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Lyoluminescence: A theoretical approach
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When strongly energized halide or organic crystals are dissolved in a liquid solvent~like water!, light is
emitted as a result of a recombination process. This phenomenon is called lyoluminescence. The emitted light
intensity, called the lyoluminescent intensity, depends on a class of factors like radiation dose, probability of
radiative recombination, rate of dissolution in the solvent, etc. Combining some of these numerous effects we
develop a nonlinear differential equation and analyze it by a dynamical system analysis as well as by exact
numerical integration. The corresponding plot of the theoretical lyoluminescent intensity versus time graph,
called the glow curve~Fig. ~1!!, matches very well with the shape of the experimental curve~Fig. ~2!! for a vast
range of characteristic values of the controlling parameters.
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I. INTRODUCTION

Several organic substances and halide crystals produ
glow when lengthy exposure to high-energy radiation like
rays,g rays, etc. is followed by immersion in a liquid so
vent. This glow is called the lyoluminescent~LL ! glow. The
first known instance of observation of lyoluminescence w
due to Wiedemann and Schmidt,1 who observed lyolumines
cence in glucose. After exposure to ionizing radiation a
the decay of initial glow transients, dissolution of glucose
water at room temperature produced a glow which initia
increased with time and then gave a steady illumination a
about a minute. Later Ahnstrom and Ehrenstein2 observed
that unirradiated glucose did not show any glow on disso
tion. Extending their earlier work, Ahnstrom an
Ehrenberg3,4 subsequently used the glow to determine
density ofF centers in an inorganic sample as a function
the incidentg dose. Lelievre and Adloff5 measured essen
tially the same quantity with halide crystals. In an attempt
increase this LL radiation, it was observed that LL of gluco
was enhanced when thepH of the solution was increased6,7.
The LL intensity was found to be proportional to the amou
of solute dissolved and also proportional to the radiat
dose6 to which the sample was exposed. Although variat
of these different parameters proved to have a non-neglig
effect on LL, attempts towards determining the quantitat
dependence of LL intensity on these parameters were ma
due to Burns and Williams7 and Mittal.8

Notwithstanding continuous experimental investigatio
in this front, a theoretical effort towards the quantitative e
timation of LL from organic substances was due to Chat
jee, Sur, and Roy.9 Their approach centered around the d
velopement of a rate equation from phenomenolog
considerations using mechanisms already suggested by
tinger and Puite,10,11 Russel, and Vassil’ev.12,13

In the present paper we attempt to develop a theore
framework for the variation of LL intensity of alkali halide
PRB 620163-1829/2000/62~2!/906~4!/$15.00
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with time, the basic mechanism being that due to Atari.14 We
consider only some of the major controlling paramet
elaborated in Ref. 14 in the course of developement of
rate equation and compare our theoretical results with kno
experimental data.

II. MECHANISM OF LYOLUMINESCENCE

According to the mechanism of Atari,14 when an ener-
gized halide crystal is dissolved in solution, the entire p
cess of LL takes place in two stages: one in the solid ph
of the sample when it is irradiated with an x ray or ag ray
and the other in the liquid phase when it undergoes diss
tion. When an alkali halide crystal is dissolved in water, tw
effects occur simultaneously; an electron is released from
F center and a hydrated electron (eaq

2 ) is formed. The large
quenching effect of the hydrated electron acceptors indic
that the releasedF center undergoes hydration before its r
combination with aV2 center.4,17 The rapid recombination o
the hydrated electron with aV2 center at the water-solid
interface gives rise to the luminescence. Schematically
process reads as follows:

FIG. 1. Theoretical glow curves~semilog! for different a, b,
andl.
906 ©2000 The American Physical Society
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PRB 62 907LYOLUMINESCENCE: A THEORETICAL APPROACH
The increase in luminosity of colored halide crystals
due to the presence of trace impurities in these crystals.
releasedF centers on hydration recombine with the accep
impurities ~I! at the water-solid interface:

III. THEORY

The parameters considered in our theory of the LL int
sity are the same as those mentioned in Refs. 6 and 15.

When theg-irradiated halide crystal containingN mol-
ecules at any timet is dissolved in a given volume of th
solvent, it dissolves in the solvent at the specific ratea. Then
the rate of decrease in the number of solute atoms ma
written as

2
dN

dt
5aN. ~1!

The rate of LL depends not only upon this rate of dissolut
but also upon the extent ofa priori exposure of the crystal to
ionizing radiation. At first the LL intensity is seen to increa
with the radiation dose and then attains a saturation value
larger radiation doses. Now working in this saturation zo
we easily see that our theory becomes independent of

FIG. 2. Experimental lyoluminescent spectrum, recorded on
for KCl ~Ref. 16!.
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radiation dose. So neglecting this effect and takingN5N0 at
t50, integration of Eq.~1! gives

N5N0e2at. ~2!

Assuming a linear dependence of the rateR of generation of
the hydrated electrons onnF , the density ofF centers, and
again consideringR proportional to2dN/dt, we get

R5GnFS 2
dN

dt D ,

i.e., R5GnFaN0e2at, ~3!

whereG is a factor defining the correlation of the number
hydrated electrons with the number of dissolved color c
ters of the crystal.

Now the microscopic dynamics of the system will set
competition between the increase in the number of hydra
electrons due to the dissolution of the crystal in the solv
and the decrease in the same number of electrons du
recombination of hydrated electrons with holes at the cry
surface. Since a hole recombines with an electron, if th
aren number of hydrated electrons at any timet, a hole has
n possible opportunities to combine with thesen electrons.
Since there will also ben holes at the surface, thesen holes
can combine with then electrons inn2 possible ways.

Then the rate equation becomes

dn

dt
5R2~s rNrv !n2, ~4!

wheres r is the capture cross section of the holes,Nr is the
density of the recombination centers, i.e., holes, andv is the
average drift velocity of the hydrated electrons.

Takingb5s rNrv as the rate constant for the recombin
tion of hydrated electrons with holes, the rate equation n
turns out to be

dn

dt
5GanFN0e2at2bn2. ~5!

The above differential equation being a nonlinear one w
no exact analytical solution, we first check for the stability
the system from the standpoint of dynamical systems
then obtain an estimate of the solutions in the asympt
limit. Finally we compare all these results with exact nume
cally integrated solutions of Eq.~5! for a range of character
istic values of the parameters.

A. Dynamical system study

From Eq.~5!, we see that

ṅ~ t !5lae2at2bn2, ~6!

wherel5GnFN0. Since Eq.~6! is a nonautonomous system
of dimension 2, we can reduce it to an equivalent descript
of two autonomous systems by a simple variable redefiniti

For this we putZ5e2at. Thus the equivalent autonomou
description looks like

ṅ~ t !5laZ2bn2, ~7!
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Ż~ t !52aZ. ~8!

The obvious fixed point isZ5n50. Thereafter simple linea
stability analysis around this fixed point gives us the eig
values of the stability matrix as 0 and2a. The very exis-
tence of this marginal value~zero! renders any commen
about the stability of the system untenable in the limit
large time scales. The way out is to look for the asympto
variation ofn(t) with t in the limits of small and large time
scales. The solution of Eq.~5! at small times looks like

n~ t !u t→05Ala

b S N0821

N0811
D F11

4N08

N08
221

AlabtG , ~9!

whereN08 depends uponn0, the initial value ofn(t), and is
given by

N085

Ala

b
1n0

Ala

b
2n0

. ~10!

The above equation shows that when solute is added to
solvent, the initial LL intensity is a linear function of tim
@since LL intensity is proportional ton(t)], characterized by
an initial non-zero radiation, which is a function ofN08 . This
result is in exact harmony with experiments@and acciden-
tally with Eq. ~14! of B. P. Chandraet al.,15 although the
proportionality constants differ and also no initial nonze
radiation could be found in Ref. 15#. At large times Eq.~5!
can be solved to give

n~ t !u t→`5
n0

11n0bt
~11!

which is the equation of a shifted rectangular hyperbola
conforms well in this limit with the numerically solved glow
curves~Fig. 1! for the whole range of the parameter value

B. Numerical analysis

The method of numerical integration employed here is
standard Runge-Kutta~order IV! with characteristic values
of the parametersg, a, nF , n0, andb. Figure 1 shows plots
of n(t) against the timet for a whole set of parameter value
These are seen to have exactly the same shape as the e
mental curve in Fig. 2. Also it is easy to see that simi
curves can be generated on extrapolation of the asymp
solutions ofn(t), since Eq.~6! is a regular equation an
hence is not expected to show any discontinuous jum
Changing the characteristic values of the parameters doe
in any way change the nature of the curve, as is evident f
the asymptotic zone analysis. Simple rescaling ofn(t) and t
gives back essentially the same curves as in Refs. 16 an
confirming our analytical arguments.

In order to compare our theory with some other import
experimental observations, we write down an analytical
lution exact up to the second order in Picard’s mathod, wh
is generally valid for not so larget andn(t50)50 ~although
at t50, a small value ofn(t50) indeed exists!:
-
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n~ t !5S l1
2bl2

a D ~12e2at!2bl2t2
bl2

2a
~12e22at!.

~12!

Since glow curves obtained from this solution, at sm
times, tally reasonably well with the curves obtained fro
exact numerical integration of Eq.~5! ~Fig. 1!, we are in a
position now to compare some other experimental facts fr
the above second-order solution. Also the order of magnit
calculations of the maxima in the LL intensity curves~which
essentially appear close tot50) from this approximate so
lution (;1 theoretical unit! conforms well with the numeri-
cal values. For small times, the above solution agrees w
with the asymptotic result shown previously. Since the r
of dissolution of the solute in the solvent is slow compared
the rate of recombination of hydrated electrons with hol
b@a. Also from experiment we know thatnF;1015–1018

~Ref. 18!.
Utilizing the above facts in Eq.~12!, we see that asa

increases with temperature, the LL intensity@}n(t)# should
also increase with temperature which can also apparentl
seen from the asymptotic study.

IV. COMPARISON WITH EXPERIMENTS

A detailed measurement of most of the LL properti
have been made in the past, some of which conform we
our theory presented here.

The nature of the decay curves as seen by Banerjiet al.16

@Fig. 2#, qualitatively matches not only with the exact n
merically integrated theoretical curve but also with t
second-order approximate analytic solution~Picard’s solu-
tion!. The asymptotic solutions of the equation at large tim
are also in conformity with the basic nature of these curv
In all these plots the LL intensity is seen to fall rapidly
first and then the decay portion shows a more mode
steady decrease. However, at the initial instant, the curv
almost linear, and the intensity increases as the tempera
of the solution rises. This temperature dependence holds
all times, although thermal bleaching ofF centers takes place
at higher temperatures and thereafter the LL intensity is s
to decrease, a fact which we cannot establish from
simple theory.

An early effort towards the developement of an analyti
theory for the LL intensity characteristics was due to B.
Chandraet al.15 They attempted the development of a ra
equation in the same line as Chatterjee, Sur, and Roy9 for
alkali halides utilizing the mechanism due to Atari14 which
happened to be our basis too. However, they failed to
count for the recombination of all then holes with all then
number of electrons giving rise ton2 combinations. Conse
quently, the linear theory developed by them, although so
able exactly, failed to reproduce the experimental curves
seen in Refs. 16 and 17 and as shown in Fig. 2. While th
theory could accidentally explain the temperature dep
dence of the LL intensity, as observed in the experime
the detailed variation of the lyoluminescent intensity w
time could not be accounted for due to the absence of
dominant nonlinearity in the system. We have overcome
these drawbacks in our theory, which is quite capable
explaining these important experimental observations.

In conclusion, it would be relevant to add that we start
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PRB 62 909LYOLUMINESCENCE: A THEORETICAL APPROACH
with an objective of developing a theory of lyoluminescen
of alkali halide crystals. In the process we landed up wit
nonlinear rate equation whose exact numerical and appr
mate analytical solutions are capable of explaining qual
tively the temperature dependence and the overall time
pendence of the LL intensity. Although we have been able
investigate and reconcile with experiments some of the pr
erties of lyoluminescence, much more remains unscathe
our elementary theory. Notable among them are variation
peak heights with irradiation dose, peak heights vs conc
tration andpH of solution, etc. In our pursuit of simplifica
tion, we have neglected the corresponding parameters
trolling these effects, which could possibly have shed lig
on a few other experimental results. Accordingly, we hope

TABLE I. Experimental vs theoretical decay times: samp
weight for experimental;5 mg, solvent: water,pH: 6.5, oxygen
content: 9 ppm~Ref. 16!, theoretical parameters:a51, l51.

Expt. decay times~s!

Sample
Dose in

kGy Short Long b
Theor. decay

times ~s!

0.1 0.3660.08 4.3560.60
KBr 0.5 0.4360.08 4.2460.58 0.6 4.3

1.0 0.4060.06 4.3260.50
2.0 0.4260.06 4.2860.45
0.1 0.2560.06 2.3560.40

KCl 0.5 0.1860.06 2.2060.38 1.5 2.3
1.0 0.2060.04 2.3060.30
2.0 0.2360.04 2.2860.28
a
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develop a complete theory of alkali halide crystals in futu
including all the relevant parameters and the solution of
apparently cumbersome equation generated therefrom sh
be able to reproduce the experimental results in detail.

It seems worthwhile to mention here that since in draw
the theoretical graphs, we have utilized values ofa andb in
units of l ~which hence is always taken to be unity!, exact
quantitative comparison between our theoretical graphs w
the experimental ones would have required a suitable n
malization of our units used with the real physical uni
Once this is done, curve-fitting procedures could be e
ployed to determine the exact values ofa, b, andl, follow-
ing which an exact measure of the decay times could be d
theoretically. Two typical examples have been shown
Table I, where for characteristic values of the theoreti
parameters used (a, b, andl), the long components of the
decay time match exactly with the experimental values. T
values of the short components could not be resolved th
retically, which is understandable, since the experimental
servations show that the small values of decay times of
short components of the spectrum fall well within the flu
tuation range of the long components. We plan the ex
enumeration of decay times as a future project.
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