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Thesis Summary  

Cystic fibrosis (CF) is the most common inherited genetic condition amongst Caucasians and 
arises due to mutations in the cystic fibrosis transmembrane conductance regulator, a chloride 
channel expressed upon the apical surface of epithelia. Whilst CF is a multi-organ disease, the 
inability to clear dehydrated mucus from the airways predisposes individuals to the 
development of chronic bacterial infections, the main cause of morbidity and mortality in CF. 
Infection of CF airways is highly ordered, with Staphylococcus aureus predominating in the 
first decade of life, followed by Pseudomonas aeruginosa during adulthood. Two obstacles to 
the development of better treatments stem from an incomplete understanding of the 
polymicrobial nature of CF airway infection and its impact upon interspecies and host-pathogen 
interactions, alongside the need for models which more closely mimic the CF lung and its 
unique environment.  

After characterising a panel of P. aeruginosa CF clinical isolates, this study sought to determine 
the impact of oxygen availability upon S. aureus-P. aeruginosa interspecies interactions, in 
light of evidence that mucus plugging within CF airways leads to regions of anoxia. Anoxia was 
shown to modulate S. aureus-P. aeruginosa community composition in planktonic co-culture 
and mixed species biofilms in an isolate-dependent manner. Further investigations into the 
mechanisms facilitating P. aeruginosa dominance suggest that the anti-staphylococcal agent 
is extracellular, >3 kDa in size and heat-resistant.  

Whilst pulmonary inflammation is a hallmark of CF, how airways respond to stimuli received 
during polymicrobial airway infections is poorly understood. Monolayers of CF and non-CF 
bronchial epithelia were challenged with S. aureus and/or P. aeruginosa extracellular products. 
CF airway epithelia exhibited a hyper-inflammatory phenotype at baseline compared to non-
CF epithelia. Furthermore, only co-stimulation of non-CF epithelia with both pathogens, 
enhanced the IL-6 and IL-8 response beyond that measured following single bacterial 
challenges. Finally, CF and non-CF airway epithelia grown at air-liquid interface in the 
presence of fibroblasts were used to mimic the sequential nature of CF infection. Binding 
studies demonstrated that prior infection with S. aureus enhanced P. aeruginosa binding to the 
CF airway model in an isolate-specific manner, a finding not seen in the non-CF airway model.  

These studies demonstrate that S. aureus-P. aeruginosa interactions are likely to influence the 
CF microbiome, airway inflammation, airway colonisation and ultimately, disease progression. 
It is hoped that the models used here can be employed in future studies to understand the 
complex interspecies and host-pathogen interactions that occur in CF, with the aim to identify 
novel targets and treatments to combat these life limiting infections.   
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1 Introduction 

1.1 Cystic Fibrosis: Epidemiology, economic impact and aetiology  

Cystic fibrosis (CF) is the most common inherited genetic condition amongst Caucasians.  With 

a carrier rate of 1 in 25 (Ratjen and Doring, 2003), CF affects approximately 80,000 people 

worldwide, 25,000 of which are registered in Europe. Approximately 10,000 people are living 

with CF in the United Kingdom (European Lung Foundation, 2009), with Ireland having the 

highest prevalence in Europe (Cystic Fibrosis Ireland, 2013). Figure 1 shows the prevalence 

of CF across Europe.  

 

Figure 1. Estimated prevalence of CF across Europe. The UK has one of the highest incidences of 
CF across 21 European countries. Data was collected by the European Cystic Fibrosis Society between 
2007-2009 (European Lung Foundation, 2009).  

Improvements in the diagnosis and treatment of CF over the last sixty years has significantly 

increased life expectancy. Whilst over three quarters of individuals with CF born in 1938 would 

die within their first year of life, average life expectancy in the 1980’s increased to ten years of 

age (Child Life Society, 2018). Today, life expectancy of an individual with CF in the UK is 41 

years of age, whilst those born in 2000 are expected to live to 47 years of age (Cystic Fibrosis 

Trust, 2017, Trust, 2018). This success can be attributed to numerous factors including patient 

segregation, improvements in treatments and treatment regimens, a multidisciplinary 

approach regarding individual care and earlier diagnosis (Dodge et al., 2007). The median age 

for the diagnosis of CF in the UK following birth is 26 days (Cystic Fibrosis Trust, 2018). 
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A gender disparity remains within the CF population. Whilst one study reported that life 

expectancy is 3.7 years lower for women with CF compared to men (Harness-Brumley et al., 

2014), according to the UK CF Trust Registry, the median predicted survival for women in the 

UK is 6.5 years lower than men (Cystic Fibrosis Trust, 2018). Although further research is 

required to address this, females with CF are more likely to be underweight, a factor known to 

influence survival (Fogarty et al., 2012, Corey et al., 1988). Furthermore, oestrogen has been 

associated with a worsening of CF symptoms (Chotirmall et al., 2012). In addition to greatly 

impacting upon an individual’s quality of life, CF is also associated with a significant economic 

burden. Despite its low disease prevalence, a study conducted in 2012 demonstrated that the 

average annual healthcare cost per individual with CF was £48,603. This has been shaped by 

costs associated with medications for symptom management, acute hospitalisations and 

primary healthcare visits (Angelis et al., 2015).  

CF is an autosomal recessive, single gene, inherited disorder, which arises due to a mutation 

in the cystic fibrosis transmembrane conductance regulator (CFTR) (Riordan et al., 1989). 

Composed of 250,000 base pairs and encoded on the long arm of chromosome 7, the CFTR 

is a cAMP-dependent anion channel belonging to the ATP-Binding Cassette (ABC) transporter 

family of membrane proteins (Tsui and Dorfman, 2013). Present upon the apical surface of 

epithelial cells and the newly discovered and uncommon cell type, pulmonary ionocytes 

(Plasschaert et al., 2018), the CFTR is involved primarily in the transport of chloride (Cl−) and 

to a lesser degree, bicarbonate (HCO3
−) and thiocyanate (SCN−) ions (Quinton, 2008, Fragoso 

et al., 2004, Quinton, 1983). By exerting an inhibitory effect upon the epithelial sodium channel 

(ENaC) (Konig et al., 2001), the CFTR regulates the movement of water onto the apical surface 

of epithelial cells.  

1.2 CFTR: Structure and Function 

The CFTR is a 1,480 amino acid glycoprotein (170 kDa), belonging to the ABC transporter 

family. Composed of a tandem repeat of the characteristic ABC motif, it consists of two 

membrane spanning domains (MSDs), each located next to a nucleotide binding domain 

(NBD). When phosphorylated, the binding of adenosine triphosphate (ATP) to NBD-1 and its 

consequent hydrolysis induces a conformational change, opening the chloride channel, whilst 

the binding of ATP to NBD-2, closes it. The activity of the channel is also regulated by the 

regulatory (R) domain, known to block the ATP binding sites on NBD-1 through de-

phosphorylation of its serine residues (Lyczak et al., 2002, Gadsby and Nairn, 1999). When 

open, chloride and bicarbonate ions move from the cytosolic side, through the CFTR pore by 

passive diffusion onto the epithelial cell surface. The CFTR also inhibits ENaC, important in 

initiating sodium reabsorption (Ismailov et al., 1996). The structure of CFTR protein is 

illustrated in Figure 2.  
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Figure 2. Overview of the structure of the cystic fibrosis transmembrane conductance regulator 
(CFTR). Each of the two, six membrane spanning domains of the CFTR (green) are bound to a nuclear 
binding domain (yellow). The regulatory domain (red) is comprised of numerous charged amino acids. 
Activation of this chloride channel requires phosphorylation of serine residues in the R domain by protein 
kinase A or C and the hydrolysis of ATP by the two nuclear binding domains, giving rise to adenosine 
diphosphate (ADP) and inorganic phosphate (Pi). Adapted from (UK Cystic Fibrosis Gene Therapy 
Consortium, 2018).  

1.3 CFTR Mutations  

A total of 2,031 mutations in the CFTR have been identified on the Cystic Fibrosis Mutation 

Database (SickKids, 2018)  and are categorised into five classes according to their effect upon 

protein synthesis, maturation, regulation, chloride conductance and trafficking (Fanen et al., 

2014). The type of CF mutation influences CF disease severity and whilst a number are well 

studied, the vast majority remain poorly characterised.  A brief description of each class is 

outlined in Table 1 below.  
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Table 1. CFTR mutation classes and their intracellular effect. Adapted from (CFTR.info, 2017). 

Class Mutation Example 

I Frameshift and nonsense mutations which introduce premature stop 

codons, preventing the expression of CFTR at the apical membrane of 

epithelia. 

Trp1282X 

II Missense and inframe mutations affect protein folding, causing it to remain 

trapped at the endoplasmic reticulum and preventing its trafficking to the 

apical membrane of epithelial cells. Instead it becomes a target for 

ubiquitination and is subsequently sent to the proteasome for degradation. 

Phe508del 

III Full length CFTR is synthesised and is incorporated into the cell 

membrane. However, a gating defect caused by substitutions in the amino 

acid sequence prevents the channel from opening in response to cAMP 

and other agonists. 

Gly551Asp 

IV A conductance defect caused by missense mutations. The introduction of 

amino acid substitutions alters the structure of the channel’s pore, affecting 

the movement of chloride anions. 

Arg117His 

V Missense mutations introducing alternative splicing of mRNA. Reduced 

amounts of functional CFTR reach the apical cell membrane of respiratory 

epithelia. 

Ala445Glu 

VI Mutations which cause an increased turnover of CFTR at the apical cell 

surface, due to its instability. 

Rescued 

Phe508del 
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As outlined in Table 1, the Phe508del mutation, caused by a deletion of a single phenylalanine 

residue in NBD-1 (at position 508) is a classic example of a class II mutation. Here the CFTR 

protein is ubiquitinated and degraded by the endoplasmic reticulum (Farinha and Amaral, 

2005). In addition to being the first identified CF mutation, it remains the most prevalent, being 

present on at least one allele in 90% of all individuals with CF worldwide (Bobadilla et al., 2002) 

and 89.5% in the UK (Cystic Fibrosis Trust, 2018). In the UK, 49.1% of CF patients are 

homozygous for Phe508del, whilst 40.4% are heterozygous (Cystic Fibrosis Trust, 2018). This 

prevalence is likely to be due to this region being particularly susceptible to mutation (Lyczak 

et al., 2002). No other mutations account for more than 5% of CF mutations (O'Sullivan and 

Freedman, 2009, Cystic Fibrosis Trust, 2018). Class I and II mutations result in the most severe 

CF phenotypes due to the absence of the CFTR in the apical membrane of epithelia (Welsh 

and Smith, 1993).  

1.4 Clinical manifestations of CF 

As the CFTR is expressed upon the surface of epithelia lining the respiratory, digestive and 

reproductive tracts, CF is a multi-organ disease. Its absence, impaired functioning, reduced 

presence or instability at the apical cell membrane decreases chloride secretion onto the 

epithelial cell surface, coupled with increases in the reabsorption of sodium and water (Matsui 

et al., 1998). Ultimately water reabsorption gives rise to high-viscosity dehydrated mucus. 

Mucus obstructions can form within the gastrointestinal tract, with distal intestinal obstruction 

syndrome occurring in 5.3% of individuals with CF (Cystic Fibrosis Trust, 2018). Mucus plugs 

in exocrine glands lead to approximately 29.8% of individuals with CF being on treatment for 

CF-related diabetes mellitus and 12.9% developing liver disease (Cystic Fibrosis Trust, 2018). 

Blockages within the vas deferens also causes 98% of males to be infertile (Taussig et al., 

1972), which is further hindered by reductions in sperm quality (Wang et al., 2003).  

Despite these systemic effects, pulmonary manifestations present the most severe symptoms 

and are the main cause of morbidity and mortality in CF (Lyczak et al., 2002, Ciofu et al., 2013). 

The formation of mucus plugs within the airways facilitates the development of chronic 

bacterial infections which typically begin early in life and are accompanied by an extensive, yet 

ineffective airway inflammatory response. Individuals display bronchiectasis, accompanied by 

shortness of breath, chest pain and a chronic productive cough. Extensive fibrosis of the 

airways caused by chronic airway infections and inflammation leads to narrowing of the airway 

lumen and reductions in pulmonary function overtime, ultimately leading to hypercapnia, 

respiratory failure and death (Flume et al., 2010). Respiratory failure due to chronic pulmonary 

infections is the main cause of mortality in CF (Lyczak et al., 2002, Ciofu et al., 2013).  

 



29 

 

1.5 Mutant CFTR and impairments in pulmonary innate immunity 

CFTR is expressed upon numerous cell types within the lungs, including the surface of ciliated 

airway epithelia (Kreda et al., 2005), cells of the submucosal glands (Engelhardt et al., 1992) 

and professional phagocytes (Painter et al., 2006, Di et al., 2006). Together these cell types 

play essential roles within pulmonary innate immunity and provide protection against inhaled 

pathogens. In addition to forming a physical barrier, airway epithelia secrete antimicrobial 

peptides and proteins and can initiate an airway inflammatory response (Hiemstra, 2001, 

Bartlett et al., 2008). Whilst submucosal glands produce mucus which traps inhaled pathogens 

and particles, airway epithelia facilitate its removal from the airways due to the expression of 

motile hair-like projects known as cilia (Wanner et al., 1996). Furthermore, professional 

phagocytes including alveolar macrophages and circulating neutrophils are recruited to the site 

of infection in order to permit bacterial killing and clearance. Mutations in the CFTR are known 

to impair many aspects of pulmonary innate immunity, permitting the development of chronic 

airway infections and inflammation.   

 Impaired mucociliary clearance 

Ciliated epithelia account for around half of all epithelia within the airways and are abundant in 

mitochondria (Spina, 1998). Each cell contains approximately 200-300 cilia upon their apical 

cell surface, with there being approximately 109 cilia per cm2 of the respiratory tract (Livraghi 

and Randell, 2007). Interspersed between ciliated epithelia at a ratio of 1:5 are goblet cells, 

containing acidic, mucin-rich granules and protrude surface microvilli (Ganesan et al., 2013).  

Goblet cells constitutively secrete mucus into the lumen of the large airways, governing not 

only its depth, which can range from 7-70 µm, but also its rate of production, acidity and 

viscosity (Jayaraman et al., 2001, Tarran, 2004). Consisting primarily of water (97%), in 

addition to ions, mucus also contains mucins , large anionic molecular glycoproteins (Thornton 

et al., 2008). Whilst there are currently twenty known mucins, five are secreted into the airways 

(Williams et al., 2006, Davis, 2002, Rogers, 2007), of which MUC5AC and MUC5B are the 

most predominant (Groneberg et al., 2002). Structurally related and present in similar 

concentrations, MUC5AC is secreted by tracheal-bronchial goblet cells, whilst MUC5B is 

secreted by glands in the submucosal connective tissue (Groneberg et al., 2002, Hovenberg 

et al., 1996). The ability of secreted mucins to undergo extensive cross-linking via disulphide 

bridges, gives rise to characteristic viscous gel-like properties of mucus (Ridley et al., 2014, 

Voynow and Rubin, 2009), with sialic acid residues also contributing to its viscoelastic 

properties (Shiomi et al., 2002). As well as trapping inhaled pollutants and inhaled pathogens, 

mucins are also able to specifically bind to particular pathogens, serving as adhesion decoys 

and preventing bacterial binding directly to airway epithelia. MUC1 (a transmembrane mucin 

present upon the surface of respiratory epithelia) has been shown to possess this ability, 
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whereby it forms interactions with the two most prevalent pathogens known to colonise CF 

airways, Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) 

(Linden et al., 2008).  

The synchronised unidirectional beating of ciliated epithelia help drive overlying mucus 

(containing trapped inhaled pollutants and pathogens), propelling it from the lower airways and 

out of the trachea, preventing tissue damage and infection (Livraghi and Randell, 2007). To 

permit this rapid beating, the cilia are bathed in periciliary fluid (also referred to as the periciliary 

liquid), which has a depth of approximately 5-7 µm (Tarran, 2004). Collectively referred to as 

the airway surface liquid (ASL), the ability to maintain the two distinct phases of high viscosity 

mucus and low viscosity periciliary liquid (PCL) arises due to the presence of membrane 

spanning mucins. These large mucins form a mesh between cilia, which is effective at 

preventing MU5AC and MUC5B from collapsing into the PCL. Mucociliary clearance is 

effective at removing approximately 90% of all inhaled particles and thus an essential innate 

defence mechanism of the airways (Widdicombe, 2002, Vareille et al., 2011).  

Mutations within the CFTR however, deplete the PCL and thus decrease the volume of the 

ASL. These mechanisms consequently bring the once overlying mucus layer into direct contact 

with ciliated respiratory epithelia (Matsui et al., 1998). Whilst non-CF airways have a mucus 

flow of ~60 µm/s, the dehydration of mucus within CF airways cause the cilia to flatten, leading 

to mucostasis (Button et al., 2016, Henderson et al., 2014). Inhaled pathogens are no longer 

cleared from the airways and can go on to colonise and establish an infection. This is 

summarised in Figure 3. 

. 
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Figure 3. Non-CF vs. CF airways. In non-CF airways (top), cilia beat within the low-viscosity periciliary 
liquid in a unidirectional manner, propelling the overlying mucus at a rate of 60 µm/s from the bronchioles 
to the pharynx. Inhaled pathogens, pollutants and irritants are thus removed from the lower airways, 
preventing damage and limiting infection. In CF airways (bottom), the absence, improper functioning or 
instability of the CFTR causes sodium and water hyperabsorption, leading to a loss of periciliary liquid. 
Airway mucus dehydrates and comes into direct contact with the surface of respiratory epithelia. Cilia 
become flattened and mucociliary clearance becomes impaired. Inhaled pathogens are able to colonise 
the lungs, leading to an unresolved inflammatory response, which results in the significant infiltration of 
neutrophils. Adapted from (Ratjen and Doring, 2003).  

Mutations in the CFTR also influence mucus production, through its role in regulating 

bicarbonate ion secretion. Bicarbonate has been shown to play a role in the hydration of 

intestinal mucins in CF mice (Garcia et al., 2009, Gustafsson et al., 2012). It has been 

hypothesised that this inability to transport bicarbonate ions in CF airways may also impact 

upon mucus hydration, increasing its viscosity (Quinton, 2008), as well as acidifying the ASL 

(Coakley et al., 2003). It is possible that this acidification alters the electrostatic charge on the 

side chains of mucins, increasing mucus viscosity (Bhaskar et al., 1991). 
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The continual secretion of mucus and inability to clear it from the airways facilitates the 

formation of thick mucus plaques and plugs which can occlude the airway lumen (Worlitzsch et 

al., 2002, Hamutcu et al., 2002). Coupled with the increased oxygen consumption by CF epithelia 

(Stutts et al., 1986), respiring pathogens and host phagocytes (Worlitzsch et al., 2002, Kolpen et 

al., 2010), this gives rise to steep oxygen gradients within airway mucus, which range from 

normoxia to anoxia (Cowley et al., 2015, Worlitzsch et al., 2002). In addition to anoxia permitting 

the growth of obligate anaerobes within the CF lung (Rogers et al., 2003), mucus plugs are likely 

to provide a protected niche to CF pathogens such as P. aeruginosa, which have been reported to 

exhibit a higher tolerance to antibiotics under anoxia (Schobert and Jahn, 2010, Schaible et al., 

2012).   

 Defects within microbial detection  

Airway epithelia are also able to sense and respond to microbial challenges within the airway 

lumen, through the expression of Toll-like receptors (TLRs). Existing as either monomers, 

hetero- or homodimers, these pattern recognition receptors (PRR) are able to recognise and 

bind to diverse array of pathogen-associated molecular patterns (PAMPs), microbial ligands 

which can be either external or internal in origin (Akira et al., 2006). PAMPs are typically 

essential for bacterial survival and are thus highly conserved.  

Expressed at low levels on the surface of bronchial epithelia and up-regulated in the presence 

of an infection, TLR4 recognises and binds to lipopolysaccharide (LPS), a microbial product 

derived from the outer membrane of Gram-negative bacteria (Poltorak et al., 1998). TLR5 is 

another major receptor, recognising flagellin from the bacterium P. aeruginosa (Zhang et al., 

2005), whilst TLR2 recognises lipoproteins derived from the cell wall of the bacterium S. aureus 

(Hashimoto et al., 2006).  Following TLR activation and intracellular signalling, airway epithelia 

release pro-inflammatory messengers which initiates the host immune response (Adamo et 

al., 2004).  

Immortalised CF epithelial cell lines and primary bronchial biopsies obtained from individuals 

with  CF have both been used to show that CF epithelia express lower amounts of surface 

TLR4 compared to non-CF epithelia, a finding believed to be due to the receptor remaining 

within the cell (Hauber et al., 2005, Chillappagari et al., 2014, John et al., 2010). Thus, 

reductions in the ability of airway epithelia to detect P. aeruginosa-derived LPS may in part 

facilitate P. aeruginosa persistence within the CF lung. Furthermore, TLR4 activation leads to 

the production of the stress-induced protein heme oxygenase-1 (HO-1). Activation of HO-1 

leads to the subsequent breakdown of haem into iron and bilirubin, which is known to exert an 

anti-inflammatory effect (Chillappagari et al., 2014). Thus, a lack of TLR4 may also contribute 

to excessive inflammation in CF airways due to reductions in HO-1 production. TLR2 however, 

was shown to be heavily involved in the recognition of pathogens within the airways (Muir et 
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al., 2004). Its upregulation in CF epithelia compared to non-CF epithelia may contribute to the 

characteristic excessive inflammation seen within the CF lung (Balloy et al., 2015).  

An additional study proposed that the CFTR is also a PRR, involved in the detection and 

internalisation of P. aeruginosa-derived LPS, which serves to initiate an inflammatory response 

(Schroeder et al., 2002). Thus, mutations in the CFTR may impair the ability of CF airway 

epithelia to internalise P. aeruginosa LPS and in turn mount an inflammatory response. 

Wildtype CFTR has also be reported to bind to P. aeruginosa, leading to its internalisation 

within airway epithelia and removal by epithelial cell desquamation (Pier et al., 1997, Pier et 

al., 1996). However, more studies addressing the adherence of CF pathogens to the CF lung 

are needed.  

 Defects in antimicrobial peptides and proteins  

 Defensins 

Defensins are small (3-6 kDa) cationic peptides secreted by airway epithelia, possessing a 

broad spectrum of antimicrobial activity against a range of bacteria, enveloped viruses and 

fungi (Ganz, 2005). The most abundant peptides found within ASL, human β-defensins 1-3 

(HBD1-3), play an essential role in airway defence (McCray and Bentley, 1997, Zhao et al., 

1996, Singh et al., 1998). The positive charge of these small peptides enables binding to the 

negatively charged bacterial membrane. By becoming embedded within the membrane and 

forming a pore, they facilitate bacterial killing by osmotic-mediated lysis. HBD1-3 are effective 

against a number of Gram-negative bacteria, with HBD-2 and -3 both demonstrating a 

particular potency against P. aeruginosa.  However, only HBD-3 exerts bacteriostatic activity 

against the Gram-positive pathogen S. aureus (Harder et al., 2001, Harder et al., 2000).    

Whilst the synthesis and secretion of β-defensins into the airway lumen is not influenced by 

mutations in the CFTR, their bacteriostatic and bactericidal abilities are severely reduced in 

CF airways. β-defensins are subjected to degradation by macrophage derived cathepsins 

released during the chronic inflammatory response characteristically seen in CF (Taggart et 

al., 2003). Moreover, there is evidence that the high salt environment associated with CF 

inactivates constitutively active HBD-1. This is likely to be due to the sodium concentration 

competitively inhibiting interactions between the cationic peptide and the negatively charged 

bacterial membrane (Goldman et al., 1997, Lehrer et al., 1993). 

 Lysozyme 

Lysozyme is secreted into the ASL by surface epithelia and glandular serous cells (Konstan et 

al., 1981). This small cationic protein is known to target the β1-4 glycosidic bonds between N-

acetylglucosamine and N-acetyl-muramic acid. Bound to airway mucins, lysozyme is an 

effective antimicrobial agent against several Gram-positive pathogens, where its ability to 
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degrade the peptidoglycan cell wall facilitates bacterial killing by osmotic-mediated lysis. The 

Gram-positive bacterium S. aureus is resistant to the hydrolytic activity of lysozyme however, 

due to modifications within N-acetyl-muramic acid at the C-6 position (Bera et al., 2005, Bera 

et al., 2007).Whilst its activity against Gram-negative bacteria is reduced (Coonrod, 1986), 

lysozyme is able to kill the bacterium P. aeruginosa (Akinbi et al., 2000). It has also been 

demonstrated that the antimicrobial activity of lysozyme is not solely dependent upon its 

hydrolytic activity, as lysozyme works synergistically with a number of other antimicrobial 

compounds secreted in the airway lumen, including lactoferrin (Ellison et al., 1988, Ellison and 

Giehl, 1991, Akinbi et al., 2000).  

Whilst lysozyme activity is believed to be similar, if not elevated within CF airways (Sagel et 

al., 2009b), P. aeruginosa colonisation impairs the function of this antimicrobial protein. Whilst 

acidification of the ASL is believed to have a minimal effect upon its function (Davies et al., 

1969), elastase E produced by P. aeruginosa (but not neutrophil elastase) targets pulmonary 

lysozyme, leading to its cleavage and loss of its bacteriolytic ability (Jacquot et al., 1985).  

 Lactoferrin  

Lactoferrin is constitutively secreted into the ASL by serous cells (Brogan et al., 1975, Bowes 

et al., 1981). With iron being important for bacterial metabolism, the ability of lactoferrin to 

reversibly sequester free ferric ions (Fe3+), deprives both Gram-positive and Gram-negative 

bacteria of this essential micronutrient (Bullen et al., 1974). Whilst lactoferrin is believed to be 

present in similar levels in non-CF and CF airways (Pezzulo et al., 2012), it is subject to 

proteolytic cleavage within the CF lung. Unlike lysozyme however, lactoferrin is degraded by 

both neutrophil elastase (NE) and proteases secreted by P. aeruginosa, which serves to 

liberate the iron (Britigan et al., 1993). Iron has been shown to be elevated in both sputum and 

bronchioalveolar lavage (BAL) fluid obtained from individuals with CF (Stites et al., 1999, Reid 

et al., 2004) and its increased availability has been linked to facilitating P. aeruginosa 

persistence within CF airways (Reid et al., 2007).  

The ability of lactoferrin to bind Fe3+ however, does not appear to be the main mechanism in 

which this protein exerts its antimicrobial function. Lactoferrin has also been shown to bind to 

LPS upon the surface of Gram-negative bacteria. Binding of lactoferrin destabilises LPS, 

leading to its removal from the outer membrane. Consequent changes within the makeup and 

stability of the outer membrane of bacteria increases its permeability, making it more 

susceptible to osmotic-mediated lysis, and killing mediated by lysozyme and antibiotics 

(Farnaud and Evans, 2003, Ellison et al., 1988). Reducing osmotic-mediated lysis of P. 

aeruginosa through the degradation of lactoferrin and increasing the availability of iron may 

protect P. aeruginosa and provide it with a more favourable environment within the lung in 

which to colonise and persist.  
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 PLUNC 

Palate, Lung, Nasal Epithelial Clone (PLUNC) belongs to a superfamily of proteins with very 

little sequence homology (Bingle et al., 2011). Termed ‘short’ or ‘long’, SPLUNC1 is a 25 kDa 

glycoprotein secreted by tracheobronchial epithelia and submucosal glands (Campos et al., 

2004). In addition to its role in regulating the volume of ASL (Garcia-Caballero et al., 2009), its 

hydrophobicity and surfactant like properties allows it to reduce surface tension within the large 

airways (Bartlett et al., 2011). Induced by TLR2 (Thaikoottathil and Chu, 2011), SPLUNC1 has 

been shown to exert an antimicrobial effect against a number of bacteria, including P. 

aeruginosa (Bartlett et al., 2011, Zhou et al., 2008). The ability of PLUNC to inhibit aggregation 

and the formation of microcolonies, makes it one of a number of innate molecules alongside 

lactoferrin, which exert an anti-biofilm effect within the airways (Gakhar et al., 2010). Chronic 

infection of CF airways is facilitated by the secretion and formation of bacterial biofilms 

(Costerton, 2001). The upregulation of PLUNC in response to bacterial infection makes it an 

effective defence mechanism (McGillivary and Bakaletz, 2010, Sayeed et al., 2013).  

Analysis of the CF airway secretome identified that SPLUNC1 was one of a few innate immune 

proteins downregulated in the ASL, compared to non-CF airways (Bingle et al., 2007). 

SPLUNC is also known to be degraded by NE (Jiang et al., 2013). A study infecting SPLUNC 

knockout mice demonstrated an increased susceptibility to P. aeruginosa airway infection and 

an increase in P. aeruginosa biofilm formation (Liu et al., 2013), whilst another study 

demonstrated that SPLUNC inhibited the growth of P. aeruginosa in vitro (Zhou et al., 2008). 

SPLUNC also appears to be important in providing protection against S. aureus, where it has 

been shown to reduce S. aureus biofilm formation (Yu et al., 2018). As NE is elevated in the 

CF lung, reductions in SPLUNC due to its degradation are likely to assist the growth and biofilm 

production of S. aureus and P. aeruginosa.   

 Secretory IgA and Secretory Component   

Another important component of airway defence is the 385 kDa globular glycoprotein, 

secretory IgA (sIgA). Existing as a dimer, covalently linked to a J chain, this chief antibody of 

the respiratory mucosa is able to bind to inhaled pathogens within the upper airways, in 

addition to their exotoxins (Corthesy, 2013, Johansen et al., 2001). By blocking bacterial 

adhesion to airway epithelia, it facilitates their retention within airway mucus and removal by 

the mucociliary escalator. The binding of sIgA to a 70 kDa polypeptide referred to as secretory 

component (SC) (Mostov, 1994) protects the antibody from proteolysis (Crottet and Corthesy, 

1998, Lindh, 1975), in conjunction with it acting as an adhesion decoy (Hammerschmidt et al., 

1997).  
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The neutrophil dominated immune response within the chronically-inflamed CF lung 

compromises SC and sIgA mediated defences, with NE being shown to degrade sIgA (Doring 

et al., 1986). Increasing concentrations of NE have been detected within CF sputum of children 

with CF (1.0-1.8 log µg/mL) (Sagel et al., 2012), which is below the limit of detection in healthy 

volunteers (Birrer et al., 1994). NE has also been shown to be highest in individuals colonised 

by P. aeruginosa (Chalmers et al., 2017, Weldon et al., 2009). In P. aeruginosa keratitis, 

alkaline protease and elastase secreted by P. aeruginosa have been shown to partially 

degrade SC, giving rise to the question as to whether this also occurs in CF airways colonised 

by P. aeruginosa (Lomholt and Kilian, 2008). Proteolytic degradation of SC whether by P. 

aeruginosa derived or neutrophil derived proteases are likely to abolish its antimicrobial 

function in the CF lung.  

 Alveolar Surfactants  

Whilst the highly-branched structure of the airways helps to prevent large particles (>5 µm) 

from reaching the distal air spaces, smaller particles such as bacteria can become deposited 

at the air liquid interface (ALI) within the lower airways. Whilst this thin layer of liquid is 

abundant in two small hydrophobic surfactant proteins (SP), SP-B and SP-C, helping maintain 

a low surface tension interface (Whitsett and Weaver, 2002), surfactants SP-A and SP-D form 

an essential part of innate immunity (Hartshorn et al., 1998). The carbohydrate recognition 

domain (CRD) of SP-A allows it to bind to the lipid-A component of membrane anchored LPS 

and thus promote binding to both Gram-positive bacteria such as S aureus (Geertsma et al., 

1994) as well as Gram-negative bacteria, including P. aeruginosa (Mariencheck et al., 1999, 

Giannoni et al., 2006). The less abundant SP-D also plays an important part in bacterial 

clearance, binding to the LPS core sugars on Gram-negative bacteria including P. aeruginosa 

(Kuan et al., 1992), whilst binding to lipoteichoic acid and peptidoglycan upon the cell wall of 

Gram-positive bacteria (van de Wetering et al., 2001). SP-D has been shown to act as a 

chemotactic factor, encouraging neutrophil migration to sites of infection (Cai et al., 1999). By 

binding to carbohydrates upon the pathogen’s surface, both surfactants have been shown to 

enhance macrophage and neutrophil-mediated phagocytosis and thus clear bacteria from the 

lungs (Gaynor et al., 1995, Tino and Wright, 1996, Hartshorn et al., 1998, Madan et al., 1997).  

During chronic inflammation of the CF lung, the large and characteristic shift in the 

protease-anti-protease balance leads to the degradation of these surfactants by host 

proteases (Delacourt et al., 1995). Whilst SP-A is known to be degraded by neutrophil serine 

proteases present in high concentrations in the CF lung (Schochett et al., 1999, von Bredow 

et al., 2001), SP-D is degraded by chronically challenged alveolar macrophages (von Bredow 

et al., 2003). Degradation of both SP-A and SP-D may impair the phagocytic clearance of S. 
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aureus and P. aeruginosa by airway neutrophils and macrophages and facilitate their survival 

within the CF lung.  

 Neutrophils – the foot solider  

Following airway infection, the release of the pro-inflammatory mediator interleukin-8 (IL-8) 

from airway epithelia and inflamed endothelia, encourages circulating neutrophils to tightly roll 

across and bind the surface of pulmonary capillaries and enter the infected airways (Lawrence 

and Springer, 1991). Once primed at the site of infection, these professional phagocytes utilise 

a potent arsenal of bactericidal mechanisms to permit bacterial clearance from the lung. This 

ranges from bacterial phagocytosis and the release of reactive oxygen species (ROS) as part 

of the respiratory burst, to the secretion of proteases and peptides including NE and lysozyme 

(Segal, 2005, Cascao et al., 2009). The secretion of web-like neutrophil extracellular traps 

(NETs) also serves to agglutinate bacteria, inhibiting their ability to disseminate and colonise 

(Brinkmann et al., 2004). Following their short lifespan, neutrophils undergo apoptosis 

(programmed cell death), where they are eventually cleared by another professional 

phagocyte, the macrophage (Savill et al., 1989). As this process is anti-inflammatory, 

alterations to the ability or rate of clearance can cause dying neutrophils to become ‘leaky.’ 

Spillage of the neutrophil intracellular contents can consequently have a severe impact upon 

lung health, leading to chronic and excessive inflammation.  

CF is characterised by a neutrophil-dominated immune response, where in some instances, 

these granulocytes account for nearly two-thirds of all immune cells found within CF airways 

(Hartl et al., 2006). Their accumulation within the airways leads to the excessive release NE 

within CF sputum (Goldstein and Doring, 1986). NE also perturbs the fine protease to anti-

protease balance within the lung. Whilst protease inhibitors α1-antitrypsin (α1-AT) and 

secretory leukoprotease inhibitor (SLPI) protect airway epithelia from NE-mediated damage, 

the concentrations found within CF airways not only overwhelm the concentration of these 

protease inhibitors, but they can also degrade them (Cantin et al., 1989, Baumstark et al., 

1977). 

NE damages the airway architecture through the degradation of extracellular matrix proteins 

including collagen (type I and type V), elastin and fibronectin, with cleavage of fibronectin also 

enhancing P. aeruginosa binding (Taggart et al., 2000, Walsh et al., 2001, Suter et al., 1988). 

Elastin and collagen breakdown products have been detected in the urine of individuals with 

CF (Stone et al., 1995). NE has also been shown to lead to the proteolytic cleavage of ENaC, 

leading to sodium hyperabsorption and mucus dehydration (Ji et al., 2000, Caldwell et al., 

2005). It has also been shown to further impair already compromised innate defence 

mechanisms, due to its ability to degrade the immunoglobulin IgG, complement proteins and 

the airway antimicrobial peptide LL-37 (Nadel, 1991, Bergsson et al., 2009). Furthermore, NE 
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is known to elevate the expression of the pro-inflammatory chemokine IL-8 (Nakamura et al., 

1992) and is associated with decreased pulmonary function (Mayer-Hamblett et al., 2007). The 

cleavage of key cell surface receptors due to protease imbalance also impairs the ability of 

neutrophils to phagocytose common CF bacteria, through the loss of cell surface CD14, CD16 

and IL-8R (CXCR1) (Tirouvanziam et al., 2008). 

Whilst the survival of neutrophils in CF patients are known to be prolonged (Moriceau et al., 

2010), the cleavage of phosphatidylserine receptors upon the surface of macrophages also 

impairs the removal of apoptotic neutrophils from the CF lung (McKeon et al., 2008, Vandivier 

et al., 2002b). The release of neutrophil DNA from both necrotic cells and from activated 

neutrophils as extracellular traps, serve to increase mucus viscosity (Lethem et al., 1990, 

Marcos et al., 2010). The release of the neutrophil’s intracellular contents is also likely to 

exasperate the pro-inflammatory response seen within CF airways. This heightened 

inflammatory response has also been shown to prime neutrophils to release granules early 

(Koller et al., 1995). The premature release of proteases such as gelatinase have been shown 

to damage the basement membrane, aiding neutrophil migration to the site of infection, whilst 

inflammation amplifies the release of ROS from neutrophils, which subsequently damage 

airway epithelia (Delacourt et al., 1995, Brockbank et al., 2005).  

Mutations in the CFTR also affect the ability of neutrophils to kill ingested bacteria (Zhou et al., 

2013). The inability to transport chloride ions into the phagolysosome protects P. aeruginosa 

from hypochlorous acid-mediated killing (Painter et al., 2008). Moreover, the failure for 

secondary and tertiary granules to fuse into the phagolysosome also protect the bacteria from 

intracellular killing (Pohl et al., 2014). Airway neutrophils in individuals with CF have also been 

shown to express elevated levels of TLR5 upon their cell surface compared to circulating 

neutrophils in the same individuals, along with neutrophils isolated from healthy controls and 

individuals with bronchiectasis (a permanent widening of the airways, leading to mucus 

accumulation) (Koller et al., 2008). As TLR5 recognises P. aeruginosa flagellin, it suggests that 

TLR5 may be important in neutrophil interactions with P. aeruginosa. The production of thick 

alginate biofilms by P. aeruginosa also impairs neutrophil function, causing immobilisation, 

premature granule release and cell rounding (Jesaitis et al., 2003). This impairment of 

neutrophils by biofilms may not be limited to P. aeruginosa, as S. aureus also forms biofilms 

within CF airways (Hirschhausen et al., 2013). Additionally, it has been reported that the 

phagocytosis of S. aureus by CF neutrophils isolated from sputum is lower than that of CF 

circulating neutrophils, although the underlying mechanisms require further study (Timmis et 

al., 2011). 
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 Alveolar Macrophages – The sentry  

Whilst neutrophils have a typical lifespan of 4-6 hours, macrophages can reside within the lung 

for many months (Murphy et al., 2008). They arise either through division of tissue resident 

macrophages, or through pre-cursor monocytes. Following their release from the bone 

marrow, monocytes circulate in blood vessels and migrate into tissues where they differentiate 

into monocyte-derived macrophages (Thomas et al., 1976, Sawyer et al., 1982). Interstitial 

macrophages are present within the lung parenchyma, and whilst they are poor phagocytes, 

they play key roles in lung inflammation, antigen presentation and the development of 

pulmonary fibrosis (Byrne et al., 2015, Schneberger et al., 2011, Weinberg and Unanue, 1981). 

However, alveolar macrophages release oxygen free radicals, lysozyme and defensins to 

permit bacterial killing. Unlike neutrophils however, macrophage mediated phagocytosis 

serves many functions, from promoting the clearance of bacteria, to the removal of tissue 

debris and apoptotic neutrophils (Cox et al., 1995). 

It has been shown previously that macrophages, unlike neutrophils, require wtCFTR to 

effectively phagocytose complement-coated bacteria (Van de Weert-van Leeuwen et al., 

2013). Thus, mutations in the CFTR, particularly class I mutations leading to its absence from 

the apical membrane, may attenuate the phagocytic ability of CF macrophages. Another study 

using human macrophages, demonstrated whilst both CF and non-CF effectively ingested and 

killed P. aeruginosa over time, a higher percentage of viable P. aeruginosa was seen in the 

phagolysosome of CF macrophages after four hours (Del Porto et al., 2011). S. aureus has 

also been shown to survive within CF macrophages due to reduced phagolysosome fusion (Li 

et al., 2017). Thus, CF macrophages may promote the intracellular survival of both S. aureus 

and P. aeruginosa, not only protecting both species from the hosts immune system and 

antibiotics, but it may also act as a reservoir for chronic infection.  

Furthermore, research into the effect of exposure to LPS obtained from P. aeruginosa 10 upon 

alveolar macrophages have yielded some interesting results. CF murine macrophages and ex 

vivo alveolar macrophages demonstrated an enhanced pro-inflammatory response upon 

exposure to LPS, including IL-1α, IL-6 and IL-8 and therefore may contribute to the hyper-

inflammatory phenotype of CF airways (Bruscia et al., 2009). In spite of this, other groups have 

illustrated that more CF macrophages are alternatively-activated, consequently reducing their 

bactericidal activity (Murphy et al., 2010).  

Excess damage to CF airways coupled with reduced killing of CF pathogens by professional 

phagocytes are likely to promote bacterial survival and the development of chronic infections.  
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 Pro-inflammatory cytokines 

Detection of a microbial challenge within the airways results in the release of an array of pro-

inflammatory cytokines and chemokines. These small proteins (8-30 kDa) serve to not only 

attract inflammatory cells to the site of infection and increase vascular permeability, but also 

aid in the upregulation and expression of several host defence proteins, such as HBD-2 and -

3 (Greene and McElvaney, 2005, Ryu et al., 2010, Hiratsuka et al., 1998). In response to 

infection and injury, airway epithelia are known to release large quantities of the potent pro-

inflammatory cytokine tumour necrosis factor alpha (TNF-α). TNF-α release leads to an 

increase in the expression of adhesion molecules upon the apical surface of lung endothelia, 

facilitating the binding of circulating neutrophils to the inflamed capillary (Lauterbach et al., 

2008). 

 Interleukin-6  

The pro-inflammatory cytokine interleukin-6 (IL-6) activates antibody production by B cells and 

the production of acute phase proteins by liver hepatocytes (such as C-reactive protein) 

(Muraguchi et al., 1988, Bode et al., 2012, Kopf et al., 1994). IL-6 is believed to induce the 

transcription and expression of the major airway mucins MUC5AC and MUC5B (Chen et al., 

2003b), as well as induce the expression of receptors upon endothelial cells, to facilitate 

neutrophil binding to the site of infection (Cronstein, 2007), and activate downstream mediators 

such as prostaglandins, which play a role in priming neutrophils (Biffl et al., 1994).  

IL-6 is an inflammatory marker in CF airways and has been detected in exhaled breath 

condensate (Carpagnano et al., 2003) and bronchoalveolar lavage fluid (BALF) (Noah et al., 

1997). IL-6 may also be involved in the recruitment of leukocytes to the inflamed airways 

(Romano et al., 1997), as well as in the priming of neutrophils (Biffl et al., 1994).  

 Interleukin-8  

Produced by a range of cell types, including airway epithelia, endothelial cells, fibroblasts and 

neutrophils, IL-8 plays an essential role in airway innate immunity (Eckmann et al., 1993, 

Bazzoni et al., 1991, Rolfe et al., 1991). As a chemokine, it facilitates the binding and migration 

of circulating neutrophils to the site of infection, helping phagocytose and clear pathogens 

(Wardlaw, 1990). It also plays an additional role in neutrophil activation, increasing their 

antimicrobial capacity (Baggiolini and Clark-Lewis, 1992).  

Excessive neutrophil infiltration into their airways and high levels of pro-inflammatory cytokines 

such as IL-8 are often detected in CF children following newborn screening and often in the 

absence of any detectable infection (Rosenfeld et al., 2001b, Khan et al., 1995). High levels of 

leukotriene B4 (LTB4), required for neutrophil vascular adhesion and extravasation into 
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tissues, is also seen (Bodini et al., 2005). Thus, whether this pro-inflammatory phenotype is a 

result of CFTR dysfunction (Stecenko et al., 2001), an exaggerated response to bacterial 

infection (DiMango et al., 1995, Kube et al., 2001), or a combination of both, is the focus of 

further research.  

 Interleukin-10 

Whilst a pro-inflammatory immune response is essential for clearing airway infections, the 

ability to resolve inflammation is essential for physiological function. Restoring tissue 

homeostasis is a very active process, involving both non-professional and professional 

phagocytes. The constitutive secretion of interleukin-10 (IL-10) by airway epithelia serves to 

inhibit the release of pro-inflammatory mediators by monocytes and macrophages (Bonfield et 

al., 1995a, de Waal Malefyt et al., 1991, Ding et al., 1993).  

Low levels of IL-10, have been detected within the CF lung (Bonfield et al., 1995a, Sagel et 

al., 2012, Dosanjh et al., 1998). Due to the ability of IL-10 to resolve inflammation, such as 

inhibiting cytokine production by activated macrophages (Fiorentino et al., 1991), its low levels 

within CF airways are likely to contribute to chronic inflammation, a hallmark of CF.  

 Transforming growth factor beta-1 

Transforming growth factor beta (TGF-β) is a multi-functional cytokine which exists as three 

isoforms, TGF-β1, TGF-β2 and TGF-β3 and is encoded by three separate genes (Thomas et al., 

2016). All isoforms have been detected in heathy bronchial airway epithelia (Magnan et al., 

1994). TGF-β1 is involved in mediating rapid wound repair following damage to airway 

bronchial epithelia (Howat et al., 2002) and in stimulating fibroblast proliferation in vitro 

(Nakamura et al., 1995). It has been shown to elevated in the BALF of individuals with CF 

(Harris et al., 2009), in lung tissue isolated from individuals with CF (Corrin et al., 1994), as 

well as in conditioned media obtained from cultured CF epithelia (Perkett et al., 2006). This 

increase in TGF-β1 in CF airways is likely to be mediated by NE (Lee et al., 2006), regional 

hypoxia within the CF lung (Nicola et al., 2011) and persistent injury to airway epithelia due to 

chronic infection and inflammation (Hilliard et al., 2007).  

Select polymorphisms in TGF-β1 in individuals with CF is associated with worsened disease 

severity, including a worsening of pulmonary function (Brazova et al., 2006, Drumm et al., 

2005, Arkwright et al., 2000) and neutrophilic inflammation (Harris et al., 2009), with TGF-β1 

being known to be a potent neutrophil chemoattractant (Parekh et al., 1994). TGF-β1 has also 

been shown to impair the rescue of CFTR in primary CF epithelia (Snodgrass et al., 2013), as 

well as impair mucociliary clearance and deplete the ASL volume in polarised CF primary 

epithelia (Manzanares et al., 2015).  The cytokine may also enhance fibrosis within CF airways 

by driving myofibroblast differentiation (Harris et al., 2013).  
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 The impact of CFTR dysfunction upon pulmonary innate immunity 

is severe 

It is evident that mutations in the CFTR exhibit devastating effects upon many different aspects 

of pulmonary innate immunity, particularly in relation to CF airway epithelia. This ranges from 

impairments in mucociliary clearance and in the detection of microbes, to the degradation of 

epithelial-derived antimicrobial peptides and proteins. Despite this, a number of key questions 

remain. Impaired mucociliary clearance leads to mucus plugging, which can give rise to 

regions of anoxia. However, the impact of environmental conditions such as oxygen availability 

upon CF pathogens is poorly understood. Furthermore, whilst inflammation is a hallmark of 

CF, does infection with more than one CF pathogen influence the inflammatory response of 

CF airway epithelia? Furthermore, whilst mutated CFTR has been reported to be both a PRR 

and an adhesion ligand for bacteria, studies addressing bacterial adhesion to CF airway 

epithelia are lacking.  

1.6 Bacterial infections of CF Airways  

CF airways are colonised by a complex polymicrobial community of aerobic and anaerobic 

bacteria (Zhao et al., 2012, Rogers et al., 2009, Tunney et al., 2008), viruses (Etherington et 

al., 2014) and fungi (Willger et al., 2014). Bacteria are known to predominate in CF airways, 

forming 99% of the microbial community, whilst viruses and fungi form the remaining 1% 

(Moran Losada et al., 2016). Most bacterial infections within the CF lung are environmental or 

commensal bacteria which exploit impairments in innate immunity, whilst patient-to-patient 

transmission also plays a key role in the spread of CF adapted pathogens (Saiman and Siegel, 

2004).  

Despite the complex microbial community known to colonise CF airways, S. aureus and P. 

aeruginosa are the two most prevalent pathogens (Cystic Fibrosis Trust, 2018, Filkins et al., 

2015, Moran Losada et al., 2016). As shown in Figure 4, infection of the CF lung is known to 

occur in a highly sequential order and one that is heavily age dependent. Whilst S. aureus and 

non-capsulated Haemophilus influenzae (H. influenzae) colonises and infects the airways in 

the first decade of life, P. aeruginosa predominates in the second and third decades (Talwalkar 

and Murray, 2016, Lyczak et al., 2002).  

P. aeruginosa is considered to be the most important of the three main “classic” CF pathogens, 

where it is associated with increased morbidity, hospitalisations and greater decreases in 

pulmonary function (Emerson et al., 2002, Kerem et al., 1990, Com et al., 2014). Other 

important emerging pathogens include methicillin-resistant Staphylococcus aureus (MRSA), 

Stenotrophomonas maltophilia, Mycobacterium abscessus and Prevotella spp. (Parkins and 

Floto, 2015).  
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Figure 4. Colonisation of the CF lung is highly sequential and age dependent. This graph illustrates 
the percentage of patients who are culture positive for a particular bacterial species, categorised by age. 
S. aureus (yellow and light blue lines) and H. influenzae (orange) typically colonise CF airways within 
the first decade of life, with S. aureus being the predominant organism. However, as an individual 
progresses through adolescence and into adulthood, P. aeruginosa (grey and navy lines) predominates. 
Graph modified from the 2017 Cystic Fibrosis Trust registry report (Cystic Fibrosis Trust, 2018). 

 Staphylococcus aureus  

S. aureus is often the first bacterium to colonise the CF lung, typically during infancy 

(Armstrong et al., 1997, Kahl, 2010). A ubiquitous organism as well as a commensal of the 

anterior nares (in approximately 30% of the UK population) (Gamblin et al., 2013)this Gram-

positive coccus is responsible for causing chronic infections of the respiratory tract (Lyczak et 

al., 2002). Prior to the use of antibiotics, S. aureus was associated with high mortality rates in 

children (Ahlgren et al., 2015). However, the routine administration of anti-staphylococcal 

agents such as prophylactic flucloxacillin following initial diagnosis until the age of three is 

administered in the UK (CysticFibrosisTrust, 2009). Despite this, a Cochrane review 

highlighted that there is no agreement on how to best treat chronic S. aureus infection (Ahmed 

and Mukherjee, 2016). Furthermore, there are concerns as to whether prophylactic antibiotic 

use can lead to earlier P. aeruginosa acquisition (Elborn, 1999).  
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Intermittent S. aureus infection is detected in 24.5% of the paediatric UK CF population, 

compared to 16.8% of the UK CF population over the age of 16 (Cystic Fibrosis Trust, 2018). 

Furthermore, chronic S. aureus infection is detected in approximately 7.7% of the paediatric 

CF population in the UK and 21.5% in those over the age of 16 (Cystic Fibrosis Trust, 2018). 

The emergence of antibiotic resistant strains of S. aureus to antibiotics such as methicillin and 

flucloxacillin was first identified in 1960’s (Jevons et al., 1963, Barber, 1961). This led to the 

circulation of methicillin resistant S. aureus (MRSA) within the CF population. The prevalence 

of MRSA is relatively low in the UK, with a prevalence of approximately 1.8% within the CF 

population under 16 years and 2.7% of the adult population being colonised. This is contrast 

to the USA which has a reported MRSA prevalence of 26% within the CF community (Cystic 

Fibrosis Foundation, 2008). The presence of MRSA has previously been reported to be linked 

to a more rapid decrease in pulmonary function (Dasenbrook et al., 2008). Despite this, other 

authors have reported that the presence of MRSA appears to have a minimal impact upon 

pulmonary function (Boxerbaum et al., 1988, Thomas et al., 1998, Miall et al., 2001).  

 S. aureus virulence 

The role of S. aureus within CF disease pathogenesis and progression is poorly understood, 

in addition to the mechanisms which allow it to become the predominant organism early in life 

(Lyczak et al., 2002). S. aureus is known to possess a range of virulence factors which allow 

it to effectively colonise the CF airway epithelium. This is summarised in Figure 5. The 

increased presence of the cellular receptor asialoganglioside 1 (aGM1) upon the surface of 

CF respiratory epithelia compared to non-CF, are likely to enhance the bacterium’s ability to 

bind to the tetrasaccharide sugar moiety of this receptor and effectively adhere to host cells 

(Imundo et al., 1995), whilst the binding of S. aureus to aGM1 and tumour necrosis factor-α 

receptor initiates airway inflammation, including the release of IL-8 (DiMango et al., 1998, 

Gomez et al., 2004). 

The presence of fibronectin binding protein (FnbpA), clumping factor A (ClfA), collagen binding 

protein (Cbp) and elastin binding protein (Ebp) upon the bacteria’s surface allow it to adhere 

to airway epithelia (Lynch and Bruce, 2013), as well as components of the extracellular matrix 

(Sinha et al., 1999, Patti et al., 1992). S. aureus has also been shown to bind to MUC1, a 

transmembrane mucin present upon the surface of respiratory epithelia (Linden et al., 2008). 

Thus, the inability to clear high viscosity dehydrated mucus from CF airways further enhances 

the ability of this trapped opportunistic pathogen, to colonise the airways and cause infection 

in CF (Saggers and Lawson, 1970, Sanford et al., 1989).  

  



45 

 

S. aureus is also known to secrete a diverse range of exotoxins, including α- and β-toxins 

which damage airway epithelia and induce inflammation (Dragneva et al., 2001, Ratner et al., 

2006), with the β-toxin Panton-Valentine leucocidin (PVL), causing neutrophil and macrophage 

lysis (Gladstone and Van Heyningen, 1957). The release of other extracellular products 

including lipoteichoic acid and peptidoglycan are known to induce airway inflammation 

(Fournier and Philpott, 2005).  

Whilst the S. aureus golden carotenoid pigment impairs neutrophil killing (Liu et al., 2005), the 

production of a biofilm provides resistance against phagocytosis and antibiotic-mediated killing 

(Singh et al., 2010, Thurlow et al., 2011). S. aureus is also known to have a low susceptibility 

to the effects of HBD-1 and HBD-2, with the latter only demonstrating a bacteriostatic effect, 

even at high concentrations (Harder et al., 1997, Singh et al., 1998). S. aureus can also 

produce a biofilm during chronic infection, facilitating its persistence and protecting it from 

antibiotics as well as the cellular and humoral components of the immune system (Gotz, 2002, 

Jones et al., 2001).   
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Figure 5. S. aureus utilises an extensive array of virulence factors. The cell associated aGM1, 
collagen-, elastin- and fibronectin- binding proteins facilitate bacterial adhesion to airway epithelia and 
the extracellular matrix. Protein A is effective in inhibiting opsonisation by host antibodies. Carotenoid 
pigment provides resistance against damaging reactive oxygen species (ROS), whilst biofilms inhibit 
bacterial killing by antibiotics and the host neutrophils. The extracellular virulence factor Panton-
Valentine Leukocidin (PVL) is effective in causing host neutrophil lysis. 

S. aureus has also been shown to grow as small colony variants (SCV’s) within CF airways 

(Kahl et al., 1998, Sadowska et al., 2002, Gilligan et al., 1987). This reversible switch in 

phenotype causes S. aureus to grow as small, non-pigmented colonies, which are able to 

produce thymidine and haemin (Proctor et al., 2006). In addition to being able to become 

internalised within host cells (Vaudaux et al., 2002, von Eiff et al., 1997), they exhibit a 

heightened resistance to anti-staphylococcal antibiotics (Chuard et al., 1997, Besier et al., 

2007). The prevalence of SCV’s within the CF population has been estimated to be between 

8-33% (Yagci et al., 2013, Kahl et al., 1998). S. aureus SCV’s have also been associated with 

a worsening of pulmonary function (Besier et al., 2007).  
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 Pseudomonas aeruginosa  

P. aeruginosa is a Gram-negative rod-shaped organism ubiquitously found in water supplies 

and soil and is a non-dominant member of normal skin flora (Green et al., 1974, Franzetti et 

al., 1992). Whilst it optimally grows at 37 °C, it can survive at temperatures up to 42 °C. Like 

S. aureus, P. aeruginosa is also facultative in its oxygen requirements and whilst it grows 

preferably under normoxia, it can grow under anoxia through the use of arginine (Vander 

Wauven et al., 1984) and nitrate as end terminal electron acceptors (Line et al., 2014). P. 

aeruginosa also has one of the largest bacterial genomes known, consisting 6.3 million base 

pairs, of which 9.1% encode regulatory proteins (Stover et al., 2000). As an opportunistic 

pathogen, it typically causes infections in those who are immunocompromised, including burn 

victims, cancer and AIDS patients and neonates, as well as individuals with CF (Lyczak et al., 

2000).  

P. aeruginosa first colonises CF lungs as early as 6 months of age, where it is predominantly 

acquired from the environment (Burns et al., 2001, Cystic Fibrosis Trust, 2016b), whilst patient-

patient contact has also been identified as a source of bacterial transmission; particularly in 

epidemic strains (Doring et al., 1996, Hoogkamp-Korstanje et al., 1995, Scott and Pitt, 2004). 

This includes the Liverpool Epidemic Strain (LES), first identified in 1996 and associated with 

increased virulence, enhanced resistance to antibiotics and a faster decline in pulmonary 

function (Ashish et al., 2012, Salunkhe et al., 2005, Fothergill et al., 2007b).  

Initial infection is typically acute and intermittent, where P. aeruginosa can be eliminated by an 

aggressive course of aerosolised antibiotics (Geller, 2009). Re-infection may be caused by 

one or more P. aeruginosa strains (Burns et al., 2001). Approximately 20.1% of the paediatric 

CF population in the UK and 14.2% of the adult population are intermittingly colonised by P. 

aeruginosa (Cystic Fibrosis Trust, 2018). However, the infection eventually becomes chronic. 

Approximately 5.4% of the paediatric and 44.5% of the adult CF population in the UK are 

chronically colonised by P. aeruginosa (Cystic Fibrosis Trust, 2018). CF sputa positive for P. 

aeruginosa are associated with a worse clinical score, than those positive for S. aureus 

(Ahlgren et al., 2015). Furthermore, young children who are culture positive for P. aeruginosa 

have a 2.6-fold increased risk of mortality over the subsequent eight years compared to those 

who are culture negative (Emerson et al., 2010). According to Lee et al. chronic P. aeruginosa 

infection in the context of CF is the detection of P. aeruginosa in over half  of sputum samples 

over the last twelve months (Lee et al., 2003).  
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 P. aeruginosa virulence 

P. aeruginosa possesses an impressive arsenal of cell-associated and extracellular virulence 

factors which allow it to cause chronic infections in the CF lung. This is summarised in Figure 

6. Cell associated pili and fimbriae facilitate adhesion to lung epithelial cell surface receptors 

(de Bentzmann et al., 1996a, Saiman and Prince, 1993, Giltner et al., 2006), internalisation by 

airway epithelia (Plotkowski et al., 1999) and biofilm formation (O'Toole and Kolter, 1998).  

Whilst flagella are required for bacterial swimming (Drake and Montie, 1988) it has been shown 

to bind to MUC1 mucin within the airways (Lillehoj et al., 2002). However, flagellin is also highly 

immunogenic (Mizel et al., 2003). Another potent activator of the immune system is LPS upon 

the surface of P. aeruginosa (Cryz et al., 1984). LPS is composed of the hydrophobic lipid A 

domain embedded within the bacterial cell membrane, linked to a core polysaccharide and a 

O-antigen, with the latter being immunogenic (Goldberg and Pler, 1996). Subsequent 

modifications and losses of the O-antigen of LPS during the course of chronic airway infection 

facilitates evasion from the innate immune system, thus promoting long-term survival (Cigana 

et al., 2009), whilst losses in flagellin may also evade TLR5 activation (Blohmke et al., 2008). 

The ability of some CF isolates of P. aeruginosa to also synthesise specific forms of Lipid A 

containing aminoarabinose and palmitate, may provide protection against antimicrobial 

peptides present within the airways  (Ernst et al., 1999).  

P. aeruginosa also secretes several virulence factors. The yellow-green siderophore 

pyoverdine competes with host transferrin and binds to the micronutrient iron, facilitating its 

uptake (Cox, 1986). The blue secondary metabolite pyocyanin inhibits cilia beating in airway 

epithelia, inhibits cellular respiration and induces neutrophil apoptosis (Munro et al., 1989, 

Allen et al., 2005). Furthermore, it has also been shown to cause imbalances within the 

protease-antiprotease balance within the lungs, by inhibiting the alpha-1 protease inhibitor 

(Britigan et al., 1999). Rhamnolipids induce necrosis of host neutrophils (Van Gennip et al., 

2009) and disrupt tight junctions between airway epithelia (Zulianello et al., 2006), whilst 

hydrogen cyanide can inhibit aerobic respiration of epithelia by targeting cytochrome c oxidase 

(Gallagher and Manoil, 2001).  

P. aeruginosa is known to secrete numerous proteases. Elastase B (Las B) degrades elastin 

within the CF lung, along with laminin, collagen III, collagen IV and fibrin, in addition to airway 

surfactants -A and -D (Mariencheck et al., 2003, Heck et al., 1986, Morihara, 1964). 

Furthermore, Las B has been shown to degrade antimicrobial proteins of the immune system, 

including lysozyme, IL-8 and sIgA (LaFayette et al., 2015, Jacquot et al., 1985, Diebel et al., 

2009). Tissue damage serves to increase nutrient availability, facilitate bacterial spread and 

induce lung fibrosis, whilst degrading components of the hosts immune response provides a 

survival advantage. Individuals with CF have been reported to excrete an increased 
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concentration of desmosine (cross-linked amino acids), a by-product of elastin degradation 

(Viglio et al., 2000). In addition to also degrading elastin, Elastase A (LasA) is a protease 

involved in the degradation of the S. aureus peptidoglycan cell wall (Kessler et al., 1993b). A 

study of P. aeruginosa clinical isolates demonstrated that 75% of those studied produced 

detectable levels of elastase (Kuang et al., 2011).  Alkaline protease has previously been 

shown to cause tissue destruction within the CF lung (Suter, 1994), whilst Protease IV 

degrades pulmonary surfactants -A and -D (Malloy et al., 2005).  

P. aeruginosa is known to also inject a number of its cytotoxic effector proteins directly into 

airway epithelia. Employing a type III secretion system (TTSS): exoenzymes S, T and U induce 

cytoskeletal rearrangement, along with cell lysis (Vance et al., 2005). The ability of P. 

aeruginosa to induce apoptosis of airway epithelia (Losa et al., 2014, Rajan et al., 2000) and 

degrade tight junction proteins facilitates its survival and dissemination into the airways 

(Azghani, 1996). P. aeruginosa virulence is summarised in Figure 6.  
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Figure 6. P. aeruginosa is armed with a potent arsenal of virulence factors. Cell associated 
virulence factors fimbriae and pili promote bacterial adhesion, whilst the type III secretion system permits 
the delivery of bacterial toxins into the cytoplasm of airway epithelia. Flagellum facilitates swimming 
motility, whilst staphylolysin is involved in the lysis of S. aureus. Pyoverdine binds to iron, whereas 
biofilm inhibits bacterial killing by antibiotics and phagocytosis by host neutrophils. Rhamnolipids and 
pyocyanin both kill host neutrophils. Elastase permits the degradation of elastin and host IgA antibodies.  
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 Adaptation to the CF lung 

During chronic infection, P. aeruginosa is known to adapt to the unique niche of the CF lung. 

Whilst selective pressures of the host’s immune response and antibiotics drive this (Ciofu et 

al., 2005, Nair et al., 2013), P. aeruginosa variants within the CF lung have a hypermutable 

phenotype (Oliver et al., 2000), with genetic recombination and its accessory genome driving 

diversity (Darch et al., 2015). Overtime, this subsequently leads to the co-existence of clonal 

lineages which differ in phenotype from one another, (Feliziani et al., 2014, Williams et al., 

2015, Chung et al., 2012, Smith et al., 2006a). During the course of chronic infection P. 

aeruginosa exhibits an adapted phenotype, which differs significantly to those isolates 

recovered from the environment, or early infection of CF airways.  Such changes include losses 

in motility (Mahenthiralingam et al., 1994) and the acquisition of a mucoid phenotype (Martin 

et al., 1993). This is summarised in Figure 7 below.  

 

Figure 7. P. aeruginosa microevolution in the CF lung. During early infection, P. aeruginosa 
(indicated in pink in the lung on the left) is non-mucoid, secretes an arsenal of extracellular factors (e.g. 
pyocyanin and proteases), exhibits motility, is sensitive to antibiotics and has a normal mutation rate. 
During chronic infection, increases in P. aeruginosa genotypic diversity gives rise to phenotypic diversity 
which express a variety of adaptations (represented by P. aeruginosa shown in green, red and orange 
on the right), such as alginate overproduction (mucoid phenotype), reduced virulence factor expression, 
resistance to antibiotics and an increased mutation rate. Adapted from (Sousa and Pereira, 2014).   
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 Biofilm production  

During chronic infection in the CF lung, P. aeruginosa typically adopts a mucoid phenotype 

which is coupled to the production of a biofilm (Hoiby et al., 2001, Fick et al., 1992). Consisting 

of a large encapsulated community of one or more bacterial species, biofilms are three-

dimensional structures rich in alginate, mucoid exopolysaccharide (MEP), proteins, 

extracellular DNA and cellular debris (Nivens et al., 2001). Whilst extracellular DNA not only 

chelates cations, it also cross-links the exopolysaccharides and is involved in bacterial 

adhesion and cellular aggregation (Mulcahy et al., 2008, Das et al., 2010). The overproduction 

of alginate however mainly provides protection against host neutrophils and macrophages and 

acts as an effective scavenger against ROS, but also reduces apoptotic cell clearance (Mathee 

et al., 1999, McCaslin et al., 2015, Pedersen et al., 1990, Leid et al., 2005). The protection 

provided against antibiotics varies. Whilst biofilm limits the penetration of β-lactam antibiotics 

(Gordon et al., 1988), low metabolic activity and oxygen levels provide protection against 

ciprofloxacin and tobramycin (Walters et al., 2003). P. aeruginosa has been shown to give rise 

to a small subpopulation of metabolically dormant cells referred to as ‘persister cells’, which 

are phenotypically distinct, yet genetically identical to most of the bacterial population and are 

able to withstand high concentrations of bactericidal antibiotics (Mulcahy et al., 2010, Koeva 

et al., 2017). Once the concentration of antibiotic falls, the persister cells are able to repopulate 

the biofilm, leading to recurrent infection.  

The formation of a biofilm is a highly ordered process. P. aeruginosa initially uses flagella 

mediated swimming to attach itself to a solid surface (e.g. airway mucus). This attachment is 

influenced by several factors within the CF lung microenvironment including temperature, pH, 

ionic concentration and nutrient availability (Hall-Stoodley et al., 2004).  P. aeruginosa will then 

undergo irreversible attachment, followed by co-ordinated growth and biofilm maturation and 

eventual dispersal, where a subset of planktonic (free-swimming) P. aeruginosa bacteria are 

then able to colonise distance sites of the CF lung, with this dissemination being encouraged 

by changes within nutrient availability (Sauer et al., 2002, Tolker-Nielsen et al., 2000, Hunt et 

al., 2004, Sauer et al., 2004). The biofilm formation process in CF airways is illustrated in 

Figure 8.  
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Figure 8. Mechanism of P. aeruginosa biofilm formation. After planktonic P. aeruginosa has formed 
weak interactions with a surface (such as airway mucus), the bacterial population eventually forms a 
microcolony, consisting largely of non-motile bacteria. As P. aeruginosa replicates and the biofilm 
matures, water channels develop, facilitating the circulation of nutrients and oxygen. During dispersal, 
a subset of motile planktonic bacteria are liberated, which can then colonise distant sites of the CF lung. 
Adapted from (Perfectus Biomed, 2017).   

 Quorum Sensing (QS)  

P. aeruginosa biofilm production, motility and virulence gene expression are regulated by 

quorum sensing (QS), a system that produces and detects signals in a density-dependent 

manner (Pesci et al., 1997, Whiteley and Greenberg, 2001, Rutherford and Bassler, 2012). 

This form of bacterial communication is found across a wide variety of bacterial species and 

plays an important role in opportunistic infections (de Kievit and Iglewski, 2000). The ability to 

regulate tightly and synchronise virulence gene expression through QS is critical for P. 

aeruginosa survival. Producing highly immunogenic virulence factors early in an infection 

would facilitate bacterial clearance. Virulence factor production by large bacterial communities 

are likely to facilitate colonisation and persistence.  
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P. aeruginosa releases acyl homoserine lactones (AHL’s) which act as diffusible extracellular 

signalling molecules (autoinducers) (Rutherford and Bassler, 2012). At low bacterial densities, 

the levels of autoinducers are under the limit of detection. As P. aeruginosa divides and the 

concentration of autoinducers increases and eventually reaches a threshold concentration, 

they cross the bacterial membrane and bind to their cognate receptor and subsequently 

regulate gene transcription (Rutherford and Bassler, 2012, de Kievit and Iglewski, 2000). 

The regulatory network of P. aeruginosa is highly complex and dependent upon three systems: 

las, rhl and pseudomonas quinolone signal (PQS). The las system consists of a transcriptional 

regulator LasR, which binds to the autoinducer molecule 3-oxo-C12-HSL (Pesci et al., 1997). 

The rhl system contains the transcriptional regulator RhlR which binds to the autoinducer C4-

HSL (Pesci et al., 1997). Whilst the las system is at the top of the QS hierarchy and can 

regulate the rhl system, both of these in turn are able to regulate the PQS system (Schuster 

and Greenberg, 2006, Latifi et al., 1996, Pesci et al., 1997). Whilst the las system regulates 

LasA protease, LasB elastase and biofilm production (Gambello and Iglewski, 1991, Anderson 

et al., 1999) the rhl system regulates the synthesis of pyocyanin, siderophores, rhamnolipids 

and hydrogen cyanide (Brint and Ohman, 1995, Latifi et al., 1996). The PQS signal 

(2-heptyl-3-hydroxy-4-quinolone) acts as a link between the las and rhl systems and rather 

than being involved in sensing cell density, it is produced during times of stress (McKnight et 

al., 2000). This complex regulatory network is illustrated in Figure 9.  
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Figure 9. Quorum sensing in P. aeruginosa virulence. Transcription of the lasR gene leads to the 
production of the transcriptional regulator LasR (green haxgon). This in turn binds to the homoserine 
lactone signalling autoinducer molecule 3-oxo-C12-HSL (blue circle), produced by the LasI protein 
(yellow hexagon). This LasR-autoinducer complex (green hexagon and blue circle) has a number of 
roles, from acting as an autoinducer in the production of LasI (dashed line), to binding to a series of 
virulence factor promoters, such as elastase. The LasR-autoinducer complex also activates the rhI 
system, leading to the production of the RhIR transcriptional regulator (dark blue hexagon). The binding 
of RhIR to the autoinducer C4-HSL (purple circle) also acts as an autoinducer, and activates the 
transcription of other virulence factor genes downstream, including alginate, pyocyanin and hydrogen 
cyanide. Adapted from (Jimenez et al., 2012). 
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Periodically, individuals with CF experience an acute, intermittent worsening of their respiratory 

symptoms referred to as a ‘pulmonary exacerbation’. This is typically associated with an 

increase in inflammation, increased malaise and lethargy, increased sputum production, 

weight loss, a worsening cough, increased dyspnoea and a decrease in pulmonary function by 

≥10% (Flume et al., 2009, Rosenfeld et al., 2001a, Goss and Burns, 2007). Individuals may 

also present with pneumothorax and haemoptysis which warrants treatment and both are 

associated with increased 2-year mortality rates (Flume et al., 2005a, Flume et al., 2005b) 

Pulmonary exacerbations are linked to a failure to return to baseline lung function (Sanders et 

al., 2010), a reduced quality of life (Britto et al., 2002) and increased mortality (Liou et al., 2001, 

de Boer et al., 2011). Whilst not associated with changes in bacterial density (Stressmann et 

al., 2011b), treatment typically warrants a course of oral, inhaled or intravenous antibiotics 

based upon recent microbiological antibiotic  sensitives, coupled with airway clearance 

techniques (Wagener et al., 2013, Justicia et al., 2015). Currently, the ability to detect the 

advent of pulmonary exacerbations is unreliable (van Horck et al., 2017).  

1.7 Symptom Management - clearance, inflammation, infection and 

transplantation  

 Airway clearance 

Due to the extensive mucostasis that occurs within CF airways, the main goal of airway 

maintenance therapy is to help dislodge and clear mucus from the lungs. Clearance is clinically 

recommended upon diagnosis, and aims to not only reduce the bacterial burden and improve 

airflow, but also reduce airway inflammation and damage (Rand et al., 2013). Typical 

strategies include a combination of exercise, physiotherapy and breathing techniques, to the 

use of devices such as flutter and oscillating positive expiratory pressure devices. This serves 

to vibrate the airways, helping to dislodge the mucus and stimulate ciliary beating, allowing for 

expectoration (Tarran et al., 2005, Hess, 2001). 

 DNase 

Individuals with CF also take a series of medications, with the average individual being 

prescribed seven daily treatments (Rand et al., 2013). These include the use of a nebulised 

recombinant human DNase enzyme, which breakdowns free neutrophil extracellular DNA 

within the mucus.  Reducing mucus viscosity, DNase has shown long term benefits in 

improving lung function, reducing pulmonary exacerbations and airway inflammation 

(Lieberman, 1968, Jones and Wallis, 2010, Paul et al., 2004).   
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 Hypertonic saline 

Inhaled hypertonic saline (~6%) and mannitol both serve to create an osmotic gradient within 

CF airways, helping to draw water onto the epithelial cell surface and thus hydrating airway 

mucus (Button et al., 2012, Ratjen, 2006). In addition to being inexpensive and well tolerated, 

it serves to improve mucocililary clearance, lung function, reduce neutrophil influx, IL-8 

concentration and the frequencies of lung exacerbations (Robinson et al., 1997, Elkins et al., 

2006, Dellon et al., 2008, Reeves et al., 2011). There may be potential benefits of taking 

hypertonic saline and mannitol before or during airway clearance, although the evidence is 

conflicting (Dentice and Elkins, 2016, Elkins and Dentice, 2016). 

 Targeting airway inflammation 

Whilst there is some controversy regarding the drugs that should be given to CF patients to 

combat chronic and excessive airway inflammation, individuals are often prescribed 

Azithromycin. It is well tolerated, and helps reduce P. aeruginosa bacterial burden and also 

slows the decline in lung function and frequency of pulmonary exacerbations (Saiman et al., 

2003, Wolter et al., 2002). A number of anti-proteases are also being developed to combat 

airway inflammation. Both aerosolised α1-AT and nebulised SPLI have shown promise by 

inhibiting NE, reducing NE activity and decreasing the concentration of IL-8 (McElvaney et al., 

1991, McElvaney et al., 1992, Griese et al., 2007). 

 Antimicrobial Strategies  

Current strategies for treating infections of the CF lung are based on the results of traditional 

microbiological culture and susceptibility testing. However, it is often the case that these results 

do not translate in vivo. Often the strategy chosen by clinicians is not reliant upon the results 

from antimicrobial susceptibility testing, but by factors such as regimens which have previously 

been effective and strategies which reduce side effects such as toxicity. Furthermore, the 

method of antimicrobial delivery is also important if the treatment is to have an effect. Whilst 

nebulised antibiotics only reach high concentrations in the conductive zone, intravenous and 

oral antibiotics provide high concentrations in the respiratory zone. 

In the UK, S. aureus positive cultures in children require the prescription of the narrow-

spectrum antibiotic flucloxacillin, which is successful in reducing the lungs bacterial burden 

(Smyth and Walters, 2012, Cystic Fibrosis Trust, 2009). The presence of S. aureus whilst an 

individual is on flucloxacillin may warrant the use of a second oral antibiotic such as rifampicin 

for 2-4 weeks, or the intravenous administration of flucloxacillin (Cystic Fibrosis Trust, 2009).  

P. aeruginosa colonisation is associated with an increase in hospital admissions, along with 

decreases in survival, pulmonary function and general health (Doring et al., 2012). There is an 

international consensus that identification of P. aeruginosa from CF sputum typically warrants 
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an aggressive antibiotic regimen aimed at eradicating the bacterium, thus preventing chronic 

colonisation. Oral ciprofloxacin and nebulised colistin is typically recommended for acute 

infections with P. aeruginosa for up to three months (Cystic Fibrosis Trust, 2009), whilst chronic 

infection with P. aeruginosa typically requires nebulised colistin (Cystic Fibrosis Trust, 2009).  

Current recommendations also include nebulised tobramycin (Gibson et al., 2003), which is 

often used in conjunction with a fluoroquinolone to combat antibiotic resistance (Dudley et al., 

2008). Inhaled fluoroquinolones are effective against P. aeruginosa biofilms and under anoxic 

conditions (a current limitation of tobramycin) and phase III trials have demonstrated that this 

formulation improves lung function and is well tolerated (Geller, 2009). Whilst Aztreonam has 

been used for many years to treat P. aeruginosa, its re-formulation as a lysine salt has shown 

that Aztreonam is not only effective in reducing P. aeruginosa burden within the sputum of 

chronically infected patients, but also improves lung function and is well tolerated (Oermann 

et al., 2010, Retsch-Bogart et al., 2009, McCoy et al., 2008). Other anti-pseudomonal 

antibiotics recommended clinically include the β-lactam antibiotics ceftazidime and 

meropenem (Cystic Fibrosis Trust, 2009).  

New antimicrobial drugs and optimal treatment strategies are required to effectively combat 

CF airway infections, particularly in the case of P. aeruginosa. Once established it is almost 

impossible to eradicate, resulting in a clinical shift from eradication, to infection control to 

prevent pulmonary exacerbations.   

 Lung Transplantation 

Despite adherence to airway clearance and antimicrobial treatment strategies, chronic 

infection and inflammation eventually lead to large decreases in lung function. During 

end-stage lung disease, a number of individuals with CF may be eligible for lung 

transplantation. Whilst there is an endemic shortage of available organs and strict acceptance 

criteria (such as rapidly declining pulmonary function, increased pulmonary exacerbation and 

recurrent pneumothorax), to those who are eligible, it provides enormous benefits regarding 

overall lung function, fitness and long-survival. Whilst in its very early infancy, advances within 

biomedical engineering may show some promise in the field of CF, in the form of a tissue 

engineered lung. Decellularisation of the lung scaffold and its repopulation with healthy cells 

may one day provide long-term benefits to individuals with CF (Petersen et al., 2010) .  
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1.8 Future developments  

 Targeting the CFTR mutation (gene therapy) 

Gene therapy has been the focus of several clinical trials for inherited diseases, with the aim 

of delivering a healthy gene to target cells and providing either long-term therapy or ultimately, 

a cure. The CF lung however, is a particularly hostile environment, largely due to the presence 

of mucus plugs, large immune cell populations, polymicrobial biofilms, and hydrolytic enzymes. 

Moreover, there is uncertainty concerning whether the levels of gene transfer achieved within 

the CF lung will bring about improvements in lung function. One in vitro study showed that 

mixing 6-10% of non-CF epithelia with CF epithelia restored chloride secretion to the levels 

seen in non-CF (Johnson et al., 1992). However, another study identified that wtCFTR must 

be expressed in a quarter of epithelial cells for mucus transport to be restored (Zhang et al., 

2009). It is likely that different levels of CFTR expression will be required dependent upon 

CFTR mutation severity.  

Lentivirus trials have shown some promise with regard to restoring CFTR function both in 

murine models of CF and in human derived in vitro polarised airway epithelial models (Mitomo 

et al., 2010, Sinn et al., 2008). Whilst they provide benefits in relation to the ability for re-

administration (Sinn et al., 2008), there are a number of challenges too. These include the high 

dose required to ensure effective delivery, the need to include adjuvants to open tight junctions 

and facilitate virus entry and concerns regarding safety, due to random integration of the viral 

genome (Stocker et al., 2009, Sinn et al., 2008, Cmielewski et al., 2010). 

Non-viral vectors have been used in several phase I safety trials. Often consisting of cationic 

lipids and polymers, modified mRNA and DNA nanoparticles their benefit over viral vectors 

regarding chloride transport has yet to be established (Pichon et al., 2010, Griesenbach and 

Alton, 2012, Alton et al., 1999). Non-viral vectors have been shown to be suitable candidates 

for regular and routine administration to the nasal epithelium of individuals with CF (Hyde et 

al., 2000). The ability to re-administer gene therapy is an essential requirement if treatment is 

to be successful. Gene transfer to the superficial, terminally-differentiated airway epithelia is 

not only less efficient than incorporation into dividing cells, but it will only provide a short-term 

solution due to cell turnover. Thus, repeated delivery is required due to provide a lasting 

benefit.  
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 Targeting the CFTR protein (pharmacological drugs) 

As previously mentioned, the most common mutation is the Phe508del (class II mutation), 

affecting approximately 90% of the CF population in the UK. The loss of this highly conserved 

phenylalanine amino acid from NBD1 of the CFTR results in the protein becoming misfolded, 

leading to its ubiquitin mediated degradation. To correct this defect, the development and 

screening of numerous drug candidates has been undertaken. This not only includes 

chaperones, which help to rescue misfolded proteins, allowing them to reach the epithelial cell 

surface, but also drugs which target proteins within the epithelial cell responsible for inhibiting 

CFTR tracking and degradation.   

Ivacaftor (VX-770) is a potentiator drug, increasing the time the CFTR is open, subsequently 

facilitating the transport of chloride ions (Ramsey et al., 2011). Vertex Pharmaceuticals Inc. 

recently released its result from two phase 3 trials. The ‘Evolve’ study evaluated the safety and 

efficacy of a dual therapy consisting of the CFTR potentiator Ivacaftor, with the CFTR corrector 

Tezacaftor. The study was conducted across North America and Europe in CF patients aged 

12 and older who had two copies of the Phe508del mutation. Results demonstrated significant 

improvements in pulmonary function compared to placebo (Vertex Pharmaceuticals 

Incorporated, 2017). The results from the phase 3 ‘Expand’ study compared the safety and 

efficacy of the Ivacaftor-Tezacaftor dual therapy with ivacaftor monotherapy. The study was 

conducted in individuals with CF over the age of 12, with one copy of Phe508del and another 

mutation that results in residual CFTR function. The results demonstrated that the dual therapy 

was significantly improved increased in pulmonary function compared to those receiving 

ivacaftor alone (Vertex Pharmaceuticals Incorporated, 2017). In both studies the most common 

adverse effects were a cough and infective pulmonary exacerbations.  

Correcting the CFTR at the protein level is transforming CF, improving overall health and help 

to make CF a better managed disease. However, further work is required to better understand 

the impact this treatment is having on CF airway microbiology. Adverse effects of infective 

pulmonary exacerbations in the latest clinical trials are evidence that despite improvements in 

lung function, CF microbiology remains an essential area of research.  

 Other areas of research 

Whilst most of the research focus within the CF community is targeting the lung, numerous 

research groups have made progress treating the comorbidities commonly seen in CF 

patients. Whilst bone marrow transplants may potentially correct the immune defects seen in 

neutrophils and macrophages, transplanting cells from a healthy pancreas aim to address the 

extrapulmonary manifestations of the disease, such as pancreatic insufficiency, diabetes 

mellitus and pancreatitis (Kessler et al., 2010). 
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1.9 Modelling CF 

 Animal Models of CF  

Mice, ferrets and pigs have all been used since the early 1990’s as models to study CF (Fisher 

et al., 2011). Together, this three species approach has provided a greater understanding of 

the disease, from the mechanisms underlying increased susceptibility to infection, to the 

function of the CFTR. The use of CF animal models, however, are limited in their ability to 

recapitulate fully the human disease, in terms of severity and systemic disease.  

 Murine Model 

The first murine model CFTRtm1UNC (homozygous for a mutated CFTR gene) was developed 

in 1992, to which thirteen subsequent models have since followed. The majority predominantly 

display an intestinal phenotype, characterised by goblet cell hyperplasia, a failure to thrive and 

the formation of mucus plugs and blockages within the ileum (Fisher et al., 2011). The nasal 

phenotype of CF mice closely resembles that seen in humans, with the models also replicating 

severe malabsorption and weight loss seen in humans, largely due to clogging of the gastro-

intestinal (GI) tract (Fisher et al., 2011). In spite of this, there are several limitations to this 

model. Whilst mucus accumulation and obstruction in the ileum are similar in adults with CF, 

the phenotype of weaning mice and newborns with CF varies. The biggest drawback however, 

is the inability of these models to display spontaneous bacterial infection and inflammation, 

key hallmarks of CF (Fisher et al., 2011). The use of agar beads containing P. aeruginosa have 

been used as an attempt to overcome this (Bragonzi et al., 2012, Cigana et al., 2018, Bayes 

et al., 2016). The use of beads however fails to mimic the nature of bacterial colonisation seen 

in humans. Later models even exhibited the ability to spontaneously clear a large inoculum of 

S. aureus and P. aeruginosa, a phenomenon not seen in humans (Fisher et al., 2011, Cohen 

and Prince, 2012). Additional limitations of the CF murine model are that mice do not express 

IL-8, but produce two homologs: macrophage inflammatory protein-2α and keratinocyte 

chemoattractant. Studying these inflammatory markers consequently makes it difficult to 

translate them to IL-8 production in humans.  

 Porcine Model  

The drawbacks of murine models have consequently led to the use of large animals to study 

CF, namely pigs and ferrets. The development of pigs homozygous for the most common 

mutation Phe508del more closely mimics the human phenotype, particularly between new-

born piglets and neonates with CF (Rogers et al., 2008). In addition to this, porcine models 

demonstrate a similar bioelectric property of the nasal mucosa (which closely resembles that 

of children and adults with CF), including the formation of bile and mucus plugs within the gall 

bladder. Moreover, unlike mice, pigs develop spontaneous infection and inflammation, which 



62 

 

they are unable to clear once established (Rogers et al., 2008, Fisher et al., 2011). However, 

as with murine models, there are several limitations. All piglets born with the mutation develop 

meconium ileus within two days, a phenomenon which only affects a small percentage of 

children with CF. Subsequent obstructions of the ileum require surgical intervention to ensure 

survival of the animal, which consequently impact upon the overall usefulness of this model 

(Rogers et al., 2008, Stoltz et al., 2013, Fisher et al., 2011). Moreover, whilst they mimic 

defects in the transport of chloride ions apically across epithelial cells, there is no 

hyperabsorption of sodium, or a decrease in the height of the ASL (Chen et al., 2010).  

 Ferret Models  

Ferret models, in addition to being used to study influenza, are used within the field of CF 

largely due to the extraordinary similarity in lung biology to humans. Like pigs, mutations in the 

CFTR generate a similar bioelectric profile to humans, with ferrets also being susceptible to 

spontaneous infection early in life, particularly by S. aureus (Keiser and Engelhardt, 2011). 

Despite this, 75% of newborn ferrets develop meconium ileus, which like the porcine model, 

limit its benefits as a model organism due to low survival rates and shortened longevity. This 

is further complicated by the fact that the lung phenotype of adult ferrets is still under 

investigation (Fisher et al., 2011).  

This three species approach to study CF has paved the way for preclinical testing of both gene 

therapies (Sinn et al., 2008, Mitomo et al., 2010) and in meeting the regulatory requirement to 

bring pharmaceutical drugs such as Ivacaftor to clinical trials. Whilst in vivo models have 

provided results relating to therapeutic responses to treatments, they are less suited to studies 

addressing mechanistic insight, such as host-pathogen interactions. in vitro models of CF 

airways are also required in CF research as they provide a top-down approach to 

understanding CF progression, as opposed to the bottom-up whole organism in vivo approach. 

They consequently allow individual aspects of pathogen-pathogen and host-pathogen 

interactions to be investigated, which in turn help to piece together a complex picture of what 

happens in vivo. Thus, the inherent limitations of both in vivo and in vitro models serve to 

complement one another.  

 Primary and immortalised cell lines  

Immortalised cell lines are often used to conduct initial studies into CF airway research, largely 

due to their cost-effectiveness and homogeneity. Either immortalised through viral 

transformation or naturally due to becoming cancerous, they continue to provide many 

benefits. Classic examples of immortalised cell lines used within airway research include the 

CF cell lines, IB31, CF3BEo- and the non-CF cell lines C38, Calu-3, Beas2-B and A549. 

Despite this, immortalised cell lines have several limitations too. Their abnormal growth 
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patterns may influence their response to stimuli, whilst the process of immortalisation may also 

influence their phenotype. Once such example is the airway epithelial cell line Calu-3, which 

not only displays exceedingly high transepithelial electrical resistance (TEER) values 

compared to most airway epithelial cell lines, but it also secretes the mucin MUC5AC, with 

evidence that cilia has not formed through β-tubulin staining (Stewart et al., 2012). 

Primary cells isolated from individuals with CF (nasal or bronchial brushings) provide a closer 

representation of the human environment of the CF lung (Randell et al., 2011). Although they 

also more closely resemble the heterogeneity of the CF population, they have a number of 

limitations, from their limited availability and their finite lifespan, to their cost. Moreover, primary 

cells typically exhibit wide donor variability and typically require a larger sample size to be 

used. Whilst attempts to immortalise primary cell lines have been conducted, this is often with 

limited success. Not only do some cells fail to survive the transformation, others lose their 

ability to become polarised (Gruenert et al., 1988).  

 Submerged culture 

The plating of primary and immortalised cell lines into submerged monolayers continue to play 

a major role within CF airway research, including the study of pathogen-pathogen and host-

pathogen interactions. Although this approach is relatively inexpensive, the lack of cell 

differentiation and polarisation in both immortalised and primary cell lines means they fail to 

closely mimic human physiology and morphology of the CF airways. Examples include the lack 

of cilia, mucus production, polarised secretion of cytokines, and antimicrobial factors. The use 

of submerged cultures to study host-pathogen interactions can also compromise the 

expression of cell surface receptors. Together, such disadvantages often mean that host-

pathogen studies can only be conducted over a short period in submerged cultures, before 

host cells undergo monolayer detachment (Moreau-Marquis et al., 2010). 
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 3D Organoids 

First developed in 2009, organoids are 3D tissues of aggregated cells which more closely 

mimic the phenotype of the organ from which they were derived (Sato et al., 2009). Cells are 

derived from blocks of human respiratory tissue and grown in flasks under constant, gentle 

agitation. Unlike submerged culture, these 3D models of the airways are positive for mucus 

production (Ulrich and Doring, 2004). Whilst this approach has yielded some insightful results 

and has been used previously to study host-pathogen interactions, their long-term 

differentiation (over a month) make them time consuming and low throughput. Moreover, the 

formation of aggregates as a result of agitation can vary significantly across organoids, which 

affects reproducibility.  

 Air-Liquid Interface (ALI) 

To overcome the aforementioned limitations of submerged models (cell differentiation and 

polarisation) and 3D organoids (reproducibility due to donor variability and factors relating to 

agitation), the culturing of cells onto porous membrane supports at an air-liquid interface (ALI) 

more closely resemble the in vivo conditions found in airway epithelium. This methodology was 

first developed in 1988 as a means to differentiate guinea pig epithelial cells (Whitcutt et al., 

1988), first being used in respiratory research in 1990 in the differentiation of bronchial epithelia 

(Wu et al., 1990).  

Exposure to cell culture media on the basolateral side and air on the apical side forces primary 

or immortalised epithelia to undergo mucociliary differentiation. Whilst this process is poorly 

understood, it gives rise to the characteristic formation of tight junctions between adjacent 

epithelia, expression of specific cell surface markers, mucin production (such as MUC5AC and 

MUC5B) and the formation of cilia. This differentiation also overcomes limitations in 

submerged culture regarding their ability to withstand higher inocula of bacterial infection for 

longer periods, thus enabling long term infection studies. The major drawback of ALI culture is 

the length of time they take to establish, with cultures typically taking over three weeks to a 

month to completely differentiate and form an impermeable barrier.  

A novel co-culture model of non-CF and CF airways was established in Dr Lindsay Marshall’s 

laboratory (Bielemeier, 2012b). Being physiologically representative of human CF airways, it 

enables investigations to be conducted relating to host-pathogen interactions. Each co-culture 

model (CF or non-CF) consists of a suspended transwell®, coated in human collagen type IV. 

This aims to mimic the upper layer of the basement membrane within airways. The basement 

membrane is known to serve several fundamental roles, from facilitating epithelial adhesion 

and migration, to being important for inducing cell differentiation and encouraging their 

characteristic polarised phenotype.  
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Seeded on top of this is a monolayer of pulmonary fibroblasts. These mesenchymal cells play 

an active role within the airways, rather than acting solely as a structural support. Known to 

form interactions with overlying epithelial cells, pulmonary fibroblasts are responsible not only 

for modulating epithelial proliferation and differentiation, but also for the deposition of 

extracellular matrix components, such as fibronectin, tenascin and collagen I and III (Knight, 

2001). Their ability to also secrete matrix metalloproteinases such as collagenase in response 

to inflammatory cytokines such as IL-6, highlights their importance in airway remodelling 

following damage. There is also evidence that these cells are involved in airway inflammation 

(Manuyakorn et al., 2016, Fitzgerald et al., 2003, Knight, 2001).  

Seeded on top of these fibroblasts, are one of two epithelial cells lines, IB3-1 or C38. IB3-1 

cells are an immortalised bronchial epithelial cell line used to model CF airways. Isolated from 

a paediatric patient with CF, these cells are a compound heterozygote containing an allele for 

the most common CF mutation, Phe508del, along with a nonsense mutation allele, W1282X 

(Zeitlin et al., 1991). C38 epithelial cells are used to model non-CF airways, derived from IB3-

1 cells, where the CF phenotype has been corrected using an adeno-associated viral vector 

to replace both mutant CFTR alleles with a wild-type CFTR (Egan et al., 1992). A haematoxylin 

and eosin stained cross section of this in vitro ALI co-culture transwell® model of CF and non-

CF airways is provided, along with a section of the human bronchi obtained from non-CF 

airways for comparison, as shown in Figure 10.   
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Figure 10. Formalin fixed cross sections of non-CF and CF co-culture models. Airway epithelia 
were stained with haematoxylin and eosin, whilst fibroblasts were stained with vimentin.  Non-CF C38 
(A) and CF IB3-1 (B) epithelia grew as a pseudostratified layer on top of a population of sub-epithelial 
fibroblasts. Images were taken from the thesis of (Bielemeier, 2012b) and represents N=2. The 

transwell® membrane was lost for the IB3-1 co-culture. (C) represents the pseudostratified epithelium of 

the in vivo bronchial epithelium and is taken from (Wandsworth, 2018).  

A schematic of this in vitro co-culture model is illustrated in Figure 11. 

 

Figure 11. Schematic diagram of the in vitro human airway co-culture model. Human pulmonary 
fibroblasts are seeded onto a collagen coated transwell® membrane. After 4 days, IB3-1 (CF) or C38 
(CF phenotype corrected) bronchial epithelial cells are seeded on top of the fibroblasts. After a further 
4 days, the apical media is aspirated and the basal media is refreshed, introducing cells to an air liquid 
interface (ALI). This forces cells to differentiate overtime into the characteristic morphology seen within 
the human airways, as depicted above. 

A. 

B. 

C. 
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1.10 Aims and Objectives  

How mutations in the CFTR impair pulmonary immune defences have been extensively 

studied, alongside the mechanisms major CF pathogens use to colonise and persist within the 

CF lung. Despite advances in the development of pharmacological drugs and overall CF care, 

chronic pulmonary infections and inflammation continue to be the main cause of morbidity and 

mortality in CF. Two obstacles to the development of more effective therapeutics and treatment 

strategies stem from an incomplete understanding of the polymicrobial nature of CF airway 

infection and its impact upon interspecies and host-pathogen interactions, alongside the need 

for models which more closely mimic CF airways and its unique microenvironments.  

S. aureus and P. aeruginosa are the two most prevalent pathogens in CF airways and the 

most problematic. As mucus plugging within CF airways gives rise to regions of anoxia, this 

research aimed to investigate the impact of oxygen availability upon S. aureus-P. aeruginosa 

interspecies interactions and the possible mechanisms which influence bacterial community 

composition. As chronic inflammation is a hallmark of CF, this study sought to also determine 

the impact of S. aureus-P. aeruginosa co-infection upon the airway inflammatory response of 

CF and non-CF airway epithelia, comparing it to mono-infection. Finally, as infection of the CF 

lung is highly sequential, the impact of prior infection with S. aureus upon subsequent P. 

aeruginosa airway colonisation was investigated.  

Aim 1: Characterise CF clinical isolates of P. aeruginosa 

Adaptation of P. aeruginosa to CF airways is accompanied by extensive phenotypic changes. 

Prior to studying S. aureus-P. aeruginosa interactions, chapter 3 aimed to phenotypically 

characterise eight novel P. aeruginosa CF clinical isolates obtained from Birmingham 

Children’s Hospital. Assays ranged from determining colony morphology, to the production of 

extracellular virulence factors and biofilm.   

Aim 2: Explore the effects of static growth and anoxia upon S. aureus-P. aeruginosa 

interactions  

Although a number of studies have investigated the interspecies interactions between S. 

aureus and P. aeruginosa, the bacteria are typically grown under normoxia with vigorous 

culture aeration. It is now appreciated that steep oxygen gradients exist within the CF lung, 

largely due to decreases in pulmonary function, the presence of thick mucus plugs and the 

consumption of oxygen by airway epithelia, bacteria and host phagocytes. Confirmation of this 

has been made through the detection of obligate anaerobes within CF airways. Chapter 4 

aimed to investigate the effects of normoxia and anoxia upon S. aureus-P. aeruginosa 

interactions in both planktonic co-culture and mixed species biofilms, as well as begin to 
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explore the mechanisms which are likely to govern interspecies interactions and community 

composition.  

Aim 3: Elucidate the effects of S. aureus-P. aeruginosa co-stimulation upon the airway 

inflammatory response  

The impact of shed and secreted bacterial products upon the CF airway inflammatory response 

has been widely studied. However, how airway epithelia integrate and respond to stimuli from 

polymicrobial infections is poorly understood. Chapter 5 aimed to determine the effects of S. 

aureus-P. aeruginosa co-stimulation upon the production of major pro- and anti-inflammatory 

cytokines in both CF and non-CF airway epithelia, comparing this to stimulation with either S. 

aureus or P. aeruginosa exoproducts alone.  

Aim 4: Determine whether prior S. aureus infection influences P. aeruginosa airway 

colonisation  

Infection of CF airways is highly sequential, with S. aureus predominating in the first decade 

of life, followed by P. aeruginosa dominance during adolescence and adulthood. Despite this, 

the impact of S. aureus infection upon CF airway pathogenesis is poorly understood, with 

concerns that S. aureus could prime CF airways to subsequent P. aeruginosa colonisation. 

The use of in vitro ALI models of CF airways to date have focused upon infection with a single 

infection, namely P. aeruginosa. The final aim of this research sought to employ co-culture ALI 

models of CF and non-CF airways to address the role of bacterial adhesion in the CF lung as 

well as sequential nature of infection, to determine whether prior colonisation by S. aureus 

enhances subsequent P. aeruginosa colonisation.  
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2 Materials and Methods  

In this chapter the materials and methodologies used to achieve the key aims are described, 

including equipment, software, reagents, chemicals and other consumables used.  

2.1 Equipment and Software  

Below is a list of the equipment and software used in this research.  

• Anaerobic chamber (Don Whitley Scientific, UK)  

• Benchtop 1-14 Microfuge (Sigma Aldrich, Germany)  

• Benchtop Centrifuge (Eppendorf, Germany) 

• Biosafety cabinet (Thermo Fisher Scientific, UK) 

• Dionex 3000 (Thermo Fisher Scientific, UK) 

• Electrophoresis apparatus and Western Blot wet transfer system (Bio-Rad, UK) 

• Heat-block (Thermo Fisher Scientific, UK) 

• Human placental collagen type IV (Sigma Aldrich, UK) 

• Improved Neubauer Haemocytometer (CamLab, UK)  

• Inverted microscope (Nikon Eclipse, Europe) 

• Inverted fluorescence microscope (Zeiss Axiovert 200M, Zeiss, UK) 

• Mascot deamon (MatrixScience, UK)  

• Mass spectrometer (5600 Triple Tof, ABSciex, UK) 

• Microbiology Incubator (Sanyo Biomedical, Europe)  

• Mini Incubator (Labnet, Europe) 

• Mr FrostyTM Freezing container (Nalgene, UK) 

• Nano high performance liquid chromatography analytical column (AcclaimTM PepMapTM 

C18, 3 µm, 100 Å, 75 µm x 150 mm, Thermo Fisher Scientific,UK)  

• Nano high performance liquid chromatography trap column (PepMapTM C18, 5 µm, 100 

Å, 300 µm x 1 mm, Thermo Scientific, UK)  

• Nano high performance liquid chromatography with automated autosampler (nLC, 3000 

Dionex, ThermoFisher Scientific, UK) 

• Orbital shaker (ThermoFisher Scientific, UK) 

• Plate reader (MULTISKAN GO spectrophotometer, Thermo Scientific, UK) 

• Plate reader (Spectramax Gemini XS, Molecular Devices, UK) 

• Spectrophotometer 6315 (Beckman Instrument Ltd, UK) 

• TripleTof Mass Spectrometer System (AB Sciex, UK) 

• Ultrasonicator (Ultrasonic Cleaner, USC-TH, VWR, UK) 
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2.2 Reagents, chemicals and consumables 

Below is a table of all the reagents, chemicals, kits and consumables used in this research, 

along with the name of the manufacturer.  

Table 2. List of reagents, chemicals, kits and consumables used. 

Reagent Manufacturer 

0.22 µm polyethersulfone membrane sterile filter  Corning 

1.5 mL microfuge tubes Eppendorf 

2.0 mL microfuge tubes Fisher Scientific  

0.5M Tris pH6.8  Bio-Rad Laboratories 

1.5M Tris pH8.8 Bio-Rad Laboratories 

3 kDa Amicon filter centrifugal units Millipore  

3 kDA FITC-dextran Sigma Aldrich  

24-well plates (tissue culture treated) Corning 

96-well plates (tissue culture treated) Corning 

96-well Maxisorp Enzyme-linked immunosorbent 

assay plates 

Nunc 

Acetic Acid Fisher Scientific 

Acetonitrile Fisher Scientific 

40% Acrylamide/Bisacrylamide solution 37.5:1  Fisher Scientific 

Agar Fisher Scientific  

Ammonium bicarbonate Sigma Aldrich 

Ammonium persulphate ThermoFisher 

Antibiotic-Antimycotic (100x) Gibco 

Black 96-well plate Corning 

Bradford protein assay  Biorad 

Breathe-Easy® membrane Sigma Aldrich 

CellTiter-Blue® Promega 

CHAPS  

Ciprofloxacin ACROS Organics 

Coomassie G-250 stain VWR 

Crystal violet ACROS Organics 

Diethanolamine buffer  Sigma Aldrich 

Dimethyl sulfoxide Sigma Aldrich 

Dulbecco's Modified Eagle Medium/Nutrient 

Mixture F-12 

Gibco 

Eagle’s Minimum Essential Medium Gibco 
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Ethylenediaminetatraacetic acid (EDTA) Sigma Aldrich 

Formic acid Fisher Scientific 

Glacial acetic acid VWR 

Glucose, powder  ThermoFisher 

Glycerol Sigma Aldrich 

Glycine Fisher Scientific 

Heat-Inactivated Foetal Bovine Serum Gibco 

Human collagen type IV Sigma Aldrich 

IL-6 ELISA ready-set-go® kit e-Bioscience 

IL-8 ELISA ready-set-go®  kit e-Bioscience 

IL-10 ELISA ready-set-go® kit e-Bioscience 

Instant dried skimmed milk powder Tesco 

Isopropanol Fisher Scientific 

L-glutamine solution Gibco 

Laemmli buffer Sigma Aldrich 

Lipopolysaccharide from Escherichia coli 0111:B4 Sigma Aldrich 

Mannitol Salt Agar Oxoid 

Methanol VWR 

Multiwell plate sealing films Sigma Aldrich 

(NH4)2S2O8 (APS) Sigma Aldrich 

N,N,N′,N′-tetramethylethylenediamine (TEMED) Sigma Aldrich 

Nutrient Agar Oxoid 

Nutrient Broth Oxoid 

Pierce Prestained Protein Molecular Weight Marker ThermoFisher 

Potassium nitrate ACROS Organics 

Pseudomonas Isolation Agar Oxoid 

Pseudomonas C-N selective supplement Oxoid 

Sodium dodecyl sulphate Sigma Aldrich 

Sulphuric acid Fisher Scientific 

T-25 Tissue Culture Flasks Nunc 

T-75 Tissue Culture Flasks Nunc 

TEMED Fisher Scientific  

Thioureua Sigma Aldrich  

Tobramycin ACROS Organics 

Transwell® companion plates BD-Falcon 

Trichloroacetic acid  ThermoFisher 
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Tris Fisher Scientific  

Triton X-100 Sigma Aldrich 

Trypan Blue Gibco 

Trypsin-EDTA (0.25%), phenol red ThermoFisher 

Trypsin Gold; sequencing grade Promega 

Urea Fisher Scientific  

White 96-well plate  Corning 

 

2.3 Microbiology  

 Bacterial strains   

Laboratory reference strains and CF clinical isolates used in this study are listed in Table 3. 

The eight CF clinical isolates of P. aeruginosa were originally obtained and purified from 

paediatric CF sputum samples at Birmingham Children’s Hospital, England between 1990-

1999.   

Table 3. Bacterial strains used in this study.  

Strain Species Source Reference 

ATCC 6538 S.aureus  American Tissue 

Culture Collection 

(ATCC) 

(Forbes et al., 2015) 

PAO1 P.aeruginosa Wound exudate 

Melbourne, Australia 

(Holloway, 1955) 

Isolate 1  

 

P.aeruginosa 

CF Sputum 

Birmingham 

Children’s Hospital, 

Birmingham, 

UK 

 

 

This study 

Isolate 2 

Isolate 3 

Isolate 4 

Isolate 5 

Isolate 6 

Isolate 7 

Isolate 8 

pSB536  

 

 

E. coli (bioreporter) 

Prof Paul Williams, 

Molecular 

Microbiology, 

University of 

Nottingham 

(Swift et al., 1997) 

(Winson et al., 1998) 

pSB1142 
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 Microbiology media  

S. aureus and P. aeruginosa cultures were routinely passaged on solid Luria Bertani (LB) agar 

plates and grown at 37 °C and 5% CO2 for 48 h. Liquid medium cultures were routinely grown 

in LB broth Miller (granulated) supplemented with 1% (w/v) potassium nitrate, termed LBN 

broth, unless otherwise stated. For co-infection studies, S. aureus were grown on selective 

mannitol salt agar (MSA) plates, whilst P. aeruginosa was grown on selective pseudomonas 

isolation agar (PIA) with CN supplement to select specifically for the P. aeruginosa species. 

Selective agar was used to discriminate between the two bacterial species and facilitate the 

easier detection and enumeration of bacterial colonies. The microbiological agar and broth 

used in this work are listed in Table 4 below.  

Table 4. Microbiology culture and assay media. 

Medium Constituents  Formulation g/L Directions 

LB Agar  LB agar (Miller, 

Pre-buffered 

capsules) 

Tryptone: 10.0 

Sodium chloride: 10.0 

Yeast Extract: 5.0 

Agar: 15.0 

Tris/Tris HCL: 1.5  

1 capsule dissolved in 

500 mL of distilled water 

LB Broth  LB Broth (Miller, 

Granulated) 

Casein peptone: 10.0 

Yeast extract: 5.0 

Sodium chloride: 10.0 

22.5 g of broth dissolved 

in 900 mL of distilled 

water 

LBN broth 

 

LB Broth (Miller, 

Granulated) 

Casein peptone: 10.0 

Yeast extract: 5.0 

Sodium chloride: 10.0 

22.5 g of broth dissolved 

in 900 mL of distilled 

water 

Potassium 

nitrate, 99+% 

 9 g of potassium nitrate 

dissolved in 900 mL of LB 

broth prior to autoclaving 
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Mannitol Salt 

Agar 

Mannitol Salt 

Agar 

‘Lab-Lemco’ powder: 1.0 

Peptone: 10.0  

Mannitol: 10.0  

Sodium Chloride: 75.0 

Phenol Red: 0.025  

Agar: 15.0 

99.9 g dissolved in 900 

mL of distilled water  

Pseudomonas 

Isolation Agar 

 

 

 

 

  

Pseudomonas 

Isolation Agar 

 

Gelatine peptone: 16.0 

Casein hydrolysate: 10.0 

Potassium sulphate: 10.0 

Magnesium chloride: 1.4 

Agar: 11.0 

24.2 g dissolved in 500 

mL of distilled water 

Glycerol  5 mL of glycerol added to 

the pseudomonas 

isolation agar prior to 

autoclaving  

Pseudomonas 

CN Selective 

supplement vial 

Centrimide: 0.2  

Sodium nalidixate: 0.015 

Contents of 1 CN 

supplement vial 

rehydrated with 1 mL of 

sterile distilled water and 

1 mL of ethanol 

Once the agar with 

glycerol had been 

autoclaved, the contents 

of 1 rehydrated vial was 

added and the bottle 

mixed  
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Skimmed Milk 

Agar 

Nutrient Agar  Lab-Lemco’ powder: 1.0 

Yeast extract: 2.0 

Peptone: 5.0 

Sodium Chloride: 5.0 

Agar: 15.0 

25.2 g of nutrient agar 

powder dissolved in 900 

mL of distilled water 

Instant dried 

skimmed milk 

powder 

 20.0 g of dried skimmed 

milk dissolved in 100 mL 

of distilled water and 

autoclaved separately 

Once both solution had 

been autoclaved and 

cooled to 50 °C, 100 mL 

of the sterilised skimmed 

milk solution was added 

to the 900 mL of nutrient 

agar and mixed 

Swim Agar Agar powder 

 

Potassium 

nitrate 99+% 

 Dissolve 1.5 g agar into 

500 mL of distilled water 

Add 5 g of potassium 

nitrate into the agar 

solution prior to 

autoclaving  

Swarm Agar Agar powder 

 

Nutrient broth 

Glucose 

Potassium 

nitrate 99+% 

 Add 2.5 g agar into 500 

mL of distilled water 

Add 4 g of nutrient broth 

to the agar solution  

Add 2.5 g of glucose to 

the agar solution 

Add 5 g of nitrate to the 

solution prior to 

autoclaving  
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All broth and solid agar granules/powders were autoclaved at 121 °C for 15 min to facilitate 

sterilisation.  

 Cultivation in broth  

Single colonies from pure culture plates of P. aeruginosa or S. aureus were added to 10 mL of 

LB broth in sterile universals and incubated at 37 °C, 5% CO2 for 16 h under static conditions. 

Other broth routinely used in this thesis included LB broth supplemented with 1% (w/v) 

potassium nitrate (LBN), to facilitate the anaerobic growth of P. aeruginosa. E. coli biosensor 

pSB536 was cultured in 10 mL of LB broth supplemented with 50 µg/mL ampicillin, whilst E. 

coli biosensor pSB1142 was grown in 10 mL of LB broth supplemented with 10 µg/mL 

tetracycline. Both bioreporter cultures were incubated at 37 °C for 16 h under static conditions.  

For growth under anoxia, cultures were incubated under static conditions at 37 °C for 16 h in 

an anaerobic chamber containing 10% H2, 10% CO2, and 80% N2.  P. aeruginosa PAO1 was 

routinely streaked across the surface of a LB agar plate and used as a control. No growth on 

this plate demonstrated that the chamber was anaerobic.  

 Storage of isolates  

Single colonies from a pure culture of P. aeruginosa, S. aureus or E. coli biosensor were grown 

in 10 mL of LB broth 37 °C and 5% CO2 for 16 h under static conditions. Each overnight culture 

was vortexed for 20 s prior to 500 µL being transferred into a sterile 1.5 mL cryovial. 500 µL of 

sterile 50% (v/v) glycerol/water was subsequently added to the cryovial and the lid sealed. 

Vials were inverted 2-3 times prior to being stored at −80 °C. 

 Isolate resuscitation from frozen glycerol stocks   

All bacterial strains were kept at −80 °C in 1.5 mL sterile cryovials. To resuscitate bacterial 

strains, frozen stocks were partially defrosted and a sterile inoculating loop was immersed into 

the glycerol-bacteria mixture and streaked across the surface of LB agar.  Plates were 

incubated at 37 °C, 5% CO2 for 48 h. This technique is illustrated in Figure 12. 
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Figure 12. Quadrant streak plate method. The aim of this procedure is to isolate single bacterial 
colonies. A sterile inoculating loop containing a bacterial inoculum is spread across the area of quadrant 
one, from the edge of the plate, working inwards. Using one side of a new inoculating loop, the bacteria 
is streaked across the second quadrant of the plate in a zig-zag pattern, working from the outer edge 
inward. This process is repeated for quadrants 3, 4 and 5, each using a different side of the loop. Whilst 
quadrant 1 should have a dense bacterial inoculum following incubation, quadrant 5 should display 
scanty growth with well isolated single bacterial colonies (which are not touching).  

 Confirmation of isolate identity  

Single colonies of P. aeruginosa PAO1 or CF clinical isolates grown on LB agar were streaked 

onto PIA plates containing Cetrimide, Nalidixic Acid (CN) supplement to confirm species 

identity. Plates were incubated at 37 °C, 5% CO2 for 48 h prior to being examined. All P. 

aeruginosa isolates were identified by their growth upon PIA, a positive oxidase test, by their 

colony morphology and appearance as Gram-negative rods following Gram-staining. 

A single colony of S. aureus following growth on LB agar was streaked across the surface of 

MSA plates. Plates were incubated at 37 °C, 5% CO2 for 48 h. S. aureus was identified by 

growing as yellow colonies on MSA, surrounded by yellow zones. The ability to ferment 

mannitol causes the phenol red pH indicator in the agar to turn yellow. S. aureus grew as 

golden colonies upon LB agar, was oxidase-negative and appeared as Gram-positive cocci 

following Gram staining.  

 Standardisation of bacterial cultures  

All assays were carried out using a standardised bacterial inoculum. Colonies of S. aureus or 

P. aeruginosa were inoculated into 10 mL of sterile LBN broth and were grown statically for 16 

h at 37 °C under normoxia or anoxia. Bacterial cultures were subsequently centrifuged at 4,000 

x g for 10 min at 4 °C to pellet the cells, before decanting the supernatant and resuspending 

the bacterial pellet in sterile LBN broth to an OD470 of 1.0 using a spectrophotometer, 

corresponding to approximately 1x108 cells/mL. Bacteria were subsequently diluted 

accordingly to the desired OD for a given assay using sterile LBN broth. E. coli biosensor 
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strains were also standardised, however antibiotic supplemented LB broth was used (as 

mentioned in 2.3.3) and the cultures were grown under normoxia only.   

 Mucoid status 

Single colonies of P. aeruginosa were spread onto the surface of PIA plates. Mucoidy status 

was determined by a slimy appearance of bacterial colonies following 48 h incubation at 37 °C 

and 5% CO2.  

 Pyocyanin status  

Single colonies of P. aeruginosa were cross-streaked across the surface of PIA plates, which 

enhances the production of pyocyanin due to the presence of magnesium chloride and 

potassium sulphate. Pyocyanin determination was assessed by visual inspection of the plates 

following a 48 h incubation at 37 °C and 5% CO2. Pyocyanin-positive isolates exhibited a 

characteristic green pigmentation which diffuses into the growth medium surrounding the 

bacterial colonies.  

 Planktonic growth curves  

Normalised overnight cultures of P. aeruginosa (OD470 of 1.0) grown statically under normoxia 

were diluted 1:10 and 100 µL was added to each well of a sterile 96-well plate. Plates were 

incubated at 37 °C, where growth kinetics were followed by measuring the OD470 at hourly 

intervals for 15 h.  

 Preparation of S. aureus and P. aeruginosa cell-free culture 

supernatants 

Overnight cultures of S. aureus or P. aeruginosa grown under normoxia or anoxia in LBN broth 

were centrifuged at 4,000 x g for 10 min at 4 °C. Each supernatant was sterile filtered with a 

low-binding 0.22 µm polyethersulfone membrane filter and stored at −20 °C until use, with no 

more than one freeze-thaw cycle. To confirm sterility after each preparation, a small volume of 

the supernatant was streaked out onto a LB agar plate and incubated for approximately 18 h 

prior to reading.   

For size exclusion experiments, 5 mL of the cell-free supernatant was added to a 3 kDa 

molecular weight cut off protein concentrator and centrifuged at 4,000 x g for 1 h. Apical and 

basal volumes were subsequently added to 2.0 mL sterile microcentrifuge tubes. Aliquots were 

either immediately used or stored at −20 °C. Where indicated, cell-free bacterial supernatants 

were placed in a heat block at 95 °C for 10 min, to heat-inactivate proteases and subsequently 

minimise airway epithelial cell cytotoxicity.  
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 Skim milk agar protease activity 

Total protease production and activity was determined using skimmed milk agar. 40 µL of cell-

free supernatants from overnight cultures was loaded into wells in the agar plates and 

incubated at 37 °C for 24 h. Hydrolysis of the milk protein casein results in a clear zone 

surrounding the bacterial supernatant was evidence of protease production. The diameter of 

the clearance zones were measured in millimetres (mm) from the edge of the well.  LBN broth 

alone was added to wells as the negative control. The protease activity of each sample was 

normalised to the densities (OD470) of the cultures.  

 Staphylolytic activity   

This method was adapted from (Kong et al., 2005, Grande et al., 2007) using S. aureus as a 

substrate for this assay. An overnight culture of S. aureus grown under static normoxia 

conditions was centrifuged at 4,000 x g for 10 min at 4 °C, prior to the pellet being resuspended 

in 250 µL of 25 mM diethanolamine buffer, pH 9.5. S. aureus was heated at 100 °C for 10 min 

and once cooled, were diluted to a final optimal density OD595 of 1.0.  400 µL of the adjusted 

heat-killed S. aureus were then added to each microtube. The cell-free supernatant from each 

P. aeruginosa isolate was diluted 1:10 with 25 mM diethanolamine buffer, prior to 100 µL being 

added to the heat-killed S. aureus. Staphylolytic activity was determined by measuring in the 

OD595  of heat-killed S. aureus after 60 min on a plate reader- where a decrease in OD indicates 

cell lysis. LBN broth alone was used as the negative control.  

 Quorum sensing  

AHL production was determined using two E. coli biosensor strains, pSB536 and pSB1142, 

kindly provided by Professor Paul Williams (University of Nottingham). pSB536 was grown 

routinely in LB broth supplemented with 50 µg/mL ampicillin, whilst pSB1142 was grown in LB 

broth supplemented with 10 µg/mL tetracycline. Overnight cultures of each biosensor strain 

were normalised to an OD470 of 1.0 and diluted 1:100 into a sterile 96-well plate. 100 µL of cell-

free supernatants from 24 h cultures of PAO1 or the CF isolates were added to the biosensor 

strain. LBN medium was added as the negative control. Plates were sealed with a Breathe-

easy® membrane to facilitate gaseous exchange and minimise culture evaporation and 

incubated for 6 h at 37 °C. 100 µL aliquots were subsequently transferred to a white 96-well 

plate and the luminescence read, with luminescence values divided by the OD470 of the 

biosensor strain, to take into account differences in growth rates and final biosensor densities. 

Luminescence values were subsequently subtracted from the negative control (LBN broth 

only), to correct for background luminescence values.  
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 Pyoverdine production in mono-culture  

Overnight cultures of P. aeruginosa were centrifuged at 4,000 x g for 10 min and the 

supernatants passed through low-binding 0.22 µm polyethersulfone membrane filter. To 

measure pyoverdine production, 100 µL of the cell-free supernatant was added to a black 96-

well plate and read at excitation and emission wavelengths 400/460nm as performed previously 

(Andersen et al., 2015, Krzyzanowska et al., 2016) on Spectramax fluorescence plate reader. 

The background level of fluorescence was measured using 100 µL of  LBN broth only. To take 

into account differences in final bacterial density, RFU values were normalised to the OD470 of 

each bacterial culture.  

 Pyoverdine production in mono-culture versus co-culture with S. 

aureus 

Overnight cultures of P. aeruginosa and S. aureus grown under normoxia or anoxia were 

normalised to an OD470 of 1.0. 500 µL of each culture were then added to a 250 mL conical 

flask containing 50 mL of LBN broth (1:100 dilution). The flasks were incubated at 37 °C for 24 

h, under static normoxia or anoxia. To measure pyoverdine production, 100 µL of the cell-free 

supernatant was added to a black 96-well plate and the fluorescence read at excitation and 

emission wavelengths 400/460nm, respectively. The background level of fluorescence was 

measured using 100 µL LBN broth only. To take into account differences in final bacterial 

density, fluorescence values were normalised to the OD470 of each bacterial culture.  

 Pyocyanin extraction and quantification in single and co-culture  

Overnight cultures of P. aeruginosa and S. aureus grown separately under normoxia or anoxia 

were pelleted, resuspended in fresh medium and adjusted to an OD470 of 1.0. For single 

cultures, 500 µL of S. aureus or P. aeruginosa were added to a 250 mL conical flask containing 

49.5 mL of LBN broth (1:100 dilution). For co-cultures, 500 µL of S. aureus and P. aeruginosa 

were then added in a 1:1 ratio, to a 250 mL conical flask containing 49 mL of LBN broth. The 

flasks were incubated at 37 °C for 24 h, under static normoxia or anoxia. After this period, 

samples were taken and serially diluted in 1x and plated onto PIA to determine the Log10 

CFU/mL.  

To quantify pyocyanin production, bacterial cells were pelleted by centrifugation at 4,000 x g 

for 25 min at 4 °C and the supernatant sterile filtered with a low-binding 0.22 µm 

polyethersulfone membrane filter. 7.5 mL of the sterile supernatant was added to 4.5 mL of 

chloroform and vortexed for ten, 2 sec intervals. The sample was centrifuged for 4,000 x g for 

1 min at 4 °C, prior to 3 mL of the blue-green phase (chloroform phase) being aspirated into a 

new tube. 1.5 mL of 0.2 M hydrochloric acid was then added to the tube and vortexed again 

for ten, 2 second intervals, prior to centrifugation at 4,000 x g for 1 min at 4 °C. 100 µL of the 



81 

 

pink coloured phase was then transferred into a 96-well plate. 100 µL of the hydrochloric acid 

was added in triplicate as the control. The plate was then read at OD520 and multiplied by the 

extinction co-efficient 17.072 to determine the concentration of pyocyanin per mL of 

supernatant. This method was adapted from (Essar et al., 1990, Wu et al., 2014). 

 Drop collapse assay  

Cell-free supernatants from overnight cultures of P. aeruginosa were serially diluted (1:1) in 

sterile distilled water containing 0.0005% (w/v) crystal violet for visualisation across a 96-well 

plate. A total of 20 µL of each dilution (including neat supernatant) was spotted onto the 

underside of a lid of a 96-well plate and the plate titled at a 90 ° angle. The assay works on the 

principle that if the droplet contains surfactants, the drops spread. However, as the quantity of 

surfactants decrease by dilution, the droplet eventually beads up due to an increase in surface 

tension. Surfactant scores are equal to the reciprocal of the greatest dilution at which there 

was surfactant activity (a collapsed drop). This method was performed as previously described 

(Price et al., 2016, Deziel et al., 2001).  

 Minimum Inhibitory Concentration (MIC) 

Antibiotic efficacy was tested using tobramycin, amikacin and ciprofloxacin planktonic cultures 

of P. aeruginosa grown under normoxia and anoxia, using the microbroth dilution method. 

Overnight cultures of P. aeruginosa were diluted to an OD470  0.5. 100 µL of each culture was 

added to wells of a sterile 96-well tissue culture treated plate. Each antibiotic was serially 

diluted in LBN broth: tobramycin (64-0.03 µg/mL), amikacin (256-0.15 µg/mL) and ciprofloxacin 

(32-0.002 µg/mL) and 100 µL added to each culture. Plates were sealed with a Breathe-easy® 

membrane and incubated for 24 h under normoxia or anoxia prior to being read. The MIC was 

determined as the lowest concentration of antibiotic which prevented visual bacterial turbidity.  

 Biofilm biomass determination using crystal violet staining  

Normalised cultures of P. aeruginosa (OD470 of 1.0) grown under normoxia or anoxia were 

subsequently diluted tenfold, prior to 200 µL of each strain being added to a sterile 96-well 

tissue culture treated plate. The plate was sealed with a Breathe-easy® membrane, prior to it 

being incubated under static normoxia, at 37 °C for 24 h.  To take into account differences in 

final bacterial densities, 100 µL of the planktonic fraction was added to a new 96-well plate and 

read at OD470.  

The remaining planktonic media in the original plate was decanted and the wells washed twice 

using sterile 1x PBS with 200 µL being loaded into each well. After allowing the inverted plate 

to dry overnight, 200 µL of 1% (w/v) crystal violet was added into each well for 10 min, prior to 

two further washes in a bucket of distilled water. Plates were dried overnight, prior to the stain 

being solubilised with 200 µL of 30% (v/v) acetic acid. The solubilised stain was then 
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transferred to a new 96-well plate and the density read at OD492.  The OD of the crystal violet 

staining was subsequently normalised to the bacterial density (OD470) of each isolate.  

 P. aeruginosa swimming and swarming motility  

Swimming motility of P. aeruginosa was investigated using 0.3% (w/v) nutrient agar plates 

supplemented with nutrient broth and 1% (w/v) potassium nitrate. Swarming of P. aeruginosa 

was determined using 0.5 % (w/v) of nutrient agar plates supplemented with nutrient broth, 

dextrose and 1% (w/v) nitrate. Overnight cultures of P. aeruginosa grown under normoxia or 

anoxia were adjusted to OD470 of 1.0 and a total of 5 µL of culture was added to the centre of 

each plate. To measure the effects of S. aureus on P. aeruginosa motility, a 1:100 diluted S. 

aureus cell-free culture supernatant (obtained from S. aureus grown under normoxia or anoxia) 

was added to the agar plate. Plates were incubated under static normoxia or anoxia for 24 h 

at 37 °C. The diameter of the zone travelled by P. aeruginosa was measured in mm.  

 Bacterial interaction on solid agar  

Overnight cultures of P. aeruginosa and S. aureus grown under normoxia or anoxia were 

pelleted, resuspended in fresh broth and adjusted to an OD470 of 1.0. A sterile cotton swab was 

inoculated into a given P. aeruginosa normalised culture and streaked horizontally across the 

surface of an LB agar plate containing 1% (w/v) potassium nitrate. After air drying for 20 min, 

a sterile cotton swab was immersed into the normalised S. aureus culture and cross-streaked 

vertically across the surface of the agar. Plates were incubated either under normoxia or anoxia 

at 37 °C for 18 h, prior to being visually inspected for growth inhibition.  

 Planktonic mono- and co-culture 

All growth curve experiments were conducted in 250 mL conical flasks containing 50 mL of 

LBN broth at 37 °C under static conditions. Overnight cultures of S. aureus and three of the P. 

aeruginosa CF isolates grown under normoxia or anoxia were pelleted, resuspended in fresh 

medium and adjusted to an OD470 of 1.0. For co-culture growth curves, the bacteria were 

inoculated at an equal ratio (1:1 S. aureus: P. aeruginosa) and incubated under static 

conditions at 37 °C for 24 h. Samples were taken at regular intervals, serially diluted in 1x PBS 

and 20 µL spots plated onto PIA and MSA, to allow differentiation between the two species. 

The plates were incubated for 18 h at 37°C and 5% CO2, prior to enumerating the colony 

forming units (CFU/mL).  

The competition index (CI) and Relative Increase Ratio (RIR) were calculated. The RIR was 

calculated on the single growth curve data using the P. aeruginosa-S. aureus ratio at a given 

time point, divided by the same ratio at time point 0 h (inoculum). The same ratio was used to 

calculate the CI, although this used data from the mixed culture. A CI that differs statistically 
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from the RIR indicates competition between the two organisms. This method was adapted from 

(Losa et al., 2014).   

 Interaction in mixed species biofilms  

Overnight cultures of S. aureus and P. aeruginosa grown under normoxia or anoxia were 

centrifuged and adjusted to OD470 1.0. Cultures were diluted tenfold and 100 µL added to wells 

of a sterile 96-well tissue culture treated flat bottom plate either individually or in a 1:1 ratio for 

an hour under static conditions, at 37 °C. An equal volume of broth was added to the individual 

culture to compensate for any dilution effect. After 60 min, the well contents were aspirated 

and replaced with fresh LBN broth. Plates were incubated for a further 24 h at 37 °C under 

static conditions. Following this, biofilms were washed twice using 200 µL of 1x PBS, detached 

using 100 µL of trypsin-EDTA (0.25%), collected, vortexed for 70 sec, serially diluted and 

plated onto PIA and MSA. The plates were incubated for 18 h, prior to the enumerating the 

colony forming units (CFU/mL). Biofilm biomass was determined as described in 2.3.20.  

 S. aureus biofilm inhibition and disruption 

S. aureus was grown statically under normoxia or anoxia overnight, prior to being diluted to an 

OD470 of 1.0. The culture was diluted tenfold and a total of 100µL was added into wells of a 

sterile 96-well plate. For the biofilm inhibition experiment 100µL of P. aeruginosa cell-free 

supernatants (following culture under normoxia or anoxia) were added to the wells, with 100µL 

of LBN broth being added to S. aureus as the negative control. The plates were sealed with a 

Breathe-easy® membrane and incubated statically at 37 °C for 24 h under normoxia or anoxia.  

For the biofilm disruption experiment, 100µL of P. aeruginosa cell-free supernatants (following 

culture under normoxia or anoxia) were added to the plate following its 24 h incubation. The 

supernatants were added for 5 h, with 100µL of LBN broth being added to S. aureus as the 

negative control.  In both experiments, biofilm production was visualised by crystal violet 

staining as described previously.  
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2.4 Mass Spectrometry  

 

 Protein gel electrophoresis solutions  

25% (w/v) Trichloroacetic acid (TCA) dissolved in distilled water  

Protein pellet solubilising solution: 50 mM pH 7.4 Tris-HCl containing 2 mM CHAPS, 7 M 

urea and 7 M thiourea 

Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) Running 

buffer (10x): 30 g Tris, 144 g Glycine and 10 g SDS in 1 L of distilled water, pH 8. 

Coomassie blue stain: 0.5% Coomassie blue stain in 40% aqueous methanol with 5% glacial 

acetic acid 

Destaining solution: 10% ethanol and 7.5% glacial acetic acid   

 Solubilisation of secreted proteins   

Five cultures for each P. aeruginosa isolate were set up and incubated at 37 °C under either 

normoxia or anoxia for 24 h.  Following this, the culture was centrifuged at 4,000 x g for 30 

min, prior to being filtered through a 0.22 µm filter to remove contaminating bacterial cells. 

Supernatants were concentrated using 3kDa cut-off filters prior to precipitation with 25% (w/v) 

TCA for 15 min on ice. Proteins were pelleted at 14,000 x g for 10 min, and pellets washed 

with acetone. Protein pellets were solubilised in 2 mM CHAPS, 7 M urea and 7 M thiourea in 

50 mM pH 7.4 Tris-HCl containing using an ultrasonicating probe (30 s sonication per cycle, 

65% full power, 2 cycles). Finally, solubilised proteins were collected after centrifugation at 

14000 x g for 10 min and remaining pellets, if present, were discarded. Protein concentration 

was estimated against BSA calibration curve in the Bradford assay.   

 SDS PAGE 

After quantifying the protein concentrations of the bacterial cell-free culture supernatants, SDS-

PAGE was used to separate the secretome. SDS was used to denature the proteins and 

provide a net-negative charge, facilitating protein separation based on molecular mass, rather 

than mass-to-charge ratio. SDS-PAGE was performed on a 10 cm long 10% polyacrylamide 

resolving gel and 4% stacking gel as detailed in Table 5 below.  
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Table 5. Materials for casting SDS-polyacrylamide gels to separate P. aeruginosa cell-free 
secretomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The resolving gel was left to polymerise for 30 min with isopropanol added to the top of the gel 

to prevent oxygen inhibiting polymerisation. When polymerisation was complete, the 

isopropanol was removed and washed off with distilled water. The stacking gel was then added 

onto the top of the resolving gel. After allowing the stacking gel to polymerise for an additional 

20 min, the gel and plates were placed into the gel tank and immersed in 1 x SDS running 

buffer.  

 Sample preparation  

Samples (30 µg where applicable) were reduced in 5x Laemmli buffer and heated at 65 °C for 

15 min. Well combs were removed from the stacking gel and the wells loaded as follows: 1 x 

SDS-PAGE running buffer and pre-stained protein ladder in lane one and the denatured 

bacterial secretome samples in the remaining wells. The gel was run at 120 V for 5 min allowing 

the samples to pass through the stacking gel, prior to increasing the voltage to 200 V for 45-

55 min until the dye front reached the bottom of the resolving gel. The protein bands were 

visualised by staining (overnight at 4 °C) with Coomassie G250 blue (0.5% in 40% aqueous 

methanol with 5% glacial acetic acid) for 1 h. Following this, the gels were immersed in 

10% Resolving Gel 3 gels  

Distilled water 11.63 mL 

40% Acrylamide:bis-acrylamide 

(37.5:1) 

6.38 mL 

1.5 M Tris pH 8.8 6.5 mL 

10% SDS 0.25 mL 

10% APS 0.25 mL 

TEMED 25 µL 

4% Stacking Gel 3 gels 

Distilled water 7.86 mL 

40% Acrylamide (37.5:1) 1.25 mL 

0.5 M Tris pH 6.8 3.125 mL 

10% SDS 0.125 mL 

10% APS 0.125 mL 

TEMED 12.5 µL 
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destaining solution (10% ethanol and 7.5% glacial acetic acid) and kept in the destaining 

solution at 4 °C overnight, prior to in-gel digestion. 

 Protein in-gel digestion 

Protein in-gel digestion was performed following the method of Schevchenko et al. 

(Shevchenko et al., 2006), with minor modifications. Gels were placed onto a clean glass slide 

and each sample lane was divided into 5 bands (of approximately the same size) and the 

stained bands were excised and diced in a clean polypropylene tube using a sterile scalpel. 

Gel pieces were subsequently destained with 50% acetonitrile in 50 mM ammonium 

bicarbonate, dehydrated with pure acetonitrile until they turned opaque and vacuum dried for 

30 min. Proteins were in-gel digested using MS sequencing grade trypsin (trypsin-to-protein 

ratio 1:25) in 3 mM ammonium bicarbonate, coupled with shaking at 550 rpm at 37 °C 

overnight. Peptides were extracted for 15 min in an ultrasonic bath initially using pure 

acetonitrile equivalent to 50% of sample volume. The whole extract was transferred into a new 

tube, leaving only gel pieces for a further extraction with 150 µL of 50% acetonitrile in 50 mM 

ammonium bicarbonate. The liquid extract was collected into a corresponding tube, and the 

last extraction step was repeated once more for 15 min. Finally, 400 µL of pure acetonitrile 

was used to fully dehydrate the gel pieces and maximise peptide extraction. Thus, complete 

peptide extracts from a single sample lane was collected in separate polypropylene tubes, 

vacuum dried and stored at −20 °C prior to analysis. 

 Mass Spectrometry Analysis 

Samples were reconstituted in 50 µL of 3% aqueous acetonitrile and 0.1% formic acid for liquid 

chromatography-coupled tandem mass spectrometry (LC-MS/MS) analysis. Peptides were 

separated and analysed using an nLC system (Dionex 3000, ThermoScientific, UK) coupled 

to 5600 TripleTof (AB Sciex, UK) operating in information dependent (IDA) acquisition mode. 

Peptide solution (10 µL) was injected onto a trap column (PepMapTM, C18, 5 µm, 100 Å, 300 

µm x 1 mm, ThermoScientific, UK) using 2% of eluent B (98% acetonitrile in aqueous 0.1 % 

formic acid) at a flow rate of 30 µL/min. Peptides were subsequently separated on an analytical 

column (AcclaimTM, PepMapTM C18, 3 µm, 100 Å, 75 µm x 150 mm, ThermoScientific, UK) 

with the following gradient: 0-3 min 2% B, 3-48 min 2-45% B, 48-52 min 45-90% B, 52-55 min 

90% B, 55-70 min 2% B) at a flow rate of 300 nL/min. Electrospray was formed by spraying 

the nLC eluate at 2500 V using a PicoTipTM emitter (New Objective, Germany). The 10 most 

intense ions from each MS survey scan were selected for MS/MS, while acquired ions were 

temporarily excluded from MS/MS acquisition for 30 s.  The mass spectrometer was calibrated 

prior to acquisition to ensure a high mass accuracy (<10 ppm) on both MS and tandem mass 

spectrometry (MS/MS) levels.  
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 Data analysis 

Relative quantification was done using QI for proteomics software (version 4, Nonlinear 

Dynamics, UK). MS/MS data were searched using MasconDeamon (ver 2.5) against the 

SwissProt database, with the following search restriction parameters: mass tolerance of 0.1 

Da for MS and 0.6 Da for MS/MS spectra, a maximum of 2 trypsin miscleavages, 

Pseudomonas aeruginosa taxonomy, variable modifications of methionine oxidation and 

cysteine carbamidomethylation.  

2.5 Cell Culture  

 Cell Lines  

IB3-1 bronchial epithelial cell line was used in this research to construct the CF airways. 

Isolated from a CF patient and immortalised using the adeno-12-SV40 virus in 1992 (Zeitlin et 

al., 1991, Flotte et al., 1993),this cell line is a heterozygote, containing a class II (Phe508del) 

and a class III mutation (W1282X). Cells are deficient in cyclic-AMP (cAMP) mediated protein 

kinase A activation of chloride conductance (Flotte et al., 1993).  

C38 bronchial epithelial cell line was used to construct non-CF airways. It is derived from the 

IB3-1 cell line, which has been corrected using wildtype adeno-associated viral CFTR 

(AAVCFTR). The cell line expresses functional CFTR (Zeitlin et al., 1991, Flotte et al., 1993).  

MRC-5 pulmonary fibroblast cell line was used to construct the sub-epithelial fibroblast 

population in both the CF and non-CF airway models. The cell line is derived from a 14 week 

old Caucasian male foetus (Jacobs et al., 1970).  

 Cell culture media  

IB3-1 and C38 cell lines were routinely grown in DMEM:F12 (1:1 mix of Dulbecco Modified 

Essential Medium with Ham’s-12; Lonza), supplemented with 10% (v/v) heat-inactivated foetal 

bovine serum (FBS) and 1x antibiotic-antimycotic.  

MRC-5 were maintained in EMEM (Eagle’s Minimum Essential Medium; Lonza) supplemented 

with 10% (v/v) heat-inactivated FBS, 2 mM L-glutamine and 1x antibiotic-antimycotic.  

Low serum medium: DMEM:F12 supplemented with 1% (v/v) heat-inactivated FBS and 1x 

antibiotic-antimycotic.  

Infection medium: DMEM:F12 supplemented with 10% (v/v) heat-inactivated FBS without 

antibiotic-antimycotic.  

Freezing medium for IB3-1 and C38: 7mL DMEM:F12, 2mL of heat-inactivated FBS and 1 

mL of DMSO.  
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Freezing medium for MRC-5: 9.5 mL of EMEM and 0.5 mL of DMSO.  

 Culturing cells from frozen 

Frozen cells contained within a cryovial were removed from liquid nitrogen storage and placed 

into a bead bath for 5 min at 37 °C with regular agitation to facilitate thawing. Once thawed, 

the cryovial was transferred into a Class II safety cabinet and the 1mL cell suspension was 

resuspended and added into a labelled 75 cm2 tissue culture flask, drop by drop, containing 

15 mL of pre-warmed cell culture medium and placed in the incubator at 37 °C and 5% CO2 

for 6 h to allow the cells to attach. After this period, the medium containing the cryopreservant 

dimethyl sulfoxide (DMSO) was removed and fresh medium was added, prior to placing the 

flask back into the incubator at 37 °C and 5% CO2. MRC-5 were the only exception to this 

procedure, where they were grown in 10 mL of EMEM in 25 cm2 tissue culture flasks. Cell 

culture medium was changed every 2-3 days until the cells reached 80-90% confluency.  

 Passaging of cells 

Once cells had reached 80-90 % confluency, the culture medium was removed from each 

tissue culture flask and cells washed with 3 mL (T75) or 1 mL (T25) of 1x PBS without 

calcium/magnesium, to remove any traces of heat-inactivated FBS which would inactivate the 

trypsin. 3 mL (T75) or 1 mL (T25) of trypsin-EDTA (0.25%) was then added to the flask and 

the flasks returned to the incubator at 37 °C and 5% CO2 for 5 min to detach adherent cells. 

After this period, 3 mL of cell culture medium was added to neutralise the trypsin and the flask 

gently tapped to aid cell detachment. The flask wall was washed 3-4 times to detach any 

remaining cells and to break up any cell clumps. The cell suspension was then added to a 

sterile 50 mL centrifuge tube and centrifuged at 1,000 x g for 5 min. Following this, the 

supernatant was discarded and the cell pellet was resuspended in fresh medium. For every 

T75 flask, the cell pellet was resuspended in 2 mL of fresh medium. For every T25 flask, the 

cell pellet was resuspended in 0.5 mL of fresh medium. A 1 mL pipette tip was used to aid cell 

resuspension and to break any cell clumps.  

For routine passaging, an appropriate volume of the cell suspension (dependent upon the split 

ratio) was added to each flask containing pre-warmed cell culture medium. A T75 flask 

contained 15 mL of cell culture medium, whilst a T25 flask contained 10 mL of cell culture 

medium.  

 Cell counting using trypan blue exclusion  

To enumerate the number of cells within the cell suspension and adjust the density to those 

required for an experiment, following trypsinisation, centrifugation and resuspension, 25 µL of 

the cell suspension was added to 75 µL 0.2% trypan-blue in a sterile microcentrifuge tube. 

Trypan blue allowed only viable cells (clear) to be counted, where dead permeable cells would 
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take up the diazo dye and appear blue under the microscope. 10 µL of the cell suspension was 

added to an improved Neubauers haemocytometer. Unstained cells were counted in each of 

the four quadrants and totalled together to give the overall cell count, which was then multiplied 

by 104 to give the final number in ‘cells/ mL’. This was then used to adjust the cell density for 

the experiment required.  

 Cryopreservation of cells  

Epithelial cells from one 75 cm2 tissue culture flask at 80-90% confluence were trypsinised, 

centrifuged (as described in 2.5.4) and resuspended in 3 mL of the IB3-1/C38 freezing medium 

and 1 mL was added to three labelled cryovials. MRC-5 cells to be frozen from a 25 cm2 were 

resuspended in 1 mL of the MRC-5 freezing medium and added to a single cryovial. Each 

cryovial was labelled with the cell line, date and passage number and subsequently placed 

into a ‘Mr Frosty’ containing 250 mL of isopropanol to facilitate gradual freezing. The Mr Frosty 

was placed in the −80 °C freezer for 24 h, prior to cells being transferred to liquid nitrogen for 

indefinite storage.  

 Photography of submerged cells  

Light microscopy was used to visually inspect the effects of P. aeruginosa supernatants upon 

submerged cultures of IB3-1 and C38 cell lines. Images were taken at a x 20 magnification on 

an inverted light microscope.  

 IB3-1 and C38 stimulation with S. aureus and P. aeruginosa 

filtrates 

Overnight cultures of S. aureus and P. aeruginosa grown under static conditions and normoxia 

at 37 °C were diluted 1:00 into 50 mL of LB broth in 250 mL conical flasks. The cultures were 

subsequently grown at 37 °C under static normoxia for 24 h. Following this, 1 mL each culture 

was added to a sterile 1 mL UV/vis disposable cuvette and read at OD495 to measure bacterial 

density. The 50 mL culture was subsequently centrifuged at 4,000 x g and 4 °C for 30 min to 

pellet the bacteria. Bacterial supernatants were passed through 0.22 µm sterile filters and the 

cell-free filtrates stored at −20 °C.  

IB3-1 and C38 cells were trypsinised and counted. Each cell line was plated separately into 

sterile 24-well plates at a density of 2.5x105 cells/mL, with a 1mL volume being added to each 

well. Following an overnight incubation at 37 °C and 5% CO2, the cells were visually inspected 

for confluence, prior to aspirating the medium and replacing it with low serum DMEM-F12 

(containing 1% (v/v) FBS). This change of medium helped to prevent serum-dependent MAPK 

activation (which could elevate the baseline secretion of inflammatory mediators and interfere 

with experimental readings), prior to stimulation with bacterial cell-free filtrates. The bacterial 
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filtrates were thawed at room temperature and heat treated (as previously described) to 

minimise airway epithelial cell toxicity. The sterile filtrates were added to each cell line at a 

10% (v/v) concentration, with LB broth being added as a negative control. Plates were 

incubated for a further 24 h prior to the airway epithelial cell supernatants being removed and 

clarified following centrifugation at 13,000 x g for 10 min and stored at −20 °C until further 

analysis.  

 Detection of Interleukin-8 (IL-8), Interleukin-6 (IL-6) and 

Interleukin-10 (IL-10) in clarified airway epithelial cell culture 

supernatants  

The concentration of human IL-8, IL-6 and IL-10 in the cell culture supernatants of IB3-1 and 

C38 cells following bacterial challenge were determined using ELISA. All reagents were 

included in each ELISA kit unless otherwise stated and were prepared according to the 

manufacturer’s instructions. ELISA plates were coated with the capture antibody and sealed 

with multiwell plate sealing films, prior to being incubated at 4 °C overnight. The following day, 

the plates were washed three times (300 µL/well) with ELISA wash; 1x PBS with 0.05% 

(v/v)Tween®-20. The plates were then blocked for an hour with 200 µL 1x diluent and incubated 

at 25 °C for 1 h.  

The ELISA standards (IL-8, IL-6 or IL-10) were reconstituted according to the manufacturer’s 

protocol and added to the wells in duplicate (100 µL/well). 100 µL/well of each sample was 

also added to the appropriate wells on the plate in triplicate. The plate was subsequently 

incubated for 2 h at 25 °C. The wells were then washed three times, prior to 100 µL of detection 

antibody being added to each well for a further 1 h. After decanting the excess antibody, 100 

µL avidin-HRP enzyme solution was added to each well and incubated at 37 °C for 30 min at 

25 °C, prior to the plate being washed five times with wash buffer. 100 µL of TMB solution was 

then added to each well and the plate incubated for 15 min at room temperature in the dark. 

Following this, 50 µL of 2M H2SO4 was added to each well to stop the reaction. The absorbance 

of each well was then read on a plate reader at OD 490nm. The IL-8, IL-6 and IL-10 

concentrations in each sample were determined using the standard curve.  

 Human Placental Collagen Type IV  

Human placental collagen type IV was dissolved in sterile filtered 3% (v/v) acetic acid to a 

stock concentration of 1 mg/mL and regularly agitated for 15 min to ensure it was fully 

dissolved. Transwell® inserts were coated at a working concentration of 10 µg/cm2 and 

incubated at room temperature for 1 h within a Class II safety cabinet. After this period, excess 

collagen was removed and the transwells® washed in sterile DMEM:F12 cell culture medium 
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three times to neutralise the acidic pH. If they were not to be used immediately, collagen coated 

transwell® inserts were stored at 4 °C for up to a month. 

 Cell culture on Transwell® Inserts  

Sterile cell culture transwell® inserts had a polyethylene terephthalate (PET) membrane, with 

a growth area of 0.3 cm2 and pore size of 0.4 µm. A total of 6 transwells® were added to the 

central wells of a 24-well transwell® companion plate using sterile forceps. Each transwell® 

was then coated with human placental collagen type IV as described in 2.5.10.   

Transwell® inserts were seeded apically with fibroblasts at a cell density of 3x104 cells/well in 

a total volume of 300 µL of EMEM medium. A total of 600 µL of EMEM was added to the 

basolateral compartment. Four days later, apical medium was removed from the transwell® 

and IB3-1 or C38 cells were seeded on top of the fibroblasts at 5x104 cells/well in DMEM:F12 

medium. The basolateral medium was also removed and replaced with DMEM:F12. The co-

cultures were then left under submerged conditions for four days, allowing the epithelial cells 

to form confluent monolayers on top of the fibroblasts. On day 4, the apical cell culture medium 

was removed and not refreshed, introducing the cells to an ALI and inducing cell differentiation. 

Medium in the basolateral compartment was refreshed every 3-4 days for a minimum of 14 

days from the introduction of ALI.  

 Assessment of cell viability – CellTiter-Blue® 

CellTiter-Blue® (CTB) is an endpoint assay based on fluorometry, which monitors cell viability. 

Metabolically active viable cells are able to convert resazurin (blue) reagent to its highly 

fluorescent product resorufin (pink). CTB was added to the cell culture medium using 20 µL for 

each 100 µL of cell culture medium. The reagent was incubated for 2 h at 37 °C (as per 

manufacturer’s instructions). After incubation, supernatants were removed to a 96-well plate 

and the fluorescence read on a fluorescent plate reader using Ex560 and Em590nm 

wavelengths.  

 Bacterial adhesion to IB31- and C38 submerged monolayers  

IB3-1 and C38 cells were plated separately into sterile 24-well plates at a density of 1.5x105 

cells/mL, with a 1 mL being added to each well. Cells were grown to confluence overnight in 

antibiotic-free DMEM-F12 media, at 37 °C and 5% CO2. An overnight culture of S. aureus or 

P. aeruginosa grown statically at 37°C and 5% CO2 was pelleted following centrifugation at 

4,000 x g for 10 min and adjusted to an OD470 of 1.0 using infection medium. The standardised 

culture was further diluted in infection medium to a multiplicity of infection (MOI) of 5 (5 bacteria 

to 1 epithelial cell). The of bacterial suspension in a total of 1 mL of infection medium was 

added to each well. The plates were incubated for 2 h at 37 °C prior to the bacterial suspension 

being aspirated and each well being washed twice with 1 mL of 1x PBS to remove any non-
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adherent bacteria. 100 µL of 0.25 % trypsin-EDTA was then added to detach the monolayer 

and left to incubate for 15 min at 37 °C and 5% CO2. 900 µL of infection media was added to 

inactivate the trypsin. A 100 µL aliquot was taken from each well and serially diluted in sterile 

1x PBS. A 20 µL aliquot of each dilution was plated onto LB agar and left to incubate for 24 h 

at 37 °C.  The following day, the dilution containing between 2-20 colonies was counted and 

multiplied up to give the CFU/mL for bacterial adhesion.   

 Bacterial adhesion to IB3-1 and C38 ALI co-culture transwells®  

24 h prior to infection, transwell® inserts grown at ALI were transferred to a new sterile 

companion plate containing 600 µL of infection medium within the basolateral compartment of 

each well. The apical cell surface was washed once with 100 µL of 1x PBS. Prior to infecting 

the transwells®, the basolateral medium was refreshed again with pre-warmed infection 

medium. Any apical medium was removed.  

Overnight cultures of S. aureus and/or P. aeruginosa grown under static conditions at 37 °C 

and 5% CO2 were centrifuged at 4,000 x g for 15 min at 4 °C and the pellet washed in 10 mL 

of sterile 1x PBS. This process was repeated three times. After the final wash, the bacterial 

pellet was resuspended in infection medium and adjusted to OD470 of 1.0. This inoculum was 

subsequently diluted to give a final MOI of approximately 10. 100 µL of the infection inoculum 

was added apically to each transwell® and incubated for 2 h at 37 °C and 5% CO2. Following 

this, the apical bacterial inoculum was aspirated and the wells washed twice with 200 µL of 1x 

PBS to remove any non-adherent bacteria. For co-infections, the second bacterial species (S. 

aureus or P. aeruginosa) was then added and the plate incubated for a further 2 h at 37 °C 

and 5% CO2.   

After washing the transwells® once in 1x PBS following mono- or co-infection, 200 µL of ice-

cold 0.25% (v/v) Triton X-100 was added to each apical well to lyse the airway epithelia-

fibroblast co-cultures. The companion plates were left on ice for 30 min. 100 µL of the lysed 

suspension was then vortexed for 2 min, serially diluted (1:10) in 1x PBS and 20 µl inoculated 

onto the surface of MSA or PIA. Plates were incubated at 37 °C for 18-20 h, prior to the CFU/mL 

being enumerated.   

2.6 Statistical Analysis 

All results unless otherwise specified are expressed as mean ±S.E.M., with data for each 

experiment being collected from three independent repeats (N=3), each replicate performed 

in triplicate. All statistical analyses were performed using GraphPad Prism 6 software 

(Graphpad, La Jolla, CA, USA) with significance being set to P<0.05.  The specific statistical 

tests and post-hoc tests used for each experiment are described in the figure legends.  
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3 Phenotypic characterisation of P. aeruginosa 

CF clinical isolates  

3.1 Introduction  

Initial infection of CF airways by a single environmental strain of P. aeruginosa typically occurs 

during early infancy (Johansen and Hoiby, 1992, Burns et al., 2001). Whilst aggressive 

antibiotic regimens serve to eradicate the low numbers of bacteria present within the lungs, 

reservoirs of P. aeruginosa within the upper respiratory tract or acquisition of a different 

environmental strain lead to reinfection (Mainz et al., 2012, Hansen et al., 2012). Thus, 

infections are typically intermittent in nature, occurring over many months and years (Jelsbak 

et al., 2007). Despite this inability to completely eradicate P. aeruginosa, the administration of 

narrow spectrum antibiotics to treat P. aeruginosa is effective in preventing the development 

of chronic P. aeruginosa infections during childhood (Hansen et al., 2008).  

As discussed in the introduction, P. aeruginosa possesses an arsenal of cell-associated and 

secreted virulence factors which facilitate CF airway colonisation, including flagella, pyocyanin 

and proteases. Whilst flagella facilitate swimming motility and pyocyanin induces host cell 

apoptosis and impairs mucociliary clearance (Usher et al., 2002, Kanthakumar et al., 1993), 

proteases degrade components of host immunity (Doring et al., 1985, Mariencheck et al., 

2003, Horvat and Parmely, 1988, Kharazmi et al., 1984), and the extracellular matrix (ECM) 

(Heck et al., 1986). Secretion of these virulence factors is governed by QS, predominantly 

composed of the Las and the RhI systems (Van Delden and Iglewski, 1998) and  their 

respective signal molecules, 3-oxo-C12-HSL and C4-HSL. Whereas the las system regulates 

the rhI system (Pesci et al., 1997), it can also be activated independently by a third QS 

pathway, PQS (Diggle et al., 2003). Mutations in QS genes are associated with a reduction in 

bacterial virulence in lung and wound infections (Pearson et al., 2000, Wu et al., 2001, 

Rumbaugh et al., 1999).  

Whilst variations in P. aeruginosa colony morphology are detected as early as within the first 

five years of life (Agarwal et al., 2002, Agarwal et al., 2005), most P. aeruginosa CF isolates 

during early infection continue to display a classic environmental phenotype, where isolates 

are non-mucoid and exhibit a susceptibility to anti-pseudomonal antibiotics (Burns et al., 2001). 

Longitudinal analysis during the course of infection however, has demonstrated that isolates 

naturally accumulate several genetic aberrations overtime, including point mutations, 

chromosomal translocations and rearrangements within their genome (Darch et al., 2015, 

Rodriguez-Rojas et al., 2009, Marvig et al., 2013, Folkesson et al., 2012). Smith et al. (2006) 

reported 68 mutations in a P. aeruginosa CF isolate during 8 years of infection (Smith et al., 
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2006a). P. aeruginosa CF isolates have also exhibited reductions in the size of their genome 

during adaptation to the CF lung through deletion of large genomic regions and limited DNA 

uptake (Rau et al., 2012). Coupled with environmental pressures such as those exerted by 

antibiotics, extensive ‘within-lung’ and ‘across-lung’ variation in the P. aeruginosa phenotype 

is commonplace (Clark et al., 2015a, O'Brien et al., 2017, Mariencheck et al., 2003, Williams 

et al., 2015). During the course of chronic infection, P. aeruginosa CF isolates typically exhibit 

losses in virulence factors associated with acute infection, such as bacterial motility 

(Mahenthiralingam et al., 1994), pyocyanin, pyoverdine and protease production (Smith et al., 

2006a), in favour of becoming resistant to antibiotics and overproducing the polysaccharide 

alginate (Govan and Deretic, 1996, Fothergill et al., 2010). This adaptation is illustrated in 

Figure 13. 

 

Figure 13. P. aeruginosa adapts to the CF lung environment during chronic infection. During early 
infection of CF airways, P. aeruginosa (shown in pink) expresses a potent arsenal of cell-associated 
and secreted virulence factors which facilitate airway colonisation. This includes surface pili for 
adhesion, flagella-mediated swimming motility and the secretion of pyocyanin and proteases. Over time, 
P. aeruginosa accumulates genetic mutations which under selective pressures and geographical 
isolation within the airways leads to phenotypic diversification. Chronically infecting CF isolates of P. 
aeruginosa (shown in pink, red and yellow) typically exhibit losses in virulence factor expression such 
as pyocyanin and proteases, are non-motile due to losses in flagella expression, secrete a thick alginate 
matrix and exhibit resistance to clinically relevant antibiotics due to the overexpression of drug efflux 
pumps.  Adapted from (Sousa and Pereira, 2014).  
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Such changes are often reflected in bacterial morphology too, where cultured CF sputa 

illustrate increases in the frequency of small colony, mucoid, colourless, or quorum-signalling 

variants (Smith et al., 2006a, Wilder et al., 2009, Workentine et al., 2013, Goodman et al., 

2004). These characteristic chronic phenotypes of P. aeruginosa are highly prevalent amongst 

the CF community, suggesting that common selective pressures operate within the CF lung. 

As many of these virulence factors which are lost are highly immunogenic, changes in the P. 

aeruginosa phenotype during the course of chronic infection is likely to be a host-restrictive 

adaptation to evade the host’s immune response, thus promoting persistence and provide a 

survival advantage. Such genotypic and phenotypic changes over time are less of an abolition 

of virulence, but rather a transformation of virulence (Jelsbak et al., 2007, Smith et al., 2006a, 

D'Argenio et al., 2007, Mathee et al., 1999).  

3.2 Aims  

Phenotypic characterisation of eight P. aeruginosa CF clinical isolates acquired from 

Birmingham Children’s Hospital was undertaken, alongside the reference laboratory strain 

PAO1. The battery of phenotypic characterisations focused upon those important for survival 

and persistence within the CF lung and thus included analysis of: colony morphology, 

pyocyanin production, growth curve profile, protease secretion, staphylolytic ability, 

siderophore production, swimming and swarming motilities, biofilm production and 

susceptibility to antibiotics.  
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3.3 Methods  

Routine culture and colony morphology determination. Frozen stocks of P. aeruginosa 

were partially thawed and streaked onto LB agar plates and incubated at 37 °C and 5% CO2 

for 48 h. Pigmentation and colony morphology was visually inspected. For liquid cultures, S. 

aureus and P. aeruginosa were inoculated into 10 mL of LBN broth. PAO1 acted as a positive 

control for extracellular virulence factor secretion, motility and biofilm formation, whilst acting 

as a negative control for mucoidy.  

Isolate confirmation testing. A single colony of each P. aeruginosa CF isolate was streaked 

onto PIA plates, whilst S. aureus was streaked onto MSA plates. Plates were incubated at 37 

°C and 5% CO2 for 48 h prior to inspection. 

Oxidase. A drop of N,N,N’,N’-tetramethyl-p-phenylenediamine dihydrochloride was added to 

a sterile cotton swab and pressed onto an individual colony of P. aeruginosa or S. aureus. 

Positive results were scored as the development of a dark purple colour (indophenol) on the 

tip of the swab within 10 s.  

Gram staining. A single colony of each CF isolate of P. aeruginosa grown on LB agar was 

added to 5 drops of sterile PBS and emulsified onto a sterile glass microscope slide. Slides 

were then passed through a flame to heat fix, prior to staining using traditional Gram staining 

techniques with crystal violet, iodine and safranin. Slides were then viewed using light 

microscopy to confirm the presence of Gram-negative rods.  

Mucoidy status. A single colony of P. aeruginosa was spread onto the surface of a PIA plate 

using a sterile cotton swab. Mucoidy status was determined as a slimy appearance following 

a 48 h incubation at 37 °C. 

Pyocyanin status. A single colony of P. aeruginosa was streaked across the surface of a PIA 

plate. Pyocyanin determination was assessed following a 48 h incubation at 37 °C and 5% 

CO2. 

Planktonic growth. A single colony of P. aeruginosa was inoculated into 10 mL of LBN broth 

and incubated at 37 °C for 16 h. Cultures were centrifuged at 4,000 x g for 10 min at 4 °C and 

normalised to an OD470 of 1.0, diluted 1:10 in fresh LBN broth and 100 µL added to wells of a 

sterile 96-well plate. Plates were incubated at 37 °C, where growth kinetics were followed by 

measuring the OD470 at hourly intervals for 15 h.  

Preparation of P. aeruginosa cell-free culture supernatant. Overnight cultures of P. 

aeruginosa were centrifuged at 4,000 x g for 10 min at 4 °C. Each supernatant was sterile 

filtered with a low-binding 0.22 µm polyethersulfone membrane filter and stored at −20 °C until 
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use. To confirm sterility after each preparation, a small volume of the supernatant was streaked 

onto LB agar plates and incubated for approximately 20 h at 37 °C and 5% CO2 prior to reading.   

Protease production. Protease production was determined using skimmed milk agar plates. 

Cell free supernatants (40 µL) from overnight cultures were loaded into wells of agar plates 

and incubated at 37 °C for 24 h. Hydrolysis of the milk protein casein results in a clear zone 

surrounding the bacterial supernatant, indicating protease production. LBN medium was also 

loaded as a negative control. The diameters of clearance zones were measured in mm.  

Anti-staphylococcal activity. S. aureus was used as the substrate in this assay. An overnight 

culture of S. aureus grown under static normoxia conditions was centrifuged at 4,000 x g for 

10 min at 4 °C, prior to the pellet being resuspended in 250 µL of 25 mM diethanolamine buffer, 

pH 9.5. The bacteria were heated at 100 °C for 10 min, before being diluted to a final optical 

density OD595 of 1.0. 400 µL of the adjusted heat-killed S. aureus were added to each 

microtube. The cell-free supernatant from each P. aeruginosa isolate was diluted 1:10 with 

diethanolamine buffer, prior to 100 µL being added to the heat-killed S. aureus. The OD of heat 

killed S. aureus after 60 min was read on a MultiSkan Go plate reader, with decreases in the 

OD being evidence of S. aureus lysis. LBN broth alone was used as a control. This method 

was adapted from Andrejko et al. (2013). 

Pyoverdine production. Overnight cultures of P. aeruginosa and S. aureus were pelleted, 

resuspended in fresh medium and adjusted to an OD470 of 1.0. 500 µL of each culture was then 

added to a 250 mL conical flask containing 50 mL of LBN broth. The flasks were then incubated 

at 37 °C for 24 h, under static normoxia or anoxia. To measure pyoverdine production, 100 µL 

of the cell-free supernatant was added in triplicate to a black 96-well plate and the fluorescence 

read at excitation and emission wavelengths 400/460 nm, respectively. The background level 

of fluorescence was measured using 100 µL LBN broth only. To take into account differences 

in final bacterial density, RFU values were normalised to the OD470 of each bacterial culture.  

Biofilm biomass.  Overnight cultures of S. aureus and P. aeruginosa were centrifuged and 

adjusted to OD470 1.0. Cultures were diluted tenfold and 100 µL added to the central wells of a 

96-well tissue culture treated flat bottom plate for 1 h under static conditions, at 37 °C. After 60 

min, the well contents were aspirated and replaced with fresh LBN broth. Plates were 

incubated for a further 24 h at 37 °C under static conditions. Following this, biofilms were 

washed twice using 200 µL of PBS and air dried overnight. To determine biofilm biomass, 

attached biofilms were stained with 200 µL 1% (w/v) crystal violet for 10 min, prior to two further 

washes in deionised water. Plates were dried overnight, prior to the stain being solubilised with 

200 µL of 30% (v/v) acetic acid. The solubilised stain was then transferred to a new 96-well 

plate and read at OD570. The greater OD, the greater the biofilm biomass.  
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Bacterial motility.  Swimming motility of P. aeruginosa was investigated using 0.3 % (w/v) 

nutrient agar plates supplemented with nutrient broth and 1% (w/v) potassium nitrate. 

Swarming of P. aeruginosa was determined using 0.5 % (w/v) of nutrient agar plates 

supplemented with nutrient broth, dextrose and 1% (w/v) potassium nitrate. Overnight cultures 

of P. aeruginosa were adjusted to OD470 of 1.0 and a total of 5 µL of culture was added to the 

centre of each plate. Plates were incubated for 24 h at 37 °C. The diameter of the zone 

travelled by P. aeruginosa was then measured in mm using a ruler.  

Minimum inhibitory concentration (MIC) determination. Overnight cultures of P. 

aeruginosa were normalised to an OD470 of 1.0, diluted to 106 CFU/mL and 100 µL added to 

serially diluted concentrations of tobramycin (64-0.25 µg/mL), ciprofloxacin (128-0.5 µg/mL) or 

amikacin (128-0.5 µg/mL). Plates were sealed with a Breathe-easy® membrane and incubated 

statically for 24 h at 37 °C under normoxia or anoxia. The MIC was determined by visual 

inspection of the 96-well plates. 

Statistical Analysis. All results, unless otherwise specified, are expressed as mean ±S.E.M., 

with data for each experiment being collected from three independent experiments (N=3), each 

performed in triplicate. All statistical analyses were performed using GraphPad Prism 6 

software (Graphpad, La Jolla, CA, USA), with significance being set to P<0.05.  The specific 

tests and post-hoc used for each experiment are described in the figure legends.  
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3.4 Results  

 P. aeruginosa phenotype using LB culture medium 

Phenotypic investigations were carried out on eight CF clinical isolates of P. aeruginosa 

isolated from CF sputum samples of patients attending Birmingham Children’s Hospital 

between 1991-1999. The laboratory reference strain P. aeruginosa PAO1 was also used. To 

initially characterise these isolates, frozen cultures were streaked onto LB agar plates and 

visually inspected following 48 h incubation under normoxia at 37 °C. A single colony from 

each plate was subsequently inoculated into 10 mL of sterile LB broth and visually inspected 

following 48 h incubation under normoxia, at 37 °C.  

From Figure 14 it is evident that laboratory strain PAO1 and 6 of the CF isolates produce an 

array of diffusible water-soluble pigments typically associated with P. aeruginosa following 

growth on solid LB agar and in liquid LB broth. Whilst PAO1 and CF clinical isolates 1, 3, 4, 5 

and 6 produce green hues characteristic of pyocyanin, isolate 8 produces a brown-red 

pigment, characteristic of pyomelanin. CF isolates 2 and 7 lacked characteristic P. aeruginosa 

pigmentation following growth on LB agar and in LB broth and were both yellow in colour. 

Additionally, all isolates were identified as being oxidase positive, Gram-negative by crystal 

violet staining and exhibited a characteristic grape-like “fruity” odour.  
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Figure 14. Pigmentation varies across P. aeruginosa isolates. Bacteria were incubated under static 
aerobic conditions either on solid LB agar plates (top) or in 10 mL of LB broth (bottom) for 48 h at 37 °C. 
Images are representative of numerous bacterial subcultures performed throughout this study.     

  

PAO1 

Isolate 1 Isolate 2 Isolate 3 Isolate 4 

Isolate 5 Isolate 6 Isolate 7 Isolate 8 
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 Pyocyanin status  

PAO1 and the eight CF isolates were streaked onto PIA plates (containing magnesium chloride 

and potassium sulphate), which enhances the production of pyocyanin. The presence of 

cetrimide also served to confirm species identity. As shown in Figure 15, PAO1 and CF isolates 

1, 4, 5 and 6 all produced detectable levels of pyocyanin, with PAO1 and CF isolate 6 

producing the greatest amount of this green phenazine, as depicted by the intense green hue. 

CF isolate 8 was the only isolate to produce the dark brown pigment pyomelanin.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Pyocyanin production by P. aeruginosa.  PAO1 and the eight CF isolates were streaked 
from frozen stocks onto PIA agar and incubated for 48 h at 37 °C prior to visual inspection. The 
phenazine pyocyanin diffuses into the agar and gives rise to a characteristic green hue. Images shown 
are representative of three independent experiments, each performed in duplicate.

PAO1 Isolate 1 Isolate 2 

Isolate 3 Isolate 4 Isolate 5 

Isolate 6 Isolate 7 Isolate 8 
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 Colony Morphology 

P. aeruginosa colony morphology was assessed following growth on LB agar plates and incubation at 37 °C for 48 h. As shown in Table 6, eight morphological 

characteristics were studied, ranging from colony pigmentation and mucoidy status to colony surface texture.  

Table 6. Colony morphology of P. aeruginosa laboratory strain PAO1 and clinical CF isolates upon LB agar plates. The production of four colony pigmentations were 

studied. Colonies were positive for mucoidy status if they exhibited a slimy appearance. Colony form assessed the basic shape of the colonies. Autolysis assessed whether 

the bacteria grew as colonies that were lysed in their centres, whilst margin determined the edge of the colonies.  

  

Isolate Pigmentation  Colony Size Mucoidy status Form Optical  

Property 

 

Autolysis 

Surface Texture  

Margin 

 Brown Green White Opaque Small Large Mucoid Non-
mucoid 

Circular Irregular Opaque  Rough Smooth Entire 

PAO1  

 

+    +  + +  + -  + + 

1  

 

 + +  +  + +  + -  + + 

2  

 

  +  +  + +  + -  + + 

3  

 

 +   +  + +  + -  + + 

4 + 

 

+    + +  +  + -  + + 

5  

 

+    +  + +  + -  + + 

6  

 

+    +  + +  + -  + + 

7  

 

 +   +  + +  + -  + + 

8 + 

 

  

 

  +  + +  + -  + + 
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Based upon eight morphological features studied, six distinct colony morphotypes were 

detected across PAO1 and the CF clinical isolates of P. aeruginosa.  

 Mucoidy status  

To confirm the mucoidy status of CF isolates, overnight cultures of P. aeruginosa were 

adjusted to OD470 1.0 and streaked onto PIA and incubated at 37 °C for 48 h, prior to visual 

inspection.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Assessing P. aeruginosa CF isolate mucoidy. CF isolates of P. aeruginosa were streaked 
onto PIA plates and incubated under normoxia for 48 h at 37 °C. Images shown are representative of 
three independent experiments, each performed in duplicate. Mucoid isolates are indicated by the white 
arrow heads.  

In Figure 16 above, only P. aeruginosa CF isolates 3 and 4 exhibited a mucoid phenotype 

following growth on PIA, evident by their slimy appearance (white arrow heads). All remaining 

CF isolates and laboratory strain PAO1 were non-mucoid.  

  

PAO1 Isolate 1 

Isolate 6 Isolate 7 Isolate 8 

Isolate 2 Isolate 3 Isolate 4 Isolate 5 
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 Growth rates in planktonic culture  

Growth curves were constructed to identify whether the CF isolates exhibited differences in 

their rates of planktonic growth compared to one another and in comparison to the non-CF 

laboratory strain PAO1. Once overnight cultures were normalised, diluted in fresh LBN broth 

and added to a sterile 96-well plate, changes in OD were measured over a 15 h period, at 

hourly intervals.  

As shown in Figure 17, P. aeruginosa CF isolates displayed considerable heterogeneity in their 

growth kinetics. P. aeruginosa CF isolate 1 reached the highest OD of all the isolates tested 

at 15 h, which was approximately 36% higher than PAO1, with CF isolate 6 being the only 

isolate to grow to a lower final OD than PAO1 (approximately 7% lower). There was no 

correlation seen between colony morphotype and growth rate. Mucoid CF isolates 3 and 4 

grew to similar final OD as the non-mucoid isolates, such as CF isolates 2 and 5. Non-mucoid 

PAO1 and CF isolates 5 and 6 all produced pyocyanin and yet PAO1 grew to a lower final OD. 

CF isolates 3 and 7 grew as white non-mucoid isolates and grew to a similar final OD as CF 

isolates 5 and 6 which exhibited a green colony morphotype. The bacterial OD was measured 

at 470 nm as this wavelength minimises the effect and influence of P. aeruginosa pigments 

which could interfere with the OD readings of the bacterial density.  

 

Figure 17. Planktonic growth curves of P. aeruginosa PAO1 and CF clinical isolates. Overnight 
cultures of P. aeruginosa were standardised, diluted and incubated at 37°C for 15 h, with OD470 readings 
being taken every hour. The results are expressed as the mean ± S.E.M of three independent 
experiments (N=3), each performed in triplicate. 
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The doubling times during the exponential phase of planktonic growth for PAO1 and the eight 

CF isolates were determined from data presented in Figure 17. Table 7 illustrates that all CF 

isolates (except CF isolates 6 and 8) have a shorter doubling time than laboratory strain PAO1 

(approximately 138 min), with CF isolate 7 having the shortest doubling time of all the isolates 

tested (approximately 109 min). Conversely, CF isolate 8 exhibited the longest exponential 

phase, with an approximate doubling time of approximately 184 min.   

Table 7. Doubling times for P. aeruginosa PAO1 and the eight CF clinical isolates. Doubling times 

were calculated from data obtained in Figure 17.  

 

 

 

 

 

 

 

 

 

 

 

 

 Protease production  

Given that proteases are an essential virulence factor used by P. aeruginosa to promote 

colonisation of the CF lung (Smith et al., 2006b), their production was assessed across the 

eight clinical isolates. As shown in Figure 18, PAO1 and six of the eight CF isolates tested 

secreted detectable levels of protease. There was also no correlation between protease 

production and mucoidy status. Both mucoid CF isolates 3 and 4 secreted detectable levels of 

protease, along with non-mucoid isolates 1, 2, 5 and 7.  Protease production for two of the 

non-mucoid CF isolates (6 and 8) was below the limit of detection for this assay, which was 

also the two CF isolates which exhibited the longest doubling time (Figure 17). 

P. aeruginosa isolate Approximate doubling time 

(min) 

PAO1 138 

CF Isolate 1 116 

CF Isolate 2 116 

CF Isolate 3 123 

CF Isolate 4 132 

CF Isolate 5 112 

CF Isolate 6 142 

CF Isolate 7 109 

CF Isolate 8 184 
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Figure 18. Protease production varies across P. aeruginosa CF clinical isolates. Cell-free 
supernatants from overnight cultures of P. aeruginosa (40 µL) were added to wells in the milk agar and 
the diameter of zones of clearance were measured following 24 h incubation. Data shown are the mean 
± S.E.M. of three independent experiments (N=3), each performed in triplicate. Data has been 
normalised to account for differences in final bacterial cell density. Statistical differences were 
determined using one-way ANOVA with Dunnett’s post-hoc test (vs. PAO1). **P<0.01 and ***P<0.001.  

 Staphylolytic activity  

As P. aeruginosa can co-exist with S. aureus and compete for nutrients within CF airways 

(Limoli et al., 2016), the ability of P. aeruginosa CF clinical isolates to lyse S. aureus was also 

determined. Cell-free supernatants from overnight cultures of P. aeruginosa were added to 

suspensions of heat-killed S. aureus and changes in OD were measured after an hour. Any 

detectable decreases in optical density were evidence of S. aureus lysis.  

As shown in Figure 19, PAO1 and six of the eight CF isolates were able to significantly reduce 

the OD of heat-killed S. aureus after an hour compared to the negative control (heat-killed S. 

aureus with LBN broth). Conversely, CF isolates 6 and 8 which exhibited the longest doubling 

time and failed to produce detectable proteases, were unable to lyse heat-killed S. aureus.  
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Figure 19. Staphylolytic ability of P. aeruginosa CF clinical isolates. Reference strain PAO1 and 
eight CF isolates were grown statically overnight under normoxia. Cell-free supernatants were added to 
heat-killed S. aureus and staphylolytic ability was determined by measuring changes in the OD595 after 
60 min. Data represents the mean ± S.E.M. of three independent experiments (N=3) each performed in 
quadruplicate. Statistical differences were determined using one-way ANOVA with Dunnett’s post-hoc 
(vs. control). Control consisted of LBN broth added to heat-killed S. aureus. **P<0.01 and ***P<0.001.  

 Pyoverdine production 

Iron is an essential micronutrient required by P. aeruginosa for a range of proteins including 

catalases and cytochromes (Konings et al., 2013). The production of the major iron binding 

siderophore pyoverdine was determined across PAO1 and the panel of CF isolates. Due to its 

ability to fluoresce, the relative fluorescence units (RFU) of cell-free culture supernatants were 

recorded and normalised to the bacterial cell density (OD470). As shown in Figure 20, all 

isolates produced detectable levels of pyoverdine, with seven isolates producing the 

phenazine at levels similar to laboratory strain PAO1, except CF isolate 6 which produced 

pyoverdine at significantly lower levels (P<0.05).  
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Figure 20. P. aeruginosa pyoverdine production. The amount of pyoverdine within P. aeruginosa 
cell-free supernatants was quantified by exploiting the fluorescent nature of this main siderophore at 
400 nm excitation and 460 nm emission wavelengths. To take into account differences within the final 
cell density, the RFU was normalised to the bacterial culture OD. Data represents the mean ± S.E.M. of 
three independent experiments (N=3) each performed in triplicate. Statistical differences were 
determined using one-way ANOVA with Dunnett’s post-hoc (vs. PAO1). *P<0.05.    

 Biofilm Biomass  

The production of an alginate-predominant biofilm by P. aeruginosa within CF airways provides 

a survival advantage to the bacterium, facilitating resistance against neutrophil-mediated 

phagocytosis and increasing tolerance to antibiotics (Hoiby et al., 2010). P. aeruginosa isolates 

were grown in sterile 96-well plates, with the biofilm biomass being determined after 24 h using 

crystal violet staining. Biofilm staining intensity was normalised to the OD470 of the 24 h 

bacterial culture.  

In Figure 21 below, CF isolates of P. aeruginosa show varying degrees of biofilm formation. 

Mucoid CF isolates 3 and 4 did not produce the greatest amount of biofilm biomass. CF isolate 

6 was the weakest biofilm former (P<0.001) compared to laboratory strain PAO1, whilst mucoid 

isolate 8 exhibited the greatest biofilm biomass (P<0.01). Interestingly, as mentioned 

previously, these two CF isolates exhibited the longest doubling time (Figure 17). CF isolates 

1, 3, 4 and 7 all secreted a biofilm biomass similar to that of reference strain PAO1.  
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Figure 21. Biofilm biomass of CF clinical isolates of P. aeruginosa. Biofilms from 24 h cultures of 
P. aeruginosa  were stained with 1% (w/v) crystal violet and solubilised with 30% (v/v) acetic acid, prior 
to being read at OD570. Data shown are the mean ± S.E.M. of three independent experiments (N=3), 
each performed in triplicate. Data has been normalised to account for differences in bacterial cell density 
at OD470. Statistical differences were determined using one-way ANOVA with Dunnett’s post-hoc test 
(vs. PAO1). *P<0.05, **P<0.01 and ***P<0.001.  
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 Motility – swimming and swarming 

P. aeruginosa motility plays an important role in surface colonisation, as well as in the formation 

of biofilms. Swimming and swarming motility were determined using both swim and swarm 

agar plates. As shown in Figure 22, PAO1 and the CF isolates displayed varying degrees of 

swimming motility. Whilst CF isolates 1 and 8 exhibited smaller swim zones, CF isolate 5 

demonstrated the highest degree of swimming motility compared to PAO1.  

 

Figure 22. P. aeruginosa swimming motility. Overnight cultures of P. aeruginosa were normalised, 
prior to 5 µL of culture being inoculated into the agar of swim plates. Plates were incubated for 24 h at 
37 °C prior to being read. Data shown are the mean ± S.E.M. of three independent experiments (N=3), 
each performed in duplicate. Statistical differences were determined using one-way ANOVA with 
Dunnett’s post-hoc test (vs. PAO1). ***P<0.001.  

As shown in Figure 23, CF isolates 1, 3, 4, 5 and 8 displayed varying degrees of swarming 

motility, with CF isolate 1 exhibiting the greatest swarming motility, with characteristic finger-

like projections protruding out from the point of inoculation. PAO1 and CF isolates 2, 6 and 7 

exhibited minimal swarming motility.  
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Figure 23. P. aeruginosa swarming motility. The cell densities of overnight cultures of P. aeruginosa 
were normalised, prior to 5 µL of culture being inoculated onto the surface of swarm agar. Plates were 
incubated for 24 h at 37 °C prior to being read. Images shown are representative of three independent 
experiments (N=3), each performed in duplicate. 

  

PAO1 Isolate 1 Isolate 2 

Isolate 4 Isolate 3 Isolate 5 

Isolate 6 Isolate 7 Isolate 8 
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 Minimum inhibitory concentration (MIC) determination – amikacin, 

ciprofloxacin and tobramycin 

CF sputa which are culture positive for P. aeruginosa require the patient to undergo an 

aggressive antibiotic regimen in an attempt to eradicate the organism from the airways.  

Employing the use of three anti-pseudomonal antibiotics, the MIC for PAO1 and the eight CF 

clinical isolates using the microbroth dilution method was determined.  

As shown in Figure 24, the susceptibility of P. aeruginosa isolates to the three antibiotics varied 

widely. CF isolates 2, 6 and 7 exhibited the greatest resistance to the aminoglycoside amikacin 

(64 µg/mL), whilst PAO1 and CF isolate 5 were the most susceptible (16 µg/mL). CF isolate 6 

also displayed the greatest resistance to fluoroquinolone ciprofloxacin and the aminoglycoside 

tobramycin, with a MIC of 4 µg/mL and 16 µg/mL respectively. PAO1 and the remaining CF 

isolates all exhibited the same susceptibility to ciprofloxacin (1 µg/mL), with PAO1 and CF 

isolate 4 displaying the greatest susceptibility to tobramycin (2 µg/mL).  
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Figure 24. P. aeruginosa MIC to three clinically relevant antibiotics. P. aeruginosa CF isolates were 
grown in the presence of serially diluted concentrations amikacin, ciprofloxacin and tobramycin. Plates 
were incubated statically for 24 h at 37 °C under normoxia. The minimum inhibitory concentration (MIC) 
was determined by visual inspection. Data is obtained from three independent experiments (N=3), each 
performed in duplicate. 

 

Amikacin 

Tobramycin 

Ciprofloxacin 
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 S. aureus characterisation 

The S. aureus laboratory strain used in this research (ATCC 6538) displayed the characteristic 

golden morphology (from which the organism derives its species name) following growth upon 

LB agar. To ensure culture purity, S. aureus was streaked onto the selective MSA and grew 

as characteristic yellow colonies (Figure 25). The yellow zones surrounding the colonies are 

due to the ability of S. aureus to ferment mannitol, causing a colour change in the phenol red 

pH indicator within the agar.  

As a quality assurance check, MSA was used to discriminate between S. aureus and the 

bacterium Staphylococcus epidermidis (S. epidermidis), which has a similar colony 

morphology. As S. epidermidis cannot ferment mannitol, it produces red colonies, with no 

colour change around them. This quality check was performed during each subculture of the 

bacterium. Moreover, as P. aeruginosa failed to grow upon MSA, it would be used as a 

selective agar in future co-culture experiments to discriminate between colonies of S. aureus 

and P. aeruginosa.  

 

 

 

 

 

 

 

Figure 25. S. aureus grown on the selective and differential media MSA. As depicted in the left-
hand image, when streaked onto MSA, S. aureus grows as distinct yellow colonies with yellow zones, 
due to its ability to ferment mannitol. However, as shown in the right-hand image, other staphylococci 
such as S. epidermidis appear as red colonies with red zones.  

  



115 

 

3.5 Discussion  

Although phenotypic heterogeneity of P. aeruginosa CF isolates within and across patients 

has been extensively reported (Mowat et al., 2011, Clark et al., 2015b, Tingpej et al., 2007, 

Winstanley et al., 2016, Mayer-Hamblett et al., 2014b, Workentine et al., 2013, Ashish et al., 

2013), this chapter aimed to determine the phenotypic properties of eight novel CF clinical 

isolates of P. aeruginosa obtained from Birmingham Children’s Hospital. This would serve to 

not only characterise the isolates, particularly in regards to their virulence, but also allowed 

informed decisions to be made as to which isolates were to be carried forward in downstream 

experiments. Although the results for the CF isolates are compared to one another, as well as 

to the literature, it is recognised that the sample size is small, particularly in the case of mucoid 

isolates - a phenotype only seen in two of those sampled. Furthermore, due to the isolates 

having been previously purified from CF sputum, the relative abundance of other P. aeruginosa 

morphotypes and presence of other bacterial pathogens such as S. aureus in the original CF 

sputum samples is unknown. Together this meant detailed statistical correlations could not be 

performed comparing different virulence factors across CF isolates. The lack of clinical data 

also meant that the phenotype could not be compared to the length of airway colonisation, 

exacerbation status and antibiotic history.  

Initial characterisation supported the wide variations in P. aeruginosa colony morphology that 

have been previously reported in CF sputum, throat swabs and static cultures (Wahba and 

Darrell, 1965, Thomassen et al., 1979, Clark et al., 2015b, Foweraker et al., 2005, Deziel et 

al., 2001, Haussler et al., 2003). Morphological analysis forms an important diagnostic role 

within the clinical microbiology laboratory, in selecting isolates for further analysis. 

Interpretation of colony morphologies was performed following a 48 h incubation at 37 °C as it 

is documented that P. aeruginosa morphologies are stable after this time period (Sousa et al., 

2013). The eight CF isolates of P. aeruginosa displayed extensive heterogeneity (Table 6), 

with the eight isolates exhibiting six distinct morphotypes.  

As shown in Table 6, none of the isolates displayed an iridescent colony surface metallic sheen 

or central colony autolysis, both associated with mutations in lasR (D'Argenio et al., 2007). 

Autolysis has been shown to arise due to the overproduction of the PQS (D'Argenio et al., 

2002), although PQS production was not assessed in this study. The production of pyocyanin 

has been linked to a switch from a rough to smooth morphotype (Dietrich et al., 2008), although 

all pyocyanin producing isolates displayed a smooth colony morphotype macroscopically.  

Whilst most studies culture P. aeruginosa under shaking conditions (Baldan et al., 2014a, 

O'Brien et al., 2017, Turner et al., 2015), this study grew P. aeruginosa under static conditions, 

in an attempt to mimic more closely the static growth environment within CF airways. Previous 

studies have demonstrated that P. aeruginosa typically grows as a suspended microcolony 
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within CF sputum (Sriramulu et al., 2005, Petrova et al., 2012), where the static growth of the  

CF isolates caused them to grow as macroscopic visible clumps. Only two of the CF isolates 

exhibited mucoidy (Figure 16) following growth upon PIA, a method used previously to 

determine mucoidy status (Duong et al., 2015). The mucoid morphotype in CF predominantly 

arises due to a mutation in mucA, leading to alginate operon overexpression and the 

overproduction of the anionic polysaccharide alginate (Mathee et al., 1999, Martin et al., 1993, 

Li et al., 2005). Associated with a poor prognosis (Henry et al., 1992), the phenotype is a 

hallmark of established biofilm mode of infection (May et al., 1991) and provides phagocytic 

resistance against host neutrophils and macrophages which are unable to adhere to the 

bacteria (Meshulam et al., 1982, Cabral et al., 1987, Krieg et al., 1988).  

Non-mucoid isolates are also able to produce biofilm however, through the secretion of the 

polysaccharides psl and pel (Franklin et al., 2011, Byrd et al., 2009). Psl is a mannose-rich 

neutral polysaccharide which has been shown to be produced by the laboratory strain PAO1 

(Jennings et al., 2015, Colvin et al., 2012), whilst Pel is a cationic polysaccharide and is the 

only polysaccharide produced by the laboratory strain PA14 (Colvin et al., 2012, Jennings et 

al., 2015). A study assessing how Pel, Psl and alginate contribute to P. aeruginosa biofilm 

formation demonstrated that Psl-negative mutants produced more Pel polysaccharide, whilst 

Pel-negative mutants displayed enhanced alginate production. It is likely that there is 

competition for metabolic precursors between the three polysaccharide biosynthesis 

pathways. Moreover, alginate overproduction was shown to decrease Psl production, 

suggesting that there is also an inverse regulation of both biosynthesis operons. Losses in 

alginate production also abolished the formation of a biofilm, suggesting that the absence of 

one polysaccharide impacts another warrants further study (Ghafoor et al., 2011).  

None of the P. aeruginosa isolates exhibited other characteristic morphotypes associated with 

CF, including rugose small colony variants (RSCV). These pin-head colonies have a wrinkled 

surface and are hyper-adherent and auto-aggregative when grown on agar (Starkey et al., 

2009, Haussler et al., 2003). The phenotype has also been shown to exhibit enhanced 

resistance to hydrogen peroxide and the antimicrobial peptide LL-37 produced by host 

neutrophils (Pestrak et al., 2018). Furthermore, none of the CF isolates grew as colonies with 

irregular edges, which has been associated a failure to eradicate following antibiotic treatment, 

as well as enhanced biofilm production (Mayer-Hamblett et al., 2014a, D'Argenio et al., 2007, 

Gupta and Schuster, 2012).  

As shown in Figure 17, most of the P. aeruginosa CF isolates grew to a greater density than 

PAO1 at 15 h, with CF isolate 1 showing approximately 36% greater growth than PAO1, with 

the final density of CF isolate 6 being approximately 7% lower than the reference strain. This 

is in contrast to Fang et al. who showed that all four clinical isolates of P. aeruginosa tested 

grew to a lower density than PAO1 under normoxia (Fang et al., 2013). However, it remains 
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unclear from the article as to whether these clinical isolates used were isolated from CF sputa 

or another anatomical site. Despite the use of LB broth, the doubling times of the CF isolates 

were comparable to the published literature of P. aeruginosa growth in CF sputum, which 

demonstrated an average doubling time of 115-154 min (Yang et al., 2008). Furthermore, there 

were no significant differences between the growth rates of mucoid and non-mucoid isolates 

in this study, a finding also supported by Yang et al. (2008).  

CF isolates were also grown on PIA as previously used to confirm species identity, as well as 

to determine pyocyanin production, due to it containing magnesium chloride and potassium 

sulphate which enhances the elaboration of this green phenazine. As shown in Figure 15, 

PAO1 and four of the CF isolates produced detectable levels of pyocyanin, with this being the 

greatest for PAO1 and CF isolate 6. This characteristic green hue is routinely seen on agar 

plates in diagnostic microbiology laboratories and in CF sputum (Reyes et al., 1981, Wilson et 

al., 1988). This metabolite is known to be multifunctional in the context of virulence, from 

impairing airway cilia beating (Kanthakumar et al., 1993), inducing IL-8 release (Denning et 

al., 1998b) and immunomodulating respiratory epithelia (Denning et al., 2003), to facilitating 

neutrophil apoptosis (Usher et al., 2002) and being involved in P. aeruginosa redox 

homeostasis (Price-Whelan et al., 2007). Furthermore, pyocyanin has been shown to reduce 

CFTR expression in cultured nasal and lung epithelia (Kong et al., 2006). The concentration 

of phenazines within CF airways has been negatively correlated with pulmonary function, as 

well as polymicrobial diversity (Hunter et al., 2012).  

Unlike mucoid isolate 4, mucoid isolate 3 did not produce detectable levels of pyocyanin on 

solid agar (Figure 15) or in liquid culture (Figure 14). Mucoid isolates of P. aeruginosa have 

also been shown to produce low levels of pyocyanin during early and late stationary growth 

phase compared to non-mucoid isolates, with mutations in mucA22 repressing QS and 

virulence gene expression (Ryall et al., 2014). Only three of the six non-mucoid isolates of P. 

aeruginosa produced detectable pyocyanin (Figure 15). Whilst the inability to detect pyocyanin 

by a number of CF isolates may be due to production being below the limit of detection, 

pyocyanin production is known to be lost during the course of adaptation to the CF lung  

(Hogardt and Heesemann, 2010). Pyocyanin-negative isolates of P. aeruginosa have been 

associated with the development of autoantibodies against the bactericidal/permeability 

increasing protein (BIP) present within neutrophils and is responsible for binding to LPS 

(Rotschild et al., 2005, Schultz et al., 2000). The detection of autoantibodies against BIP has 

been associated with worsened lung disease (Carlsson et al., 2007). CF isolate 8 was the only 

isolate in the panel to secrete the water soluble brown-pigment pyomelanin, previously 

reported in CF isolates (Hunter and Newman, 2010) and believed to be linked with an 

increased persistence in the CF lung (Rodriguez-Rojas et al., 2009).  
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Protease production by P. aeruginosa serves a number of roles in CF airways, from the 

degradation of tight junctions (Nomura et al., 2014) and pulmonary surfactants (Malloy et al., 

2005, Kuang et al., 2011), to the lysis of S. aureus (Kessler et al., 1993b) and cleavage of host 

antibodies (Fick et al., 1985). Losses in protease production during acute infection has been 

shown to attenuate virulence (Lore et al., 2012), yet this phenotype has been reported in a 

third of all CF patients chronically infected with P. aeruginosa (Smith et al., 2006a, Hoffman et 

al., 2009). Whilst losses in protease production are typically associated with mutations in the 

lasR transcription factor (D'Argenio et al., 2007, Hoffman et al., 2009), other mutations also 

give rise to this phenotype, such as mutations in lasB and mucA22 (Hamood et al., 1996, Ryall 

et al., 2014).   

As with pyocyanin production, there was no correlation between mucoidy status and protease 

production. Both mucoid CF isolates 3 and 4 exhibited protease activity on skimmed milk agar, 

whilst two of the non-mucoid isolates failed to produce detectable protease activity (Figure 18). 

Such findings are supported by a previous study which demonstrated that both mucoid and 

non-mucoid CF isolates of P. aeruginosa produced proteases, although a higher percentage 

of non-mucoid isolates were proteolytic (Jagger et al., 1983). Another study demonstrated that 

losses in P. aeruginosa protease activity prevented the degradation of host pro-inflammatory 

mediators secreted by respiratory epithelia (LaFayette et al., 2015). Whilst this may amplify 

airway inflammation during chronic CF airway infection, loss of lasR which controls protease 

production is associated with a P. aeruginosa growth advantage under high nitrate conditions, 

along with growth in the presence of the amino acid phenylalanine, a carbon and energy source 

(D'Argenio et al., 2007, Barth and Pitt, 1996, Jones et al., 2014).  

All of the isolates which produced detectable levels of protease on skimmed milk agar were 

also able to lyse heat-killed S. aureus (Figure 19). This finding is unsurprising as previous 

studies have demonstrated that the compound responsible for S. aureus lysis is the protease 

LasA (Kessler et al., 1993b, Preston et al., 1997, Mashburn et al., 2005b). Whilst the two 

methodologies used for determining protease production and staphylolytic activity are 

commonplace in the published literature (Casilag et al., 2015, Oldak and Trafny, 2005, O'Brien 

et al., 2017, Park et al., 2012, Lee et al., 2005), future work would seek to employ 

immunoblotting to confirm the presence or absence of elastase A (Las A) in the P. aeruginosa 

CF isolate secretome.  

A lack of correlation was seen across the isolates between mucoidy status (Figure 16) and 

production of the iron-binding siderophore pyoverdine (Figure 20), a finding reported previously 

(De Vos et al., 2001). All isolates produced detectable levels of pyoverdine within cell-free 

supernatants following fluorometric determination, a routine method used to detect this 

siderophore (Granato and Kummerli, 2017, Lopez-Medina et al., 2015, Kang and Kirienko, 

2017). Mucoid isolates 3 and 4 produced high levels of pyoverdine, at levels similar to the non-
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mucoid isolates (Figure 20). As with protease and pyocyanin production, chronic infection is 

typically associated with a loss in pyoverdine production (Smith et al., 2006a). Despite this 

loss, clinical isolates of P.aeruginosa have been shown to retain their ability to take up 

pyoverdine (De Vos et al., 2001).  

As shown in Figure 21, PAO1 and all of the CF isolates tested exhibited a capacity to produce 

biofilms in vitro as determined by crystal violet staining. Non-mucoid isolates of P. aeruginosa 

are known to produce biofilm through secretion of the neutral polysacchairde psl and the 

secretion of the cationic polysaccharide pel, either in combination or independently (Franklin 

et al., 2011, Byrd et al., 2009), where visually mucoid isolates (such as CF isolates 3 and 4) 

are known to overproduce the anionic polysaccharide alginate (Mathee et al., 1999, Martin et 

al., 1993, Li et al., 2005). A previous study has shown however, that even in spite of alginate 

overproduction, the formation of a biofilm is still dependent upon the production of Pel and Psl 

(Ghafoor et al., 2011). The formation of biofilm serves several survival benefits to P. 

aeruginosa following growth in the CF lung including reducing the neutrophil respiratory burst 

(Jensen et al., 1990), and provide resistance to antibiotics (Mah and O'Toole, 2001, Mah et 

al., 2003). As mucin has been shown to partially disrupt and reduce P. aeruginosa biofilms 

(Haley et al., 2014), variations in mucin production during excerbations (Henke et al., 2007) is 

likely to influence this phenotype. In support of a previous study, there is no apparent link 

between motility and biofilm-forming potential (Head and Yu, 2004). 

PAO1 and CF isolates 2, 3, 4, 5 and 6 all displayed varying degrees of swimming motility, with 

this being the greatest for CF isolate 5 (Figure 22). PAO1 is known to display swimming motility 

and was included as a positive control (Lindhout et al., 2009, Rashid et al., 2000). During early 

infection, flagella mediated swimming motility may facilitate amino-acid directed chemotaxis to 

the respiratory epithelium in CF airways (Schwarzer et al., 2016). The presence of flagellin is 

known to induce an immune response in the host, from initiating airway inflammation, 

phagocytosis and the release of NETs, to the induction of antibodies (Hybiske et al., 2004, 

Cobb et al., 2004, Lovewell et al., 2014, Floyd et al., 2016, Anderson et al., 1989). Losses in 

flagella mediated swimming motility has previously been documented in chronically infecting 

CF isolates of P. aeruginosa (Mahenthiralingam et al., 1994) and may explain why CF isolates 

1, 7 and 8 exhibited minimal swimming motility. Such losses may enhance persistence and 

survival in the CF lung through reductions in macrophage-mediated bacterial recognition and 

phagocytosis (Mahenthiralingam and Speert, 1995, Mahenthiralingam et al., 1994, Luzar et 

al., 1985), along with reducing TLR5 mediated airway inflammation (Hayashi et al., 2001, 

Smith and Ozinsky, 2002).   
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The P. aeruginosa CF isolates all exhibited varying degrees of swarming motility (Figure 23). 

CF isolate 1 exhibited the greatest swarm zone, with finger-like projections radiating out from 

the central point of surface inoculation (Figure 23), with CF isolates 5 and 8 also producing 

large swarm zones. Conversely, CF isolates 2, 6 and 7 exhibited minimal swarming. Such 

variations may be a result of adaptations to the CF lung environment, where swarming motility 

has been suggested to facilitate P. aeruginosa movement through airway mucus (Fraser and 

Hughes, 1999), whilst decreases in this form of motility have been associated with the 

formation of aggregates, microcolonies and the development of structured biofilms (Shrout et 

al., 2006).  

In spite of this, P. aeruginosa swarming motility is also known to be highly variable and 

influenced by a number of laboratory conditions, from media composition, the drying time of 

swarm plates under laminar flow and the hardness of the agar surface (Kamatkar and Shrout, 

2011, Tremblay and Deziel, 2008). Such factors have been shown to limit rhamnolipid 

production, with rhamnolipids serving to reduce the surface tension of the water surrounding 

the swarming cells (Caiazza et al., 2005). Nitrogen availability within swarm agar is also known 

to influence P. aeruginosa swarming, where increased concentrations of nitrate impair this 

form of motility (Kohler et al., 2000). Potassium nitrate was added to the swarm plates to allow 

comparisons to be made to P. aeruginosa swarming under normoxia and anoxia (discussed in 

chapter 4). As PAO1 has previously been shown previously to exhibit considerable swarming 

motility (Van Alst et al., 2007, Overhage et al., 2007), conditions such as the length of time the 

plates were allowed to dry under laminar flow and the addition of nitrate used in this study may 

have impaired the swarming of PAO1.  

P. aeruginosa swarming is associated with protease expression (Overhage et al., 2008). As 

shown in Figure 18, swarming CF isolates 1, 3, 4 and 5 all produced detectable levels of 

protease, although CF isolate 8 did not. Moreover, PAO1 and CF isolates 2, 6 and 7 exhibited 

minimal swarming, whilst PAO1 and CF isolates 2 and 7 all produced detectable levels of 

protease.  

Wide phenotypic variation was also seen concerning susceptibility profiles of CF isolates to 

first line pseudomonal specific antibiotics: tobramycin, amikacin (both aminoglycosides) and 

ciprofloxacin (a fluoroquinolone). Whilst aminoglycosides bind to the 30S subunit of ribosome’s 

inhibiting protein synthesis, the quinolones bind to the A subunit of DNA gyrase (Lambert, 

2002). Two previous surveys identified that approximately 15% of P. aeruginosa clinical 

isolates exhibit resistance to aminoglycosides and fluoroquinolones (Williams et al., 1984, 

Chen et al., 1995). Furthermore, increases in treatment intensity has been associated with 

increased antibiotic resistance in CF isolates of P. aeruginosa, particularly multi-drug 

resistance (Smith et al., 2016, Jansen et al., 2016). As LBN broth was used instead of Mueller 
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Hinton broth to allow susceptibilities to be tested under anoxia (chapter 4), the MICs were not 

used to interpret whether isolates were sensitive or resistant using clinical breakpoints listed 

in the European Committee on Antimicrobial Susceptibility Testing guidelines for bacteria 

(European Committee on Antimicrobial Susceptibility Testing, 2018).  

The transition to a mucoid phenotype is shown to be associated with an increase in antibiotic 

resistance, where negatively charged alginate polymers bind to cationic aminoglycosides 

(Nichols et al., 1988). Despite this, visually mucoid CF isolates 3 and 4 did not display the 

greatest resistance to both tobramycin and amikacin (Figure 24). Interestingly, CF isolate 6 

exhibited the highest MIC to the aminoglycoside tobramycin, as well as one of joint highest 

MIC to the aminoglycoside amikacin. Whilst P. aeruginosa exhibits a range of different 

resistance mechanisms to antibiotics, including drug efflux and enzymatic modification as 

summarised previously (Lambert, 2002), a lack of clinical data relating to the prescription of 

antibiotics and length of treatment, along with molecular analysis makes further comments 

difficult.  

Whilst characterising P. aeruginosa from CF sputum has relied on sampling a few colonies 

from the most abundant morphotypes, the relevance of colony morphology within diagnostic 

microbiology laboratories is under challenge (Hill et al., 2005). The advent of modern molecular 

techniques which detect bacterial species using PCR and mass spectrometry provide faster 

results and are often able to detect those species which are not easily recovered using 

traditional culture techniques, including obligate anaerobes such as Prevotella spp. (Bittar and 

Rolain, 2010, Salipante et al., 2013, Weile and Knabbe, 2009). Furthermore, environmentally 

induced changes in P. aeruginosa CF isolate morphology can often make pathogen 

identification based upon traditional morphological characteristics difficult (Folkesson et al., 

2012). Different mucoid colonies obtained from the same CF sputum sample are shown to vary 

in their susceptibility to antibiotics, whilst mixing purified single colonies of the same 

morphotype also gives rise to different susceptibilities compared to when tested in isolation 

(Foweraker et al., 2005). Furthermore, mixing four colonies of one morphotype has been 

shown to lead to different susceptibility profiles (Foweraker et al., 2005). This may also explain 

why antimicrobial susceptibility results fail to provide benefits to CF patients in treating their 

pulmonary infections (Foweraker et al., 2005, Foweraker et al., 2009, Hurley et al., 2012, 

Rosenfeld et al., 2003).  

Lastly, this chapter demonstrated MSA was a suitable medium to confirm the identity of S. 

aureus during routine passage, and provided an ideal selective medium to isolate S. aureus 

following co-culture with P. aeruginosa. 
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Despite using a small number of isolates, this study confirmed that colony morphotype is a 

poor predictor of other P. aeruginosa phenotypic traits (Clark et al., 2015b). It also 

demonstrated a co-occurrence of phenotypes typically associated with markers of acute 

infection, including production of pyocyanin, protease and siderophores, along with markers of 

chronic infection, such as mucoidy (Hogardt and Heesemann, 2010, Carlsson et al., 2011, 

Smith et al., 2006a)  (Mayer-Hamblett et al., 2014b, Hogardt and Heesemann, 2010). 

This study and others have shown that many phenotypes of P. aeruginosa can emerge and 

exist within CF airways, with mucoid and non-mucoid isolates, as well as motile and non-motile 

isolates being detected in relatively equal prevalence (Leone et al., 2008, Fothergill et al., 2010, 

Workentine et al., 2013). Genetic indels, frameshift mutations and chromosomal inversions 

within the large genome of P. aeruginosa, encourage bacterial diversification (Darch et al., 

2015, Klockgether et al., 2013) along with deletions and a reduction in its genome (Rau et al., 

2012). This is further driven by the accessory genome, where plasmids and genomic islands 

containing antibiotic resistance genes, can be transferred between strains, with the latter being 

integrated within chromosomal DNA (Juhas et al., 2009). Comparisons of reference strains 

PAO1 and PA14 with CF isolates PA2192 (from a chronically infected individual with CF) and 

the Manchester epidemic strain C3719, has demonstrated that strain specific insertions of 

genetic information and deletions of specific chromosomal segments in other strains occurs at 

limited chromosomal loci (Mathee et al., 2008).  

Spatial segregation of bacterial communities has also been suggested to promote as well as 

maintain P. aeruginosa diversity (Winstanley et al., 2016). Variations in CF mutation severity, 

nutrient availability, osmotic, oxidative and nitrosative stresses, mucus plugging, spatial 

distribution and bacterial competition are likely to exert numerous selective pressures upon P. 

aeruginosa (Zierdt and Schmidt, 1964, Markussen et al., 2014, Hoffman et al., 2010, 

Worlitzsch et al., 2002). Additional pressures exerted by sub-inhibitory antibiotic 

concentrations and oxygen radicals as a result of the host’s immune response can further drive 

P. aeruginosa diversity (Palmer et al., 2005, Wright et al., 2013, Boles et al., 2004, Ciofu et al., 

2005). The growth of P. aeruginosa in fluoroquinolone supplemented medium for example has 

been shown to select for antibiotic resistance (Wong et al., 2012). It is because of this, 

extensive within-lung and across-lung variation in the P. aeruginosa phenotype is 

commonplace (Clark et al., 2015b, O'Brien et al., 2017, Markussen et al., 2014, Williams et al., 

2015). In turn, this will encourage adaptive radiation, where a bacterial population evolves to 

fill available niches (Kassen, 2009).  

Social cheating is also likely to contribute to the wide phenotypic diversity that exists. 

Inactivation of the transcriptional activator lasR gene is a common phenomenon within CF and 

often precedes the switch to a mucoid phenotype (Hoffman et al., 2009). It is possible that 

such mutants which do not provide detectable levels of different virulence factors such as 
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proteases, benefit from co-existing with isolates which are QS-proficient and which do secrete 

virulence factors. The emergence of such mutants are likely to provide fitness benefits, where 

LasR mutants have also been shown to exhibit enhanced growth in the presence of amino 

acids such as phenylalanine present within CF airway fluid, as well as exhibit resistance to β-

lactam antibiotics (D'Argenio et al., 2007).  

3.6 Limitations  

One of the limitations of this chapter is that additional phenotypic traits of P. aeruginosa were 

not studied, including type III secretion activity and auxotrophy which have been studied in P. 

aeruginosa CF isolates and are known to be altered during the course of chronic airway 

infection (Jain et al., 2004, Jain et al., 2008, Barth and Pitt, 1995). Sensitivity to other antibiotics 

used clinically such as azithromycin and colistin (Hoiby, 2011) were also not determined. 

Furthermore, other notable P. aeruginosa CF phenotypes were missing from the sample 

population, including RSCV’s.   

3.7 Future work  

The aim of this chapter was to phenotypically characterise eight CF isolates of P. aeruginosa 

to inform future experiments in this thesis. However, future work would seek to include other 

notable P. aeruginosa phenotypes which are isolated from individuals with CF, including 

RSCV’s which are associated with poor clinical outcomes (Haussler et al., 1999). Moreover, 

whilst LBN broth was used as the growth medium, the use of sterile CF sputum or artificial CF 

sputum would allow phenotypic experiments to be conducted under more physiologically 

growth relevant conditions (Kirchner et al., 2012).  

Additional P. aeruginosa phenotypic traits known to be important in CF airway infection would 

also be studied, including type III secretion activity which is known to kill airway epithelia (Finck-

Barbancon et al., 1997, Fleiszig et al., 1997). The production of these exoenzymes would be 

determined by immunoblotting. Elastase is known to degrade elastin within the airways, where 

its production across the isolates would be determined following the addition of P. aeruginosa 

cell-free culture supernatants to elastin congo red plates (Caballero et al., 2001). Whilst 

swimming and swarming motility were studied, twitching motility is important in P. aeruginosa 

biofilm production (O'Toole and Kolter, 1998). This form of motility would be assessed following 

stab-inoculation of a P. aeruginosa colony into 1% (w/v) agar plates (Semmler et al., 1999). 

The production of lipases known to degrade the lipid component of airway surfactants (Woo et 

al., 2016) would also be determined following the addition of cell-free culture supernatants to 

egg yolk agar and to polyoxethylene sorbitans (Lonon et al., 1988). A large number of P. 

aeruginosa CF isolates are known to display the auxotroph phenotype, with their growth being 

dependent upon the presence of specific amino acids (Barth and Pitt, 1995). Auxotrophy 
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across the eight CF isolates could be determined following their growth upon control plates 

(without amino acids) and a series of agar plates each supplemented different amino acids 

(Taylor et al., 1992, Barth and Pitt, 1996). Compared to P. aeruginosa, the role of S. aureus 

within CF airway microbiology is poorly understood. Thus, phenotypic analysis of CF isolates 

of S. aureus would address this gap in the field.  

3.8 Conclusion  

This chapter employed classic phenotypic experiments to characterise eight CF isolates of P. 

aeruginosa. The results presented are supported by the published literature, including the wide 

morphological and phenotypic diversity known to exist across P. aeruginosa CF isolates. 

Despite the very small sample size, colony morphology appears to be a poor predictor of other 

phenotypic traits, including the production of exoproducts, as well as susceptibility to 

antibiotics. Furthermore, there is a lack of correlation between phenotypic traits produced by 

a single isolate.  
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4 Impact of anoxia upon the virulence 

properties of P. aeruginosa cystic fibrosis 

isolates and the interaction with S. aureus in 

co-culture 

4.1 Chapter Transition  

Characterising the CF clinical isolates of P. aeruginosa in chapter 3 supported previous 

evidence of the wide phenotypic diversity that exists across P. aeruginosa. Many factors are 

likely to impact upon bacterial phenotype, such as the selective pressures exerted by the host 

immune system and antimicrobial treatment strategies. Environmental factors unique to the 

CF lung are also likely to impact upon the phenotype of P. aeruginosa and their complex 

interactions with other common CF pathogens.  

4.2 Introduction 

The advent of culture-independent techniques has revealed the sheer diversity and abundance 

of the CF airway microbiome (Harris et al., 2007, Rogers et al., 2003, Rogers et al., 2009, Bittar 

et al., 2008, Stressmann et al., 2011b). One study demonstrated that approximately 65% of 

pathogens detected by 16S rRNA sequencing were recovered using traditional microbiological 

culture, where increases in incubation time and culture under anoxia  increased this cultivability 

to 84% (Sibley et al., 2011). Molecular techniques also detect pathogens not typically seen in 

routine culture, such as anaerobic genera including Prevotella and Gemella (Mahboubi et al., 

2016), with obligate anaerobes reportedly making up nearly half of the CF microbial community 

in adults (Sibley et al., 2011).  

The microbial diversity of the CF lung is known to decrease as an individual approaches 

adulthood (Cox et al., 2010, Frayman et al., 2017), with the main driver having been associated 

with antibiotic use, rather than decreases in pulmonary function (Zhao et al., 2012). Despite 

decreases in diversity, the bacteria S. aureus and P. aeruginosa remain the most prevalent 

CF pathogens (Filkins et al., 2015, Cystic Fibrosis Trust, 2018). Whilst S. aureus colonises the 

lungs in the first few months of life and dominates during childhood, P. aeruginosa 

predominates in adolescence, with over 50% of individuals being colonised in adulthood 

(Cystic Fibrosis Trust, 2018).  
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This highly ordered and sequential nature of infection has been supported by numerous in vitro 

and in vivo studies demonstrating the ability of P. aeruginosa to outcompete S. aureus in co-

culture (Filkins et al., 2015, Baldan et al., 2014a, Limoli et al., 2016), including the hypervirulent 

MRSA strain USA 300 (Pastar et al., 2013). P. aeruginosa can inhibit the growth of S. aureus 

through the secretion of numerous extracellular virulence factors, including the respiratory 

inhibitors pyocyanin, hydrogen cyanide and 2-heptyl-4-hydroxyquinoline N-oxide (HQNO). It 

can also kill S. aureus through the secretion of the staphylolytic enzyme, LasA (Machan et al., 

1992, Hoffman et al., 2006, Filkins et al., 2015, Haba et al., 2003, Mashburn et al., 2005b, 

Korgaonkar et al., 2013, Kim et al., 2015). P. aeruginosa has also been shown to kill S. aureus 

indirectly. Laboratory strains and CF isolates of P. aeruginosa have been shown to upregulate 

the production of type-IIA-secreted phospholipase A2 by CF bronchial epithelia. Whilst this 

phospholipase enzyme exerts a minimal effect upon P. aeruginosa, it favours S. aureus killing 

(Pernet et al., 2014).  

Though P. aeruginosa is the most prevalent organism isolated from CF sputa later in life, S. 

aureus is detected in a third of those adults culture positive for P. aeruginosa and is present at 

higher rates than previously appreciated (Limoli et al., 2016, Cystic Fibrosis Trust, 2018). 

Together, these two key opportunistic pathogens can co-exist as a community within CF 

airways and have been shown to occupy identical regional niches of the CF lung (Wakeman 

et al., 2016, Hogan et al., 2016). Co-colonisation of S. aureus and P. aeruginosa is also 

responsible for poor pulmonary function, increased exacerbations and mortality rates in CF, 

compared to mono-infection (Limoli et al., 2016, Maliniak et al., 2016, Hubert et al., 2013).   

Studies assessing S. aureus-P. aeruginosa interactions to date have been conducted under 

normoxia (21% environmental oxygen), with vigorous culture aeration (200-250 rpm) (Kessler 

et al., 1993b, Baldan et al., 2014a, Biswas et al., 2009a, Fugere et al., 2014a, Filkins et al., 

2015). However, P. aeruginosa has been shown to localise to hypoxic regions of thick static 

airway mucus within the lumen of CF airways (Worlitzsch et al., 2002, Baltimore et al., 1989). 

CF sputum has also been shown to contain an upper oxygenated zone and a lower anoxic 

zone (Cowley et al., 2015). 

The increased uptake by CF airway epithelia, intra-alveolar exudates, multiplying and respiring 

polymicrobial populations, extensive tissue damage and oxygen consumption by host 

phagocytes typically results in regions of the CF lung becoming anaerobic (Sanderson et al., 

2008, Worlitzsch et al., 2002, Costerton, 2002, Werner et al., 2004, Kolpen et al., 2014, Stutts 

et al., 1986). Furthermore, thick mucus plugs form a mix with neutrophils and other 

inflammatory products, leading to the formation of ‘mucopurulent material’ (Ribeiro et al., 

2005). This intraluminal gel is likely to influence oxygen exchange in the lower airways. The 

presence of obligate anaerobes within CF airways has also been shown to contribute to 
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disease severity and inflammation in CF airways (Sherrard et al., 2016, Tunney et al., 2008, 

Harris et al., 2007). 

Though P. aeruginosa is a facultative aerobe that preferably undergoes aerobic respiration, its 

ability to grow under anoxia is due to the presence of nitrate (Costerton, 2002, Schreiber et al., 

2007) which has been detected in both ASL and sputum of CF airways (Worlitzsch et al., 2002, 

Yoon et al., 2002, Hassett et al., 2009). The presence of membrane bound nitrate reductase 

has been shown to facilitate the anaerobic growth of P. aeruginosa in CF sputum (Palmer et 

al., 2007b), where nitrate  ultimately undergoes a sequential eight-electron reduction to 

nitrogen (Yoon et al., 2007). A microarray study of P. aeruginosa obtained from CF sputum 

detected genes essential for P. aeruginosa denitrification (Son et al., 2007), whilst sera from 

individuals with CF have also been shown to contain antibodies to P. aeruginosa respiratory 

nitrate reductase 1 alpha chain  (narg) and periplasmic nitrate reductase protein (napA) 

(Beckmann et al., 2005). 

Whilst anoxia has previously been shown to influence the P. aeruginosa phenotype including 

growth, biofilm production, virulence factor secretion and sensitivity to antibiotics (Fang et al., 

2013, Worlitzsch et al., 2002, Lee et al., 2011, Gaines et al., 2005, Zimmermann et al., 1991, 

Bragonzi et al., 2005, Borriello et al., 2004) its impact upon the interactions of P. aeruginosa 

with other CF pathogens has yet to be investigated. This chapter aimed to explore how the two 

more physiologically relevant conditions of static growth and anoxia found within regions of the 

CF lung, impact upon P. aeruginosa CF isolate virulence properties and their interaction with 

S. aureus in mixed planktonic co-culture and mixed species biofilm.  
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4.3 Aims  

As P. aeruginosa is known to transition from free-swimming planktonic growth, to sessile 

biofilm growth, initial experiments aimed to determine the impact of oxygen availability upon 

the interspecies interactions between S. aureus and CF clinical isolates of P. aeruginosa in 

planktonic co-culture and mixed species biofilms in vitro.  

Next, the impact of oxygen upon the production of a number of known anti-staphylococcal 

virulence properties were assessed. P. aeruginosa cell-free culture supernatants were also 

subjected to size fractionation and heat-treatment, in an attempt to decipher the identity of the 

P. aeruginosa virulence factor(s) which are likely to govern these complex interspecies 

interactions. Mass spectrometry was conducted to analyse the secretome of P. aeruginosa 

PAO1 and select CF isolates following growth under normoxia and anoxia, to strengthen the 

phenotypic data presented and provide insights into the effect of oxygen upon P. aeruginosa 

physiology and its ability to survive within CF airways. The impact of P. aeruginosa cell-free 

culture supernatants upon S. aureus biofilm disruption and inhibition was also determined 

under normoxia and anoxia, in addition to the impact of S. aureus cell-free supernatants upon 

P. aeruginosa growth and motility. Lastly, the influence of oxygen upon P. aeruginosa 

susceptibility to the anti-pseudomonal antibiotic tobramycin was determined.  
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4.4 Materials and Methods  

Bacterial Culture. Single well isolated colonies of S. aureus or P. aeruginosa were inoculated 

into 10 mL of sterile LBN broth and grown at 37 °C under static conditions of normoxia or 

anoxia overnight (16 h).  

Cross-Streak assay on solid agar. Overnight cultures of S. aureus and P. aeruginosa grown 

separately under normoxia or anoxia were pelleted, resuspended in fresh LBN broth and 

adjusted to an OD470 of 1.0. A sterile cotton swab was immersed in a given P. aeruginosa 

normalised culture and streaked horizontally across the surface of a LB agar plate. After air 

drying for 20 min, a sterile cotton swab was immersed in the normalised S. aureus culture and 

cross-streaked vertically across the surface of the agar plate. Plates were incubated either 

under normoxia or anoxia at 37 °C for 18 h, prior to being visually inspected for growth 

inhibition.  

Mono-culture and co-culture planktonic growth curves. All growth curve experiments were 

conducted in 250 mL conical flasks containing 50 mL of LBN broth at 37 °C under static 

conditions. Overnight cultures of S. aureus and three of the P. aeruginosa CF isolates grown 

under normoxia or anoxia were pelleted, resuspended in fresh LBN broth and adjusted to an 

OD470 of 1.0. For co-culture growth curves, the bacteria were inoculated at a 1:1 ratio of S. 

aureus: P. aeruginosa, and incubated under static conditions at 37 °C for 24 h. Samples were 

taken at regular intervals, serially diluted in sterile 1x PBS (Fisher, UK) and 20 µL spots plated 

onto PIA and MSA, to allow differentiation between the two species. The plates were incubated 

for 18 h, prior to enumerating the colony forming units Log10(CFU/mL).  

The competition index (CI) and Relative Increase Ratio (RIR) were calculated. The RIR was 

calculated on single growth curve data using the P. aeruginosa:S. aureus ratio at a given time 

point, divided by the same ratio at the 0 h time point (inoculum). The same ratio was used to 

calculate the CI, although this used data from the mixed culture. A CI that differs statistically 

from the RIR indicates competition between the two organisms. This method was adapted from 

Macho et al., (2007).   

Mono-culture and co-culture biofilm formation. Overnight cultures of S. aureus and P. 

aeruginosa were centrifuged and adjusted to OD470 1.0. Cultures were diluted ten-fold and 

100 µL added to the central wells of a sterile 96-well plate either individually or in a 1:1 ratio 

for 1 h under static conditions, at 37 °C. An equal volume of broth was added to the individual 

culture to compensate for any dilution effect. After 60 min, the well contents were aspirated 

and replaced with fresh LBN broth. Plates were incubated for a further 24 h at 37 °C under 

static conditions. Following this, biofilms were washed twice using 200 µL of 1x PBS, detached 

using 100 µL of trypsin-EDTA (0.25%), collected, vortexed for 70 s, serially diluted and plated 

onto PIA and MSA. The plates were incubated for 18 h, prior to enumerating Log10CFU/mL.  
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To determine biofilm biomass, biofilms were visualised by crystal violet staining, wells were 

washed twice with 200 µL of PBS and left to dry overnight. Wells were then stained with 200 µL 

1% (w/v) crystal violet for 10 min, prior to two further washes in deionised water. Plates were 

dried overnight, prior to the stain being solubilised with 200 µL of 30% (v/v) acetic acid. The 

solubilised stain was then transferred to a new 96-well plate and the OD read at OD492. 

Preparation of P. aeruginosa cell-free culture supernatant. Overnight cultures of P. 

aeruginosa were centrifuged at 4,000 x g for 10 min at 4 °C. Each supernatant was sterile 

filtered with a low-binding 0.22 µm polyethersulfone membrane filter and stored at −20°C until 

use. To confirm sterility after each preparation, a small volume of the supernatant was streaked 

onto LB agar plates and incubated for 20 h prior to reading. For size exclusion experiments, 

10 mL of cell-free supernatant was added to a 3 kDa molecular weight cut off protein 

concentrator and centrifuged at 4,000 x g for 1 h. Apical and basal volumes were subsequently 

added to 2 mL sterile microcentrifuge tubes. For heat treated fractions, microcentrifuge tubes 

containing cell-free supernatant were added to a heat block and boiled at 95 °C for 10 min, 

prior to cooling.  

Determination of total protease production. Protease production was determined using 

skimmed milk agar. Cell-free supernatants (40 µL) from overnight cultures of P. aeruginosa 

grown under normoxia or anoxia were loaded into wells in agar plates and incubated at 37 °C 

for 24 h. Hydrolysis of the milk protein casein results in a clear zone surrounding the bacterial 

supernatant and would show evidence of protease production. LBN medium was also loaded 

as a negative control. The diameter of the clearance zones was measured in mm.  

Staphylolytic activity. This method was adapted from (Kong et al., 2005, Grande et al., 2007). 

An overnight culture of S. aureus grown under static normoxia conditions was centrifuged at 

4,000 x g for 10 min at 4 °C, prior to the pellet being resuspended in 250 µL of 25 mM 

diethanolamine buffer, pH 9.5. The bacteria were heated at 100 °C for 10 min, before being 

diluted to a final optimal density OD595 of 1.0. 400 µL of adjusted heat-killed S. aureus was 

then added to each microtube. The cell-free supernatant from each P. aeruginosa isolate was 

diluted 1:10 with diethanolamine buffer, prior to 100 µL being added to the heat-killed S. 

aureus. The plates were read after 60 min, with lysis of heat-killed S. aureus shown by 

absorbance decreases in OD595. The addition of LBN broth to heat-killed S. aureus was used 

as the negative control, whilst PAO1 cell-free supernatant is known to lyse heat-killed S. aureus 

and served as a positive control (Mashburn et al., 2005b, Radlinski et al., 2017).  

Pyocyanin extraction and quantification in single and co-culture. This method was 

adapted from (Essar et al., 1990, Wu et al., 2014). Overnight cultures of P. aeruginosa and 

S. aureus grown separately under normoxia or anoxia were pelleted, resuspended in fresh 

medium and adjusted to an OD470 of 1.0. For single cultures, 500 µL of S. aureus or P. 
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aeruginosa were added to a 250 mL conical flask containing 49.5 mL of LBN broth (1:100 

dilution). For co-cultures, 500 µL of S. aureus and P. aeruginosa were added in a 1:1 ratio, to 

a 250 mL conical flask containing 49 mL of LBN broth. The flasks were incubated at 37 °C for 

24 h, under static normoxia or anoxia. After this period, samples were taken and serially diluted 

in PBS and plated onto PIA to determine the Log10 CFU/mL.  

To quantify pyocyanin production, bacterial cells were pelleted by centrifugation at 4,000 x g 

for 25 min at 4 °C and the supernatant sterile filtered with a low-binding 0.22 µm 

polyethersulfone membrane filter. 7.5 mL of the sterile supernatant was added to 4.5 mL of 

chloroform and vortexed for ten, 2 s intervals. The sample was centrifuged at 4,000 x g for 1 

min at 4 °C, prior to 3 mL of the blue-green phase (chloroform phase) being aspirated into a 

new tube. 1.5 mL of 0.2 M hydrochloric acid was then added to the tube and vortexed again 

for ten, 2 s intervals, prior to centrifugation at 4,000 x g for 1 min at 4 °C. 100 µL of the pink 

coloured phase was transferred into a 96-well plate. 100 µL of hydrochloric acid was added as 

a blank control. The plate was read at OD520 and multiplied by the extinction co-efficient 17.072 

to determine the concentration of pyocyanin per mL of supernatant (Essar et al., 1990).  

Drop collapse assay. Cell-free supernatants from overnight cultures of P. aeruginosa grown 

under normoxia or anoxia were serially diluted (1:1) in sterile dH2O containing 0.0005% (w/v) 

crystal violet for visualisation across a 96-well plate. A total of 20 µL of each dilution (including 

neat supernatant) was spotted onto the underside of a 96-well plate lid and the plate titled at 

a 90° angle. The assay works on the principle that if the droplet contains surfactants, the drops 

spread. However, as the quantity of surfactants decrease by dilution, the droplet eventually 

beads up due to an increase in surface tension. Surfactant scores are equal to the reciprocal 

of the greatest dilution at which there was surfactant activity (a collapsed drop).  

P. aeruginosa pyoverdine production. Overnight cultures of P. aeruginosa and S. aureus 

grown under normoxia or anoxia were pelleted, resuspended in fresh medium and adjusted to 

an OD470 of 1.0. 500 µL of each culture was added to a 250 mL conical flask containing 49.5 

mL of LBN broth for mono-culture, or to 49 mL of LBN broth for co-culture. The flasks were 

incubated at 37 °C for 24 h, under static normoxia or anoxias. To measure pyoverdine 

production, 100 µL of the cell-free supernatant was added to a black 96-well plate and the 

fluorescence read at excitation and emission wavelengths 400/460 nm as performed 

previously (Andersen et al., 2015, Krzyzanowska et al., 2016). The background level of 

fluorescence was measured using 100 µL LBN broth only.  
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Semi-quantification of AHLs.  AHL production was determined using two E. coli  biosensor 

strains, pSB536 and pSB1142, kindly provided by Professor Paul Williams (University of 

Nottingham). pSB536 was grown routinely in LB broth supplemented with 50 µg/mL ampicillin, 

whilst pSB1142 was grown in LB broth supplemented with 10 µg/mL tetracycline. Both 

biosensor strains were grown overnight (16 h) at 37 °C. Each given biosensor strain was 

normalised to an OD470 of 1.0 and diluted 1:100 into a sterile 96-well plate. 100 µL of cell-free 

supernatants from 24 h cultures of PAO1 or CF isolates were added to the biosensor strain. 

LBN broth only was added to each biosensor as the negative control. Plates were sealed with 

a Breathe-easy® membrane and incubated for 6 h at 37 °C. Bioluminesence was read and 

divided by the OD470 of the biosensor strain, to take into account differences in growth rates 

and final biosensor densities. Values were subsequently subtracted from the negative control 

(LBN broth with biosensor only), to correct for background luminescence values. 

Bacterial motility.  Swimming motility of P. aeruginosa was investigated using 0.3% (w/v) 

nutrient agar plates supplemented with nutrient broth and 1% (w/v) potassium nitrate. 

Swarming of P. aeruginosa was determined using 0.5% (w/v) of nutrient agar plates 

supplemented with nutrient broth, dextrose and 1% (w/v) potassium nitrate. Overnight cultures 

of P. aeruginosa were adjusted to OD470 of 1.0 and a total of 5 µL of culture inoculum was 

added to the centre of each plate. To measure the effects of S. aureus exoproducts upon P. 

aeruginosa motility, a 1:100 diluted S. aureus cell-free culture supernatant was added to the 

agar plate. Plates were incubated under static normoxia or anoxia for 24 h at 37 °C. The 

diameter of the motility zone travelled by P. aeruginosa was measured in mm.  

S. aureus biofilm inhibition and disruption.  S. aureus was grown statically overnight under 

normoxia, prior to being diluted to an OD470 of 1.0. A 1:10 dilution was made and a total of 100 

µL was added into the central wells of a sterile 96-well plate. For the biofilm inhibition 

experiment, 100 µL of P. aeruginosa cell-free supernatants (from overnight cultures grown 

under normoxia or anoxia) were added to the wells, with 100 µL of LBN broth being added to 

S. aureus as a negative control. The plates were sealed with a Breathe-easy® membrane and 

incubated statically at 37 °C for 24 h under normoxia. For the biofilm disruption experiment, 

100µL of P. aeruginosa cell-free supernatants (from cultures grown under normoxia or anoxia) 

were added to the plate following 24 h incubation. The supernatants were added for 5 h, with 

100 µL of LBN broth to S. aureus was used as the control. In both experiments, biofilm 

production was visualised by crystal violet staining.   

Solubilisation of secreted proteins for MS. Five pooled overnight cultures of P. aeruginosa 

and grown under normoxia or anoxia were pelleted following centrifugation at 4,000 x g for 30 

min at 4 °C. The supernatant containing extracellular proteins was sterile filtered through a 

0.22 µm polyethersulfone membrane filter. Supernatants were concentrated using Amicon 

3kDa cut-off filters prior to precipitation with 25% (w/v) trichloroacetic acid for 15 min on ice. 
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Proteins were pelleted following centrifugation at 14,000 x g for 10 min and the pellets washed 

with acetone. Protein pelleted were solubilised in 50 mM pH 7.4 Tris-HCl containing 2 mM 

CHAPS, 7 M urea and 7 M thiourea using an ultrasonicating probe (30 s sonication per cycle, 

65% full power, 2 cycles) and quantified against a BSA calibration curve using the Bradford 

assay.  

SDS-PAGE of bacterial secretomes. Proteins (30 µg) were reduced in Laemmli buffer for 15 

min at 65 °C and separated by SDS-PAGE on a 10% polyacrylamide gel. Separated proteins 

were stained with Coomassie G250 blue (0.5%  in 40% aqueous methanol and 10% glacial 

acetic acid) for 1h and destained in an aqueous solution of 10% ethanol and 7.5% glacial acetic 

acid.  

Protein in-gel digestion. Protein in-gel digestion was performed following the protocol of 

Schevchenko et al. (Shevchenko et al., 2006), with minor modifications.  Each sample lane 

was divided into 5 bands (approximately equal size), gel bands were excised and diced in a 

clean polypropylene tube using a sterile scalpel. Gel pieces were subsequently destained with 

50% acetonitrile in 50 mM ammonium bicarbonate, dehydrated with acetonitrile and vacuum 

dried for 30 min. Proteins were in-gel digested using trypsin in 3 mM ammonium bicarbonate 

(25:1 protein to trypsin ratio; Trypsin Gold, sequencing grade) coupled with shaking at 550 rpm 

at 37 °C overnight.  

Extraction of peptides. Peptides were extracted for 15 min in an ultrasonic bath initially using 

pure acetonitrile equivalent to 50% of sample volume. Further extractions were performed with 

150 µL of 50% acetonitrile in 50 mM ammonium bicarbonate. Finally, 400 µL of pure 

acetonitrile was used to fully dehydrated the gel pieces and maximise peptide extraction. Each 

time the complete peptide extract was collected in a sterile polypropylene tube. Finally, peptide 

extracts were vacuum dried and stored at −20 °C prior to analysis. 

Mass spectrometry. Samples were reconstituted in 50 µL of 3% aqueous acetonitrile and 

0.1% formic acid for liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS) 

analysis. Peptides were separated and analysed using an nLC system (Dionex 3000, 

ThermoScientific, UK) coupled to 5600 TripleTof (AB Sciex, UK) operating in information 

dependent (IDA) mode. Peptide solution (10 µL) was injected onto a trap column (PepMapTM, 

C18, 5 µm, 100 Å, 300 µm x 1 mm, ThermoScientific, UK) using 2% of eluent B (98% 

acetonitrile in aqueous 0.1 % formic acid) at a flow rate of 30 µL/min. Peptides were 

subsequently separated on an analytical column (AcclaimTM, PepMapTM C18, 3 µm, 100 Å, 

75 µm x 150 mm, ThermoScientific, UK) with the following gradient: 0-3 min 2% B, 3-48 min 

2-45% B, 48-52 min 45-90% B, 52-55 min 90% B, 55-70 min 2% B). Electrospray was formed 

by spraying the nLC eluate at 2500 V using a PicoTipTM emitter (New Objective, Germany). 

The 10 most intense ions from each MS survey scan were selected for MS/MS, while acquired 
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ions were temporarily excluded from MS/MS acquisition for 30 s.  The mass spectrometer was 

calibrated prior to acquisition to ensure a high mass accuracy (<10 ppm) on both MS and 

tandem mass spectrometry (MS/MS) levels.  

Data analysis. Relative quantification was done using QI for proteomics software (version 4, 

Nonlinear Dynamics, UK). MS/MS data were searched using MasconDeamon (ver 2.5) against 

the SwissProt database, with the following search restriction parameters: mass tolerance of 

0.1 Da for MS and 0.6 Da for MS/MS spectra, a maximum of 2 trypsin miscleavages, 

Pseudomonas aeruginosa taxonomy, variable modifications of methionine oxidation and 

cysteine carbamidomethylation.  

Antibiotic susceptibility assay to tobramycin. Overnight cultures of P. aeruginosa grown 

under normoxia or anoxia were normalised to an OD470 of 1.0 and diluted to 106 CFU/mL and 

100 µL added to 100 µL of serially diluted concentrations of tobramycin (64-0.125 µg/mL). 

Plates were sealed with a Breathe-easy® membrane and incubated statically for 24 h at 37 °C 

under normoxia or anoxia. The MIC was determined by visual inspection.  

Statistical Analysis. All results unless otherwise specified are expressed as mean ±S.E.M., 

with data for each experiment being collected from three independent replicates (N=3), each 

replicate performed in triplicate. All statistical analyses were performed using GraphPad Prism 

6 software (Graphpad, La Jolla, CA, USA) with significance being set to P<0.05.  The specific 

tests and post-hoc tests used for each experiment are described in the figure legends.  
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4.5 Results  

 Inhibition of S. aureus growth by P. aeruginosa CF clinical 

isolates  

Laboratory strain PAO1 and the eight P. aeruginosa CF clinical isolates were tested for growth 

inhibition of S. aureus under normoxia, using an agar plate based cross-streak assay. As 

shown in Figure 26, following 24 h incubation, PAO1 and CF isolates 1, 2, 4, 5 and 7 all 

inhibited S. aureus growth in co-culture (dashed white box). Conversely, CF isolates 3, 6 and 

8 exerted no effect upon S. aureus growth.  

 

Figure 26. Cross-streak growth inhibition assay between CF clinical isolates of P. aeruginosa 
with S. aureus on solid LB agar plates. Overnight bacterial cultures of S. aureus and P. aeruginosa 
grown under normoxia were normalised to an OD470 of 1.0. P. aeruginosa was inoculated horizontally 
across the centre of the agar plate and allowed to dry. S. aureus was subsequently streaked vertically. 
Plates were incubated overnight, prior to being read. Zones of growth inhibition are marked by white 
dashed boxes. Images are representative of three individual experiments (N=3), each performed in 
duplicate.  

  

P. aeruginosa 

S. aureus 
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 Influence of anoxia upon competition between S. aureus and P. 

aeruginosa in planktonic co-culture   

From the phenotypic characterisation performed in chapter 3 and the results obtained in Figure 

26, PAO1 and three CF clinical isolates of P. aeruginosa were carefully selected to determine 

whether changes in oxygen availability influenced planktonic (free-swimming) interactions 

overtime. CF isolates 5 and 7 were both non-mucoid and exhibited protease and staphylolytic 

activity. Yet whilst CF isolate 5 produced pyocyanin and exhibited swimming and swarming 

motility, CF isolate 7 did not. CF isolate 6 was also non-mucoid but didn’t produce detectable 

levels of protease or staphylolytic activity. CF isolate 6 also exhibited smaller swim zones and 

no swarming motility, in addition to the lowest biofilm biomass.  

Density matched S. aureus and P. aeruginosa overnight cultures were inoculated at 1:1 ratio, 

with planktonic growth being assessed over 24 h, comparing the colony counts of the bacteria 

grown in pure culture, to those grown in co-culture. To clearly compare the differences of 

growth in monoculture with co-culture, the CI and RIR were calculated. The CI compared 

differences in the growth of mixed cultures, whilst the RIR compared the growth of the two 

species in monoculture. Both the CI and RIR were used to determine statistical significance.  

As shown in Figure 27 (panel A), PAO1 and all the CF isolates tested were able to outcompete 

S. aureus under normoxia. PAO1 caused an approximate 2.5 log reduction in S. aureus 

CFU/mL when co-cultured at 24 h (P<0.001), whilst maintaining the same growth rate as it did 

in pure culture. CF isolate 5 also caused an approximate 2.5 log reduction in S. aureus 

CFU/mL at 24 h (P <0.001), whilst CF isolate 6 also induced a significant reduction in S. aureus 

at 24 h, but this was to a lesser extent (an approximate 1.5 log reduction). CF isolate 7 also 

induced an approximate 2.5 log reduction in S. aureus at 24 h (P<0.001). PAO1 was a unique 

isolate under normoxia however. Whilst the CI for all the CF isolates was significantly higher 

than the RIR at the 6 and 24 h time points only (panel B), PAO1 was also able to outcompete 

S. aureus at 1, 2, 5, 6 and 24 h. In all co-cultures under normoxia, S. aureus killing was 

incomplete, with S. aureus still being detected at high bacterial counts.  

Upon repeating the experiments under anoxia, as shown in Figure 27 (panel A), S. aureus 

growth was unaffected by the presence of P. aeruginosa PAO1 and CF isolates 5 and 6 at all 

the time points tested. Interestingly, CF isolate 7 was the only isolate to retain its ability to 

dominate at 24 h, causing an approximate 1 log reduction in the growth of S. aureus (P<0.001) 

compared to monoculture.  
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Figure 27. S. aureus and P. aeruginosa mono and co-culture growth curves under normoxia and 
anoxia. Panel A: S. aureus and P. aeruginosa were grown statically at 37 °C for 24 h in either single or 
dual culture (1:1 ratio), under normoxia or anoxia. At regular intervals, aliquots were taken and plated 
onto PIA and MSA. Each data point represents the mean ± S.E.M of three independent experiments 
(N=3), each performed in triplicate. Panel B: Each value represents the mean of the CI and RIR ± S.E.M 
of three independent experiments (N=3), each performed in triplicate. Statistical differences were 
determined using two-way ANOVA comparing the CI to the RIR, with Bonferroni’s multiple comparisons 
test. *P<0.05, **P<0.01 and ***P<0.001.  
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 Composition of mixed S. aureus-P. aeruginosa biofilms  

Although S. aureus and P. aeruginosa interact in planktonic culture, both bacteria typically 

grow in mixed species biofilms within CF airways. The number of viable sessile bacteria within 

single and mixed (1:1) cultures was subsequently determined, along with the effect of these 

interspecies interactions upon biofilm biomass.  

As shown in Figure 28 (panel A), under normoxia S. aureus viability was reduced in the 

presence of PAO1 (P<0.01) and CF isolates 5 (P <0.001) and 7 (P <0.001), causing a 

significant decrease in viable S. aureus compared to monoculture. Unlike planktonic culture 

(Figure 27), CF isolate 6 was unable to outcompete S. aureus in mixed species biofilm. 

Conversely as shown in Figure 28 (panel B), S. aureus was unable to exert a detrimental effect 

upon any of the P. aeruginosa isolates tested, with CF isolates of P. aeruginosa being 

recovered from mixed species biofilms in numbers comparable to those isolated in single 

species biofilm. CF isolate 7 however, demonstrated a significant increase in viability in mixed 

species biofilm compared to single culture (P<0.05).  

Under anoxia, PAO1 and CF isolates 5 and 6 were no longer able to outcompete S. aureus in 

mixed species biofilm (Figure 28) whilst CF isolate 7 retained its ability to predominate. This 

finding supports the planktonic co-culture data shown in Figure 27. Once more, all CF P. 

aeruginosa isolates tested were unaffected by the presence of S. aureus under anoxia (Figure 

28), producing biofilm at levels similar to those in single species biofilms.    
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Figure 28. S. aureus and P. aeruginosa mono and co-culture biofilms under normoxia and anoxia. 
S. aureus and P. aeruginosa were grown in a 96-well plate either individually or in a 1:1 ratio for 24 h at 
37 °C under static conditions of normoxia or anoxia. Biofilms were washed using PBS, detached, serially 
diluted and plated onto PIA and MSA for quantification. Bars represent the mean ± S.E.M of three 
individual experiments (N=3), each performed in triplicate. Statistical differences were determined using 
one-way ANOVA with Tukey’s post-hoc. *P<0.05, **P<0.01, ***P<0.001.  
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As shown in Figure 29, quantification of single and mixed species biofilms showed that 

biomass production for PAO1 and CF isolates 5 and 7 were unaffected by the presence of S. 

aureus under normoxia. An increase in biofilm biomass was seen for CF isolate 6 however, 

when co-cultured with S. aureus (P<0.05). Under anoxia, the same trend was seen, with an 

increase in biomass also being detected in the mixed species biofilm of S. aureus and CF 

isolate 6 (P <0.05).  

 

  

Figure 29. S. aureus and P. aeruginosa mono and co-culture biofilm biomass under normoxia 
and anoxia Bacteria were grown in a 96-well plate either individually or in a 1:1 for 24 h at 37 °C under 
normoxia or anoxia. Biofilm was quantified by crystal violet staining and acetic acid solubilisation, prior 
to measuring the absorbance at OD492. Bars represent the mean ± S.E.M of three individual experiments 
(N=3), each performed in triplicate. Statistical differences between single and mixed species biofilms 
were determined using one-way ANOVA with Tukey’s post-hoc. *P<0.05.   

 Influence of oxygen availability upon P. aeruginosa protease 

production and staphylolysis 

To greater understand the mechanisms governing these interspecies interactions, the 

production of a number of known anti-staphylococcal compounds across the P. aeruginosa CF 

isolates were determined following culture under anoxia and comparing these to results 

obtained under normoxia.  

Cell-free supernatants obtained from overnight cultures of P. aeruginosa grown under anoxia 

were added to wells of skimmed milk agar plates and incubated for 24 h to determine protease 

activity. The diameter of the zone of clearance was measured from the edge of the wells in 

mm. The clearance zones were normalised to the bacterial densities of the cultures grown.  

  

NORMOXIA ANOXIA 
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The data obtained for protease production under normoxia was taken from Figure 18 to allow 

comparisons to be made to anoxia. Under anoxia (Figure 30), laboratory strain PAO1 and CF 

isolates 1 and 3 lost their ability to produce detectable levels of protease compared to normoxia 

(P<0.001). P. aeruginosa CF isolates 6 and 8 failed to produce any detectable protease under 

both normoxia and anoxia, whilst CF isolates 4, 5 and 7 produced significantly more protease 

under anoxia compared to normoxia (P<0.01, P<0.05 and P<0.01 respectively). 

 

Figure 30. Influence of oxygen availability upon protease production by P. aeruginosa CF clinical 
isolates. Cell-free supernatants obtained from cultures of P. aeruginosa grown under normoxia oranoxia 
were added to skimmed milk agar plates and incubated for 24 h, prior to the diameter of the zones of 
clearance being measured. Data shown are the mean ± S.E.M. of three independent experiments (N=3), 
each performed in triplicate. Zones of clearance were normalised to account for differences in final 
bacterial cell density. Statistical differences were determined using an unpaired two-tailed t-test 
comparing each isolate under normoxia and anoxia. *P<0.05, **P<0.01 and ***P<0.001. 

Next, the effect of anoxia upon the ability of P. aeruginosa cell-free supernatants to lyse S. 

aureus was determined. Cell-free supernatants from overnight cultures of P. aeruginosa grown 

under anoxia were added to suspensions of heat-killed S. aureus and incubated for 1 h, prior 

to plate being read at OD595. The control bar represents the negative control, consisting of 

heat-killed S. aureus with sterile LBN broth. Any detectable decreases in OD after 1 h were 

evidence of S. aureus lysis. This established method was adapted from those described in 

previous studies (Grande et al., 2007, Kessler et al., 1993b, Kong et al., 2005).  
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The data obtained for the lysis of heat-killed S. aureus under normoxia was taken from Figure 

19 to allow comparisons to be made to staphylolytic activity under anoxia. As shown in Figure 

31 below, CF isolates 2, 4, 5 and 7 retained their staphylolytic ability under anoxia (white bars), 

causing significant reductions in the OD595 of heat-killed S. aureus (P<0.05, P<0.05, P<0.001, 

P<0.01 respectively). Culture supernatants obtained from CF isolates 6 and 8 were unable to 

lyse S. aureus under both normoxia and anoxia.  

 

Figure 31. Influence of oxygen availability upon the staphylolytic activity of P. aeruginosa CF 
clinical isolates. Cell-free supernatants obtained from P. aeruginosa CF isolates grown under normoxia 
or anoxia were added to heat-killed S. aureus and incubated for 1 h prior to the OD being read at 595 
nm. Data represents the mean ± S.E.M. of three independent experiments (N=3) each performed in 
quadruplicate. Statistical differences were determined using one-way ANOVA with Dunnett’s post-hoc 
(vs. control). Control consisted of heat-killed S. aureus with the addition of LBN broth only. *P<0.05, 
**P<0.01 and ***P<0.001. 

 The impact of oxygen upon P. aeruginosa pyoverdine production  

The presence of the major iron-binding siderophore pyoverdine was determined in cell-free 

supernatants of PAO1 and the three selected CF isolates of P. aeruginosa. As pyoverdine is 

fluorescent, the amount produced was determined by measuring the RFU following excitation 

at 460 nm and emission at 490 nm. Experiments compared pyoverdine production by P. 

aeruginosa under monoculture conditions, as well as following co-culture with S. aureus. 

Additionally, experiments conducted under normoxia were compared to experiments repeated 

under anoxia.   

Under normoxia (Figure 32), as expected S. aureus did not produce any detectable 

pyoverdine. PAO1 and CF isolate 5 both secreted high amounts of pyoverdine, compared to 

CF isolates 6 and 7. The presence of S. aureus in the co-culture enhanced the production of 

pyoverdine by PAO1 only (P<0.001) and not for CF isolates 5, 6 and 7.  
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Under anoxia, PAO1 secreted significantly reduced levels of pyoverdine compared to 

normoxia, in both monoculture (P<0.01) and in co-culture with S. aureus (P<0.001). CF isolate 

5 also produced significantly lower levels of pyoverdine under anoxia in monoculture (P<0.05) 

and in co-culture with S. aureus (P<0.01). CF isolates 6 and 7 again produced minimal levels 

of pyoverdine under anoxia, in both monoculture and co-culture which were significantly lower 

compared to CF. Under anoxia, the presence of S. aureus enhanced pyoverdine production in 

both PAO1 and CF isolate 5. 

 

 

Figure 32. RFU as a measure of pyoverdine production. RFU of cell-free supernatants obtained 
following growth of PAO1 and P. aeruginosa CF isolates 5, 6 and 7 grown in the presence or absence 
of S. aureus was measured at 460/490 nm. Bars represent the mean ± S.E.M of three individual 
experiments (N=3), each performed in triplicate. Statistical differences between single and co-cultures 
were determined using one-way ANOVA with Tukey’s post-hoc. *P<0.05, ***P<0.001.    

 Effect of oxygen and co-culture with S. aureus upon pyocyanin 

production by P. aeruginosa  

The production of the green phenazine pyocyanin by P. aeruginosa was determined under 

both normoxia and anoxia, including after co-culture with S. aureus. As expected, no pyocyanin 

was detected for S. aureus. No significant differences (P>0.05) were observed for P. 

aeruginosa PAO1 pyocyanin production between growth in monoculture and co-culture with 

S. aureus, a finding also seen in CF isolates 5 and 6 ( 

Figure 33). CF isolate 7 failed to secrete any detectable pyocyanin. As shown in  

Figure 33, no pyocyanin was detected for any of the P. aeruginosa isolates grown under anoxia 

(supported by panels B and C), suggesting that its production or detection is dependent upon 

the presence of oxygen. PAO1 and CF isolates 5 and 6 both produced pyocyanin following 

culture under normoxia (Figure 15).  

NORMOXIA ANOXIA 
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Figure 33. P. aeruginosa pyocyanin production in the presence and absence of S. aureus, 
following growth under normoxia and anoxia. P. aeruginosa CF isolates were grown in the presence 
or absence of S. aureus, following growth under normoxia or anoxia. (A) Pyocyanin was extracted by 
phenol-chloroform extraction and normalised to the bacterial density. Bars represent data ± S.E.M from 
three independent experiments (N=3), each performed in triplicate. Statistical differences between 
single and co-cultures were determined using one-way ANOVA with Tukey’s post-hoc. (B) PAO1 cell-
free supernatants obtained after cultures grown overnight under normoxia (+O2) and anoxia (-O2). (C)  
P. aeruginosa PAO1 and CF isolates 5, 6 and 7 demonstrate a lack of detectable pyocyanin following 
16 h growth under anoxia.  
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 Effect of oxygen upon P. aeruginosa surfactant activity  

The surfactant activity of P. aeruginosa PAO1 and the three CF isolates was determined using 

a well-established drop collapse assay. Surfactant scores were determined as the reciprocal 

of the greatest dilution to which surfactant activity was quantifiable. As shown in Figure 34, CF 

isolate 7 demonstrated the greatest surfactant activity under normoxia, whilst CF isolate 6 

exhibited the lowest surfactant activity. Under anoxia, CF isolate 7 again exhibited the highest 

surfactant activity, whilst CF isolate 6 exhibited the lowest activity. The surfactant activity of 

PAO1 and CF isolate 5 was halved following growth under anoxia.   

 

Figure 34. Drop collapse assay to measure surfactant activity of P. aeruginosa. The surfactant 
activity of P. aeruginosa cell-free supernatants from overnight cultures grown under normoxia or anoxia 
was determined using the drop collapse assay. Cell-free supernatants were serially diluted two-fold in 
dH2O containing 0.0005% (w/v) crystal violet for visualisation. Small 20 µL drops were added to the 
underside of a petri plate lid and tilted at a 90° angle. Surfactant scores are expressed as the reciprocal 
of the greatest dilution to which surfactant activity was quantifiable. Columns represent the mean of 
three independent experiments (N=3), each performed in triplicate.  

NORMOXIA ANOXIA 
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 The impact of anoxia upon the secretome of P. aeruginosa  

This study also investigated the impact of anoxia upon the cell-free secretome of PAO1 and 

CF isolates 5, 6 and 7. Whilst this study was only preliminary (N=1 from 5 pooled samples for 

each isolate and each environmental condition), it aimed to provide an insight into the effects 

of oxygen on the P. aeruginosa secretome.  

Initial studies showed that a large number of proteins were identified for each isolate (<100), 

with the total number varying across isolates and following growth under normoxia and anoxia. 

The secretome data for laboratory strain PAO1 obtained in this study was compared to the 

online Swissprot database. One of the difficulties regarding the interpretation of data for these 

CF clinical isolates was selecting a P. aeruginosa reference strain in the database (e.g. PAO1 

or PA14). To prevent bias and potential errors, the results were not filtered for a specific 

reference strain of P. aeruginosa within the database.  

Due to the large number of proteins identified for each isolate tested, many of which were 

housekeeping proteins (essential for survival, including DNA replication, respiration, protein 

synthesis and cell division), a total of 20 were selected for analysis. These proteins focused 

particularly upon major P. aeruginosa virulence factors and those likely to play a role in 

withstanding host defences. As 0.22 µm sterile filters were used to remove cells and cell debris, 

it is likely that this may influence the total abundance and range of proteins detected within the 

bacterial culture supernatants.  

Considering the enzymes involved in anaerobic respiration, as shown in Figure 35, PAO1 

demonstrated a 17.5-fold increase in the presence of denitrification regulatory protein NirQ 

under anoxia, compared to normoxia. Conversely, there was a 39.5-fold decrease in 

periplasmic nitrate reductase under anoxia, along with a 2.8-fold decrease for nitrite reductase 

under anoxia. CF isolate 5 failed to produce any detectable denitrification regulatory protein 

NirQ or periplasmic nitrate reductase under both conditions tested, whilst there was a minimal 

fold change regarding the production of nitrite reductase under both environmental conditions. 

A 4.2-fold increase in NirQ was seen under anoxia for CF isolate 6, whilst periplasmic nitrite 

reductase was not detected. A minimal fold change for nitrite reductase was seen under anoxia 

for CF isolate 6.  CF isolate 7 failed to produce any detectable denitrification regulatory protein 

NirQ, whilst there was a minimal fold change in periplasmic nitrate reductase under anoxia and 

a 1.7-fold increase in nitrite reductase under anoxia. 
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Figure 35. P. aeruginosa secretome analysis relating to anaerobic respiration. Cell-free supernatants obtained from 24 h cultures of PAO1 and CF isolates 5, 6 and 7 
grown under normoxia and anoxia were subject to protein precipitation, SDS-PAGE electrophoresis and MS analysis. Data represents N=1 from 5 pooled samples. The 
abundance of each protein is expressed as fold-change compared to normoxia.   
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Figure 36. P. aeruginosa secretome analysis relating to elastase production and pyocin s-2. Cell-free supernatants obtained from 24 h cultures of PAO1 and CF 
isolates 5, 6 and 7 grown under normoxia and anoxia were subject to protein precipitation, SDS-PAGE electrophoresis and MS analysis. Data represents N=1 from 5 pooled 
samples. The abundance of each protein is expressed as fold-change compared to normoxia.    
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As shown in Figure 36, a 20.2-fold decrease in elastase was detected under anoxia for PAO1, 

compared to normoxia. CF clinical isolate 5 exhibited a 3.0-fold increase of elastase under 

anoxia, whilst CF isolate 6 exhibited a 1.8-fold increase in elastase under anoxia. CF isolate 7 

exhibited a 1.4-fold decrease in the production of elastase under anoxia.  

PAO1 was shown to produce the anti-pseudomonal compound pyocin-S2, with a 30-fold 

increase under anoxia. Whilst pyocin was not detected for CF isolate 5, there was a 2.8-fold 

increase under anoxia by CF isolate 6 compared to normoxia.  Like CF isolate 5, CF isolate 7 

failed to produce any detectable pyocin under normoxia and anoxia.   
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Figure 37. P. aeruginosa secretome analysis relating to immune detection. Cell-free supernatants obtained from 24 h cultures of PAO1 and CF isolates 5, 6 and 7 
grown under normoxia and anoxia were subject to protein precipitation, SDS-PAGE electrophoresis and MS analysis. Data represents N=1 from 5 pooled samples. The 
abundance of each protein is expressed as fold-change compared to normoxia.  
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As shown in Figure 37, PAO1 exhibited a 2.7-fold decrease in catalase under anoxia, whilst a 

3.3-fold decrease in superoxide dismutase was detected under anoxia. CF isolate 5 secreted 

detectable catalase, with a 1.8-fold increase under anoxia, whilst exhibiting a 2.7-fold decrease 

in superoxide dismutase under anoxia. CF isolate 6 also produced detectable catalase, with a 

1.5-fold decrease under anoxia and a 1.6-fold decrease in superoxide dismutase under anoxia. 

CF isolate 7 exhibited a 1.9-fold increase in the production of catalase under anoxia and a 8.9-

fold decrease in superoxide dismutase under anoxia.  

Analysis of the secretome also focused upon the extracellular components known to be 

involved in airway inflammation. Whilst the database does not specify the exact lipoprotein, 

there was a 4.2-fold decrease in peptidoglycan associated lipoprotein under anoxia compared 

to normoxia for PAO1, whilst CF isolate 5 also exhibited a 5.9-decrease under anoxia. 

Interestingly, CF isolate 6 exhibited a 7.4-fold higher abundance of lipoprotein under anoxia 

than normoxia. CF isolate 7 demonstrated a 3.4-fold decrease in peptidoglycan associated 

lipoprotein under anoxia.  

Finally, lipid A deacylase is an enzyme known to be involved in the modification of the major 

surface antigen LPS. PAO1 exhibited a 2.0-fold decrease of lipid A deacylase under anoxia 

compared to normoxia. However, CF isolate 5 exhibited a striking 61.7-fold increase in lipid A 

deacylase under anoxia compared to normoxia. This enzyme was not detected for CF isolate 

6. There was a 1.8-fold decrease detected in lipid A deacylase under anoxia for CF isolate 7.  
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Figure 38. P. aeruginosa secretome analysis relating to the antagonism of S. aureus. Cell-free supernatants obtained from 24 h cultures of PAO1 and CF isolates 5, 6 
and 7 grown under normoxia and anoxia were subject to protein precipitation, SDS-PAGE electrophoresis and MS analysis. Data represents N=1 from 5 pooled samples. 
The abundance of each protein is expressed as fold-change compared to normoxia.  
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As shown in Figure 38, regarding the production of the staphylolysin LasA, there was a minimal 

change in its production under anoxia for PAO1, whilst CF isolate 5 demonstrated a 3.0-fold 

increase in LasA under anoxia. LasA was not detected for CF isolate 6, whilst there was a 

minimal fold change in LasA for CF isolate 7.  

As mentioned previously, pyocyanin is a green phenazine. As shown in Figure 38, the 

phenazine biosynthesis protein PhzB was detected for PAO1, with a 10.4-fold decrease under 

anoxia. CF isolate 5 demonstrated a 21.0-fold decrease in the phenazine biosynthesis protein, 

whilst CF isolates 6 and 7 failed to produce detectable PhzB.   

As previously mentioned, iron is an essential micronutrient for P. aeruginosa growth. Analysis 

of the secretome of PAO1 showed that whilst there is a 1.2-fold decrease in the production of 

bacterioferritin under anoxia, there was a 26.5-fold decrease in the Fe3+ pyochelin receptor 

compared to anoxia. Conversely, a 2.5-fold increase in ferric uptake regulation protein was 

detected under anoxia compared to normoxia. CF isolate 5 demonstrated a 2.2-fold increase 

in the production of bacterioferritin under anoxia compared to normoxia. Whilst Fe3+ pyochelin 

receptor was not detected for CF isolate 5, a 2.3-fold decrease in the ferric uptake regulation 

protein was seen under anoxia. CF isolate 6 exhibited a 2.7-fold decrease in the production of 

bacterioferritin under anoxia compared to normoxia. Whilst Fe3+ pyochelin receptor was not 

detected for CF isolate 6 under normoxia or anoxia, there was a 1.7-fold decrease in ferric 

uptake regulation protein under anoxia. There was a minimal change in the production of 

bacterioferritin under anoxia for CF isolate 7 compared to normoxia, as well as a minimal fold 

change in Fe3+ pyochelin receptor under anoxia. CF isolate 7 exhibited a 15.5-fold decrease 

in the production of ferric uptake regulation protein under anoxia.  

Secretome analysis of PAO1 demonstrated that there was a 2.9-fold decrease in the 

rhamnolipid esterase A under anoxia. Conversely, whilst CF isolate 5 produced no detectable 

esterase A under both conditions, CF isolate 6 exhibited a 2.9-fold increase in esterase A 

under anoxia. CF isolate 7 demonstrated a minimal fold change in esterase A under anoxia.  
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Figure 39. P. aeruginosa secretome analysis relating to P. aeruginosa motility. Cell-free supernatants obtained from 24 h cultures of PAO1 and CF isolates 5, 6 and 7 
grown under normoxia and anoxia were subject to protein precipitation, SDS-PAGE electrophoresis and MS analysis. Data represents N=1 from 5 pooled samples. The 
abundance of each protein is expressed as fold-change compared to normoxia.  
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Regarding P. aeruginosa motility, as shown in Figure 39, A-type flagellin and A-type flagellar 

associated hook protein was not detected for PAO1. Anaerobiosis induced a 7.5-fold decrease 

in the production of B-type flagellin in PAO1 and a 5.5-fold decrease in B-type flagellar 

associated hook protein 2 under anoxia. Type IV pilus biogenesis factor was not detected for 

PAO1 under normoxia or anoxia.  

A 2.0-fold increase was seen in A-type flagellin for CF isolate 5 under anoxia whilst changes 

in A-type flagellar associated hook protein 2 was minimal. An 8.1-fold decrease in B-type 

flagellin was seen under anoxia, whilst B-type flagellar associated hook protein 2 was not 

detected. A 2.2-fold increase was seen Type IV pilus biogenesis factor under anoxia for CF 

isolate 5.  

CF isolate 6 exhibited a minimal fold change in A-type flagellin under anoxia, along with a 

minimal fold change in A-type flagellar associated hook protein 2. B-type flagellin, B-type 

flagellar associated hook protein 2 and Type IV pilus biogenesis factor were not detected.  

CF isolate 7 exhibited a minimal fold change in A-type flagellin under anoxia and a 1.8-fold 

decrease in A-type flagellar associated hook protein 2 under anoxia. CF isolate 7 

demonstrated a 5.2-fold decrease in B-type flagellin under anoxia, whilst B-type flagellar 

associated hook protein 2 was not detected. There was a minimal fold change in Type IV pilus 

biogenesis factor under anoxia.  
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 Preliminary analysis of the impact of anoxia upon the production 

of AHLs 

The production of many P. aeruginosa virulence factors is regulated by QS. The E. coli 

biosensors pSB536 and pSB1142 were used to detect and semi-quantify the production of C4-

HSL and 3-oxo-C12-HSL respectively in cell-free culture supernatants of P. aeruginosa, 

following growth under normoxia and anoxia. In response to external AHLs, the biosensor 

strains emit light which can consequently be detected by measuring bioluminescence.  

As shown in Figure 40, the production of C4-HSL detected within P. aeruginosa cell-free culture 

supernatants varies across the CF isolates. CF isolate 5 and 6 under normoxia produced 

similar levels of C4-HSL compared to PAO1 under normoxia, whilst CF isolate 7 appeared to 

produce lower levels under normoxia compared to PAO1. Whilst anoxia appeared to exert a 

minimal impact upon C4-HSL production compared to normoxia for each isolate, further 

repeats are required to confirm this trend.  

 

Figure 40. C4-HSL production by PAO1 and P. aeruginosa CF clinical isolates following growth 
under normoxia and anoxia. Cell-free supernatants of P. aeruginosa were added to the E. coli 
biosensor pSB536 for 6 h, prior to the luminescence being read. Bioluminescence values were 
normalised to the OD470 of the biosensor strain to account for differences in their growth and final cell 
densities. Luminescence values were additionally subtracted from the control (pSB523 and LBN broth 
only). Bars represent the mean ± S.D of one individual experiment (N=1) performed in triplicate. + 
represents normoxia, whilst – represents anoxia.  
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Next, the production of the longer chain 3-oxo-C12-HSL was assessed following the growth of 

P. aeruginosa under normoxia and anoxia. As shown in Figure 41, CF isolates 5, 6 and 7 

appeared to produce similar levels of 3-oxo-C12-HSL compared to PAO1. Anoxia only 

appeared to affect PAO1 QS, although further repeats are needed.  

 

Figure 41. C12-HSL production by PAO1 and P. aeruginosa CF clinical isolates following growth 
under normoxia and anoxia. Cell-free supernatants of P. aeruginosa were added to the E. coli 
biosensor pSB1142 for 6 h, prior to luminescence being read. Bioluminescence values were normalised 
to the OD470 of the biosensor strain to account for differences in growth and final cell densities and were 
additionally subtracted from the control (pSB1142 with LBN broth only). Bars represent the mean ± S.D 
of one individual experiment (N=1) performed in triplicate. + represents normoxia, whilst – represents 
anoxia.  

 Effect of P. aeruginosa extracellular products upon the planktonic 

growth of S. aureus  

Whilst P. aeruginosa CF isolates produce a range of anti-staphylococcal compounds, a series 

of experiments were conducted in an attempt to determine the size of the anti-staphylococcal 

compound(s) likely to mediate P. aeruginosa dominance. Heat treatment was also performed 

to determine if the compound(s) were heat-labile. Cell-free supernatants from cultures of P. 

aeruginosa grown under normoxia or anoxia were subjected to size fractionation using 3 kDa 

molecular weight cut off filters, with select fractions then being subjected to heat-treatment (95 

°C for 10 min). Culture supernatants were subsequently added to normalised S. aureus 

cultures, to assess their ability to inhibit S. aureus growth over 14 h. Whilst most proteins would 

be retained within the >3 kDa fraction, smaller molecules such as pyocyanin, rhamnolipids, 

pyoverdine and AHLs would be expected to be present within the <3 kDa fraction.  
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As shown in Figure 42, all P. aeruginosa PAO1 fractions following growth under normoxia, 

including those which had undergone heat treatment were able to antagonise S. aureus growth 

at 14 h. The degree of S. aureus antagonism was reduced for CF isolate 5 however, where 

exposure to the <3 kDa fraction and <3 kDa heat-treated fractions caused S. aureus to grow 

to densities similar to the untreated S. aureus only control (S. aureus with LBN broth only). 

These findings were also seen for CF isolates 6 and 7 under normoxia.  

For all three of the P. aeruginosa CF isolates, the heat treated whole supernatant fraction and 

>3 kDa fraction appeared to be better at reducing S. aureus growth, compared to the same 

fractions which had not been heat treated.  
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Figure 42. Determining the effect of heat-treatment and size fractionation of P. aeruginosa cell-
free supernatants upon the growth of S. aureus. P. aeruginosa cell-free supernatants were added to 
standardised S. aureus culture either directly as whole supernatant (WS), or following size fractionation 
(>3 and <3 kDa) and/or heat treatment (HI). Plates were incubated at 37 °C for 14 h and the OD470 read 
at hourly intervals. Plots represent the mean OD470 at the 14 h time point ± S.D of two individual 
experiments (N=2), each performed in duplicate.  

In contrast, only the whole supernatant and >3 kDa fractions of PAO1 following growth under 

anoxia, were able to better antagonise the growth of S. aureus. Once more, heat treatment 

failed to abolish this effect. For CF isolate 5, the >3 kDa fractions were also the most inhibitory 

and this effect was not abolished following heat-treatment. Of particular interest is how heat-

treatment of the whole supernatant caused S. aureus to grow to a lower final density at 14 h, 

compared to the whole-supernatant which had not been subject to boiling. Both >3 kDa 

fractions produced by P. aeruginosa CF isolate 6 were the only fractions which caused S. 

aureus to grow to a lower bacterial density than S. aureus alone. Lastly, the >3 kDa fractions 

of CF isolate 7 also reduced S. aureus growth at 14 h. As seen with CF isolate 5 under anoxia, 

heat treatment of the whole supernatant produced by CF isolate 7, caused S. aureus to grow 

to a lower final density at 14 h, compared to whole-supernatant. Together, this data suggests 

that the anti-staphylococcal compound(s) produced by P. aeruginosa is largely contained 

within the >3 kDa fraction and its activity is not abrogated by heat-treatment.  

Such findings are in contradiction to the data shown in Figure 27 and Figure 28, where PAO1 

and CF isolates 5 and 6 all failed to exert an antagonistic effect upon the growth of S. aureus 

under anoxia, in planktonic co-culture and mixed species biofilms. Such a discrepancy is likely 

to be due to differences in assay set up. In this assay (Figure 42), PAO1 cell-free supernatants 

obtained following overnight growth under anoxia were added to S. aureus at time point zero. 

Thus, S. aureus would be exposed to pre-made P. aeruginosa virulence properties from time 

point zero. In the mixed planktonic culture and biofilm co-culture experiments however, both 

bacterial species were pelleted and resuspended in fresh LBN broth at time point zero, 

removing any pre-formed anti-staphylococcal products. 

Furthermore, due to the plate reader set up, S. aureus grew under normoxia regardless of 

whether it was exposed to P. aeruginosa cell-free supernatants obtained following growth 

normoxia or anoxia. In the planktonic co-culture and mixed species biofilms, both S. aureus 

and P. aeruginosa cultures grew either under normoxia or anoxia.  
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 S. aureus biofilm disruption by P. aeruginosa exoproducts  

The ability of P. aeruginosa extracellular products to disrupt an established S. aureus biofilm 

was determined. As shown in Figure 43, under normoxia PAO1 and most of the CF isolates 

caused a significant reduction in S. aureus biofilm biomass (P<0.001) compared to S. aureus 

only control. Conversely, CF isolates 6 and 8 both significantly increased S. aureus biofilm 

biomass compared to S. aureus alone (P<0.001). The use of cell-free supernatants obtained 

from anoxic cultures of P. aeruginosa demonstrated that four of the isolates retained their 

ability to disrupt S. aureus biofilm, whilst PAO1 and CF isolates 1 and 3 lost this ability.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43. Ability of P. aeruginosa CF isolate exoproducts to disrupt S. aureus biofilm under 
normoxia and anoxia. S. aureus biofilm was grown under normoxia for 24 h, prior to the addition of 
100 µL of each P. aeruginosa cell-free supernatant. Plates were incubated under normoxia for a further 
5 h at 37 °C. Biofilms were washed with PBS and stained with 1% (w/v) crystal violet and read at OD570. 
Data has been normalised to a percentage of S. aureus only biofilm (the control). Columns represent 
the mean ± S.E.M. for three independent experiments (N=3), each performed in triplicate. Statistical 
differences were determined using one-way ANOVA with Dunnett’s post-hoc, comparing values to S. 
aureus only biofilm. ***P<0.001.  
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 S. aureus biofilm inhibition by P. aeruginosa exoproducts  

The ability of P. aeruginosa cell-free supernatants to inhibit S. aureus biofilm formation was 

also investigated. Shown in Figure 44, cell-free supernatants obtained from PAO1 and most 

of the CF isolates, significantly inhibited S. aureus biofilm production (P<0.001). Conversely, 

exposure to exoproducts from CF isolate 6 significantly increased S. aureus biofilm biomass 

(P<0.001).  Under anoxia, PAO1 and CF isolates 2, 4, 5 and 7 were able to inhibit S. aureus 

biofilm. Conversely CF isolates 1, 3, 6 and 8 significantly increased S. aureus biofilm 

production compared to the S. aureus only control (P<0.001).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44. Ability of P. aeruginosa exoproducts to inhibit S. aureus biofilm formation under 
normoxia and anoxia. S. aureus was grown in the presence of each P. aeruginosa supernatant for 24 
h. Biofilms were stained with 1% (w/v) crystal violet and read at OD570. Data has been normalised to a 
percentage of S. aureus biofilm only (the control). Columns represent the mean ± S.E.M. for three 
independent experiments (N=3), each performed in triplicate. Statistical differences were determined 
using one-way ANOVA with Dunnett’s post-hoc, comparing values to the S. aureus only biofilm. 
***P<0.001.  
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 Influence of S. aureus extracellular products upon P. aeruginosa 

planktonic growth  

The work shown above focused upon the ability of P. aeruginosa cell-free supernatants to 

antagonise the growth of S. aureus. The data presented in Figure 45 however, sought to 

determine the effect of S. aureus cell-free supernatants upon the planktonic growth of P. 

aeruginosa. The experiments aimed to mimic early P. aeruginosa infection, where P. 

aeruginosa is likely to colonise CF airways in an environment abundant in S. aureus and its 

exoproducts. 

As shown in Figure 45, the addition S. aureus culture supernatants obtained under normoxia 

inhibited the planktonic growth of P. aeruginosa PAO1 and all the CF isolates (P<0.001), 

compared to growth in the absence of S. aureus exoproducts. This trend was also seen under 

anoxia, where S. aureus cell-free supernatant inhibited the planktonic growth of PAO1 and CF 

isolates 5 and isolate 7 (P<0.001), but not CF isolate 6.  

 

 

Figure 45. Influence of S. aureus cell-free supernatants upon P. aeruginosa planktonic growth. 
100 µL of sterile filtered S. aureus culture supernatant was added to 100 µL planktonic P. aeruginosa. 
Alone represents the P. aeruginosa isolate cultured in the presence of 100 µL of LBN broth (acting as a 
control). Bacteria were grown statically at 37 °C for 8 h under normoxia or anoxia. Plates were read at 
OD470. The data represents the mean ± S.E.M of three independent experiments (N=3), each performed 
in triplicate. Statistical differences were determined using one-way ANOVA with Tukey’s post-hoc test. 
***P<0.001.  
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 Influence of oxygen and S. aureus exoproducts upon P. 

aeruginosa motility   

The impact of anoxia upon P. aeruginosa swimming and swarming motilities was determined, 

along with the impact of S. aureus exoproducts upon P. aeruginosa motility. As shown in Figure 

46, under normoxia all isolates exhibited a degree of swimming motility and this was unaffected 

by the inclusion of S. aureus exoproducts. CF isolate 5 alone exhibited significantly greater 

swimming motility under normoxia, compared to PAO1 and CF isolates 6 and 7 alone 

(P<0.001).  

Under anoxia, PAO1 alone lost its swimming motility, whilst the addition of S. aureus cell-free 

supernatant significantly restored this (P<0.001). S. aureus cell-free supernatant also 

enhanced the swimming motility of CF isolate 7 (P<0.01), compared to CF isolate 7 alone. CF 

isolate 5 alone also exhibited the greatest swimming motility under anoxia compared to PAO1 

alone (P<0.01), along with CF isolates 6 and 7 alone (P<0.05). Compared to normoxia, anoxia 

reduced the swimming motility of PAO1 alone (P<0.01), CF isolate 5 alone (P<0.001) and CF 

isolate 5 in the presence of S. aureus (P<0.001).  

Under normoxia, PAO1 and CF isolates 6 and 7 displayed minimal swarming motility, whilst 

the addition of S. aureus exoproducts enhanced the swarming motility of PAO1 (P<0.001). CF 

isolate 5 alone exhibited the greatest swarming motility compared to PAO1 alone and CF 

isolates 6 and 7 alone (P<0.001).  

Under anoxia, CF isolate 5 exhibited the greatest swarming motility compared to PAO1, as 

well as CF isolates 6 and 7 alone (P<0.001). S. aureus exoproducts did not exert any effects 

upon P. aeruginosa swarming motility under anoxia. Only CF isolate 5 alone exhibited a 

significant reduction in swarming motility under anoxia, compared to normoxia (P<0.01).  
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Figure 46. Effect of oxygen and S. aureus culture supernatant upon P. aeruginosa swimming and 
swarming motility. Swimming and swarming motilities of P. aeruginosa isolates were assessed 
following their overnight incubation upon swimming and swarming plates. To test the effects of S. aureus 
culture supernatant upon these two forms of motility, a 1:100 dilution of the culture supernatant was 
added to the plates before the agar set. Data are presented as mean ± S.E.M from three independent 
experiments (N=3), each performed in triplicate.  Statistical differences were determined using one-way 
ANOVA with Tukey’s post-hoc. **P<0.01 ***P<0.001.  

The S. aureus cell-free supernatants were subsequently subjected to size fractionation and 

heat-treatment in order to gain a greater insight into the compound(s) that are either restoring, 

or modulating PAO1 and CF isolate 7 swimming motility under anoxia and the compound that 

is modulating the swarming activity of PAO1 under normoxia. 
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As shown in Figure 47, all fractions of S. aureus cell-free culture supernatant, regardless of 

size and heat-treatment were able to modulate P. aeruginosa swimming and swarming motility 

to the same extent as the whole culture supernatants (Figure 46). 

 

 

 

 

 

 

 

 

 

 

Figure 47. Heat-treatment and size fractionation of S. aureus cell-free supernatants upon P. 
aeruginosa swimming and swarming motility. Swimming and swarming motilities of P. aeruginosa 
PAO1 and CF isolate 7 were assessed following an overnight incubation on swimming and swarming 
agar plates. Plates were supplemented with a 1:100 dilution of S. aureus culture supernatant fractions 
(>3 or <3 kDa), with select fractions also being subject to heat-treatment. Data are presented as mean 
± S.D from two independent experiments (N=2) each performed in duplicate.   

  

SWIMMING - ANOXIA 

SWARMING - NORMOXIA 



168 

 

 Effect of oxygen upon the sensitivity of P. aeruginosa CF isolates 

to tobramycin 

Lastly, the impact of oxygen availability upon the susceptibility of P. aeruginosa to the major 

anti-pseudomonal antibiotic tobramycin was determined. Overnight cultures of P. aeruginosa 

grown in LBN broth under normoxia or anoxia were normalised to an OD470 of 1.0, diluted to 

106 CFU/mL and 100 µL was added to a sterile 96-well plate. A microbroth dilution method 

was used to determine the MIC of tobramycin. Plates were incubated for 24 h at 37 °C under 

normoxia or anoxia, prior to the MIC being determined by visual inspection.  

As shown in Figure 48, anoxia resulted in a 2-fold increase in the MIC of each CF isolate 

compared to normoxia. As the isolates were cultured in LBN broth, the breakpoints for 

susceptibility or resistance to tobramycin were not used as NCCLS guidelines recommend the 

use of Mueller Hinton broth for antibiotic susceptibility testing (European Committee on 

Antimicrobial Susceptibility Testing, 2018). 

 

Figure 48. Impact of oxygen availability upon the susceptibility of P. aeruginosa to tobramycin. 
Overnight cultures of P. aeruginosa grown under normoxia or anoxia were normalised and 100 µL of 
each culture was added to wells of a 96-well plate containing serially diluted concentrations of 
tobramycin (64-0.125 µg/mL). Plates were incubated statically for 24 h at 37 °C under normoxia or 
anoxia, prior to the MIC being determined by visual inspection. Black bars represent the MIC under 
normoxia and the white bars represent the MIC under anoxia. Data are presented as mean ± S.E.M 
from three independent experiments (N=3), each performed in duplicate.  
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4.6 Discussion  

 Influence of anoxia upon S. aureus-P. aeruginosa bacterial 

competition  

Employing environmental conditions designed to mimic more closely those found within 

regions of the CF lung, this chapter investigated the effects of static growth and oxygen 

availability upon the phenotype of P. aeruginosa CF isolates, as well as upon their interspecies 

interactions with S. aureus.  

The polymicrobial nature of infection has been shown increasingly to be a key driver of disease 

severity in CF airways (Peters et al., 2012, Rogers et al., 2009, Rosenbluth et al., 2004, Sibley 

et al., 2006). Whilst the localised co-existence of P. aeruginosa and S. aureus within the CF 

lung is associated with a worsening of pulmonary function and increased exacerbations 

(Hubert et al., 2013, Hogan et al., 2016, Fugere et al., 2014a, Limoli et al., 2016), interspecies 

interactions between these two major CF pathogens is poorly understood, particularly under 

anoxia.  

The growth competition data in Figure 27 illustrates that oxygen availability plays a major role 

in influencing interspecies interactions and community composition. In agreement with 

previous studies (Baldan et al., 2014a, Kluge et al., 2012, Filkins et al., 2015, Korgaonkar et 

al., 2013) P. aeruginosa PAO1 and CF clinical isolates 5, 6 and 7 were able to outcompete S. 

aureus in static planktonic co-culture at 24 h, without their own growth being adversely 

affected. However, in mixed species biofilms (Figure 28), CF isolate 6 was the only isolate 

unable to reduce S. aureus viability under normoxia. The introduction of anoxia caused PAO1 

and CF isolates 5 and 6 to lose their ability to dominate at 24 h in both planktonic co-culture 

and mixed species biofilms, with S. aureus being detected in co-culture densities similar to 

those obtained in pure culture (Figure 28). Meanwhile, CF isolate 7 retained its ability to reduce 

S. aureus viability under anoxia at 24 h (Figure 28). Thus, the absence of oxygen appears to 

provide S. aureus with a survival advantage in the presence of P. aeruginosa and may explain 

in part why S. aureus can co-exist with P. aeruginosa (Limoli et al., 2016).  

In addition to oxygen availability, the mode of bacterial growth appears to influence microbial 

competition. Whilst P. aeruginosa CF isolate 6 predominated over S. aureus in mixed 

planktonic culture under normoxia (Figure 27), it was unable to outcompete on both solid agar 

(Figure 26) and in mixed species biofilms (Figure 28). Previous reports however have shown 

bacteria grown as a biofilm exhibit differences in virulence, compared to those grown in 

planktonic culture (Yadav et al., 2004, Secor et al., 2011, Waite et al., 2005). It is also known 

that bacteria within biofilms are a heterogenous population varying in their growth and 

physiological state, ranging from rapidly growing cells, to those which are in stationary phase 
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(Borriello et al., 2004). It is likely that variations nutrient availability, pH and rates of oxygen 

consumption will influence this, although further work is required to support this. It is also 

important to reiterate that the microbiological data for these CF clinical isolates of P. 

aeruginosa is lacking and no information is available as to whether these patients were also 

culture positive for S. aureus. The presence or absence of S. aureus in the airways of the 

individuals with CF is likely to influence P. aeruginosa virulence, where P. aeruginosa isolates 

obtained from CF patients co-infected with S. aureus have been shown to be less antagonistic 

towards S. aureus (Orazi and O'Toole, 2017).  

 The effect of anoxia upon the production of P. aeruginosa 

anti-staphylococcal virulence properties  

This chapter also aimed to evaluate the impact of anoxia upon a number of P. aeruginosa 

virulence properties, to greater understand the mechanisms which govern P. aeruginosa 

dominance. The production of several known anti-staphylococcal exoproducts in the 

supernatants of P. aeruginosa were studied and further subjected to heat-treatment and size 

fractionation in an attempt to determine the size of the compound(s) and determine whether it 

is heat-labile. The secretome of P. aeruginosa was also analysed following mass spectrometric 

analysis. 

Laboratory strain PAO1 has previously been shown to produce LasA, responsible for cleaving 

the peptidoglycan cell wall of S. aureus (Kessler et al., 1993b, Barequet et al., 2004). In turn, 

this provides P. aeruginosa with the essential micronutrient iron, which it can use for its own 

growth (Mashburn et al., 2005b).  This study demonstrated that PAO1 and CF isolates 5 and 

7 lysed heat-killed S. aureus under normoxia, whilst CF isolate 6 did not (Figure 31). PAO1 

subsequently lost its staphylolytic ability under anoxia, a finding supported by reports of a 

decrease in the transcription of LasA for PAO1 (Filiatrault et al., 2005) and a reduction in PAO1 

elastase (Lee et al., 2011) under anoxia.  

Mass spectrometric analysis of the P. aeruginosa secretome (Figure 38) further support these 

findings. Mass spectrometric score is a measure of ”goodness” of the all peptide identifications 

for a given protein, and it rises with the number of positively identified proteins. Protein score 

approximately reflects the relative protein abundance in a given dataset. Whilst PAO1 

demonstrated a minimal fold change in its LasA production under anoxia, using the score as 

an approximation of protein abundance, LasA was shown to be five times less abundant 

(score: 69.96) than LasA secreted by CF isolate 5 and 7 (score: 397.57 and 354.17 

respectively). Unlike PAO1, CF isolates 5 and 7 both retained their staphylolytic activity under 

anoxia (Figure 38). Thus, it is reasonable to suggest that the LasA produced by PAO1 under 

anoxia is likely to be below a threshold to exert a considerable effect upon S. aureus viability. 

S. aureus has also previously been shown to exhibit an increase in cell wall thickness under 
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anoxia (Conti et al., 1968) and whilst this was not investigated in this study, this mechanism 

may further reduce S. aureus susceptibility to P. aeruginosa LasA in the absence of oxygen.  

Whilst LasA may be advantageous to P. aeruginosa under growth in polymicrobial 

communities with S. aureus, collectively, LasA mediated lysis of S. aureus alone doesn’t 

appear to be essential for reducing S. aureus growth under normoxia. All CF isolates were 

able to outcompete S. aureus in planktonic co-culture (Figure 27), yet CF clinical isolate 6 

failed to exhibit detectable staphylolytic activity (Figure 31) or secrete detectable LasA as 

determined by mass spectrometry (Figure 38). The ability of select CF isolates to lyse S. 

aureus under anoxia however, may well provide competitive advantages to P. aeruginosa in 

the presence S. aureus, which unlike P. aeruginosa, is better adapted to thriving in 

environments low or devoid of oxygen (Yoon et al., 2002).  

LasA also doesn’t appear to be essential for modulating P. aeruginosa dominance under 

anoxia, as CF isolates 5 and 7 both retained their staphylolytic activity under in the absence of 

oxygen (Figure 31). Only CF isolate 7 was able to outcompete in planktonic co-culture (Figure 

27) and mixed species biofilm (Figure 28). Furthermore, whilst whole culture supernatants and 

>3 kDa fractions from PAO1 and the CF isolates were able to antagonise S. aureus growth, 

heat-treatment failed to abolish their inhibitory activity (Figure 47). As staphylolysis is known 

to be mediated by LasA, boiling such fractions is expected to denature this 20 kDa protease. 

Despite this, the heat-treated whole supernatant and >3 kDa fraction retained their anti-

staphylococcal activity. It is likely that the anti-staphylococcal factor influencing interspecies 

interactions is another compound retained within this fraction.  

The protease data shown in Figure 30 is in agreement with a previous study which 

demonstrated that protease production by PAO1 was below the limit of detection following 

growth under anoxia (Lee et al., 2011). Conversely, CF isolates 5 and 7 retained their protease 

activity under anoxia. Interestingly, only those isolates which produced detectable levels of 

protease and exhibited staphylolytic activity under normoxia and anoxia were able to exert a 

detrimental effect upon S. aureus biofilm (Figure 43 and Figure 44). Meanwhile, those isolates 

which failed to demonstrate any protease activity, also failed to disrupt or inhibit S. aureus 

biofilm production. Although the mechanisms which facilitate the disruption and inhibition of S. 

aureus biofilm requires further study, current literature suggests that it is a protease. Qin et al. 

demonstrated that extracellular products from wildtype PAO1 were able to disrupt S. 

epidermidis biofilm formation (Qin et al., 2009), whilst Park et al. demonstrated that the 

presence of external protease proteinase K induced S. aureus autolysis, leading to 

degradation of its own biofilm (Park et al., 2012). With S. aureus often being the first 

opportunistic pathogen to colonise CF airways (Lyczak et al., 2002), the ability for incoming P. 
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aeruginosa to disrupt and inhibit S. aureus biofilm may make S. aureus vulnerable to the 

arsenal of  P. aeruginosa virulence factors.  

The ability of select CF isolates of P. aeruginosa to secrete proteases under anoxia may extend 

beyond interspecies competition and facilitate host colonisation regardless of the dynamic 

changes in oxygen availability within the CF lung overtime. This includes facilitating the 

degradation of tight junctions between airway epithelia (de Bentzmann et al., 2000), the 

degradation of proteins of the ECM (Yang et al., 2015) and the breakdown of airway mucins 

(Henke et al., 2011), even when regions of the lung become anoxic. Protease secretion is also 

likely to provide protection against the host’s immune response, facilitating the degradation of 

sIgA (Diebel et al., 2009) and pulmonary surfactant A (Beatty et al., 2005) The ability to also 

degrade pro-inflammatory cytokines and chemokines including IL-8 (Okuda et al., 2011) will 

further impair neutrophil chemotaxis. Protease-mediated degradation of host lysozyme may 

also provide additional protection against P. aeruginosa killing (Jacquot et al., 1985). The 

ability to damage, colonise and survive in regions of CF airways devoid of oxygen may in turn 

protect P. aeruginosa from the anti-pseudomonal antibiotic tobramycin, shown to be ineffective 

under anoxia (Borriello et al., 2004), with the data presented in Figure 48 showing a two-fold 

increase in the MIC of this antibiotic under anoxia.  

An intriguing question regarding bacterial virulence is how P. aeruginosa is protected from the 

damaging effects of its own virulence factors? P. aeruginosa secretes a series of proteases, 

including alkaline protease, protease IV, along with LasA, LasB and LasD (Engel et al., 1998, 

Blackwood et al., 1983, Suter, 1994). LasA, LasB and protease IV are known to exist as 

intracellular pre-pro-enzymes, preventing harmful protease activity in the cytoplasm and 

periplasm (Kessler and Safrin, 1994). Upon secretion to the environment, it is believed that 

LasB activates LasA and protease IV (Oh et al., 2017, Kessler et al., 1998), as well as 

activating itself, through degradation of its own pro-peptide (Kessler et al., 1998).  

Pyocyanin is detected in high concentrations in CF sputum and has been shown to inhibit the 

respiratory chain of S. aureus, leading to the emergence of a sub-population of slow growing 

small colony variants (SCVs) (Hoffman et al., 2006, Biswas et al., 2009a). Pyocyanin is also 

known to target the host, inducing neutrophil apoptosis, including inhibiting airway epithelia 

respiration, calcium signalling and the beating of airway cilia (Wilson et al., 1988, Denning et 

al., 1998a, Usher et al., 2002, Kerr, 1994).  

PAO1 and CF isolates 5 and 6 produced detectable levels of pyocyanin under normoxia 

following phenol-chloroform extraction, whilst this was below the limit of detection for CF isolate 

7 ( 
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Figure 33). Despite this, CF isolate 7 was still able to dominate over S. aureus under normoxia 

(Figure 27). Furthermore, pyocyanin was below the limit of detection for all culture 

supernatants cultured under anoxia following phenol-chloroform extraction ( 

Figure 33).  

Secretome analysis demonstrated that there was a 10-fold decrease in the phenazine 

biosynthesis protein under anoxia (Figure 38) and a 21-fold decrease for CF isolate 5. This 

protein was not detected for CF isolates 6 and 7. However, mass spectrometry was only 

performed on samples collected from one independent repeat and pyocyanin production is 

mediated by the formation of numerous intermediates (Ho Sui et al., 2012). Furthermore, size 

exclusion and heat treatment also demonstrated that S. aureus antagonism was restricted to 

the >3 kDa fraction and was not abolished following heat-treatment (Figure 42). As pyocyanin 

is a protein, it is expected to be present in the <3 kDa fraction (due to it being 0.21 kDa size) 

its activity abolished by heat-treatment.  

Whilst a lack of pyocyanin under anoxia may be due to the redox nature of the phenazine 

(Rada and Leto, 2013), a previous study demonstrated that hypoxia significantly reduced 

pyocyanin production by P. aeruginosa (Schwank et al., 2013). Additionally, a lack of 

detectable pyocyanin under anoxia may have a minimal impact upon P. aeruginosa survival. 

The production of this respiratory inhibitor under anoxic conditions would fail to inhibit the 

respiratory chain of S. aureus due to undergoing anaerobic respiration. Furthermore, as 

molecular oxygen is also required for the neutrophil respiratory burst, the absence of oxygen 

will severely impair this antimicrobial defence (Mandell, 1974). The data in  

Figure 33 also shows that the presence of S. aureus failed to enhance the production of 

pyocyanin by the P. aeruginosa isolates tested. This is in contrast to a previous study which 

illustrated that the presence of S. aureus induced the production of pyocyanin by PAO1 under 

normoxia (Kluge et al., 2012). Further work is required to assess the impact of S. aureus 

extracellular products upon pyocyanin mRNA synthesis and whether S. aureus influences 

intracellular signalling and pyocyanin gene transcription.  

In addition to targeting S. aureus, pyocyanin may also act as an alternative electron acceptor 

for P. aeruginosa under normoxia, where steep electron acceptor gradients are known to exist 

within the airway lumen (Worlitzsch et al., 2002). This phenazine in turn could be re-oxidised 

following diffusion to an oxygen rich surface and thus be involved in redox homeostasis (Arai, 

2011). Pyocyanin has also been shown to be involved in QS, as well as in the uptake of iron 

during growth within biofilms (Dietrich et al., 2006, Koley et al., 2011).  P. aeruginosa is able 

to protect itself from the damaging effects of pyocyanin as a highly active pyocyanin 

intermediate is transported through the MexgHIOpmD efflux pump, preventing oxidation of its 
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own proteins and metabolites, whilst the intermediate, including pyocyanin itself upregulates 

expression of this efflux pump (Sakhtah et al., 2016, Dietrich et al., 2006).  

The ability of P. aeruginosa to cause chronic CF lung infections is also owed to its ability to 

chelate iron (Fe3+) through the secretion of pyoverdine. Siderophore production and 

consequent iron depletion by P. aeruginosa has been shown to reduce S. aureus growth, as 

well as enhance P. aeruginosa virulence (Nguyen et al., 2015, Mashburn et al., 2005b, Filkins 

et al., 2015). Shown in Figure 32, pyoverdine secretion varies across CF isolates of P. 

aeruginosa, a finding highlighted previously (Nguyen et al., 2015). Both PAO1 and CF isolate 

5 produced elevated levels of pyoverdine (Figure 32) and outcompeted S. aureus (Figure 27), 

whilst CF isolates 6 and 7 produced minimal amounts of pyoverdine and were still able to 

outcompete S. aureus in planktonic co-culture under normoxia (Figure 27). Under anoxia, 

pyoverdine production by PAO1 and CF isolate 5 was significantly reduced compared to 

normoxia, a finding also reported following the growth of P. aeruginosa under hypoxia 

(Schwank et al., 2013). Moreover, CF isolate 7 retained its ability to dominate over S. aureus 

in mixed planktonic culture (Figure 27), despite producing low levels of this siderophore.  

Analysis of the PAO1 secretome regarding iron uptake (Figure 38), demonstrated that whilst 

bacterioferritin was not detected, there was a 26-fold increase in the pyochelin receptor under 

normoxia compared to anoxia, whilst there was a 2-fold increase in the ferric uptake regulator 

protein under anoxia. CF isolate 5 demonstrated a 2-fold increase in bacterioferritin under 

anoxia, including a 2-fold decrease in the ferric uptake regulator protein. For CF isolate 6, only 

bacterioferritin was detected, with there being a 2-fold increase under anoxia. CF isolate 7 

exhibited a minimal fold change in the production of bacterioferritin and Fe3+ pyochelin receptor 

under anoxia, whilst exhibiting a 15.5-fold decrease in the production of ferric uptake regulation 

protein under anoxia. 

As the antimicrobial activity of P. aeruginosa cell-free supernatants was restricted to the >3 

kDa fractions (Figure 42), together with the secretome data, it is unlikely that siderophore 

production in isolation drives S. aureus antagonism. Furthermore, with iron being required by 

S. aureus for respiratory chain cytochromes (Voggu et al., 2006, Kogut and Lightbown, 1962), 

the ability of pyoverdine to chelate iron under anoxia may also elicit a minimal effect on S. 

aureus when it is not undergoing aerobic respiration. However, it is also likely that as iron-

depleted growth media was not used in this study, the importance of pyoverdine in governing 

interspecies interactions may be underestimated. Furthermore, as the assay used is solely 

based upon the inherent fluorescent properties of pyoverdine, a more specific approach such 

as high performance liquid chromatography (HPLC) would be required to accurately measure 

the pyoverdine abundance. 
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Surfactants (rhamnolipids) have previously been shown to target S. aureus (Haba et al., 2003, 

Bharali et al., 2013) and induce rapid necrosis of host neutrophils (Jensen et al., 2007) P. 

aeruginosa is known to secrete a number of rhamnolipids (Rendell et al., 1990), that have been 

shown to be important in facilitating bacterial detachment from biofilms (Boles et al., 2005) 

facilitating bacterial swarming (Deziel et al., 2003). Rhamnolipids have also been shown to 

target the host, including inhibiting macrophage-mediated phagocytosis (McClure and Schiller, 

1996), reducing airway epithelial cell cilia beat frequency (Kanthakumar et al., 1996) along with 

reducing cell polarity and barrier function (Zulianello et al., 2006).  

Assessing surfactant activity using the established drop collapse assay (Limoli et al., 2017, 

Price et al., 2015) the data shown in Figure 34 demonstrated that PAO1 and the three CF P. 

aeruginosa isolates tested harboured and retained their surfactant activity, although this was 

reduced under anoxia for PAO1 and CF isolate 5. Surfactant activity was the greatest for CF 

isolate 7 (Figure 34) under both normoxia and anoxia.  

Secretome analysis of PAO1 demonstrated that there was a 2.9-fold decrease in esterase A 

under anoxia (Figure 38), supported by reductions in the drop collapse assay (Figure 34), 

where PAO1 surfactant activity was reduced in the absence of oxygen. Conversely, CF isolate 

5 exhibited a 2.9-fold increase under anoxia, although this was not reflected in the drop 

collapse assay (Figure 34). CF isolate 6 failed to produce any detectable esterase A (Figure 

38), despite exhibiting surfactant activity (Figure 34). Additional repeats are required, to allow 

more meaningful comparisons and conclusions to be made from this data. Whilst CF isolate 7 

exhibited the greatest surfactant score (Figure 34), surfactants are expected to be in the <3 

kDa. However, only the >3 kDa fractions of the cell-free supernatant obtained from CF isolate 

7 antagonised S. aureus growth.  

P. aeruginosa employs several other virulence properties which were not characterised in this 

study and may contribute to the differences seen in bacterial competition. Whilst hydrogen 

cyanide has been shown to target the respiratory chain of S. aureus under normoxia, previous 

research has demonstrated that hydrogen cyanide is rapidly inactivated under anoxia (Blumer 

and Haas, 2000) and is therefore unlikely to govern interspecies interactions in the absence of 

oxygen. Whilst P. aeruginosa is also known to produce the small respiratory inhibitor HQNO 

(Machan et al., 1992), its impact under anoxia is likely to be minimal when S. aureus is 

undergoing anaerobic respiration. Furthermore, PQS is known to regulate the production of 

itself, as well as regulate the secretion of virulence factors, including elastase (Diggle et al., 

2003, Wade et al., 2005). However, its inhibition under anoxia means its impact in anoxic 

regions of the CF lung is likely to be minimal (Schertzer et al., 2010, Toyofuku et al., 2008). 

The antibiotic mupirocin has been shown to target S. aureus (Matthijs et al., 2014), however 

its production by CF isolates of P. aeruginosa and its production under anoxia has yet to be 
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determined. Whilst this study and others have shown that P. aeruginosa exoproducts are 

effective at antagonising the growth of S. aureus, the ability of type III and IV secretion systems 

to deliver virulence properties intracellularly to host cells and competing bacteria are also likely 

to play a role in bacterial competition (Engel and Balachandran, 2009, Hood et al., 2010).  
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A study which removed P. aeruginosa exoproducts using a biofilm flow model demonstrated 

that mucoid isolates were able to outcompete S. aureus, whilst non-mucoid isolates facilitated 

S. aureus biofilm formation (Yang et al., 2011). This finding contrasts with other studies which 

demonstrate that mucoid isolates exhibit reduced antagonism towards S. aureus (Limoli et al., 

2017). Thus, not only are virulence factors important for bacterial competition, but growth 

conditions are also likely to influence this further. 

Results from this study suggest that the major anti-staphylococcal compound(s) governing 

interspecies interactions under normoxia and anoxia is restricted to the >3 kDa fraction, is heat 

stable and is likely to be an anti-staphylococcal factors not studied. An interesting observation 

in Figure 42 is that the heat-treated whole supernatant and >3 kDa fractions for most CF 

isolates under normoxia and anoxia appeared to more greatly reduce S. aureus growth, 

compared to those which had not been heat-treated. Perhaps heating inactivates a factor 

within the complex culture supernatant which may attenuate the potency of the anti-

staphylococcal factor(s) or attenuate a compound which promotes growth. It is also entirely 

possible that the compound(s) modulating P. aeruginosa dominance under normoxia varies to 

the factor(s) governing bacterial community dynamics under anoxia. A limitation of this study 

is that the absolute concentration of the P. aeruginosa exoproducts in cell-free culture 

supernatants was not determined and it may be that some of the virulence factors were at 

concentrations too low to exert an antagonistic effect upon S. aureus.  

The inability to identify a single virulence factor which facilitates P. aeruginosa dominance is a 

well-recognised phenomenon within CF (Bragonzi et al., 2012, Baldan et al., 2014a). It is likely 

that the ability of P. aeruginosa to dominate under both environmental conditions is not due to 

the secretion of a single virulence property, but is due to the production of several (Filkins et 

al., 2015, Michelsen et al., 2014, Limoli et al., 2016, Bhagirath et al., 2016, Bragonzi et al., 

2012). Previous authors have reported that deletion of a single virulence property has been 

shown to reduce P. aeruginosa antagonism towards S. aureus (Limoli et al., 2017). Despite 

this, it is interesting to note that CF isolate 7 which produced the smallest array of anti-

staphylococcal factors studied and a minimal amount of protein for mass spectrometry 

analysis, was the only isolate able to outcompete S. aureus under anoxia.  

Additional work is required to gain a better understanding of the mechanisms behind these 

findings. One possible approach would be to generate mutants of the P. aeruginosa CF 

isolates, systematically targeting individual virulence factors, including LasA. As co-isolated 

isolates of S. aureus and P. aeruginosa have previously been shown to be less antagonistic 

compared to those from mono-infected patients (Fugere et al., 2014a, Limoli et al., 2017), the 

effects of anoxia upon co-infected isolates also warrants further investigation.  
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 Impact of anoxia and S. aureus exoproducts upon P. aeruginosa 

motility  

The research presented in Figure 46 shows the effects of S. aureus supernatant, as well as 

anoxia upon P. aeruginosa CF isolate motility. Decreases in the production of proteins relating 

to swimming motility in PAO1 was identified following mass spectrometry analysis (Figure 39), 

which supports the swimming motility data shown in Figure 46 – where PAO1 exhibited a loss 

of detectable PAO1 swimming motility under anoxia. Conversely, anoxia exerted a minimal 

impact upon the production of proteins relating to swimming motility for CF isolates 5 and 6 

(Figure 39), a finding supported by swim motility diameters shown in Figure 46.  

Whilst S. aureus exoproducts failed to elicit any effect upon P. aeruginosa swimming motility 

under normoxia, the ability of these exoproducts to both restore and enhance swimming 

motility under anoxia may facilitate P. aeruginosa dissemination, colonisation and consequent 

survival into other areas of the CF lung, including those which are poorly oxygenated. PAO1 

and each of the CF isolates tested demonstrated varying degrees of swarming motility under 

both normoxia and anoxia (Figure 46). The addition of S. aureus cell-free supernatant 

significantly increased the swarming motility of PAO1 under normoxia only, whilst it did not 

modulate swarming of the CF isolates under both oxygen conditions tested. This modulating 

activity of S. aureus culture supernatant could not be restricted to a single size fraction (Figure 

47) and thus further work is required to characterise the S. aureus compound(s) modulating P. 

aeruginosa motility.  

 Impact of anoxia upon P. aeruginosa susceptibility to tobramycin  

Antimicrobial treatment strategies against P. aeruginosa employ the use of inhaled antibiotics, 

to delay or prevent chronic CF airway infection. Despite this approach, current treatment 

strategies are relatively ineffective, with diagnostic laboratory antibiotic susceptibilities using 

planktonic cultures under normoxia, poorly translating in patients (Hassett et al., 2002). Whilst 

many CF isolates of P. aeruginosa exhibit resistance to commonly used antibiotics due to long 

term exposure at sublethal MICs (Kohanski et al., 2010), the fact that CF airways contain 

regions of anoxia is likely to influence treatment efficacy (Worlitzsch et al., 2002, Hassett et 

al., 2009). The frontline antibiotic tobramycin, as well as levofloxacin have both previously been 

shown to have reduced efficacy under anoxia (King et al., 2010, Hill et al., 2005).  

Data in Figure 48 demonstrated that anoxia reduced the efficacy of tobramycin for PAO1 and 

all CF isolates tested. This is possibly due to poor antibiotic uptake, which requires energy 

from quinone-associated electron transport, which would not be function in the absence of 

oxygen (Bryan and Kwan, 1983). The presence of molecular oxygen has been shown to 

restore the bactericidal activity of aminoglycoside antibiotics which is lost under anoxia (Mader 



179 

 

et al., 1989). Whilst previous research has shown that the presence of nitrate itself reduces 

antibiotic susceptibility (Borriello et al., 2004), LBN broth was used to conduct MIC testing 

under both normoxia and anoxia. Although this study tested tobramycin against planktonic 

cultures of P. aeruginosa, for antimicrobial treatments to be more effective, future studies 

would seek to use biofilm cultures of P. aeruginosa grown under anoxia, as well its impact 

upon mixed species biofilms. More closely mimicking the conditions of the CF lung may help 

to make current treatment approaches more efficacious in reducing the P. aeruginosa burden 

in CF airways. 

 The impact of oxygen upon P. aeruginosa survival: secretome 

analysis by mass spectrometry  

Mass spectrometry analysis also demonstrated changes within the secretome of 

P. aeruginosa. PAO1 demonstrated a 17.4-fold increase in the presence of denitrification 

regulatory protein NirQ under anoxia, compared to normoxia (Figure 35). As P. aeruginosa 

undergoes denitrification under anoxia, using nitrogen as an end terminal acceptor in the 

absence of molecular oxygen (Schreiber et al., 2007), the induction of this protein under anoxia 

is likely to be involved in ATP synthesis. Conversely, there was a 39.4-fold increase in 

periplasmic nitrate reductase under normoxia (Figure 35), supporting previously findings that 

anoxia represses this enzyme (t Riet et al., 1968). An additional study has also shown that 

under anoxia, membrane bound nitrate reductase is depressed, in favour of upregulating 

periplasmic nitrate reductase (Van Alst et al., 2009).  

Nitrite reductase is involved in the conversion of nitrite to nitric oxide during denitrification 

(Henry and Bessieres, 1984) and is produced only when the bacteria is growing under 

anaerobiosis in the presence of nitrate (Yamanaka et al., 1961). Whilst the data in Figure 35 

shows this enzyme is detected and is more abundant under normoxia than anoxia (a 2.8-fold 

increase), this is likely due to nitrate being present in LBN broth used to grow CF isolates under 

both environmental conditions tested.  

In addition to producing extracellular proteases to target competing bacteria, such as LasA 

against S. aureus (Kessler et al., 1993b), P. aeruginosa produces soluble pyocin-S2 which  

targets other competing P. aeruginosa strains and degrades their DNA. Protection of a given 

P. aeruginosa strain to its own pyocin arises due to the synthesis of a pyocin immunity protein 

(Sano, 1993, Parret and De Mot, 2000, Michel-Briand and Baysse, 2002). The ability to also 

secrete pyocyins under anoxia may be important for bacterial survival, particularly when 

resources such as nitrate availability are limited in a competitive environment. Whilst pyocyin 

was detected for PAO1 and CF isolate 6, it was not detected for CF isolates 5 and 7 (Figure 

36). Pyocins are routinely detected in CF clinical isolates of P. aeruginosa and are used to type 
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strains, as well as act as a marker to investigate the spread of resistant strains between CF 

patients (Richardson et al., 1991, Jones et al., 2001).  

Catalase and superoxide dismutase were both shown to be downregulated in PAO1 and CF 

isolates 5 and 6 under anoxia (Figure 37). As colonisation of CF airways by P. aeruginosa 

leads to a neutrophil dominated immune response, the production of catalase and superoxide 

dismutase is likely to provide protection against oxidative stress, due to the breakdown of the 

reactive oxygen intermediate hydrogen peroxide, which is formed as part of the neutrophil 

respiratory burst (Winterbourn et al., 2006). As the absence of oxygen will significantly impair 

this immune response, the failure of PAO1 and the P. aeruginosa CF isolates to produce these 

two enzymes under anoxia (Figure 37) may prevent valuable nutrients and resources from 

being wasted.     

Finally, lipid A deacylase is an enzyme known to be involved in the modification of the major 

surface antigen LPS, to escape TLR4 detection upon airway epithelia (Chow et al., 1999). 

PAO1 exhibited a 2-fold decrease of lipid A deacylase under anoxia compared to normoxia 

(Figure 37), whilst CF isolate 5 exhibited a striking 61.65-fold increase in lipid A deacylase 

under anoxia. This enzyme was not detected for CF isolate 6, a finding which is known to occur 

in some CF isolates (Ernst et al., 2006). Whilst there is no doubt that changes to the structure 

of lipid A provide survival advantages to P. aeruginosa in the CF lung (Ernst et al., 1999, Ernst 

et al., 2003, Cigana et al., 2009), changes in the abundance of this enzyme under anoxia are 

complex and require further study.  

 The impact of anoxia upon quorum sensing (QS) 

P. aeruginosa virulence is governed by two major AHL signals, 3-oxo-C12-HSL by the las 

system and C4-HSL by the rhI system. A third QS system PQS utilises 

2-heptyl-3-hydroxy-4-quinolone (Pearson et al., 1995, Gambello and Iglewski, 1991, McGrath 

et al., 2004). Accumulation of these QS signal molecules regulate the production of over 300 

virulence genes in P. aeruginosa, including bacterial swarming (Kohler et al., 2000), biofilm 

formation (Yang et al., 2009) the secretion of proteases (Schuster et al., 2003) and 

anti-staphylococcal compounds such as lasA and pyocyanin (Pearson et al., 1997, Kessler et 

al., 1993b). 

Preliminary experiments sought to determine the impact of normoxia and anoxia upon the 

production of 3-oxo-C12-HSL and C4-HSL by P. aeruginosa. The production of a third QS signal 

molecule PQS was not assessed, as it is reported to not be produced under anoxia (Schertzer 

et al., 2010, Toyofuku et al., 2008). As was shown in Figure 40, the production of C4-HSL 

varied across the P. aeruginosa CF isolates, with its production appearing to be lowest for CF 
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isolate 7 under both environmental conditions. Whilst the QS data is preliminary and additional 

repeats are required, such a finding is of interest.  

C4-HSL governs the production of many P. aeruginosa virulence factors, including proteases, 

elastases and pyocyanin (Winson et al., 1995, Pearson et al., 1995, Bosgelmez-Tinaz and 

Ulusoy, 2008). Whilst PAO1 produced higher levels of C4-HSL under both normoxia and 

anoxia, it lost its ability to lyse S. aureus under anoxia (Figure 31), as well as degrade skimmed 

milk agar (Figure 30). Conversely, CF isolate 7 exhibited staphylolytic ability (Figure 31) and 

protease activity under normoxia (Figure 30) and retained this under anoxia, despite appearing 

to produce low levels of C4-HSL under both conditions. 

Losses in P. aeruginosa virulence under anoxia have previously been reported to be due to 

attenuations in QS, where the addition of exogenous AHLs has been shown to restore 

virulence gene expression (Lee et al., 2011).  However, PAO1 produced comparable levels of 

C4-HSL under normoxia and anoxia and thus questions remain as to why elastase and 

protease activity was below the limit of detection under anoxia. Unlike C4-HSL, early findings 

suggest that the absence of oxygen attenuates C12-HSL production for PAO1 and not the CF 

isolates (Figure 41). Whilst elastase production is governed by the las system, it has also been 

shown to be partially regulated by the rhl system (Pearson et al., 1997).  

The poor correlations between virulence and QS are most likely to be due to the preliminary 

nature of these findings, with results being obtained from a single independent experiment. It 

may also be possible that different AHL threshold concentrations exist across the CF isolates 

in order to activate virulence gene expression, a hypothesis that has been previously 

suggested (Fang et al., 2013). Additionally, complex regulatory pathways are known to govern 

P. aeruginosa gene expression. For example, some strains of P. aeruginosa have been shown 

to produce the autoinducer C12-HSL despite mutations in lasR, a phenomenon which results 

from the ability of the rhI system to override this mutation (Dekimpe and Deziel, 2009).   

4.7 Limitations  

The work presented in this chapter has several limitations. The first is that the experiments 

were performed using LBN broth and questions remain as to how closely this mimics the 

nutrient availability found within CF airways. Stationary phase growth of the bacterial cultures, 

however, led to the development of macroscopic clumps of P. aeruginosa characteristically 

seen in CF sputum (Sriramulu et al., 2005) and also allowed comparisons to be made to 

published literature which has widely used LB broth to study P. aeruginosa physiology and 

interspecies interactions. Despite this, the growth medium chosen is likely to influence the 

bacterial physiology and virulence of P. aeruginosa and S. aureus. Previous studies have 

shown how the type of growth media and its nutrient availability influences both P. aeruginosa 
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motility (Wolfgang et al., 2004) and the secretion of extracellular virulence factors (Palmer et 

al., 2007a), including rhamnolipids (Mata-Sandoval et al., 2001). Whilst some studies have 

employed expectorated sputum samples from CF and non-CF patients (Palmer et al., 2005, 

Palmer et al., 2007a), there have been recent developments in the development of synthetic 

CF sputum, supplemented with salmon sperm DNA and mucin (Palmer et al., 2007a, Turner 

et al., 2015, Fung et al., 2010).  

The levels of nitrate within CF sputum has been reported to be approximately 400 µM (Linnane 

et al., 1998). However, this study used 100 mM potassium nitrate (equivalent to 1% (w/v) 

potassium nitrate), a concentration that has been widely used to study P. aeruginosa under 

anoxia (Filiatrault et al., 2006, Alvarez-Ortega and Harwood, 2007, Van Alst et al., 2009, 

Williams et al., 1978, Frederick et al., 2001).  

4.8 Future work 

Future work would seek to use artificial CF sputum as the growth medium for the study of S. 

aureus-P. aeruginosa interspecies interactions, in attempt to more closely mimic the 

physiology of the CF lung. It is likely that the growth medium will require optimisation in order 

to facilitate P. aeruginosa growth under anoxia. The use of a benchtop oxygen meter or 

luminescent dissolved oxygen sensor would also allow measurements to be made regarding 

the amounts of dissolved oxygen within artificial sputum over the course of co-infection 

(Alvarez-Ortega and Harwood, 2007, Chen et al., 2003a), something which was not addressed 

in this work.  

The use of P. aeruginosa mutants (i.e. with abolished QS or virulence factors), would also 

provide a more targeted approach to studying individual P. aeruginosa virulence properties 

and their impact upon governing S. aureus-P. aeruginosa interspecies interactions. A similar 

approach of could be used to generate S. aureus mutants in order to determine the 

compound(s) which are likely to modulate P. aeruginosa swimming and swarming motility in 

an isolate dependent manner under normoxia and anoxia.  

As mentioned previously, co-isolated strains of S. aureus and P. aeruginosa have been shown 

to be less antagonistic than those from mono-infected patients. A longitudinal study of select 

S. aureus and P. aeruginosa co-isolates would allow the pathoadaptive mechanisms that occur 

overtime in both S. aureus and P. aeruginosa to be studied in greater detail. This could be 

complimented by further mass spectrometry work addressing the secretome of P. aeruginosa 

CF isolates, to provide a greater insight into the impact of oxygen availability upon bacterial 

physiology and virulence.  
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4.9 Conclusion  

The originality of this research is that it demonstrates the impact of oxygen availability upon 

S. aureus-P. aeruginosa interspecies interactions in both planktonic co-culture and mixed 

species biofilms. Whilst P. aeruginosa CF isolates were shown to dominate under normoxia in 

both planktonic and biofilm culture, anoxia reduced P. aeruginosa antagonism in an isolate 

dependent manner and thus may be one mechanism which facilitates S. aureus-P. aeruginosa 

co-existence within CF airways, a finding reported clinically and one that is associated with 

poorer clinical outcomes. The proposed mechanism of how anoxia may influence S. aureus-

P. aeruginosa interspecies interactions is summarised in Figure 49. The results presented also 

suggest that the compound(s) which mediates P. aeruginosa dominance under normoxia and 

anoxia is an extracellular factor which is >3 kDa in size and is heat stable. Perhaps eventual 

identification of this compound may open up new therapeutic avenues to interfere with these 

interspecies interactions, to provide more favourable outcomes. The results also extend to 

their likely impact upon the host. The ability of select CF P. aeruginosa isolates to retain their 

virulence properties, including protease production and motility under anoxia, may provide P. 

aeruginosa with a survival advantage, permitting airway persistence in an environment where 

oxygen availability is likely to decrease overtime.    
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Figure 49. Effects of anoxia upon S. aureus-P. aeruginosa interactions in the CF lung. Schematic diagram from the data obtained from this chapter, as to the numerous 
effects that anoxia may have upon S. aureus-P. aeruginosa interspecies interactions in CF airways.  
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5 Determining the impact of S. aureus-P. 

aeruginosa co-infection upon the airway 

inflammatory response   

5.1 Chapter Transition  

Although several previous studies have demonstrated the ability of P. aeruginosa to reduce 

the viability of S. aureus in vitro, chapter 4 revealed how changes in oxygen availability 

influence the secretion of a number of P. aeruginosa virulence properties and shapes S. 

aureus-P. aeruginosa interspecies interactions in planktonic co-culture and mixed species 

biofilms. This polymicrobial nature of CF airways infection is likely to not only impact upon the 

survival and persistence of each bacterial species within the dynamic microbial community, 

but also influence the host’s airway inflammatory response.  

5.2 Introduction  

In addition to acting as a physical barrier, airway epithelia play an essential role in surveying 

and orchestrating an innate immune response to inhaled pathogens within the conducting 

airways. Their ability to detect a broad range of microbial components and diffusible 

extracellular products arises due to the expression of a diverse repertoire of PRR’s upon their 

cell surface (Gomez and Prince, 2008).  Whilst airway epithelia express a number of receptor 

families including cytosolic NOD-like receptors (Uehara et al., 2007) and C-type lectins (Rust 

et al., 1991), the most abundant family are the transmembrane TLRs. TLRs are glycoproteins 

which consist of an extracellular leucine rich repeat domain and a conserved cytoplasmic toll-

IL-1 receptor (TIR) domain (O'Neill and Bowie, 2007). Airway epithelia are able to detect a 

diverse array of PAMPs, not only due to airway epithelia expressing all ten known TLRs (Sasai 

and Yamamoto, 2013), but also due to their ability to form both homo- and heterodimers (Hajjar 

et al., 2001). The predominant TLRs involved in bacterial detection are the cell surface 

associated TLR2, -4 and -5 (Muir et al., 2004). 

TLR2 recognises the widest variety of bacterial products of the TLRs due to its ability to form 

heterodimers with other TLRs (Muir et al., 2004, Greene and McElvaney, 2005, Wetzler, 2003). 

This includes the detection of P. aeruginosa-derived ExoS toxin via its C-terminus (Epelman 

et al., 2004) along with specific structural arrangements of LPS and lipoproteins from Gram-

negative bacteria (Erridge et al., 2004) following co-localisation with the high affinity LPS 

binding protein CD14 (Yang et al., 1999, Kirschning et al., 1998).  
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TLR2 is also involved in the detection of mannuronic acid – a component of P. aeruginosa 

alginate (Flo et al., 2002). In addition to being involved in the detection of the flagellin protein 

required for P. aeruginosa swimming motility (Adamo et al., 2004), TLR2 detects peptidoglycan 

and lipoteichoic acid (LTA) from the cell wall of Gram-positive bacteria (Yoshimura et al., 1999, 

Schwandner et al., 1999), including the major CF pathogen S. aureus (Iwaki et al., 2002).  

Furthermore, TLR2 also detects Panton-Valentine Leucocidin (PVL) secreted by S. aureus 

(Zivkovic et al., 2011), responsible for inducing neutrophil apoptosis (Genestier et al., 2005). 

Following infection, TLR2 is promptly transported to the apical surface of airway epithelia in 

lipid rafts, associating with the glycolipid co-receptor asialoGM1 (Soong et al., 2004). The 

absence of TLR2 is associated with an increased susceptibility to S. aureus (Takeuchi et al., 

2000). TLR2 expression has been shown to be elevated in the immortalised CF cell line 

CFBE41o–, compared to the non-CF cell line, 16HBE14o (Shuto et al., 2006). However, TLR2 

expression in bronchial biopsies from individuals with CF were shown to comparable to healthy 

controls (Hauber et al., 2005) 

TLR4 plays role in the recognition of the lipid A moiety of LPS (Chow et al., 1999, Poltorak et 

al., 1998). However, receptor activation requires the formation of a complex including MD2, 

CD14 and LPS-binding proteins, with MD2 being involved in the binding to LPS (Pugin et al., 

1993, Park et al., 2009, Nagai et al., 2002). Interestingly, the CFTR corrected cell line 

corrCFBE41o- has been shown to express higher levels of TLR4 compared to the isogenic CF 

cell line CFBE41o-, which is supported by histological analysis of airway epithelia from CF 

lungs, which  exhibited reduced TLR4 expression, compared to healthy controls (John et al., 

2010). Conversely, another study demonstrated that TLR4 expression in bronchial biopsies 

from individuals with CF were significantly higher than those in healthy controls (Hauber et al., 

2005). 

TLR5 detects a highly conserved site of P. aeruginosa bacterial flagellin (Adamo et al., 2004, 

Hayashi et al., 2001), the protein monomer responsible for flagella-mediated motility. Flagellin 

deficient mutants of P. aeruginosa subsequently do not initiate an airway inflammatory 

response by TLR5 (Zhang et al., 2005, Blohmke et al., 2008, Hybiske et al., 2004). IB3-1 CF 

epithelia have previously been demonstrate to have increased mRNA expression of TLR5 

(Blohmke et al., 2008), whilst the addition of an anti-TLR5 antibody was shown to reduce IL-6 

production by CF IB3-1 epithelia (Blohmke et al., 2008). There is also evidence that TLR2 is 

involved in the detection of bacterial flagellin, possibly due to the ability of TLRs to 

heterodimerise (Adamo et al., 2004). Residing intracellularly and mobilised to the apical 

surface during infection (Gewirtz et al., 2001), TLR5 is able to recognise flagellar from both the 

major Gram-negative CF pathogen P. aeruginosa (Zhang et al., 2005), along with flagellar from 

Gram-positive bacteria (Hayashi et al., 2001). Both TLRs are likely to play an essential role in 

pulmonary airway defence, as a lack of TLR4 and TLR5 expression has been associated with 
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a hypersusceptibility to P. aeruginosa infection (Ramphal et al., 2008, Raoust et al., 2009). 

This protective role of TLRs within the airways is further supported by a study which silenced 

MYD88, an adaptor protein associated with downstream signalling following activation of most 

TLRs. Silencing its expression resulted in a blunting of an early airway inflammatory response, 

along with uncontrolled P. aeruginosa proliferation and necrosis of the respiratory epithelium 

(Skerrett et al., 2004).  

Whilst TLR activation by lipoproteins, peptidoglycan and LPS lead to the upregulation of 

antimicrobial peptides including HBD-2 (Hertz et al., 2003, Homma et al., 2004, Jia et al., 

2004), the CF airway response to infection is dominated primarily by the release of IL-8, with 

CF bronchial airway epithelia (Tabary et al., 1998, Kammouni et al., 1997) and alveolar 

macrophages (Bonfield et al., 1995b, Khan et al., 1995)  being principle sources of this pro-

inflammatory chemokine. IL-8 is a potent activator and recruiter of neutrophils to the 

basolateral lumen of airway epithelia (Huber et al., 1991, Hammond et al., 1995). In non-CF 

airways, neutrophils form 1% of all inflammatory cells, whilst making up 70% in CF airways 

(Kelly et al., 2008). This immune cell recruitment is exacerbated further as neutrophils exposed 

to a pro-inflammatory cytokine environment release of monocyte chemoattractant protein-1 

(MCP-1), leading to late-stage monocyte recruitment (Yamashiro et al., 1999) and further 

amplifying the inflammatory cycle.  

The exceedingly high levels of IL-8 in CF sputum, BALF and serum (Dean et al., 1993, Bonfield 

et al., 1995b) are known to exacerbate damage to the CF lung, through the release of NE. 

Detected in micromolar concentrations (Konstan et al., 1994), NE tips the protease-

antiprotease balance, stimulates mucus hypersecretion (Kohri et al., 2002, Fischer and 

Voynow, 2002) and induces IL-8 gene expression in airway epithelia (Nakamura et al., 1992). 

In turn, this leads to a chronic cycle of pulmonary inflammation, irreversible tissue damage and 

decreases within lung function. The development of the oral NE protease inhibitor AZD9668  

has been shown to be associated with reductions in the sputum biomarkers including TNF-α, 

IL-6 and IL-8 and elastin degradation markers, despite eliciting no effect upon lung function, 

neutrophil counts, or NE activity (Elborn et al., 2011).  

The secretion of another pro-inflammatory cytokine IL-6 plays an important role in 

orchestrating the airway inflammatory response (Hurst et al., 2001). Acting in an endocrine 

fashion, it is a potent activator of acute phase protein production by the liver, as well as in the 

maturation of B lymphocytes and activation of T lymphocytes as part of the adaptive immune 

system (Bettelli et al., 2006, Courtney et al., 2004, Fattori et al., 1994). IL-6 has also been 

shown to play an important role in recruiting leukocytes, through stimulating IL-8 and MCP-1 

release from endothelial cells, as well as enhancing the expression of molecules important for 

leukocyte adhesion (Romano et al., 1997). The levels of IL-6 in the serum of individuals with 
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CF have been shown to increase during airway inflammation (Horsley et al., 2013) and the 

concentrations detected are significantly correlated with S. aureus bacterial density in CF sputa 

(Junge et al., 2016), making it a potential future biomarker.  

The release of IL-10 from airway epithelia is involved in the resolution of inflammation. 

Increasing the synthesis of I-ĸB, this serves to subsequently reduce NF-ĸB activity and in turn, 

downregulate the production of pro-inflammatory cytokines, including IL-8 (Barnes and Karin, 

1997, Tabary et al., 2003). An absence of IL-10 has been associated with a prolonged pro-

inflammatory response and neutrophil persistence within CF airways (Chmiel et al., 2002).   

Numerous studies to date have examined the impact of whole live S. aureus or P. aeruginosa 

upon the airway inflammatory response, as well as the impact of their secreted products 

(Moreilhon et al., 2005, Hawdon et al., 2010, Beaudoin et al., 2013, Massion et al., 1994, Pena 

et al., 2009, Delgado et al., 2006, Zhang et al., 2005, LaFayette et al., 2015, DiMango et al., 

1998). Indirect interactions between the products of CF pathogens and the host are important. 

P. aeruginosa-derived pyocyanin has been detected at concentrations of up to 27 µg/mL in CF 

sputum (Wilson et al., 1988), whilst host antibodies to extracellular proteases and exotoxin A 

secreted by P. aeruginosa have also been detected (Doring et al., 1985). Furthermore, CF 

patients have been shown to mount IgG antibodies to S. aureus exoproducts, including 

leucotoxins LukED (Junge et al., 2016), LukAB (Thomsen et al., 2014) and PVL (Chadha et 

al., 2016) the pore forming alpha toxin (Ericsson et al., 1986) and cell-wall derived teichoic 

acid (Hollsing et al., 1987a). Although it is appreciated that CF airway infections are 

polymicrobial in nature, how airway epithelia respond to multiple bacterial stimuli shed and 

secreted by different CF pathogens is poorly understood.  

5.3 Aims and objectives 

Chapter 4 aimed to examine the impact of S. aureus and P. aeruginosa extracellular products 

upon the release of the major pro-inflammatory mediators IL-8 and IL-6, as well as the anti-

inflammatory cytokine IL-10 by CF and non-CF bronchial epithelia. Monoculture stimulation 

with S. aureus and/or P. aeruginosa cell-free supernatants were performed, prior to co-

stimulation with S. aureus and P. aeruginosa exoproducts simultaneously. The impact of these 

challenges upon bronchial epithelia metabolism (as a measure of viability) and cellular 

morphology were also determined.     
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5.4 Methods 

Bacterial strains and growth conditions. S. aureus ATCC 6538, P. aeruginosa PAO1 and 

P. aeruginosa CF clinical isolates 5, 6 and 7 were used for all experiments. Single colonies of 

each isolate grown routinely on LB agar were inoculated into 10 mL of LB2 broth and were 

grown overnight (approximately 16 h), under normoxia at 37 °C. The following day, the 

overnight cultures were diluted 1:100 into 100 mL of LB broth in 250 mL conical flasks and 

were grown under normoxia at 37 °C for 24 h. At 24 h, the density of the cultures were 

determined at OD470 and recorded. All cultures were used after 24 h despite differences in the 

final bacterial cell density.   

Preparation of cell-free supernatants. Twenty four h cultures of S. aureus and P. aeruginosa 

grown under normoxia were centrifuged at 4,000 x g for 30 min at 4 °C to pellet the bacterial 

cells. Each supernatant was sterile filtered with a low-binding 0.22 µm polyethersulfone 

membrane filter and stored at −20 °C until use. To confirm sterility after each preparation, a 

small volume of the supernatant was streaked out on LB agar plate and incubated for 

approximately 20 h prior to reading. All cell-free supernatants were heat-inactivated for 10 min 

at 95 °C to minimise airway epithelial cell toxicity, unless otherwise specified.  

Airway epithelial cell culture. For airway inflammation studies, IB3-1 and C38 cells were 

seeded into 24-well polystyrene tissue culture treated plates at 1x105 cells/mL, with 1 mL of 

the cell suspension being added to each well. Plates were incubated overnight at 37 °C with 

5% CO2. The following day at confluence, cell culture media was aspirated and replaced with 

1 mL/well of starvation medium (DMEM/F12 supplemented with 1% (v/v) FBS) for a minimum 

of 16 h prior to stimulation. For cell morphology assays, cells were seeded into 96-well plates 

at 2.5x104 cells/well in a total of volume of 200 µL and incubated overnight at 37 °C with 5% 

CO2.  

Airway epithelial cell bacterial product challenge. Heat-inactivated cell-free supernatants 

of S. aureus and/or P. aeruginosa were added to the epithelial cells at a 1:10 dilution. LB broth 

was used as the negative control, whilst stimulation with LPS from E. coli 0111:B4 was used 

at a final concentration of 10 µg/mL. IB3-1 and C38 were then incubated at 37 °C with 5% CO2 

for 24 h. After stimulation, the cell culture supernatants were centrifuged at 14,000 x g for 10 

min to pellet any cell debris, transferred to a new sterile microtube and stored at −20 °C until 

further analysis. For the cell morphology study, cell-free supernatants of S. aureus and/or P. 

aeruginosa were added to the cells at a 1:10 dilution, with LB broth being added as a negative 

control.  Plates were incubated 37 °C with 5% CO2 for 24 h. 
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Airway epithelial cell metabolism. CellTiter BlueTM (CTBTM) is an endpoint assay based on 

fluorometry, which measures cell metabolism as a function of cell viability. Metabolically active 

viable cells are able to convert resazurin (blue) reagent to its highly fluorescent product 

resorufin (pink). CTBTM was added to the cell culture medium using 20 µL for each 100 µL of 

cell culture medium. The reagent was incubated for 2 h at 37 °C (as per manufacturer’s 

instructions). The fluorescence was subsequently read on a multiwell fluorescent plate reader 

using 560/590nm excitation/emission wavelength.  

Detection of IL-8, IL-6 and IL-10 by ELISA. For the quantification of human IL-8, IL-6 and IL-

10, clarified cell culture supernatants from CF and non-CF airway epithelia were assayed using 

IL-8, IL-6 and IL-10 ELISA Ready-Set-Go® kits. All reagents were part of each kit unless 

otherwise stated and were prepared according to the manufacturer’s product information. 

Morphology images. Cell-free supernatants from S. aureus and/or P. aeruginosa were added 

to IB3-1 and C38 cells and incubated for 24 h at 37 °C. After this, epithelial cell morphology 

was assessed using an inverted light microscope, under a x20 objective.  

Statistical analysis. All results unless otherwise specified are expressed as mean ±S.E.M. 

Data for each experiment were collected from three independent experiments (N=3), each 

performed in triplicate. All statistical analyses were performed using GraphPad Prism 6 

software with significance being set to P<0.05.  The specific tests and post-hoc used for each 

experiment are described in the figure legends.  
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5.5 Results 

 S. aureus-P. aeruginosa co-infection, CF airway epithelia and IL-8 

release  

Bronchial airway epithelia play an essential role in the detection of inhaled pathogens within 

the lungs. The secretion and accumulation of a diverse array of diffusible extracellular products 

by CF pathogens activate CF airway epithelia and the release of pro-inflammatory mediators. 

IB3-1 CF airway epithelia were stimulated with S. aureus cell-free supernatants (10% v/v) 

and/or P. aeruginosa exoproducts (10% v/v) for 24 h. The IL-8 protein concentration following 

mono- and co-stimulation was subsequently determined from the airway epithelial cell culture 

supernatants.  

Figure 50. IL-8 responses of CF epithelia to cell-free supernatants of S. aureus and CF isolates 
of P. aeruginosa. IL-8 production by IB3-1 epithelia is shown following stimulation with cell-free 
supernatants of S. aureus (SA) at 10% (v/v) and/or P. aeruginosa (PAO1 and CF isolates 5, 6 and 7) at 
10% (v/v). Plates were incubated at 37 °C and 5 % CO2 for 24 h, prior to quantifying extracellular IL-8 
in airway epithelial cell culture supernatants by ELISA. Results are expressed as the mean ± S.E.M from 
three independent experiments (N=3), each performed in triplicate. *P<0.05, **P<0.01 (One-way 
ANOVA with Tukey’s post-hoc test).   
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As shown in Figure 50, S. aureus exoproducts induced a very low IL-8 response in CF airway 

epithelia (41.4 pg/mL ± 19.3), which was not significantly different in comparison to the LB 

broth only control (27.9 pg/mL ± 5.9). However, exposure to P. aeruginosa exoproducts led to 

the heightened release of IL-8 in an isolate dependent manner. PAO1 exoproducts significantly 

increased IL-8 release in CF airway epithelia compared to the LB broth only control (P<0.01) 

and S. aureus alone (P<0.01), whilst exoproducts from CF isolates 5, 6 and 7 did not.  

Co-stimulation with exoproducts from S. aureus and P. aeruginosa PAO1 together induced 

significantly higher concentrations of IL-8 compared to the LB broth only control (P<0.05). 

However, co-stimulation had no significant effect upon the release of IL-8 compared to S. 

aureus only and PAO1 only. Whilst there appeared to be a decrease in the amount of IL-8 

produced following co-stimulation compared to PAO1 alone, this was not significant (P>0.05).  

Co-stimulation with exoproducts products from S. aureus and P. aeruginosa CF isolates 6 and 

7 was significantly higher than the LB broth only control (P<0.05), a finding not seen for CF 

isolate 5. However, co-stimulation did not induce a significantly higher IL-8 response compared 

to S. aureus alone or P. aeruginosa alone for all of the CF isolates. In summary, P. aeruginosa 

cell-free supernatants can induce IL-8 responses from CF airway epithelia in an isolate 

dependent manner, but challenge in association with S. aureus did not further increase that 

response.  
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 S. aureus-P. aeruginosa co-infection, non-CF airway epithelia and 

IL-8 release  

Given the responses seen in CF airway epithelia, as a comparison the IL-8 responses from 

non-CF airway epithelia were also analysed. C38 monolayers were challenged with S. aureus 

cell-free supernatants (10% v/v) and/or P. aeruginosa cell-free supernatants (10% v/v) for 24 

h as indicated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51. IL-8 responses of non-CF airway epithelia to cell-free supernatants of S. aureus and 
CF isolates of P. aeruginosa. IL-8 production by C38 cells is shown following stimulation with cell-free 
supernatants (10% v/v) of S. aureus (SA) and/or (10% v/v) P. aeruginosa (PAO1 and CF isolates 5, 6 
and 7) as indicated. Plates were incubated at 37 °C and 5 % CO2 for 24 h, prior to quantifying 
extracellular IL-8 in airway epithelial cell supernatants by ELISA. Results are expressed as the mean ± 
S.E.M from three independent experiments (N=3), each performed in triplicate. *P<0.05, ***P<0.001 
(One-way ANOVA with Tukey’s post-hoc test).  

As shown in Figure 51, the LB broth only control elicited a minimal IL-8 response in non-CF 

epithelia (0.52 pg/mL ± 7.012) which was significantly lower than the concentration measured 

in CF epithelia (P<0.01). Furthermore, S. aureus exoproducts did not elicit a significant 

increase in the IL-8 response (29.32 pg/mL ± 6.30) compared to the LB broth only control. The 

levels of IL-8 induced by S. aureus exoproducts in non-CF epithelia were also not significantly 

different to those measured in CF epithelia. Mono-stimulation with P. aeruginosa PAO1 

exoproducts led to the heightened production of IL-8, which was significantly higher than LB 
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broth alone (P<0.05), but not compared to S. aureus exoproducts alone. The amount of IL-8 

produced in response to PAO1 mono-stimulation was significantly lower in non-CF epithelia 

(P<0.05), compared to CF epithelia.  

P. aeruginosa CF isolate 5 exoproducts failed to induce a significant increase in IL-8 compared 

to the LB broth only control and S. aureus alone, with the IL-8 concentration being found at a 

concentration which was not significantly different to that induced CF airways. CF isolate 6 

exoproducts failed to elicit a significant change in the production of IL-8 in non-CF airways 

compared to the LB broth only control and S. aureus alone. The production of IL-8 following a 

24 h challenge with CF isolate 6 exoproducts was also significantly lower in non-CF airways, 

compared to CF airways (P<0.01). Challenge with CF isolate 7 exoproducts failed to induce a 

robust IL-8 response compared to the LB broth only control and S. aureus alone in non-CF 

airways. The concentration of IL-8 induced by CF isolate 7 cell-free supernatants in non-CF 

epithelia was also significantly lower than those induced in CF airway epithelia (P<0.05).  

Co-stimulation of non-CF epithelia with S. aureus and PAO1 exoproducts significantly 

increased the release of IL-8 compared to both S. aureus alone (P<0.001) and PAO1 alone 

(P<0.001). The concentration of IL-8 detected in non-CF epithelia following co-stimulation 

however, was not significantly different to that induced in CF airway epithelia. Co-stimulation 

of non-CF epithelia with S. aureus and CF isolate 5 exoproducts also induced a significant 

increase in IL-8 release compared to both S. aureus mono-stimulation (P<0.05) and P. 

aeruginosa mono-stimulation (P<0.05). The concentration of IL-8 induced in non-CF epithelia 

by co-stimulation with S. aureus and CF isolate 5 exoproducts was not significantly different to 

that induced in CF airway epithelia.  

Co-stimulation with S. aureus and CF isolate 6 induced a significant increase in the release of 

IL-8 in non-CF epithelia compared to S. aureus alone (P<0.05), but not P. aeruginosa CF 

isolate 6 alone. Once more, co-stimulation of non-CF airway epithelia to S. aureus and P. 

aeruginosa CF isolate 6 failed to induce a significant change in IL-8 compared to the response 

seen in CF airway epithelia. Lastly, co-stimulation of non-CF epithelia with S. aureus and CF 

isolate 7 exoproducts elicited a significant increase in the production of IL-8 compared to both 

S. aureus alone (P<0.05) and CF isolate 7 alone (P<0.05). The concentration of IL-8 released 

in non-CF epithelia following co-stimulation with S. aureus and CF isolate 7 exoproducts was 

not significantly different to that induced in CF airway epithelia.  

In summary, unlike CF airway epithelia, the co-stimulation of non-CF epithelia with S. aureus 

and P. aeruginosa exoproducts, lead to a significant increase in the production of IL-8 

compared to both S. aureus alone and P. aeruginosa alone. However, the levels of IL-8 

produced following co-stimulation with S. aureus and P. aeruginosa exoproducts are 

comparable in CF and non-CF epithelia.   
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 Effect of LPS upon the IL-8 inflammatory response in CF and non-

CF airway epithelia   

Whilst bronchial epithelia detect and respond to accumulated diffusible extracellular products, 

they also respond to shed cell wall components, including the TLR4 agonist LPS. This assay 

determined the impact of purified LPS from the Gram-negative bacterium E. coli 0111:B4 strain 

upon the release of IL-8 from CF epithelia and whether S. aureus extracellular products 

influenced airway inflammation.  

As shown in Figure 52, LPS induced a potent IL-8 response in CF airway epithelia, which was 

significantly higher compared to the LB broth only control (P<0.001). Co-stimulation of LPS 

with S. aureus cell-free supernatants at a concentration of 10% (v/v) also led to a robust IL-8 

response compared to the LB broth only control (P<0.001), although this was not significantly 

different compared to LPS alone. LPS also induced a significant increase in the release of IL-

8 from non-CF airway epithelia compared to the LB broth only control (P<0.001), with S. aureus 

exoproducts failing to elicit any change in the production of IL-8. LPS alone and co-stimulation 

with S. aureus extracellular products induced a more potent response in CF airway epithelia, 

compared to the non-CF counterpart (P<0.001).   

 

Figure 52. Induction of IL-8 by LPS alone versus LPS with S. aureus extracellular products. IL-8 
production by IB3-1 (left) and C38 (right) airway epithelia following stimulation with E. coli 0111:B4 
derived LPS and S. aureus cell-free supernatants (10% v/v). Plates were incubated at 37 °C and 5 % 
CO2 for 24 h, prior to quantifying extracellular IL-8 in airway epithelial cell supernatants by ELISA. 
Results are expressed as the mean ± S.E.M from three independent experiments (N=3), each performed 
in triplicate. ***P<0.001, (One-way ANOVA with Tukey’s post-hoc test).   

 

 

 

IB3-1 (CF) C38 (Non-CF) 
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 S. aureus-P. aeruginosa co-infection, CF airway epithelia and IL-6 

release  

The impact of bacterial extracellular products upon the release of the pro-inflammatory 

cytokine IL-6 from CF bronchial epithelia was also determined (Figure 53). Submerged 

monolayers of IB3-1 were challenged with S. aureus cell-free supernatants (10% v/v) and/or 

P. aeruginosa cell-free supernatants (10% v/v) and the plates incubated at 37 °C for 24 h. The 

concentrations of IL-6 released by the CF airway epithelia were measured by ELISA.  

 

Figure 53. IL-6 responses of CF airway epithelia to cell-free supernatants of S. aureus and CF 
isolates of P. aeruginosa. IL-6 production by IB3-1 airway epithelia following was determined following 
stimulation with cell-free filtrates of S. aureus (SA) (10% v/v) and/or P. aeruginosa (PAO1 and CF 
isolates 5, 6 and 7) (10% v/v) as indicated. Plates were incubated at 37 °C and 5 % CO2 for 24 h, prior 
to quantifying extracellular IL-6 in airway epithelial cell supernatants by ELISA. Results are expressed 
as the mean ± S.E.M from three independent experiments (N=3), each performed in triplicate. (One-
way ANOVA with Tukey’s post-hoc test).  

As seen with IL-8, CF epithelia demonstrated a hyper-inflammatory phenotype, with the 

release of high concentrations of IL-6 in the presence of the LB broth only control (182.66 

pg/mL ± 30.962) (Figure 53). S. aureus exoproducts failed to induce any effect upon the 

release of IL-6 compared to LB broth only control. Single challenges with PAO1 and CF 

isolates 5, 6 and 7 exoproducts products did not significantly affect the production of IL-6 

compared to single challenges with the LBN broth only control or S. aureus. Co-stimulation did 
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not significantly influence the IL-6 inflammatory response in relation to S. aureus alone or P. 

aeruginosa alone for PAO1 and the CF clinical isolates.  

 S. aureus-P. aeruginosa co-infection, non-CF airway epithelia and 

IL-6 release  

Given the responses seen in CF airway epithelia, the IL-6 responses from non-CF airway 

epithelia were also determined. Submerged monolayers of C38 were challenged with S. 

aureus cell-free supernatants (10% v/v) and/or P. aeruginosa cell-free supernatants (10% v/v) 

and the plates incubated at 37 °C for 24 h. The concentrations of IL-6 released by the non-CF 

airway epithelia were measured by ELISA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 54. IL-6 responses of non-CF airway epithelia to sterile filtrates of S. aureus and CF 
isolates of P. aeruginosa. IL-6 production by C38 airway epithelia following stimulation with cell-free 
supernatants of S. aureus (10% v/v) and/ or P. aeruginosa (PAO1 and CF isolates 5, 6 and 7) (10% v/v) 
as indicated. Plates were incubated at 37 °C and 5 % CO2 for 24 h, prior to quantifying extracellular IL-
6 in airway epithelial cell supernatants by ELISA. Results are expressed as the mean ± S.E.M from three 
independent experiments (N=3), each performed in triplicate. *P<0.05 and **P<0.01 (One-way ANOVA 
with Tukey’s post-hoc test).  
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As shown in Figure 54, LB broth alone induced a small amount of IL-6 (14.3 pg/mL ± 9.79) in 

non-CF airway epithelia, which was significantly lower than that induced in CF airway epithelia 

(P<0.001). Single challenge with S. aureus exoproducts did not induce a significant increase 

in IL-6 release compared to the LB broth only control. Single challenge with PAO1 exoproducts 

also did not induce a significant change in the production of IL-6 compared to LB broth alone 

and S. aureus alone. Both S. aureus and PAO1 induced significantly lower amounts of IL-6 in 

non-CF epithelia compared to CF airway epithelia (P<0.05 and P<0.001 respectively). 

Exoproducts from CF isolates 5 and 6 did not elicit an effect upon the release of IL-6 compared 

to LB broth only control and S. aureus exoproducts alone. Interestingly, CF isolate 7 

exoproducts did not significantly affect the production of IL-6 compared to the LB broth only 

control, whilst it did induce significantly lower levels of IL-6 compared to S. aureus alone 

(P<0.001). Additionally, the concentrations of IL-6 induced by CF isolates 5, 6 and 7 

exoproducts were all significantly lower than those induced in CF epithelia (P<0.001 for CF 

isolate 5 and 6 and P<0.01 for CF isolate 7).  

Co-stimulation with S. aureus and PAO1 extracellular products significantly increased IL-6 

response compared to S. aureus (P<0.05) and PAO1 mono-challenges (P<0.05), whilst the 

total amount of IL-6 released following co-stimulation was lower than that induced in CF airway 

epithelia (P<0.05). Co-stimulation with S. aureus and CF isolate 5 exoproducts significantly 

increased the release of IL-6, compared to stimulation with CF isolate 5 alone (P<0.01), but 

not S. aureus alone. Co-stimulation of non-CF epithelia with S. aureus and CF isolate 6 

exoproducts significantly increased the concentration of IL-6 released compared to S. aureus 

alone (P<0.05) and CF isolate 6 alone (P<0.05). Co-stimulation with S. aureus and 

extracellular products from either CF isolate 5 and 6 induced lower concentrations of IL-6 than 

those measured in CF airways (P<0.05). Lastly, co-stimulation with S. aureus and CF isolate 

7 extracellular products led to a significant increase in the release of IL-6 compared to S. 

aureus alone (P<0.001) and CF isolate 7 alone (P<0.001). The concentration of IL-6 induced 

in non-CF epithelia following co-stimulation with S. aureus and CF isolate 7 exoproducts was 

significantly lower than the concentration measured in CF epithelia (P<0.05).  

In summary, the concentration of IL-6 produced in CF airway epithelia was significantly 

elevated at baseline compared non-CF airway, whilst stimulation with S. aureus and/or P. 

aeruginosa exoproducts did not increase this further. Conversely, non-CF airway epithelia 

produced a low level of IL-6 at baseline, where co-stimulation of non-CF epithelia with S. 

aureus and P. aeruginosa exoproducts significantly increased the production of IL-6, compared 

to mono-stimulation with S. aureus exoproducts and P. aeruginosa exoproducts.  

,  
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 Effect of LPS upon the release of IL-6 from bronchial airway 

epithelia  

The effect of purified LPS and S. aureus extracellular products was also determined upon the 

release of IL-6 (Figure 55). The TLR4 agonist LPS induced a potent IL-6 response in CF airway 

epithelia, which was significantly higher compared to the LB broth only control (P<0.001). As 

seen with IL-8, co-stimulation of LPS with S. aureus cell-free supernatant led to a robust IL-6 

response in CF epithelia, although this was not significantly different compared to LPS alone. 

LPS also induced a significant increase in the release of IL-6 in non-CF airway epithelia 

compared to the LB broth only control (P<0.001), where co-stimulation with S. aureus did not 

elicit any significant change in the inflammatory response compared to LPS alone. IL-6 release 

from LPS alone and co-stimulation with S. aureus was significantly greater in CF bronchial 

epithelia, than that produced by non-CF airway epithelia (P<0.01).   

 
Figure 55.  Influence of LPS alone versus LPS with S. aureus exoproducts upon the release of 
IL-6 from bronchial airway epithelia.  IL-6 production by IB3-1 (left) and C38 (right) airway epithelia 
following stimulation with E. coli 0111:B4 derived LPS and S. aureus cell-free supernatant (10% v/v). 
Plates were incubated at 37 °C and 5 % CO2 for 24 h, prior to quantifying extracellular IL-6 in airway 
epithelial cell supernatants by ELISA. Results are expressed as the mean ± S.E.M from three 
independent experiments (N=3), each performed in triplicate. ***P<0.001 (One-way ANOVA with 
Tukey’s post-hoc test).   

IB3-1 (CF) C38 (Non-CF) 
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 Release of IL-10 from CF and non-CF airway epithelia following 

challenge with S. aureus and P. aeruginosa exoproducts and LPS 

After determining the impact of single and dual challenges of S. aureus and P. aeruginosa 

exoproducts upon the production of the pro-inflammatory mediators IL-8 and IL-6 in CF and 

non-CF epithelia, their impact upon the production of IL-10, involved in airway inflammation 

resolution was also determined.  

Mono- and co-stimulation with S. aureus and P. aeruginosa cell-free supernatants in CF and 

non-CF airway epithelia failed to induce any detectable IL-10 after 24 h (data not shown). 

Stimulation of airway epithelia with LPS alone and in combination with S. aureus exoproducts 

also failed to elicit a detectable IL-10 response in both cell lines (data not shown).  

 Cytotoxicity of S. aureus and P. aeruginosa extracellular products 

upon CF and non-CF airways  

Although S. aureus and P. aeruginosa cell-free supernatants were heat-inactivated to minimise 

airway epithelial cell toxicity, the impact of these challenges upon cell viability was determined 

using CTBTM. As shown in Figure 56 below, co-stimulation with S. aureus and CF isolate 6 

exoproducts induced a significant decrease in airway cell metabolism in CF epithelia compared 

to the LB broth only control (P<0.05). The remaining isolates exhibited no effect upon cell 

viability in either CF or non-CF airway epithelia.  

 

Figure 56. Airway epithelial cell metabolic activity following challenge with S. aureus and P. 
aeruginosa exoproducts. CF (left) and non-CF (right) bronchial epithelia exposed to S. aureus and P. 
aeruginosa exoproducts (each at 10% v/v) for 24 h were treated with CTBTM for 2 h to assess cell 
metabolic activity. Sterile LB broth was added to CF and non-CF epithelia as a control. The airway 
epithelial supernatants were collected and the RFU measured. Results are expressed as the mean ± 
S.E.M of three individual experiments (N=3), each performed in triplicate. (One-way ANOVA with 
Dunnett’s post-hoc, versus control). *P<0.05.  

 

IB3-1 (CF) C38 (Non-CF) 
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 Effect of S. aureus and P. aeruginosa supernatants upon airway 

cell morphology  

Finally, S. aureus and P. aeruginosa cell-free supernatants which were not heat inactivated 

were exposed to both CF and non-CF airway epithelia to determine their effects airway cell 

morphology after 24 h. As shown in Figure 57, untreated bacterial filtrates from S. aureus 

induced cell elongation and a loss of adhesion compared to the LB broth only control, whilst 

PAO1 exoproducts induced cell rounding in IB3-1 monolayers. CF isolates 5, 6 and 7 induced 

no apparent changes to CF airway epithelial cell morphology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 57. Impact of bacterial exoproducts upon CF airway epithelial morphology. Submerged 
monolayers of IB3-1 were exposed to either LB broth alone, or cell-free supernatants from S. aureus or 
P. aeruginosa CF isolates at 10% (v/v) for 24 h as indicated. Any changes to cellular morphology were 
detected using light microscopy. Images are representative of three independent experiments (N=3), 
each performed in duplicate. Scale bar represents 400 µm. 
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CF Isolate 6  CF Isolate 7 
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The same changes to cell morphology were seen in non-CF airway epithelia (Figure 58). S. 

aureus exoproducts induced cell elongation and a loss of adhesion, whilst PAO1 exoproducts 

caused cell rounding, as shown below.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 58. Impact of bacterial exoproducts upon non-CF airway epithelial morphology. 
Submerged monolayers of C38 were exposed to either LB broth alone (control) or cell-free supernatants 
from S. aureus or P. aeruginosa CF isolates (10% v/v) for 24 h as indicated. Any changes to cellular 
morphology were detected using light microscopy. Images are representative of three independent 
experiments (N=3), each performed in duplicate. Scale bar represents 400 µm. 
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5.6 Discussion 

S. aureus and P. aeruginosa have previously been shown to co-exist within the endobronchial 

lumen of CF airways (Rudkjobing et al., 2012, Wakeman et al., 2016, Biswas et al., 2009a, 

Hogan et al., 2016). The accumulation of diffusible extracellular products within the airway 

lumen secreted and shed by both S. aureus and P. aeruginosa interact with the surface of 

airway epithelia and drive inflammation (DiMango et al., 1995). Whilst numerous studies have 

used heat-inactivated cell-free supernatants to study indirect interactions between airway 

epithelia and CF pathogens (Fink et al., 2003, Berube et al., 2010, Pena et al., 2009, Wu et 

al., 2005, LaFayette et al., 2015), most focus upon challenges with a single CF pathogen. How 

airway epithelia respond to stimuli received as part of polymicrobial infections such as those 

seen in CF airways is poorly understood.  

At present, it appears that only one previous study to date has addressed the effects of S. 

aureus-P. aeruginosa co-stimulation upon the release of the major chemokine IL-8 in vitro 

(Chekabab et al., 2015). The study exposed non-CF Beas-2B airway epithelia to CF clinical 

isolates of S. aureus and laboratory strains of P. aeruginosa as single and dual challenges, 

with a final experiment used to validate their findings using the CF derived cell line, CFBE41o- 

(Chekabab et al., 2015). This chapter subsequently employed the use of CF clinical isolates 

of P. aeruginosa along with P. aeruginosa reference strain PAO1 and S. aureus reference 

strain ATCC 6538 to determine the impact of bacterial co-stimulation upon the release of the 

primary neutrophil chemokine IL-8, the pro-inflammatory cytokine IL-6 and the anti-

inflammatory, pro-resolving cytokine IL-10. Furthermore, paired isogenic epithelial cell lines 

were used, using the IB3-1 (CF) cell line and the CFTR corrected non-CF cell line, C38.  

The bacterial cultures used in this assay were all grown for 24 h, with final densities reaching 

approximately 108 CFU/mL for P. aeruginosa and approximately 107 CFU/mL for S. aureus, as 

shown in the previous chapter (Figure 17). Such densities have been detected in CF sputum, 

with P. aeruginosa being detected at densities up to approximately 107-109 CFU/mL (Knibbs 

et al., 2014, Hoiby, 1998, Palmer et al., 2005, Bauernfeind et al., 1987), whilst S. aureus has 

been detected in abundancies of up to approximately  107-108 CFU/mL (Johnson et al., 2016, 

Hammerschlag et al., 1980, Bauernfeind et al., 1987, Osika et al., 1999). This high abundancy 

in the CF lung is believed to be due to the nutritional composition of CF airway sputum which 

supports bacterial growth, rich in protein and amino acids (Ohman and Chakrabarty, 1982, 

Barth and Pitt, 1996).  
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Immortalised CF and non-CF airway bronchial epithelial cell lines were plated and grown to 

confluence, prior to being stimulated with LB broth only (control), S. aureus and/or P. 

aeruginosa exoproducts. During the course of chronic infection, airway epithelia are likely to 

respond to the diffusible exoproducts secreted by chronically infecting CF pathogens 

(Baltimore et al., 1989) where extracellular elastase, pyocyanin and flagellin have all been 

shown to damage the airways, as well as induce airway inflammation (Nomura et al., 2014, 

Denning et al., 1998b, DiMango et al., 1995). Individuals with CF have also been shown to 

develop antibodies to a range of bacterial exoproducts, including proteases, elastase, flagellin, 

LPS and LTA (Doring and Hoiby, 1983, Doring et al., 1984, Anderson et al., 1989, Fomsgaard 

et al., 1988, Hollsing et al., 1987a). In CF airways, cell debris, mucus, bacterial biofilms, 

excessive neutrophil influx and the absence of ASL are all likely to limit the concentration and 

diffusion of bacterial products reaching the epithelial cell surface.  

As shown in Figure 50, the CF bronchial epithelia demonstrated a significantly increased IL-8 

response in the absence of bacterial product stimulation, compared to non-CF airways (Figure 

51) (P<0.01). This heightened baseline secretion of IL-8 by CF airway epithelia has been 

reported in primary bronchial and tracheal gland cells, primary bronchial epithelia and clinically, 

with CF neonates and infants producing elevated levels of IL-8, neutrophils and NE within 

BALF in the absence of any detectable infection (Khan et al., 1995, Balough et al., 1995, Noah 

et al., 1997, Armstrong et al., 1997, Carrabino et al., 2006, Kube et al., 2001, Kammouni et al., 

1997, Bonfield et al., 1999, Muhlebach et al., 2006, Tirouvanziam et al., 2000, Black et al., 

1998). The basal and mRNA expression of IL-8 from the submucosal glands in CF patients 

has also been shown to be constitutively upregulated compared to non-CF bronchial gland 

cells (Tabary et al., 1998).  

This inflammatory response has been associated with constitutively activated NF-ĸB and the 

absence of IĸB kinase α (IĸBα) (Tabary et al., 1998, Tabary et al., 1999). Moreover, a higher 

co-localisation of NF-ĸB p65 has been reported in CF nasal polyps, compared to nasal polyps 

obtained from healthy controls (Raia et al., 2005). The CF epithelial cell line used in this study 

(IB3-1) has previously been shown to exhibit changes to IĸBβ regulation, facilitating the 

transcription of pro-inflammatory genes in the absence of infection (Venkatakrishnan et al., 

2000). The continuous inhibition of CFTR with CFTR(inh)-172 in primary airway epithelia 

grown at ALI has been shown to lead to a significant increase in IL-8 secretion at baseline, as 

well as upon exposure to P. aeruginosa. Losses in chloride conductivity gave rise to this finding 

(Perez et al., 2007).  
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IB3-1 epithelia also exhibited a hyper-inflammatory phenotype at baseline regarding the 

production of IL-6 (Figure 53), which was significantly higher compared to the baseline 

production by non-CF epithelia (Figure 54) (P<0.001). This is supported by a study which 

reported that fresh CF bronchial epithelia (homozygous for Phe508del) exhibited an 8-fold 

increase in the production of IL-6 at baseline, compared to those isolated from heathy controls 

(Escotte et al., 2003). CF-derived human tracheal gland cells have also been shown to secrete 

significantly higher levels of IL-6 at baseline, compared to those obtained from healthy 

individuals (Kammouni et al., 1997).  

A number of groups have sought to determine the underlying mechanisms regarding this 

phenotype. Vij et al. reported that functional wtCFTR localisation within cell surface lipid rafts 

negatively regulates NF-ĸB activity and subsequent IL-8 production (Vij et al., 2009). An 

additional study by Hunter et al. demonstrated that the transfection of wtCFTR into pulmonary 

H441 and the non-pulmonary H57 cell lines (which lack CFTR expression), significantly 

reduced NF-ĸB activity and inflammation (Hunter et al., 2010). TRADD is an adaptor protein 

which mediates phosphorylation of the inhibitory protein IĸBα. This subsequently facilitates the 

translocation of NF-ĸB to the cell nucleus and the transcription of pro-inflammatory cytokines 

(Pobezinskaya and Liu, 2012). TRADD is known to bind to wtCFTR, where it subsequently 

sent for lysosomal degradation (Wang et al., 2016). The lack of mature or functional CFTR in 

CF airway epithelia subsequently alleviates TRADD degradation, thus facilitating increased 

NF-ĸB activity and the production of pro-inflammatory mediators. Thus, detection of this hyper-

inflammatory phenotype in this study is not unique to the specific cell line used, or that the cells 

were grown under submerged culture.  

This hyper-inflammatory phenotype of CF epithelia in the absence of infection is highly debated 

within the CF field however, due to conflicting reports. Blau et al. demonstrated that the 

baseline secretion of IL-8 by IB3-1 airway epithelia was not significant compared to healthy 

C38 epithelia (Blau et al., 2007), whilst Black et al. also reported that the baseline secretion of 

IL-8 was not significant between freshly isolated nasal epithelia from young children with CF 

and those obtained from healthy controls (Black et al., 1998). Interestingly, another study 

reported that immortalised CFTR-corrected airway epithelia have secrete higher 

concentrations of IL-8 at baseline compared to CF epithelia which are homozygous for the 

Phe508del mutation (Massengale et al., 1999).   

S. aureus exoproducts alone failed to elicit a robust IL-8 response in both CF and non-CF 

bronchial epithelia (Figure 51 and Figure 52). Previous research has reported that IL-8 release 

from IB3-1 and C38 cells requires asialoGM1 and TLR2 co-mobilisation in a lipid raft (Soong 

et al., 2004, DiMango et al., 1995). The increased expression of asialoGM1 and TLR2 

expression upon the surface of CF airway epithelia (DiMango et al., 1995, Muir et al., 2004) 
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gives rise to the expectation that CF epithelia would demonstrate a significant increase in IL-8 

release in response to S. aureus products, a finding shown in previous studies (Ratner et al., 

2001, Below et al., 2009, Moreilhon et al., 2005). In spite of this, airway epithelia have also 

been shown to exhibit a dampened response to Gram-positive bacteria (Ivarsson et al., 2013) 

compared to the response induced by Gram-negative bacteria (Mayer et al., 2007). 

Furthermore, whilst TLR2 has been shown to initiate an inflammatory response to PVL 

(Zivkovic et al., 2011), whether S. aureus ATCC 6538 secretes this toxin in detectable levels 

requires investigation. Bielemeier (2012) also demonstrated how C38 bronchial epithelia 

grown as co-cultures with fibroblasts at ALI secreted low levels of IL-8 following live bacterial 

apical challenges with S. aureus ATCC 6538, which was not significant compared to baseline 

(no bacteria) (Bielemeier, 2012b).  

These data are also in contrast to previous reports however, which reported that S. aureus 

extracellular products induced a strong IL-8 response in human airway cells in vitro (Ratner et 

al., 2001, Below et al., 2009, Moreilhon et al., 2005). It is possible that the bacterial growth 

media used in these studies (LB broth versus Tryptic Soy broth) is likely to influence the airway 

inflammatory response, a finding reported previously (Chekabab et al., 2015). Moreover, 

Bielemeier (2012) reported how apical infection with S. aureus caused a significant increase 

in the release of apical and basal IL-8 compared to baseline (Bielemeier, 2012a) , whilst S. 

aureus strain Newman was shown to induce a significant increase in the IL-8 homologs MIP1α 

and MIP1β in a murine model of infection (Cigana et al., 2017). However, in both of these 

studies, authors exposed airway epithelia to whole-live bacteria and not their cell-free 

exoproducts.  

Cell-free supernatants from P. aeruginosa PAO1 induced the secretion of high levels of IL-8 in 

CF and non-CF airway epithelia after 24 h compared to baseline (Figure 50 and Figure 51). 

The ability of P. aeruginosa extracellular products to stimulate a potent pro-inflammatory 

response in airway epithelia has been reported previously (Kube et al., 2001, Zhang et al., 

2005, Firoved et al., 2004, Massion et al., 1994, Oishi et al., 1997), with P. aeruginosa 

colonisation also being associated with increases in the detection of pro-inflammatory markers 

in CF BALF (Noah et al., 1997, Muhlebach et al., 1999, Pukhalsky et al., 1999). 

Furthermore, the IL-8 response induced in CF epithelia following incubation with PAO1 

exoproducts was significantly higher than that induced in non-CF epithelia (P<0.01). Previous 

reports have demonstrated how CF airway epithelia secrete high concentrations of IL-8 when 

challenged with P. aeruginosa (Scheid et al., 2001, Joseph et al., 2005, Balloy et al., 2015, 

Virella-Lowell et al., 2004, Kelly et al., 2013, DiMango et al., 1995). However, the evidence is 

also conflicting, where CF cells have been shown to express IL-8 at levels close to, or lower 

than non-CF airway epithelia (Reiniger et al., 2005). Though additional work is required to 
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address this disparity, differences in cell lines, CF genotype and genetic components outside 

of this are all likely to have an influence upon IL-8 release. Surprisingly, cell-free supernatants 

from CF isolates 5, 6 and 7 all failed to induce significant increases in the release of IL-8 from 

CF and non-CF airway epithelia compared to the LB broth control and S. aureus alone.  

It is possible that the findings obtained are due to the concentrations of the challenges used 

(10% v/v), which may have been too low cause a significant increase in the release of IL-8.  

Furthermore, PAO1 and the CF isolates tested exhibited wide variations in their virulence 

profile (as shown in Chapter 3). These wide variety of PAMPs will also lead to variations 

regarding the activation of airway epithelia TLRs and the downstream activation of NF-ĸB and 

p38 MAPK, as reported previously (Zhang et al., 2005, Denning et al., 1998b, Smith et al., 

2001, Mayer et al., 2011, Rada et al., 2011, Massion et al., 1994). The impact of these 

exoproducts upon inducing airway inflammation will also be influenced by heat treatment, 

where P. aeruginosa flagellin for example is heat-labile (Ansorg, 1978).  

In CF airways, bacterial colonisation induces an excessively high, yet highly variable IL-8 

response (Colombo et al., 2005, Mayer-Hamblett et al., 2007, Osika et al., 1999, Bodini et al., 

2005). Whilst one study demonstrated that the mean IL-8 concentration in CF sputum was 

approximately 145.4 ng/mL (± 75.3-337.3 ng/mL) in patients infected with P. aeruginosa (Watt 

et al., 2005) another detected approximately 1087.5 ng/mL of IL-8 (Husson et al., 2005). One 

study which had recruited twenty six CF patients aged 8-47 years old, illustrated that prior to 

antibiotic treatment, IL-8 concentrations in CF sputa ranged between 5,000-33,000 pg/mL, 

which was significantly reduced following the administration of intravenous antibiotics (Chiron 

et al., 2008). BALF analysis from eighteen CF patients (mean age of 19.66 ± 5.2) had IL-8 

concentrations of 325 ± 81.96 pg/mL, compared to 125.92 ± 43.95 pg/mL in healthy control 

subjects (Reeves et al., 2011). An additional study assessing effect of antibiotics upon cytokine 

levels within CF sputum demonstrated that the average concentration of IL-8 in CF patients 

with a mean age of 8.6 ±5.4 was 7,165 pg/mL (3,400-13,770 pg/mL) prior to the administration 

of antibiotics (Colombo et al., 2005). Another study assessing lung disease in 57 infants newly 

diagnosed with CF illustrated that the mean concentration of IL-8 detected in CF BALF was 

320 pg/mL (150-845 pg/mL), with infants infected with a pathogen having higher levels of IL-8 

compared to uninfected infants (Sly et al., 2009). Differences are not restricted to CF BALF or 

sputa and have been shown to exist in faecal samples, with IL-8 concentrations in CF patients 

being 32,113 pg/g (21,656-178,128) of wet stool, compared to <43.5 pg/g (<22-4079) in 

healthy controls (Briars et al., 1995).  

Whilst CF airway epithelia are large contributors to such high concentrations of IL-8, 

neutrophils also secrete IL-8. A study comparing circulating blood neutrophils isolated from 

children with CF and healthy controls demonstrated that the spontaneous release of IL-8 was 
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significantly higher in neutrophils isolated from individuals with CF, compared to neutrophils 

obtained from control subjects. Furthermore, the spontaneous release of IL-8 was higher for 

CF airway neutrophils than CF circulating neutrophils. In both instances, challenge with LPS 

failed to increase the production of IL-8 further (Corvol et al., 2003). Such values reported 

clinically are up to one thousand times higher than those seen in vitro and arise due to many 

different factors, including the simplistic nature of the assay, the concentration of the bacterial 

cell-free supernatants used, the airway epithelial cell density, the absence of whole live or 

heat-killed bacteria, the absence of host neutrophils, as well as the absence of other CF 

pathogens to name just a few.  

Of all the dual challenge studies, only co-stimulation with S. aureus and PAO1 exoproducts 

and S aureus and CF isolate 7 exoproducts significantly increased IL-8 production by CF 

epithelia, compared to baseline (P<0.05) (Figure 50). Furthermore, there appeared to be a 

decrease in the amount of IL-8 produced compared to PAO1 alone, although this was not 

significant. None of the co-stimulation combinations tested in CF epithelia exhibited an additive 

effect with regards to the IL-8 response upon comparison to S. aureus and P. aeruginosa 

alone. This is unlikely to be due to saturation of pro-inflammatory signalling pathways however, 

with E. coli LPS inducing an IL-8 response nearly three times higher than those induced by co-

infections with S. aureus and the CF isolates. Whilst Cigana et al. employed a non-CF mouse 

model of infection, the authors reported that co-infection with S. aureus and P. aeruginosa did 

not lead to an additive effect upon the production of the murine IL-8 analogues (Cigana et al., 

2017). However, these results are in contrast to a study assessing co-infection in young 

children, which demonstrated that the presence of S. aureus and P. aeruginosa exerted an 

additive effect upon the concentration of IL-8 detected in BALF (Sagel et al., 2009a).  

These results are also in conflict with the only study to date addressing S. aureus-P. 

aeruginosa co-infection in vitro, which reported that S. aureus exoproducts inhibited the 

release of IL-8 release in both Beas-2B (non-CF) and CFBE41o− (CF) airway epithelia, 

following co-stimulation with P. aeruginosa exoproducts. This finding was shown to be due to 

the ability of S. aureus exoproducts to repress NF-ĸB activity and subsequent IL-8 transcription 

(Chekabab et al., 2015). This ability of S. aureus cell-free supernatant to dampen the IL-8 

response has also been reported previously in human umbilical vein endothelial cells (HUVEC) 

after the cells were co-challenged with TNF-α (Tajima et al., 2007). Whilst S. aureus has also 

been reported to inhibit IL-8 (Zurek et al., 2015), other bacteria also downregulate IL-8 

production, including lethal toxin from Bacillus anthracis which destabilises IL-8 mRNA 

(Mozaffarian et al., 2000).  
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Despite this, it is appreciated that the effects of bacterial co-infection upon the host’s immune 

response is likely to be complex, which is further influenced by the wide phenotypic diversity 

seen across P. aeruginosa CF clinical isolates. Additionally, Chekabab et al. (2015) reported 

that S. aureus inhibited the NF-ĸB induction of IL-8 via TLR1/2 only but not TLR4 and -5, 

despite these TLRs all signalling via NF-ĸB. Thus, the activation or deactivation of intracellular 

signalling mechanisms during polymicrobial infection is complicated and requires further study, 

as the early models used to study polymicrobial infection and the airway inflammatory 

response also begin to develop.  

Unlike CF epithelia, all S. aureus-P. aeruginosa combinations (except CF isolate 6) 

significantly increased the IL-8 response in non-CF epithelia compared to S. aureus and P. 

aeruginosa alone. Co-stimulation also appeared to exert an additive effect compared to the IL-

8 response induced by S. aureus and P. aeruginosa (Figure 51). Why co-infection exerts this 

additive effect upon IL-8 production in healthy airways across isolates but not in CF epithelia 

requires further study. It may be due to the dysregulated hyper-inflammatory phenotype of CF 

epithelia both at baseline and following challenges with microbial products.  

The levels of IL-6 secreted at baseline were significantly higher in CF epithelia compared to 

non-CF epithelia (Figure 53 and Figure 54), a finding supported by Berube et al. (Berube et 

al., 2010). Previous research using primary submucosal bronchial epithelia demonstrated that 

the levels of IL-6 secreted under resting conditions were 8-fold higher in CF bronchial cells 

than non-CF (Escotte et al., 2003), whilst another demonstrated that the baseline secretion of 

IL-6 by IB3-1 airway epithelia was six-fold higher compared to C38 epithelia (Blau et al., 2007). 

Berube et al. demonstrated that the IL-6 mRNA turnover rate was slower than the mRNA in 

CF epithelia, thus allowing IL-6 to be synthesised more quickly in CF epithelia (Berube et al., 

2010). These results are in contrast however to a previous study which demonstrated that the 

baseline secretion of IL-6 in submucosal glands from CF patients homozygous for Phe508del 

were similar to non-CF submucosal glands (Tabary et al., 1998). 

Mono-stimulations with S. aureus and the CF isolates of P. aeruginosa, including reference 

strain PAO1, failed to increase the production of IL-6 in CF epithelia (Figure 53). Whilst this 

contrasts with previous reports in vitro (Berube et al., 2010, Jones et al., 2003, Carpagnano et 

al., 2003, Armstrong et al., 1997, Borgatti et al., 2007, Bonfield et al., 1999), this may be due 

to the concentration of bacterial filtrates used, which are unable to increase its production 

above baseline. More likely, it may be due to the CF airway epithelia signalling cascades are 

saturated and the cells are maximally producing IL-6, which was significantly higher at baseline 

than that produced by non-CF epithelia (P<0.001). The IL-6 response at baseline in CF 

epithelia was also significantly higher than the IL-6 response induced by S. aureus-P. 

aeruginosa co-stimulation in non-CF airway epithelia.  
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Challenge with either S. aureus or P. aeruginosa exoproducts alone also did not significantly 

increase the concentration of IL-6 above baseline in non-CF epithelia (Figure 54).  

Unsurprisingly, the concentration of IL-6 detected in CF patient sputum is highly variable. 

Some studies have shown that the average levels of IL-6 are low, with one study citing a 

concentration of approximately 1.7 pg/mL in sputum obtained from children with CF (Sagel et 

al., 2012), whilst another recorded a mean IL-6 concentration of 2.35 pg/mL in CF sputum 

obtained from teenage and young adults (Husson et al., 2005). Whilst Columbo et al. stated 

that concentrations of IL-6 were undetectable in CF sputa (Colombo et al., 2005), 

concentrations of 26 pg/mL (12-110 pg/mL) have been detected, which was shown to be 

significantly lower than that measured in the sputum of healthy controls (225 pg/mL (200±426 

pg/mL)) (Osika et al., 1999). IL-6 concentrations of 40 ± 17 pg/mL have also been reported in 

freshly isolated CF bronchial epithelia in the absence of detectable infection (Bonfield et al., 

1999). Studies assessing the impact of antibiotics upon pulmonary exacerbations measured 

an IL-6 concentration of 7.28 pg/mL (3.7-14.4) in CF sputum, which was reduced to 2.16 pg/mL 

(1.3-3.5) following antibiotic treatment (Nixon et al., 1998).  

Whilst IL-6 regulates the acute phase response (Morrone et al., 1988), it also induces to a 

lesser degree, neutrophil infiltration by enhancing neutrophil migration to IL-8 (Wright et al., 

2014). Thus, chronically elevated levels of both IL-8 and IL-6 in CF epithelia at baseline may 

not only impair the effectiveness of airway neutrophils due to early priming, but the secretion 

of NE is likely to impair other arms of the pulmonary innate immune system, including SP-D 

(Hirche et al., 2004). Furthermore, co-stimulation with S. aureus and P. aeruginosa 

exoproducts significantly increased the production of IL-6 by non-CF epithelia, compared to 

mono-stimulation with S. aureus and P. aeruginosa exoproducts alone (Figure 54). This finding 

was not seen in CF epithelia. Thus, the inability of CF epithelia to upregulate IL-6 production 

as the size of the bacterial challenge increases and diversified may also impair the 

effectiveness of the airway immune response.  

Exposure of CF and non-CF bronchial epithelia to the TLR4 agonist LPS, induced both IL-8 

(Figure 52) and IL-6 (Figure 55) production, a finding shown previously (Kammouni et al., 1997, 

Chekabab et al., 2015). Whilst TLR4 has been shown to be downregulated in primary CF 

airway epithelia compared to healthy non-CF airway epithelia (Hauber et al., 2005, John et al., 

2010), this has not been determined in IB3-1 and C38 cell lines. CF airway epithelia produced 

significantly greater levels of the two pro-inflammatory cytokines IL-8 and IL-6 following 

challenge with LPS, compared to non-CF epithelia, where S. aureus exoproducts did not elicit 

any effect upon its production (Figure 52 and Figure 55). These findings are supported by a 

previous study which demonstrated that S. aureus exoproducts did not exert any effect upon 
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the release of IL-8 following stimulation with LPS in both CF and non-CF airway epithelia 

(Chekabab et al., 2015).  

No IL-10 was detected in the CF and non-CF airway culture supernatants following challenges 

with S. aureus and/or P. aeruginosa exoproducts, or with purified LPS. As with IL-6, it is 

believed that this is the first study to address the impact of S. aureus and P. aeruginosa co-

stimulation upon IL-10 release in CF and non-CF airway epithelia in vitro and thus makes 

comparisons to the literature difficult. However, previous studies have demonstrated that very 

low to absent levels of IL-10 were produced by CF epithelia, compared to non-CF airway 

epithelia (Becker et al., 2004, Bonfield et al., 1999, Bonfield et al., 1995a). This phenomenon 

is not limited to airway epithelia however, where T cells expressing mutant CFTR are 

accompanied by a reduction in the secretion of IL-10 (Moss et al., 1996). As mentioned 

previously, it is possible that the concentrations of filtrates used were too low to allow this anti-

inflammatory cytokine to be detected, or that IB3-1 epithelia possibly do not make IL-10. As 

C38 is an isogenic cell line of IB3-1, it is expected to be genetically identical, except in regard 

to CFTR expression. Thus, if IB3-1 do not synthesise IL-10, it is expected that C38 will also 

not produce this pro-resolving cytokine. This absence of IL-10 is likely to be involved in the 

inability to downregulate the pro-inflammatory response, leading to chronic (Chmiel et al., 

2002, Moss et al., 1996). In CF patient sputum, levels of IL-10 are often recorded as 

undetectable (Colombo et al., 2005, Watt et al., 2005, Balfour-Lynn et al., 1997), or at very low 

levels, i.e. 24 pg/mL (±0-228 pg/mL) (Osika et al., 1999).   

Transforming growth factor-β (TGF-β) is another pro-resolving cytokine which has been shown 

to inhibit the production of IL-8 by airway epithelia through the inhibition of NF-ĸB (Kelley et 

al., 2001, Jagels and Hugli, 2000), as well as reduce IL-8 mediated neutrophil trans-endothelial 

migration (Smith et al., 1996). TGF-β has also been shown to increase ASL absorption and 

modulate CFTR function (Manzanares et al., 2015, Sun et al., 2014). Thus, its production by 

CF and non-CF epithelia in response to challenges with bacterial exoproducts warrants future 

study.  

Subsequent results from assessing cell metabolism confirmed that changes within IL-8 and IL-

6 production were not due to changes in airway epithelial cell viability, following mono- and co-

stimulation (Figure 56), which could otherwise affect meaningful interpretation of results. The 

results from this study demonstrate that the IL-8 and IL-6 stimulatory activity of P. aeruginosa 

filtrates are extracellular, heat-resistant and are not driven by bacterial proteases alone.  

Finally, the ability of S. aureus and P. aeruginosa untreated exoproducts (not subjected to heat 

treatment) to change airway epithelial cell morphology was determined. S. aureus and PAO1 

induced changes to cell morphology in both CF and non-CF bronchial epithelia, causing cell 

rounding, whilst the CF isolates of P. aeruginosa did not (Figure 57 and Figure 58). Cell 
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rounding and sloughing as a result of S. aureus exoproducts in particular may play a role in 

disease progression, with P. aeruginosa being shown to adhere preferably to damaged airway 

epithelia (Lingner et al., 2017, de Bentzmann et al., 1996b). The differences seen across the 

P. aeruginosa CF isolates in relation to their ability to induce changes to cell morphology may 

arise due to differences within final bacterial density, as well as the arsenal diversity and 

concentrations of extracellular virulence properties contained within each of the bacterial 

supernatants used – as reflected in results chapter 3. It is likely that numerous virulence factors 

together impair cell viability (Campodonico et al., 2008).  

When drawing the data together, the impact of polymicrobial infection upon the CF airway 

inflammatory response and immune dysregulation is likely to be complex. A lack of 

enhancement to the IL-8 response in the majority of co-infections in CF epithelia, suggests 

that S. aureus-P. aeruginosa co-colonisation may not always exacerbate inflammation in CF 

airways; a finding which may be due to the heightened secretion of pro-inflammatory markers 

both at baseline and following infection with a single pathogen. Conversely, non-CF epithelia 

secrete very low concentrations of IL-8 and IL-6 at baseline, with co-infection appearing to 

exert an additive effect upon the pro-inflammatory response. Thus, an altered inflammatory 

response of CF epithelia early at baseline and during an active polymicrobial infection may not 

only facilitate damage to the airways, but also impair airway innate immunity and facilitate the 

development of chronic bacterial infections.  

5.7 Limitations  

The work presented in this chapter has a number of limitations. Firstly, the bacterial filtrates 

were heat-inactivated to inactivate protease activity and to minimise airway epithelial cell 

toxicity, a methodology that has been used to study host inflammatory response to CF 

pathogens (Chekabab et al., 2015, Fink et al., 2003, Wu et al., 2005, Beaudoin et al., 2013). 

A potential drawback to using heat-inactivated supernatants however is the abolition of a major 

key virulence property utilised by P. aeruginosa, proteases, with LasB for example, having 

been detected CF sputum at levels of 100 µg/mL (Jaffar-Bandjee et al., 1995). Additionally, 

proteases have been shown to degrade IL-8 and IL-6 in vitro to undetectable levels (LaFayette 

et al., 2015). Whilst this ability to degrade pro-inflammatory cytokines is important, its overall 

impact upon the inflammatory response in CF airways requires further study. P. aeruginosa 

LasR mutants with abolished protease activity are associated with heightened airway 

inflammation (LaFayette et al., 2015, Smith et al., 2006a, Hoffman et al., 2009).  

CF airway inflammation is also driven by other stimuli not included here, such as the presence 

of large actively respiring polymicrobial communities, the excessive influx of neutrophils and 

the release of NE (De Rose, 2002). The use of submerged epithelial monolayers also means 

that the impact of bacterial filtrates upon the polarised release of inflammatory mediators is 
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unknown. For example, do S. aureus and P. aeruginosa exoproducts encourage higher 

concentrations of IL-8 to be released upon the apical cell surface, consequently encouraging 

neutrophil migration from the basal cell surface and into the airway lumen?  

5.8 Future work  

As the in vitro models used to date to study polymicrobial infection in CF are in their infancy, 

future work would seek to expose polarised airway epithelia grown on transwells®, to S. aureus 

and P. aeruginosa exoproducts. The impact upon the polarised release of IL-6, IL-8 and IL-10 

into the apical and basolateral compartments would be determined, along with the release of 

other important inflammatory mediators in CF, including IL-1β and TNF-α which primes 

neutrophils, increases chemotaxis and increases adhesion to the respiratory endothelium 

(Courtney et al., 2004). As mentioned in the discussion, the production of the pro-resolving 

cytokine TGF-β also warrants investigation.  

The use of artificial CF sputum to culture both S. aureus and P. aeruginosa would also more 

closely mimic the in vivo growth environment of the CF lung (Kirchner et al., 2012). Additionally, 

repeating experiments using of size exclusion filters would allow comparisons to be made 

between the whole culture supernatants of S. aureus P. aeruginosa, with the >3 and <3 kDa 

fractions. This would help to determine the size of the major factor(s) driving the pro-

inflammatory response in CF and non-CF epithelia during mono- and co-stimulation.  

Lastly, anoxia has previously been shown to exert a minimal effect upon the intracellular 

metabolism and proliferation of IB3-1 and C38 airway epithelia compared to normoxia 

(Shahriary et al., 2012). Thus, as a continuation of chapter 4, future work would seek to culture 

both airway epithelia and bacterial strains under anoxic conditions to determine the impact of 

normoxia and anoxia upon airway inflammation, in response to co-infection. A previous study 

has reported that IB3-1 exhibited a ten-fold increase in the release of IL-8, compared to C38 

under anoxic conditions (Shahriary et al., 2012). 

5.9 Conclusion  

The data contained within this chapter supports the highly contested notion that CF airway 

epithelia display a heightened inflammatory response at baseline, in the absence of detectable 

infection. Conflicting with Chekabab et al. (2015), S. aureus did not influence the inflammatory 

response in CF and non-CF epithelia compared to baseline, whilst only PAO1 was shown to 

be more pro-inflammatory than baseline and S. aureus in both CF and non-CF epithelia.  
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Unlike CF epithelia, co-stimulation combinations increased the production of IL-8 and IL-6 in 

non-CF epithelia compared to single species challenges and exerted an additive effect upon 

inflammation. This additive effect contrasts with Chekabab et al. who reported that S. aureus 

inhibits P. aeruginosa induced inflammation. S. aureus exoproducts also failed to elicit any 

effect upon the concentrations of IL-8 and IL-6 released following exposure to purified LPS 

from E. coli. The pro-resolving cytokine IL-10 was not detected in either cell line following single 

and dual challenges with S. aureus and P. aeruginosa extracellular products.  

The elevated secretion of the major pro-inflammatory mediators IL-8 and IL-6 by CF airway 

epithelia at baseline, coupled with a failure to increase the inflammatory response as the 

bacterial burden increases and diversifies, may cause extensive damage to CF airways, impair 

aspects of airway innate immunity and facilitate bacterial colonisation. This proposed 

mechanism relating to the differences in inflammation in CF and non-CF airway epithelia is 

summarised in Figure 59 and Figure 60.  
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Figure 59. Proposed model of inflammation in non-CF airways. Non-CF airway epithelia produce 
very little pro-inflammatory IL-8 and IL-6 in the absence of detectable infection. Only during an active 
infection do airway epithelia mount an increase in IL-8 and IL-6, which is increased during S. aureus-P. 
aeruginosa co-infection. The influx of neutrophils into the airway lumen are effective at killing the 
colonising pathogens.  
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Figure 60. Proposed model of inflammation in CF airways. CF airway epithelia exhibit a hyper-
inflammatory phenotype at baseline compared to healthy non-CF airway epithelia. Elevated pro-
inflammatory mediators favour the excessive influx of neutrophils in the absence of infection and 
facilities their premature priming, consequently damaging the airways. Unlike non-CF airways, increases 
in the bacterial burden or species diversity fail to elicit a suitable increase in the airway inflammatory 
response.   
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6 Impact of S. aureus upon the colonisation of 

CF airways by P. aeruginosa  

6.1 Chapter transition  

The data presented in chapter 5 suggests that shed and secreted S. aureus exoproducts exert 

a negligible impact upon the CF airway inflammatory response. Despite this, the role of S. 

aureus within CF airway pathology and disease progression remains highly contested, 

particularly in regard to whether earlier S. aureus infection impacts upon subsequent P. 

aeruginosa infection. Just as the in vitro models to study the impact of polymicrobial infection 

upon airway inflammation are in their infancy, so are the models to determine the impact of 

polymicrobial infection upon CF airway colonisation.  

6.2 Introduction  

CF airways are colonised by a highly diverse community of pathogens, ranging from bacteria 

such as H. influenzae, Stenotrophomonas maltophilia and Burkholderia cepacia complex, 

viruses such as rhinoviruses and fungi, including Aspergillus fumigatus (Delhaes et al., 2012, 

Etherington et al., 2014, de Almeida et al., 2010, LiPuma et al., 1999, Goss et al., 2004, Rayner 

et al., 1990, Boutin et al., 2015). Despite this wide microbial diversity, CF airway infection is 

dominated by two bacterial species, S. aureus and P. aeruginosa, with infections occurring in 

a highly sequential, age-dependent order (Stressmann et al., 2011a, Stressmann et al., 2012, 

Cystic Fibrosis Trust, 2018). 

The Gram-positive bacterium S. aureus is often detected in the lungs from  three months of 

life and predominates throughout the first decade of life (Cystic Fibrosis Trust, 2016b). S. 

aureus is believed to colonise the nasal mucosa prior to tracking towards the lower airways 

(Schlichting et al., 1993), where it has been documented to cause a decrease in paediatric 

lung function (Hudson et al., 1993, Junge et al., 2016). One study assessing S. aureus 

persistence in individuals with CF reported that mean persistence of the same clone in 29 

individuals was 8.25 years (Hirschhausen et al., 2013), whilst another reported that CF patients 

are colonised by a single S. aureus strain for many years, but can temporarily become 

colonised with two or more strains (Kahl et al., 2003).  

Progression into adulthood is typically associated with a transition to P. aeruginosa dominance 

(FitzSimmons, 1993, Cystic Fibrosis Trust, 2016b), with early P. aeruginosa acquisition having 

been associated with a worse prognosis (Emerson et al., 2002). Once colonised, P. aeruginosa 

is almost impossible to eradicate (Langton Hewer and Smyth, 2017) and is associated with 

elevated inflammation, decreases in lung function and increased mortality (Kerem et al., 1990, 
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Nixon et al., 2001, Li et al., 2005). Despite this transition to P. aeruginosa dominance, the 

prevalence of S. aureus remains relatively high (Limoli et al., 2016, Cystic Fibrosis Trust, 

2018). This ability for S. aureus and P. aeruginosa to co-exist and co-colonise CF airways is 

known to influence disease severity and lead to shortened survival, as outlined previously. The 

highly sequential nature of CF airway infection is demonstrated in Figure 61 below (a repeat 

of Figure 4).  

 

Figure 61. Respiratory infections by age. Infection of CF airways is highly sequential and age 
dependent. Whilst intermittent (light blue) and chronic (orange) S. aureus infections predominate in the 
first decade of life, chronic P. aeruginosa infections (dark blue) predominate in adulthood.  

The highly sequential, age-dependent order of infection has led to the hypothesis that earlier 

colonisation with S. aureus primes CF airways to subsequent infection with P. aeruginosa 

(Folkesson et al., 2012, Lyczak et al., 2000, Govan and Nelson, 1992). S. aureus has been 

identified as a risk factor for earlier acquisition by P. aeruginosa (Kosorok et al., 1998, Maselli 

et al., 2003), with continuous prophylactic treatment of S. aureus having been shown to 

facilitate earlier and enhanced P. aeruginosa colonisation (Ratjen et al., 2001, Stutman et al., 

2002). Narrow spectrum flucloxacillin prescribed in the UK has also been associated with 

earlier first acquisition of P. aeruginosa compared to those not receiving the antibiotic (Hurley 

et al., 2018).  
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Most studies to date assessing the key host-pathogen interactions in CF airways employ well 

characterised laboratory strains such as P. aeruginosa PAO1 and PA14, with in vitro 

experiments typically using bronchial and alveolar cultures grown under submerged culture 

(Jarry and Cheung, 2006, Pompilio et al., 2010, Van Ewijk et al., 2007, Saiman et al., 1992, 

Chi et al., 1991, Saiman et al., 1990b, Schaible et al., 2013, Plotkowski et al., 1991, Bajolet-

Laudinat et al., 1994, de Courcey et al., 2012). When studying direct host-pathogen 

interactions, such models are restricted by the fact they form single cell sheets (monolayers), 

lack cell polarity, do not include additional cell types (such as fibroblasts) and lack the formation 

of tight junctions. Those studies performed at ALI to date typically employ a single culture 

model of epithelial cells (Bucior et al., 2014, Bucior et al., 2012, Starner et al., 2006, Escotte 

et al., 2006, Plotkowski et al., 1999).  

Models to study polymicrobial infection are in their infancy, with only a handful of studies having 

determined the impact of polymicrobial infection upon airway colonisation. One study 

demonstrated that respiratory syncytial virus (RSV) enhanced P. aeruginosa binding in 

submerged IB3-1 epithelia and non-CF epithelia (Van Ewijk et al., 2007), whilst another 

demonstrated that RSV enhanced the adhesion of Streptococcus pneumoniae to HEP-2 and 

A549 submerged monolayers (Hament et al., 2004). The bacterium Stenotrophomonas 

maltophilia has also been shown to enhance P. aeruginosa binding to submerged IB3-1 

monolayers (Pompilio et al., 2010), whilst another demonstrated the ability of P. aeruginosa to 

enhance Burkholderia cepacia adhesion (Saiman et al., 1990a). The sequential infection of 

human CF airway epithelia with S. aureus and P. aeruginosa had yet to be investigated.  

6.3 Aims  

This chapter sought to combine the use of select CF clinical isolates of P. aeruginosa, 

alongside well characterised laboratory strains of P. aeruginosa and S. aureus, with a novel in 

vitro multicellular co-culture model of CF and non-CF airways grown at ALI. Focusing upon 

bacterial adhesion (the initiating stage of airway colonisation), this research aimed to elucidate 

whether prior infection with S. aureus enhanced the binding of P. aeruginosa to CF airways. 

Control experiments were performed by performing mono-infections using either S. aureus or 

P. aeruginosa, reversing the order of infection (inoculating with P. aeruginosa first followed by 

S. aureus) and by repeating all experiments in the non-CF airway model.  
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6.4 Methods 

Bacterial strains and growth conditions. S. aureus ATCC 6538, P. aeruginosa PAO1 and 

P. aeruginosa CF clinical isolates 5 and 6 were used. CF isolates 5 and 6 were used due to 

their wide variations in virulence. CF isolate 5 produced pyocyanin, proteases, exerted 

staphylolytic activity, outcompeted S. aureus in mixed species biofilms and exhibited swimming 

and swarming motility, whilst CF isolate 6 exhibited none of these phenotypic traits.  

Single colonies of each isolate grown routinely on LB agar were inoculated into 10 mL of LB 

broth and were grown for approximately 16 h under normoxia and static conditions at 37 °C.  

Cell culture. IB3-1 (CF) and C38 (non-CF) bronchial epithelia were cultured in DMEM/F12 

containing 10% (v/v) FBS and 1x anti-mycotic-antibiotic at 37 °C and 5% CO2. MRC-5 

fibroblasts were routinely grown in EMEM containing 10% (v/v) FBS, 2 mM L-glutamine and 

1x anti-mycotic-antibiotic at 37 °C and 5% CO2.  

Submerged cell culture. IB3-1 and C38 cells were seeded into 24-well polystyrene tissue 

culture treated plates at 1.5x105 cells/mL and incubated overnight at 37 °C with 5% CO2. The 

following day at confluence, cell culture media was aspirated and replaced with 1 mL/well of 

antibiotic-free DMEM/F12 supplemented with 1% (v/v) for a minimum of 16 h.  

Culturing polarised airway epithelia on transwell® filter supports. Sterile cell culture 

transwell® inserts (0.3 cm2 surface area, 0.4 µm pore size) were coated with 10 µg/cm2 human 

placental collagen type IV, prior to the apical addition of fibroblasts at a cell density 

3x104 cells/well. After culturing for four days, apical medium was removed and IB3-1 or C38 

cells were seeded on top of the fibroblasts at 5x104 cells/well in DMEM/F12. The co-cultures 

were then left under submerged conditions for a further four days, allowing the epithelial cells 

to form confluent monolayers on top of the fibroblasts. After this period, the apical cell culture 

medium was removed and not refreshed, introducing the cells to an ALI and inducing cell 

differentiation. Medium in the basolateral compartment was refreshed every 3-4 days for a 

minimum of 14 days from ALI formation.  

Bacterial binding to submerged airway epithelia monolayers. Sixteen h prior to infection, 

cell culture media was aspirated from each well and replaced with antibiotic free DMEM/F12 

containing 1% (v/v) FBS. Overnight cultures of S. aureus or P. aeruginosa were centrifuged at 

4,000 x g for 15 min at 4 °C and the pellet washed in 10 mL of PBS, a process repeated twice. 

Monolayers were infected with either S. aureus or P. aeruginosa at a MOI of 5 (5 bacteria to 1 

epithelial cell), suspended in infection medium (DMEM/F12 only). Plates were incubated for 2 

h at 37 °C and 5% CO2, prior to being washed twice with PBS to remove unbound bacteria. 

100 µL of trypsin-EDTA (0.25%) was added to each well to detach the monolayer and left to 

incubate for 15 min at 37 °C and 5% CO2. Nine hundred µL of infection media was then added 
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to inactivate the trypsin. 100 µL of the suspension was then vortexed for 2 min, serially diluted 

and placed onto MSA or PIA. Plates were then incubated at 37 °C for approximately 18 h, prior 

to the enumeration of Log10CFU/mL.  

Apical infections of polarised co-cultures grown on transwells® at ALI. 24 h prior to 

infection, cell culture media was aspirated from the basolateral compartment of transwells® 

and replaced with 600 µL of antibiotic-free DMEM/F12 containing 1% (v/v) FBS. The following 

day, overnight cultures of S. aureus and/ or P. aeruginosa were centrifuged at 4,000 x g for 15 

min at 4 °C and the pellet washed in 10 mL of PBS, a process repeated twice. Following the 

final wash, the bacterial pellet was resuspended in infection media (DMEM/F12 only, without 

FBS and antibiotics) to an OD470 of 1.0 and further diluted to give a final MOI of approximately 

10 (10 bacteria to 1 epithelial cell). 

100 µL of the bacterial inoculum was then added to the apical surface of each transwell®. The 

plates were incubated for 2 h at 37 °C and 5% CO2. For co-infection studies, after the initial 2 

h incubation period with the first bacterium, the transwells® were washed once with 200 µL of 

PBS and the second bacterium was added at MOI of approximately 10, prior to the plates 

being incubated for a further 2 h at 37 °C and 5% CO2.  

Bacterial binding to polarised co-cultures grown on transwells®. After the end of each 

mono- or co-infection, transwells® were washed once with 200 µL of sterile PBS, prior to the 

addition of 200 µL of ice-cold sterile 0.25% (v/v) Triton X-100 to lyse the airway epithelia and 

fibroblasts. This concentration of Triton-X100 has been used previously to determine P. 

aeruginosa adhesion to epithelia grown on Transwells® at ALI (Bucior et al., 2014, Bucior et 

al., 2010). Plates were incubated on ice for 30 min. 100 µL of the lysed suspension was then 

vortexed for 2 min, serially diluted and placed onto MSA or PIA. Plates were incubated at 37 

°C for approximately 18 h, prior to the enumeration of CFU/mL. Due to the well-established 

variability regarding bacterial adhesion experiments, bacterial adhesion to the transwell® is 

expressed as a percentage of the bacterial inoculum (quantified by dilution plating). This is 

summarised in the equation below. 

% Adhesion = Number of bacteria recovered from the transwell          x 100 

                    Number of bacteria in the inoculum 
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The methodology for mono-infection of transwells® airway models is illustrated in Figure 62 

below. 

 

 

Figure 62. Mono-infection of transwell® airway models. During mono-infection, CF and non-CF 

airway models grown on transwells® were infected with either S. aureus or P. aeruginosa for 2 h and 

incubated at 37 °C. The transwells® were subsequently washed with PBS to remove any unbound 

bacteria and the airway cells detached using Triton X-100. The bacterial suspensions were serially 
diluted and subsequently plated out for enumeration onto either MSA or PIA selective agar. Plates were 
incubated for approximately 18 h at 37 °C prior to enumerating the bacterial colonies.  
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The methodology used to study sequential bacterial infection in transwell® airway models is 

depicted in Figure 63 below.   

 

Figure 63. Sequential infection of transwell® airway models. Transwells® were first infected with 
either S. aureus (left flow diagram) or P. aeruginosa (right flow diagram) at a MOI of 10 for 2 h and 
incubated at 37 °C, prior to being washed with PBS. If transwells® were initially infected with S. aureus, 
then P. aeruginosa was subsequently added to the transwells® at a MOI of 10, for a further 2 h and 
incubated at 37 °C. If transwells® were initially infected with P. aeruginosa, then S. aureus was 
subsequently added to the transwells®. Following this, the airway models were washed with PBS to 
remove any unbound bacteria and the airway cells lysed using Triton X-100. The bacteria were serially 
diluted and plated out onto both MSA and PIA selective agar. Plates were incubated for approximately 
18 h at 37 °C prior to enumerating the bacterial colonies.  

Statistical analysis. All results unless otherwise specified are expressed as mean ±S.E.M. 

Data for each experiment were collected from three independent experiments (N=3), each 

performed in triplicate. All statistical analyses were performed using GraphPad Prism 6 

software (Graphpad, La Jolla, CA, USA) with significance being set to P<0.05.  The specific 

tests and post-hoc test used for each experiment are described in the figure legends.  
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6.5 Results 

 Binding of S. aureus ATCC 6538 to submerged monolayers of CF 

and non-CF airway epithelia  

With colonisation being the initiating step in CF airway infection, primary experiments 

determined whether CF epithelia grown as submerged monolayers were more susceptible to 

S. aureus binding. As shown in Figure 64, equal numbers of S. aureus ATCC 6538 bound to 

both IB3-1 (CF) and C38 (non-CF) monolayers after 2 h of infection.  

 

Figure 64. S. aureus binds equally to submerged CF and non-CF epithelial monolayers. 
Submerged monolayers of CF and non-CF airway epithelia were incubated with S. aureus (MOI of 
approximately 5) for 2 h, prior to being washed with PBS to remove any unbound bacteria. Airway cells 
were detached using trypsin-EDTA (0.25%) and the number of Log10CFU/mL was determined after 
plating onto MSA plates. Results are expressed as the mean ± S.E.M from three independent 
experiments (N=3), each performed in triplicate. An unpaired, two-tailed t-test was performed to 
determine statistical significance. 

 

  

CF Non-CF  



225 

 

 Binding of P. aeruginosa PAO1 to submerged monolayers of CF 

and non-CF airway epithelia  

In order to determine whether CF bronchial epithelia were more susceptible to binding by P. 

aeruginosa PAO1, submerged epithelial monolayers were infected with PAO1 for 2 h, prior to 

the number of adhered bacteria being enumerated. As shown in Figure 65, PAO1 adhered in 

significantly higher numbers to C38 (non-CF) submerged airway epithelia, compared to IB3-1 

(CF) epithelia (P<0.01).  

 

 

Figure 65. P. aeruginosa PAO1 binds in higher numbers to submerged non-CF airway epithelial 
monolayers. Submerged monolayers of IB3-1 (CF) and C38 (non-CF) cells were incubated with P. 
aeruginosa PAO1 at a MOI of approximately 5 for 2 h, prior to being washed with PBS to remove any 
unbound bacteria. Airway epithelia were detached using trypsin-EDTA (0.25%) and the number of 
Log10CFU/mL was determined after plating onto PIA plates. Results are expressed as the mean ± S.E.M 
from three independent experiments (N=3), each performed in triplicate. An unpaired, two-tailed t-test 
was performed to determine statistical significance (**P<0.01).  

  

CF Non-CF  
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 Effect of prior infection with S. aureus upon P. aeruginosa PAO1 

adhesion to CF and non-CF airway epithelia grown at ALI 

To assess whether previous S. aureus infection enhances P. aeruginosa binding, CF and non-

CF epithelia grown as co-cultures with fibroblasts at ALI were sequentially infected, first with 

S. aureus for 2 h, followed by P. aeruginosa for a further 2 h. S. aureus and P. aeruginosa 

mono-infections were also performed in both airway models (S. aureus only and P. aeruginosa 

only) to allow comparisons to be made. 

Figure 66. Prior infection with S. aureus enhances PAO1 adhesion to CF epithelia. Transwells® 
were mono-infected with either S. aureus (S. aureus only) or PAO1 (PAO1 only). For sequential 

infection, transwells® were first infected with S. aureus for 2 h (S. aureus co), followed by PAO1 for a 
further 2 h (PAO1 co). Airway cells were detached using Triton-X100 and the number of adhered 
bacteria enumerated on MSA and PIA selective agar, to easily discriminate between the two species. 

Adhesion is expressed as a percentage of the bacterial inoculum originally added to the transwells®. 
Data represents the mean ± S.E.M. of three independent experiments (N=3) each performed in triplicate. 
Statistical differences were determined using an unpaired t-test (*P<0.05, ***P<0.001).   

 

As shown in Figure 66, during mono-infection, approximately 4.3% of the S. aureus inoculum 

bound to the CF airway model (S. aureus only). During sequential infection with P. aeruginosa, 

the amount of S. aureus bound to the CF airway model decreased (S. aureus co), but this was 

not significant compared to S. aureus only. Approximately 0.5% of the PAO1 inoculum bound 

to the CF airway model during mono-infection (PAO1 only), where prior infection with S. aureus 

significantly increased subsequent PAO1 binding (PAO1 co) (P<0.001).  

In the non-CF airway model, approximately 4.9% of the S. aureus inoculum bound during 

mono-infection (S. aureus only). During sequential infection with P. aeruginosa, the amount of 

S. aureus adhering to the non-CF model (S. aureus co) was significantly decreased compared 

to S. aureus only (P<0.05). Approximately 0.3% of the PAO1 inoculum bound to the non-CF 

IB3-1 (CF) C38 (Non-CF) 
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model during mono-infection (PAO1 only), where prior exposure to S. aureus did not 

significantly enhance subsequent PAO1 binding (PAO1 co).  

 Effect of prior infection with P. aeruginosa PAO1 upon S. aureus 

adhesion to CF and non-CF airway epithelia grown at ALI 

To determine whether the specific order of infection influences bacterial binding, transwells® 

were first infected with P. aeruginosa PAO1 for 2 h, followed by subsequent infection with S. 

aureus for a further 2h. As shown in Figure 67, the amount of PAO1 bound to the CF airway 

model during sequential infection (PAO1 co) was not significantly different compared to PAO1 

binding during mono-infection (PAO1 only). Previous infection with PAO1 significantly 

increased S. aureus binding however (S. aureus co), compared to S. aureus only (P<0.05). In 

the non-CF airway model, the number of bound PAO1 was not significantly different during 

sequential infection (PAO1 co) compared to mono-infection (PAO1 only). Unlike the CF airway 

model, previous infection with PAO1 did not significantly increase S. aureus binding (S. aureus 

co), compared to S. aureus mono-infection (S. aureus only).  

 

Figure 67. Prior infection with PAO1 enhances S. aureus adhesion in CF airways. Transwells® 
were first infected with PAO1 for 2 h (PAO1 co), followed by S. aureus (S. aureus co) for a further 2 h. 
Mono-infections with S. aureus (S. aureus only) and PAO1 (PAO1 only) served as controls. Airway cells 
were detached using Triton-X100 and the bacteria enumerated on MSA and PIA selective agar to easily 
discriminate between the two bacterial species. Adhesion is expressed as a percentage of the inoculum. 
Data represents the mean ± S.E.M. of three independent experiments (N=3) each performed in triplicate. 
Statistical differences were determined using an unpaired t-test (*P<0.05).  

IB3-1 (CF) C38 (Non-CF) 
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 Effect of prior infection with S. aureus upon P. aeruginosa CF 

isolate 5 binding to CF and non-CF airway epithelia grown at ALI 

Having established the model system using laboratory strains, the system was used to test the 

effects of pre-infection with S. aureus upon subsequent binding of CF clinical isolates of P. 

aeruginosa. As shown below in  

Figure 68, S. aureus binding was not significantly different comparing S. aureus mono-infection 

(S. aureus only), to sequential infection with P. aeruginosa (S. aureus co) in either airway 

model. Additionally, prior infection with S. aureus did not enhance the adhesion of P. 

aeruginosa CF clinical isolate 5 in either airway model (5 co) compared to mono-infection (5 

only).  

 

 

Figure 68. Prior infection with S. aureus does not enhance the binding of P. aeruginosa CF isolate 
5. Transwells® were first infected with S. aureus for 2 h (S. aureus co), followed by P. aeruginosa CF 
isolate 5 (5 co) for a further 2 h. Mono-infections with S. aureus (S. aureus only) and P. aeruginosa CF 
isolate 5 (5 only) served as controls. Airway cells were detached using Triton-X100 and the bacteria 
enumerated on MSA and PIA selective agar to easily discriminate between the two bacterial species. 
Adhesion is expressed as a percentage of the inoculum. Data represents the mean ± S.E.M. of three 
independent experiments (N=3) each performed in triplicate. 

  

IB3-1 (CF) C38 (Non-CF) 
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 Effect of prior infection with P. aeruginosa CF isolate 5 upon S. 

aureus adhesion to CF and non-CF airway epithelia  

The order of infection was subsequently reversed to determine whether prior infection with P. 

aeruginosa CF clinical isolate 5 was able to enhance the binding of S. aureus. To assess this, 

transwells® were first infected with P. aeruginosa CF isolate 5 for 2h, followed by S. aureus for 

a further 2 h.  

As shown in Figure 69, the amount of P. aeruginosa CF isolate 5 bound to the CF and non-CF 

airway model during sequential infection (5 co) was not significantly different compared to CF 

isolate 5 bound during mono-infection (5 only). Furthermore, prior infection with P. aeruginosa 

CF isolate 5 did not enhance S. aureus adhesion in either airway model (S. aureus co) 

compared to S. aureus during mono-infection (S. aureus only). 

 

Figure 69. Prior infection with P. aeruginosa CF isolate 5 does not enhance S. aureus binding. 
Transwells® were first infected with P. aeruginosa CF isolate 5 (5 co) for 2 h, followed by S. aureus (S. 
aureus co) for a further 2 h. Mono-infections with S. aureus (S. aureus only) and P. aeruginosa CF 
isolate 5 (5 only) served as controls. Airway cells were detached using Triton-X100 and the bacteria 
enumerated on MSA and PIA selective agar to easily discriminate between the two bacterial species. 
Adhesion is expressed as a percentage of the inoculum. Data represents the mean ± S.E.M. of three 
independent experiments (N=3) each performed in triplicate.  

  

IB3-1 (CF) C38 (Non-CF) 
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 Effect of prior infection with S. aureus upon P. aeruginosa CF 

isolate 6 binding to CF and non-CF airway epithelia grown at ALI 

The impact of prior colonisation with S. aureus upon P. aeruginosa CF isolate 6 binding was 

determined. Transwells® were first infected with S. aureus for 2h, followed by P. aeruginosa 

CF isolate 6.  

As shown in Figure 70, in the CF airway model, S. aureus binding during sequential infection 

with P. aeruginosa (S. aureus co) was not significantly lower than S. aureus binding during 

mono-infection (S. aureus only). Prior infection with S. aureus however, significantly increased 

the binding of P. aeruginosa CF isolate 6 (6 co), compared to P. aeruginosa CF isolate 6 during 

mono-infection (6 only). 

In the non-CF airway model, the amount of S. aureus bound during sequential infection with 

P. aeruginosa (S. aureus co) was significantly lower than S. aureus only mono-infection 

(P<0.05). Moreover, prior infection with S. aureus did not enhance the binding of P. aeruginosa 

CF isolate 6 (6 co), compared to CF isolate 6 alone (6 only).  

 

Figure 70. Prior infection with S. aureus enhances the adhesion of CF isolate 6 to CF airways. 
Transwells® were first infected with S. aureus (S. aureus co) for 2 h, followed by P. aeruginosa CF isolate 
6 (6 co) for a further 2 h. Mono-infections with S. aureus (S. aureus only) and P. aeruginosa CF isolate 
6 (6 only) served as controls. Airway cells were detached and bacteria enumerated on MSA and PIA 
selective agar to easily discriminate between the two bacterial species. Adhesion is expressed as a 
percentage of the inoculum. Data represents the mean ± S.E.M. of three independent experiments 
(N=3) each performed in triplicate. Statistical differences were determined using an unpaired t-test 
(*P<0.05, **P<0.01). 

  

IB3-1 (CF) C38 (Non-CF) 
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 Effect of prior infection with P. aeruginosa CF isolate 6 upon S. 

aureus adhesion to CF and non-CF airway epithelia grown at ALI 

Lastly, the order of infection was reversed and the impact of prior infection with P. aeruginosa 

CF isolate 6 upon S. aureus binding was determined.  

As shown in Figure 71 below, the amount of P. aeruginosa CF isolate 6 bound during 

sequential infection (6 co), was significantly higher than I6 during mono-infection (6 only) 

(P<0.001). However, prior infection with CF isolate 6 did not enhance S. aureus adhesion (S. 

aureus co) compared to S. aureus during mono-infection (S. aureus only).  

In the non-CF model, the amount of P. aeruginosa CF isolate 6 bound during sequential 

infection (6 co) was significantly higher than CF isolate 6 mono-infection (6 only) (P<0.01). As 

seen in the CF airway model, prior infection with P. aeruginosa CF isolate 6 did not enhance 

S. aureus binding (S. aureus co) compared to S. aureus during mono-infection (S. aureus 

only).  

 

Figure 71. Prior infection with P. aeruginosa CF isolate 6 does not enhance S. aureus adhesion. 

Transwells® were first infected with P. aeruginosa CF isolate 6 (6 co) for 2 h, followed by S. aureus (S. 

aureus co) for a further 2 h. Mono-infections with S. aureus (S. aureus only) and P. aeruginosa CF 
isolate 6 (6 only) served as controls. Airway cells were detached using Triton X-100 and bacteria 
enumerated on MSA and PIA selective agar to easily discriminate between the two bacterial species. 
Adhesion is expressed as a percentage of the inoculum. Data represents the mean ± S.E.M. of three 
independent experiments (N=3) each performed in triplicate. Statistical differences were determined 
using an unpaired t-test (**P<0.01, ***P<0.001). 

  

IB3-1 (CF) C38 (Non-CF) 
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6.6 Discussion  

The early host-pathogen interactions that occur within the CF lung are poorly understood, 

particularly in relation to S. aureus pathophysiology and the sequential nature of CF airway 

infection. Part of this reason is due to the infancy of suitable model systems in which to study 

polymicrobial infection.  

The highly ordered and age-dependent sequence of infection in CF airways has led to the 

hypothesis that prior infection with S. aureus primes the lungs to subsequent colonisation with 

P. aeruginosa (Lyczak et al., 2000, Kosorok et al., 1998). Furthermore, the prophylactic 

treatment of S. aureus has been shown to be potentially facilitate earlier and enhanced P. 

aeruginosa colonisation (Stutman et al., 2002, Ratjen et al., 2001, Goss and Muhlebach, 

2011). This chapter subsequently aimed to use previously characterised and established in 

vitro co-culture models of CF and non-CF airways (Bielemeier, 2012b) to determine the impact 

of polymicrobial infection upon airway colonisation and whether earlier S. aureus infection 

enhances the binding of P. aeruginosa laboratory and CF isolates. Bacterial adhesion was the 

subject of the study due to it being the first step in facilitating acute airway colonisation and 

chronic airway infections.   

Initial experiments infected submerged monolayers of IB3-1 and C38 epithelia with the 

laboratory strain of S. aureus ATCC 6538. As shown in Figure 64, S. aureus bound equally to 

CF and non-CF submerged epithelia in vitro. This supports a previous report where S. aureus 

was shown to adhere equally to the CF cell line CFT-1 and the non-CF cell line LCFSN under 

submerged conditions (Jarry and Cheung, 2006). A study using lab strains and CF isolates of 

S. aureus also demonstrated that S. aureus bound in equal numbers to freshly isolated primary 

CF and non-CF epithelia grown as submerged monolayers (Schwab et al., 1993). This finding 

was also seen following S. aureus infection of CF and non-CF epithelial-fibroblast co-cultures 

at ALI (Figure 66). This equal binding of S. aureus to CF and non-CF respiratory epithelia 

suggests that the CFTR is not playing a direct role in mediating S. aureus binding. If this was 

the case, IB3-1 CF epithelia would be expected to exhibit reduced bacterial adhesion due to 

reduced CFTR expression.  

Previous authors have identified a number of S. aureus adhesion ligands that may facilitate 

airway colonisation. This includes the ability of S. aureus to bind to airway surface asialo-GM1 

(Krivan et al., 1988), which has previously been reported to be increased upon the surface of 

primary CF epithelia (Saiman and Prince, 1993). Once more, it would expected that this may 

facilitate enhanced S. aureus binding, a finding not seen in this chapter. Fibronectin binding 

protein upon the surface of S. aureus has also been shown to facilitate binding to host epithelia 

β1-integrin (Fowler et al., 2000, Sinha et al., 1999). Additonally, S. aureus has been shown to 

adhere to airway mucins (Sanford et al., 1989).  
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Compared to P. aeruginosa, little is known about S. aureus pathophysiology within CF airways 

and the mechanisms it uses to colonise the lungs. Future work would seek to determine these 

mechanisms, such as through the introduction of exogenous asialo-GM1 to determine  whether 

it competitively inhibits S. aureus binding, as was shown for P. aeruginosa (Saiman and Prince, 

1993). Blocking or silencing fibronectin binding protein expression upon the surface of S. 

aureus or silencing the expression of asialo-GM1 or β-1 integrin upon the surface of polarised 

airway epithelia would also provide a strategic approach to greater understand these host-

pathogen interactions.  

Unlike S. aureus, P. aeruginosa PAO1 adhered in higher numbers to submerged non-CF 

airway epithelia, than to submerged CF epithelia (Figure 65). Infection of the in vitro co-culture 

models following growth at ALI however, demonstrated that P. aeruginosa PAO1 and all the 

P. aeruginosa CF isolates tested bound to the CF and non-CF models equally during mono-

infection (Figure 66). Previous research has highlighted the role of cell polarity in the study of 

host-pathogen interactions, where P. aeruginosa has been shown to adhere in significantly 

higher numbers to A549 submerged monolayers compared to A549 epithelia grown at ALI 

(Carterson et al., 2005), with differences in cell polarity potentially  explaining this finding.  

The equal binding of P. aeruginosa PAO1 and CF isolates to CF and non-CF airway epithelia 

grown at ALI during mono-infection (Figure 66,  

Figure 68 and Figure 70) is supported by Darling et al. who demonstrated that PAO1 and two 

mucoid CF isolates of P. aeruginosa adhered in equal numbers to polarised CFBE41o- (CF) 

and 16HBE14o- (non-CF) respiratory epithelia (Darling et al., 2004). Although conducted under 

submerged conditions, Plotowski et al. (1992) demonstrated that a non-mucoid CF isolate of 

P. aeruginosa adhered equally to primary CF and non-CF respiratory epithelia obtained nasal 

polyps (Plotkowski et al., 1992a). This finding is supported by Bryan et al. (1998) who 

demonstrated that P. aeruginosa at 106 CFU bound equally to CF and non-CF airway 

submerged epithelial cell lines (Bryan et al., 1998). Such findings contrast with another study 

by Imundo et al. (1995), who demonstrated that P. aeruginosa PAO1 bound to polarised IB3-

1 in greater numbers than non-CF C38 epithelia (Imundo et al., 1995).  

Several studies have suggested that wildtype CFTR in healthy non-CF airways is involved in 

the receptor mediated uptake of P. aeruginosa via LPS binding, consequently removing the 

bacterium from the airway lumen and preventing airway colonisation (Pier et al., 1996, Pier et 

al., 1997, DiMango et al., 1998). Thus, as CF epithelia are unable to carry out this innate 

defence mechanism due to the absence or impaired functioning of the CFTR, CF airways 

become hypersusceptible to developing chronic airway infections. Thus, the susceptibility of 

CF airways to P. aeruginosa infection may not due to inherent differences in the ability of 
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Gram-negative bacteria to adhere, but rather the inability to become internalised into host cells 

and expelled from the airway lumen.  

Studies presented in this chapter have revealed that during mono-infection, S. aureus bound 

to submerged IB3-1 and C38 monolayers in significantly higher numbers than PAO1 (P<0.01). 

However, at ALI, S. aureus adhesion was only significantly higher than PAO1 in the C38 (non-

CF) airway model (P<0.05) (Figure 66). Cigana et al. (2017) reported that S. aureus embedded 

in agar beads was associated with a higher bacterial load compared to P. aeruginosa, 

independent of the bacterial strains used (Cigana et al., 2017). This could be due to the fact 

S. aureus is considered a “true” pathogen, whilst P. aeruginosa is an opportunistic pathogen. 

Thus, S. aureus may be better equipped to colonise the airways and adhere in higher numbers. 

Further work is required to address this however.  

Results from this study show that prior infection with S. aureus enhances P. aeruginosa 

adhesion, a phenomenon seen only with lab strain PAO1 and CF isolate 6 and a finding  

restricted to the CF airway model of infection (Figure 66 and Figure 72). The ability for one 

bacterium to enhance the adhesion of another is not a newly-discovered phenomenon. Prior 

exposure to the motile Gram-negative bacterium Stenotrophomonas maltophilia has been 

shown to enhance P. aeruginosa binding to submerged monolayers of IB3-1 CF epithelia 

(Pompilio et al., 2010), whilst prior incubation of submerged non-CF 16HBE14o- cells with P. 

aeruginosa did not enhance the binding of S. maltophilia (De Vidipo et al., 2001). This synergy 

between pathogens has been reported more extensively with respiratory viruses, which  have 

been shown to enhance the binding of S. aureus (Saadi et al., 1993), H. influenzae (Jiang et 

al., 1999), Streptococcus pneumoniae  (Ishizuka et al., 2003) and P. aeruginosa (Van Ewijk et 

al., 2007) in numerous in vitro submerged airway epithelial cell models. However, these studies 

were conducted using epithelia grown under submerged conditions and were not influenced 

by the potential role of cell polarity (Plotkowski et al., 1999), the presence of other airway cell 

types or the role that mucus has to play in governing host-pathogen interactions. Currently no 

known studies have focused upon bacterial co-infections using epithelial cultures grown at ALI.  

Why S. aureus was able to enhance the adhesion of PAO1 and CF isolate 6 in the CF co-

culture model (Figure 66 and Figure 72) despite S. aureus binding in equal numbers to the 

non-CF co-culture model warrants further study. Although the pathophysiological responses 

that occur in the airway models during the 4 h incubation period require characterisation, 

including measurement of cell viability (e.g. lactate dehydrogenase release), it is possible that 

the CF model exhibited a heightened susceptibility to S. aureus infection, which was further 

compromised following the addition of P. aeruginosa. CF epithelia have previously been shown 

to exhibit elevated rates of apoptosis and increased oxidative stress (Rottner et al., 2011, Soleti 

et al., 2013) along with defects in apoptotic cell clearance (Vandivier et al., 2002a, Vandivier 
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et al., 2009). During development and characterisation of the established in vitro ALI models 

used in this study, Bielemeier (2012) reported larger decreases in cell viability following S. 

aureus and P. aeruginosa infection in the CF model compared to the non-CF model, albeit 

after a 24 h infection (Bielemeier, 2012b). A study by Shahriary et al. demonstrated that IB3-1 

and C38 cell lines did not exhibit differences in cell proliferation under normoxia or anoxia 

(Shahriary et al., 2012). Whilst this was conducted under submerged culture and not in the 

presence of fibroblasts, it seems unlikely that varying rates of cell proliferation or cell number 

across the two models post-establishing the airway transwells® could contribute to such 

differences in bacterial binding.  

Why S. aureus was only able to enhance the adhesion of PAO1 and P. aeruginosa CF isolate 

6 in the CF co-culture model (Figure 66 and Figure 70) and not P. aeruginosa CF isolate 5 ( 

Figure 68) also warrants further study. A study conducted by Cigana et al. (2017) introduced 

laboratory strains of S. aureus embedded in agar beads into the lungs of non-CF B6 mice to 

evaluate the effect of subsequent infection of agar beads embedded with the highly virulent P. 

aeruginosa strain PA14 and two CF clinical isolates. Whilst co-infection was associated with 

increased mortality, Cigana et al. (2017) reported that the bacterial load of P. aeruginosa in 

the lungs of mice pre-colonised with S. aureus was not significantly different to mice which 

were not pre-infected with S. aureus. This finding was also seen for CF isolate 5, therefore it 

is entirely possible that the enhanced adhesion of PAO1 and CF isolate 6 is an isolate-specific 

phenomenon.  

Perhaps changes to the airway epithelium by S. aureus colonisation may provide access to 

additional airway ligands which facilitate P. aeruginosa binding. This could either be a result of 

the upregulation of P. aeruginosa specific epithelial surface ligands on damaged or repairing 

epithelia (Bucior et al., 2010) (which could be assessed using qPCR during longer incubation 

periods), or through access to the underlying subepithelial fibroblasts and components of the 

extracellular matrix. A study by Tirouvanziam et al. demonstrated how P. aeruginosa infection 

of CF tracheal grafts into immunocompromised mice led to losses in airway cell integrity and 

rapid cell exfoliation, where bacteria then bind to underlying cells of the airways and the basal 

lamina (Tirouvanziam et al., 2000). It is possible that the expression and abundance of P. 

aeruginosa adhesins to ligands upon epithelia, fibroblasts and the extracellular matrix varies 

across the P. aeruginosa isolates during microevolution and adaptation to the CF lung.  
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Yang et al. (2011) demonstrated that P. aeruginosa strains producing type IV pili were able to 

aggregate with S. aureus to form microcolonies (Yang et al., 2011). The presence or absence 

of type IV pili or variations in its expression across the CF isolates may lead to differences in 

microcolony formation, allowing S. aureus to act as a “bridge” between the airway cell surface 

and P. aeruginosa. However, whether these interactions occur in these in vitro models, or in 

the CF lung place is unknown.  

Perhaps PAO1 and CF isolate 6 are just better equipped than CF isolate 5 at displacing S. 

aureus from its binding sites, as PAO1 and CF isolate 6 both caused decreases in S. aureus 

binding during co-infection, whilst CF isolate 5 did not.  Both S. aureus and P. aeruginosa have 

been shown to bind to asialo-GM1 (Davies et al., 1999, Imundo et al., 1995) and thus maybe 

the species compete for asialo-GM1 receptor availability (Bucior et al., 2012, Simpson et al., 

1992, Bucior et al., 2010, Tirouvanziam et al., 2000, Davies et al., 1999, Imundo et al., 1995).  

The impact of differences in bacterial growth upon enumerated CFU during these studies is 

likely to be minimal, as stationary phase cultures were used. Planktonic growth studies shown 

in Figure 17 demonstrate that following dilution of a stationary phase culture, PAO1 and the 

CF isolates exhibit a lengthy lag phase, which exceeded the 4 h incubation time. Moreover, 

the use of DMEM/F12 as the infection medium for both S. aureus and P. aeruginosa, rather 

than nutrient-rich LB broth may prolong this further. Furthermore, the ability of one bacteria to 

inhibit the growth of another during sequential infection and thus influence binding is also likely 

to be minimal, due to the use of stationary phase cultures and the washing of the bacterial 

pellets prior to inoculation of the transwells®, which removed pre-formed virulence factors.  

Future work would seek to include PA14 used by Cigana et al. (2017), as well as determine 

whether S. aureus can enhance the binding of several early and late CF isolates of P. 

aeruginosa. The histology of infected transwells® would also provide insights into the 

localisation of bacterial binding in both mono- and sequential infections. If the two bacteria 

occupy identical areas as reported in vivo (Hogan et al., 2016, Wakeman et al., 2016), this 

may suggest more of a direct interaction between the two organisms. It is possible that the use 

of agar embedded beads in the Cigana et al. (2017) study encourages the pathogen to remain 

restricted to growth within the bead, preventing them from forming more direct interactions. 

One of the limitations of previous studies addressing the sequence of bacterial infection is that 

the reverse sequence is not performed to determine whether the actual order of pathogen 

addition is important. To act as a control in this study, transwells® were first infected with P. 

aeruginosa for 2 h, prior to subsequent infection with S. aureus. Interestingly prior infection 

with PAO1 significantly increased S. aureus adhesion only in the CF airway model (Figure 67), 

whilst the CF isolates of P. aeruginosa did not exert this effect in either model.  
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Firstly, this finding may be due to the fact that PAO1 is a widely used reference strain in CF 

research and not a CF isolate. Previous chapters in this study have shown how CF isolates 

differ not only to each other, but also to laboratory strain PAO1. A study addressing bacterial 

adhesion demonstrated how asialo-GM1 treatment of polarised Madin-Darby canine kidney 

cells (MDCK) enhanced the binding of P. aeruginosa laboratory strain PA103, but not any of 

the corneal or respiratory isolates, including those obtained from CF patients (Schroeder et al., 

2001b). Thus, this brings in to question the relevance of PAO1 and emphasises the need to 

evaluate clinical CF isolates of P. aeruginosa in future experiments addressing CF pathology. 

The impact of prior infection with P. aeruginosa upon the transcriptome of IB3-1 and C38 

epithelia could be determined in future experiments to decipher whether there are any 

variations in the expression of ligands known to be specific for S. aureus adhesion. 

The traditional dogma of direct bacteria-host cell interactions within CF airways has been 

challenged within the CF microbiology community. Compared to other airway diseases such 

as pneumonia, CF is characterised by the presence of excess dehydrated mucus. Previous 

authors have cited that S. aureus and P. aeruginosa are localised within static mucus plugs 

and therefore do not interact directly with airway epithelia (Worlitzsch et al., 2002, Baltimore et 

al., 1989, Ulrich et al., 1998). Despite this, P. aeruginosa has been shown to form intracellular 

clusters within primary airway epithelia following growth at ALI (Garcia-Medina et al., 2005), 

with another study showing that mutations in the CFTR enhanced P. aeruginosa uptake in 

polarised airway epithelia (Darling et al., 2004). As previously mentioned, a study infecting CF 

and non-CF airway grafts with P. aeruginosa demonstrated that whilst the bacterium first 

adhered to the mucus within the lumen, losses in cell integrity and cell sloughing caused the 

bacteria to then bind to the underlying cells of the airways and the basal lamina (Tirouvanziam 

et al., 2000), which are richer in high affinity receptors such as asialoGM1 (Saiman and Prince, 

1993) and fibronectin (Roger et al., 1999).  

Whilst such findings may be a result of the chosen methodology and models systems used, 

intriguingly, surface protein neuraminidase is known to be one of the most highly expressed 

genes in CF isolates of P. aeruginosa (Lanotte et al., 2004), which is involved in exposing the 

asialoGM1 receptor (Saiman and Prince, 1993). Moreover, wild type CFTR has been shown 

to bind to the outer core of P. aeruginosa LPS, facilitating bacterial endocytosis and its removal 

from the airway lumen (Pier et al., 1997, Pier et al., 1996, Schroeder et al., 2002) suggesting 

that this mechanism may play a role in airway defence. In addition to this, the concentrations 

of the two major airway mucins MUC5AC and MUC5B have been shown to be decreased in 

CF sputum by approximately 80% compared to heathy controls during stable disease (Henke 

et al., 2004, Rubin, 2007). Mucin degradation by the abundant levels of NE and its metabolism 

by anaerobes in the CF lung are likely to be involved in further modifying airway mucin 
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concentration and rheology, which may influence direct and indirect host-pathogen interactions 

(Henke et al., 2011, Flynn et al., 2016, Hampton et al., 2014, Madan et al., 2012).  

Drawing all of these findings together, perhaps during the early stages of P. aeruginosa airway 

colonisation, P. aeruginosa uses the CFTR to bind to CF epithelia. The inability of mutant 

CFTR to internalise P. aeruginosa facilitates its ability to remain within the airway lumen of 

individuals with CF and colonise. This process may be further aided by the secretion of P. 

aeruginosa exoproducts, such as pyocyanin, which at physiologically relevant concentrations, 

has been shown to reduce the expression and trafficking of CFTR in lung and primary nasal 

epithelia (Kong et al., 2006). This interaction between P. aeruginosa and mutant CFTR may 

also help explain why P. aeruginosa dominates in CF adults and yet is not the dominant 

pathogen in other conditions where mucociliary clearance is impaired but the CFTR is 

functional, such as the genetic condition primary ciliary dyskinesia (PCD) (Noone et al., 2004, 

Chen et al., 2008). In PCD where airway cilia are dysfunctional, 32% of adults were culture 

positive for P. aeruginosa, whilst this was 59% for CF (Chang et al., 2015). Perhaps the 

presence of static mucus alone does not facilitate P. aeruginosa colonisation and could be 

aided by direct bacterial adhesion to respiratory epithelia.  

P. aeruginosa colonisation could also be further promoted due damage induced by prior S. 

aureus colonisation, which allows early P. aeruginosa infection to exploit the injured airway 

epithelia and losses in cell polarity. P. aeruginosa has been shown to preferably bind to the 

basolateral side of damaged airway epithelia in polarised in vitro models (Bucior et al., 2010, 

Bucior et al., 2012, Fleiszig et al., 1998). This finding has also been reported in primary cell 

outgrowth model cultures (de Bentzmann et al., 1996a), organ cultures (Tsang et al., 1994), 

buccal epithelial cells (Lingner et al., 2017), murine trachea (Ramphal and Pyle, 1983) and rat 

tracheal surfaces (Yamaguchi and Yamada, 1991). Moreover, decreased cell polarity has been 

shown to facilitate enhanced P. aeruginosa binding, compared to fully polarised epithelia 

(Plotkowski et al., 1999, Carterson et al., 2005, Lee et al., 1999). Injured airway epithelia 

express higher amounts of basolateral receptors upon their apical surface (Fleiszig et al., 1998, 

Heiniger et al., 2010), which in turn facilitates enhanced P. aeruginosa uptake following actin 

polymerisation involving Rho-GTPases (Kazmierczak et al., 2004, Kazmierczak et al., 2001) 

and tyrosine kinases (Esen et al., 2001). The expression of asialoGM1 and fibronectin upon 

the surface of regenerating airway epithelia may facilitate the enhanced binding of P. 

aeruginosa to injured epithelia (de Bentzmann et al., 1996a, Roger et al., 1999, Plotkowski et 

al., 1992b), coupled with the binding of type IV pili to N-glycoproteins upon the apical surface 

of respiratory epithelia (Doig et al., 1988, Bucior et al., 2010, Bucior et al., 2012). 
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The apical presence of P. aeruginosa also reportedly upregulates the presence of basolateral 

receptors at the apical surface of epithelia (Tran et al., 2014), mediating changes in 

phosphoinositol-3-kinase-protein (PI3K) and facilitating P. aeruginosa invasion into host cells 

(Kierbel et al., 2007, Kierbel et al., 2005). As pyocyanin has also been shown to induce the 

expression of the tetracarbohydrate moiety sialyl-lewisx in IB3-1 CF epithelia (Jeffries et al., 

2016), this may facilitate additional binding of P. aeruginosa to CF airways (Scharfman et al., 

1999).  

Flagella-mediated swimming motility is common in early CF isolates (Bragonzi et al., 2009) 

and allows P. aeruginosa to preferably colonise hypoxic regions of CF mucus (Worlitzsch et 

al., 2002). This form of motility may allow P. aeruginosa to migrate to injured tissue (Schwarzer 

et al., 2016) which has been damaged by chronic S. aureus infection. Whilst Helicobacter pylori 

has been shown to migrate to urea secreting epithelia within the stomach (Huang et al., 2015), 

it has been suggested that the release of amino acids from damaged respiratory epithelia may 

drive P. aeruginosa migration to these sites (Schwarzer et al., 2016). Damage to the CF 

respiratory tissue may also provide access to the underlying mucosa, allowing P. aeruginosa 

to adhere to sub-epithelial fibroblasts (Azghani et al., 1992) in the in vitro airway co-culture 

model, as well as in vivo.  

The presence of P. aeruginosa and secretion of its extracellular virulence factors such as 

pyocyanin are known to induce goblet cell hyperplasia, mucus hypersecretion and LPS-

induced MUC2 production (Hao et al., 2012, Li et al., 1997). Furthermore, pulmonary 

exacerbations induced by chronic airway infection with P. aeruginosa have been shown to 

increase the levels of mucins relative to healthy individuals (Henke et al., 2007). Thus, perhaps 

over the course of chronic infection P. aeruginosa persistence in the airway lumen 

subsequently facilitates P. aeruginosa adhesion to airway mucins (Arora et al., 1998, 

Vishwanath and Ramphal, 1984, Sajjan et al., 1992, Ramphal et al., 1996), reflecting the 

localisation of P. aeruginosa seen in  autopsy samples obtained from CF patients (Schwab et 

al., 2014, Baltimore et al., 1989).  

Whilst advances are being made to the understanding of the complex S. aureus-P. aeruginosa 

interspecies interactions in CF airways, due to the obvious ethical implications, the exact 

localisation of CF pathogens in vivo remains unknown, particularly during early infection in 

paediatric CF lungs. Can the bacteria interact directly with CF epithelia and utilise the 

mechanisms demonstrated in previous studies to escape the host immune response? Or 

alternatively, do CF pathogens simply bind to airway mucus with defects occurring in CF innate 

immunity facilitating P. aeruginosa colonisation. 
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6.7 Limitations  

One of the limitations of this study is the length of bacterial incubation used to infect airway 

epithelial cultures grown under submerged conditions and at ALI. Whilst mono-infections to 

measure bacterial adherence are routinely conducted between a 30 min and 2 h  incubation 

period (Carterson et al., 2005, Pier et al., 1996, Pier et al., 1997, Bucior et al., 2014, Bucior et 

al., 2012, Bucior et al., 2010, Schwarzer et al., 2016, Van Ewijk et al., 2007), this provides only 

a snapshot and may not be a long enough to discern greater differences in S. aureus and P. 

aeruginosa adhesion during co-infection.  

Bacterial cultures were also pelleted and washed in PBS prior to being added to in vitro models, 

thus removing any bacterial exoproducts. This method has been widely employed in several 

previous studies assessing P. aeruginosa mono- and co-infection (Van Ewijk et al., 2007, 

Pompilio et al., 2010, Saiman et al., 1990a, DiMango et al., 1998, Plotkowski et al., 1992a, 

Darling et al., 2004, Kato et al., 2010, Schwarzer et al., 2016), whilst another study inoculated 

bacterial colonies directly into PBS from the agar plate and adjusted the culture density (Pier 

et al., 1996). This is a step away from the in vivo environment however, where an arsenal of 

exoproducts contributes to airway damage during the course of infection and may play a role 

in airway colonisation. For example, losses in alpha toxin by S. aureus has been shown to 

significantly increase integrin-mediated adhesion and internalisation of S. aureus into A459 

alveolar epithelial cells (Liang and Ji, 2006). 

Both the chosen length of incubation and the removal of extracellular virulence factors were 

important in this study, particularly when focusing upon bacterial enumeration (rather than 

studies addressing mechanisms of infection and airway viability). Extensive damage to both 

models could cause significant losses in respiratory epithelia, causing them to slough off during 

the wash step, thus complicating bacterial enumeration. The wide diversity of extracellular 

virulence factors secreted and their varying concentrations across the two bacterial species 

and the P. aeruginosa CF isolates would also likely complicate the interpretation of the results 

and the extent to which exoproducts play in promoting bacterial colonisation.  

Another limitation is that further characterisation of the in vitro co-culture models of CF and 

non-CF airways is required. This includes determining the concentration and depth of mucus 

produced by each model, the production of antimicrobial peptides such as HBD’s, as well as 

conducting experiments to investigate ciliary beating frequency.  

Finally, as bacterial binding was reliant upon enumerating CFU, questions remain as to the 

relevance of CFU, as previous research has demonstrated that P. aeruginosa can clump 

together (Imundo et al., 1995, Plotkowski et al., 1992a). Would bacterial clumps still give rise 

to a single CFU, as expected for a single bacterium? To control for this however, samples were 
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vortexed and mixed by pipetting, prior to plating on selective agar, to reduce the likelihood of 

bacterial clumps.  

6.8 Future work  

Future research would seek to address the mechanisms underlying the findings presented in 

this chapter, such as determining whether each CF pathogen becomes internalised by 

polarised non-CF epithelia and not by CF airway epithelia during mono- and co-infection. The 

classical gentamicin protection assay could be performed for this study, where the antibiotic is 

incubated for a given time period to kill externally bound bacteria, prior to then being washed 

off and the epithelial cells lysed, to enumerate the live bacteria which have become internalised 

(Chi et al., 1991, Darling and Evans, 2003). The cell-associated virulence factors of the P. 

aeruginosa CF isolates could also be determined, such as their ability to bind to purified asialo-

GM1 and wtCFTR.  

As the airway epithelia needed to be detached and lysed in order to enumerate the bacteria 

which had adhered, the terminal nature of such an experiment consequently prevented data 

from being obtained in relation to the impact of mono- and co-infection upon airway cell 

viability. Thus, future studies would seek to address this, through measuring the release of 

intracellular lactate dehydrogenase (LDH) (Bucior et al., 2010) and determining if cells were 

apoptotic or necrotic using flow cytometry by propidium iodide and annexin V staining. It would 

also provide answers as to whether co-infection significantly decreases viability compared to 

mono-infection and whether this is also influenced by the sequence of infection.  

Performing histology on transwell® cultures would provide information concerning the type of 

damage caused by both bacterial species. Cigana et al. (2017) reported that S. aureus was 

able to induce abscess-like lesions in the lungs of B6 mice following mono-infection, with a 

central necrotic core of S. aureus surrounded by macrophages and fibrin. Conversely, P. 

aeruginosa remained embedded within the agar beads (Cigana et al., 2017). If S. aureus is 

able to inflict more damage or induce lesions which vary to those produced by P. aeruginosa, 

this would be of particular interest for future studies. Histology would also provide insights into 

the actual sites of pathogen binding and whether S. aureus and P. aeruginosa bind primarily 

to airway epithelia or alternative sites.   

As a continuation of chapter 4, the impact of low to absent levels of oxygen must also be 

determined to understand how this microenvironment influences bacterial adhesion to the CF 

lung. Previous work has shown that hypoxia increases the expression of PA-I lectin in P. 

aeruginosa, increasing adhesion to the basolateral membrane of intestinal epithelia (Kohler et 

al., 2005). Furthermore, hypoxia has been shown to decrease P. aeruginosa internalisation 

into CF and non-CF airway epithelia (Schaible et al., 2013) and is also known to downregulate 
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CFTR expression in respiratory and intestinal epithelia (Zheng et al., 2009, Guimbellot et al., 

2008). 

Future experiments would seek to use CF isolates of S. aureus, a number of which have been 

co-isolated with P. aeruginosa to determine their impact upon binding to CF and non-CF 

airways. As SCV’s of S. aureus are becoming increasingly isolated from CF airways and 

display an increased ability to adhere and internalise within airway epithelia (Mitchell et al., 

2011, Tuchscherr et al., 2010, Vaudaux et al., 2002, Kahl et al., 1998), their impact upon airway 

colonisation also requires investigation. This is also the case for MRSA isolates which are 

becoming increasingly isolated from CF airways internationally, including in the United States 

(Cystic Fibrosis Foundation, 2008) and the UK (Thomas et al., 1998, Solis et al., 2003, Miall 

et al., 2001).  

As P. aeruginosa extracellular products such as pyocyanin are known to induce ciliary 

dysfunction (Hao et al., 2012), the impact of P. aeruginosa cell-free supernatants upon cell 

viability, mucus secretion and polarised secretion of inflammatory mediators by the CF and 

non-CF airway co-culture models must also be investigated. Deciphering whether 

pre-treatment of airway epithelia with cell-free supernatants of S. aureus also enhances P. 

aeruginosa adhesion requires further study. 

6.9 Conclusion  

The originality of this research is that it firstly demonstrates the impact of S. aureus-P. 

aeruginosa co-infection upon bacterial adhesion to CF and non-CF airways and uses a novel 

in vitro co-culture model of CF and non-CF airways grown at ALI. The relevance of S. aureus 

within CF airway microbiology is highly contested. The evidence for chronically prescribing 

anti-staphylococcal antibiotics is lacking, whilst there is a suggestion that S. aureus primes CF 

airways to earlier P. aeruginosa colonisation. This study demonstrates that S. aureus infection 

appears to enhance P. aeruginosa adhesion to CF airway epithelia in an isolate-specific 

manner, as summarised in Figure 72.  

Whilst these findings are novel, they are in their infancy and need to be supported by a 

comprehensive range of future studies as described above. If S. aureus does induce 

irreversible patho-physiological changes to CF lungs, even eradication of S. aureus may not 

provide therapeutic benefits, as P. aeruginosa is still able to colonise the airways. Larger 

research questions also remain, such as why S. aureus can dominate in CF airways for many 

years prior to P. aeruginosa becoming the predominant organism later in life.  
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Figure 72. Priming of CF airways by S. aureus, to subsequent P. aeruginosa colonisation. During 
childhood, CF lungs are colonised predominantly by S. aureus, which through a series of direct and 
indirect host-pathogen interactions creates a CF lung environment more favourable to P. aeruginosa 
colonisation. P. aeruginosa is eventually successful in colonising the lung and through numerous 
mechanisms is able replace S. aureus as the predominant CF pathogen.  

 

  



244 

 

7 Final discussion  

7.1 Results summary  

Whilst extensive research over the last six decades has aided to greatly increase the median 

life expectancy of individuals with CF to 47 years of age (MacKenzie et al., 2014, Dodge et al., 

2007, Keogh et al., 2018, Cystic Fibrosis Trust, 2018), respiratory infections continue to be the 

main cause of morbidity and mortality from CF (Lyczak et al., 2002, Ciofu et al., 2013). Major 

obstacles to the development of more effective treatments is the need to obtain a greater 

understanding of the polymicrobial nature of CF airway infection and how pathogen-pathogen 

and host-pathogen interactions influence disease progression and health outcomes. Such 

advances are also further compounded by a lack of relevant model systems in which to study 

such interactions.  

In spite of this, research conducted over recent years has already demonstrated how 

interspecies interactions between S. aureus and P. aeruginosa impacts upon the antibiotic 

susceptibilities of both S. aureus (Orazi and O'Toole, 2017) and P. aeruginosa (Beaudoin et 

al., 2017) compared to mono-infection, whilst S. aureus-P. aeruginosa co-infection is 

associated with a worsening of pulmonary function and decreased survival (Limoli et al., 2016).  

The overall aims of this thesis outlined at the end of the introduction were to:  

1. Phenotypically characterise CF clinical isolates of P. aeruginosa 

2. Explore the effects of static growth and anoxia upon S. aureus-P. aeruginosa 

interactions  

3. Elucidate the effects of S. aureus-P. aeruginosa co-stimulation upon the airway 

inflammatory response 

4. Determine whether prior S. aureus infection influences P. aeruginosa airway 

colonisation 
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Evaluation of Aim 1: Phenotypically characterise CF clinical isolates of P. aeruginosa 

Chapter 3 was concerned with characterising eight novel CF clinical isolates of P. aeruginosa 

obtained from Birmingham Children’s Hospital, focusing upon a number of phenotypic traits 

previously summarised as being important in establishing and maintaining CF airway infection 

(Ballok and O'Toole, 2013, van 't Wout et al., 2015).  

The data presented in chapter 3 are in agreement with the well-documented wide phenotypic 

diversity that is known to exist across CF clinical isolates of P. aeruginosa (Mowat et al., 2011, 

Clark et al., 2015b, Tingpej et al., 2007, Winstanley et al., 2016, Mayer-Hamblett et al., 2014b, 

Workentine et al., 2013, Ashish et al., 2013). The eight CF isolates exhibited 6 distinct colony 

morphological characteristics (Table 6), as well as a lack of correlation between the production 

of one virulence factor with another. Adaptation to the CF lung environment is typically 

associated with losses in motility (swimming, swarming and twitching) and the secretion of 

extracellular virulence factors (Workentine et al., 2013), in favour of acquiring a mucoid 

phenotype (Sousa and Pereira, 2014). Despite this, non-mucoid P. aeruginosa CF isolate 8 

failed to secrete detectable proteases (Figure 18) and yet exhibited swarming motility (Figure 

23), whilst mucoid P. aeruginosa CF isolate 3 exhibited protease activity (Figure 18) and 

swarming motility (Figure 23). Thus, specific CF isolates exhibited a co-occurrence of 

phenotypes typically associated with acute and chronic infection, a finding reported previously 

in a longitudinal genotypic and phenotypic study of a P. aeruginosa strain from an adult with 

CF (Clark et al., 2015b). Phenotyping the eight CF clinical isolates in this study enabled isolates 

to be selected for further study.  

One of the main impacts of the wide phenotypic diversity across P. aeruginosa CF isolates is 

its effect upon antimicrobial susceptibility testing. Current antibiotic sensitivity tests in 

diagnostic microbiology laboratories rely on selecting the most common morphotypes from 

cultured sputum and exposing them to a series of antibiotic concentrations (Kahlmeter et al., 

2003). However, colonies of the same morphotype isolated from CF sputum have already been 

shown to exhibit different antibiotic susceptibilities (Foweraker et al., 2009, Foweraker et al., 

2005) and the results are known to be a poor predictor of clinical outcomes (Hurley et al., 

2012). The CF lung environment is a unique environmental niche and one that restricts 

antibiotic delivery and potency. Biofilm versus planktonic growth and variations in oxygen 

availability have all been shown to influence the effectiveness of antibiotics (Hill et al., 2005). 

Whilst mixed morphotype testing from specimen plates have previously been shown to be a 

more efficient way to determine antimicrobial susceptibilities of common CF pathogens (Wolter 

et al., 1995, Van Horn, 1993), such practices have yet to enter routine practice in diagnostic 

laboratories. Moreover, future studies must continue to determine the influence of 
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polymicrobial infections upon antibiotic efficacies (Orazi and O'Toole, 2017, Beaudoin et al., 

2017). 

Poor clinical responses relating to antibiotic susceptibility testing has led to the suggestion of 

using alternative treatments to combat P. aeruginosa infection. This includes developing 

compounds to target P. aeruginosa protease production to limit damage to the airways, as well 

as producing compounds to target LasR quorum sensing and thus reduce bacterial virulence 

(Cathcart et al., 2011, Jakobsen et al., 2013). However, as P. aeruginosa proteases have been 

shown to effectively degrade the pro-inflammatory mediators IL-8 and IL-6 (LaFayette et al., 

2015), subsequent losses in protease activity through targeting proteases or quorum sensing 

may heighten the airway inflammatory response and thus worsen pulmonary function and 

overall health.  

A “trojan horse” approach to treating bacterial infections has also been suggested. Coupling 

siderophores to antibiotics would consequently facilitate their intracellular uptake by P. 

aeruginosa, mediating bacterial killing (Schalk and Mislin, 2017). However, delivering these to 

the sites of infection are likely to face the same challenges as conventional antibiotic 

treatments, such as mucus plugging, bacterial biofilms and immune infiltrates. The introduction 

of social cheats into bacterial populations has also been suggested, including cheats which do 

not express virulence factors, but are able to outcompete the resident strains and exhibit 

susceptibility to antibiotics. Thus, once the less virulent social cheats have dominated, they 

can be cleared with an appropriate antibiotic (Brown et al., 2009). Such a strategy also has 

drawbacks however, including successful delivery of the cheats to the sites of infection within 

the CF lung, as well as unintended co-evolution of the social cheat with the wildtype bacterial 

population.  

Evaluation of Aim 2: Explore the effects of static growth and anoxia upon S. aureus-P. 

aeruginosa interactions  

The characterisation of the novel P. aeruginosa CF clinical isolates conducted in chapter 3 

also provided a basis for selecting CF isolates for further study, to determine the impact of 

normoxia and anoxia upon S. aureus-P. aeruginosa interspecies interactions within planktonic 

co-culture and mixed species biofilms. This is in light of studies providing evidence that the CF 

lung environment contains regions of anoxia (Worlitzsch et al., 2002, Tunney et al., 2008, 

Rogers et al., 2003). S. aureus and P. aeruginosa co-colonisation has previously been 

associated with a worsening of pulmonary function compared to colonisation with S. aureus 

and P. aeruginosa alone (Rosenbluth et al., 2004), along with increased frequency of 

pulmonary exacerbations (Limoli et al., 2016). Furthermore, two additional studies reported 

that the pulmonary function in individuals co-infected with S. aureus-P. aeruginosa was worse 

compared to those infected with S. aureus alone (Hudson et al., 1993, Hubert et al., 2013). 
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Interspecies interactions between S. aureus and P. aeruginosa not only influence disease 

progression (Sibley et al., 2009) but have also been shown to modulate bacterial virulence 

(Fugere et al., 2014a, Korgaonkar et al., 2013) and the host’s immune response (Pernet et al., 

2014). Understanding such interactions is essential for understanding CF airway infections, 

which in turn could provide new treatment strategies and therapeutics to influence bacterial 

community composition.   

As discussed in chapter 4, under normoxia all P. aeruginosa CF isolates tested were able to 

dominate over S. aureus in planktonic co-culture (Figure 27) and mixed species biofilms 

(Figure 28), which is in agreement to a number of previous studies conducted under normoxia 

(Kessler et al., 1993a, Baldan et al., 2014b, Biswas et al., 2009b, Fugere et al., 2014b, Filkins 

et al., 2015, Fothergill et al., 2007a, Mashburn et al., 2005a). This finding is not limited to the 

use of traditional culture broths such as LB, as P. aeruginosa has also been shown to reduce 

S. aureus viability and dominate following growth in artificial CF sputum (Haley et al., 2012). 

Such a finding explains in part the inverse relationship between the two major CF pathogens, 

where the advent of adolescence is associated with the transition from S. aureus to P. 

aeruginosa dominance (Cystic Fibrosis Trust, 2018).  

Anoxia was shown to attenuate the ability of select P. aeruginosa isolates to dominate in mixed 

culture in both planktonic culture (Figure 27) and mixed species biofilms (Figure 28),  thus 

providing S. aureus with a survival advantage. Spatial segregation of S. aureus and P. 

aeruginosa has previously been reported to promote bacterial co-existence in wound biopsies 

and in vitro wound models, despite pathogens retaining their virulence (Fazli et al., 2009, 

Dalton et al., 2011). P. aeruginosa alginate overproduction has also been associated with 

facilitating P. aeruginosa co-existence with S. aureus, where the production of alginate was 

associated with a reduction in the production of other extracellular virulence factors such as 

siderophores and rhamnolipids (Limoli et al., 2016). Results presented in chapter 4 suggest 

that anoxia is an additional mechanism which may facilitate S. aureus-P. aeruginosa co-

existence in an isolate dependent manner. This is likely to have implications upon patient 

health, as S. aureus-P. aeruginosa co-existence has previously been shown to worsen 

pulmonary function and overall survival (Limoli et al., 2016, Maliniak et al., 2016, Hudson et 

al., 1993). Interestingly, not all P. aeruginosa CF isolates lost their ability to reduce S. aureus 

viability under anoxia and were still able to dominate in planktonic co-culture and mixed species 

biofilms. Such findings re-emphasise the highly complex nature of CF airway infections and 

that environmental factors such as oxygen availability are likely to exert isolate specific 

changes to community composition and bacterial dominance.  
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In addition to influencing bacterial community dynamics, the retention of P. aeruginosa 

virulence properties under anoxia is also likely to impact upon the host. The ability to secrete 

proteases under anoxia may facilitate P. aeruginosa damage to airways despite dynamic 

changes in oxygen availability over the course of infection due to mucus plugging, biofilm 

formation and consumption of oxygen by infiltrating neutrophils. Conversely, oxygen 

dependent losses in bacterial virulence may also facilitate disease progression, with losses in 

protease production preventing the degradation of IL-8, thus heightening airway inflammation 

and neutrophil chemotaxis (LaFayette et al., 2015).  

Subsequent experiments sought to determine the anti-staphylococcal compound(s) which are 

likely to mediate P. aeruginosa dominance under both normoxia and anoxia. Heat and size 

exclusion treatment of cell-free P. aeruginosa culture supernatants suggest that the compound 

facilitating P. aeruginosa dominance over S. aureus is extracellular, heat stable and >3 kDa in 

size (Figure 42). Future work would seek to construct a series of genetic mutants of P. 

aeruginosa using siRNA (small interfering RNA), to sequentially knock out known virulence 

factors that are >3 kDa in size. The addition of cell-free culture supernatants obtained from 

these mutants could then be added to S. aureus as performed previously in this study, to 

assess whether the mutant loses its ability to antagonise the viability of live S. aureus. Purified 

virulence factor be added to the mutant culture supernatant exogenously, to determine whether 

this restores the ability of P. aeruginosa to kill S. aureus. 

Perhaps eventual identification of the anti-staphylococcal compound(s) mediating P. 

aeruginosa dominance may reveal the mechanisms which facilitate the transition to P. 

aeruginosa dominance within CF airways and in turn open new therapeutic avenues to 

potentially interfere with disease progression. However, it has been previously reported that P. 

aeruginosa dominance is dependent upon the production of multiple virulence factors, as 

deletion of single virulence factors has been shown reduce S. aureus antagonism (Limoli et 

al., 2017). Thus, it is possible that more than one extracellular virulence factor retained within 

the >3 kDa fraction facilitates P. aeruginosa dominance.  

S. aureus exoproducts were also shown to positively modulate P. aeruginosa motility (Figure 

46) in an isolate dependent manner, either restoring motility to detectable levels, or significantly 

enhancing it. As this activity was exhibited in both fractions (>3 and <3 kDa fractions) and was 

not sensitive to heat treatment, deciphering the compounds which facilitate this species 

synergism may ultimately aid in being able to develop targeted treatments to modulate these 

interspecies interactions. The ability of S. aureus exoproducts to enhance P. aeruginosa 

motility may exert a detrimental effect in the CF lung, allowing P. aeruginosa to migrate to 

areas of improved nutrient availability and away from host defence mechanisms. Furthermore, 
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flagella has previously been reported to be involved in biofilm formation (O'Toole and Kolter, 

1998).  

Another attractive approach in the treatment of S. aureus-P. aeruginosa co-infection is to target 

co-expressed virulence genes. Despite differences in genome size, a previous study 

demonstrated how both bacterial species expressed a gene involved in survival in 

environments high in antibiotics, which could be targeted to control bacterial pathogenicity 

(Hosseinkhan et al., 2018).   

Evaluation of Aim 3: Elucidate the effects of S. aureus-P. aeruginosa co-stimulation 

upon the airway inflammatory response 

As well as influencing bacterial community composition, the interspecies interactions that occur 

between the two major CF pathogens S. aureus and P. aeruginosa are likely to also govern 

the host’s innate immune response. P. aeruginosa has previously been shown to induce the 

production of type-IIA-secreted phospholipase A2 by CF epithelia, a bactericidal enzyme that 

is able to kill S. aureus, but exhibit minimal bactericidal activity upon P. aeruginosa (Pernet et 

al., 2014). Furthermore, a clinical study focusing upon S. aureus-P. aeruginosa co-infection 

reported heightened airway inflammation in individuals co-infected with S. aureus-P. 

aeruginosa, compared to those infected with either pathogen (Sagel et al., 2009a).  

As airway epithelia are likely to sense diffusible bacterial exoproducts (Klinger et al., 1978, 

Ericsson et al., 1986, Hollsing et al., 1987b), chapter 5 sought to determine the impact of 

secreted and shed extracellular products from S. aureus and/or P. aeruginosa upon the 

inflammatory response of submerged monolayers of CF and non-CF airway epithelia. How CF 

and non-CF airway epithelia detect and respond to multiple bacterial stimuli during a 

polymicrobial infection is poorly understood, with only one current study to date addressing S. 

aureus-P. aeruginosa co-stimulation upon airway inflammation in vitro (Chekabab et al., 2015).  

Whilst the use of differentiated polarised ALI cultures would increase the physiological 

relevance of the findings and provide data regarding the directional release of inflammatory 

mediators, submerged epithelial monolayers remained useful. As well as being high a widely 

used methodology and high throughput (Chekabab et al., 2015, Becker et al., 2004, Massion 

et al., 1994, Palfreyman et al., 1997, Beaudoin et al., 2013), they represent the most superficial 

cell layer within the airways, which is most likely to be in contact with microbial products.  

Unlike previous work, this study employed the use of static bacterial cultures, rather than those 

grown under vigorous culture aeration (Chekabab et al., 2015). As published previously, CF 

bacteria grow statically under varying oxygen tensions, which is likely to induce physiological 

changes and influence the production of virulence factors (Gaines et al., 2005). Whilst static 

growth has been shown to select for motile variants of P. aeruginosa, switching to shaking 
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culture reversed this finding, giving rise to non-motile variants (Wyckoff et al., 2002). Gaines 

et al. reported that static growth increased the expression of endotoxin A by P. aeruginosa 

PAO1 (Gaines et al., 2005).  

The results presented in chapter 5 demonstrate how immortalised CF bronchial epithelia 

secrete elevated concentrations of both IL-8 and IL-6 at baseline, compared to non-CF airway 

epithelia (Figure 50, Figure 51, Figure 53 and Figure 54). The origin of inflammation within CF 

airways is highly contested within the CF community. Some reports have reported that the 

baseline secretion of inflammatory cytokines is equal in CF and non-CF epithelia (Scheid et 

al., 2001, Kube et al., 2001, Black et al., 1998, Becker et al., 2004), whilst others have 

demonstrated that mRNA and protein expression levels of IL-8 from primary CF epithelia and 

gland cells are constitutively upregulated compared to non-CF cells (Tabary et al., 1998, 

Carrabino et al., 2006, Kammouni et al., 1997, Bonfield et al., 1999). BALF analysis of infants 

with CF who were culture-negative for common CF pathogens reported increased neutrophil 

counts, free NE and IL-8 compared to control subjects (Khan et al., 1995), whilst the continuous 

inhibition of CFTR has been shown to significantly increase in IL-8 secretion both at baseline 

and following exposure to P. aeruginosa (Perez et al., 2007). Such findings are not restricted 

to airway epithelia, where silencing of the CFTR in macrophages has been shown to induce a 

pro-inflammatory phenotype (Xu et al., 2010).  

Results presented in chapter 5 also demonstrated that CF epithelia exhibited a significantly 

higher IL-8 response compared to non-CF epithelia, following challenges with exoproducts 

from PAO1 and most of the P. aeruginosa CF clinical isolates (Figure 50 and Figure 53). It is 

likely that the IL-8 produced at baseline will contribute to the overall inflammatory response 

induced by P. aeruginosa products. IL-6 production in CF epithelia was heightened and 

unaffected by single or dual challenges with S. aureus and/or P. aeruginosa exoproducts 

(Figure 53). 

Furthermore, of all the dual challenge studies, only co-stimulation with S. aureus and PAO1 

exoproducts significantly increased IL-8 production by CF epithelia, compared to baseline and 

S. aureus or P. aeruginosa alone (Figure 50). IL-6 production in CF epithelia was heightened 

and unaffected by single or dual challenges with S. aureus and/or P. aeruginosa exoproducts 

(Figure 53). Conversely, non-CF epithelia exhibited a low inflammatory phenotype at baseline, 

where only single challenges with PAO1 (and not S. aureus or the CF clinical isolates) 

significantly increased the IL-8 response compared to baseline (Figure 51). Unlike CF 

epithelia, co-stimulation with all S. aureus-P. aeruginosa isolate combinations increased the 

IL-8 and IL-6 response, compared to both baseline and single microbial challenges (Figure 51 

and Figure 54). A lack of enhancement to the IL-8 and IL-6 response in the majority of co-

infections with S. aureus-P. aeruginosa in CF airways suggests that S. aureus-P. aeruginosa 
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may not always exacerbate inflammation. Such a finding was reported by Reece et al. who 

demonstrated that only specific combinations of whole-live Aspergillus fumigatus with P. 

aeruginosa increased IL-6 and IL-8 production by CFBE41o− bronchial epithelial cells, 

compared to Aspergillus fumigatus and P. aeruginosa alone (Reece et al., 2018). The authors 

demonstrated that the mechanisms as to why A. fumigatus with P. aeruginosa did not exert an 

additive effect upon inflammation was due to saturation of the ERK and p38 MAPK signalling 

pathways (Reece et al., 2018).  

These findings seen in both CF and non-CF epithelia are in contrast to a study by Chekabab 

et al. who reported that S. aureus exoproducts inhibited the release of IL-8 in both Beas-2B 

(non-CF) and CFBE41o- (CF) airway epithelia induced by exposure to P. aeruginosa 

exoproducts (Chekabab et al., 2015). S. aureus exoproducts have also been shown to inhibit 

IL-8 gene expression and protein production by human umbilical vein endothelial cells 

(HUVEC), although this inhibition was shown to be S. aureus strain specific (Tajima et al., 

2007). As neither Tajima et al. or Chekabab et al. employed the S. aureus strain ATCC 6538, 

the inability for S. aureus to dampen the pro-inflammatory response in this study may be a 

strain-specific phenomenon, due to differences in bacterial physiology and virulence. Such 

findings may also be influenced by the bacterial growth conditions employed, following 

bacterial culture in LB broth, under static conditions. Chekabab et al. reported differences in 

the ability of S. aureus to induce an IL-8 response following growth in LB broth and tryptic soy 

broth (TSB). Whilst S. aureus growth in LB broth elicited a minimal IL-8 response, S. aureus 

growth in TSB elicited a dose-dependent inflammatory response in airway epithelia (Chekabab 

et al., 2015).  

It is also entirely possible that S. aureus does not dampen the pro-inflammatory response 

induced by P. aeruginosa. P. aeruginosa has previously been shown to influence the majority 

of the airway inflammation in a non-CF mouse model of infection, where co-infection with S. 

aureus exerted more of a follow-on effect, rather than an additive or inhibitory effect upon the 

inflammatory response to P. aeruginosa (Cigana et al., 2017). Moreover, bacterial co-infection 

in paediatric CF airways has also been associated with increased IL-8 and neutrophil counts 

in BALF compared to mono-infection (Sagel et al., 2009a).  

It is also important to highlight that the choice of immortalised airway epithelia may also give 

rise to the results obtained. The work presented here employed the use of IB3-1 CF epithelia 

and the isogenic cell line C38, a CF corrected phenotype with WT CFTR in an adeno-

associated viral vector. The Chekabab et al. study which reported an inhibitory effect of S. 

aureus upon the inflammatory response induced by P. aeruginosa employed the CF epithelial 

cell line CFBE41o-, as well as the unmatched healthy bronchial Beas-2B epithelial cell line 

(Chekabab et al., 2015). There are numerous cell lines which are used in respiratory research 



252 

 

(Fulcher et al., 2009) and the findings could potentially be influenced by a number of factors, 

such as the CFTR mutation severity, differences in NF-ĸB activity and the location from which 

the cells were obtained in the airways. Although immortalised cell lines in respiratory research 

provide advantages over primary airway epithelia due to their increased availability and 

reduced in patient variability, they also exhibit limitations. As IB3-1 epithelia were obtained 

from one CF patient prior to immortalisation, there is an argument that they only represent a 

“N” of 1 and thus lack variability and patient diversity. In the context of these inflammatory 

studies, the use of isogenic genetically matched cell lines however (which are only expected 

to differ in their CFTR expression) provide evidence that the presence or absence of the CFTR 

plays a key role in governing airway inflammation.  

S. aureus exoproducts did not elicit a dampening effect upon the release of IL-8 and IL-6 

following exposure to purified LPS from E. coli, a finding reported previously (Chekabab et al., 

2015). This finding is unsurprising as the previously reported modulatory effect of S. aureus is 

restricted to TLR1/2 induced NF-ĸB signalling (Chekabab et al., 2015), with LPS being known 

to signal through TLR4 (Chow et al., 1999). Additional work is required to assess the signalling 

mechanisms of CF and non-CF epithelia in response to S. aureus and P. aeruginosa using 

inhibitors targeting NF-ĸB and MAPK pathways.  

It is possible that the IB31-1 CF cell line failed to produce IL-10 as this anti-inflammatory 

cytokine has previously been shown to be below the limit of detection in studies using 

immortalised and primary CF epithelia (Massengale et al., 1999, Becker et al., 2004, Bonfield 

et al., 1995a, Bonfield et al., 1999). As the non-CF cell line C38 is derived from IB3-1 airway 

epithelia, this inability to produce detectable levels of IL-10 is likely to be conserved.   

Heat-inactivated bacterial cell-free supernatants were used to minimise airway epithelia 

toxicity, which could otherwise complicate the interpretation of results across cell lines and 

following single and dual challenges. Whilst one of the findings of this methodological approach 

is that airway inflammation can be induced by exoproducts which are not sensitive to heat-

treatment, it abolishes the activity of P. aeruginosa proteases in particular, which are important 

in CF airway pathology and are known to degrade both IL-8 and IL-6 (Saint-Criq et al., 2018, 

Okuda et al., 2011, LaFayette et al., 2015). The extent to which P. aeruginosa proteases 

dampen the inflammatory response in the airways of individuals with CF requires further study.  

The effects of polymicrobial infection upon the airway inflammatory response is likely to 

complex. The work presented in chapter 5 suggests that the IL-8 and IL-6 response in CF 

epithelia in the absence of microbial infection is likely to impair neutrophil function due to 

premature priming (Taggart et al., 2000), as well as lead to extensive airway damage due to 

the secretion of NE (Wagner et al., 2016). Coupled with an altered inflammatory response 

during S. aureus-P. aeruginosa co-infection compared to non-CF epithelia, this may aid in the 
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ability of these two predominant CF pathogens to evade the host immune response and 

chronically colonise the airways.  

Evaluation of Aim 4: Determine whether prior S. aureus infection influences P. 

aeruginosa airway colonisation 

There is a lack of consensus regarding the role of S. aureus in CF airway infection, from its 

effect upon disease pathology, to whether it facilitates earlier P. aeruginosa colonisation 

(Lyczak et al., 2002). In turn there is no standardised global approach regarding the treatment 

of S. aureus infection, where flucloxacillin prophylaxis is recommended for the first three years 

of life in the UK, whilst this is recommended against in the USA (Stutman et al., 2002, Ratjen 

et al., 2001, Wong et al., 2013, Smyth and Rosenfeld, 2017). Continuous anti-staphylococcal 

prophylaxis has been associated with earlier P. aeruginosa acquisition (Ratjen et al., 2001, 

Hurley et al., 2018).  

As previously mentioned, models to study polymicrobial respiratory infections upon the host 

response are in their infancy. The handful of previous studies addressing polymicrobial airway 

infection in CF have employed the use of submerged CF epithelial cell monolayers, where S. 

maltophilia and RSV have both been shown to enhance the binding of P. aeruginosa (Pompilio 

et al., 2010, Van Ewijk et al., 2007). Currently only one in vivo study using a non-CF mouse 

model has sought to investigate the impact of S. aureus infection upon P. aeruginosa airway 

colonisation (Cigana et al., 2017). Whilst several mouse models have been developed over 

the last two decades and have provided important insights into CF disease pathology, they 

lack many hallmarks characteristic of CF airway infection. This includes their inability to 

develop spontaneous lung infections (Grubb and Boucher, 1999), along with their lack of IL-8, 

instead expressing the homologs; macrophage inflammatory protein-2α (MIP-2α) and 

keratinocyte chemoattractant (KC) (Tarrant, 2010, Zhang et al., 2001). As IL-8 is the major 

chemokine secreted in CF airways, in vivo comparisons to the CF population can be difficult. 

Retaining bacterial populations in the airway lumen of murine models requires bacteria to be 

embedded in agar beads (Cigana et al., 2017, Stotland et al., 2000, Cigana et al., 2016). Such 

an approach is an exaggerated mode of infection which does not mimic that seen in humans. 

Additionally, he microaerophilic environment of the beads themselves (Bragonzi et al., 2005), 

their ability to retain the bacteria within the bead and variations in bead size are all likely to 

impact upon experimental findings.   

This study employed previously established and characterised in vitro co-culture models of 

human CF and non-CF airways (Bielemeier, 2012b), consisting of CF or non-CF epithelia 

grown on a layer of subepithelial fibroblasts. Human fibroblasts were seeded onto human 

collagen type IV coated transwells®, as collagen IV is known to underlie the airway epithelium 

in vivo (Sage, 1982).Whilst type IV collagen is only one component of the ECM, fibroblasts 
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have previously been shown to produce ECM components, which have been shown to better 

facilitate the growth of bronchial epithelia (Skibinski et al., 2007). Sub-epithelia primary 

fibroblasts have been shown to play a role in epithelial cell differentiation, the formation of cilia 

and the production of cytokines (Bielemeier, 2012b, Costea et al., 2003, Sacco et al., 2004). 

CF or non-CF airway epithelia were subsequently seeded onto the layer of fibroblasts and 

differentiated for a minimum of 21 days at ALI to permit polarisation (Pezzulo et al., 2011) and 

the cells fed basolaterally with fresh culture media (Whitcutt et al., 1988). This model was 

shown to express the tight junction protein ZO-1, express cilia and microvilli, as well as produce 

the mucin MUC5AC (Bielemeier, 2012b). The models were used to mimic the sequence of 

infection seen in CF airways, to determine whether prior S. aureus infection influences P. 

aeruginosa colonisation.  

Both S. aureus and the P. aeruginosa CF isolates were shown to bind equally to CF and non-

CF co-culture models grown at ALI following mono-infection (Figure 66), a finding reported 

previously using submerged CF and non-CF epithelial monolayers (Jarry and Cheung, 2006, 

Cervin et al., 1994, Plotkowski et al., 1996). Questions remain however as to the exact sites 

of bacterial binding within CF airways. Biopsies obtained from individuals with CF have shown 

how S. aureus and P. aeruginosa are predominantly localised in airway mucus (Ulrich et al., 

1998, Worlitzsch et al., 2002, Baltimore et al., 1989) and both have been shown to  bind to 

mucins in vitro (Carnoy et al., 1994, Devaraj et al., 1994, Ramphal et al., 1987, Ulrich et al., 

1998). However, CF epithelia have also been reported to exhibit enhanced P. aeruginosa 

binding due to increased apical expression of the cell surface receptor asialo-GM1 (Saiman et 

al., 1992, Saiman and Prince, 1993, Zar et al., 1995, Imundo et al., 1995). Mutations in the 

CFTR have been associated with defects in P. aeruginosa internalisation (Pier et al., 1996, 

Pier et al., 1997), allowing the bacterium to remain within the airway lumen and colonise. Thus, 

perhaps impaired bacterial internalisation plays a more significant role than bacterial adhesion 

in facilitating the development of chronic infection.  

There is no denying that impairments in mucociliary clearance and mucus plugging plays an 

enormous role in facilitating bacterial colonisation of the CF airways. However, in isolation it 

fails to explain why the incidence of S. aureus and P. aeruginosa in children with primary ciliary 

dyskinesia (PCD) is half that of those isolated from individuals with CF (Tracy et al., 2016). 

Whilst both diseases result in impaired mucociliary clearance the CFTR is functional in PCD. 

Moreover, another study demonstrated that P. aeruginosa was prevalent in 59% of individuals 

with CF compared to 32% for PCD, with S. aureus being detected in 74% of those with CF, 

compared to 24% in PCD (Chang et al., 2015). If mucus alone plays a major role in facilitating 

bacterial clearance, why do other CF pathogens not dominate? The specificity of wtCFTR to 

bind to P. aeruginosa and not to other CF pathogens potentially explains in part why P. 

aeruginosa is the dominant pathogen in CF airways. Mucoid isolates of P. aeruginosa have 
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been shown to lose their expression of the LPS ligand which binds to the CFTR (Schroeder et 

al., 2001a, Schroeder et al., 2002). Furthermore, surface protein neuraminidase is known to 

be one of the most highly expressed genes in CF isolates of P. aeruginosa (Lanotte et al., 

2004), which is involved in exposing the asialoGM1 receptor (Saiman and Prince, 1993) known 

to be present upon the surface of airway epithelia. 

Another major CF pathogen H. influenzae has previously been shown in vitro to bind initially 

to airway mucins and then to injured respiratory epithelia (Read et al., 1991). Infection of 

polarised airway epithelia with non-typeable H. influenzae has demonstrated how the 

bacterium preferably bound in clusters to surviving epithelia (Ren et al., 2012). P. aeruginosa 

has also been shown to preferably bind to injured and regenerating airway epithelia, binding 

to apically enriched proteoglycans, asialoGM1 and fibronectin (Lingner et al., 2017, Bucior et 

al., 2010, Bucior et al., 2012, Fleiszig et al., 1998, de Bentzmann et al., 1996b, de Bentzmann 

et al., 1996a). Thus, it is possible that CF pathogens bind to the static airway mucus in CF 

airways, as well as to the surface of CF airway epithelia. Together this facilitates damage to 

the airways through direct and indirect host-pathogen interactions, which further enhances 

bacterial colonisation.  

Co-infection studies demonstrated that S. aureus enhanced the binding of P. aeruginosa in CF 

airways only in an isolate-dependent manner, a finding not seen in the non-CF model (Figure 

66,  

Figure 68 and Figure 70). Furthermore, the sequence of infection also appears to be important, 

as only prior infection with PAO1 was shown to enhance S. aureus binding (Figure 67), whilst 

the CF isolates did not elicit this priming effect (Figure 69 and Figure 71). Such findings bring 

into question the relevance of PAO1 as a model organism to study CF microbiology, as well 

as the approaches that need to be taken to determine the mechanisms which facilitate this 

synergism between S. aureus and P. aeruginosa in colonising CF airways. The use of the in 

vitro co-culture models in this study could begin to address this in future studies.   

It is appreciated that these results are one of the first to address S. aureus-P. aeruginosa 

sequential infection upon the host response in CF, alongside a study published at the end of 

2017 using a non-CF B6 murine model (Cigana et al., 2017). Whilst the limitations of CF mice 

have already been described, there are a number of similar conclusions that can be drawn 

between the work presented in chapter 6 and the study published by Cigana et al. in 2017. 

Firstly, both studies employed laboratory strains, as well as CF clinical isolates of P. 

aeruginosa. The P. aeruginosa bacterial burden during co-infection of the non-CF airway 

model was similar to that enumerated following mono-infection, a result reported in the non-

CF murine model (Cigana et al., 2017) Moreover, the S. aureus bacterial burden was 

significantly higher than P. aeruginosa during mono-infection (in  both airway models),  a 
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finding also reported by the authors (Cigana et al., 2017). The major distinction between the 

results presented in Cigana et al. and the results from this chapter 6 however is that prior 

infection with S. aureus was shown to enhance P. aeruginosa adhesion in CF airways.  

It is important to highlight that both airway models display inherent limitations, coupled with 

drawbacks to the methodological approaches. In Cigana et al. this relates to the use of a non-

CF murine model to study infection in CF and the need to challenge the lungs with bacteria 

embedded in agar beads to prevent bacterial clearance. Thus, CF pathogens are thus retained 

within the microenvironment of the agar bead, which may influence their physiology, virulence 

and direct and indirect interactions within the airways. As mice do not express IL-8, evaluating 

the role of this predominant chemokine in CF cannot be studied in the context of mono- and 

co-infection in the murine model, which relied on assaying its homologs e.g. MCP-1. However, 

unlike the in vitro co-culture transwell® models, the murine model permits much longer-term 

infection studies to be conducted over many days to weeks. Furthermore, the murine model 

has a functioning immune system, exhibits microfluidic flow and permits histological and BALF 

analysis alongside bacterial enumeration to be obtained from a single experiment. 

Independent experiments would be required to perform histological analysis in this thesis, due 

to the bacterial adhesion to the transwell® being an endpoint readout, due to the need to detach 

and vortex the airway epithelia from the transwell® insert. Optimisation experiments are also 

required if neutrophils and or macrophages are to be added to the in vitro model, in order to 

assess their viability, their ability to adhere to airway epithelia, as well as undergo chemotaxis 

in response to an apical bacterial challenge. However, current advantages of the in vitro airway 

co-culture models over murine models are that it is composed of human airway cells, allows 

comparisons to be made across isogenic cell lines, expresses human and CF relevant 

cytokines and permits bacteria being added as either planktonic or biofilm cultures to the 

epithelial surface, rather than through the introduction of agar beads into murine airways via 

the trachea. As it is also not a whole-body system, the in vitro airway models provides the user 

with greater control over experimental variables, with a reductionist approach aiding in the 

study of host-pathogen interactions in CF airways.  

The incubation periods employed in this study mimicked more of an acute airway infection, 

rather than chronic infection, which is characteristic of CF. However, such methods sought to 

understand the early infection events of P. aeruginosa colonisation and whether the prior 

presence of S. aureus facilitates enhances its ability to adhere to CF airways. Differences in 

cell viability across the two models could potentially impact upon the total number of bacteria 

bound, particularly if the epithelia detach and slough off with longer incubation periods and the 

bacteria bound to those cells are lost. S. aureus and P. aeruginosa have both been shown to 

induce apoptosis in epithelial cells (Losa et al., 2014, Rajan et al., 2000, Kahl et al., 2000). 

Losses in epithelial cells would subsequently complicate the interpretation of adhesion results. 
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A number of previous studies have reported losses in epithelial cell viability and integrity 

following 10 h of infection using primary mouse trachea epithelia (Garcia-Medina et al., 2005), 

within the first couple of hours in the human CF cell line CFT1 (Lee et al., 1999) and 7 hours 

following infection of 16 HBE14o- epithelia (Plotkowski et al., 1999). The incubation periods 

used in these mono- and co-infection (2-4 h) studies also allowed comparisons to be made to 

the published literature, with it being widely used when studying bacterial adhesion, including 

in CF (Bucior et al., 2010, Bucior et al., 2012, Worlitzsch et al., 2002, Wang et al., 2017, 

Letourneau et al., 2011, Van Ewijk et al., 2007, Ahmed et al., 2014).  

Studies exploring other host-pathogen interactions however, such as the impact of co-infection 

upon antibiotic susceptibility would employ much longer incubation periods (24-72 h). This 

would facilitate the development of long term single and mixed species biofilms. A number of 

studies have already begun to determine the susceptibility of CF pathogens to antibiotics in 

the presence of respiratory epithelia (Anderson et al., 2008, Moreau-Marquis et al., 2010, Orazi 

and O'Toole, 2017, Crabbe et al., 2017).  

7.2 Future work 

Future work to that conducted in chapter 3 would seek to include other important P. aeruginosa 

phenotypes associated with CF airway infection, such as RSCV’s, which are associated with 

increased biofilm production, an increased resistance to antibiotics and poor pulmonary 

function (Starkey et al., 2009, Haussler et al., 1999, Schneider et al., 2008). Determining their 

impact in the context of polymicrobial infections, including their interspecies interactions with 

S. aureus and their impact upon airway inflammation and adhesion also warrants further study. 

P. aeruginosa SCV’s have been shown to inhibit A. fumigatus biofilm formation (Anand et al., 

2018), resist neutrophil phagocytosis and induce inflammation in murine macrophages 

(Pestrak et al., 2018). 

Bacterial phenotyping was the focus of chapter 3, as changes in genotype do not necessarily 

reflect changes in phenotype (Burns et al., 2001, Workentine et al., 2013). However, future 

work would seek to use pulse field gel electrophoresis (Parkins et al., 2014) to determine 

whether the P. aeruginosa CF isolates obtained from Birmingham Children’s Hospital belong 

to single or multiple clonal groups. Though individuals with CF are known to harbour their own 

unique strains of P. aeruginosa (Mahenthiralingam et al., 1996), clonal strains of P. aeruginosa 

have been reported in siblings (Grothues et al., 1988, Wolz et al., 1989) and CF centres 

(Anthony et al., 2002, Armstrong et al., 2002).  

LBN broth was widely used to grow both S. aureus and P. aeruginosa. As a nutrient rich broth, 

it allows both species to grow to high densities of up to 108-109 CFU/mL, bacterial densities 

routinely detected in CF patients (Darch et al., 2017) and allows easier comparisons to be 



258 

 

made to the published literature. Growth under static conditions was shown to also facilitate 

the biofilm-mediated growth of P. aeruginosa as suspended microcolonies (visual clumps), a 

phenotype seen in the CF lung (Sriramulu et al., 2005). Whilst it is difficult to mimic the 

variations in nutrient availability, oxygen availability and the pressures exerted by host factors 

and antimicrobials in vitro, artificial CF sputum has been developed, rich in amino acids, mucin 

and free DNA (Kirchner et al., 2012). Using synthetic sputum would be an additional step closer 

to mimicking the growth conditions and environment found in the CF lung and has been used 

previously to determine antibiotic susceptibilities of P. aeruginosa (Kirchner et al., 2012), P. 

aeruginosa evolutionary diversification (Davies et al., 2017) and its interspecies interactions 

with S. aureus (Haley et al., 2012).  

Additionally, all the co-culture assays conducted in this study employed the use of a laboratory 

strain of S. aureus. Future experiments would seek to employ CF isolates of S. aureus, 

including those co-isolated with P. aeruginosa from the same sputum sample. As S. aureus is 

known to adapt to the presence of P. aeruginosa as seen with the S. aureus SCV phenotype 

(Biswas et al., 2009a, Hoffman et al., 2006), the impact of anoxia upon co-isolates and airway 

colonisation would provide novel insights into the interactions between the two major CF 

pathogens overtime.  

Additional experiments are required to address the impact of S. aureus-P. aeruginosa 

exoproducts upon the airway inflammatory response. This includes studying the mRNA 

expression levels of IL-8, IL-6 and IL-10 at baseline in both CF and non-CF epithelia and 

following mono- and co-stimulation with S. aureus and or P. aeruginosa exoproducts. This 

extends to the study of other important inflammatory mediators by airway epithelia, including 

TNF-α which is upregulated in CF sputum (Karpati et al., 2000, Bonfield et al., 1995b, 

Venkatakrishnan et al., 2000) and increases neutrophil chemotaxis, adhesion to the 

endothelium and the induction of IL-8 (Black et al., 1998, Stecenko et al., 2001, Smart and 

Casale, 1994, Ishii et al., 1992, Sun et al., 2014). The impact of S. aureus and P. aeruginosa 

co-infection upon intracellular signalling in IB3-1 and C38 epithelia requires further 

characterisation, which could be assessed through designing a NF-ĸB reporter assay 

(LaFayette et al., 2015), or through the use of inhibitors to target p38 MAPK (Reece et al., 

2018).   

Further characterisation of the ALI in vitro co-culture models of CF and non-CF airways is also 

required. Paraffin-embedded sections would allow staining to be performed to assess for the 

expression of important cell surface receptors important in governing inflammation and 

bacterial adhesion. The levels of TLR4 expression upon IB3-1 CF epithelia compared to C38 

non-CF epithelia could be performed, as TLR4 involved in the detection of LPS has previously 

been shown to be reduced in CFBE41o- CF epithelia (John et al., 2010). The levels of asialo-
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GM1 could also be compared across the two cell lines following growth at ALI to determine 

whether this plays a role in facilitating bacterial adhesion to the CF epithelium (Saiman and 

Prince, 1993).  Comparing the surface expression levels of TLRs and adhesins at ALI to cells 

grown under submerged conditions would further elucidate the importance of the 

methodologies and in vitro models used in CF research, particularly when studying direct and 

indirect host-pathogen interactions. Being able to quantitively compare the production of the 

mucins MUC5AC and MUC5B across the two in vitro models is also required, as well determine 

the impact of mono- and co-infection upon their production. This would aid to decipher the 

exact locations of bacterial adhesion in CF and non-CF epithelia. This could be further assisted 

by electron microscopy.  

Whilst P. aeruginosa in particular is considered primarily an extracellular pathogen, numerous 

authors have demonstrated its ability to internalise within CF and non-CF respiratory epithelia 

as a means to persist within the airways (Pielage et al., 2008, Darling et al., 2004, Pier et al., 

1997, Bajmoczi et al., 2009). Using a gold standard gentamicin-exclusion assay to kill surface 

associated bacteria, future work would seek to determine whether prior infection with S. aureus 

influences P. aeruginosa internalisation into CF bronchial epithelia. 

7.3 Conclusion  

Promising and exciting advances are being made in correcting mutated CFTR at both the 

genetic and protein level. The potentiator drug Kalydeco (Ivacaftor®) produced by Vertex 

Pharmaceuticals is available on the NHS and benefits 5% of the CF community, targeting 

those individuals over the age of two who harbour a ‘gating’ mutation i.e. G551D. Improving 

chloride conductivity by increasing the time the CFTR channel is open, the drug has been 

shown to improve pulmonary function (FEV1) from 55.4% to 64.1% (Cystic Fibrosis Trust, 

2016b). However, these treatments strategies currently face a series of challenges, from costs 

and effective reproducibility, to the fact that they will only benefit a certain number of patients.  

In the case of Ivacaftor/Lumicafor dual therapy drug (Orkambi®), it is currently prescribed on 

compassionate grounds due to its high costs and lack of evidence  regarding long term impact 

(Cystic Fibrosis Trust, 2016a). It is to be given to CF patients over the age of 12, who are 

homozygous for the Phe508del mutation (Cystic Fibrosis Trust, 2016b). Lumacaftor acts as a 

chaperone facilitating CFTR folding and transport to the cell surface, whilst Ivacaftor corrects 

the secondary gating defect.  

Two Phase III clinical trials ‘EVOLVE’ and ‘EXPAND’ by Vertex Pharmaceuticals were recently 

published determining the safety and efficacy of Symdeko®, a dual-therapy combining ivacaftor 

with tezacaftor. Tezacaftor facilitates the processing and trafficking of the CFTR to the cell 

surface. In the EVOLVE study for individuals homozygous for the Phe508del mutation, a 4% 
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improvement in FEV1 was measured compared to placebo, along with a 35% decrease in 

pulmonary exacerbations compared to placebo (Vertex Pharmaceuticals Incorporated, 2018). 

In the EXPAND study for individuals heterozygous for the Phe508del mutation, a 6.8% 

improvement in lung function was measured compared to placebo and a 2.1% improvement 

compared to ivacaftor alone (Vertex Pharmaceuticals Incorporated, 2018).   

Even if Orkambi® and Symdeko® become available on the NHS, its planned use in those over 

the age of 12 means that there is still a decade in which the lungs will become chronically 

colonised by CF pathogens. Furthermore, whilst Kayldeco® improves pulmonary function, P. 

aeruginosa are infection persists (Hisert et al., 2017). Thus, for the foreseeable future at least, 

the discipline of microbiology will continue to play an active and essential role within CF 

research. It is hoped that the results presented and the in vitro models used act as a platform 

for future studies addressing the impact of polymicrobial CF airway infection upon bacterial 

community dynamics and host-pathogen interactions. In turn this may aid in the identification 

of new treatment strategies or therapeutics to delay or clear these devastating life limiting 

infections.  
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