
Accepted Manuscript

Optical bottle microresonators

M. Sumetsky

PII: S0079-6727(19)30007-2

DOI: https://doi.org/10.1016/j.pquantelec.2019.04.001

Reference: JPQE 221

To appear in: Progress in Quantum Electronics

Please cite this article as: M. Sumetsky, Optical bottle microresonators, Progress in Quantum
Electronics, https://doi.org/10.1016/j.pquantelec.2019.04.001.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.pquantelec.2019.04.001
https://doi.org/10.1016/j.pquantelec.2019.04.001


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

1 
 

 
 
 

Optical bottle microresonators 

 
M. Sumetsky 

 
Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK 

 
Email: m.sumetsky@aston.ac.uk 

 
 
Abstract 

 
The optical microresonators reviewed in this paper are called bottle microresonators because 

their profile often resembles an elongated spheroid or a microscopic bottle.  These resonators are 
commonly fabricated from an optical fiber by variation of its radius. Generally, variation of the 
bottle microresonator (BMR) radius along the fiber axis can be quite complex presenting, e.g., a 
series of coupled BMRs positioned along the fiber. Similar to optical spherical and toroidal 
microresonators, BMRs support whispering gallery modes (WGMs) which are localized inside the 
resonator due to the effect of total internal reflection. The elongation of BMRs along the fiber axis 
enables their several important properties and applications not possible to realize with other 
optical microresonators. The paper starts with the review of the BMR theory, which includes their 
spectral properties, slow WGM propagation along BMRs, theory of Surface Nanoscale Axial 
Photonics (SNAP) BMRs, theory of resonant transmission of light through BMR microresonators 
coupled to transverse waveguides (microfibers), theory of nonstationary WGMs in BMRs, and 
theory of nonlinear BMRs. Next, the fabrication methods of BMRs including melting of optical fibers, 
fiber annealing in SNAP technology, rolling of semiconductor bilayers, solidifying of a UV-curable 
adhesive, and others are reviewed. Finally, the applications of BMRs which either have been 
demonstrated or feasible in the nearest future are considered. These applications include miniature 
BMR delay lines, BMR lasers, nonlinear BMRs, optomechanical BMRs, BMR for quantum processing, 
and BMR sensors.    
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1. Introduction  

 
Over the last decades, there has been a significant interest to the investigation and applications 

of dielectric optical microresonators. Several books, book chapters and review papers summarize 
the achievements in this research area (see e.g., [1-10]). The goal of the present review is to outline 
the major theoretical and experimental results in the development of the bottle microresonators 
[11] which were investigated in several research groups worldwide over the last decade and 
became of special interest for applications in photonics and adjacent disciplines. 

 

 
 

Fig. 1. Illustration of microsphere (a), microtoroid (b) and microbottle (c) 
resonators. (Reproduced with permission from Ref. [18]). 

      
In order to understand the basic properties of a bottle microresonator (BMR) it is useful to 

compare them with the spherical and toroidal microresonators (Fig. 1). The major similarity of 
spherical, toroidal, and bottle microresonators is that optical states are localized inside these 
resonators due to the effect of total internal reflection and have the structure of a whispering 
gallery mode (WGM). These modes are propagating along the surface of these resonators and are 
analogous to acoustic WGMs discovered by Lord Rayleigh for acoustic waves a century ago [12] and 
proposed for fabrication of high Q-factor electromagnetic dielectric resonators by Richtmyer in 
1939 [13]. The spherical microresonators since their experimental demonstration in paper [14] 
have a multidecade history of research and development [1-10]. The toroidal microresonators, 
which were introduced in papers [15, 16], have found applications in optical linear and nonlinear 
signal processing, lasing, sensing, and quantum networking. While the effect of localization of 
WGMs near the stable closed optical rays (geodesics) and, in particular, near the circumference of 
an elongated spheroidal microresonator, was known long ago [17], a BMR with arbitrary smooth 
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radius variation along its axis was introduced and theoretically described in 2004 [11] following 
the experimental demonstration of such resonator in 2001 [18]. The major differences between 
spherical, toroidal, and BMRs are illustrated in Fig. 1 [19]. Assuming for simplicity that these 
resonators are axially symmetric, we can characterize their characteristic dimensions by axial and 
azimuthal radii, axr  and azr . For spherical microresonators (Fig. 1(a)), axr  and azr  are comparable, 

~ax azr r . For toroidal microresonators (Fig. 1(b)), the axial radius is relatively small, ax azr r<< . In 
contrast, for BMRs (Fig. 1(c)), the axial radius can be made much greater than the azimuthal radius, 

ax azr r>> . For example, BMRs fabricated in SNAP (Surface Nanoscale Axial Photonics) technology 

[19-28] may have the axial radius exceeding a kilometre [23, 24]. For this reason, the characteristic 
variation length of WGMs along the axis of a BMR can be much greater than that of spherical and 
toroidal microresonators. Besides interesting properties of slow WGMs described below, this fact 
significantly simplifies the access to these WGMs from the outside and makes the BMR very 
attractive for applications.  

The paper starts with the review of the BMR theory (Section 2), which includes BMR spectral 
properties [11, 29, 30], slow WGM propagation along BMRs, theory of Surface Nanoscale Axial 
Photonics (SNAP) BMRs [20, 21, 25], theory of resonant transmission of light through BMR 
microresonators coupled to transverse waveguides (microfibers) [25], theory of nonstationary 
WGMs in BMRs [31], and theory of nonlinear BMRs [32-36]. Next, in Section 3, the fabrication 
methods of BMRs including melting of optical fibers, fiber annealing in SNAP technology, rolling of 
semiconductor bilayers, solidifying of a UV-curable adhesive, local heating, femtosecond laser 
inscription, and others are reviewed [18, 23, 37-57]. Finally, in Section 4, applications of BMRs 
which either have been demonstrated or seem feasible in the nearest future are considered. These 
applications include miniature BMR delay lines and dispersion compensators [24, 58-60], BMR 
lasers [61-68], nonlinear BMRs [69-75], optomechanical BMRs [76-83], BMR for quantum 
processing [84-88], and BMR sensors [89-97].     
 

2. Theory of BMR 

 
2.1. Semiclassical theory of BMRs  

 
In the original paper [11] the behavior of WGMs in BMRs was considered in the semiclassical 

approximation. This approximation is valid for all modes except for those localized near the 
circumference with maximum radius of the resonator, in particular, for resonators with very small 
radius variation considered in SNAP. In this Section we will describe the WGM semiclassically and 
postpone the more accurate consideration to Section 2.3.   

The characteristic structure of classical rays in a BMR is illustrated in Fig. 2. In cylindrical 
coordinates (z,ρ,ϕ) these rays can be separated into the rays moving in the plane (ρ,ϕ) normal to 
the fiber axis z (Fig. 2(a)) and the rays moving in the plane (z,ρ) (Fig. 2(b)).  Due to the similarity of 
the shape of WGMs built on these rays to the magnetic bottles in plasma fusion [98], the optical 
microresonator shown in Fig. 2 was called a whispering gallery bottle in Ref. [11]. Often, this type of 
optical resonator is simply called the BMR.  

In the semiclassical approximation, the WGMs in a BMR are described under the assumption that 
this resonator is axially symmetric and its wall determined by the equation ρ=ρw(z) is  weakly 
curved. Then, the wavelength eigenvalues mpqλ λ=  of this resonator are determined by the 

quantization rule: 
 

2

1

22 2
1
2 2 2

4
( , ) ( ), ( , )

( )

z
mpr

mp mp
wz

n
z dz q z

z

µπβ λ π β λ
λ ρ

= + = −∫         (1) 
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Here rn  is the refractive index of the resonator (optical fiber) material,  z1 and z2 are zeros of the 

square root under the integral (turning points) and constant µmp   is the parameter which can 
approximately defined through the azimuthal and radial quantum numbers,  m and p, as a root of 
the Bessel function ( ) 0m mpJ µ = . For modes localized near the surface of the fiber, p<<m and 

mp mµ ≈ . BMRs can be extremely elongated so that the eigenvalue separation between the 

azimuthal and radial quantum numbers  m and p is sparse compared to the separation between the 
axial quantum numbers q.  
 
 

 
 

Fig. 2. Illustration of a BMR. (a) – projection of the localized WGM on the 
plane ( , )ρ ϕ   and (b) – projection of the WGM on the plane ( , )z ρ . 

(Reproduced with permission from Ref. [11]). 
 

It has been shown in [11] that the shape of the BMR ρw(z) can be determined from the given 
dependence of propagation constant 2 /mpq r mpqk nπ λ= on q  by the exact solution of Eq. (1).  In 

particular, it was shown that there exist a resonator which propagation constant (frequency) 
eigenvalues are equally spaced along q. The shape ρw(z) corresponding to equally spaced 
propagation constant eigenvalues with separation dkmpq/dq ≡ ∆k has been found in [11] in the 
following simple form:  

 

0( ) | cos( ) |w z k zρ ρ= ∆               (2) 

 
The interesting property of this shape is that it is independent of m and p. Substitution of Eq. (2) 
into Eq. (1) yields the quantization rule: 
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1
2

0

2
( )mpr

mpq
mpq

n
k q k

µπ
λ ρ

= = + + ∆ .            (3) 

  
Remarkably, Eq. (3) shows that a BMR with the radius variation determined by Eq. (2) can serve as 
a 3D etalon, similar to the Fabry-Perot etalon in one dimension and used for several important 
applications such as miniature delay lines and frequency comb generators.   

Generally, the variables in the wave equation for the BMR cannot be separated. For this reason, 
the behavior of the WGBs ray dynamics in this resonator may be stochastic [99]. In [11], in order to 
understand the ray behavior in a BMR, the Poincare surfaces of sections [99] for the non-prolate 
(∆kρ0 = 1) and prolate (∆kρ0 = 0.1) cosine-shaped microcavities were investigated for different 
values of dimensionless angular momentum M = Lz/(v0ρ0) < 1 expressed through  the velocity v0, 
and angular momentum  Lz  of a particle propagating along the  ray.  This angular momentum 
conserves due to the axial symmetry. It was shown that, for the non-prolate cavity, the motion can 
be stochastic for small values of M and becomes regular for larger M when the rays localize near the 
plane of symmetry z = 0. However, for the strongly prolate cavity the  stochasticity was shown to be 
strongly suppressed.  

For shallow BMRs, the semiclassical description can be extended to small axial quantum 
numbers q . Then, the WGM propagation along the BMR axis is described by the one-dimensional 

wave equation analogous to the Schrödinger equation [20-25]. In particular, if the BMR profile can 
be approximated near the maximum radius 0ρ  by the quadratic dependence,  

2 2
0( ) (1 / 2)w z k zρ ρ= − ∆ , the axial dependence of WGMs is determined as 1/2((2 / ) )q rH n k zπ λ∆  

where ( )qH x  is the Hermite polynomial, λ  is the radiation wavelength, and rn  is the refractive 

index of the fiber [29]. From Eq. (2), this approximation determines the equally spaced frequency 
eigenvalues of the BMR if 2 2 1k z∆ << . Within this approximation, the number q  of equally spaced 
frequency eigenvalues can be still very large for very elongated resonators (see, e.g., [24, 33, 34]). 

 
2.2. Phase velocity, group velocity, and slow light in BMRs 

 
The characteristic feature of BMRs is their elongation along axis z  (Fig. 1). In the adiabatic 
approximation, when variation of the BMR radius ( )w zρ  is sufficiently smooth and slow, the 
expression for the WGM can be written as [11] 
 

( )1/2( , , ) ( , ) exp ( , )
( )

z

mp mp mp
w

U z z i z dz im
z

ρρ ϕ β λ β λ φ
ρ

−  
≈ ± ± Φ  

 
∫        (4) 

 
where the propagation constant ( , )mp zβ λ  is determined by Eq. (1). Near the turning points 1z  and 

2z  where ( , ) 0mp zβ λ →  the dependence on z  in Eq. (4) should be replaced by more accurate 

expression through Airy functions [17]. In these regions, the propagation of light along axis z  is 
slow. In fact, the phase velocity 
 

2
( , )

( , )ph
mp

c
v z

z

πλ
λβ λ

=               (5) 

 
in these regions tends to infinity, while the group velocity 
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1

2

( , )2
( , ) mp

gr

zc
v z

β λπλ
λ λ

−∂ 
= −  ∂ 

            (6) 

  
tends to zero. Calculation of the phase and group velocities using Eqs. (1), (5) and (6) yields the 
remarkable relation between these velocities and the speed of light c : 
 

2

( , ) ( , )gr ph
r

c
v z v z

n
λ λ

 
=  
 

              (7) 

 
From this equation, small group velocities (compared to the speed of light in the resonator 
material) correspond to large phase velocities.  
 

 
 
Fig. 3. Illustration of the behavior of classical rays near the turning points of 
the BMR. 

 
 The principal difference between the propagation of WGMs of our interest along the axis of an 
optical fiber (and, in particular, of a BMR) and the propagation of modes with relatively small 
azimuthal quantum numbers  m  in an optical fiber (i.e., conventional propagation of light in a single 
mode fiber) should be emphasized. For relatively small m , slow propagation of light in optical 
fibers is impossible due to the cutoff effect which requires that the propagation constant β  is larger 

or around 2 /π λ  [100]. Alternatively, if m  is large enough, the zero value of propagation constant 
can be achieved.  Let us derive the condition of 0β =  for a WGM in the semiclassical approximation, 

i.e., for large azimuthal and radial quantum numbers , 1m p >> .  To this end note that near the 

turning points iz  the classical rays in a BMR are located close to its transverse cross-sections 

between the BMR wall of radius ( )w izρ  and caustic of radius  ( )c izρ   (Fig. 3). To avoid the radiation 

of corresponding WGMs through the BMR surface, the angle of incidence of these rays 
arcsin( / )in c wθ ρ ρ= , equal to the reflection angle refθ , should be larger than the critical angle 

1arcsin( )c rnθ −=  for the total internal reflection (here we assume that the resonator is positioned in 

air with refractive index 1). On the other hand the semiclassical quantization rules in the cross-
sections at iz z=  can be written as [17] 
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2 2

2
,

2
arccos ( ),

r
c

cr
w c c

w

n
m

n
p

π ρ
λ

ρπ ρ ρ ρ π γ
λ ρ

=

  
− − = +   

  

         (8) 

 
where ~ 1γ and , 1p m >> . The WGM can reach the zero propagation constant before the cutoff if its 

radial quantum number is smaller than that corresponding to the rays with the critical angle of 
incidence. At the critical angle,  we have w r cnρ ρ= . Then, from Eqs. (8) the WGMs with radial 
quantum numbers 

2 1
1 arccosr

r

m
p n

nπ
 

< − − 
 

             (9) 

 
can have the zero propagation constant. For silica BMRs with 1.46rn = , this equation yields 

0.08p m< . Assuming ~ 20 mwρ µ [23] we have ~ 100m  and, thus, 8p < .      

 
2.3. Theory of weakly nonuniform BMRs 

 
The WGM structure of a BMR can be very complex. However, this structure is simplified and can be 
described analytically in the case of a shallow resonator having relatively small radius variation 0( )w zρ ρ− . 

The most convenient way to fabricate such resonators is to slightly deform an originally uniform optical 
fiber. However, spatial deformation is not the only possible way to achieve the full localization of WGMs in an 
optical fiber. Therefore here we consider WGMs in an optical fiber possessing both radius and refractive 
index variations. Due to the small value of these variations, the expression for WGMs can be found in the 
cylindrical coordinates ( , , )zρ ϕ in the separable form, 

 
 ( , , ) exp( ) ( ) ( )mp mpU z im Q zρ ϕ ϕ ρ= Ψ .          (10) 

 
Here function ( )mpQ ρ  satisfies the differential equation of the conventional fiber theory with zero 

propagation constant [3], 
 

22 2

2 2

( , ) ( )1 2 ( )
( ) 0,

( )
mp mp

mp
mp

d Q dQ n m
Q

d d z

ρ λ ρ π ρ ρ
ρ ρ ρ λ ρ

  
 + + − =     

         (11) 

 
and ( )mp zΨ satisfies the one-dimensional wave equation [20-25] 

 
2

2
2

( ) 0mp
mp mp

d
z

dz
β

Ψ
+ Ψ =              (12) 

 
with spatially dependent propagation constant 
 

( )
3/2

1/2

3/2

2
( ) ( )r

mp mp
mp

n
z z

πβ λ λ
λ

= −  .                (13) 
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In Eqs. (11)-(13), function ( )mp zλ  is the cutoff wavelength of the optical fiber which corresponds to 

the local zero value of propagation constant  ( ) 0mp zβ = . Crucially, all weak radial and refractive 

index dependencies on the axial coordinate z  are accumulated in the cutoff wavelength  ( )mp zλ  

which is expressed through the cutoff frequency ( )mp zω  as ( ) 2 / ( )mp mpz c zλ π ω= . In Eq. (11), the 

dependence ( )mp zλ  is assumed to be adiabatic and parametric. Alternatively, in Eqs. (12) and (13) 

this dependence nontrivially determines the behavior of the WGMs along the resonator axis z . As 
an example of application of Eq. (12), we refer the reader to Fig. 10(d) to be considered in Section 
3.7 of this review. This figure shows the spectrogram of 30 coupled BMRs calculated with Eq. (12) 
in excellent agreement with the experiment. 
 The phase velocity ( )phv z  and group velocity ( )grv z   of the WGM propagation along the BMR axis 

can be calculated from Eq. (7): 
 

1/2

1/2

2
( )

( ) 2 ( )
mp

ph
mp mp r mp

c c
v z

z n z

λπ
λ β λ λ

 
= =   − 

          (14) 

 
1/21 2

1/2
2 2

( ) ( )2
( ) 2

( )
mp mp

gr
mp r mp r ph

z zc c c
v z

n n v z

β λ λπ
λ λ λ

−
 ∂ − 

= − = =    ∂   
.       (15) 

 
 

2.4. Transmission amplitude through BMRs 

 
Usually, light is launched in and collected from a BMR using a biconical optical fiber taper with a 
micron diameter waist (microfiber). Generally, there may be several input-output tapers oriented 
transversely to the BMR under test as illustrated in Fig. 4.   
 

 
 

Fig. 4. A shallow BMR coupled to two biconical tapers with a micron 
diameter waist (Reproduced with permission from Ref. [25]).  
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The theory of resonant propagation of light through a shallow BMR, or a SNAP microresonator, 
coupled to input-output microfibers was developed in Ref. [25]. In the presence of N  microfibers 
coupled to the BMR at positions , 1,2,..., ,nz n N=  along the BMR axis z , Eq. (12), which describes 
the dependence of WGMs on z , is modified to 
 

2
2

2
1

( ) ( ) 0
N

mp
mp n n mp

n

d
z D z z

dz
β δ

=

Ψ  + + − Ψ = 
 

∑          (16) 

 
Here, complex parameter nD  determine the effect of coupling to microfiber n  and ( )xδ  is the delta-

function.  The real part of nD   determines the phase shift and its imaginary part determines losses 

due to coupling to the microfiber n . Modelling of coupling to the waveguides by zero-range 
potentials ( )n nD z zδ −  in Eq. (16) is justified for slow WGMs. In fact, while the microfiber diameter 

is ~1 μm, the characteristic axial wavelength of such WGMs usually exceeds 10 μm [25].  
Assume that the microfiber with 1n =  serves as the input and output waveguide, while all other 

microfibers are the output waveguides only.  Then the transmission amplitude from the input 
microfiber 1 to the output microfiber n  is    
 

(0) *
1 1 1 1( , )n n n nS S iC C G z z= − .              (17) 

 

Here 1( , )nG z z  is the Green’s function of Eq. (16) and nC  are coupling parameters which together 

with nD  fully determine the coupling between the microfiber and BMR. The Green’s function 

1( , )nG z z  can be expressed through the Green’s function 1( , )nG z z  of Eq. (16) in the absence of 

attached microfibers, i.e., for 0nD = . The expressions of  1( , )nG z z  through 1( , )nG z z  for 1N =  and 

2N =  is given in [25].  Parameters (0)
1nS  in Eq. (17) as well as nC  and nD  are weak function of 

radiation wavelength and usually can be considered as constants in the transmission bandwidth 
under interest. In the absence of losses we have (0)

1 0nS =  for 1n ≥ , (0)
11 1S = , and 2Im( ) | | /2n nD C= . 

Several particular cases when the Green’s function of Eq. (16) and transmission amplitudes 
between tapers coupled to the BMR can be found analytically and numerically were considered in 
Ref. [25]. In the case of a single input-output microfiber, Eq. (17) was applied to the calculation of 
transmission amplitudes through a single BMR and coupled BMRs in [23-28, 51, 52] in excellent 
agreement with the experiment.   
 

2.5. Nonstationary WGMs in BMRs and miniature optical buffer 

 
 There is a straightforward correspondence between the one-dimensional Schrödinger equation 
and the wave equation Eq. (12) describing propagation of light in a SNAP BMR. This 
correspondence becomes more transparent for non-stationary problems when the WGM can be 
presented in the form exp( ) ( ) ( , )mp mpim Q z tϕ ρ Ψ  generalizing Eq. (10). The equation that determines 

this propagation has the form of the non-stationary one-dimensional Schrödinger equation [31]  
  

2

2
( , )i V z t

t z
µ ∂Ψ ∂ Ψ= − + Ψ

∂ ∂
.            (18) 
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Here 2 2
0 02 /n cµ ω=  and potential 2 2 3

0 0( , ) 8 ( , ) / ( , )r mp mpV z t n z t z tπ λ λ= − .  It is assumed that variation  

0 0( , ) ( , )mp mpz t z tλ λ−  is small (typically, it corresponds to the nanoscale variation of the optical fiber 

radius). The potential in Eq. (16) can be shifted by an arbitrary constant and in particular it can be 
set equal to 2 ( , )mp z tβ  calculated from Eq. (13) with time-dependent cutoff wavelength ( , )mp z tλ . 

Eq. (16) allows to model a SNAP BMR proposed in Ref. [31] where it was shown that a tunable 
harmonic resonator illustrated in Fig. 5, can trap an optical pulse completely, hold it as long as the 
material losses permit, and release without distortion. Light is coupled in and out of this resonator 
through a transverse microfiber taper as described in Section 2.4 (Fig. 5(a)). The buffering process 
consists of three steps. First, the resonator is opened by nanoscale variation of its effective radius or 
refractive index (using, e.g., the driving pulse of the applied laser or electrical field) to let the optical 
pulse in (Fig. 5(b)). Next, the driving pulse is turned off when the optical pulse is completely inside 
the resonator which holds it for the duration of the required time delay (Fig. 5(c)). Finally, the 
optical pulse is released by opening the BMR with the driving pulse similar to Fig. 5 (b) (Fig. 5(d)). 
Fig. 5(e) shows the distribution of the field of the optical pulse, which is captured, held, and 
released by the described buffer. It is seen that the output pulse (top) exhibits the negligible change 
compared to the input pulse (bottom). 
 
 

 
 
 

Fig. 5. Illustration and modelling of a SNAP BMR optical buffer.  (a) – A 
SNAP BMR. The resonator is coupled to the transverse optical fiber taper. 
(b) – The switching nano-deformation introduced by the driving pulse of 
the applied laser or electrical field transfers the closed parabolic resonator 
into the open semi-parabolic resonator. (c) – After the driving pulse is 
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turned off, the BMR restores its original parabolic shape. The optical pulse 
oscillates inside it. (d) – Finally, the nano-deformation is introduced again 
and the pulse is released into the input-output waveguide. (e) –  
Distribution of the field of the optical pulse, which is captured, held, and 
released by the buffer, as a function of the coordinate along the BMR and 
time. (Reproduced with permission from Ref. [31]). 

 
2.6. Nonlinear BMRs and frequency comp generation 

 
The nonlinear Schrödinger equation describing propagation of WGMs in a BMR was independently 
introduced in Refs. [32, 34] and [35]. Here we will follow Refs. [32, 34] where the nonlinear 
Schrödinger equation for WGMs with fixed azimuthal quantum number m  was considered.  This 
equation is generated from Eq. (18) by adding the term 2| |α Ψ   describing the nonlinear Kerr effect 

to the potential: 
 

( )
2

2
2

( , ) | |i V z t
t z

µ α∂Ψ ∂ Ψ= − + + Ψ Ψ
∂ ∂

           (19) 

 
Notice that in the presence of the input-output microfibers this equation should contain additional 
short-range complex potential terms similar to those in Eq. (16).  
 The transverse input-output microfiber was assumed to couple light in and out of BMR as 
illustrated Fig. 6(a). The potential considered in Refs. [32, 34] corresponded to the parabolic 
effective radius variation of the BMR (Fig. 6(b)) with maximum effective radius variation of 2.8 nm 
and gigantic axial radius of 1.6 km, which coincide with the SNAP BMR parameters experimentally 
demonstrated in Ref. [23]. It was shown in Refs. [32, 34, 35] that for relatively strong input field, the 
nonlinear effects described by Eq. (19) will lead to the generation of an optical frequency comb 
with an ultra-fine spectral spacing. The regimes of stable or quasiperiodic comb dynamics due to 
soliton excitation were identified. It was also shown that engineering of the BMR radius profile can 
be used to compensate for nonlinearity-induced dispersion.  
 

 
 

Fig. 6. (a) – Illustration of a SNAP BMR coupled to a microfiber. 
Characteristic intensity distributions of a WGM at the resonator surface 
and cross section are shown with color shading, where blue corresponds to 
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zero, and red corresponds to the maximum value. (b) – Effective potential 
corresponding to the parabolic radius variation. Blue line: the axial 
distribution of a WGM eigenstate [34]. (Reproduced with permission from 
Ref. [34]). 

 
The numerical simulations based on Eq. (19) used the experimentally relevant physical 

parameters of BMR radius of 19 μm and radiation wavelength of 1.5λ = μm, and silica refractive 
index 1.46rn = . As an example, Fig. 7 shows the time evolution of the transmission spectrum in the 

logarithmic scale with a cutoff 10−10 [34]. It is seen that the comb is formed by approximately fifteen 
modes with sub-gigahertz frequency spacing, which remain stable over time. Since the SNAP BMR 
potential can be designed and introduced using the SNAP BMR fabrication methods reviewed 
below, compensation of the nonlinear dispersion and control the comb dynamics is possible. 
 

 

 
Fig. 7. Generation of frequency combs in the SNAP bottle resonator for the 
input frequency equal to the resonant frequency of the BMR state shown in 
Fig. 6(b). Black dashed lines indicate the eigenfrequencies of the parabolic 
potential [34]. (Reproduced with permission from Ref [34]). 
 
 

 

3. Fabrication and characterization of BMRs 

 

3.1. Melting and splicing optical fibers 
 
Conventionally, BMRs are fabricated of optical fibers. The simplest approach consists in thinning 
the fiber at two positions so that the thicker region in between these positions forms a BMR. 
Usually, thinning is performed by melting the fiber in a fusion splicer, flame, or using a CO2 laser. In 
the first demonstration of BMRs [18] and in Refs. [37, 40] they were fabricated by pulling the 
optical fiber melted by the CO2 laser beam or flame (Fig. 8(a)). In Ref [39], BMRs were fabricated 
using the fiber splicing method (Fig. 8(b)). Fiber splicing is the process in which the ends of two 
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optical fibers, which are cleaved and aligned, are heated to a melting temperature and fused 
together.  The authors of Ref. [39] used the fiber splicer to develop the “soften-and-compress” 
technique for the BMR fabrication. They softened a piece of continuous fiber positioned in the fiber 
splicer while simultaneously compressing it. As the result, they fabricated a BMR which shape was 
determined by the melting temperature and the applied compression. A modified approach of using 
a fiber splicer to create BMRs was explored in Ref. [48].   
 

3.2. Rolling of semiconductor bilayers 

 

A completely different BMR fabrication method was developed in Refs. [38, 45].  The authors of 
Ref. [38] demonstrated a BMR which was created by rolling of semiconductor bilayers which have 
nanometer scale thickness and lifted-off from the substrate (Fig. 8(c)). The layer thickness was 50 
nm only, while the BMR was formed of less than a three layer roll. The properties of the created 
BMR are similar to regular BMRs. Since this microresonator was formed of an empty tube, the 
authors suggested that the term ‘‘empty-bottle resonator’’ would be more precise in this case. The 
most important feature of this microresonator is the structured rolling edge with a parabolic lobe 
which turns the structure into a BMR with parabolic effective radius variation. This structure 
introduces the parabolic variation of the effective tube radius, which, in analogy to the theory of 
SNAP resonators considered in Section 2.3, results in formation of a BMR.   

 
3.3. Hollow BMR (bubble microresonators)  

 
In Refs. [41, 42], fabrication of a hollow BMR (bubble microresonators) with micron wall 

thickness was demonstrated.  The blowing of this microresonator was performed by pressurizing it 
internally and softening with a CO2 laser (Fig. 8(d)). Alternatively, the authors of Ref. [43] used a 
fiber splicer to fabricate a hollow BMR from silica microcapillary.  
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Fig. 8. Methods of BMR fabrication. (a) – Stretching a melted fiber [18]. (b) 
– Processing optical fiber in the fiber splicer [39]. (c) – Rolling of 
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semiconductor bilayers [38]. (d) – Softening and pressurizing a 
microcapillary [42]. (e) – Fabrication of bottle microresonators by local 
annealing of an optical fiber [24]. (f) – Femtosecond laser inscription [49]. 
(g) – A BMR induced by a droplet in the microcapillary [28]. (h) – 
Depositing glass with lower melting temperature [47]. (i) – Depositing a 
polymer droplet solidified by heating [64]. (Reproduced with permission 
from Refs. [18, 24, 28, 38, 39, 47, 49, 64]).    

 
3.4. SNAP technology 

 

A super-precise method for fabrication of nanometer shallow BMR was developed in SNAP 
technology [20-28].The first demonstration of SNAP BMRs fabricated with angstrom precision was 
published in 2011 [22]. Originally, two fabrication methods were developed. The first method was 
based on modification of the effective radius variation of the optical fiber (including its physical size 
and refractive index variation) by local annealing with a CO2 laser [22-26]. It was found that a few 
second local annealing of the optical fiber allows one the release the tension which was 
accumulated during fiber drawing. The release of tension causes a nanoscale variation in the fiber 
effective radius which is sufficient for the creation of BMRs. Depending on the power and duration 
of the exposure, it is possible to reproducibly fabricate BMRs with sub-angstrom precision [23-26]. 
As an example, Fig. 8(e) shows the illustration and spectrogram of resonant transmission spectrum 
of the BMR which was fabricated and demonstrated as the record low loss and small optical delay 
line in Ref. [24]. The second method of fabrication of SNAP BMRs is based on modification of the 
effective radius variation by local UV laser exposure which is applicable to fibers fabricated of 
photosensitive materials [22, 55]. Several other methods of fabrication of SNAP BMRs were 
developed recently. In Refs. [49, 53] the subangstrom precise fabrication of BMRs was 
demonstrated with a femtosecond laser. It was shown that the inscriptions introduced by the 
femtosecond laser internally pressurize the fiber and cause its nanoscale effective radius variation. 
In Ref. [52], parabolic BMRs were created using the CO2 laser brushing technique for biconical taper 
fabrication. In Ref. [28] it was shown that BMRs can be induced by a droplet positioned inside a 
microcapillary with thin walls.  

 
3.5. Polymer and soft glass BMRs 

 

The authors of Ref. [46] developed a method for the fabrication of BMR using a UV-curable 
adhesive. The fabrication process included creating of liquid bottle-like microcavities along the 
waist of an optical fiber taper and solidifying it the liquids by UV light radiation. In Ref. [47], the 
authors describe a method for making BMR lasers by using a CO2 laser radiation to melt Er:Yb glass 
positioned on a silica microcapillary or fiber (Fig. 8(h)). This method is based on the fact that the 
substrate silica glass has a higher melting point than the deposited glass.  In Ref. [64], the polymer 
BMRs were fabricated using a self-assembly procedure (Fig. 8(i)). A silica fiber taper was used to 
deposit a microdroplet of R6G-doped epoxy resin solution on to the silica microfiber. After the 
deposition, the droplet shrinks due to the surface tension and formed a BMR which was solidified 
by heating.  

 
3.6. Tunable and reconfigurable BMRs 

 

Of special interest is fabrication of tunable BMRs.  In Ref. [40, 42] the spectrum of a BMR was 
tuned by its mechanical stretching by pulling the ends of the fiber. It was demonstrated in Ref. [42] 
that the tuning range can be enhanced for hollow BMR (Fig. 8(d)). In Ref. [57], a temporal SNAP 
BMR introduced by local heating with a CO2 laser was demonstrated.  This microresonator was 
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created, translated along the optical fiber with sub-angstrom precision in effective radius variation, 
and finally annihilated. In Ref. [51], a temporal SNAP BMR was introduced by local heating of a 
capillary fiber by a nonuniform wire positioned inside it. In particular, fine relative tuning of 
eigenfrequencies of two coupled SNAP BMRs was demonstrated. 
 

3.7. Coupled BMRs and iterative fabrication method of SNAP structures 

 
Before the invention of the SNAP technology, the fabrication of sequences of BMRs introduced 

along an optical fiber and coupled to each other was unfeasible. Furthermore, fabrication of coupled 
toroidal microresonators at the optical fiber surface, which have much smaller dimensions along 
the fiber axis as compared to BMRs and, thus, can be positioned much closer to each other (see 
[101, 102] for their theoretical description), is a challenging problem which has not been solved to 
date. The first demonstration of coupled SNAP BMRs was published in 2012 [44]. The SNAP 
fabrication technique was further developed in Refs. [25, 56] where the sub-angstrom fabrication 
precision was demonstrated. 

The reason why the WGMs localized in SNAP BMRs introduced at the optical fiber surface can 
couple to each other is explained by the large value of their characteristic axial wavelength ~ 100 
µm and small propagation constant ~ 10.1 mµ −  (see Section 2.2).  As the result, WGMs can tunnel 

through the regions separating BMRs which may have the characteristic axial length of 100 µm and 
more. This fact dramatically simplifies the fabrication of coupled BMRs. 

In order to improve the fabrication precision of SNAP structures and, in particular, coupled 
BMRs, their iterative fabrication method has been developed [56]. This method consists of two 
steps illustrated in Fig. 9. The first step includes the exposure of the SNAP structure (Fig. 9(a)). At 
this step, the nanoscale variation of the effective optical fiber radius is introduced with a focused 
CO2 laser beam by local annealing of the fiber. After the exposure is completed, the introduced 
structure is characterized by the microfiber scanning method [103, 104]. The characterization 
process illustrated in Fig 9(b) is the second step of the SNAP structure fabrication. During this step, 
the microfiber is scanned along the fiber under test touching it at points along the fiber axis where 
the spectra the introduced structure are measured. The spacing between the contact points 
(typically set to 1-20 µm) determines the axial resolution of measurements. The measured spectra 
collected in a SNAP spectrogram (see e.g., examples in Figs. 8(e) and (g) and Fig. 10) are used to 
determine if the fabricated structure fits the design specs or another iteration is required. In the 
latter case, the CO2 power required to adjust for the measured deviations is calculated using the 
calibration method described in Ref. [56]. In brief, first determine the contribution of a single laser 
shot (typically several millisecond duration) to the variation of the effective fiber radius is 
measured. Next the structure is moved back to the exposure section of the setup to introduce the 
appropriate number of these shots to compensate for the measured deviation (Fig. 9(a)). The 
process is continued until the fabricated structure satisfies the required specifications.    
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Fig. 9. Illustration of the setup for fabrication of SNAP devices. (a) – 
Exposure part of the setup; (b) – Characterization part of the setup. 
(Reproduced with permission from Ref [56]).    
 

 
As an example of the iterative fabrication of couple BMRs is given in Fig. 10.  In this experiment, 30 
strongly coupled BMRs are created at the surface of a 19 μm radius fiber. The not-to-scale 
illustration of this structure is given in the inset of Fig. 10. Each of 30 BMRs spaced by 50 μm is 
introduced by a sequence of CO2 laser exposures. Figure 10(a) shows the spectrogram of the 
introduced structure obtained with the microfiber scanning method described above. The 
spectrogram possesses the fundamental transmission band followed by a bandgap. The 
nonuniformity of the introduced structure measure from Fig. 10(a) was around 6 Å in effective 
radius variation. To correct this nonuniformity, the contribution of the laser exposure was first 
calibrated by introduction of linearly growing number of short CO2 laser exposures along the same 
structure. The result of this introduction is shown in Fig. 10(b). The effect of an individual laser shot 
was then calculated by numerical comparison of spectrograms in Figs. 10(a) and 10(b). Finally, in 
order to make the resonators equal in effective radius, each of them was corrected by the 
appropriate number of laser shots. The result of correction is shown in Fig. 10(c). Numerical 
analysis of this spectrogram showed that the radius of the largest BMR was larger than the radius of 
the smallest BMR by the dramatically small value of less than 0.6 Å. The theoretical modelling of the 
introduced coupled BMR structure (Fig. 10(d)), which was in remarkable agreement with measured 
spectrogram (Fig. 10(c)), showed that the effective radius variation for each of the introduced BMR 
was approximately 2 nm.     
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Fig. 10. Experimental and theoretical spectrograms of 30 coupled BMRs 
fabricated by iterations. The experimental spectrograms were obtained 
with 10 μm resolution along the fiber axis. (a) – The spectrogram of the 
originally fabricated coupled BMR structure. (b) – The spectrogram of this 
structure after calibration exposure. (c) – The spectrogram of the corrected 
structure. (d) – Theoretically modelled spectrogram of the fabricated 
structure. Inset – illustration of the fabricated 30 coupled BMRs (not to 
scale). (Reproduced with permission from Refs [56]).  
 
   

3.8.  Characterization of BMRs     

 
Characterization of BMRs is usually performed with a microfiber scanned along its length. This 

method was originally demonstrated in Ref. [103] and developed in Ref. [104]. The basic idea of this 
method consists in the fact that due to very loss of optical fibers the shift of WGM resonances in the 
process of translation of the microfiber along the BMR under test can characterize its effective 
radius variation very accurately. The characterization precision demonstrated in Ref. [104] 
achieved 0.1 angstrom and can be further improved by more precise measurement of the WGM 
spectrum. The spectrograms obtained with this method are shown in Figs. 8(e) and (g). Even more 
accurate characterization of SNAP microresonators can be performed using a reference fiber 
method [105].  
 

 
4. Applications of BMR 
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4.1. BMR delay lines 

 
The BMR delay line is an alternative to miniature optical delay lines based on planar photonic 
technologies and, in particular, silicon photonics [106-111]. Prior to the demonstration of the BMR 
delay line in Ref. [24], the engineered miniature optical delay lines were fabricated of coupled ring 
resonators [106, 110] and coupled photonic crystal microcavities [109]. As compared to the latter 
structures, a BMR can act a fundamentally different type of delay line, which, in contrast to those 
proposed previously, is not based on the miniature photonic structures created by modulation of 
the material refractive index. Instead, as discussed in Sections 2.2-2.4 of this review, the slow 
propagation of light along the BMR axis is ensured by its rotation along the surface of an ultralow 
loss optical fiber. Remarkably, it was shown [24] that a BMR with semi-parabolic nanoscale 
effective radius variation can be impedance matched to the input-output microfiber (Fig. 11(a)) and 
perform the delay of 100 ps telecommunication pulses by several nanoseconds. 
 

 
 

Fig. 11. (a) – Illustration of an BMR delay line. Inset – the magnified profile 
of the BMR radius variation. (b) – Experimental spectrogram of the 
fabricated BMR measured with resolution of 10 µm. (c), (d) –  
spectrograms of the transmission amplitude and group delay near the edge 
of the fabricated BMR measured after the optimization of coupling 
parameters. (e), (f) – Transmission amplitude and group delay spectra at 
the point  2z  along the BMR axis corresponding to minimum spectral 

oscillations in spectrograms (c) and (d), respectively. (g) – The output 
pulse profile (blue solid line) calculated for the input 100 ps pulse (red 
dashed line) from the spectrum shown in (e) and (f). (Reproduced with 
permission from Refs [24]). 
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Here we briefly describe the BMR delay line demonstrated in Ref. [24], which dramatically 
surpasses previous designs both in the achieved small internal losses and miniature dimensions. 
The 3 mm long BMR was created at the 19 µm radius optical fiber by annealing with a CO2 laser 
beam (Fig. 11(a)). The speed of the beam was varied in the process of translation along the fiber to 
ensure the required nanoscale semi-parabolic effective radius variation. The depth of the 
introduced BMR was 8 nm, while its semi-parabolic part, which was introduced with a precision of 
better than 0.9 Å, had the depth of 2.8 nm (Fig. 11(b).  

The coupling between the input-out microfiber and BMR was optimized in Ref. [24] by 
translating the microfiber along its axis and along the BMR axis in the region outlined in Fig. 11(b) 
by a blue bold rectangle situated near the BMR edge. The spectrograms of the transmission 
amplitude and group delays in this rectangle measured with the optimized microfiber coupling is 
shown in Fig. 11(c) and Fig. 11(d). As an example, Fig. 11(g) shows the profiles of the input 100 ps 
pulse and of the corresponding output pulse found from the spectra shown in Fig. 11(e) 
(transmission amplitude) and Fig. 11(f) (group delay) at optimized microfiber position 2z . Fig. 

11(g) demonstrates the pulse delay of 2.58 ns with intrinsic loss of only 0.44 dB/ns and no 
dispersion.   

The described BMR delay line presents a solution of one of the central problem of photonics – 
creation of a delay line having the record small dimensions and insertion losses which is required 
for several emerging engineering applications of modern photonics including optical signal 
processing at microscale. Worth noting that the BMR device presented in this section can be further 
miniaturized if it designed and fabricated of SNAP coupled BMRs as proposed in [60]. The future 
development of the described BMR delay line paves the way to the creation of realistic miniature 
optical buffers [31]. BMR with different effective radius variation (other than parabolic) can be 
designed for the required transformation of optical pulses. For example, the BMR which effective 
radius variation depends on the resonator length z  as 2/3~ z  can be used as a miniature dispersion 
compensator experimentally demonstrated in Ref. [59].   

 
4.2. BMR lasers 

 
Different types of lasers with microscopic dimensions have been proposed and demonstrated.  
Usually, they are based on the optical microresonators fabricated of active materials such as ring, 
spherical, toroidal, capillary, and bottle microresonators. A review of microscopic lasers based on 
WGM microresonators proposed and demonstrated up to 2006 can be found in Refs. [4, 5] and a 
later progress in the field is reviewed in Ref. [10]. While these lasers have different geometry, the 
physical principles of their operation are similar. In particular, due to the high Q-factor of 
microresonators, these lasers have a small lasing threshold. Lasing microresonators can be 
fabricated of an active material or fabricated of a passive material and post-processed by coating 
with an active material.  

The BMR lasers [61-68] have certain advantages compared to other microlasers. In fact, their 
elongated geometry and fabrication simplicity allows one to fabricate active BMR with 
predetermined spectrum and facilitate mode selection by patterned pumping much easier than for 
active microresonators having other geometries. Several approached for fabrication of BMR lasers 
were developed. In Ref. [61], low threshold high Q-factor BMR Raman laser was fabricated of a 
silica capillary. In Refs. [62, 64, 65, 67, 68], active BMRs were fabricated by depositing polymer 
droplets doped with active materials onto the optical fiber followed by the UV and/or heat curing. 
In Ref. [63] BMR lasers were fabricated by depositing Er:Yb doped glass, which was melted by the 
CO2 laser, onto silica microcapillaries and fibers. The deposition was possible since the doped glass 
had lower melting temperature than that of silica. In Ref. [65] Brillouin lasing and Brillouin-coupled 
four-wave-mixing in an ultra-high-Q silica BMR was demonstrated. In Ref. [72] design and of rare-
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earth-doped BMR lasers, which were optimized for a low threshold pump power, high efficiency 
and predetermined lasing wavelength, was performed.   

 

 
 

Fig. 12. (a) – Spectral cleaning of bottle microresonators [50]. (b) – 
Fabrication of coupled SNAP BMR with subangstrom precision [26]. (c) – 
Combination of the spatial pump beam engineering, ultraprecise SNAP 
platform, and spectral cleaning  for fabrication of BMR lasers with required 
characteristics [19]. (Reproduced with permission from Refs [19, 26, 50]).   

 
 

It is of great interest to discuss the advantages of BMR lasers as compared to other types of 
miniature lasers. These advantages are primarily caused by the characteristic elongated geometry 
of BMRs which allows for the design and accurate fabrication of BMR lasers with predetermined 
spectrum. Three basic methods of the BMR laser design and fabrication, which can be used 
separately or in combination with each other, are known.  

The first method of the BMR laser design and fabrication can be applied if the light spectrum 
emitted by the BMR laser has to be cleaned from the unwanted peaks. If the BMR modes 
corresponding to these peaks are known, then these peaks can be removed by destroying the 
related modes. To this end, the authors of Ref. [50] demonstrated a method of spectral cleaning by 
inscribing microgroove scars on the BMR surface using the focused ion beam milling method (Fig. 
12(a)).  Obviously, in order to destroy the unwanted mode and keep the required mode (or modes) 
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untouched, the introduced grooves should be as narrow as possible and positioned along the line 
corresponding to nodes of all the required modes.  

 
        

 
 

Fig. 13. WGM lasing in polymer BMRs pumped with an external structured 
laser beam and radiation launched by a coupled microfiber. (a) – Lasing 
spectra and corresponding microscope images and electric field-intensity 
distributions of a polymer BMR under the action of a uniform and a 
spatially modulated laser beam [64]. (b) – Lasing spectra and 
corresponding microscope images of a polymer BMR pumped by the 
uniform radiation and by the radiation from a microfiber contacting BMR at 
different positions along the BMR axis [65]. (c) – Single mode lasing at 
different frequencies for different positions of a coupled microfiber along 
the BMRs and the corresponding optical microscope images of the lasing 
mode field distribution [67]. (Reproduced with permission from Refs [64, 
65, 67]). 

 
The second method of the BMR laser design and fabrication is based on the SNAP technology, 

which allows for ultraprecise fabrication of lasing BMR having the predetermined effective radius 
variation. As an example, Fig. 12(b) shows two coupled SNAP BMR [26], which, if fabricated of an 
active material, can be designed to lase at two frequencies with very small separation. The BMRs 
are fabricated to be similar in size so that the splitting of their eigenfrequencies exponentially 
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decreases with the separation between the BMRs. In Fig. 12(b), while the splitting between the 
fundamental modes of these resonators with axial quantum number 0q =  cannot be observed, the 

splitting between modes with the axial quantum number 1q =  is detected [26]. Notice that the 

modes with 0q =  and 2  adjacent to that with 1q =  of our interest can be removed with the 

spectral cleaning method. To this end, the grooves destroying these modes should be placed in the 
middle of each of the coupled BMRs corresponding to the nodes of the 1q =  mode.  

 
The third method of the design and fabrication of BMR lasers, which was proposed and 

demonstrated in Ref. [64], is concerned with the spatial engineering of the input pump beam (Fig. 
13(a)). This method, as well as the first two, explores the spatial elongation of BMRs, which can be 
used to appropriately distribute pumping along the resonator length. It is seen from Fig. 13(a) that 
depending on the distribution of the pumping radiation along the BMR, the latter can lase at certain 
single or multiple frequencies. In other approaches [65, 67], local pumping of BMR was performed 
with a coupled microfiber. In this case, again, depending on the position of the microfiber, the BMR 
can lase at a single of multiple frequencies (Fig. 13(b) and (c)).      

Fig. 12(c) illustrates a device where all the described methods of design and fabrication of BMR 
lasers can be combined in the most effective way [19]. The active BMR is supposed to be designed 
and fabricated with the ultrahigh precision using the SNAP technology.  The input pump beam is 
delivered to the BMR evanescently through a prism. As compared to the free space beam pumping, 
this allows to minimize the power consumption due to the resonant amplification of the pump 
intensity in the BMR.  Typically, the gap between the prism and BMR, which ensures the effective 
evanescent coupling is of the order of 100 nm. Remarkably, the required nanoscale variation of the 
effective BMR radius along its length fits in the gap between the prism and BMR. 
 
4.3. Nonlinear BMRs 

 
Nonlinear photonics is one of the fastest emerging branches of modern photonics. Its several most 
exciting recent applications were demonstrated for the high Q-factor optical microresonators 
where the electromagnetic field can be dramatically enhanced leading to strong nonlinear effects. 
The theory and applications of non-linear processes in high Q-factor optical microresonators, in 
particular, in WGM microresonators, have been intensively developed over the last decades (see 
e.g., Ref. [9] for the review). What is advantageously special in nonlinear phenomena in BMRs as 
compared to other types of microresonators? The answer lies again in the benefits of the elongated 
geometry of BMRs and possibility of their ultra-precise fabrication based on the SNAP technology. 
 An interesting example of a nonlinear BMR device is an all-optical switch based on the Kerr 
effect [69, 71]. If the BMR material exhibits the third-order susceptibility, its refractive index 
depends on the WGM intensity I  as 2rn n n I= +  where rn  is the refractive index of the resonator 

material and 2n  is its Kerr nonlinear refractive index. Generally, the shift of the resonance 

frequency is proportional to 2
2 /n Q V  where Q  and V  is the WGM Q-factor and its volume. Though 

the value o 2n  is very small, the nonlinear effect can be strong even for the relatively small input 

power provided that the BMR modes have sufficiently high Q-factor and small volume.  The authors 
of Ref. [69, 71] demonstrated a BMR which had one of the highest value of 2 /Q V  for optical 
microresonators. As the result, they observed the bistable BMR behavior caused by the nonlinear 
Kerr effect at very low powers and demonstrated a single-wavelength all-optical switch at a record-
low threshold of 50 mW. In this experiment, illustrated in Fig. 14(a), the signal light was repeatedly 
switched between the bus and the drop microfibers with a rate of 1 MHz. 
 In another experiment [74], a hollow BMR was fabricated from a microcapillary (inset in Fig. 
14(b)). In order to excite a WGM, the input-output microfiber taper was positioned at 
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approximately 25 μm from the BMR center.  At this position, the authors of [74] observed two 
sideband peaks of equal height in the vicinity of the pump wavelength (Fig. 14(b)) which arise due 
to the four wave mixing. In order to avoid the excitation of Raman transitions, the pump power was 
chosen in the range from 3.3 mW to 4.2 mW, which is above the four wave mixing threshold and 
below the Raman threshold for this WGM.  

 
 

Fig. 14. (a) – A BMR all-optical switch demonstrated in Ref. [69]. The BMR 
is coupled to the drop and bus microfibers illustrated in the inset.  The 
dashed lines in the small inset plot correspond to the two levels which are 
located below and above the bistable regime. (b) – The transmission 
spectrum of the BMR shown in the inset demonstrating the four-wave 
mixing [74]. (c) – Illustration of the BMR (upper right inset), the energy 
diagrams of nonlinear processes (upper left inset) and observed 
experimental spectra from Ref. [71]. (d) – The spectrum of frequency comb 
generated along the axial WGM series in Ref [70]. Inset shows the 
experimental setup including the toroidal resonator. (Reproduced with 
permission from Refs [69, 70, 71, 74]).   

 
The authors of Ref. [72] observed nonlinear processes in BMRs which included the third 

harmonic generation via the four wave mixing and the second harmonic generation via the three 
wave mixing processes. The BMR (illustrated in the right inset of Fig. 14(c)) had the diameter of 
64.5 μm in the center and two necks separated by 3.5 mm away from each and diameter of 23.1 μm. 
The energy diagrams of nonlinear processes observed in Ref. [72] are shown in the left inset of Fig. 
14(c). They include the sum frequency generation by mixing of two pumps and one Raman 
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excitation (SFG1), one pump and two Raman excitations (SFG2), and third harmonic generation 
from Raman light generated by stimulated Raman scattering (RTHG). The spectra showing the 
observed nonlinear processes are shown in Fig. 14(c). The wavelength and the power of the pump 
light were 1556.1 nm and 208.3 mW (Fig. 14(c), left).  The observed optical spectra of visible light 
generated by these processes are shown in the right plot in Fig. 14(c).  

Another example of an experimentally observed nonlinear process in an optical microresonator 
reported in Ref. [70] (Fig. 14(d)) has an important relation to a similar effect in a BMR. Commonly, 
optical resonators with normal dispersion (i.e., where the free spectral range grows with 
wavelength) exhibit a much weaker four wave mixing process, which is difficult to observe since it 
is often comparable with the effect of stimulated Raman scattering. The free spectral range of a 
WGM microresonator with radius r  along the azimuthal quantum number 1m >>  is 

2 / (2 )az rn rλ λ π∆ ≈  and, thus, corresponds to the normal geometric dispersion. Therefore, to arrive 
at the anomalous dispersion, the resonator should be fabricated of a material which anomalous 
dispersion which can compensate the normal geometric dispersion. For a silica microresonator, this 
fact significantly complicates the generation of frequency combs for the pump wavelength smaller 
than 1.3 µm. However, the shape of a BMR can be designed to arrive at the required geometric 
dispersion of WGMs along the axial quantum number q , which can be found, e.g., from the 

semiclassical quantization rule of Eq.(1). The authors of Ref. [70] reported the first demonstration 
of the frequency comb generation along the axial quantum number for the toroidal resonator for 
the arbitrary pump frequency. The resonator used in Ref. [70] and a sample frequency comb 
spectrum measured are shown in Fig. 14(d).  

The experimental results [70] suggest that the optical frequency comb with the predetermined 
repetition rate and central frequency can be generated by the appropriately designed BMR. The 
numerical simulations of BMR frequency comb generators [32-35] reviewed in Section 2.6 support 
this prediction. The SNAP technology, which allows for the ultraprecise fabrication of such 
microresonators, makes their demonstration feasible in the nearest future. Remarkably, since the 
axial radius of BMRs can be dramatically large [24], the repetition rate of BMR frequency comb 
generators can be very small. In Ref. [33] it was shown that BMRs are capable to generate 
frequency combs which have small repetition rate and broad band simultaneously. The idea of Ref. 
[33] is illustrated in Fig. 15. The inset of Fig. 15(a) shows a BMR with cosine-shaped radius 
variation which corresponds to the constant axial free spectral range (see Eqs. (2) and (3)). It was 
suggested in [33] that if the BMR azimuthal free spectral range is the exact multiple of its axial free 
spectral range (Fig. 15(a)) then this resonator can be designed to ensure the nonlinear excitation of 
frequency combs due to transition both along the axial and azimuthal resonance series (Fig. 15(b)). 
Alternatively, a narrow band axial resonance series situated between adjacent azimuthal 
resonances can be excited by pumping with a mode-locked laser followed by excitation of similar 
series corresponding to other azimuthal quantum numbers (Fig. 15(c)).     
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Fig. 15. (a) – Illustration of the BMR spectrum having the azimuthal free 
spectral range equal to the exact multiple of axial free spectral range. Inset 
shows a BMR with cosine-shaped radius variation. (b) – The broadband 
frequency comb generation with a single-frequency laser pump. (c) –  The 
broadband frequency comb generation with a narrowband comb pump 
generated by a mode-locked laser. (Reproduced with permission from Ref. 
[33]).   

 
 
4.4. Optomechanics of BMRs 

 
Optomechanical phenomena in BMRs are in many cases similar to those in other optical 
microresonators [112].  The major differences are, again, caused by the elongated geometry of 
BMRs. Due to the interaction of an optical WGM of the resonator having frequency ( )opt

rω  and its 

mechanical mode having frequency ( )mechω , the resonant optical frequency can split into series   
( ) ( )opt mech
r mω ω±  where m  is a positive integer and ±  correspond to the Stokes and anti-Stokes 

transitions. In the description of the excitation of these series illustrated in Fig. 13(a) we follow Ref. 
[77]. The setup used in Ref [77] is shown in Fig. 13(b).  The pump light, which was generated by a 
tunable laser with a linewidth of 300 kHz in the 1550 nm band and amplified, was controlled by a 
polarization controller (PC) and an attenuator (Att.). The pump light was coupled into the BMR with 
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an input-output tapered fiber and transmitted through a photodetector (PD) to a digital storage 
oscilloscope (DSO) and an electrical spectrum analyzer (ESA) used for the measurement of 
spectrum of the BMR mechanical oscillations. As an example, Figs. 16(c1)-(c4) show the measured 
spectra of mechanical oscillations for the BMR with characteristic dimensions 100μm × 30μm × 
4mm for the pump powers of (c1) 24.1 mW, (c2) 22.8 mW, (c3) 20.8 mW, and (c4) 20.1 mW. The 
excited mechanical frequency was ( ) 2 35.6mechω π= ⋅ MHz. At a pump power of 24.1 mW, the authors 
of Ref. [77] observed up to 13 equally spaced resonances (harmonics). The number of resonances 
gradually decreased (i.e., the higher harmonics of mechanical oscillations gradually disappeared) 
with decreasing the pump power (Figs. 16(c1)–(c4)).  
  An interesting application of BMRs was demonstrated in Refs. [82, 83] where the optomechanics 
of capillary BMRs filled with liquid was investigated.  The authors demonstrated a microfluidic 
system which was actuated optomechanically, thereby bridging microfluidics and optomechanics. 
The hollow BMR used in Ref. [83] is shown in Fig. 16(d). Its characteristic dimensions were 100μm 
× 35μm × 1.1mm. The setup used for the optical excitation of mechanical vibrations is illustrated in 
Fig. 16(e). Light was coupled in and out of the BMR with a tapered optical fiber which was not in 
direct contact with the resonator. The spectra of experimentally observed mechanical vibrations of 
the BMR filled with water are shown in Fig. 16(f1)-(f4). The measured mechanical frequencies 
ranged from 99 MHz to 11 GHz.  The Q-factor of the BMR exceeded 108. Overall, it was 
experimentally demonstrated that the optomechanical interactions in the capillary BMR depend on 
the properties of fluid inside it. The authors suggested that the demonstrated high quality-factor 
mechanical modes may enable optomechanical interaction with chemical and biological species, 
which are simultaneously strongly localized and highly-sensitive and, thus, can be used as a new 
type of the microfluidic sensing device (see Section 4.6). 
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Fig. 16. (a) – The illustration of an optical BMR used for excitation of 
mechanical vibrations [77]. (b) – The illustration of the experimental setup 
for the measurement of the spectrum of mechanical vibrations generated in 
the BMR [77]. (c1)-(c4) – Experimental spectra of mechanical oscillations 
in a  BMR observed in Ref. [77]. (d) – Dimensions of the capillary BMR used 
for excitation of mechanical vibrations in Ref. [83] (not to scale). (f1)-(f4) – 
Experimental spectra of mechanical oscillations in a water-filled BMR 
[83].(Reproduced with permission from Refs. [77, 83]).   

 
Understanding the properties of mechanical modes as compared to the optical WGMs in 

elongated BMR is of major importance for the development of BMR optomechanics. This problem 
was addressed in Ref. [79] where it was shown that, in analogy to optical BMRs, there exist acoustic 
BMRs where modes can be localized by extremely small nanometer-scale radius variation. In 
addition, it was shown that, in contrast to optical BMRs, there exist acoustic antibottle 
microresonators having the shape of a neck rather than a bulge (Fig. 17(a)). The free spectral range 
of eigenfrequencies of the acoustic microresonators with parabolic radius variation is proportional 
to 1/2

0( )nRr −−Λ  where R  is the axial bottle radius (negative for regular BMRs) and 0r  is the 

azimuthal radius. The dependence of parameter nΛ  for acoustic modes 0LP n  with azimuthal 

quantum number 0m =  and radial quantum number n is shown in Fig. 17(b). It is seen that the 
parameter nΛ  can be both positive (bottles) and negative (antibottles). Fig. 17(d) compares the 
axial distribution of acoustic and optical modes for the silica BMR with nanoscale parabolic radius 
variation with axial radius 824R = m shown in Fig. 17(c).  Remarkably, the characteristic length of 
the acoustic modes with the same axial quantum number is much greater than that for the optical 
modes.  
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Fig. 17. (a) – Illustration of optical BMR, acoustic BMR, and acoustic anti-
BMR. (b) – Dimensionless parameters 2

0nrΛ  as a function of ratio between 

the transverse and longitudinal speeds of sound, /T LV V , of the BMR 

material for acoustic modes with azimuthal quantum number 0m =  and 
radial quantum numbers 0,1,2n = , and 3 (LP01, LP02, and LP03). Inset: 
cross-sectional distribution of amplitudes of modes LP01, LP02, and LP03 
for a silica fiber. (c) – Nanoscale parabolic radius variation of the BMR. (d) – 
Distribution of the amplitudes of optical and acoustic modes along the BMR 
with the parabolic profile shown in (c). (e) – Illustration of the optical 
frequency comb generated mechanically. (f) – BMR radius variation with a 
double bump in the middle. (g) – Distribution of the amplitudes of optical 
symmetric (red) and antisymmetric (dashed-blue) and acoustic (black) 
modes along the BMR with the radius variation shown in (f). (Reproduced 
with permission from Refs. [78, 79]).       

 
It was shown that the BMR with gigantic axial radius of the order of 1 km can be designed so that 

its mechanical eigenfrequency matches the separation of its optical eigenfrequencies along the axial 
quantum number [78, 79]. Since the axial free spectral range of acoustic modes is very small, it is 
desirable for this application to remove all acoustic modes except for the fundamental axial mode 
(black line in Fig. 17(c)). This can be done by appropriate modification of the profile of the bottle 
resonator outside the location of the fundamental acoustic mode. Excitation of an acoustic mode, 
which frequency matches the axial free spectral range of optical modes, makes possible the 
generation of optical frequency comb mechanically (Fig. 17(e)). In contrast to the series of resonant 
frequencies shown in Fig. 17 (c) and (f), these optical resonances are generated by the external 
excitation of mechanical vibrations rather than optical pumping [78].   

Another way of creating of a BMR where the separation of optical WGM frequencies matches a 
mechanical eigenfrequency is illustrated in Fig. 17(g) and (f). The radius variation of this BMR has a 
double-bump profile in the middle (Fig. 17(g)) corresponding to two coupled BMRs which support 
two evanescently coupled (symmetric and antisymmetric) optical WGMs (red and dashed-blue 
lines in Fig. 17(f)). By adjusting the separation between the bumps, the optical mode splitting can 
be made equal to the eigenfrequency of the acoustic mode of this resonator (black line in Fig. 17(f)). 
Experimentally, a structure of two identical coupled BMRs fabricated with the precision better than 
0.02 nm in effective radius variation was demonstrated in [26] (Fig. 12(b)).            
 
4.5. BMRs for quantum processing 

 
Cavity quantum electrodynamics (CQED) investigates quantum phenomena in the interaction 
between photons, atoms, and other particles or excitations in an optical cavity [109]. Several 
theoretical proposals of applications of BMR in CQED and experimental demonstrations of CQED 
phenomena in BMRs have been published [84-87]. 
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Fig. 18. (a) – Illustration of a BMR coupled to rubidium atom. (b) – Spatial 
dependence of the electric field for TM modes. (c) – Measured fiber 
transmission for coupling of an atom to TM mode. (d) – The same 
measurement for the TE mode. The insets in (c) and (d) show the direction 
of the detection light (orange) and the spectroscopy light (green) and the 
scheme of atomic level transitions. (Reproduced with permission from Ref. 
[85]).   

  
As in all types of WGM microresonators, modes in BMRs can be separated into those having the 
electric field polarization, which either lies in the plane perpendicular to the BMR axis (TM) or is 
directed along this z axis (TE). Authors of Ref. [85], investigating 85Rb atoms strongly coupled to a 
BMR (Fig. 18(a)), recalled that while the TE modes are transversally polarized, the TM modes are 
non-transversally polarized (see e.g., Ref. [113] for detail explanation). This means that that the 
electric field of TM modes has a component along the azimuthal as well as the radial directions (Fig. 
18(b)). In particular, the electric field vector of TE modes is perpendicular to their wave vector at 
any position of the mode. In contrast, the TM modes are nontransversally polarized, i.e., their 
electric field vector has a nonvanishing component along the wave vector. This longitudinal 
component oscillates with the 900 out of phase with respect to the transversal component. In the 
experiment [85], the frequency of the BMR was tuned to an atomic transition frequency. The 
microfiber shown in Fig. 18(a) was critically coupled to the BMR. The polarization of the input 
resonant light was matched to the polarization of the BMR mode. As a result, the light was entirely 
coupled into the BMR mode and dissipated. Next, a cloud of laser-cooled 85Rb atoms was launched 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

31 
 

towards the BMR. If an atom is situated in the evanescent field of the BMR mode it strongly 
interacts with this mode. Then, the Rabi splitting of the resonance frequency [114] results in a 
detectable increase of the coupling fiber transmission. To measure the spectrum, a fast optical 
switch was used to turn off the detection light in real time and to simultaneously apply the 
spectroscopy light through the coupling fiber. Figs. 18(c) and (d) show the significant difference of 
transmission spectra of the TM and TE modes, which follows from the different behavior of the TE 
and TM modes indicated above, in a good agreement with theory [85].    

A setup similar to that shown in Fig. 18(a), allowed the authors of Ref. [84] to demonstrate that 
an ultra-strong interaction of atoms and light can lead to a nonlinear π phase shift for coincident 
photons. To experimentally determine this shift, the transmitted light was analyzed using three 
polarization bases by recording coincidence counts between the different detectors. It was 
suggested that the demonstrated conditional π phase shift can be the basis for realizing a single-
photon transistor and potentially enable deterministic quantum computation protocols with 
photons. 

 

 
 

Fig. 19. (a) –  Illustration of a BMR coupled to two input-output microfibers 
and a single 85Rb atom (b) and (c) – Measured port-to-port transmission 
efficiency as a function of  the of the ratio 0/totκ κ between the total field 

decay rate of the BMR in the presence of an atom totκ  and the intrinsic field 

decay rate of the BMR 0 2 5κ π= ⋅ MHz.  (Reproduced with permission from 
Ref. [87]).   

 
Using a BMR coupled to two input-output microfiber tapers illustrated in Fig. 19(a), the authors 

of Ref. [87] demonstrated a fiber-integrated quantum optical circulator operated by a single 85Rb 
atom. In order to achieve efficient routing, the coupling to microfibers were tuned close to each 
other. It has been shown that, depending on the prepared internal state of the atom, this device can  
route light either from the input port i to the adjacent output port i + 1 with i ∈ {1, 2, 3, 4} (Fig. 19 
(a)) or in the reversed direction. Figs. 19(b) and (c) show the measured port-to-port transmission 
efficiency as a function of the ratio between the total field decay rate of the BMR in the presence of 
an atom totκ  and the intrinsic field decay rate of the BMR 0 2 5κ π= ⋅ MHz.   
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 A system of coupled SNAP BMRs [25] illustrated in Fig. 20(a) has been proposed as a device 
which can be used as an efficient frequency converter of a single photon operated without external 
field pumping [88]. The distance between three coupled BMRs shown in this figure is chosen so that 
two WGMs, 1u  and 2u , with the frequencies close to the input and output frequencies, 0ω  and 

0 aω ω± , of a photon have the distributions illustrated in Fig. 20(b). The input photon enters the 

system by resonant transmission into mode 1u , then experiences the resonant down or up 

conversion to the frequency of mode 2u  due to interaction with atoms positioned in the central 

BMW, and finally exits the system with the acquired frequency 0 aω ω± . It was shown that, under 
certain conditions, the probability this process can approach unity [88]. 
 

 
 
Fig. 20. (a) – Three coupled SNAP BMRs with the atomic cloud near the center 
resonator. (b) – Illustration of distribution of WGMs and atoms. Inset: three-level 
atomic transitions realizing the frequency conversion of a single photon. 

 
 
4.6. BMR sensors 

 
Similar to other WGM resonators, BMRs can be used for precise optical, mechanical, physical 
chemical, and biological sensing [89-97].  Remarkably, in contrast to other WGM resonators, BMRs 
can be used as sensing devices where the medium under investigation is situated not only outside 
the resonator (for solid BMRs) but also inside and simultaneously outside and inside it (for hollow 
BMRs). The principle of sensing is based on the measurement of the resonance spectral shifts 
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caused by the presence of the investigated medium. Sensing with WGM microresonators other than 
BMRs (e.g., spherical and toroidal resonators) can be similarly performed with BMRs. A review of 
BMR sensors was published recently [92]. Therefore, here we outline several studies on BMR 
sensing with hollow BMRs only, i.e., those related to microfluidic sensing. 

Application of hollow BMRs to microfluidic sensing is similar to that of uniform microcapillaries 
[115]. Advantageously, hollow BMRs have much richer spectrum than uniform microcapillaries and 
in, several cases, can perform more comprehensive measurements. Characterization of fluids 
dwelling inside or propagating along the BMR axis is achieved by measurement and analysis of 
variation of the BMR resonant spectra. For example, the authors of Ref. [90] fabricated a hollow 
BMR illustrated in Fig. 21(a) and used it to probe the concentration of NIR-active dye (SDA2072) in 
methanol solution.  External and internal sensing with hollow BMR is illustrated in Fig. 21(b). The 
penetration of WGMs with small radial quantum numbers into the external environment is 
sufficient for its sensing. However, the internal penetration of these modes into liquid is negligible. 
For larger radial quantum numbers, the resonance spectrum of these modes is sensitive to 
variation of refractive index of liquids situated inside the BMR.  In Ref. [90], BMRs were fabricated 
from silica capillaries by HF etching followed by the softening and pressurizing procedure. BMRs 
with wall thicknesses between 5 and 10 μm were fabricated. The experimentally measured spectra 
corresponding to different concentrations of dye are shown in Fig. 21(c) and demonstrate 
remarkably good sensitivity. It is seen that the major effect of the dye results in changing the 
intensity of the resonant dips, i.e., is related to losses. 
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Fig. 21. (a) – Illustration of a hollow BMR. (b) – Comparison of external and 
internal evanescent sensing with WGMs depending on their radial quantum 
number. (c) – Resonant BMR spectra corresponding to different 
concentrations of  dye (SDA2072) (Reproduced with permission from Ref. 
[90]).   

 
One of the exciting applications of hollow BMRs for sensing explores their optomechanical 
properties [80-83].  As an example, Fig. 22(a) shows a hollow electro-opto-mechanical BMR 
demonstrated in Refs. [80, 81] enabling real-time detection of mechanical properties of 
microparticles flowing in liquid inside the BMR. The outer and inner diameters of BMR used in Ref. 
[81] were 70 µm and 50 µm. The microfluidic solution was composed of silica microparticles with 
approximately 3.62 µm diameter mixed in water. The 24.26 MHz frequency mechanical mode of 
this BMR was excited with an electrostatic drive (Fig. 22(a), right). Fig. 22(b) shows the frequency 
shifts of this vibrational mode as a function of time measured during transition of the microparticle 
solution inside the BMR. It is seen that the shifts associated with individual particle transits can be 
clearly resolved above the background noise fluctuations. Fig. 22(c) shows samplings of individual 
particle transits at flow rates of 50 µl/min. It has been shown that the particle speed, density and 
compressibility can be determined from these measurements.  
 

 
 
 

Fig. 22. (a) – Illustration of a confined mechanical mode in a hollow BMR 
(right) and the spectrum of its mechanical oscillations  near the 
electrostatically driving frequency (left). (b) – The frequency variation of 
the output monitored in real-time using an oscilloscope. (c) – Magnified 
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outputs at the time of particle transition. The flow rate is 50 µl/min. 
(Reproduced with permission from Ref. [81]).   

 
 
 
 

 
 

Fig. 23. Microfluidic sensor and manipulator. The spectrum of WGMs in the 
SNAP BMR introduced at the capillary surface can be used to restore the 
behavior of microfluidic components inside the capillary in time and space. 
While the left hand side microfiber is used to excite WGMs which are used 
for microfluidic sensing, the right hand side microfiber is used to excite 
WGMs which are used for microfluidic manipulation. 

 
 
In contrast to WGM uniform fiber and uniform capillary sensors which can detect properties of 
adjacent medium localized along the BMR axis [115], the BMR sensing devices and SNAP 
microresonators elongated along the axis of an optical fiber enable sensing of medium distributed 
along the fiber axis [97]. Furthermore, the same microresonators can perform sensing of physical 
and chemical characteristics of liquids in microcapillaries and extract their spatial and temporal 
dependences and, simultaneously, manipulate the microfluidic processes with evanescent fields of 
WGMs localized in the introduced SNAP microresonators. The device enabling simultaneous 
sensing and manipulation of microfluidic processes is illustrated in Fig. 23. In this figure, the left 
hand side microfiber coupled to the SNAP resonator detects the positions of microparticles 
propagating along the capillary. It was suggested [97] that their positions can be found from the 
observed microresonator spectrum by solving the inverse problem. The second microfiber was 
proposed to be used to excite the resonant evanescent field which can control the microfluidic 
processes and, in particular, manipulate microparticles. The development of the complete theory of 
this device as well as its realization is believed to be feasible in the nearest future.        
 
5. Summary 
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The elongated geometry of BMRs differentiates them from other WGM resonators having, e.g., 
toroidal or spherical shapes. Due to this geometry, BMRs possess several important properties 
which are not possible or difficult to achieve using other microresonators. For example, it was 
shown that a BMR with radius variation 0( ) | cos( ) |w z k zρ ρ= ∆   (Eq. (2)) has frequency eigenvalues 

which are equally spaced (dispersionless) along the axial quantum number [11]. This property of 
BMRs is important for fabrication of miniature broadband and small repetition rate frequency 
comb generators proposed in [33]. BMRs with semi-parabolic nanoscale effective radius variation 
were demonstrated as record low loss, dispersionless, and small delay lines [24]. These 
microresonators can be fabricated with subangstrom-precise SNAP technology and potentially can 
be used as a basis for fabrication of miniature optical buffers [31].  
 Numerous fabrication methods of BMRs have been developed. They range from direct melting 
and pulling [18] and annealing [21] of the optical fiber to depositing curable polymer droplets [64] 
at the fiber surface, and rolling semiconductor films [38]. Different approaches for fabrication of 
hollow BMRs were developed as well, e.g., those based on pressurizing microcapillaries softened by 
a CO2 laser beam [42]. 
 Applications of BMRs include fabrication of microlasers [63, 64], nonlinear and optomechanical 
devices [69, 72, 82], quantum processors [87], ultraprecise microscopic sensors [90] and, in 
particular, microfluidic sensors [81]. Most of these applications employ the advantages of elongated 
geometry of BMRs. For example, this geometry made possible the demonstration of spatial beam 
engineering in fabrication of BMR microlasers [64] which can be further advanced employing SNAP 
BMRs [19]. As another example, of special interest are microfluidic BMR sensors [41] which enable 
monitoring the physical properties of liquids propagating along microchannels [81]. Potentially 
these sensors can be used for characterization as well as manipulation of microfluidic components 
[97, 27, 28]. The future development and applications of BMRs may boost based on the SNAP 
technology which enables fabrication of BMRs with complex shape and unprecedented 
subangstrom precision.       
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