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Nonlinear interactions between different 

components of multiwavelength radiation is one of the 
main processes shaping properties of quasi-CW fiber 
lasers. In random fiber lasers nonlinear influence may 
be more complicated as there are no distinct 
longitudinal modes in radiation because of random 
nature of the feedback. In the present paper, we 
experimentally characterize internal correlations in 
the radiation of multiwavelength random distributed 
feedback fiber laser. Analysis of Pearson correlation 
functions allows us to spatially locate the area over 
the fiber laser length in which correlations more likely 
to occur. This in turn leads us to the conclusion about 
the main mechanism of spectral correlations – relative 
intensity noise transfer from the pump wave. 

http://dx.doi.org/10.1364/OL.99.099999 

Spectral correlations in the radiation of fiber lasers have attracted a lot of attention for the last decade as they bring a new insight on formation of multimode generation, in particular multiwavelength generation. Knowledge of interplay between different spectral components in the output radiation is crucial for both fundamental and applied issues such as analysis of laminar-turbulent transition in radiation of a fiber laser [1,2], a more general problem of intermittency in integrable turbulence [3], a problem of extreme events and correlations appearing during propagation of light along fiber [4–7], reviewing a unified theoretical formulation of statistical nonlinear optics on the basis of the wave turbulence theory [8] etc. In particular, study of spectral correlations may shed light on the physics governing generation in random distributed feedback (RDFB) fiber lasers. 

Experimentally, there are few approaches to study correlations in a long fiber lasers quasi-CW generation to which class the RDFB laser belongs. The powerful tool is to measure a time dynamics of the output radiation intensity and then to analyze the intensity probability density functions (PDF) and autocorrelation functions [9-11]. The correlations can be revealed as heavy-tailed or low-tailed deviations for intensity PDF, being measured for the overall radiation by asynchronous optical sampling technique [12] or for the spectrally-preselected part of the radiation [13]. Another possibility to get an access to correlations in the radiation is to measure an instantaneous spectrum, and then analyze spectral correlations within an ensemble of different spectra, which has been done for the RDFB fiber laser in Ref. [14]. The long-living correlations were found on a time scale of hundred milliseconds and are attributed to stimulated Brillouin scattering (SBS), which is known to play a role only right above the threshold [15]. In those measurements the acquisition speed was limited down to 1 kHz, which does not correspond to the intrinsic fast dynamics in the laser. The similar approach was implied to signature turbulence regime in a continuous-wave-pumped erbium-based random fiber laser with random Bragg gratings [16], which is characterized by slow spectral dynamics. Apart from SBS, in long Raman fiber lasers there are a number of processes that may be responsible for spectrum formation. First, Kerr nonlinearity-induced four-wave mixing (FWM) could potentially couple amplitudes of different waves that results in correlations. It was predicted analytically that weak Kerr nonlinearity may cause deviation of intensity PDF from exponential form [17]. Another possible mechanism is cross-phase modulation (XPM), nonlinear interaction of a pump wave with generation waves through the same Kerr effect. 
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FWM would result in different location of the interaction area and, subsequently, in different dependence of the position of the correlation peak on time delay.  Designating the dominant kind of interactions we can theoretically estimate the width Δτ0  of the correlation function PCC(τ). The first reason of the non-zero width is that interactions can occur at different points over the fiber length: waves which interact closer to the point z = 0 provides bigger delay τ0 in comparison to waves interacting at larger z, see Eq. (2). The corresponding contribution to the width Δτ0  should vary for different pairs can be estimated as ߚߜோ௜ܮ௉, where ߚߜோ௜ = –௉~0.1ܮோ௜ߚߜ ௉~5 km from longitudinal pump power distribution (see Fig. 4b), which corresponds to the correlation function width ofܮ is the difference of group velocities between reference and signal ith wave, and LP is the length of the fiber where the average pump power is high and correlations are gained. We estimate ߣ߂ܦ 0.5 ns for wavelengths ߣ߂ = 1.8 − 6.2 nm. The next contribution to the correlation function width 
Δτ0  arises as the correlations between different Stokes waves are induced by the same pump wave fluctuation δP but in different places within the amplification region [0, LP]. Indeed, a typical pump wave fluctuation propagates a distance ܮ஽ = ଶݐߜ ⁄ଶሺܲሻߚ ∼ 0.1 km before it considerably broadens due to dispersion. Here ݐߜ is a temporal width of pump wave fluctuation estimated as 1 ps from the pump wave spectral width of 5 nm, ߚଶ = 13 psଶ km⁄  is dispersion coefficient for pump wavelength. Thus a pump fluctuation may couple two Stokes waves that are not only at the same point but 0.1 km apart. This results in an additional delay ߬߂଴ = ௉ௌߚߜ ஽~0.1 ns determined by a difference in group velocities of pump and Stokes wavesܮ௉ௌߚߜ = 1.3 ns km⁄ .  Finally, we take into account that the reference channel in our experiment actually consists of two lines with difference of propagation constants ߚߜோ = 8 ps km⁄  that also contributes to Δτ0  by ߚߜோ0.3~ܮ ns. Thus the estimated total width of correlation function is   ߬߂଴ = ௉ܮோ೔ߚߜ + ஽ܮ௉ௌߚߜ + ܮோߚߜ ∼ 0.5 ÷ 0.9 ns (4) that qualitatively agrees with experimentally observed widths less or equal to 1 ns, Fig 3a.  Note that small anticorrelations are also present in PCC(τ) function (see Fig. 2b). These negative correlations may be attributed to four-wave mixing that enables power exchange between reference and signal channels. As the FWM may occur with same small but non-zero probability almost everywhere within the laser cavity (see Fig. 4b), the anticorrelations appear as a broad substrate in PCC(τ). Indeed, the similar estimations as above gives several times larger width of PCC. Relatively small contribution of FWM into the net value of correlations could be explained by a large nonlinear length ܮே௅ = 1 ⁄௜ ~ 25ܫߛ  km considering Kerr nonlinear coefficient γ = 1.1 (W·km)-1; so 
LNL is comparable with the laser length L=40 km. To conclude, in this paper we experimentally studied the interactions of spectral components within a multiwavelength radiation of the random fiber laser by simultaneously measuring the intensity dynamics for pairs of generation lines. The resulted Pearson correlation 

function contain a distinct correlation peak, which position is found to be linearly dependent on the spectral distance between studied lines. It allows us to locate a particular spatial location over the random fiber length where the interactions take place. Comparison with numerical simulations, based on the balance model, proves that such spatial localization is attributed to correlations appeared due to transfer of pump fluctuations to generation waves. We believe the presented method may be further developed as a powerful tool to study interactions in long fiber laser systems. 
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