharov-Shabat
operator with periodic coefficients, its solution ψ , called the Bloch function, is determined as
an eigenfunction of the operator of shift by the period [43]:

ψ(t +T ;λ ) = m(λ )ψ(t;λ ), (2.11)

where m(λ ) is called the Floquet multiplier. Clearly, ψ is bounded on the whole line for those
λ for which |m(λ )|= 1. On the one hand, being a solution of the ZSS, ψ is a combination
of columns of Φ, Φ1 and Φ2, at any time:

ψ(t0 +T ;λ ) = A×Φ
1(t0, t0 +T ;λ )+B×Φ

2(t0, t0 +T ;λ ) = M

[
A
B

]
. (2.12)

Combining this with Eq. (2.11), it follows that

m(λ )

[
A
B

]
= M

[
A
B

]
, (2.13)

i.e., m(λ ) is an eigenvalue of the monodromy matrix M . Since detM = 1, m(λ ) can be
expressed in terms of the discriminant ∆(λ ):

m±(λ ) =
∆(λ )±

√
∆2(λ )−4

2
, (2.14)
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Fig. 2.3 The positive imaginary part of the spectrum of a finite-gap (a 3-gap example here)
solution with crosses representing the discrete spectrum connected by curves of continuous
spectrum.

from which we can deduce that ∆(λ ) ∈ R for the solution to be bounded. It follows that the
continuous spectrum of the Zakharov-Shabat operator, which is where |m(λ )|= 1, can be
characterized in terms of the discriminant by the inequality ∆2(λ ) ≤ 4, or ∆(λ ) ∈ [−2,2].
If this is the case, ψ(t +T ;λ ) = eiµ(λ )ψ(t;λ ), where µ ∈ R is the Floquet exponent. For
the end points λ = λ j with ∆(λ j) =±2, we have m(λ j) = 1 or m(λ j) =−1, which, in view
of (2.11), correspond to the periodic or anti-periodic solution, respectively. Thus the end
points of the spectral arcs (the main spectrum) can be found as the eigenvalues of the periodic
or anti-periodic problem posed on the period interval. For the focusing NLSE the main
spectrum comes in complex conjugate pairs.

Thanks to the analyticity of ∆(λ ), The continuous spectrum, σc, consists of two-
dimensional curves on the complex plane with endpoints comprising the main spectrum. In
this work we consider a finite-gap solution of the NLSE which is a solution with only finitely
many of such curves, see Fig. 2.3 [42].

In the light of the above-mentioned definition of the main and auxiliary spectrum, it is
possible to rearrange the columns of Φ± considering their domains of analyticity to arrive
at an RHP with S(λ ) being piece-wise independent of λ on some arcs connecting complex
conjugate discrete spectrum points, see Fig. 2.4. The + and − signs in the RHP denote the
limit as λ approaches the curve from right and left, respectively.
As mentioned before, constructing a finite-gap solution to the NLSE takes place by starting

from finding the spectrum, σc of the boundary condition q(t,0) followed by calculating the
S(λ ) at that point. Changing z and solving the RHP to find the Baker-Akhiezer matrix, Φ,



2.4 Inverse transformation 23

Fig. 2.4 The main spectrum and its cuts after rearranging the elements of the Baker-Akhiezer
function to get an RHP with piece-wise constant jumps.

and using it to construct q(t,z) yields a solution to the NLSE in both time and space. Let
assume we have found S(λ ) and the spectrum consisting of N +1 complex conjugate pairs
of eigenvalues, {λ j,λ

∗
j }N

j=0, with vertical cuts giving shape to, Γ = ∪N
j=0Γ j. Each Γ j is a

vertical line connecting λ j and λ ∗
j , see Fig 2.4. Here we address two different approaches to

find Φ given the spectrum; the standard algebro-geometric and the RHP approach. These
two are thoroughly explained in the next chapter.

2.4 Inverse transformation

Inverse transformation is the process of constructing a solution to the NLSE given its NS.
In the communication framework, this mean constructing a one-dimensional function as a
function of time, at a constant distance which is the location of the transmitter or receiver.
That means, while the main spectrum is fixed, the exact value of the auxiliary spectrum needs
to be known. The elements of auxiliary spectrum travel all over the complex plane with a
complicated dependence to time and distance. Knowing the value of the main and auxiliary
spectrum, one can construct the Bloch functions. The nonlinear Schrödinger equation defines
the evolution of two complex-valued functions, q and q′ [44]:

iqz +qtt −2|q|2q = 0,

−iq′z +qtt −2|q|2q′ = 0, (2.15)
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which gives (2.1) where q′ = −q∗. In such case, another symmetry condition should be
realised for the solution of the ZSS, Φ(λ ) = σ2Φ̄(λ̄ )σ2.The Lax pair for this equation is
(2.4). The matrix-valued solution of the Lax equations, Φ, has some important analytical
properties mentioned in the following Lemma:

Lemma 2.4.1 Let Φ(λ ) be a 2×2 matrix function holomorphic in some punctured neigh-
bourhood of infinity on the Riemann sphere, smoothly depending on t and z, with the following
asymptotic expansion at infinity:

Φ(t,z;λ ) =

[
I+

∞

∑
j=1

Φ j(t,z)λ− j

]
exp
(
−iλ tσ3 −2iλ 2zσ3

)
C(λ ), (2.16)

where C(λ ) is some invertible matrix. Then, the following holds:

ΦtΦ
−1 =U(λ )+o(λ−1), ΦzΦ

−1 =V (λ )+o(λ−1), |λ | → ∞, (2.17)

with U and V defined in terms of Φ j as

U(λ ) =−iλσ3 + i[σ3,Φ1],

V (λ ) =−2iλ 2
σ3 +2iλ [σ3,Φ1]+2i[σ3,Φ2]−2i[σ3,Φ1]Φ

1, (2.18)

with [·] being the commutator.

Lemma 2.4.2 Let Φ(t,z;λ ) of Lemma 2.4.1 be a solution to the Lax equations (2.4). Then
U and V are in the form of (2.5) and the solutions to the Schrödinger system are

q(t,z) = 2(Φ1)12, and q′(t,z) = 2(Φ1)21. (2.19)

The most challenging part of this procedure is to calculate the value of the auxiliary
spectrum. However, it is easy to show that they lie on a Riemann surface made up by the
main spectrum, hence, fixed [43]. This helps making the calculations simpler.

In this section, two general approaches to construct a finite-gap solution to the NLSE is
presented and a discussion on the numerical methods to carry out the calculations is give.
The problem is as follows: given a NS of a finite-gap solution to the focusing NLSE, the goal
is to construct the signal. For the NLSE, the NS is related to the spectrum of the Zakharov-
Shabat operator Eq. (2.4). Therefore, the first step to construct the solution to the NLSE is
to find a solution to the Zakharov-Shabat equation, Eq. (2.4). Imposing periodicity as the
boundary condition to this equation, the solutions are Bloch functions. A Bloch function can
be uniquely determined by means of its poles and behaviour as the spectral parameter, λ



2.4 Inverse transformation 25

goes to ∞. The poles of the Bloch function, where there is only finitely many of them, are
associated to the auxiliary spectrum which is the dynamic part of the NS.

2.4.1 Algebro-geometric approach

Let the matrix-valued function Φ be

Φ(t,z;λ ) = [Φ1
Φ

2] =

[
Φ11 Φ12

Φ21 Φ22

]
. (2.20)

with the spectral parameter λ where Φ1 and Φ2 are two Bloch eigenfunctions associated to
λ satisfying (2.4). We form the periodic squared eigenfunctions as below [43]:

f (t,z;λ ) =− i
2
(Φ11Φ22 +Φ21Φ12) ,

g(t,z;λ ) = Φ11Φ12,

h(t,z;λ ) =−Φ12Φ22.

Having a finite-gap solution implies that these squared eigenfunctions are finite-order poly-
nomials in λ . Some straightforward calculations yield:

f 2 −gh =−1
4

W (Φ1,Φ2)2 = P(λ ) =
N

∏
j=0

(
λ −λ j

)(
λ −λ

∗
j
)
, (2.21)

g(t,z;λ ) = iq(t,z)×
N

∏
j=1

(
λ −µ j(t,z)

)
, (2.22)

where W (·) is the Wronskian defined as

W (v,u) = det

(
v1 u1

v2 u2

)
= v1u2 − v2u1,

and µ j(t,z) are called the auxiliary spectrum which represent the evolution of signal as it
propagates through the fibre and can be found from the monodromy matrix. To find µ j(t,z)
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at any z and t, one needs to solve a system of differential equations [43]

µ jt =
−2iκ j

√
P(µ j)

∏
l ̸= j

(µ j −µl)
,

µ jz =−2

(
N

∑
l ̸= j

µ j −
1
2

N

∑
j=0

(λ j +λ
∗
j )

)
µ jt , j = 1, · · · ,N , (2.23)

where µ jt and µ jz are the time and distance derivatives of µ j, respectively. However, it is
easy to show that the auxiliary spectrum lies on a Riemann surface, X , defined by Eq. (2.21)
with κ j ∈ {−1,+1} indicating the sheet of the Riemann surface on which µ j lies. Therefore,
instead of solving these complicated interwoven differential equations, one can use an Abel
map as a change of variables which maps the auxiliary spectrum from the Riemann surface
onto C2. Let us have a look at the Riemann surface and its properties. Here we briefly note
some properties but for a more detailed discussion see Appendix [44].

A hyperelliptic Riemann surface, defined as a subset of C2, can be made by glueing
together two complex planes at the cuts defined by the square root function. The square
root function is multi-valued for any non-zero complex number. The branch cut is usually
defined as the negative part of the real axis. One can choose different branch cuts, e. g. on
the straight lines between the pairs of eigenvalues. When the function under the square root
function is P(λ ) in Eq. (2.21), these cuts can be defined as the straight lines connecting λ j

and λ ∗
j . Such rearrangement renders the function

√
P(λ ) = w(λ ) =

√√√√N

∏
j=0

(
λ −λ j

)(
λ −λ ∗

j

)
, (2.24)

with the imaginary part as shown in Fig. 2.5 when the branch points are {−1+ i,−1−
i,2i,−2i,1+0.5i,1−0.5i} as an example.

Every compact Riemann surface is holomorphic to a sphere with handles, where the
number of handles, N , is called the genus. We refer to λ as points and as independent
variables and (λ ,w) as a place on the Riemann surface. For each regular point, there are two
associated places. Such Riemann surface becomes compact by adding ∞ to it. From now
on, to illustrate a Riemann surface we use this presentation an example of which is depicted
for a 3-genus surface in Fig. 2.6. The auxiliary points of (2.23) travel on the Riemann
surface made by the discrete spectrum [45]. The goal is to, starting from the initial values
µ j(t,0) obtained from the monodromy matrix, solve Eqs. (2.23) and find µ j(t,z). Integrating
over some paths on X can be simplified by forming a basis for closed paths and a basis
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Fig. 2.5 The imaginary part of
√

P(λ ) in (2.24).

Fig. 2.6 A Riemann surface of genus 3 with three points of auxiliary spectrum.



28 Nonlinear Fourier transform

for differentials on this surface and found the calculations on them. One can investigate
these differential equations by considering them as a combination of some independent
holomorphic differentials, ω1,ω2, · · · ,ωN . To define these differentials properly, we start by
a set of non-normalised ones defined as:

ω̃ j =

∑
n+m≤d+3

cn,mwnλ m

F(w)
dλ . (2.25)

On X , there are also two sets of topologically distinct cycles, a j cycles and b j cycles with
orientation, see Fig. 2.6. Any closed path over X can be made using these cycles. A path
on a Riemann surface is called closed if the start and end points are the same. If such path
bounds a part of X , it can be contracted to zero, i.e., it is trivial regarding the integration
of analytic functions. A cycle is a path which is not contractable to zero. For a genus-N
surface, there is a basis for its first homology consisting of a-cycles and b-cycles where:
1) a-cycles do not cross each other and b-cycles do not cross each other, 2) a j and b j only
intersect once, 3) none of the members of this basis can be continuously deformed into
another, see Fig. 2.6 for an example.

From the non-normalised basis of Eq. (2.25), the normalised one, (ω1,ω2, · · · ,ωN ),
called the basis for the cohomology of X , can be obtained considering∮

al

ω j = δl j. (2.26)

This basis is used to integrate Eqs. (2.23). These definitions of cycles and differential basis
is useful for we can decompose differentials over any path over X into a combination of
a-cycles and b-cycles using this basis. Since all closed integral paths can be considered as a
combination of the a-cycles and b-cycles, it is useful to find the integral of the basis for the
cohomology on some of these cycles. The Riemann matrix, B is defined as below

B=
(
Bl j
)N

l, j=1 , Bl j =
∮

bl

ω j. (2.27)

Taking into account the integration over a-cycles, the period matrix, containing all the
information needed about integrating over closed paths is

P= [I B],

where I is the identity matrix. The columns of P, being linearly independent, form a
lattice [46]

Λ = {A : A = IV +BU ;V,U ∈ CN }.
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In this way, two vectors are the same if their difference is on this lattice. Therefore, the
quotient space C/Λ, known as the Jacobian of X is of main importance.

Let take the points in the auxiliary spectrum as some places on the Riemann surface,
P1,P2, · · · ,PN . With this set of points and their multiplicity, define the divisor, D , as:

D = ∑
j

p jPj,

where p j is the multiplicity of the place Pj. While the motion of the auxiliary spectrum on
X is very complicated, there is a change of variable in a form of an Abel map which turns
this evolution into a simple, linear one. The Abel map of a place, P, is defined from X to its
Jacobian as

A(P) = (A1,A2, · · · ,AN ) =

 P∫
P0

ω1,

P∫
P0

ω2, · · · ,
P∫

P0

ωN

=

P∫
P0

ω

where P0 is a base point and ω = [ω1, · · · ,ωN ]T . The Abel map of a divisor also is defined
as

A(P0,D) = ∑
j

p jA(P0,Pj).

It is easy to show that the Abel map of the relevant divisor, D = ∑Pj, has linear evolution in
t and z in the form [43]

A(P0,D) = Vt +Uz+φ , (2.28)

where vectors V and U will be defined and vector φ is arbitrary (determined by q(t,0)).
Therefore, instead of solving the complicated equations (2.23), we can find V and U (more
on this later). Following these lines, changing z, the Abel map of the auxiliary spectrum can
be easily found using (2.28). This mapping should be inverted in order to find the auxiliary
spectrum.

A meromorphic function f on X whose zeros, P1, · · · ,Ps, and poles , Q1, · · · ,Qs, have
multiplicities p1, · · · , ps and q1, · · · ,qs, respectively, defines a valuation divisor:

( f )val = ∑
j

p jPj −∑
j

q jQ j,

which can be considered as the division of two, ω and ω ′, Abelian differentials. Therefore,
ω/ω ′ is a meromorphic function. This will be used later to invert the Abel map. This means,
having the evolved A(P0,D

′) it is required to find the new places, P′
1,P

′
2, · · · ,P′

N . Since the
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Abel map is a map from the Riemann surface into its Jacobian, finding its inverse is called
the Jacobian inverse problem. To find the divisor whose Abel map is obtained by evaluating
Eq. (2.28) at an arbitrary z, one can attribute a meromorphic function to this divisor according
to the following theorem.

Theorem 2.4.3 (Abel’s theorem) For any meromorphic function, f , on X with ( f )val =D

we have A(P0,D) = 0 and also given zero-degree divisor, D , there exists a meromorphic
function f , on N with ( f )val = D .

This meromorphic function can be seen as the ratio of two meromorphic differentials on the
Riemann surface with zeros coinciding with the places of the divisor taking into account the
necessary singularities and asymptotic values at infinity. Assume the divisor, D , with its
places satisfying

φ(Pj) = θ(A(Pj)−Z) = 0, j = 1, · · · ,N ,

where θ(·) is the Riemann theta function defined in (2.30). Then, the vector Z in the Jacobian
is

Z ≡ A(P0,D)+K(P0),

where the vector of Riemann constants, K(P0) is defined by

K(P0) = (K1(P0),K2(P0), · · · ,KN (P0)) , with K j(P0) =
1+B j j

2
−∑

l ̸= j

∫
al

ωlA j. (2.29)

Theorem 2.4.4 Suppose for the vector Z1 the function

φ(P) = θ(A(P0,P)−Z1 −K(P0))

is not identically zero on X . Then, φ has N zeros, P1,P2, · · · ,PN , with their divisor

D = P1 +P2 + · · ·+PN = Z1.

Solving this problem involves the Riemann theta function [44]

Θ(u1, . . . ,uN ;B) = ∑
l∈ZN

exp{πi(Bl, l)+2πi(l,u)}, (2.30)

a multi-dimensional Fourier series where (l,u) = l1u1 + . . .+ lN uN . After finding the
divisor at the arbitrary distance z, we can find the attributed matrix Φ and in turn, construct
the solution to the NLSE using (2.36).
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On a Riemann surface, X and with the standard projection π which defines X as a
two-sheeted covering of C, there are two places, P± where π(P±) = ∞ ∈ C. Now that we
have all the means to invert the Abel map, i.e., we can find the evolved divisor, the remaining
task is to construct Φ from this evolved divisor. To have an appropriate Φ, in addition to
its divisor of poles to coincide with D , its asymptotic behaviour at λ → ∞ (corresponding
to two places, P+ and P−) should be considered. One can uniquely find the vector-valued
Baker-Akhiezer function Φ1(t,z;P) with the asymptotic behaviour at infinity as:

Φ
1(P) =

[(
1
0

)
+O(λ−1)

]
exp
(
−iλ t −2iλ 2z

)
, P → P−, λ = π(P),

Φ
1(P) = αλ

[(
0
1

)
+O(λ−1)

]
exp
(
iλ t +2iλ 2z

)
, P → P+, λ = π(P), α ∈ C.

(2.31)

to be

Φ
1
1(P) =

θ

(
P∫

∞−
ω + iVt + iUz−D −K

)
θ (D +K)

θ

(
P∫

∞−
ω −D −K

)
θ (iVt + iUz−D −K)

× exp
(

itΩ1(P)+ izΩ2(P)−
i
2

Et +
i
2

N0z
)

Φ
1
2(P) =α

√
ω0

θ

(
∞+∫
P

ω + iVt + iUz−D −K

)
θ

(
D +K−

∞+∫
∞−

)

θ

(
P∫

∞−
ω −D −K

)
θ (iVt + iUz−D −K)

× exp
(

itΩ1(P)+ izΩ2(P)+
i
2

Et − i
2

N0z
)
, (2.32)

with parameters defined as

V = [V1,V2, · · · ,VN ], Vj =
∫
b j

dΩ1,

U = [U1,U2, · · · ,UN ], U j =
∫
b j

dΩ2, (2.33)
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and E, N0 and ω0 are determined by asymptotic expansions of the integrals:

Ω1(P) =±(z−E/2+o(1)) , p →±∞,

Ω2(P) =±
(
2z2 −N0/2+o(1)

)
, p →±∞,

Ω3(P) =±(logz− logω0/2+o(1)) , p →±∞, (2.34)

where the Abelian integrals Ω1 and Ω2 are of the second kind with their only singularities at
∞ and Ω3 is an Abelian integral of third kind. At some simple connected neighbourhood of
infinity with no branch point, each point, λ , is associated to two places, P±, identified by
the infinity places. For any place in such neighbourhood, the matrix-valued Baker-Akhiezer
function can be defined as

Φ(t,z;λ ) =
[
Φ

1(P+) Φ
1(P−)

]
,

which satisfies the condition of Lemma 2.4.1 and Lemma 2.4.2. Having Φ1, we use the
results of Lemma 2.4.2 to construct the solution to the Schrödinger system as follows

q = A0
θ (iVt + iUz−D −K+ r)

θ (iVt + iUz−D −K)
× exp(−iEt + iN0z) ,

q′ =
4ω0

A0

θ (iVt + iUz−D −K+ r)
θ (iVt + iUz−D −K)

× exp(iEt − iN0z) ,

A0 =
2θ(D +K)

αθ(D +K− r)
, (2.35)

which for the focusing NLSE becomes

q(t,z) = A0
θ (iVt + iUz−D −K+ r)

θ (iVt + iUz−D −K)
× exp(−iEt + iN0z) , (2.36)

with 3N +3 degree of freedom consisting of 2N +2 branch points (discrete spectrum), N

in a form of a divisor (auxiliary spectrum) and a complex number, A0. Since a phase rotation
does not change the solution, A0 can only add one real degree of freedom.

Evaluating the Riemann theta function (2.30) can be challenging for the time variance
of its exponential coefficients and the dimensions of the space that l is drawn from, see
appendix B. If one wants to increase the QAM symbol per signal by increasing the genus
of the Riemann surface, the computational complexity of evaluating the Riemann theta
function increases drastically, see appendix B. To avoid this problem, it is possible for some
special NSs to replace the Riemann theta function with some Jacobi elliptic functions, this is
explained in appendix A.
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2.4.2 Riemann-Hilbert problem

An alternative to the standard algebro-geometric approach is to construct Φ as a solution
to a Riemann-Hilbert problem. Take the path Γ = ∪N

j=0{Γ j} where Γ js are straight lines
connecting λ j and λ ∗

j , one can assume the following [42]:

Φ(t,z;λ ) = e(i f0t+ig0z)σ3M(t,z;λ )e−(i f (λ )t+ig(λ )z)σ3, (2.37)

where:

1. f (λ ) and g(λ ) are scalar functions analytic in C\Γ satisfying the following conditions:
(i) f (λ ) = λ + f0 +O(1/λ ) and g(λ ) = 2λ 2 + g0 +O(1/λ ) as λ → ∞, with some
constants f0 and g0;
(ii) the limiting values of f and g across Γ are related by

f+(λ )+ f−(λ ) =C f
j , g+(λ )+g−(λ ) =Cg

j , j = 0, . . . ,N , (2.38)

where f−(λ ) (or g−(λ )) and f+(λ ) (or g+(λ )) are the values of f (λ ) (or g(λ )) when
approach the cuts from left and right, respectively, with some real constants C f

j and Cg
j

for j = 1, · · · ,N . C f
0 and Cg

0 can be taken arbitrarily and are set to zero.

2. M is the solution of the RHP with (i) the jump conditions

M−(t,z;λ ) = M+(t,z;λ )J j(t,z), λ ∈ Γ j, (2.39)

where

J j(t,z) =

 0 ie−i(C f
j t+Cg

j z+φ j)

iei(C f
j t+Cg

j z+φ j) 0

 , (2.40)

where M−(t,z;λ ) and M+(t,z;λ ) are the values of M(t,z;λ ) when approach the cuts
from left and right, respectively, and (ii) the normalization condition M → I as λ → ∞.

From M, one can find Q(t,z) using

Q(t,z) = i
[
σ3, e(i f0t+ig0z)σ3M1(t,z)e−(i f0t+ig0z)σ3

]
, (2.41)

where M1(t,z) is determined by the asymptotic relations M(t,z,λ ) = I + M1
λ

+O(λ−2) as
λ → ∞. Notice that the conditions above uniquely determine C f

j and Cg
j for j = 1, . . . ,N as
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well as f0 and g0. Namely, if N ≥ 3, then C f
j and Cg

j are respectively the unique solutions
of the systems of linear algebraic equations

N

∑
j=1

C f
j

∫
Γ j

ξ kdξ

w(ξ )
= 0, k = 0, . . . ,N −2,

N

∑
j=1

C f
j

∫
Γ j

ξ N −1dξ

w(ξ )
=−2πi, (2.42)

and

N

∑
j=1

Cg
j

∫
Γ j

ξ kdξ

w(ξ )
= 0, k = 0, . . . ,N −3,

N

∑
j=1

Cg
j

∫
Γ j

ξ N −2dξ

w(ξ )
=−4πi,

N

∑
j=1

Cg
j

∫
Γ j

ξ N −1dξ

w(ξ )
=−2πi

N

∑
j=0

(λ j +λ
∗
j ), (2.43)

where w(z) is defined in Eq. (2.24). If N = 1, then C f
1 and Cg

1 are determined by the last
equation in (2.42) and (2.43); if N = 2, then C f

j , j = 1,2 are determined by the system in
general form (2.42) whereas Cg

j , j = 1,2 are determined by the system of two last equations
in (2.43). If we start from the known main spectrum, i.e known Γ js and w(λ ), calculating
the contour integrals in Eqs. (2.42) can be done accurately with a few integral points and a
simple linear system is to solved with the resulting values. Then f (λ ) is determined, for all
N ≥ 1, by

f (λ ) =
w(λ )
2πi

N

∑
j=1

∫
Γ j

C f
j dξ

w(ξ )(ξ −λ )
(2.44)

and g(λ ) is determined by

g(λ ) =
w(λ )
2πi

N

∑
j=1

∫
Γ j

Cg
j dξ

w(ξ )(ξ −λ )

for N ≥ 2 and by

g(λ ) = 2w(λ )+
w(λ )
2πi

∫
Γ1

Cg
1dξ

w(ξ )(ξ −λ )
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for N = 1. In turn, f0 and g0 are determined from the asymptotic relations f (λ ) = λ + f0 +

O(1/λ ) and g(λ ) = 2λ 2 +g0 +O(1/λ ) as λ → ∞ of f (λ ) and g(λ ).

In the RHP approach it is also possible to have an explicit expression for the solution but
numerically solving the RHP suffices for our purpose. Having all the parameters mentioned
above, we define the jump matrices and use the RHSolve, a package in Mathematica to get
the numerical solution to the RHP at each point in time and distance [47]. The first point to
note here is the way the computational complexity scales with the number of signal samples
in time this is a direct result of independent calculation of each point in time and distance. As
pointed out earlier, the RHSolve finds the solution to the RHP at each point in time and space,
therefore, the complexity scales as O(N) when N is the number of samples in time. The most
resource demanding stage of the inverse transformation as described before is solving the
RHP, i.e. finding M in Eq. (2.39) from the jump matrices J j(t,z) defined in Eq. (2.40). This
can be done by solving an integral equation

µµµ −CGµµµ = III,

where the operator CG is defined as follows:

(CG fff )(t,z,ξ ) :=
1

2πi

∫
Σ

fff (s)(G(t,z,s)− III)
s−ξ− ds, ξ ∈ Γ. (2.45)

The RHSolve can perform this operation in an efficient way in which to solve the Cauchy
integral we need to deal with fast discrete cosine transform (DCT) and compute Cauchy inte-
gral (2.45) at n Chebyshev points of the second kind, where n is the total number of spectral
points on the arcs (directly related to the resolution ∆λ between the adjacent discretisation
points). The numerical error is shown to decay spectrally as n grows [48]. Computing (2.45)
can be significantly expedited by expanding the solution using the Chebyshev polynomials of
the first kind inasmuch as the expressions for the Cauchy integral involving these polynomials
are known explicitly. Evaluating the n Chebyshev polynomials can be done using O(n logn)
floating point operations. To facilitate comparison between the complexity of evaluating the
Riemann theta function with solving the RHP, keeping the spectral resolution, ∆λ fixed (i.e.
n = n0N where n0 is the number of points over each cut), one can find the computational
complexity of our proposed method to be

O(NN n0 log(N n0)+NM(N n0)) ,

where M(n1) is the complexity of solving an n1×n1 linear system. The equation above shows
that as opposed to evaluating the Riemann theta, the computational complexity of solving the
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RHP does not scale exponentially with the number of cuts which is going to be important
when the approach is generalised to a higher symbol per signal communication. This feature
is the principle advantage with respect to the alternative approach of the construction of
algebro-geometric solutions where the Riemann theta function (2.30) is used [48].

2.4.3 Numerical methods for the periodic NFT

Various algorithms and numerical routines to perform different stages of finding the NS of
a periodic solution and constructing a solution from the NS have been proposed over the
last few decades. In calculating the NS, constructing the monodromy matrix can be done
through different numerical approximations of the differential operator such as Runge-Kutta,
forward-Euler, Cranck-Nicolson and Ablowitz-Ladik [49, 50, MK5]. In these methods,
and other methods of constructing the monodromy matrix by approximating the exponen-
tial matrix such as Boffetta–Osborne [51, 52], starting from the boundary condition, the
Zakharov-Shabat equation is numerically solved to find two bounded solutions and form
the fundamental matrix. From the trace of this matrix, one can find the discrete spectrum
by looking for the zeros of an analytic function using various methods [52]. Finding the
monodromy matrix is followed by a root finding algorithm which in a general case can be a
simple Newton-Raphson routine or any approach as such or for the polynomial approximation
solving the eigenvalue problem pertinent to the companion matrix of the polynomial. Using
the Floquet theory, the spectrum of the Zakharov-Shabat operator can be efficiently found for
a periodic signal directly from solving an eigenvalue problem [53, 54]. All these methods are
different in accuracy, time and memory consumption from which the Ablowitz-Ladik method
is chosen here due to its acceptable accuracy taking into account the speed and low-memory
requirement [49, MK5]

The NFT for periodic signals by numerically solving the evolution equations of the
auxiliary spectrum is reported in [32] where in [55] a particular case of a one-band signal
is considered. To perform the inverse transformation through the now-standard algebro-
geometric approach, there has been much effort in providing a generic universal tool covering
a wide range of applications on different platforms. Among these works one can point out the
Abelfunctions, a Python library for computing Abelian functions in Python and Sage [56],
and the algcurves package for Maple software [57, 58]. Other attempts to evaluate algebro-
geometric solutions in Matlab is made in a series of works, for example [59]. In particular, to
solve the Jacobi inverse problem, it is necessary to construct the Riemann constant vector
(2.29), which can numerically be done to an arbitrary level of accuracy, although still far
from what a real-time application such as fibre-optic communication requires [60–62].
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Inverse transformation by means of numerically solving an RHP is also explored for
different nonlinear equations [63, 64] and a numerical package for Mathematica, RHPackage,
is available to do so [47]. Since the Riemann theta function (2.30) is a multi-dimensional
Fourier series in which the number of contributing terms grows very fast as the intended
accuracy increases, numerically calculating it is a challenge. This is, in fact, the main
advantage of inverse transformation via solving an RHP over the standard algebro-geometric
approach. Appendix B discusses the numerical calculation of the Riemann theta function.

A common scheme to construct some solutions of the NLSE is the Darboux (or dressing)
method. In this method, starting from a solution to the NLSE (either constant or periodic
in time and space [65, 66]), new eigenvalues are added to the discrete spectrum and the
corresponding Jost functions are constructed iteratively [66, 67].

2.5 Vanishing boundary signals

So far, a signal with a finite number of gaps in the spectrum was considered. Since a
considerable amount of work has been done on using the vanishing boundary signals where
|q(t,z)| → 0 as t → ∞ faster than any polynomial, in fibre-optic communication systems,
here we revisit the conventional definition of the NS and other spectral parameters from
a finite-gap theory perspective. We can consider such signals as fast-decaying periodic
signals with period T where T → ∞. As the signal decays fast, the scattering parameters are
meromorphic functions, so the spectrum of the Zakharov-Shabat operator consists of the
real axis plus some isolated complex numbers (in complex conjugate pairs for the focusing
NLSE). Therefore, in order to construct a solution, the RHP (2.9) has to be solved for a jump
on the curve Γ =R where Φ−(t,z;λ ) and Φ+(t,z;λ ) are analytic in the lower and upper half
plane, respectively, and with time-invariant Si js we have(

Φ
−
1 (t,z;λ )

Φ
−
2 (t,z;λ )

)
=

[
S11 S12

S21 S22

](
Φ

+
1 (t,z;λ )

Φ
+
2 (t,z;λ )

)
, as t → ∞. (2.46)

The equation above can be rearranged into a transfer operator in the time domain. As
the solution decays fast as t grows, there exist Jost solutions with the following boundary
conditions

lim
t→∞

Φ
+
1 (t,z;λ ) =

(
0
1

)
e jλ t , lim

t→∞
Φ

−
1 (t,z;λ ) =

(
1
0

)
e− jλ t ,

lim
t→−∞

Φ
+
2 (t,z;λ ) =

(
1
0

)
e− jλ t , lim

t→−∞
Φ

−
2 (t,z;λ ) =

(
0
1

)
e jλ t ,
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with W (Φ+
1 (t,z;λ ),Φ+

2 (t,z;λ )) = S−1
12 and W (Φ−

1 (t,z;λ ),Φ+
2 (t,z;λ )) = −S11S−1

12 where
W (.) is the Wronskian. The representation of the transfer matrix using the Wronskian
is apt since {Φ

−
1 (t,z;λ ),Φ+

1 (t,z;λ )} and {Φ
−
2 (t,z;λ ),Φ+

2 (t,z;λ )} are two sets of linearly
independent function which can form a basis for all Jost functions. If the ZSS (2.4) has
eigenvalues, say λ j, the sought functions, Φ, need to be meromorphic. In such a case,
S−1

12 = 0 and since Φ
+
1 (t,z;λ j) and Φ

+
2 (t,z;λ j) are analytic in the same domain, they are

linearly dependent, Φ
+
1 (t,z;λ j) = ĉ jΦ

+
2 (t,z;λ j). That means, to solve the RHP it is necessary

to have the residue of S11 at these eigenvalues. Together with these residues, the transfer
matrix can be used as a data carrier in fibre optic communication. The elements of the transfer
matrix which are required to reconstruct a solution at different distances from the transmitter
given the transmitted signal are S11, the eigenvalues of the ZSS, λ j, and the residues of S11 at
these eigenvalues, c j. The set of these eigenvalues and the residues are called the discrete
spectrum and S11 is called the continuous spectrum as a function of the real argument λ . The
NS has the following evolution in z:

c j(z) = c j(0)e
2iλ 2

j z, S11(z) = S11(0)e2iλ 2z, (2.47)

and λ js are invariant.

As an important example, a multi-soliton solution can be constructed as a limit at which
eigenvalues are degenerate. Following the notations of the previous section, when the discrete
spectrum consists of N +1 pairs of complex conjugate eigenvalues {λ j,λ

∗
j }N

j=0, take some
value α > 0 and put [44]

λ0 =−λ
∗
N =−α.

Now, let take the limit

λ2 j,λ2( j+1) → ζ j, for j = 1, · · · ,N , where ζm ̸= ζn if n ̸= m.

Furthermore, by letting α → 0 the spectrum becomes a combination of N eigenvalues ζ j

and R, hence, the discrete and continuous spectrums, respectively. It is possible to show that
|q(t,z)| → α as t → ∞ (see appendix D and [44, section 4.4]).

2.5.1 A few challenges

Aside from the above-mentioned numerical difficulties caused by the Riemann theta function,
special consideration should be practised while constructing a periodic signal. One issue
is to make sure the solution is periodic. Since the periodicity of the solution is determined
by the periodic properties of the Riemann theta function, here we investigate conditions for
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periodicity. The Riemann theta function has the following periodicity property

Θ(u) = Θ(u± ej), ej = [0, · · · ,1, · · · ,0] zero except at the j-th element.

Since the solution is proportional to (see Eq. (2.36)):

h(t,z) =
Θ(u+d)

Θ(u)
,

where u = Vt +Uz+ c for some vectors c and d, the solution has the same periodicity
property as the Riemann theta function. Therefore, to have a periodic signal in time, t, it
suffices to have commensurable numbers as the elements of V defined in Eq. (2.33). The
same argument applies for a signal construction through solving an RHP where C f

j s should
be commensurable. This condition can be met by adjusting the places of the eigenvalues
in the discrete spectrum. In the following chapters, two examples of periodic signals made
through solving an RHP and with the algebro-geometric approach will be presented. In
the first example, it is shown that the condition to have a periodic signal only influences
the real part of the eigenvalues. In the second, for this 1-genus signal, one of the elements
of the two-element vector V is zero; hence, the periodicity is guaranteed and the period is
determined only by the other element of V.

Another point to pay extra attention to in numerically calculating the solution is in
integrating on contours close to the singularities of the functions. Notably, in finding C f

j and
Cg

j , paths of integration should be chosen in a way to avoid branch points [68, MK9].

2.6 Numerical methods

Calculating the NS of a function, direct transformation, is to find the spectrum of the
associated Zakharov-Shabat operator. This can usually be done by numerically integrating
this differential equation and find two linearly independent solutions to compute the scattering
parameter in (2.9) or (2.13). The main part of the numerically solving the Zakharov-Shabat
equation is to replace the differential operator, ∂t , with a finite-difference approximation
which can be Forward-Euler, central-difference, Runge-Kutta, etc. The most widely used
routines of this category of algorithms are Boffetta-Osborne [51, 52], Cranck-Nicolson and
Ablowitz-Ladik [49, 50]. However, one can use a collocation method to solve an eigenvalue
problem, which although consumes a rather considerable memory, delivers fast and for
eigenvalues with large enough imaginary parts, the most accurate results, see [50, 53] and
[69, section 7.3]. In [MK5] a comparison between three different direct transformation
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algorithm regarding their accuracy and runtime is taken place and it is concluded that
the Ablowitz-Ladik scheme has the most favourable combination of these two criteria.
Appendix C outlines steps of three routine;Ablowitz-Ladik, spectral and layer-peeling in
computing the NS of a periodic signal in terms of their numerical accuracy and normalised
runtime.

Direct transformation for vanishing and periodic signals are basically the same except
for some algebraically trivial operations. The difference, however, emerges when starting
from the NS, one intends to construct the signal, inverse transformation. For signals with
vanishing boundaries, the first and natural way for inverse transformation is to solve the
so-called Gelfand-Levitan-Marchenko equation (GLME) for K1(t, t ′) [41]:

K∗
2 (t, t

′)+

∞∫
t

K1(t,s)F(s+ t ′)ds = 0,

K1(t, t ′)−
∞∫

t

K∗
2 (t,s)F

∗(s+ t ′)ds = F∗(t + t ′), (2.48)

where the kernel is

F(t) =
1

2π

∞∫
−∞

r(s)eiλ sdλ + i
2N +1

∑
j=1

γ jeiλ js,

where 2N +1 is the number of eigenvalues, r(·) is the continuous spectrum and γ j are the
amplitude of the discrete spectrum. Then q(t,z) =−2K1(t, t) yields the solution. There are a
few ways to solve this equation efficiently [70–72]. A fast inverse transformation algorithm
for a complete NS consisting of a continuous and a discrete part has been proposed in [73].
In this work, a fast layer peeling approach and a fast Darboux transform are combined. For a
case with only a continuous spectrum involved, the inverse transformation can be done quite
fast and accurately [71]. On the other hand, for a purely solitonic signal, a more popular
approach is the Darboux transformation. The inverse transformation can also be formulated
as a Riemann-Hilbert problem [28]. This approach would be extensively explained, especially
for periodic signals, in the following sections. The main challenges of inverse transformation
for periodic signals and different algorithms to carry out the calculations is also studied in
the previous chapter.

In this chapter, a brief introduction to the concept of NFT is presented and a general
definition for the NS is conferred. The direct and inverse transformation stages for a finite-gap
signal is discussed and a brief argument on how to get a particular example of this kind
of signals as a vanishing signal is made. More details and some definitions are left for the
appendices but a basis to construct a communication system is established.



Chapter 3

NFT-based communication

Using NFT, the linear and nonlinear effects of fibre can be described as a linear evolution
of the NS of the signal. This linear evolution paves the way to design new communication
systems. It can either be used to carry data from the transmitter to the receiver or can play
the role of a digital back propagator to rectify the fibre distortions or a combination of both.
The most straightforward communication system using NFT is an eigenvalue communication
proposed in the seminal paper of Hasegawa and Nyu in 1993 [74]. In a more general form,
this idea is revived in a series of articles in which a detailed mathematical background and
description of numerical routines to implement NFT is presented [28, 50, 75].

3.1 A brief review of NFT

Here a short introduction to the concept of NFT and some necessary definitions is presented
but a more thorough one will follow in the next chapter. As mentioned in the introduction,
NFT parametrises a family of solutions to the NLSE with a set of complex numbers called
the nonlinear spectrum (NS). The NS is related to the solution in a non-straightforward
way which is explained in the following. For some nonlinear partial differential equations
(NPDE) such as the NLSE, there is an auxiliary differential equation with the solution to
the NPDE playing the role of a potential. The spectrum of this auxiliary equation has some
interesting characteristics such as being partially invariant or having trivial evolution with
the propagation of signal along the propagation dimension. Using these traits, it is possible
to introduce the NS as a representation of the signal with simple evolution in distance.

In general, this NS consists of two parts: the continuous spectrum and the discrete
part, both complex numbers. The discrete part represents the static and the continuous
one represents the dynamic part of the NS. The static part is attributed to the solitonic
component of the signal while the dynamic part has to do with the dispersive elements. Since
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Fig. 3.1 Different scenarios of using NFT in a fibre-optic communication system.

the combination of the discrete and continuous spectrums fully determines the signal, it is
necessary to have a full knowledge about the both of them, in order to construct a signal
with a particular set of parameters, i.e the NS. The fact that the NS changes in a simple
manner as the signal travels from the transmitter to receiver makes the NS a suitable carrier
for information. Using the NS to transfer data leads to an NFT-based communication system.

There are four main configurations used in NFT-based communication [76]; 1) NFT
modulation in which either the discrete spectrum, the continuous spectrum or both are modu-
lated at the transmitter, 2) digital back-propagation (DBP) in which the DBP is implemented
using the NS and implanted as an additional device at the receiver, 3) the hybrid setting in
which a signal with known NS (usually the discrete spectrum) is transmitted, and its NS is
used to retrieve data at the receiver [77], and 4) a decision-feedback scenario which can be
considered as a variant of the NFT modulation scheme but involves performing INFT at the
receiver [78], see Fig. 3.1. The overall throughput of these systems may not overtake the best
and state-of-the-art fibre-optic techniques but there is ongoing progress in the overall perfor-
mance. Some comparisons have been made between the available systems and NFT-based
ones [25, 79]. Most of the studies on NFT-based communication systems consider solutions
to the NLSE with a vanishing boundary condition. As shown in the following chapters, this
leads to a particular case of a finite-gap solution. Here we first explain the proposed systems
for only vanishing boundary signals and then move on to a more general case of periodic
signals.

3.2 Vanishing boundary signals

A signal where, |q(t)| → 0 faster than any polynomial as t →±∞, has an NS of the type
shown in Fig. 3.2. The NS consists of some eigenvalues with their spectral amplitudes, called
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Fig. 3.2 Nonlinear spectrum of a signal with vanishing boundary condition.

the discrete spectrum, plus one continuous spectrum. This continuous spectrum lies on the
real axis, for the vanishing behaviour of the signal guarantees the existence of a bounded
solution of the Zakharov-Shabat system (ZSS) for real spectral parameters, more on this in
Chapter 2. The discrete spectrum depicts the solitonic part of the signal while the remaining
part, the radiating components, are described by the continuous spectrum. A soliton, then,
can be defined as a signal with only a discrete spectrum as its NS. Both these spectrums can
be used as data bearers, and both are necessary, in general, in the DBP scheme [76].

3.2.1 Digital back propagation using NFT

Before anything, NFT (or inverse scattering transform (IST)) is a method to solve the NLSE
given a boundary condition. Within the limits of validity of the NLSE, the received signal is
a snapshot of a solution to the NLSE. This is regardless of how much the dispersion and Kerr
nonlinearity distort the transmitted signal. The received signal may be changed beyond what
can be recognised by a receiver that is designed for linear channels. A boundary condition
fully determines the solution, and therefore, given the received signal, it is possible to find the
input signal to the fibre. This scenario is in fact back propagating the signal to the receiver
which is usually done by numerically solving the NLSE using a SSF method [13, 15]. DBP
suffers from a high computational complexity and susceptibility to the nonlinear noise-signal
interaction [16]. Therefore, other methods like combining linear distortion compensation
and nonlinear phase rotation, Volterra equalisation, and optical phase conjugation (OPC) are
preferred.
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In [80] a back-propagation scheme using NFT is proposed, in which at the receiver,
the NS of the received signal is calculated through a direct transformation routine (in this
work Ablowitz-Ladik). This NS is then back-propagated in the nonlinear Fourier domain
according to the relations mentioned in Section 2.5. This evolved NS is then used in an
inverse transformation routine to construct the signal which is supposedly the one that is sent.
The reconstructed signal is sent to a conventional receiver. In this application of the NFT,
one needs to calculate both the discrete and continuous spectrum and consider them both
in the inverse transformation stage. However, in this study, the considered fibre has normal
dispersion to avoid the existence of solitons, so the direct and inverse transformations only
include the continuous spectrum. For the anomalous dispersion, by assuring that the signal
does not have any solitonic component, some simulation results are presented showing a
better performance in comparing to a digital back-propagation scheme with 4 steps per span
for a 100 Gb/s QPSK OFDM signal up to 4000 km [80].

One of the constraints of this proposed system is the emergence of solitons due to the
integrability breaking nature of the inevitable additive amplified spontaneous emission (ASE)
noise. Since at the receiver, only the continuous spectrum is taken to account, this energy
transfer from the continuous spectrum to the discrete one leads to a loss in the effective
SNR [MK1, MK2]. Another problem in such a system is the energy-dependence of the
accuracy of the NFT calculations.

3.2.2 Modulating discrete/continuous spectrum

The first example of an NFT-based communication system was a simple eigenvalue commu-
nication scheme in which the data is mapped on the eigenvalues of a sech signal [74]. The
number of degrees of freedom to carry data is quite limited in this system. The next step to
improve the amount of information to be carried by the NS can be the modulation of the
so-called spectral amplitude attributed to the eigenvalues [81–84]. In [82] the achievable
mutual information (MI) of such a system is studied where a MI of around 10 bits/symbol is
achieved over an ideal link of 725 km with for a 64-PSK modulation of the spectral amplitude
of two eigenvalues. When working with signals with only the discrete spectrum, we suffer
from small spectral efficiency due to a sizeable time-bandwidth product of the signal [85].
The usage of the continuous spectrum can offer a solution to the efficiency problem. The
application of nonlinear continuous spectrum (borrowed from some popular linear systems
like OFDM or Nyquist) has been studied and experimentally scrutinised in the last few
years [79, 86–89]. Another advantage of this system is the possibility of pre-compensating
the fibre dispersion which halves the required guard intervals, hence, increases the achievable
spectral efficiency [90]. This approach, has helped us to increase the resulting capacity of
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NFT-based systems. Moreover, unlike the eigenvalue communication in which the fibre
needs to be with anomalous dispersion, this system can perform in a normal dispersion re-
gion [91, 92]. A limiting characteristic of NFT-based communication for vanishing boundary
signals is the fact that the signal duration is not well controllable, especially when dealing
with continuous spectrum. However, it turns out that the signal width is limited to the width
of the inverse Fourier transform of the scattering coefficient [93]. Therefore, modulating
this function and controlling the duration of its time domain "image" leads to a signal with
pre-determined duration. In this method, instead of modulating the continuous spectrum,
one can map data on the b function. Another benefit of modulating the b function is that
the impact of noise is smaller [94]. This method is experimentally demonstrated and it has
been shown that the record high data rate of 100 Gbps can be achieved as a result of the
controlled signal duration and also due to the lower noise impact on the data-carrying part of
spectrum [94].

The most general case in which a signal is constructed from an arbitrary NS with
continuous and discrete spectrums will offer higher data rate and spectral efficiency. A series
of papers have studied and experimentally demonstrated the achievable data rate of a system
which fully implements the NS to convey data [95–98].

3.2.3 NFT in dual-polarisation systems

By means of the NFT, we can find solutions to the NLSE describing the light propagation
in one polarisation. Using NFT attributed to a single polarisation on two polarisations
independently, although providing higher data rates, introduces some mismodelling error [91,
99]. However, the formalism of the dual polarisation NFT has been known since the mid of
1970s as well: the Manakov equations govern the evolution of the envelope of the electric field
in an SMF (in a leading order approximation) with random birefringence for two polarisations,
and it is shown that these equations are integrable through the IST (NFT) [100, 101].

Implementing NFT in a dual-polarisation communication system was studied when the
NS consists of only the discrete spectrum [102]. In this work, an error-free transmission up
to 370 km is realised. The signal is constructed using the so-called Darboux transformation
and the data is mapped on the spectral amplitudes [103]. The continuous spectrum for
a dual-polarisation transmission is used in [104] and is stated that even considering the
polarisation-mode dispersion (PMD) the overall BER does not deteriorate so much and the
data rate doubles compared to a single-polarisation transmission. These results are verified
through experiment in [105]. In a recent work, a record spectral efficiency of 7.2 bit/s/Hz
in a dual-polarisation NFT-based system with b−modulation is reported [106]. A dual
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polarisation system with both discrete and continuous spectrum modulated and also using
NFT for a multi-mode fibre communication is the next step along this path.

3.2.4 Signal processing tools in the nonlinear spectrum

The most interesting characteristic of NFT and the prominent reason to modulate the NS is
the fact that the evolution of the NS is linear as opposed to the signal evolution in the time
domain. This means that the highly nonlinear medium, i. e. the fibre, can be transformed into
a linear channel, where both nonlinearity and dispersion reduce to a simple phase rotation
of input NS. This, in turn, makes it possible to implement a rich collection of algorithms
borrowed from the conventional linear communication. Of course, the linear evolution of the
NS has some conditions and constraints such as the impact of noise, higher order dispersions,
fibre loss, etc.; however, some previously defined approaches of the linear communication
are still effective.

One of the challenges attributed to an NFT communication system design is that the nu-
merical errors coming from the NFT processing computation have a considerable dependence
on the signal power. Signal power, in turn, is determined by the NS of the signal; hence,
the numerical errors highly depend on the location of eigenvalues that defines the resulting
signal power. A natural way to deal with such a problem, especially in one symbol per signal
communication, is the constellation shaping in which the configuration of the transmitted
symbols depends on the contribution of different points in the overall system performance.
In a similar approach–the probabilistic shaping– the symbols with the highest contribution to
the overall noise would be chosen less frequently [107] and [MK3].

Another problem is the specific impact of noise in a nonlinear inverse synthesis (NIS)
system [79, 86] in which no solitonic component is present: the noise can induce new
elements in the discrete spectrum. This phenomenon leads to an energy partition between the
spurious NS part and the data carrying continuous spectrum, hence, reducing the effective
SNR. This problem can be alleviated by introducing filtering in the NS domain where
the unwanted solitonic components of the NS are removed. These spurious elements can
further lead to an "absorption" of more energy from the continuous spectrum. Removing
these components, although decreases the signal power, can improve the overall system
performance [MK1,MK2]. One explanation for this phenomenon is the impact of additive
ASE noise which not only influence the integrability of the underlying system, but also, when
aggregated, can evolve into some solitonic components. To fully understand this effect and
other impacts of noise in an NFT-based system more investigation should be carried out.

An intriguing possibility in the NS domain is implementing a linear equaliser in addi-
tion to the simple phase rotation at the receiver. For instance, it has been shown that the
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noise-induced shift of different (complex) frequency components in the NS domain in a
communication system based on the eigenvalues are correlated [83]. This means that one
can use the information carried by all elements of the NS to rectify some distortions in this
domain [83]. In [83], a simple linear minimum mean-square estimator (LMMSE) has been
introduced in the NS domain and a noticeable improvement is achieved.

3.2.5 Capacity of an NFT-based system

From the information theory point of view, the capacity of the fibre does not depend on how
we approach the channel model, i.e. the NLSE in our case. This means, we can implement
the IST formalism (i.e. the NFT-based approach) to evaluate the capacity of the fibre, as long
as there is a one-to-one relation between the signal in time domain and its NS. Thus, we
can evaluate the MI quantities from the NS. However, the projection of the additive white
Gaussian noise (AWGN) onto the NS modes results in a different effective noise affecting
the dynamics inside the nonlinear Fourier domain. Therefore, to study and compare the
achievable data rate of an NFT-based communication system with a conventional one, it is
necessary to model the noise in the nonlinear Fourier domain.

The AWGN ASE noise emerges as an additive random process in the potential of the
ZSS. In the numerical study of the NFT, in order to calculate the scattering data, we can
iteratively find the consecutive values of the eigenfunctions in time. This system can be
perceived as a linear dynamical model based on which a Kalman filter can be designed. Thus,
statistical analysis of ZSS and scattering coefficient in the presence of this noise term can be
rendered up to the second order characteristics. This is done for a vanishing boundary NFT
with continuous and discrete spectrums [108].

In another view, a perturbative analysis is applied to model the noise in the nonlinear
Fourier domain for an NIS system [24]. In that work, the autocorrelation function of the noise
in the nonlinear domain is estimated. For that, based on a perturbation analysis, the evolution
of the continuous spectrum perturbed by noise is used. In this evolution, the projection
of noise on the elements of the Jost solutions to the ZSS plays the role of noise. The Jost
functions are calculated for the unperturbed system (noiseless) and then used to find the
power of the projected noise. A lower bound for the capacity of an OFDM and a Nyquist
system in the large distance limit is derived. It is also made evident that the NFT-based
communication system can be considered as a crosstalk-free communication in the leading
approximation. It is finally shown that there is a lower bound for the capacity per symbol
of 10.7 bits per symbol in a 500 GHz communication over a 2000 km link [24]. Other
works have also utilised a perturbation approach to calculate the statistical characteristics of
a discrete spectrum transmission [75, 109], capacity of a soliton communication [110, 111],
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and the capacity of a continuous spectrum communication [89] and [25]. In the latter, a
long-haul approximation model for a similarity solution to the NLSE is considered. It has
been shown that the achievable data rate of an NFT-based system can surpass the one for
a WDM system for a given signal power and bandwidth where an upper bound of 10.5
bits/s/Hz for the spectral efficiency is predicted [25]. This predicted upper bound has not
been realised, in fact, the demonstrated spectral efficiency is as low as 1.54 bits/s/Hz which
makes an NFT-based communication not spectrally efficient in the current form [25]. Spectral
efficiency shows the amount of information per the total degrees of freedom T ×Ba where T
and B are the time duration and signal bandwidth, respectively, while the channel capacity
for a band-limited signal shows the achievable error-free information rate using a particular
bandwidth.

An entirely different approach in the statistical analysis of the NS is taken in [112, 113].
In these works, the concept of density of states (or density of eigenvalues) as a descriptor
of the statistical characteristics of the eigenvalues of the ZSS is considered. The Fokker-
Planck equation is solved for the probability distribution of the scattering parameters in the
stationary state and the density of eigenvalues is obtained using the Lyapunov exponent in
the generalised Thouless formula. Results for a random Gaussian input is reported.

3.3 Comparing vanishing boundary and periodic NFT

Both kinds of solutions to the NLSE; finite-gap and decaying, are determined by a family
of parameters called the NS (see Figs. 3.2 and 3.3) which provides them with the same
number of degrees of freedom. Their communication characteristics, however, can make a
considerable difference in terms of performance, computational complexity of the numerical
routines, etc. Although the vanishing boundary NFT has been more widely studied and
implemented, it has some drawbacks which suggest resorting to the more mathematically
demanding PNFT. Here we explain some advantages of the PNFT over the conventional one;

• A periodic signal is confined in time in its period, unlike a vanishing signal where to
have acceptable level of accuracy a significant number of samples need to be gathered
at the decaying wings. This in fact, improves the spectral efficiency of the system.

• A periodic solution can be constructed with a predefined signal duration.

• Using cyclic extension, the processing window at the receiver is as large as the data
bearing part of the signal, unlike the vanishing signal for which the broadened window
(due to the chromatic dispersion) is to be processed. The reason is that a periodic in
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Fig. 3.3 Nonlinear spectrum of a finite-gap signal where green dots represent the main
spectrum and segments of the continuous spectrum are shown.

time solution to the NLSE is periodic at different distances from the transmitter with
the same period, and all the information of the signal is contained in one period of
it. This, particularly in wideband communication, can lead to a great computational
complexity reduction, see Fig. 3.4.

• By providing a seamless transmission and keeping the signal power fluctuation low,
the hardware implementation costs will decrease.

• The computational complexity of the inverse transformation stage for a finite-gap
signal can be significantly smaller than the vanishing boundary counterpart. The best
inverse transformation algorithm for a vanishing signal is the one reported in [73] with
O(N log2 N) flops while as will be explained in Subsection 2.4.2, the computational
complexity of constructing a periodic signal by solving an RHP scales only linearly
with the number of time samples. In our method, calculations are done for each
time sample independently which makes it possible to parallelise the calculations and
decrease the consumed time drastically.

From the functional analysis point of view and in terms of the NS, there are a few differences
between the conventional and periodic NFT. Both spectrums consist of a continuous and a
discrete part. The discrete part comprises a finite number of isolated complex numbers which
for the focusing NLSE are in complex conjugate pairs. The continuous spectrums are where
the main difference shows itself. Thanks to the fast decay of the signal in the conventional
NFT, the real line is the continuous spectrum. The location of the continuous spectrum is
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Fig. 3.4 Using cyclic extension, only the original data-bearing part of the signal requires to
be processed at the receiver in PNFT.

independent of the location of the eigenvalues in the upper half plane. A finite-gap solution
can have multiple segments in its continuous spectrum whose endpoints are the eigenvalues
in the discrete spectrum, see Figs. 3.2 and 3.3. As pointed out before, more segments in
the continuous spectrum does not mean more degrees of freedom but rather a different
configuration of spectral components.

3.4 Periodic NFT

In a communication system, a proper signal with desirable communication properties needs to
have at least one (real) degree of freedom to carry data. Keeping everything at this minimum
level of requirement, the inverse transformation stage can be reduced to some particular cases
where the calculations are straightforward. In this subsection we propose a few approaches
to construct a periodic signal and modulate a parameter (invariant or with linear evolution
along the fibre). This descriptions here are brief but for the cases for which some simulation
results will be presented, more explanations can be found to some length in the next section
and appendices.

3.4.1 Analytical formula

The fastest way to construct a periodic signal given its NS is when there is an explicit
analytical expression relating the signal in the time domain to its NS through elementary
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Fig. 3.5 The two-phase signal in Eq. (3.1) with λ1 = 1.2 i (see the explanations in the text)
and the time period T0 = 3 defining the remaining values λ2,3 (left). The corresponding main
spectrum is shown in the right panel.

functions. Such an expression exist only for a few simple and even trivial signals such
as a plane wave, a monotonic signal, etc. However, another simple periodic signal which
provides one real parameter to modulate after determining the signal duration can be made
as below [114]

q(t,z) = A
cosh(φz− iσ)+Bcos(ξ t −α)

coshφz+Bcos(ξ t −α)
eiNz, (3.1)

where the parameters are calculated through the following relations

A = ℑλ1, N =−4ℜλ
2
1 −2ℑλ

2
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1 |)
2
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1 |
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1
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,
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√
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]
,

ξ =−2ℜ

√(
λ ∗

3 −λ1
)(

λ ∗
3 −λ ∗

1
)
, (3.2)

where ℜ and ℑ are real and imaginary part of the argument, respectively. The main spectrum
of this signal consists of three points (in the upper half plane) where two of them approach
each other and make an almost degenerate point. A degenerate point does not determine
the shape or behaviour of the signal but in the case of perturbation can split up into two
non-degenerate ones. The new non-degenerate eigenvalues now can change the signal. This
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Fig. 3.6 a) The main spectrum of a plane wave with one simple eigenvalue (blue cross)
and two degenerate (red cross) ones, b) splitting up the degenerate eigenvalues into two
non-degenerate ones, and c) a QAM constellation from which ε1,2 can be drawn.

is in fact, an explanation for the emergence of rogue waves [35, 43, 61]. Later on, we will
use this separation to transfer data, see Subsection 3.4.2.

After making sure the signal period is determined, there is only one real parameter to
map the data on, ℑλ1 = −iλ1 (or ℑλ3). An example of such a signal with its NS (main
spectrum) is shown in Fig. 3.5. Since this signal can only provide one real degree of freedom,
the minimum distance between constellation points is relatively small, leading to a high
BER [MK4]. Another limitation of this approach is the lack of control over the signal power.

3.4.2 Perturbed plane wave

The problem of the method explained in Subsection 3.4.1 is that there is not enough degrees
of freedom. As mentioned in the previous subsection, more degrees of freedom emerge when
a degenerate (double) point splits into two non-degenerate (single) ones. So, what we need is
a signal with a degenerate point in its main spectrum and a proper perturbation. The most
simple solution to the NLSE is the plane wave with amplitude A in a time window of length
T0. Such a signal has a simple main spectrum consisting of a simple eigenvalue at λ = Ai
and some double eigenvalues at

λn =

√(
πn
T0

)2

−A2, n <
AT0

π
, n = 1,2, . . . . (3.3)

Let assume that the signal has two purely imaginary degenerate eigenvalues, λ1,2 shown
in Fig. 3.6a. Introducing a perturbation, each of these two eigenvalues split up into two
non-degenerate points, see Fig. 3.6b. This new signal has two complex degrees of freedom
in the aperture between these new points, ε1,2. Therefore, one can choose ε1,2 from a QAM
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constellation and transfer data. At the receiver, given only one ε is used at the transmitter,
the main spectrum is calculated and ε is obtained.

Now that we have chosen the data bearing ε and hence, the two simple eigenvalues, the
next step is to find the proper perturbation leading to this NS, or in other words, to perform the
inverse transformation. In that regard, one needs to follow the steps explained in Chapter 2
from the given main spectrum which entails calculating the Riemann matrix, the vector of
frequencies and other constants [43]. However, at the limit where ε is small, this procedure
can be simplified and we have [43, 61]

V ≈−2/π

√
A2 +λλλ ′, U =−2λλλ

′⊙V,

B j j =
1
2
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V 2

j

ε j

)
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2
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V)⊙ (λλλ ′+
1
2

V)

]
(3.4)

where λλλ ′ is the vector of degenerate eigenvalues of the plane wave with elements λ ′
j, εεε is

the vector of apertures between new eigenvalues, σσσ is the vector of Riemann sheet indices
consisting of ±1s, Vjs are elements of V and ⊙ is the element-wise multiplication. In fact,
for small modulation amplitudes εεε , in the first order in |ε j| we have

q(t,0) = A+2∑
j
|ε j|cos(Vjt +a j)+O(ε2). (3.5)

for some phases a j. This signal is close to a more general family of periodic solutions to the
focusing NLSE explained in details in appendix D. The proposed signal can indeed provide
us with a 2-dimensional constellation and it also has this potential to render a multi-symbol
per signal transmission which helps improve the spectral efficiency [MK5, MK6, MK7].
Another advantage of such an approach is that calculating the parameters is fast and there
is no need to perform any contour integration. Furthermore, since there are three points in
the main spectrum of the received signal, one can design an equaliser using the additional
information in the non-data-carrying points to reduce distortion in the nonlinear Fourier
domain [83]. However, to increase the minimum distance between constellation points or
increase the size of it, it is necessary to enlarge ε which leads to a rise in the approximation
error of Eqs. (3.4). Therefore, the bandwidth, signal power and the system performance are
limited, more on this limitation in appendix D and [MK6, MK7].
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3.4.3 Simplified algebro-geometric approach

To overcome the limits of choosing the discrete spectrum entailed from the approximation
used in Eqs. (3.4), we need to define a basis of holomorphic differentials and canonical
cycles on the Riemann surface made from the discrete spectrum and calculate the Riemann
spectrum using them. Having the latter, the finite-gap solution can be constructed as the ratio
of two Riemann theta functions, see Chapter 2. Some provision should be made to assure the
periodicity of the solution which enforces some symmetry in the discrete spectrum in simple
configurations [115, 116].

One of the drawbacks of this method (shared with the perturbed plane wave approach
of Subsection 3.4.2) is that it requires calculating the computationally expensive Riemann
theta function, see appendix B. To avoid that, we can split the pertinent Riemann surface
into two coverings with simpler architecture and replace the Riemann theta function with
Jacobi elliptic functions, for details see [117] and appendix A. This entails a special form
of discrete spectrum with three complex conjugate pairs. For this choice of eigenvalues in
the discrete spectrum, this setting provides us with one complex parameter in the discrete
spectrum and two real initial phases (as the auxiliary spectrum) to convey data in the fibre.
The redundancy in the discrete spectrum makes it possible to introduce some equalisation
in the nonlinear Fourier domain to rectify the impact of noise. Here we only consider the
complex parameter in the discrete spectrum and attribute a QAM symbol to it. Simulation
results and more details can be found in Section 4.2 and Subsection 2.4.1.

Another periodic solution to the NLSE, obtained through the algebro-geometric ap-
proach but with the Riemann theta function avoided, is a 1-genus solution derived in [118].
Like [117] and Eq. (A.7), this one also presents a closed-form solution using Jacobi elliptic
functions. Since this approach of constructing periodic signals is not generalisable to NS with
a higher number of cuts, we will not consider them unless for evaluations or proof-of-concept.

3.4.4 1-cut Riemann-Hilbert problem

The configuration of the proposed system in the previous subsection is computationally
favourable but is not expandable in a sense that only one QAM symbol can be mapped onto
the NS. A more general approach without any constraints and limitations on the configuration
of the discrete spectrum is to solve an associate Riemann Hilbert problem numerically. A set
of complex conjugate pairs of eigenvalues (and initial phases as the auxiliary spectrum) are
given based on which some cuts in the complex plane and jump matrices are defined, see
Subsection. 2.4.2. As the simplest non-trivial example, here we consider a 1-cut spectrum
giving rise to a 1-gap solution to the NLSE [MK8]. Some provision should be made to make
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this finite-gap solution a periodic one which will be explained later. In this setting, two
real parameters are available on which a QAM symbol can be mapped. More details on the
calculations and definitions can be found in Subsection. 2.4.2. The simulation results for a
communication system based on this approach are presented in Section. 4.1.

3.4.5 Multi-cut Riemann-Hilbert problem

The previous subsection proposed a 1-cut solution able to carry one QAM symbol per signal.
A natural generalisation of this approach is to use more cuts. Unlike the algebro-geometric
approach in which adding another cut leads to an exponential increase in the computational
complexity of the transmitter, in using an RHP as the inverse transformation stage, the
numerical burden does not change. The only concern is to keep the accuracy, which depends
on the number of spectral points defining the cuts, at an acceptable level.

Like other cases, special care should be taken to make the signal periodic. In a multi-
cut solution, this entails numerically solving a system of linear equations to have a set of
commensurable frequencies, i.e. C f s in Eqs. 2.42. This puts some limitations on the location
of the eigenvalues in the complex plane. In this thesis and the simulations of Chapter 4, we
do not consider a multi-cut solution.

Concluding what has been said above, there are a few configurations for applying NFT
in fibre-optic communication. So far, in most of these settings, the signal is considered to
decay fast with time. Impressive as the results of such a setting are, periodic signals can be
advantageous concerning some communication-related characteristics of the signal such as
computational complexity of the transmitter and the size of the processing window at the
receiver. Like the case for the conventional NFT, PNFT comes in various settings and forms
for a communication system. In this chapter, some of these settings are explained but to fully
understand such a system, we need to know what the NFT is. This is the subject of the next
chapter.





Chapter 4

Simulation results

In this section, simulation results for two systems with signal (2.41) in subsection 2.4.2 and
(A.7) in subsection 2.4.1 in a fibre link with ideal Raman amplification and in a link with
lumped amplification (using EDFA) are shown. The block diagram of the communication
system is depicted in Fig. 4.1. The chosen fibre characteristics are those of a standard single
mode fibre: α = 0.2 dB/km, β2 =−20 ps2/km and γ = 1.3 /W/km, and the span length of
80 km is considered. For the links with Raman amplification and EDFA the noise power
spectral density, NR

ASE and NE
ASE respectively, are given by the expressions [12]:

NR
ASE = αLhνsKT , NE

ASE = (eαL −1)hνsnsp, (4.1)

where L is the fibre length, hνs is the photon energy, nsp ≈ 1 and KT ≈ 1.13 are the
amplification parameters. In the simulations, when the lumped amplification (with EDFA) is
used, it is necessary to adopt a path-average model for the fibre link to take into account the
impact of periodic loss and amplification in the framework of NFT (PNFT). Using such a
model, we apply the adjustment explained in [MK10] to optimise the location of amplifiers
to improve the performance of an NFT-based communication system. To overcome the inter-
symbol interference (ISI) caused by the chromatic dispersion-induced signal broadening, we
append the signal with cyclic extension in time domain, Fig. 4.2. Each signal, carrying one
QAM symbol, is extended for the value greater than the channel memory calculated from the
signal bandwidth ∆ν [119]:

µ ≈ 2πL|β2|∆ν . (4.2)
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Fig. 4.1 The schematic of a communications system with the DSP processing modules at
transmitter and receiver. In particular, for our research the DSP at the transmitter side includes
the RHP solution or the reduced algebro-geometric procedure, while at the receiver side the
processing is described in Appendix C is used.

4.1 A communication system based on the RHP with a 1-
cut spectrum

The simplest non-trivial example for a finite-gap solution is a signal with four eigenvalues
in the main spectrum, λ0,1 and their complex conjugates. A 1-genus solution can provide
enough degrees of freedom to first of all, impose periodicity on the signal, and then have
control over the time duration (period) of it. In this section, we first present the procedure
of constructing a 1-genus solution following the steps of Subsection 2.4.2. After that, the
numerical errors coming from the direct and inverse transformation is discussed, and based
on these results, the approach to modulate the NS is explained. Using such a signal, a
communication system is advised and its performance is evaluated via quality factor, BER
and achievable MI.

4.1.1 Constructing the signal

A 1-genus spectrum, with a main spectrum shown in Fig. 4.3, consists of four eigenvalues.
Since we only seek solutions to the focusing NLSE, these eigenvalues are two complex
conjugate pairs. We consider the cuts as the vertical lines connecting conjugate pairs and
define two jump matrices (2.40) as
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Fig. 4.2 Adding cyclic extension.

Fig. 4.3 The NS of a 1-gap solution and the defined oriented cuts.

J0 =

[
0 i
i 0

]
, J1(t,z) =

[
0 ie−i(C f

1 t+Cg
1z+φ1)

iei(C f
1 t+Cg

1z+φ1) 0

]
, (4.3)

where C f
1 and Cg

1 are obtained from Eq. (2.42) and Eq. (2.43) and φ1 is a free parameter
which can also be used to carry data but is set to zero here. The finite-genus solutions are
quasi-periodic in t but not, in general, periodic. In order to arrive at periodic NLSE solutions,
the spectral data {λ j,λ

∗
j }N

j=0 have to satisfy a system of transcendental equations ensuring

that all the frequencies C f
j , j = 1, . . . ,N supplemented by f0, see (2.41) and (2.42), are

commensurable [44].

For our simple 1-genus case, N = 1, the problem of ensuring periodicity is greatly
simplified: it is sufficient to ensure that f0 = 0 in Eq. (2.41), which, in turn, can be done
by simultaneously shifting all the spectral data points {λ j}N

j=0 along the real axis. This a

direct result of setting f0 = 0 using Eq. (2.44) and finding C f
j s using Eqs. (2.42). Thus a

preliminary step in the construction of a genus-1 solution consists in the adjustment of the
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main spectrum: given {λ̂ j}1
j=0, the real-valued shift is computed as follows:

f̂0 =

∫
Γ̂1

ξ dξ

ŵ(ξ )∫
Γ̂1

dξ

ŵ(ξ )

− 1
2

1

∑
j=0

(λ̂ j + λ̂
∗
j ) (4.4)

with ŵ(ξ ) = ŵ+(ξ ), where ŵ+(ξ ) is the limiting value from the (+) side of Γ̂1 (according to

the orientation shown in Fig. 4.3) of the function ŵ(λ ) =
√

∏
1
j=0(λ − λ̂ j)(λ − λ̂ ∗

j ) defined

with the cuts Γ̂0,1 along the arcs (λ̂0,1, λ̂ ∗
0,1), where the branch is fixed by the condition

ŵ(λ )∼ λ 2 as λ → ∞. Then the new points λ j, corresponding to a periodic genus-1 solution
with f0 = 0 (see (2.41)), are defined by: λ j = λ̂ j + f̂0. Now, using RHSolve to find a matrix-
valued function M in the RHP (2.39) analytic on C\Γ where Γ = {Γ0 ∪Γ1} and by taking
into account the asymptotic behaviour of M, we can find M1 where

M(t,z,λ ) = I+M1(t,z)λ−1 +O
(
λ
−2) as λ → ∞.

The solution is then retrieved easily from

q(t,z) = 2i(M1)1,2(t,z).

4.1.2 Numerical accuracy of the direct and inverse transformation

There are two sources of numerical error in the PNFT formalism with different dependence
on signal and algorithm characteristics; inverse transformation which here shows itself in
calculating integrals and solving the RHP, and the direct transformation which in our work
is performed by an Ablowitz-Ladik algorithm. While the former can be controlled via
changing the spectral resolution (∆λ ) as the step size of the points defining the contours,
the latter is directly related to the number of signal samples in the time domain. To show
this, the back-to-back (B2B) error of the system is calculated for different number of points
in the spectral domain and time domain and is shown in Fig. 4.4. In this figure, the chosen
eigenvalues are ±1.4+0.4i before their real part being shifted to make a periodic solution.
Error is defined as the sum of the distances of expected points and the numerically calculated
ones.

4.1.3 Choosing eigenvalues

In this setting, there are four parameters among which two are used to set the period of the
signal and the other two are the real degrees of freedom. In this subsection, we discuss
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Fig. 4.4 The numerical error in a B2B scenario as a function of the number of time samples,
N, and the number of spectral samples, n.

which two of these to use to modulate data. In choosing the eigenvalues we consider a few
caveats; first, the numerical errors and the impact of the ASE noise depend on the location
of the points. Second, as we intend to control the signal power and signal duration, some
constraints should be taken into account.

The signal bandwidth and power depend on the location of the eigenvalues as is shown
in Fig. 4.5. From this figure one can conclude that the real and imaginary parts of the
eigenvalues determine the signal bandwidth and power, respectively. Therefore, since the
numerical errors depend on the location of the eigenvalues (see Fig. 4.6), the system is
likely to deliver different performances for different signal powers and bandwidths. For two
cases where ℑλ0 = ℑλ1 and ℑλ0 = 0.7, the numerical error against ℑλ1 and ∆ℜ(λ0 −λ1)

is shown in Fig. 4.6. The imaginary part of the eigenvalues (directly related to the signal
power) has the dominant role in changing the numerical errors. In Fig. 4.6b, and where the
difference between the real parts are small, it seems like the error depends on the real part of
the eigenvalues as well. However, this can be explained by noting that at small ∆ℜ(λ0 −λ1)

the signal period becomes larger and the time resolution drops, hence, the numerical accuracy
deteriorates. Therefore, as long as the ∆ℜ(λ0−λ1) or N are large enough, it is the imaginary
parts of the eigenvalues who determine the signal power and the numerical error. On top of
these, the one-to-one relation between the NS and the signal implies that the signal power
is only determined by the location of the eigenvalues. Therefore, to have a communication
system with various signal powers (to find the optimum launch power), those two parameters
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Fig. 4.5 a) signal power (a.u. logarithmic scale), and b) signal bandwidth (a.u. logarithmic
scale) verses the difference between the real parts of the eigenvalues and the imaginary part
of the eigenvalues when ℑλ0 = ℑλ1, and c) signal power (a.u. logarithmic scale), and d)
signal bandwidth (a.u. logarithmic scale) verses the difference between the real parts of the
eigenvalues and the imaginary part of the eigenvalues when ℑλ0 = 0.7. ∆ℜλ = |ℜλ1−ℜλ0|
and ℑλ in the vertical axis is ℑλ1.
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Fig. 4.6 The numerical error as the absolute difference between the expected and calculated
eigenvalues, in a B2B scenario showing the influence of the imaginary parts of the eigenvalues
(signal power) on the performance when a) ℑλ0 = ℑλ1, and b) ℑλ0 = 0.7. ∆ℜλ = |ℜλ1 −
ℜλ0| and ℑλ in the vertical axis is ℑλ1

should be chosen to carry data that make it possible to change the signal power while keeping
other signal characteristics fixed. The best choice seems to be the imaginary parts of the
eigenvalues.

A complex QAM symbol, drawn randomly according to the data, makes two imaginary
parts of the eigenvalues. Based on these imaginary parts and taking into account the signal
period (and bandwidth), the real parts of the eigenvalues are determined. The imaginary part
of the points plays an insignificant role in determining the signal period, hence, keeping the
signal period for different imaginary parts of the eigenvalues leads to almost identical real
parts.

An advantage of choosing the imaginary parts of the eigenvalues to map the QAM
symbols on is that the constellation made in this way has a special structure. Thanks to the
dependence of the signal power to the imaginary part of the eigenvalues, the bottom left
point in the constellation attributes to a signal with the lowest power. As we move from
this point to the right or up, the signal power increases. Since the fibre link contains some
noise-producing components such as amplifiers, there is a lower bound on the signal power
below which the receiver can not distinguish a data-carrying eigenvalue from a spurious one
coming from noise. Therefore, To increase the minimum distance between the constellation
points (in order to decrease the BER), one can only add points with signals with higher
powers. Whether this expansion of the constellation leads to a better performance needs to be
investigated for the numerical errors and other imperfections of the system have a nonlinear
relation with the signal power as well. At the receiver, the main spectrum of the signal is
calculated which consists of two eigenvalues, only to recover the QAM symbol made by the
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imaginary parts of the calculated eigenvalues. These two eigenvalues have different real parts
(in this example the same value with opposite signs) and easily discernible.

4.1.4 Transmission simulation results

In our simulations, the symbols are transmitted in “bursts” of 4M samples, where M is the
size of the constellation. The burst is formed as follows: several signals, modulated using
random data, are cyclically extended and put together. At the receiver, a simple phase rotation
of the constellation is used to reverse the residual impact of ISI when the broadening is
slightly larger than the cyclic extension. Fig. 4.7c depicts the Q2-factor calculated from
the error vector magnitude (EVM) for four systems with different constellation sizes in a
880 km link. The Q2-factor is averaged over the number of symbols in each burst and over 28

runs. The symbol rate is 0.8 GSym/s; it can be increased by increasing the signal bandwidth
(changing the real part of the eigenvalues). Fig. 4.7 shows that there is an optimum power
at which the Q2-factor is maximum. One reason for a decline in the system performance at
higher powers is the dependence of numerical accuracy on power, as is evident from Fig. 4.6.
Increasing the sampling rate and the accuracy of the arcs discretisation can improve the
performance. This is shown, for a system with oversampling factors 8−64, which are much
smaller than the one used to obtain the results in Fig. 4.7, and for a 2 Gsym/s communication
up to 1000 km in Fig. 4.8. As can be seen in Fig. 4.8, the improvement obtained from
increasing the number of samples diminishes for larger figures which conforms to the results
shown in Fig. 4.4.

Had the governing system been an integrable one, changing the fibre parameters, the
Kerr nonlinearity parameter, γ , among them, would not have changed. However, due to the
imperfections of the NLSE model coming from a periodic loss and gain and also the impact
of ASE noise in disturbing the integrability, one can still expect the system performance to
deteriorate for higher nonlinearity. This is shown in Fig. 4.9. In Fig. 4.9 increasing γ for a
4QAM system with a data-rate of 0.8 GSym/s in a 880 km link (also shown in Fig. 4.7) leads
to a slight reduction in the maximum achievable Q2-factor. The received constellations at
optimum power are shown in Fig. 4.7 a, b, d, and e. As explained before, the axes of these
scatter plots are the imaginary parts of the two eigenvalues in the discrete (main) spectrum of
the received signal, ℑλ0 and ℑλ1.

Fig. 4.10c portrays the dependency of the Q2-factor on the link length and the impact
of the particular amplification type: ideal Raman and EDFA. The close-to-ideal Raman
amplification can be realised with a reasonable degree of accuracy through the second-order
Raman pump [120]. In this figure, the signal power was set to −5 dBm, and the symbol rate
is 1 GSym/s. The received constellation is depicted at distances z = 580 km and z = 1120 km.
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Fig. 4.7 a) The 4-QAM receiver constellation at the optimum power, b) the 4-QAM receiver
constellation at power P = −13.1 dBm, c) Q2-factor for a 0.8 Gsym/s signal in a 880 km
link with EDFA and ASE noise for various sizes of constellation, d) The 64-QAM, and e)
the 16-QAM receiver constellation at the optimum power where the signal bandwidth is
BW = 4.8 GHz.
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Fig. 4.8 The impact of changing the number of time samples, N, in the overall performance
of a 2 Gsym/s system in a 1000 km link, showing that it is possible to improve the efficiency
by increasing the oversampling ratio at the expense of higher computational complexity.
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Fig. 4.9 The impact of changing the nonlinearity, γ in the overall performance of a 0.8 Gsym/s
system in a 880 km link. This graph shows that although in theory the performance of the
NFT-based communication is independent of the link parameters, fibre loss and additive ASE
noise influence the integrability of the system and cause the the optimum point to lower as
the nonlinearity parameter grows.

We see that the system performance deteriorates quickly at long distances due to the ISI
caused by the limited cyclic prefix duration. The performance can be improved by enlarging
the duration of cyclic prefix.

Another important object in communication systems’ design is the probability density
function (PDF) of the received symbols. Finding the PDF of the received symbols given
the transmitted ones is necessary to find the MI, channel capacity, and to design optimum
coding and detection strategies. Since there is still a lack of a mathematical understanding of
the behaviour of the PNFT spectrum quantities under the influence of optical noise [MK11],
here we rely on the empirical PDF coming from the histogram of the received symbols. For
a 1024-QAM signal, a 2D histogram of the received QAM symbols is plotted in Fig. 4.11
by using 29 transmissions of 4 ∗ 1024 symbols. The almost circular shapes in that figure
indicate that the received distribution is close to the circular Gaussian one where the real
and imaginary parts are almost independent. However, as it commonly occurs in other
communication systems based on the NFT [24], the characteristics of this Gaussian PDF
differ for symbols with different signal power. This can be seen in Figs. 4.11b and c where
the histogram of the small- and large-power parts of the constellation are shown. From this
figure, an increase in the standard deviation is apparent for the symbols (constellation points)
attributed to higher powers. These results are in agreement with the earlier ones reported
in [MK11] for a PNFT system with different processing type. This observation suggests a
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Fig. 4.10 a) The received constellation at 580 km, b) the received constellation at 1120 km,
and c) Q2-factor for a 4-QAM 1 Gsym/s signal with −5 dBm power against distance. We
used ideal Raman amplification (blue) and EDFA (red), Lspan = 80 km, adding ASE noise.

Gaussian mixture model for the received points λ̂ , the PDF of which we can write down as

P(λ̂ ) = ∑
λ∈Λ

pλ N(λ̂ ;λ ,σ2
λ
), (4.5)

where Λ is the set of points in the constellation, pλ is a probability function over Λ, and
N(λ̂ ;λ ,σ2

λ
) denotes a multivariate normal Gaussian distribution for the complex random

variable λ̂ with mean λ and a diagonal covariance matrix σ2
λ

I2.
One of the most important metrics of a communication system performance is the MI of

the transmitted and received symbols, here λ and λ̂ , respectively. Fig. 4.12 demonstrates the
behaviour of the achievable MI as a functions of the link length. This figure, when compared
with other discrete NFT spectrum communications systems such as eigenvalue and norming
constants-based communications [82], indicates the potential of the PNFT-based systems in
rendering a high spectral efficiency.

4.2 A communication system based on the algebro-geometric
approach

The algebro-geometric approach, explained in Subsection 2.4.1, suffers from the high com-
putational complexity of evaluating the multi-dimensional Riemann theta function (2.30),
see appendix B. In this section, an approach to reduce the complexity is suggested while
more details are left to appendix A.
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Fig. 4.11 a) A 2D histogram of the received constellation of a 1024-QAM system at distance
z = 680 km and signal power P =−5 dBm, and a close up for two parts of the constellation
attributed to b) the highest and c) the lowest signal power.
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Fig. 4.12 The achievable mutual information versus the link length.
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Fig. 4.13 A Riemann surface of genus 2 with three points of auxiliary spectrum.

4.2.1 Constructing the signal

For some especial cases of the NS it is possible to circumvent evaluating the Riemann theta
function and instead calculate simple Jacobi elliptic series. The 2-cut spectrum is shown in
Fig. 4.13 which consists of three eigenvalues {ξ0,ξ1,ξ2} = {−a+ bi,ci,a+ bi} and their
complex conjugates. To construct the signal with this NS we need to calculate the pertinent
contour integrals explained in Chapter 2 on a basis for canonical cycles which are shown
in Fig. 4.13b. Detail of the calculation and the way one can circumvent evaluating the
computationally heavy Riemann theta function is elucidated in appendix A. There are three
free parameters, a,b and c. The symmetry in the spectrum guarantees periodicity and the
signal period is mainly determined by the real parts of the points in the main spectrum.
Although changing the imaginary parts can only slightly vary the period, we numerically
find the best value for c to set the period of the signal to the exact predetermined value. For
a QAM symbol, ξ2 and consequently ξ0 is modulated and c is calculated so that the signal
period is the predetermined value. This is numerically done by integrating and calculating
the frequency 2π

A−
in (A.5).

The procedure of constructing the burst at the receiver is similar to the one explained in
Subsection 4.1. At the receiver, the NS is calculated and a and b are retrieved.

4.2.2 Numerical accuracy of the direct and inverse transformation

The numerical accuracy of performing the inverse PNFT (as explained above) and direct
PNFT [49] depends on the number of time samples, signal power, and the particular location
of eigenvalues. The B2B error without any random noise shows the dependence of the
numerical accuracy on the location of eigenvalues, Fig. 4.14. This error is defined as the
Euclidean distance between the transmitted and received eigenvalue. Simulation results show
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that the B2B error and the error at the receiver after a noisy transmission have similar patterns
with regard to their dependence on the eigenvalues location, which yet again, verifies that the
main contributor to the overall error is the numerical one for the PNFT.

As for the signal in Section 4.1, here, a Gaussian mixture model (4.5) of the channel
is considered, where the standard deviation, σλ , is estimated from the received points. As
mentioned before, σλ has the same pattern as the B2B error shown in Fig. 4.14, which in
turn, depicts a considerable variation between different points. This in fact, suggests that we
can apply a non-uniform probability distribution for the transmitted symbols, in which the
constellation points that contribute more to the overall error are used less frequently. Note
that, there is a trade-off here; exclusion of the eigenvalues with high contribution to EVM
leads to a better Q2-factor but reduces the MI. Hence, keeping the constellation size, M, and
the main spectrum, Λ, fixed, we optimise Pλ in (4.5) to have the maximum MI, I(λ̂ ,λ ). This
is numerically done for each signal power and link length.

4.2.3 Transmission simulation results

In the first set of simulations, entailed from the chosen eigenvalue set, the signal power is
P =−2.7 dBm. According to Fig. 4.15, P can be controlled through changing the location
of eigenvalues, for example by increasing ℑλ while keeping the signal bandwidth fixed.
Considering the signal power (Fig. 4.15 in arbitrary units for different locations of the
eigenvalues) along with the B2B error (Fig. 4.14), one can realise that the B2B error does
not directly depend on the signal power. Therefore, the average launch power does not vary
with uniform or non-uniform symbol allocation if the distribution is determined with respect
to the B2B error. According to each symbol, a periodic signal is produced following the
steps in [117] and appendix A, and cyclically extended to the size of chromatic dispersion
memory. The burst of symbols then is formed by packing several signals and sent to the link
with lumped amplification and ASE noise.

At the receiver, the main spectrum of the signal is calculated by the PNFT [49] and
the transmitted data is retrieved. A simple blind phase estimation is used to equalise some
distortions which are mainly coming from signal broadening and insufficient cyclic prefix.
The length of cyclic prefix is fixed to the signal broadening after 1000 km. An example of
the receiver constellation of size M = 64 at z = 1120 km with signal power P =−2.72 dBm
is shown in Fig. 4.17 in which the dependence of the noise variance on the location of the
eigenvalue is evident. The significant difference in the contribution of each eigenvalue in
the overall BER suggests implementing the probability shaping technique. Fig. 4.16 shows
the Q2-factor calculated from the EVM and the BER (directly calculated from counting
the mismatches between the transmitter and receiver symbol streams) against different



4.2 A communication system based on the algebro-geometric approach 71

Fig. 4.14 B2B error as the average of the
absolute difference between the expected
and calculated eigenvalues, for different
locations of the eigenvalue with ℜλ = a,
ℑλ = b and a, b defined in Fig. 4.13.

Fig. 4.15 Signal power for different loca-
tions of the eigenvalue with ℜλ=a, ℑλ=b
and a, b defined in Fig. 4.13.
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Fig. 4.16 a) the Q2-factor calculated from the EVM, and b) directly calculated BER against
distance for 64-QAM with uniform and non-uniform transmitter symbol probability with
average P =−2.72 dBm signal power.



72 Simulation results

Fig. 4.17 The received constellation at z=
1120 km for a 64-QAM signal with power
P =−2.72 dBm.
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Fig. 4.18 Achievable mutual information
versus distance for a signal with average
power of P = −2.72 dBm with uniform
and non-uniform probability distribution
of the transmitted symbols.

propagation distances. From this figure, one can compare the results when a uniform and non-
uniform distribution for the transmitted symbols is considered. These results are calculated
for 200 transmissions of symbol bursts, each having the length 12×M, where M is the size
of constellation. As it can be seen in Fig. 4.16, a considerable improvement of 2 dB in
the Q2-factor can be gained by the probabilistic shaping of constellation. However, a more
informative figure is the maximum achievable error-free MI or spectral efficiency for various
link lengths. Thanks to the used exact inverse PNFT, a full control over the signal power
and time duration makes it possible to optimise the signal in terms of its parameters, and to
find the maximum MI. The achievable MI in bits per symbol for a discrete-modulation NFT
system with one eigenvalue is presented in Fig. 4.18. It is worth noting that these results
are to be compared with other discrete NFT communication systems such as eigenvalue
communication in which the throughput of the system is smaller when compared to a
continuous spectrum modulation [82].

In this chapter, a general communication based on the PNFT, whose foundation is laid in
previous chapters, has been implemented for two simple but non-trivial cases. Simulation
results for these two PNFT-based communication systems are shown and the system perfor-
mance for different signal powers, distance and number of samples is illustrated. Combining
PNFT with other methods of overcoming fibre distortions such as probabilistic shaping,
communication-related measures of the system are investigated and the results are depicted.
From what presented, one can conclude that the PNFT can increase the MI and decrease the
computational complexity of an NFT-based communication system. Although the simulation
results show the competence of a PNFT system, it still suffers from a set of drawbacks such
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as small time-bandwidth product and small number of symbols per signal. The letter can
be resolved using the whole NS (and not only the main spectrum) to carry data and also by
using higher order main spectrum.





Chapter 5

Discussion, future works and conclusion

Fibre-optic communication forms the backbone of the global data network and is under the
pressure of carrying more data on a daily basis to the extent that a capacity crunch is predicted
to happen in the near future. More than any time, it is necessary to investigate new methods
of transferring information to use the current network of fibres to its fullest. Over the past
decades many approached have been taken to increase data-rate; WDM, SDM, PDM, etc. all
with their up and downsides. Many DSP-based solutions have been tried to overcome signal
impairments caused by fibre, primarily the new phenomenon, Kerr nonlinearity. Nonlinearity
is what distinguishes the fibre channel from the widely-used linear ones such as wireless and
cooper. What had been designed to mitigate the detrimental impacts of the linear channel
needs to be revisited to accommodate to the new fibre channel. This, of course, is not an
easy task and requires considering the physics behind the fibre distortions, governed by the
celebrated NLSE. Furthermore, with a new insight, in which this nonlinearity and other
channel effects are not perceived as detrimental effects but some system parameters, it is
possible to design communication systems tailored to the characteristics of the medium.

Soliton communication was the first attempt to design a communication system based
on the traits of the fibre channel. In a soliton communication, a signal which retains its
form periodically is used to transfer data. The concept of a soliton-based system can be
generalised to a more inclusive set of parameters which show the underlying invariance of
the NLSE. This set of parameters is called the nonlinear spectrum in the nonlinear Fourier
transform paradigm. Having a trivial evolution in the fibre, the NS can be used to convey
data from the transmitter to the receiver as it has been passing through a linear channel. This
makes it possible to accommodate various algorithms that are designed over the years for
linear channels. In a communication system that uses the NS to transfer data, a signal is
constructed from the data-carrying NS. The current available mathematical tools allow us to
make up such a signal with some particular boundary conditions; with vanishing boundaries
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or quasi-periodic. Using signals with vanishing boundary condition has been the subject to
many studies over the mast few years, and its performance has been evaluated experimentally
showing its potential to overcome some of the fibre difficulties.

However, using periodic signals can be advantageous in some respects such as the size
of the processing window at the receiver, controllable signal duration at the transmitter and
smaller computational complexity for the inverse transformation stage. Using NFT, the
processing window at the receiver is only of the size of one period of the signal as opposed to
the vanishing boundary signals where this window is as large as the broadened signal length.
This can make a substantial difference especially in high data-rate communications where
the channel memory is large.

Therefore, to investigate the potentials of a fibre-optic communication system based on
the PNFT, in this thesis:

• The mathematical foundation of the inverse transformation for a finite-gap solution to
the NLSE in an Algebro-geometric approach is explained in a detailed and step-by-step
manner,

• Several solutions to construct a periodic signal from a given main spectrum to replace
the inverse transformation stage is proposed. At first, a simple system made up by
a signal with analytically known NS is suggested. This system provides only a one-
dimensional constellation, and thus, has somewhat limited performance. Further, this
system is developed into a more advanced case when a two-dimensional constellation is
available. This system involves a perturbation of a plane wave and renders one complex
degree of freedom for modulation. However, it has also revealed some limitations
related to the size of the constellation, bandwidth, and signal power,

• A reduced Algebro-geometric approach to construct a periodic signal with one free
complex number in its main spectrum to modulate is proposed. This approach leads
to a decrease in the computational complexity of the inverse transformation stage by
avoiding numerical evaluation of the Riemann theta function,

• A general Riemann-Hilbert problem-based approach to perform the inverse transforma-
tion is adopted to circumvent numerical evaluation of the Riemann theta function. This
method is not only an alternative to the previous reduced Algebro-geometric approach
but also can be generalised to signals with a higher order main spectrum,

• Numerical routines of calculating the NS of a periodic signal are compared regarding
their accuracy and runtime,



77

• Simulation results have been carried out to investigate the efficiency and performance
of the proposed communication systems and find their achievable mutual information
by implementing some known algorithms in linear communication systems.

One downside for the periodic NFT is its demanding mathematics and a lack of a generic
numerical tool to perform the inverse transformation stage. Using the available numerical
routines, a drawback of such a system is still its poor numerical accuracy which entails a
large number of temporal samples. Although the computational complexity of the inverse
transformation in our proposed PNFT-based system through an RHP scales linearly with
the number of samples, O(N), its factor is still significant and entails solving two linear
systems of equations. The number of samples in time is limited by the hardware capabilities
at the receiver and transmitter and can increase as better analogue-to-digital converters are
available. However, more should be done to improve the numerical routines of calculating
the NFT especially in high powers where the numerical errors rise fast.

Other limitations of the proposed systems are their small data-rate mainly due to the
small number of symbols carried by each produced signal. This number can increase by
working with signals whose NS has more than two cuts. This can be achieved in particular
by using the RHP approach. One of the difficulties of using the RHP method to construct
a signal is the fact that the periodicity should be maintained and the signal period has to
be controllable. This is an essential stage in designing a PNFT communication system
which can be numerically done by adjusting the location of the main spectrum. To arrive
at a more general approach of setting the signal period, more mathematical work should be
done. The number of symbols per signal can also be increased by utilising the whole NS and
multiplexing the continuous spectrum. Thanks to the general formalism of the RHP-based
inverse transformation, the NS can acquire more than one continuous spectrum. This can be
used as a nonlinear frequency division multiplexing scheme with each part of the continuous
spectrum dedicated to one user. This is left for future investigations.

In addition to the relatively high numerical error of NFT calculations, an NFT-based
communication is vulnerable to some fibre impairments that make the underlying nonlinear
dynamics of the system a non-integrable one. Fibre loss is one of these problems which
provides a periodic gain and loss profile for the signal as it travels through the link. By
utilising second-order two-pump Raman amplification this problem can be alleviated, to
some extent, but it still adds some model error to the system. Another solution for links with
EDFA is to replace the real NLSE, modelling the periodic loss and gain, with a path-averaged
lossless NLSE. This solution also still introduces some model error to the calculations.
Another problem of this kind is the inevitable ASE noise; noise can not only damage the
quality of the received signal, but also makes the system non-integrable. This may lead to
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a greater detrimental impact on the system performance showing itself in the form of an
enhanced noise.

There are many open questions and future directions for research on using NFT in fibre-
optic communication. One missing stage in NFT-based systems is the signal processing in
the nonlinear Fourier domain besides the phase rotation in the vanishing NFT and linear
back-propagation in the PNFT. Implementing multi-cut solutions can provide the possibility
to introduce coding schemes inside the nonlinear Fourier domain or design equalisers at the
receiver.

Another important question is about the capacity of the fibre channel. Since NFT is able
to solve the NLSE, it may be useful in finding the statistical characteristics of noise and
distortion in fibre, which is the first stage of calculating its capacity. Some works have been
conducted on this topic, but more should be done.

In conclusion, conventional NFT has shown impressive results in recent years and
presented itself as a candidate to solve some of the major difficulties of fibre-optic commu-
nication. This method, nevertheless, has its own drawbacks which can, to some extent, be
rectified by considering periodic NFT. In this thesis, some PNFT-based systems are proposed,
and their performance is investigated through simulations. Based on these simulations, it is
made evident that the PNFT has the potential to improve the throughput of an NFT-based
fibre-optic communication system. NFT’s performance is still, however, far from the best
state-of-the-art systems. It seems that more time and research is needed in designing the
numerical methods to carry out the NFT calculations and to understand the characteristics of
noise in the nonlinear Fourier domain.
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Appendix A

Algebro-geometric approach for a special
nonlinear spectrum

Suppose we have a 2-genus signal with the NS of the kind shown in Fig. 4.13a which is a
spectrum with three complex conjugate pairs of eigenvalues, {ζ0,ζ1,ζ2}, where ζ2 =−ζ ∗

0 =

a+bi and ζ1 = ci with a,b,c > 0. The associate Riemann surface, (2.24), is determined by:

Γ : ω
2 = (ζ 2 + c2)

(
ζ

4 +2(b2 −a2)ζ 2 +(a2 +b2)2) . (A.1)

A basis of normalised holomorphic differentials are defined as

dν j =
C j1ζ +C j2

ω
dζ (A.2)

on this surface where the basis of cycles is shown in Fig. 4.13b. This structure of the main
spectrum makes the Riemann matrix of the surface (2.24) as

B=

[
2ib1 −0.5+ ib1

−0.5+ ib1 ib2

]
(A.3)

where b1,2 will be defined later. A Riemann theta function with this Riemann matrix can be
read as a product of some one-dimensional Riemann theta functions as below

Θ(u1,u2;B) = ϑ3(u1 −2u2;2+4ib2 −2ib1)×ϑ3(u1;2ib1)

+ϑ1(u1 −2u2;2+4ib2 −2ib1)×ϑ1(u1;2ib1),
(A.4)

where

ϑ3(u;b)=1+2
∞

∑
m=1

eπibm2
cos2mπu,ϑ1(u;b)=2

∞

∑
m=1

(−1)meπib(m+0.5)2
sin(2m+1)πu,
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are the Jacobi elliptic functions. Using two covering mappings with respect to two involu-
tions:

τ : (ω,ζ )→ (−ω,−ζ ), τ0 : (ω,ζ )→ (−ω,ζ )

we can calculate b1,2, V and U in (2.28) and the coefficients of the normalised holomorphic
differentials (A.2).The latter is

C =

[
− i

A+
0

− i
2A+

− i
A−

]
,

A+ =

−c2∫
−∞

dt√
−(t + c2)(t2 +2(b2 −a2)t +(a2 +b2)2)

,

A− =

0∫
−c2

dt√
−t(t + c2)(t2 +2(b2 −a2)t +(a2 +b2)2)

.

Note that C12 = 0 which makes the frequencies (i.e. the elements of V) commensurable and
the signal periodic. The elements of the Riemann matrix (A.3) are calculated as follows:

b1 =
B+

2A+
, b2 =

B+

4A+
+

B−
4A−

, b+ =
B+

A+
, b− =

B−
A−

,

B1
− =

−c2∫
−∞

dt√
t(t + c2)(t2 +2(b2 −a2)t +(a2 +b2)2)

,

B2
− =

∞∫
0

dt√
t(t + c2)(t2 +2(b2 −a2)t +(a2 +b2)2)

,

B+ =

0∫
−c2

dt√
t(t + c2)(t2 +2(b2 −a2)t +(a2 +b2)2)

,

B− = B1
−+B2

−.

The phases are

∆1 =
1
2
− iδ1, ∆2 =

1
2
− i

δ1 +δ2

2
, δ1 =

B+

2A+
, δ2 =

B2
−−B1

−
2A−

. (A.5)
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Two other parameters to define in order to construct the solution (2.36), r and A0 are calculated
as

A2
0 = eπi+Dδ2+

F
2 ,

D =

0∫
−c2

tdt√
−t(t + c2)(t2 +2(b2 −a2)t +(a2 +b2)2)

,

F = logr−
r∫

c2

tdt√
t(t − c2)(t2 −2(b2 −a2)t +(a2 +b2)2)

+

r∫
c2

(
1
t
− t√

t(t − c2)(t2 −2(b2 −a2)t +(a2 +b2)2)

)
dt

−
r∫

0

tdt√
t(t + c2)(t2 +2(b2 −a2)t +(a2 +b2)2)

+

∞∫
r

(
1
t
− t√

t(t + c2)(t2 +2(b2 −a2)t +(a2 +b2)2)

)
dt,

(A.6)

where r is a free parameter. Finally, the solution (2.36) is

q(t,z) =
ϑ4(u1; ib+)ϑ4(u2; ib−)−ϑ2(u1; ib+)ϑ2(u2; ib−)
ϑ4(u5; ib+)ϑ4(u6; ib−)−ϑ2(u5; ib+)ϑ2(u6; ib−)

× ϑ4(u3; ib+)ϑ4(u4; ib−)−ϑ2(u3; ib+)ϑ2(u4; ib−)
ϑ4(u7; ib+)ϑ4(u8; ib−)−ϑ2(u7; ib+)ϑ2(u8; ib−)

(A.7)

with

u1 =
2

A+
t +Z1 − iδ1, u2 =

4
A−

z+Z1 −2Z2 + iδ2, u3 =
2

A+
t +Z1 + iδ1,

u4 =
4

A−
z+Z1 −2Z2 − iδ2, u5 = Z1 − iδ1, u6 = Z1 −2Z2 + iδ2,

u7 =
2

A+
t +Z1 −0.5, u8 =

4
A−

z+Z1 −2Z2 +0.5,

where Z1,2 are arbitrary numbers playing the role of the auxiliary spectrum.





Appendix B

Numerical calculation of the Riemann
theta function

In this appendix we argue how the numerical computational complexity of evaluating the
Riemann theta function can be reduced. To numerically calculate the Riemann theta function
of dimension N the space of permutations of N -dimensional vectors, l in (2.30) should be
truncated. Let assume elements of l are smaller than M1, hence [61]

Θ(u1, . . . ,uN ) =
M1

∑
l1=−M1

M1

∑
l2=−M1

· · ·
M1

∑
lN =−M1

exp{πi(Bl, l)+2πi(l,u)}, (B.1)

where l = [l1, l2, · · · , lN ]. Therefore, the number of exponential terms to add amounts to
(2M1+1)N which grows very fast. Although for low N one can reduce the necessary terms
using some trigonometric relations, the growth is still substantial. One can read (B.1) as a
single summation over an ordering parameter n as below (when M1 → ∞)

Θ(u1, . . . ,uN ) =
∞

∑
n=0

exp{2πi(ln,u)}exp{πi(Bln, ln)}=
∞

∑
n=0

qn exp{2πi(ln,u)},

qn = exp{πi(Bln, ln)}. (B.2)

In the final representation of the solution to the NLSE, Riemann theta function appears as in
Eq. (2.36) in which the dependence on time is in the form of some modes with frequencies
in V. We assume that we only need to calculate q(t,z) at a particular z. When working with
periodic signals, the frequencies are commensurable, hence, all multiples of a fundamental
frequency ∆ω . Consequently, the time-dependent part of (ln,u) is an integer multiple, cn, of
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∆ω depending on ln. So, the summation in (B.2) can be turn into another one as

Θ(u1, . . . ,uN ) = ∑
n=0

θn exp{2πicn∆ωt}, (B.3)

θn =
∞

∑
all l where cl=n

ql, (B.4)

where θn is the sum of all qns attributed to cn. In this way, calculating the Riemann theta
function is computing a Fourier series (B.3) with coefficients coming from another Fourier
series (B.4). These coefficients can be used for all subsequent calculations, hence, a huge
reduction in the computational complexity [61]. Furthermore, regarding the amplitude of
the terms in the summation, one can consider ignoring some parts of the grid for some
computational gain at the expense of losing accuracy. This, if done correctly, can speed
up the calculations even further [61, 62]. To a grid of integers in the interval (−M1,M1)

and when the theta function only needs to be realised at z = 0, i.e. the transmitter site, the
computational complexity of the first equation in (B.3) for N samples in time is

O(NN (2M1 +1)N log(2M1 +1), (B.5)

which grows exponentially with the number of cuts. This growth matters specially in a
multi-cut spectrum case. Despite all attempts to decrease the computational burden; time
and memory consumption, calculating the Riemann theta function to an arbitrary level of
accuracy is still not affordable.



Appendix C

Numerical routines of finding the
nonlinear spectrum

For a periodic signal, the first step of finding the NS is to calculate the monodromy matrix
defined in Chapter 2.3. From this matrix, the NS is defined in two senses; Ma and Ablowitz
definition [121], and Kotlyarov and Its [122]. In this work, we consider the latter in which
the NS consists of the following components:

Main spectrum : λ1,λ2, · · · ,λN ∈ C,

Auxiliary spectrum : µ1(t,z),µ2(t,z), · · · ,µN (t,z), (C.1)

plus a set of numbers σ j ∈ {±1} determining the cover of the Riemann sheet on which
µ j(t,z) lies. Assuming Eqs. (2.22), it is easy to realise that the auxiliary spectrum can
be found as the zeros of the off-diagonal elements of the monodromy matrix. The main
spectrum, on the other hand, is a set of simple endpoints of the continuous spectrum at which
the trace of the monodromy matrix, called the discriminant, ∆, is ±2.

Solving the Zakharov-Shabat equation in (2.4) is to solve the following equation at each
λ [MK5]:

d
dt

A = P×A, with P =

[
−iλ −q
−q∗ iλ

]
, and A(t0;λ ) = I. (C.2)

Then, the monodromy matrix is A(t0+T ;λ ). To make the difference equation, time is defined
as points, t0, t1, · · · , tN−1 = t0 +T where ∆t = ti − ti−1. Starting from i = 0, we iteratively
calculate A(ti+1;λ ). Different approximations lead to different numerical routines. Here we
compare four numerical approaches: Ablowitz-Ladik, layer-peeling (Bofetta-Osborne), and
spectral.
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• Layer-peeling: A general solution to Eq. (C.2) is in a form of an exponential function.
One can write the solution at the end of each segment as: A(ti+1;λ ) =U(qn)A(ti;λ )

where

U(qn) = exp

(
∆t

[
−iλ qn

−q∗n iλ

])
=

(
cosk∆t − iλ

k sink∆t qn
k sink∆t

−q∗n
k sink∆t cosk∆t + iλ

k sink∆t

)

where qn = q(tn) and k2 = |qn|2 + λ 2 is assumed to be constant over the interval
[n∆t,(n+1)∆t]. At the end of one period the monodromy matrix is then approximately
given by the expression [61, MK5]

A(t0 +T ;λ ) =
N

∏
n=0

U(qn)A(t0;λ ) =
N

∏
n=0

U(qn). (C.3)

The main spectrum is then calculated as the zeros of TrA(t0 +T ;λ )±2.

• Ablowitz-Ladik: A simple approximation for the time derivative in Eq. (C.2) is:

A(tn +∆t;λ )−A(tn;λ )

∆t
=

P(qn+1)A(tn +∆t;λ )−P(qn)A(tn;λ )

2
, (C.4)

with the solution

A(tn +∆t;λ ) =

(
I− ∆t

2
P(qn+1)

)−1(
I+

∆t
2

P(qn)

)
A(tn;λ ), (C.5)

which yields

A(t0 +T ;λ ) =
N

∏
n=0

(
I− ∆t

2
P(qn+1)

)−1(
I+

∆t
2

P(qn)

)
. (C.6)

By using the approximation ω = e±i∆tλ = 1± i∆tλ in the definition of P:

P(qn) =
1√

1−∆t2|q(tn,z)|2

[
ω −∆tq(tn,z)

∆tq∗(ti,z) ω−1

]
, (C.7)
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it is possible to multiply P by ω and collect terms to utilise a fast polynomial arithmetic
in which the monodromy matrix, A(t0 +T ;λ ) is

A(t0 +T ;ω) =
S(ω)

ωN ,

S(ω) =
N−1

∏
i=0

1√
1−∆t2|q(ti,z)|2

[
ω2 −ω∆tq(ti,z)

ω∆tq∗(ti,z) 1

]
, (C.8)

for all ω . To find the auxiliary spectrum the zeros of S1,2(ω) and for the main spectrum
the zeros of TrS(ω)±2ωN should be found with any appropriate algorithm. Here we
find the eigenvalues of the companion matrix associated to these polynomials to this
aim.

• Spectral: For a linear differential equation of Eq. (C.2) type where P is a periodic
matrix with period T , the fundamental matrix has a special structure, A(t;ω) =

Â(t;ω)eRt where R is a constant matrix and Â(t;ω) = Â(t +T ;ω). Introducing the
new eigenfunctions

A1(t;ω) = eiµtÂ1(t;ω), A2(t;ω) = e−iµtÂ2(t;ω), (C.9)

where µ ∈ [0, 2π

T ], Eq. (C.2) turn into the following eigenvalue problem:

[
i(∂t −µ) −iq(t,z)
−iq∗(t,z) −i(∂t −µ)

][
Â1(t;ω)

Â2(t;ω)

]
= λ

[
Â1(t;ω)

Â2(t;ω)

]
. (C.10)

If solved for µ = 0, periodic, and µ = π/T , anti-periodic eigenfunctions, Eq. (C.10)
gives the main spectrum of the signal. Since the signal is assumed to be periodic,
substituting the periodic functions with their Fourier series:

Â1(t;ω) =
N

∑
n=−N

a1
neinkt , Â2(t;ω) =

N

∑
n=−N

a2
neinkt , q(t,z) =

N

∑
n=−N

q1
neinkt ,

where k = 2π

T yields

[
−D −iQ
−iQ† D

][
A1

A2

]
= λ

[
A1

A2

]
, (C.11)
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Fig. C.1 a) The main spectrum of a plane wave with µ = 3 and q0 = 5, and b) a rectangular
pulse train with T1 = 2, A = 3 and T = 2π .

with

D = kdiag(−N,−N +1, · · · ,N −1,N)+µI2N+1 (C.12)

A1 =
[
a1
−N ,a

1
−N+1, · · · ,a1

N−1,a
1
N
]T

, A2 =
[
a2
−N ,a

2
−N+1, · · · ,a2

N−1,a
2
N
]T

,

and Q is a matrix with Qi, j = qi− j for i+N > j and zero elsewhere.

These three algorithms are compared in terms of their accuracy and normalised time spent
to calculate the main spectrum of a plane wave and a rectangular pulse train. The main
spectrum of a plane wave, q(t,z) = q0eiµt , is analytically known to a collection of the points:

λ
±
j =−µ

2
± i

√
|q0|2 −

j2

4
. (C.13)

The main spectrum for a plane wave with µ = 3 and q0 = 5 is shown in Fig. C.1a. The main
spectrum of a rectangular pulse train with period T , amplitude A, and duty cycle of T1/T is a
collection of the zeros of Mrec(λ )±2 where

Mrec =

e−iλ (T−T1)
(

coshkT1 + i kT1
k sinhkT1

)
AT1

k sinhkT1

A∗T1
k sinhkT1 eiλ (T−T1)

(
coshkT1 − i kT1

k sinhkT1

)
where k2 = −A2T 2

1 − λ 2. An example of a main spectrum of a rectangular pulse train
with T1 = 2, A = 3 and T = 2π is shown in Fig. C.1b. The numerical accuracy shown as
the error between the theoretical main spectrum and the numerically calculated one and
also the normalise runtime per sample is illustrated in Fig. C.2 for a plane wave and in
Fig. C.3 for a rectangular pulse train. As can be seen from these figures, the accuracy of
the layer-peeling algorithm is better than the other two. However, this performance highly
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Fig. C.2 a) error in calculating the main spectrum of a plane wave using three algorithms;
Ablowitz-Ladik, Spectral and layer-peeling, and b) the normalised runtime (per sample) for
the Ablowitz-Ladik and Spectral methods.
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Fig. C.3 a) error in calculating the main spectrum of a rectangular pulse wave using three
algorithms; Ablowitz-Ladik, Spectral and layer-peeling, and b) the normalised runtime (per
sample) for the Ablowitz-Ladik and Spectral methods.

depends on other parameters such as the area of search for the roots of the functions which
is the reason its runtime is not reported here. In general, the layer-peeling method is of the
slowest numerical routines which, despite its superior accuracy, seems impractical to use
in a real-time application such as a communication system. The spectral method renders
good performance at the expense of huge required memory which is the main reason we
have avoided it in our calculations. The Ablowitz-Ladik routine on the other hand, shows
acceptable accuracy and small runtime and memory consumption, therefore, in all our
calculations we use this routine.





Appendix D

A multi-soliton solution as an special case
of a finite-gap one

Some particular decaying solutions of the NLSE can be constructed as a limit of a finite-gap
solution. Here we describe how to choose the parameters of a finite-gap solution to arrive at
a multi-soliton signal. We will also show how to make a multi-phase signal from this multi-
soliton one, a signal which is suggested in subsection 3.4.2 to provide a two-dimensional
constellation. Let assume that the discrete spectrum consists of N +1 = 5 pairs of complex
conjugate eigenvalues {E j,E∗

j }N
j=0 (Fig. D.1)a. Take some value α > 0 and put [44]

E0 =−E∗
N =−α.

Now, let take the limit

E2 j,E2( j+1) → λ j, for j = 1, · · · ,N , where λm ̸= λn if n ̸= m. (D.1)

To have a solution to the focusing NLSE we want λ2 j−1 = λ ∗
2 j with ℑλ j > 0 (see Fig. D.1b).

So, N should be an even number. The resulted spectrum is shown in Fig. D.1b. Furthermore,
by letting α → 0 the spectrum becomes a combination of N eigenvalues λ j and R. It is
possible to show that |q(t,z)| → α as t → ∞ [44, Section 4.4]. Now we try to construct the
associate solution to this spectrum in the algebro-geometric framework of Chapter 2. The
hyperelliptic function (2.24) defining the Riemann surface is

µ =
√

λ 2 −α2
N

∏
j=1

(λ −λ j), (D.2)
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and the normalised Abelian differentials of Chapter 2 are

ω j =

N
∑

k=1
c jkλN −k

µ(λ )
dλ (D.3)

where c jk are the normalising factors according to the shown canonical cycles in Fig. D.1c,
and can be found to be

c j1 =−
√

λ 2
j −α2 ≡−iκ j, c j2 =−c j1 ∑

k ̸= j
λk.

In this way, the vectors V and U in (2.33) are

V j =−2iκ j, U j =−4iκ jλ j,

and the limiting values of the Abelian integrals of the second and third kind are obtained
from

Ω1 =±λ ∓α
2/2λ +o(1),Ω2 =±(2λ

2 −α
2 +o(1)),Ω3 =±(logλ − logα/2+o(1)).

In this limit, the constants in (2.36) and (2.35) are E = 0, N0 =−2α2 and ω0 = α2/4. The
Riemann matrix, B, in (2.27) is calculated by

B jk = 2log
γk − γ j

γk + γ j
, j > k, B jk = Bk j, j < k, where γ j ≡

√
λ 2

j −α2

λ j +α
,

which conveniently approach the limiting values in which ℜB j j →−∞, j = 1, · · · ,N . The
last parameter to calculate is the vector r in (2.36) and (2.35):

r j = 2
∞∫

α

ω j =−2
γ j −1
γ j +1

.

The divisor D is arbitrary (except for the invariance of them in respect to the branch points,
E j) and contains the auxiliary spectrum; we set it in the form of D j =

1
2B j j + 2η j. With
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Fig. D.1 a) the main spectrum of a finite-gap solution, b) the result of the limit (D.1), and c)
the a- and b-cycles on the new main spectrum.
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these parameters in hand, one needs to construct the Riemann theta functions:

θς (t,z) = θ (iVt + iUz−D −K+ ςr) = ∑
m j=0,1

exp

{
∑
j>k

log
(

γ j − γk

γ j + γk

)2m jmk

+∑
j

m j

(
2κ jt +4κ jλ jz+2ς log

γ j −1
γ j +1

)
−2η j

}
,

(D.4)

where ς ∈ {−1,0,1}. Then the solution is made through

q(t,z) = A
θ−1(t,z)
θ0(t,z)

e−2iα2z. (D.5)

A very simple family of smooth in t and z solutions can be made with the following conditions:

N > 1, α,φ ∈ R, z0 j, t0 j ∈ R, and 0 < λ j < α for j = 1, · · · ,N , (D.6)

as an N -phase solution:

qN (t,z) = α
θ1(t,z)
θ0(t,z)

e−2iα2z−iφ , (D.7)

where

θς (t,z) = ∑
mv=0,1

exp

{
∑
j>l

log
(

γ j − γl

γ j + γl

)2 (
m jml +mN + j +mN +l

)
+∑

j,l
log
(

1+ γ jγl

1− γ jγl

)2

mN + jml +2ς ∑
j

log
(

γ j −1
γ j +1

)
(m j −mN + j)

−2∑
j

η
0
j (m j +mN + j)+2∑

j
δ j(z− z j0)(m j −mN + j)

+2i∑
j

κ j(t − t0 j)(m j +mN + j)

}
,

and where

κ j =
√

α2 −λ 2
j , δ j = 2λ j

√
α2 −λ 2

j , γ j = i
κ j

λ j +α
,

η
0
j =

1
2

N

∑
l=1

log
γ j − γl

γ j + γl
+

1
2

N

∑
l=1

log
1+ γ jγl

1− γ jγl
,
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for ς = 0,1. In fact, qN (t,z) belongs to a family of almost periodic solutions with 3N +2
parameters with the period

T = lcm(
π

κ j
).

Under the condition

max
j

δ j < 2min
j

δ j = 2δ0, (D.8)

the solution at z → ∞ tends to

qN (t,z) = α

[
1+

N

∑
j=1

A j cos2κ j(t − t0 j)exp
(
−2δ jz− iα j

)
+O(exp(−4δ0z))

]
× exp(2iα2z− iφ + iφ 0),

where

A j =−4
κ j

α
e2δ jz0 j

N

∏
l=1

1+ γ jγl

1− γ jγl
∏
l ̸= j

γ j + γl

γ j − γl
, α j = tan−1 λ j

κ j
, φ

0 =−2
N

∑
j=1

tan−1 κ j

λ j
. (D.9)

The communication system proposed in Subsection 3.4.2 is, in fact, a close example to
this family of solutions when N = 1 and its limited performance has to do with the con-
straint (D.8) which makes the size of the constellation small. This confined constellation, in
turn, leads to limited bandwidths, limited signal powers, and small minimum distance in the
constellation.
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