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Thesis Summary 

 

A key challenge in a battery energy storage system is understanding the availability and 
reliability of the system from the perspective of the end customer. A key task in this process is 
recognising when a battery or a module within a system starts to degrade and then mitigating 
against this using the control system or battery management system. Battery characterisation 
parameters such as internal impedance and state of health and state of charge of the battery are a 
useful representation of the battery conditions. This thesis investigates the feasibility of 
undertaking Electrochemical Impedance Spectroscopy (EIS) methods online to generate an 
understanding of battery impedance. In order to perform an EIS measurement, an excitation signal 
of fixed frequency must be generated and the voltage and current measured and used to calculate 
the impedance.  

This thesis proposed different methods of generating a low-frequency excitation signal using 
hardware found in most battery systems to extract the harmonic impedance of a battery cell to 
aim towards a low cost on-line impedance estimation. This work focuses on producing impedance 
spectroscopy measurements through the power electronics system, a battery balancing system and 
the earth leakage monitoring system to attempt to get comparable results to off-line EIS 
measurements under similar conditions. To generate an excitation signal through the power 
electronic circuit, different control methods were used including varying; the duty cycle, the 
switching frequency and the starting position of the switched wave and the addition of an impulse 
type function. Although utilising a variable duty cycle to generate a harmonic impedance has been 
previously published in literature, the other techniques analysed within this these have not 
previously been considered.   

The thesis looks at the theoretical analysis of the circuits and control techniques and then 
follows this up with simulation and experimental studies. The results showed that all the methods 
investigated have the capability to generate a low frequency perturbation signal to undertake on-
line EIS measurement. However, there are potential trade-offs, for example increased inductor 
ripple current. Not all of the methods produce sufficiently accurate results experimentally. 
However, five of the methods were used to generate EIS plots similar to those undertaken off-
line.  
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1 Introduction  

There is increasing pressure for society to move towards a low carbon economy. To enable low 

efficiency, carbon dioxide producing power plant to be removed from the energy cycle, it is 

necessary to invest in renewable energy sources. The intermittent and indeterminate nature of the 

renewable generation means that to enable the grid to operate reliably and stably with a large 

proportion of renewables it is necessary to consider adding energy storage to the system. For an 

energy storage system to be of long-term value to the distribution network operators (DNO) it 

needs to be reliable and have a high degree of availability.  

A key challenge in a battery energy storage system is understanding the availability and 

reliability of the system from the perspective of the end customer. A key task in this process is 

recognising when a battery or a module within a system starts to degrade and then mitigating 

against this using the control system or battery management system. Battery characterisation 

parameters such as internal impedance and state of health (SOH) and state of charge (SOC) of the 

battery are a useful representation of the battery conditions.  

The quantity of published literature in reputable journals indicates that EIS measurements may 

be a valuable tool in determining the impedance and the subsequent states of the battery. This 

measurement is mostly undertaken off-line but some attempt has been made in recent years to 

reproduce an on-line version. This thesis investigates the feasibility of undertaking 

Electrochemical Impedance Spectroscopy (EIS) methods online to generate an understanding of 

battery impedance. In order to perform an EIS measurement, an excitation signal of fixed 

frequency must be generated and the voltage across and current through the battery measured and 

used to calculate the impedance.  

The aim of this thesis is to therefore to investigate the feasibility of different methods of 

undertaking EIS measurements online using existing hardware found within the system. As part 

of this, it is necessary to look at how the excitation signal is generated from a theoretical 

perspective, to ensure that the circuit operates as expected through the use of simulation and then 

to undertake experimental measurements to confirm the operations of these circuits. To help with 

this an appropriate equivalent circuit model of the battery under different conditions has been 

chosen to allow the EIS methods to be simulated with this model. 

The work in this thesis has been undertaken in parallel to most of the published literature in this 

field. The rapid independent development of knowledge in this area has meant there is a need for 

classification of these methods.  This thesis, classifies the different methods according to the 

hardware and control used to provide the excitation signal.  
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The proposed methods used in this thesis included: a) using DC-DC converter hardware with 

variable duty cycle, b) using DC-DC converter hardware with variable switching frequency, c) 

using DC-DC converter hardware with variable pulse starting position, d) using DC-DC converter 

hardware with an added impulse function, e) using capacitive battery balancing hardware, and f) 

using Earth Leakage Monitoring hardware. In all these methods, the DC-DC converter was 

operated in continuous mode with a fixed duty cycle and load to allow comparable analysis 

between the techniques. Although utilising variable duty cycle to generate a harmonic impedance 

has been previously published in the literature, the other 5 techniques analysed within this these 

have not previously been considered. This represents a novelty in the knowledge in this field. 

The remainder of this thesis is divided into five different sections; theoretical analysis of on-

line EIS techniques, Simulation of on-line EIS techniques, experimental validation of on-line EIS 

techniques, practical implementation issues, and conclusions and future work. 

Chapter 2 establishes the background for why this research is necessary along with current 

knowledge of energy storage systems, battery parameters estimation methods, and previously 

published works on electrochemical impedance spectroscopy measurement methods for different 

types of energy storage system.  

Chapter 3 looks at different methods of injecting low-frequency waveforms into the battery for 

impedance measurement of the battery using existing circuit hardware. For impedance 

calculation, the voltage and current waveforms are converted to the frequency domain using 

Fourier analysis. This section represents a detailed analysis of the current ripple, converter boost 

ratio, Fourier analysis is used to estimate the harmonics of the gate drive signal and battery and 

converter ripple current. 

Chapter 4 presents the modelling of these methods using MATLAB Simulink using an EIS 

equivalent circuit (EC) calculated representation of the battery. These simulated waveforms are 

compared with the theory. The impedance of the battery over the frequency range is then reverse 

calculated through the circuit and compared to that measured data by the laboratory EIS 

equipment. 

Chapter 5 validates these techniques experimentally. A controller unit was used to generate the 

control PWM signal and inject the low-frequency excitation signals. The battery waveforms are 

then analysed to calculate the impedance over the frequency range of 1Hz - 2kHz. The 

experimental data is compared to theory and simulation. 

Chapter 6 looks at practical issues including the applicability of this technique to different 

battery chemistries and a solar panel. The thesis goes on to investigate what is required from a 
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practical perspective to move this work forward from proof of concept to demonstrator by 

commenting on issues such as measurement through to data analysis. This includes practical 

considerations for measurement implementation issues such as prediction of the state of charge 

of the battery, prediction of the equivalent circuit component value using a least square method, 

and exploring the possibility of detecting a poor battery cell from within a string using measured 

impedance of the battery pack system. 

Chapter 7 gives the conclusions of this thesis and suggests possible future work. 
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2 Background 
 

2.1 Energy Storage  

There is increasing pressure for society to move towards a low carbon economy [1]. To enable 

low efficiency, carbon dioxide producing power plant to be removed from the energy cycle it is 

necessary to invest in renewable energy sources (RESs) such as the wind or solar power or larger 

plant such as nuclear power [2]. With the social pressure and long lead times around nuclear 

generation [3], there is a strong focus on renewable generation and in particular low scale 

distributed energy resources (DERs) such as wind power and solar panels. The intermittent and 

indeterminate nature of the renewable generation means that to enable the grid to operate reliably 

and stably with a large proportion of renewables it is necessary to consider adding energy storage 

to the system [4]. This can be based on long-term storage (storing power when the wind is blowing 

and releasing when it is not) to intermittent storage (responding to grid frequency and assisting 

with maintaining grid stability) [5]–[7]. Where the generation is within the distribution system, 

energy storage may also be used to help prevent constraints (such as thermal ratings of lines/cables 

or voltage constraints at busbars) as alternatives to Network reinforcement. Energy storage can 

come in many forms, such as pumped storage, flywheels, compressed air and chemical storage 

such as batteries and fuel cells. In particular, battery energy storage deployment is increasing, 

partly, because it can react very quickly and therefore assist with grid stability much better than 

some of the other forms of storage [8]. The increase in all forms of stored energy globally 

including that from battery energy storage is shown in Figure 2-1 [9]. This uses Data derived from 

the Department of Energy (DOE), global energy storage database in the USA [10] which currently 

lists 1630 current energy storage projects at a total rating of 193GW. These figures illustrate an 

increasing trend in the uptake of energy storage. 

In the UK, the introduction of the Innovation Funding Incentive (IFI) and Low Carbon Network 

Fund (LCNF) by the electricity supply regulator OFGEM [11] has facilitated research into 

electrical energy storage within the grid system through a number of funded projects in 

conjunction with the Distribution Network Operators (DNOs). In 2015 this scheme was replaced 

with the Network Innovation Allowance (NIA) to allow Network Innovation to continue. A 

number of electrical energy storage projects were trialled under this funding. A summary of these 

is shown in Figure 2-2 [12]. 
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Figure 2-1: Summary of installed global energy storage projects [9] 

 

Figure 2-2: GB DNO Deployment of Electrical Energy storage (at 1st December 2014) [12] 

 

The lessons learnt from undertaking research by DNO’s on Electrical Energy Storage in the 

UK was collected together by EA Technology [12] in the form of a good practice guide. For an 

energy storage system to be of long-term value to the DNO it needs to be reliable and has a high 

degree of availability.  

Conventional reinforcement of distribution networks has traditionally been designed for an 

anticipated peak demand and can potentially be over engineered, expensive, disruptive and 
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inefficient. The Western Power Distribution (WPD) led FALCON project (Flexible Approaches 

to Low Carbon Networks) looked at flexible ways to optimise the Network, by focussing on the 

11kV Network around the Milton Keynes area. Six alternative techniques were deployed to 

investigate alternatives to conventional reinforcement. One of these techniques is the inclusion of 

energy storage on the 11kV distribution network. Data was collected from the energy storage 

facility listed in Figure 2-2 as the Milton Keynes (250kW, 500kWh) project in order to investigate 

the reliability and availability of the energy storage facility from the perspective of a Utility 

customer [13]–[16].  

As-installed, this project comprised of five energy storage units (inverter and battery module) 

connected at existing substations on a single 11kV feeder as shown in Figure 2-3. The five sites 

were set up with 50kW/100kWh energy storage batteries (Sodium Nickel) and inverters located 

at the substations highlighted in Figure 2-3.  

These units charge or discharge the batteries at designated times or triggers: 

• As specified manually; 

• At specified times regardless of network conditions; 

• When substation load is above a specified trigger point (peak shaving operations); or 

• When grid frequency is above or below pre-specified trigger points. 

In addition, the inverters can also import or export reactive power, influencing voltage at the point 

of connection. 

A key method of ensuring continued battery system operation and accurate available capacity 

reporting is to have the battery undertake a maintenance cycle. This is an operation through the 

battery control system which takes the batteries offline and re-calibrates key parameters. This 

maintenance cycle typically discharges and recharges the battery system. The necessity of running 

batteries through a maintenance cycle, therefore, impacts on the availability of the battery to the 

Network Operator. 

A maintenance cycle on the five Milton Keynes battery sites was recommended by the 

manufacturer to be run every week. The maintenance cycle is different for different battery 

chemistries and the manufacturer will advise on request. This maintenance cycle was started at 

a fixed time each week however, the control system decides how the cycle will proceed. Results 

from two maintenance cycles are shown in Figure 2-4, which is the AC feeder rms current with 

time. This results in two key unknowns; 

1. Although the cycle may be set to a fixed time slot – the decision to discharge or charge 

the battery by the control system could occur at any time after this. 
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2. The maintenance cycle period, if it occurs, is not a fixed time period as shown by the red 

arrows in Figure 2-4, and can vary from less than an hour to 12 hours. 

It is not possible to know in advance if the battery will be undertaking a twelve-hour 

maintenance cycle or none at all. From an availability perspective – this means the battery cannot 

be relied upon for service over the twelve hour period from the control system start of a 

maintenance cycle. 

 

Figure 2-3: 11kV feeder from Fox Mile Primary with five connected Energy Storage Sites. 
 

Battery maintenance cycles play an important role in the re-calibration of the batteries for 

operational purposes. The maintenance cycle reported on the FALCON batteries are more 

extensive than typically reported for large scale installations. However, they usefully illustrate the 

key point that to understand and manage the performance of a battery system, a battery 

management system needs to understand and control the state of the battery as accurately as 

possible to minimise the requirement for battery re-calibration and subsequent availability 

downtime. 
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Figure 2-4: A short and long battery maintenance cycle. 

 

With the decarbonisation of the transport sector, additional energy storage capability for grid 

support applications may also be available through electric or plug-in hybrid electric vehicles 

[17]. Additional schemes such as hybrid energy schemes with a mixture of generation and storage 

are becoming more widely available including schemes using second life batteries [18]–[20]. A 

second life battery is a battery which has been originally been used within an automotive 

application, but where the capacity of the battery has reduced below 80% of the nominal reported 

capacity of the new battery. Understanding the states of the key parameters of a battery energy 

storage system are key to its control and reliability regardless of the battery chemistry.  
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2.2 Battery definitions 

There are a number of different terminologies in use to describe different characteristics of a 

battery system. This section lists a definition of terms as used within this thesis to ensure clarity 

of understanding. 

Table 2-1: Definition of terminology 
Term Abbreviation  Definition as used in this thesis 

Battery Cell  A single battery cell.  

Battery String  A series connection of battery cells. 

Battery Module  A series/parallel connection of strings. 

Battery System  A combination of battery modules. 

Nominal Battery 

Capacity  

 The capacity of the battery in Ah or Wh as 

specified by the manufacturer at point of 

manufacture. This value may be charge /discharge 

rate dependent. In this document, this is 

considered to be the capacity available to the user 

rather than the capacity of the battery where some 

of the capacity is unavailable. 

Maximum Available 

Battery Capacity 

 The maximum capacity of the battery in Ah or Wh 

after the battery has been in use and may have 

degraded when it is fully charging. In this 

document, this is considered to be the capacity 

available to the user. 

Remaining Battery 

Available Capacity 

 The remaining capacity of the battery in Ah or Wh 

after the battery has partially discharged. In this 

document, this is considered to be the capacity 

available to the user. 

Charge and discharge rate  The rate at which the battery charges or 

discharges with time in A/s or W/s. 

Safe operating envelope  The battery operational limits as defined by its 

maximum and minimum voltages, charge and 

discharge rates, temperature and any other key 

parameter as defined by the manufacturer. 

State of charge SOC There are a number of definitions of SOC in 

literature [21], [22]. In this work, this is defined 

as the ratio of the remaining available battery 
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capacity to the maximum available battery 

capacity. 

Depth of Discharge DOD The percentage of a battery that has been 

discharged expressed as a percentage of the 

Maximum available battery capacity. 

State of health SOH There are a number of definitions of SOH in 

literature. This term relates to the ability of the 

battery to provide specific performance in 

comparison with a new equivalent battery. This 

relates to the difference between the Nominal 

battery capacity and the Maximum available 

battery capacity and is a measure of power and/or 

energy fade. The power capability fades as the 

internal impedance of the battery increase while 

the energy fade occurs when the battery loses 

capacity. These factors may be calendric 

(dependent on age) or cyclic (dependent on 

operational characteristic).  

State of Power SOP The available power that the battery can deliver at 

a given time to the user. 

State of Function SOF A flag indicating that the battery is available to 

undertake a predetermined function [23]. Various 

alternative definitions are available [24]–[26]. 

State of Life or 

Remaining useful life  

SOL or RUL Indication of remaining estimated life in the 

battery based on pre-defined charging and 

discharging patterns maybe tied to DOD. 

 

To understand and manage the battery performance in a battery system a battery management 

system (BMS) is typically used. In an energy storage system, many battery cells may be connected 

in series and parallel in order to generate the required power and energy levels. The role of the 

battery management system may therefore include; 

• Data Acquisition: measuring, collecting and collating battery data 

• Cell protection: ensure that the battery cells remain within the safe operating envelope 

• Cell balancing: equalise the charge across battery cells to maximise the capacity of the 

system 
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• Thermal management: control cooling systems or temperature gradients within systems 

• Energy management: control the flow of energy into and out of the battery cells to meet 

operational requirements 

• Battery parameter estimation: determine key characteristics of the battery for use by the 

energy management function. This may include any combination of SOC, SOH, SOP, 

SOF, SOL, remaining available capacity and impedance determination. 

The following section includes a review as to published methods of estimating the battery 

parameters for use by the BMS. 

2.3 Battery parameter estimation 

2.3.1 SOC estimation 

A selection of different SOC measurement techniques are shown in Figure 2-5. These come in 

two categories; direct and indirect. If the SOC is estimated straight from a measurement variable 

this is known as a direct technique. If the SOC is found through calculation of combinations of 

variables then this is classed in this thesis as an indirect technique. The methods may also be on-

line or off-line. The former results in better battery availability, while the latter may be more 

accurate. In other word, the availability of the battery depends on minimisation of the battery re-

calibration and subsequent availability downtime requirements. This is possible by estimating and 

controlling the state of the battery such as SOC as accurately as possible.  
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Figure 2-5: Different methods of battery SOC monitoring  

 

Table 2-2 briefly summarises how these different methods work.  

SOC is a function of many different parameters including battery state, capacity, charge and 

discharge rate, temperature and therefore its estimation is difficult and can be inaccurate. 

The main direct techniques are the coulomb counting method and the OCV methods. The 

former method may suffer from sensor noise and initialisation-induced offsets, while the latter 

requires a period of disconnection to establish an accurate measurement for the battery’s OCV. 

Consequently, these two methods are often combined in practice to form the basis for the indirect 

model-based SOC estimation techniques. The impedance estimation is required for state of charge 

calculation using some indirect methods as shown by the red arrows in Figure 2-5. The coulomb 

counting can also be considered as an input for the book-keeping method for SOC prediction.  
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Table 2-2 : summary of SOC determination techniques 
Technique Summary On/ 

offline 

Direct 

Discharge 

[27] 

The batteries are discharged with a fixed small rate of current until 

the battery voltage reaches a threshold value. The SOC is estimated 

as a product of discharge duration and current rate.   

Offline 

Coulomb 

counting 

[28]–[34] 

The state of charge is estimated by integrating current over the 

charge/discharge duration time from an initial SOC of the battery. 

Online 

Open Circuit 

Voltage 

(OCV) 

[35]–[40] 

SOC is estimated using an OCV SOC look up table. The OCV maybe 

estimated using the terminal voltage and a battery circuit model. 

Online 

Internal 

resistance  

[41]–[47] 

As small current ripple is used to measure internal impedance at a 

fixed frequency point to provide a value of impedance. This is then 

used in conjunction with an impedance SOC lookup table to generate 

SOC. 

Online 

Indirect 

Book 

Keeping 

Methods 

[21], [48]–

[52] 

Uses pre-characterised lookup tables which relate different battery 

characteristics to SOC. These may include parameters such as the 

coulomb counting data, battery discharge rate, cycle life, temperature 

rate. 

Online 

Model-based 

Estimation  

eg 

impedance 

based model 

estimation 

[21], [41], 

[53]–[57] 

Measurements are used as inputs to a model (for example an 

impedance based equivalent circuit) which is then used to determine 

the OCV of the battery for use with an OCV-SOC lookup table. An 

impedance based estimation approach may use an offline generated 

impedance spectrum of the battery to produce an impedance model 

(equivalent circuit) to estimate the circuit parameters. The variation 

of these under different condition is used to estimate the SOC of the 

battery. 

Online 

Observer-

based 

methods  eg 

Kalman filter  

Predicts the battery SOC using the components of a battery model. It 

works in two steps, prediction and measurement. Predict the model 

parameters and compares them with the measured one. This process 

is updated once a corruption occurs between the predicted and 

Online 
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[37], [58]–

[72] 

measured data. The corrupted data can be minimised by using a 

weighted average. 

Machine 

learning  

 

This includes techniques such as Neural Networks  [51], [73]–[80] - 

The SOC current of the battery is estimated using pre-defined data 

such as the battery current, voltage, and SOC. It is a multilayer 

network system and uses pre-training data as an input. At each layer 

different functions are used to analyse the incoming data from the 

battery to estimate the battery SOC.  

Fuzzy logic [21], [81]–[87] - uses input parameters such as AC 

impedance and voltage recovery measurement, to estimate the battery 

SOC through fuzzy logic. 

Online 

Energy Loss 

[42], [88] 

The internal resistor depends on the heat generated from the battery, 

when there is no other side reactions (i.e. under high current 

condition). This generated energy can be calculated using the 

calculated difference between charge and discharge energy. 

Online 

 

2.3.2 SOH estimation 

The state of health is commonly used to report an indicator of the health condition of the battery. 

It does not relate to one physical quantity and there is no single rule in industry on how this should 

be specified. It is however set on an arbitrary set of rules based on what the battery designers 

deem to be suitable. This may include combinations of values such as the ratio of the battery 

capacity to the new battery nominal capacity or the ratio of the aged battery internal resistance to 

the new battery resistance. Within industry this calculation tends to be kept confidential. There 

are a number of parameters and techniques used to help estimate the SOH of a battery and these 

are summarised in Figure 2-6  with examples of these methods summarised in Table 2-3. These 

are similar to those used within the SOC calculation. SOC, OCV, and internal resistance of the 

battery all appear to be key parameters of SOH estimation [89]–[91]. The health condition of the 

battery depends on a number of factors including but not limited to; recharging time, SOC, 

internal impedance, voltage drop in discharge, temperature and output energy under DOD [90], 

[92]. 
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Figure 2-6 : Different methods of battery SOH monitoring  

 

Table 2-3 : example summary of SOH determination techniques 

Technique Summary On/offline 

Fuzzy logic 

[84], [93]–

[95] 

The fuzzy logic system is used to model the relationship 

between the maximum capacity and the internal resistance to 

estimate the SOH. In this method a combination of coulomb 

counting and OCV have been used. The battery current and 

voltage were used as input parameters to the fuzzy logic system 

to measure the internal resistance and maximum capacity of the 

battery. 

Online  

Kalman filter 

[91], [96]–

[98] 

The Kalman filter has been combined with coulomb counting to 

measure the internal resistance based on a battery model and 

battery capacity to estimate SOH based. 

Online  

Model-based 
estimation 
[99]–[102] 

Based on the battery type an equivalent circuit model is 

proposed and used. SOH can be estimated from the 

measurement of the battery circuit model components with the 

battery terminal voltage variation.  

Online  

Coulomb 
counting 

[103]–[106]  

The maximum capacity of the battery is calculated each time 

the battery is discharged to its minimum voltage level (cut-off 
Online  
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voltage). The state of health is predicted from the ratio of the 

measured capacity to the maximum capacity of the battery at 

the beginning of life. 

Internal 
resistance 

[104], [105] 

As the SOH of the battery decreases the internal impedance of 

the battery increases. This uses the OCV of the battery to 

measure the internal impedance. The SOH is predicted from the 

measured internal resistance and initial charge state of the 

battery.  

Online  

Remaining 
useful life 

(RUL) 
prediction 

[107]–[112] 

The terminal voltage and current of the battery are measured 

and used with parameter estimation methods such as a nonlinear 

least square method to produce a battery equivalent circuit 

model parameters to predict the SOH. The estimated SOH and 

other properties of the battery as a function of time and/or 

number of cycles are used to predict the end of life of the 

battery. 

Mostly 

Offline 

Neural 
networks 

algorithms 
[89], [90] 

The battery voltage, output energy and temperature are used as 

inputs to the neural network system to predict the SOH.  Online  

Energy and 
power based 
estimation 

As the battery degraded, its impedance and capacity increased 

and reduced respectively. The battery impedance and capacity 

is then used to measure the power and energy based SOH of the 

battery. The impedance and capacity of the battery can be 

estimated using the methods mentioned in the following 

sections.  

Online 

 

2.3.3 SOP, SOF and SOL estimation 

These parameters are more recent in definition and a summary is shown in Figure 2-7 

and described in Table 2-4. The battery SOP in normally defined as an amount of power 

that is available to the user. The state of power of the battery suffers from the issues of 

temperature variation, battery SOC, battery voltage limits (minimum voltage limit given 

by the manufacturer), sensitivity to the noise, and aging of the battery. The SOP of the 

battery has been reported to be estimated using the two methods of model based and the 

book keeping methods. The state of function of the battery is commonly used to monitor 

whether the available power of the battery can exceed the minimum threshold value 

required for the battery system application to accomplish the process. Reference [23] 
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represented the SOF estimation as a comparison of the available battery power peak 

(SOP) to the minimum required power. The SOF estimation depends on the open circuit 

voltage, SOC and the impedance voltage drop of the battery [113]. The State of life (SOL) 

or Remaining Useful Life (RUL) is described in literature as the remaining time before 

the battery must be replaced or as a function of the number of remaining charge/discharge 

cycles. Recent works on such RUL prediction approaches include [96], [107]–[112], 

[114], [115]. The main task is to estimate a SOH and then use this in a model which looks 

at RUL possibly based on pre-determined data obtained through battery aging and a 

predicted load profile. 

 

Figure 2-7: Different methods of battery SOP monitoring  
 

 

Table 2-4: example summary of SOP determination techniques 

Technique Summary On/offline 

Model-based 

estimation 

[113], [116]–

[123] 

One method used to estimate the battery parameter is a 

kalman filter approach which adapts from the equivalent 

model based of the battery. The state of power of the battery 

is then calculated from the obtained parameter. 

Online 

Book 

keeping [21], 

[48]–[50], 

[52], [124] 

This method uses the discharge current of the battery and 

integrates it over time. It uses the current data and other 

properties of battery (e.g. cycle, SOC, capacity loss, and etc) 

to estimate the SOP of the battery.  

Online 
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2.3.4 Remaining Available Capacity estimation 

Battery capacity is used as a factor to estimate the SOH, SOC, and SOP of the battery. This is 

because the battery capacity rate changes depending on battery aging and different operational 

conditions. There are a number of online and offline methods of estimating the remaining 

available capacity of a battery. These are summarised in Figure 2-8 and summarised in Table 2-5. 

 

Figure 2-8 : Different methods of available battery capacity estimation 

 

Table 2-5: Summary of remaining available capacity determination techniques 
Technique Summary 

Online 

OCV [36]–[40], 
[125], [126] 

The OCV of the battery changes due to the variation of the SOC over the 

charge/discharge cycle. The capacity can be calculated from the initial SOC 

value and the integrated battery current over the charge/ discharge time. 

Adaptive 
algorithm [29], 

[30], [60], [127]–
[129] 

The mentioned adaptive algorithm in section 1.3.1 and 1.3.2 such as kalman 

filter and coulomb counting methods can be used to calculate the battery 

capacity from the battery dynamic model structure.  

Equivalent circuit 
model based [21], 

[41], [53] 

An equivalent circuit model is used to calculate the battery OCV. The OCV 

value is applied to lookup table parameter to estimate the battery capacity 

and its SOC. 

Offline  

Static cycle based 
This measures the amount of charge that battery loses after a full charge and 

discharge cycle. 

Differential 
voltage analysis 

(DVA) and 
Incremental 

capacity analysis 
(ICA)[130]–[134] 

A low constant current is used to discharge and charge the battery to 

calculate the battery SOC. Then it calculates the gradual changes of the 

battery cell behaviour using the incremental capacity (IC) or differential 

voltage (DV) curves as a function of temperature variation and battery SOC 

to once the OCV reaches to its final equilibrium value. 

Battery capacity estimation approaches 

Offline methods Online methods 

Differential 
voltage 
analysis 
(DVA) 

Incremental 
capacity 

analysis (ICA) 

Electrical 
equivalent 

circuit model 
based 

Adaptive 
algorithm 

OCV based 
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based 



44 
 

2.3.5 Impedance estimation 

As mentioned in section 1.3.1 and 1.3.2, the impedance of the battery can be considered as a 

parameter for use in the estimation of battery SOH, SOC, SOP, SOL, and SOF. The impedance 

of the battery changes based on different factors of SOC level, capacity fade, self-discharge rate 

differences, varying operation conditions, and temperature difference across the cells [135]–

[137]. Various methods have been published to measure the impedance of the batteries. These 

methods are categorised into electrochemical modelling, electrical equivalent circuit and EIS 

methods which are applied online and/or offline. There are a number of methods of estimating 

the battery impedance. These are shown in Figure 2-9 and examples are summarised in Table 2-6. 

The electrochemical modelling uses numerical analysis of the underlying physical and chemical 

equations to describe the battery behaviour. These are mostly described through sets of partial 

differential equations. The equations can be solved in a number of ways including least square, 

particle filters, and gradient-based methods. The results of this can be used to look at battery 

dynamics directly or to estimate battery impedance for a given set of conditions. These methods 

can be complex and don’t easily relate to physical quantities which are more easily understood.  

Electrical equivalent circuit models (ECM) are commonly used in online battery state 

estimation methods. There are a large number of equivalent circuit models as discussed later in 

this chapter and they can be set up to represent discrete parameters eg corrosion. This method 

takes measured data (eg voltage and current) and then uses mathematical techniques to turn this 

data into an equivalent circuit.  

Figure 2-9 : Different methods of impedance determination  
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The Electrochemical impedance spectroscopy (EIS) method can be used in two ways, it can be 

used to generate data for equivalent circuit models or it can be used to look at processes and their 

time constants. EIS is usually undertaken offline, but more recent research has shown that this 

could be a valid on-line technique [53], [56], [138]–[140]. The offline EIS methods are performed 

when the battery system is disconnected from the system, and usually use expensive laboratory 

EIS equipment to measure the battery state and impedance. Various methods to replicate EIS 

online are presented in section 2.5. 

Table 2-6 : example summary of battery impedance determination techniques 
Technique Summary On/offline 

Linear/nonlin
ear least 
square 
[141]–[145] 

This method is used to fit the battery EC impedance parameters 
to the impedance curve of the battery. The parameters are 
predicted based on reducing the error between the observed data 
and the fitted data. The least square method can be applied in 
nonlinear models as well as linear one. This method is used in 
this work to predict the battery parameter in Chapter 6. 

Offline 

Particle 
filters [146]–
[148] 

 This method predicts the impedance based on representing 
various sampled values from the unknown state space with a set 
of associated weights.  

Offline 

Particle 
swarm 
optimisation 
[149]–[151] 

This method is similar to particle filter but have simpler 
programming and requires fewer adjusting points. 

Online 

Impedance 
spectroscopy 
[152]–[156] 

A small AC signal is used to excite the battery and the 
impedance is measured over the frequency range.  

Mostly 
Offline 

 

EIS provides a mechanism for highly accurate impedance determination and is widely used. 

The next section contains a summary of published EIS results in conjunction with energy storage 

impedance determination. 

2.4 Electrochemical impedance spectroscopy 

Electrochemical impedance spectroscopy (EIS) is a method of data measurement which looks 

at the electrical characteristics of a material or electrical component such as a battery or solar 

cells. It is mainly used because of its high level of accuracy and subsequent analysis allows 

indication of different chemical processes. An online EIS technique could offer a possible method 

of determining remaining charge in a battery while enabling the degradation process to be 

characterised and an indication of state of health of the system to be output to the control system 
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for power management or to the owner/operator of the system. The high accuracy of the offline 

EIS technique allows it to be used as a benchmark to validate other techniques. 

Electrochemical impedance spectroscopy measurements have been around since 1999 [157] 

and can be undertaken through a couple of different methods; these include analogue analysis and 

processing of the systems in the time and frequency domain or digital computation using the EIS 

equipment [158]. The main basis for the method is to measure the frequency response of a test 

piece to understand how its impedance changes over the frequency domain. Digital 

instrumentation has a better signal to noise rejection and easier data post processing than the 

analogue. The digital equipment used within this thesis, comprises an electrochemical interface 

EI (the Solartron 1287) with frequency response analyser (FRA), and impedance analyser (the 

Solartron 1260). 

An EIS test is usually performed by applying a small AC excitation signal (AC potential or 

current signal) into the electrochemical cell. Then the impedance value of the system, is the ratio 

of the applied signal and response, and is independent of amplitude and phase of the excitation 

signal. The EIS technique can be a time-consuming measurement method depending on the 

frequency ranges and the system should ideally remain in the same state during the measurement 

time interval. A 4-wire measurement method is used as shown in Figure 2-10 to ensure the 

impedance of the connections, which can be of comparable magnitude, to the sample, are not 

included in the overall measurement. In this measurement; the current passage across the battery 

electrodes including a working electrode (WE) and a counter electrode (CE) causes the potential 

difference between two reference electrodes (RE1 and RE2) [159]. Reference electrodes provide 

the measurement of voltage between the terminals.  

Figure 2-10 : EIS Battery Terminal Connections [160] 
 

EIS measurements can determine the resistive, inductive, and capacitive behaviour of 

electrodes and electrolyte material under different conditions. The EIS data can be manipulated 

through equivalent circuits to represent theoretical system reactions in which the extracted results 

are correlated to a complex variable (e.g. corrosion, dielectric properties, and material 

conductance). An EIS characterisation procedure involves: (i) analysis of experimentally obtained 

impedance data of the materials by applying analytical methods, (ii) prediction of equivalent 
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circuit model, and (iii) data fitting method for validating experimental data. It can be difficult to 

analyse a system behaviour based on an equivalent circuit of the measured impedance using 

ordinary circuit elements because they present ideal electrical response[158]. Traditional electric 

circuit elements cannot always be used to describe imperfect chemical process such as corrosion 

and diffusion of the electric sources. Therefore it is usually necessary to use a complex 

combination of elements to demonstrate the imperfect behaviour. 

In an EIS process the quantified response of the system to an excitation signal present in the 

time-domain, can be converted to the frequency domain using Fourier transforms. 

 

*(./) = 1
√345 *(6)789:;<

8< =6		                     Equation 2-1 

The impedance value is equal to the ratio of the output response and the input response:  

>(./) = ?(9:)
@(9:)                    

Equation 2-2 

Where E and I are potential and current measured in the frequency domain, jω is the complex 

frequency and Z is an impedance function. If the input potential is expressed as A =	A� sin/6, 
then the output current is a function of time with different amplitude and phase shift ; E =
	E� sin(/6 + G),  

The impedance can be written as: 

> = ?
@ = >�789H = >�(cos/6 + . sin/6) = 	>KL + .>@M	                   Equation 2-3 

The real component is often represented using Z’, while the imaginary term by Z” . The results 

of the EIS measurements can be expressed in a number of different ways. Typical methods include 

as a 3-D plot, Nyquist, and bode plot. In the Nyquist plot, the real and imaginary components of 

impedance are plotted over the range of frequencies. Plotting the imaginary and real component 

of impedance in the complex plane diagram commonly produces semicircle based diagrams. 

Some common impedance and their Nyquist equivalent plots are shown in Appendix A as these 

are useful to understand the Nyquist plots obtained later in this thesis. Appendix A includes 

representation of common components such as constant phase element (CPE), and Warburg 

impedance, which represent impurity in capacitance behaviour and frequency distribution that are 

presented in the impedance data [143], and adsorption and diffusion effect.  

Once impedance has been calculated as a function of frequency this can then be represented 

using equivalent circuit models. Equivalent circuits are a useful pictorial representation of a real 

life system. They are made up of electrical components resistors, capacitors, and inductors and 

are widely used to represent the characterisation of electrochemical cell. Connection of electrical 
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elements can be estimated by considering the arc of impedance and the shape of the curve in a 

complex plot.  

Some common shapes of plots for different elements such as batteries and PV panels from 

literature are shown in Figure 2-11. These shapes have been represented as a variety of equivalent 

circuit models as shown in Figure 2-12 from published literature. Within Figure 2-12 the CPE 

constant phase element and Warburg impedance are presented as a “Q” element in some of this 

literature. A summary of the equivalent circuits used by different researchers for different 

batteries and other systems are summarised in Figure 2-13. Where the equivalent circuit model is 

not specified in the literature this is shown as “no proposed EC model”. Many of the researchers 

have published a Nyquist plot shape similar to curve 3 from Figure 2-11 for different types of 

batteries and supercapacitors. However, they have used different equivalent circuit model 

representations for this curve. For a solar cell, curve 2 from Figure 2-11 is described by most of 

the researchers in conjunction with equivalent circuit of p and q from Figure 2-13.  
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Figure 2-11: Common Nyquist shapes found in literature 
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Figure 2-12 : Common equivalent circuits in literature, Note: the inductor component is ignored by some of the 
authors, especially when they are more interested in the low frequency behaviour 
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Figure 2-13: Summary of Equivalent circuit and Nyquist plots used by authors for different batteries, supercapacitors, and Solar cell 
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2.4.1 Lithium-ion Batteries 

Work published in references [35], [37], [60], [65], [83], [84], [153], [161]–[208] is based on lithium-

ion EIS characterisation. The excitation conditions are described in Table 2-7 where explicitly reported. 

Table 2-7: Lithium-ion EIS testing Conditions used by various Authors 

References Frequency Range Excitation 

Amplitude 

Research investigation of 

[161] 3mHz - 3 MHz 10mV Various SOC  

[162] 25mHz - 100kHz 5mV Various SOC   

[163] 10mHz - 100kHz 5mV Variant Temperature 30, 60, 45, 20° 

[84] 0.1 Hz - 65 kHz 3A 

 

Different temperatures (0°C, 

25°C/77°F and 45°C), 

[164] 5mHz - 100kHz 10mV 40%, 20%, 80% of SOC 

[165] 0.01 Hz - 10 kHz 10 mV, 20 mV different temperatures (25˚ C, 35 ˚C, 

and 45 ˚C), SOCs 0% and 100%, 

[166] 1mHz - 10 kHz 5mV Different discharge state 

[167] 0.01 Hz - 100 kHz 5mV Different alloy 

[168] 10mHz - 5kHz 0.1A to 1A Temperature and SOC 

[170] 10mHz - 5 kHz 10mA Temperature, SOC 

[171] 100mHz - 1 kHz 3mV Temperature 

[172] 0.1 Hz - 100 kHz 5mV Temperature 

[175] 0.1Hz - 100 kHz 5 mV Temperature 

[178] 3mHz and 10 kHz 10mV Degradation  

[83]  0.1 Hz - 65 kHz  

0.1 Hz - 10 kHz 

3A Various SOC, and Temperature 

[193] 0.1 Hz - 1638.4 Hz 62.5mA Various SOC 

[194] 0.1 Hz - 2 kHz 20mV DOD 

 

A summary of the change reported in Nyquist plot shape with SOC, temperature, cycling and starting 

charge are sketched from this published research is shown in Figure 2-14 and Figure 2-15. These are 

general summaries made by condensing the information from the references below. The frequency 

ranges represented by authors were chosen based on the test conditions and there was no specific 

correlation of frequency range with battery chemistry. 
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References [37], [65], [83], [84], [161]–[164], [166], [178]–[181], [185], [190], [192], [202] studied 

the impedance behaviour at different state of charge. The effect of the temperature on the impedance 

spectra has been investigated by [35], [37], [161], [163], [165], [170]–[172], [175], [176], [178], [190], 

[199], [204], [208]. Authors [167], [173], [174], [177], [182], [185]–[189], [195]–[197], [201], [202], 

[205], [206] characterised the lithium-ion batteries at different cycles of degradation. Variation of the 

impedance data at different open circuit voltages is reported by [166], [183], [192], [200]. References 

[164], [165], studied the electrochemical characteristic of different electrode/electrolyte alloys used in 

lithium-ion.  

In general it is to be expected from literature that the impedance increases with the number of cycles, 

a reduction in temperature, a reduction in SOC and a decreasing charge. When the battery is degraded 

the conductivity of the electrolyte decreases because of electrolyte decomposition with battery aging. 

Therefore battery impedance increases [167]. This also leads to increase of battery internal impedance. 

The battery chemical process is affected with variation in temperature. Therefore when the battery is 

operating at low temperature the chemical reactions decrease due to the low kinetic energy of ions (i.e. 

ions conduct slower in electrolyte), which leads to increase of battery impedance. In SOC 

characterisation, when the battery SOC decreases, battery voltage decreases. A decrease in voltage 

causes the charge transfer to be slower which manifests itself as an increased impedance. At low charge 

rate the capacity of the battery decreases due to limitation in active ions transformation due to current 

drop, which is explained by [209]. Reduction in charge rate increases battery impedance. This result is 

potentially helpful because as the SOC reduces the impedance of the battery will look higher and the 

battery may assume a lower share of the power depending on battery configuration. However the 

accuracy with which the power sharing could occur will be reduced because of the uncertainty as to 

what is causing the changes. 
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Figure 2-14 : Change in shape with SOC variation 
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Figure 2-15: Reported change in shape with temperature, cycle and charge 
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Table 2-8: Lead-Acid Battery EIS Test Condition 

Reference Frequency Excitation Test Condition 

[210] 10mHz - 10 kHz 10mV SOC 

[211] 1mHz - 100 kHz 10mV Different SOC (100–10%) and potential. 

[212] 10 Hz - 10MHz 5mV Different Alloys 

[213] 0.1 Hz - 10kHz 0.1 A Discharge  

[214] 0.1 Hz - 10kHz 10mV SOC 

[215] 0.1 Hz - 1kHz 10mV SOH  

[217] 0.65 Hz - 65 kHz 5mV Different charge and discharge Cycle 

[218] 0.1 Hz - 50 kHz 5mV SOC 

[219] 0.1 Hz - 100kHz 10mV Different Potential 

[220] 10mHz - 10kHz 60mA Fully charge 5mA (bias), fully discharge 

 

A summary of the change in Nyquist plot with SOC, OCV, and bias voltage (Figure 2-16), 

temperature, cycling and discharge duration are sketched below (Figure 2-17). Some authors report 

changes to curve shape and subsequent change in equivalent circuit leading on from this [210], [211], 

[214], [217], [220]. 

 A summary is that the impedance increases with the number of cycles, duration of discharge rate, a 

reduction in OCV, a reduction in SOC and increasing discharge duration. Increasing the voltage of the 

battery leads to forcing more ions and charge to transfer. This causes an increases in internal temperature 

and an increase in the chemical processes (which may damage the battery cell [209]), therefore battery 

impedance decreases. This is in contrast with the charge rate effect on the impedance of the battery 

which is mentioned in section 2.4.1. as the discharge rate increase the impedance increases. 
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Figure 2-16: Change in shape with SOC variation, OCV, and bias voltage 
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Figure 2-17: Change in shape with cycle and discharge duration 

 

 

 

Change in Shape with number of charge cycles 

Z’  

-Z”  

  
  

[220] 

Increasing cycle 

Z’  

-Z”  

[220] 

Increasing cycles 

  

Change in Shape with discharge duration 

Duration increases 

Z’  

  

[214], [217], [219]  

Change in Shape with number of discharge cycles 



59 
 

2.4.3 Nickel Metal Batteries: 

Nickel metal/hybrid batteries are rechargeable batteries with nickel oxide-hydroxide as the cathode 

electrode and metal/iron/cadmium as the negative electrode. However, they are increasingly being 

replaced with other rechargeable battery types because of their low energy rate, poor charge life cycle, 

and high cost. They are mentioned here for completeness. Authors [152], [221]–[232] performed EIS 

tests on nickel batteries under condition of different SOC, temperature, discharge, open circuit voltage, 

and life cycle. Table 2-9 displays a summary of the applied EIS testing conditions undertaken by these 

authors. 

Table 2-9: Nickel Meta/Cadmium Battery EIS Test Condition 

Reference 

 

Frequency Range Excitation 

Amplitude 

Test Conditions 

[152] 60mHz - 600 Hz 100 mA Various SOC  

[221] 0.01 Hz - 100 KHz  10 mV Additional Alloy 

[222] 1mHz - 50 kHz ±5 mV Different temperatures (13, 23, 33 °C) 

[223] 10mHz - 100kHz 25 mV 25 °C and 70 °C 

[224] 1mHz - 10kHz 10mV Cycling 

[225] 1mHz - 1 kHz 

0.5 Hz - 1 kHz 

10mV  Depth of discharge (DOD) 

[226] 1 Hz - 100 kHz 10mV Different SOC 

[227] 5mHz - 10M Hz 5mV OCV  

[228] 10mHz - 10 kHz 10mV Different Temperature 

[230] 10mHz - 5 kHz 40mA Different SOC, Life Cycle 

[231] 0.01 Hz - 3 kHz 3mV Different SOC 

[232] 50 µHz - 10 KHz 5mV Different SOC 

References [152], [222], [223], [224], [225], [228], [231] investigate the variation of the impedance 

curve of the nickel batteries under the conditions of temperature variation, different SOC level, depth 

of charge and charge/discharge cycle. A summary of the change in Nyquist plot with SOC, OCV, and 

bias voltage (Figure 2-18), temperature, cycling and discharge duration are sketched below (Figure 

2-19).  

A summary is that the impedance increases with the number of cycles, a reduction in temperature, a 

reduction in SOC, a decreasing charge and depth of charge rise. 
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Figure 2-18: Change in shape with SOC and OCV variation 
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Figure 2-19 : Change in shape with temperature, cycle and charge variation 
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Table 2-10:Super-capacitor EIS testing condition used by various Authors 

Reference Rated 

Capacitance 

Frequency Range Excitation 

Amplitude 

Test Condition 

[233] 52 F 25mHz - 60kHz 10mV Different SOC 

[234] 1400 F 10µHz - 6 kHz 10mV Temperature and different 

Voltage 

[235] 1400 F 160mHz - 70Hz  Different SOC, 

Temperature 

[236] 2600 F 10mHz - 1 kHz  10mV Different Voltage and 

different alloy 

[237] 2600 F 10mHz - 1kHz 10mV Different SOC 

 

A summary of the change in Nyquist plot with SOC and temperature (are sketched in Figure 2-20). 

A summary is that the impedance increases with a reduction in temperature, and a reduction in SOC. 

This result is good because as the SOC reduces the impedance will look higher and the supercapacitor 

may assume a lower share of the power depending configuration. However the accuracy with which the 

power sharing occurs will be reduced because of the uncertainty as to what is causing the changes. 
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Figure 2-20 :Change in shape with SOC and temperature variation 
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Table 2-11:Solar Cells EIS testing condition used by various Authors 

Reference  Ac amplitude  Frequency range  DC bias 

[238] 10mV 1 Hz - 60 kHz 0.1- 5 V 

[239] 10mV 1 Hz - 5mHz 0 

[240] 10mV 10mHz - 10 kHz 0 

[241] 10mV 10mHz - 1 MHz 0 

[242] 10mV 0.1 Hz - 100 kHz. 0 

[244] 10mV 20 Hz - 10 kHz 0 

[245] 20mV 0.01 Hz  - 400 kHz 0 

[246] 10mV 1MHz - 5MHz 0 

[248] 10mV 100mHz - 100kHz 0 - 0.8 V 

[243] 10mV 5 Hz - 105 Hz 0-1V 

[249] 10mV 0.1 Hz - 1 MHz 0.4 - 0.75V 

[250] 10mV 0.05 Hz - 100 KHz 0.925 - 1.225 V 

[251] 10mV 100 Hz - 10 kHz 0.1 - 0.9V 

[252] 10mV 0.1 Hz -100 kHz. 0 

[253] 10mV 10mHz - 100 kHz 0 

 

A summary of the change in Nyquist plot with voltage and temperature (Figure 2-21), and 

degradation are sketched below (Figure 2-22). A summary is that the impedance increases with the 

number of cycles and a reduction in voltage.  
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Figure 2-21 : Change in shape with voltage and temperature variation 
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Figure 2-22: Change in shape with degradation and illumination 
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to represent this shape. The EIS shape associated with batteries are subject to change in temperature 

and model. 

6. The EIS shape associated with a particular solar panel can change as it undergoes a change in 

temperature, charge or degradation. The upshot of this is that the model around that solar panel is 

then also subject to change. 

 

2.5 On-line EIS techniques 

Some attempts to replicate an EIS method on-line have been undertaken [53], [56], [142], [215], 

[255]–[258]. Much of this work is recent in nature (within the last two years) and has been developed 

independently and in parallel with the work undertaken within this thesis. Some of these techniques are 

not specifically related to batteries but may be adapted. The offline techniques have mostly been used 

to generate the results described in section 2.4. This section looks at the body of work looking to 

replicate the EIS functionality on-line and shows where the work in this thesis fits and also where future 

work will in all probability take place. As the on-line techniques are varied in nature, some means of 

categorizing them has been attempted as shown in Figure 2-23. 

The techniques are split first in offline and on-line. The on-line techniques are then split into those 

that require a separate excitation circuit and those that use existing hardware as a source of the 

excitation. 

The boxes with red text highlight the areas where work has been undertaken within the thesis and has 

not been previously reported. The boxes with green text indicates where previously published work 

exists and has been built upon. 
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Figure 2-23 :Different battery EIS methods  
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2.5.1 Separate Excitation 
 

Figure 2-24 shows the main features of an online EIS system with separate excitation hardware circuitry 

designed to run in parallel with the existing hardware. There are known examples of commercially 

available systems designed to be connected to the battery under operation but these can be expensive. 

 

Figure 2-24: Separate excitation circuit topology for online impedance monitoring  
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signal is injected each time with a different frequency. Sampling equipment was used to collect and 

analysed the battery voltage response and current excitation signals to calculate the impedance of the 

battery through Labview. The key challenge of this published method reported by the authors is that the 

impedance values depend on the accuracy of the sampling equipment and the designed circuit cannot 

be undertaken under high frequency ranges. 

[261] used a power amplifier and separate excitation circuit. The current excitation signal was 

generated using the power amplifier as the battery perturbation unit. Similar to [260] the impedance of 

the battery was calculated by sampling the voltage and current data through the signal processing but 

differs in processing application unit.  

There has been mention of sinusoidal charging of batteries using sinusoidal ripple current (SRC) as 

opposed to CV and CC (constant voltage and constant current) as a means improving charging 

performance [262]. This is done by adding a separate AC excitation signal to the battery system. Recent 

work [263] has looked at the possibility of using this to undertake EIS measurements. The methodology 

lacks detail in the published literature. Although, an EIS diagram is produced, it is not clear whether 

the method behind its production is online. This is because the EIS plot is shown for three OCV 

conditions. However, there is no perceptible barrier as to why this shouldn’t be made online.  

[264] also appeared to use a separate excitation circuit. In this work, an amplifier is used to generate 

and inject the current excitation signal and the impedance is calculated using a digital signal processing 

method. The digitised voltage and current response of the battery are used to calculate the impedance. 

Impedance data from a laboratory EIS unit is used as pre-trained data for the impedance calculation 

from the measured voltage and current signals. The impedance values vary depending on the correction 

results. The author claims that the implementation of the published measurement algorithm is a key 

challenge and needs to be improved. 

Reference [265] and [266] employed a pseudo-random binary sequence (PRBS) current pulse 

perturbation to measure the impedance of the battery online. This method used a band limited pseudo-

random noise signal to excite the battery current and then measure the voltage response of the battery. 

This noise signal can be superimposed either as an addition to the control signal or in isolation to excite 

the battery. The main disadvantage of this method is the small signal to noise ratio as a result of the 

smaller amplitude of the measured battery voltage frequency response compared to the amplitude of the 

noise signal. This can be improved by using a very large input which results in nonlinear behavior of 

the system. Therefore this method is not commonly used with literatures for impedance estimation.  
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Although a separate excitation circuit appears to work there are extra costs involved with the 

implementation. Therefore this thesis chose to focus on using existing hardware within the circuit to 

generate an EIS excitation signal.  

2.5.2 Existing Hardware – Battery balancing 

Battery balancing can be undertaken in a variety of ways. These are typically classified as passive 

(using resistors) to equalise charge and active (using switches in conjunction with energy storage 

components) 

 

Figure 2-25: converter with battery balancing topology for online impedance monitoring  
 

Koch et al [138] introduces three methods of on-line impedance measurement. One of these uses 

using battery balancing as a means of producing an excitation signal, to estimate the battery impedance 

over the specific frequency range. In battery balancing, a balancing resistor with a switch was used to 

excite the battery. This method is sensitive to the balancing current, which results in SOC changes after 

each measurement. This is because the balancing circuit can only discharge the battery.  

 

References [142] and [267] are work by the same authors who used an inductive based battery 

balancing system for online EIS measurement. Two battery cells were connected to a ladder inductor 

battery balancing circuit using a switched-inductor bidirectional buck-boost converter as a building 

block of a ladder converter. The perturbation signal was generated by a digital signal synchronised in 

an FPGA and injected by the controller to the switches in the ladder circuit as shown in Figure 2-26. 

When switch M1 is on, battery 1 is connected in parallel with the converter and the converter operates 

for time DTs . The converter is connected in parallel with battery 2 to shuffle the energy when switch 
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M2 is on for a time (1-D)Ts, where D is duty cycle that the balancing switches are operates with. The 

impedance of the battery was calculated from the measured voltage and current signals passed through 

the digital processing chain. The authors report a good performance. 

Other forms of battery balancing have not yet been considered for on-line EIS measurement. However 

this thesis considers the use of a capacitive based balancing method for looking at on-line EIS 

measurements.  

 

Figure 2-26: Ladder circuit balancing operation  
 

2.5.3 Existing Hardware – AC/DC Power Electronics 

[53] and [138] are published works by the same authors, who use a half bridge AC/DC converter to 

inject the EIS signals to a battery. This process is uni-directional and is undertaken on battery charging 
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only. The battery charger is connected to a number of battery cells and excites the battery cells by 

injecting a carrier frequency excitation signal to the converter switches. The authors reported that the 

synchronisation of the battery current during the measure is a disadvantage of the method (ie the battery 

cannot simultaneously charge and discharge) as the current needs to be measured.  

Koch et al [138] also described a half bridge converter circuit (similar to [53]).  

 

 

 

Figure 2-27: Charger (AC-DC converter) topology for online impedance monitoring 
 

Reference [255] measured the impedance of the battery by using a motor inverter to generate the low-

frequency excitation required to look at battery impedance as shown in Figure 2-28. The authors used 

the motor inverter to generate and excite the battery with the generated current perturbation signal. They 

have used a shunt resistor to measure the battery current from the voltage response of the battery and 

calculated the impedance from the captured data. The key disadvantage of the methods is that the 

excitation current is at the fundamental frequency of the converter. So for example, the frequency cannot 

be swept across a range of values under operation of a motor and this will affect the driving or it requires 

a separate excitation circuit. The tradeoff between the average and maximum amplitude of the current 

signal which results in the signal to noise ratio is another reported challenge of this published method.  
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Figure 2-28: motor inverter topology for online impedance monitoring  
 

2.5.4 Existing Hardware – DC/DC Power Electronics 

The technique uses energy storage connected to a power electronics system (DC-DC converter), 

which form an interface between an electricity source such as a battery and the grid system to understand 

if the power electronics can be used to implement an EIS equivalent analysis. This research focuses on 

the methods and impact of measuring battery impedance through the power electronics. The method of 

introducing a small excitation signal through the DC/DC power electronics is primarily a function of 

different forms of control. These methods can be split into diagnostic mode and normal operational 

mode.  

 

Diagnostic mode 

 

[268] used dc/dc converter hardware to control a fuel cell under normal operating conditions and also 

to provide an AC excitation signal under a diagnostic setting when the fuel cell was not operational as 

shown in Figure 2-29 . The method was also applied to different fuel cells and the results appeared to 

show good agreement with the offline measured impedance values. However, if this method were to be 

applied to a battery it would need to be taken off-line to undertake the diagnostics.    
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Figure 2-29: Diagnostic mode of online EIS using a DC/DC converter 
 

 

Operational mode – variable voltage set point 

 

Nguyen et al [215] uses a bidirectional converter circuit with a control system to generate small 

excitation signal for impedance measurement and SOH estimation with no additional excitation 

hardware. The excitation signal is a sinusoidal voltage signal added by the voltage controller loop to 

excite the battery over the frequency range. This method was introduced for the SOH prediction of the 

battery, the impedance is measured only after the battery is fully charged.  

 

Operational mode – variable duty cycle 

 

Similar to [268], references [256], [258] introduced a method of low-frequency harmonics injection 

to estimate the impedance and SOC of the batteries in operational mode. This is shown in Figure 2-30. 

In this method, the battery impedance is calculated from the measured battery voltage response and 

excited current signal. The current is excited with excitation signal is injected to the converter by 

varying the duty cycle of the switching PWM signal. This method is explained in more details in chapter 

3 (section 2.2).   
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Figure 2-30: Operational mode of online EIS using a DC/DC converter with variable duty cycle 
 

 

Reference [257] uses the same method, but uses  multi-sine signals to measure the impedance of the 

battery with multiple harmonics at the same time rather than at a single frequency point each time. For 

example, the authors added three sinusoidal perturbation signals with different frequencies at once to 

calculate the impedance. [269] used the same hardware but used the control system to add a change to 

the output voltage set point to create a perturbation of multiple frequencies to capture more data over a 

shorter period of time. The proposed method suffers from the lack accuracy as the frequency order 

increases. Generated impedance values showed similar variation as the measured impedance value with 

the electrochemical equipment.  

 

2.6 EIS equivalent circuit models 

2.6.1 Different models at 100% SOC 
 

As indicated in Figure 2-12 there are many published equivalent circuits with respect to the 

variation of the electrochemical reactions of the power sources under different conditions of 

temperature, state of charge, and degradation. Some authors suggested single equivalent circuit 

model for all different conditions they researched. While other reported literature suggested 

that the equivalent circuit model should change with operating conditions. Within this thesis it 

is required to use an equivalent circuit to represent the electrochemical devices in simulation 
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models to understand how the electrical circuits are behaving. The curve shapes from the 

experimental work conducted later in this thesis match those obtained by authors [161], [165], 

[166], [171], [172], [242] who use popular models with high citation indexes. Future work 

could consider alternatives to these. The models in Figure 2-12 were tested for suitability with 

the Nano-phosphate lithium-ion battery type used in this thesis. 

Figure 2-31 shows an example of the change of equivalent circuit model of a battery for 

different state of charge and different aging cycles. These models are proposed as possible 

models for use in this work based on the reported literature and a comparison of the EIS 

measured data for different battery SOC.  

Figure 2-31: Ideal Equivalent circuit models of a lithium-ion battery at different SOC and degradation equivalent circuit. 
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Figure 2-32: Equivalent circuit model solar panel. 

The equivalent circuit model of a solar panel is shown in Figure 2-32. In this research data 

fitting Zview software is used to find the best parameter fit of the equivalent circuit to the 

measured impedance curve for the frequency range of 1Hz to 2 kHz.  

 
Figure 2-33 : proposed equivalent circuits a) comparison of Nyquist plot of EC (equivalent circuit models a, b, c, d, e, f, e, 
g, j) b) comparison of Nyquist plot of EC (equivalent circuit models k, l, m, q, r, s, u, v) for 100% of SOC 

 

(a) 

(b) 
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The graphs show that most of the equivalent circuit models proposed by the literature from Figure 

2-12 give a reasonable match to the Nyquist plot of the original measured graphs, which is 

experimentally derived at 100% SOC. However, in this work, the circuit s is used because it is more 

practical for use with Matlab and is used by a large number of authors. The equivalent circuit models 

k, m and v weren’t suitable for this battery impedance curve as they didn’t match the impedance curve. 

2.6.2 Different levels of degradation 

In order to avoid a sudden failure of the battery system and to improve the reliability of the battery, 

it is useful to monitor the impedance as it degrades. The performance of rechargeable batteries 

deteriorates due to the capacity fade[270]. The capacity fading of the battery described by Vetter et al 

[173] can be divided in two principles of calendar storage ageing (over the years) and cycle aging. This 

is presented as the ability of the battery to store and release the charge. The cycle life of the battery cell 

results in capacity decrease due to the number of complete charging and discharging cycle. Over 

discharging or/and over charging and elevated temperature, can accelerate the degradation of the 

battery. This can be assigned to the loss of Li or other active materials and balance between electrodes, 

electrode conductivity, formation of a passive film layer, material decomposition at battery cells, and 

active material dissolution [187], [271], [272]. The SOH of the battery has a reported nonlinear 

relationship with these factors [215]. The impedance of the battery can be used to estimate the SOH of 

the battery [53], [57], [153], [156]. Therefore the aging process of the battery can be monitored by 

periodically measuring the impedance of the battery. 

Different reported methods to investigate the battery life cycle have been published: 

• Stored and held the battery at the same charge level at constant temperature [273], [274], in 

this test the battery life is influenced by the temperature level and the number of cycles that 

the battery is charged.  

• Fully charged and discharged the battery to evaluate the effect of the temperature variation 

on battery lifespan to compare with different battery cells. There are different numbers of 

published battery cycling test reports including those from IEC [165] and IEA [166]. In this 

test procedure the battery cell is continuously charged and discharge till its capacity falls 

below 80% of its nominal capacity. 

• Accelerating degradation method with consideration of overheating the battery[174], [189], 

[273], [277], deeper depth of discharge, and higher charge rate depending on type of 

application[187], [278]. This will accelerate the formation of the surface film on electrodes 

and increase the internal impedance of the battery.  

In this research an A123 Nano-phosphate lithium-ion battery with a capacity of 2.5Ah 3.2V nominal 

voltage was used.  A comparison of the Nyquist spectrum of a lithium-ion phosphate battery for 

different number of charge and discharge cycles is presented in Figure 2-34. To study the effect of the 
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degradation on the battery electrochemical reactions the new battery was charged/discharged a different 

number of charging/discharging cycles. The cycling test of the lithium battery cell was run at high 

charge and discharge rate to accelerate the aging of the battery. The cycling test was run by Petalite 

Company, the number of cycles for degraded and very degraded batteries was not given by the company 

for commercial purposes. The EIS tests at different cycles were carried out in the same conditions of 

full state of charge, constant room temperature, an EIS frequency range of (1Hz-2kHz) using a constant 

discharge current of 1.15A (the same as experiment discharge current represented in chapter 6). The 

Nyquist plot indicates that the series resistor of the battery increased and the impedance shows more 

capacitive behaviour over the frequency range.  

 

 

 

 

Figure 2-34 : EIS of new battery (blue line), degraded battery (yellow line), and very degraded battery over 1000 cycles 
(green). 

 

 

The results of curve fitting the different circuits from Figure 2-12 to the degraded battery is shown 

below. 
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Figure 2-35 : proposed equivalent circuits a) comparison of Nyquist plot of EC (equivalent circuit models a, b, c, d, e, f, e, 
g, j) b) comparison of Nyquist plot of EC (equivalent circuit models k, l, m, q, r, s, u, v) for degraded battery at 100% SOC 

 

 

(a) 

(b) 
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Figure 2-36 : proposed equivalent circuits a) comparison of Nyquist plot of EC (equivalent circuit models a, b, c, d, e, f, e, 
g, j) b) comparison of Nyquist plot of EC (equivalent circuit models k, l, m, q, r, s, u, v) for a very degraded battery at 100% 
SOC 

 

 

Based on experimental results for the Li-ion battery used in this thesis – Model “s” has been chosen 

as an acceptable means of representing the battery at both different state of charge and different 

degradation. Different battery chemistries may require additional investigative work. 
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(b) (b) 
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2.7 Summary 

This chapter described the use of energy storage on the electricity grid systems and its inherent 

limitations and problems. These issues may be better understood and dealt with through advancements 

in battery management systems. Different parameters for understanding the state of the battery have 

been described and compared. The quantity of published literature in reputable journals indicates that 

EIS measurements may be a valuable tool in determining the impedance and the subsequent state of the 

battery. This measurement is mostly under taken off-line but some attempt has been made in recent 

years to reproduce an on-line version.   High costs of commercial products have resulted in some attempt 

at using existing hardware to replicate the functionality.  
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3 Theoretical analysis of on-line EIS 

techniques 
 

3.1 Introduction: 

This chapter investigates the theory behind using existing battery hardware to implement an on-line 

impedance spectroscopy technique with the ultimate aim of helping to understand the state of the battery 

in real time, look for signs of degradation and to help control the power flows into and out of the battery 

pack which includes second life batteries. This could help with reliability and availability issues which 

may impact large scale adoption. The key to this is to determine how best to inject a low frequency 

waveform into the battery without the use of additional excitation hardware. Figure 3-1 shows a block 

diagram representation of a typical battery system showing where a low frequency waveform may be 

sourced from existing hardware found in a system. A key requirement of all the methods described 

below are; that they have to generate a low frequency waveform of variable frequency (swept across a 

range) while at the same time not impacting and minimising usual operation and using the hardware 

already in-situ. 

Figure 3-1 : Block Diagram of a battery system showing where hardware may be used to inject a low frequency 
waveform  

Three possible locations include; 

• The dc/dc power electronics 

• The battery balancing circuitry 

• The Earth Leakage Monitor 
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An Earth Leakage monitor is a requirement of the IET Wiring Regulations [279] for systems above 50V 

that are unearthed. It is usual to leave the battery pack floating through high impedance resistors or 

capacitors so that the dc bus is suitable for connection through an inverter to any ac system. In particular 

within the USA, it is not usual to have a corner grounded LV system [280], [281] which would not 

allow for direct connection of an inverter, without a transformer, adding additional cost, if the battery 

were grounded. This chapter considers all of the locations in Figure 3-1 in turn and considers different 

methods for injecting a low frequency wave using the existing hardware. The chapter describes each 

method, shows how the operation of the circuit compares to traditional operation and then shows that a 

low frequency harmonic has been introduced through Fourier analysis. There are always trade-offs 

within Engineering and the impact of using existing hardware to inject a low frequency excitation signal  

is that additional harmonics and dc ripple current are introduced. This chapter looks at quantifying these 

effects so that they can be considered at a circuit design phase. Chapter 4 and 5 then looks at how these 

methods work from a simulation and experimental perspective. 

The first hardware location under consideration is the dc/dc power electronic converter, which usually 

connects the battery to a drive train or an electrical grid system through an inverter. This work is based 

on using the hardware available in a standard bi-directional dc-dc converter topology. However, for 

convenience, boost operation is examined in detail using the simplified circuit shown in Figure 3-2. 

This is used to analyse the effect of discharging mode on the battery performance for the different 

presented methods in this work. A similar analysis can be used for the charging mode by considering 

the buck operation but not presented in this work. 

 
Figure 3-2 : DC/DC topology used in analysis of boost operation 

Under normal operation, the duty cycle would be used to set the output voltage of the converter. The 

battery voltage is considered to be varying slowly, therefore under steady state operation, the duty cycle 

can be considered constant for a fixed switching frequency giving a fixed boost ratio. The aim of the 

work is to inject a low frequency signal and then sweep this frequency across a range to replicate the 

functionality of the EIS without the need for a separate excitation circuit. However, at the same time 
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the circuit should continue to produce a high frequency pulse train to boost the voltage. There are a 

number of methods of injecting harmonics within a converter. This chapter will consider four different 

methods; 

1. Varying the duty cycle  

2. Varying the switching frequency 

3. Varying the time within a pulse when the circuit is on 

4. Injecting a low frequency impulse train 

Following the addition of a low frequency excitation signal, the battery voltage and current can then 

be measured and used to determine the harmonic impedance. Within the analysis of the dc/dc converter, 

this work looks at how the low frequency component is injected into the gate drive circuit controlling 

the dc/dc converter and compares this to a more traditional case with no injection. The work is then 

extended to show how the gate drive circuit switching allows injection of this low frequency signal into 

the circuit by deriving the harmonic equations for the circuit. Within Chapter 5, the measured harmonics 

are compared to those calculated using these equations. The impact of operation is examined with the 

extra ripple component through the inductor being derived where possible as an explicit expression. 

The other methods presented in this chapter investigate using the battery balancing and ELM circuits 

to inject a low frequency signal. In each of these methods, the sections are divided into: 

• Theoretical proof that a low frequency component has been introduced by Fourier analysis, 

• Theoretical impact on inductor ripple, 

• Operational characteristics of the converter circuit. 

Harmonic analysis of gate drive signals and resulting sawtooth waveform at the output of the 

converter has previously been undertaken [282]–[285]. This thesis derives the formula from first 

principles because of the complexity of the waveforms. The analysis is based on an ideal case with no 

losses and linear operation. 
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3.2 DC/DC Converter with variable duty cycle PWM 

The boost converter is operated such that the average duty cycle is considered constant (as if the 

system were operating in steady state), but the instantaneous duty cycle is varied to add a low frequency 

component in order to induce a low frequency harmonic into the circuit as described in Equation 3-1. 

Reference [256] introduced this method of low frequency harmonics injection to estimate the 

impedance and SOC of the batteries. However, this was produced as a proof of concept and looked at a 

single value point with no follow through to EIS. The work in this thesis extends this proof of concept 

into a more rigorous analysis. The duty cycle of the gate drive is varied as: 

=(6) = =NO + (PQR�	(/S6) Equation 3-1 

Where  =NO is average duty cycle, (P is the offset amplitude, and /S is the low frequency component. 

This gate drive duty cycle is used in the following sub-sections to look at how the converter would 

operate under this switching pattern and to confirm a low frequency component has been introduced to 

the circuit. 

3.2.1 Harmonic analysis of gate drive circuit PWM  

A high frequency switching frequency,�T (switching time period of UT ) is used in conjunction with 

the low frequency component �S with a time period of		US. The number of high frequency pulses in one 

low frequency cycle can be written as: 

VW = XY
XZ                      

Equation 3-2 

It is assumed that each pulse is switched at 2kHz and every	UT	stays on for a period defined by	=(6)UT. 
The duty cycle varies from a maximum value of =NO + (P to the minimum value of =NO − (P (this is 

to ensure a symmetrical waveform and continues operation). The value of Ad was chosen according to 

the design calculation in section 4.1 and was confirmed with the experiment. An example of the 

switching pattern of the proposed waveform defined by =(6)	compared to a fixed duty cycle is shown 

in Figure 3-3.  
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Figure 3-3 : Comparison of a variable duty cycle (fs = 2 kHz, f0 = 125 Hz, Ad= 0.01) with a fixed duty cycle 
 

As the average duty cycle is set equal to a fixed duty cycle the boost ratio over time will be the same. 

However additional ripple and harmonics have been introduced. These can be calculated using the 

Fourier transform property of linearity as shown in Equation 3-3. 

\�1(6) + ]�3(6) = \*1(/) + ]*3(/) Equation 3-3 

The repeating pulse signal train can be considered as a summation of Np periodic functions as shown in 

Figure 3-4. The full derivation of the harmonic calculation is detailed in Appendix B, with only key 

results replicated within this chapter. 

 

 
Figure 3-4 : Periodic representation of a function (first function in red) and (second function in blue) through to Np 
functions. 
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The first function is a periodic square wave starting at the origin and repeating after time To as shown 

in red in Figure 3-4, with a Fourier series representation of 

��(6) = 	 ^3_`aXa + 3_
:aXa∑ 1

c (sin(d/�e�)c QR�(d/S6) + 1
c (1 − cos(d/�e�))�gd(d/S6))h  Equation 3-4 

where:  

A = Fourier series coefficient amplitude, 

e�	= The width of the first pulse, and 

US= The low frequency waveform period.  

While the harmonic spectrum of the first function is:  

i�,ck	 3_
:aXa∑ 1

c (sin(d/�e�)c QR�(d/S6) − . 1c (1 − cos(d/�e�))�gd(d/S6))  Equation 3-5 

Each subsequent periodic pulse, m (up to Np -1), can be defined as a time shifted square wave with a 

different pulse width	eM. The fourier series of the other functions can be found using the time shift 

property of Fourier analysis from Equation 3-6 : 

�(6 − 6P;M) = *(/)789:;lmn Equation 3-6 

As: 

�(6M) = o3_`nXa + 3_
:aXa∑ 1

c (sin(d/�eM)c QR�(d/S6) + 1
c (1 −

cos(d/�eM))�gd(d/S6)p 789c:Y;lmn   

Equation 3-7 

As the time shift is relative to the start of the first pulse, the time delay 6P;M, needs to be calculated 

from Equation 3-8 (see Figure 3-5). 

 

 
Figure 3-5 : Time shift calculation for the mth function 
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6P;M = qUT Equation 3-8 

Thus the frequency spectrum can be generalised to: 

Q� = ∑ 3_`n
Xa

rs81Mk�   
Equation 3-9 

Qc = ∑ 2(
d/0U0 (sind/0eq − .(1− cosd/0eq))7−.d/0(q)U�rs81Mk�   Equation 3-10 

UT and 	US remains the same but the value of τm changes to represent the adjusted duty cycle in each 

pulse as: 

eM = UT=M(6) 
Equation 3-11 

Where 	=M(6) = the duty cycle at time equal to: qUT and equals: 

=M(6) = =NO + (P QR�(/qUT) = =NO + (PQR�(2q/VW) 
Equation 3-12 

It should be noted that using a fixed duty cycle (setting Ad to 0) causes Co and Cn of Equation 3-9 and 

Equation 3-10 to simplify back to the standard expression of a periodic rectangular waveform. An 

example of the results of the variable duty cycle pulse analysis solved using the expressions above 

(Equation 3-10) at low-frequency of 125Hz, switching frequency of 2kHz and Ad of 0.01 pu within 

Matlab is shown in Figure 3-6.  The Fourier analysis of a rectangular waveform of fixed switching 

frequency is shown in Figure 3-7. There is no low frequency component Figure 3-7, but the horizontal 

axis has been made the same as that in Figure 3-6 for easy comparison. The fundamental harmonic of 

the normal switching signal is therefore shown as a 16th harmonic number.  
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Figure 3-6 : Low frequency components of variable duty cycle a) Fourier coefficient Cn b) phase when f0=125Hz , fs 
=2kHz and Ad = 0.01 pu (the harmonic number = 1 relates to 125Hz		) 
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Figure 3-7 : Low frequency components of fixed duty cycle Fourier coefficient Cn when f0=125Hz , fs =2kHz  and 
Ad=0  (the harmonic number = 1 relates to 125Hz		) 
The comparison of both figures above shows that a low frequency component of	��	is injected into 

the PWM switching pattern of converter by varying the duty cycle. Although it is clear that a low 

frequency component is being introduced into the gate drive circuit, it is necessary to follow through 

the analysis to the circuit and look at the impact on the saw tooth waveform generated as a result of 

boost operation. 

Note: If the number of high frequency pulses in a low frequency cycle Np is not an integer then the 

Fourier analysis needs extending to the number related to the lowest common multiplier of the two time 

periods. 

3.2.2 Harmonic analysis of variable duty cycle PWM Current waveform  

Fourier analysis can also be used to study the current waveform seen from the battery as shown in 

Figure 3-8 . The first function is a periodic sawtooth function with a period of To and duration τ0 from 

uo to vo. The second function is a periodic sawtooth wave with the opposite slope with a period of To 

but shifted with respect to the first waveform by dmTs from vo to u1. The second function is identical to 

the first one but has an additional time shift. The harmonic spectrum of the 	q;v function is shown in 

Appendix C in full. 

Switching Frequency Component �T 

Second Harmonic of 
Switching Frequency 
Component �T 
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Figure 3-8 : Battery Current Waveform showing the Time shift calculation for the mth function 

 

Where qSc,M and qSww,M are the gradients of the current and can be expressed as: 

qSc,M = xM − yM=MUT =		 1z  {N;	 
Equation 3-13 

qSww,M = |n}~8On
(XZ8PnXZ)=	1� ( {N; −  P�) Equation 3-14 

Where: 

 {N; = battery voltage, and 

 P� 	= the converter output voltage.  

z = boost inductor. 

 

It is assumed that the  {N; and   P�	are constant. Figure 3-9 shows the FFT analysis using a MATLAB 

script for a current waveform with 125Hz low-frequency ripple. 

The key parameters used in the Matlab script were obtained from the hardware that was designed for 

the experimental validation described later in section 4.1. Results were also cross checked against a 

model in excel to ensure no coding errors.  

Table 3-1 : key parameters for theoretical analysis of current harmonics 

Boost Converter Components Specifications 

z 380µH, 

 {N; 3.21 

 P� 8.03 

Switching frequency �T 2kHz 
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Figure 3-9 : Theoretical harmonics of the Li-ion battery current signal at variable duty cycle with a low frequency 
of 125Hz with Ad= 0.01. 

 

3.2.3 Cross check of circuit boost ratio using variable duty cycle method 

The gain and variation in ripple in the circuit compared to a fixed duty cycle can be calculated by 

considering the equations of the circuit. In the variable duty cycle switching method the current is not 

in equilibrium over one on and off switch cycle. It is in equilibrium over VW	cycles.  

In steady state condition the inductor current over one switching cycle in boost mode in an ideal 

converter can be calculated as by using Equation 3-15 and Equation 3-16 

∆gSc,M =	1z  {N;=MUT	 
Equation 3-15 

∆gSww,M =	 1� ( {N; −  P�)(UT − =MUT)  Equation 3-16 

where  {N; is battery voltage,  P� 	is the converter output voltage,  UT is the switching period, ∆gSc,M 

increasing inductor current,  and ∆gSww,M decreasing inductor current over the 	q;v	 switching cycle 

period, qUT. In equilibrium the change in inductor current over a low frequency cycle is zero: 

1
3 z∑ ∆g�n3rs81Mk� = 0  Equation 3-17 

∑ ∆gSc,Mrs81Mk� +∑ ∆gSww,Mrs81Mk� = 0    Equation 3-18 

∑ ∆gSc,Mrs81Mk� =	 1�  {N; ∑ =MUTrs81Mk� = 1
�  {N;VW=NOUT   

Equation 3-19 

∑ ∆gSww,Mrs81Mk� =	∑ 1
� ( {N; −  P�)(UT − =MUT)rs81Mk�   Equation 3-20 

∑ ∆gSww,Mrs81Mk� = XZ
� VW( {N; −  P�)(1 − =NO)  Equation 3-21 

Switching frequency harmonic 

Low frequency harmonic 
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Summing the duty cycle over VW pulses is the same as	VW=NO, therefore	∑ =MUTrs81Mk� = VW=NOUT,   
   
1
�  {N;VW=NOUT +		1� UTVW( {N; −  P�)(1 − =NO) = 0 Equation 3-22 

Simplifying gives: 

 (1� UTVW {N; − 1
�  P�UTVW + 1

�  P�=NOUTVW) = 0 Equation 3-23 

 {N; −  P� +  P�=NO = 0  Equation 3-24 

   
�l�
���m = 1

(18P��) 
Equation 3-25 

 

The boost ratio is identical to a fixed duty cycle wave of the same average duty cycle. However, the 

peak to peak ripple compared to a fixed boost ratio varies. 

3.2.4 Inductor ripple calculation of variable duty cycle method 
 

Prior to choosing an inductor value, the additional gain in ripple in the circuit compared to a fixed 

duty cycle can be estimated by considering the equations with ideal components. The boost ratio is 

identical to a fixed duty cycle wave of the same average duty cycle. However, the peak to peak ripple 

compared to a fixed boost ratio varies as shown in Figure 3-10.  

 

 

Figure 3-10 : Converter current waveform in continuous mode 
 

Assume that a circuit with a fixed duty cycle has a ripple current of magnitude 1pu over a switching 

time period 1pu, such that on each interval �q VW⁄ 6R	 (q + =) VW⁄ �	 the current increases at a steady 

gMN� 

xM  

yM 
yM�1 
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rate of 1/ dav and in each interval	�(q + =) VW⁄ 6R	 (q + 1) VW⁄ �	the current decreases at a steady rate 

of	1/(1 − =NO).  
A ripple is now applied to the duty cycle as per Equation 3-1. On each interval 

�q VW⁄ 6R	 (q + =M) VW⁄ �	 the current increases at a steady rate of 1/ dav and in each interval 

	�(q + =M) VW⁄ 6R	 (q + 1) VW⁄ �	the current decreases at a steady rate of 1/(1-dav). The rate is the same 

as for the fixed rate above, but applied for a different time period. Over a time interval equal to one low 

frequency cycle, the total change in current is zero and is the sum of all the on and all the off currents. 

 

   0 = ∑ ^PnP�� − 18Pn
18P��h

rs81Mk�  Equation 3-26 

                 

Substituting for dm gives 

 

0 = ∑ ^P���_l�ST(34M/rs)
P�� − 18P��8_l�ST(34M/rs)

18P�� hrs81Mk�               Equation 3-27 

 

Over an interval of 1pu time the function increases from um to vm, then decreases from vm to um+1. 

Thus the minimum will be one of the values of um at time period k, and the maximum will be one of the 

values of vm at time period n. In a similar manner to Equation 3-27 the function to calculate the minimum 

current can be written as: 

 

y� = ∑ ^P���_l�ST(34M/rs)P�� − 18P��8_l�ST(34M/rs)
18P�� h�81Mk�               Equation 3-28 

y� = _l
P��(18P��)∑ QR�(2q VW� )�81Mk�   Equation 3-29 

This can be simplified by putting / = 749 rs�
 so that cos �2q VW� � = (/3M +/83M)/2 and the 

geometric progressions are 

 

∑ /3M = :��81
:�81 = :���~8:�~

:8:�~�81Mk�            
Equation 3-30 

∑ /83M = :���81
:��81 = :8:�~���

:8:�~�81Mk�   
Equation 3-31 

    

Giving 

∑ cos �2q VW� � = 	:���~8:�~�:8:�~���
3(:8:�~)�81Mk�           

Equation 3-32 

∑ cos �2q VW� � = 	 ���	̂ (3�81)4/rsh3T�c�4/rs� + 1
3�81Mk�   

Equation 3-33 
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Substituting into Equation 3-33gives 

y� = _l
3P��(18P��)o

���	̂ (3�81)4/rsh
T�c�4/rs� + 1p          

Equation 3-34 

 

Note that sin	( VW� ) is π/Np plus terms of order (π/Np)3. In practice Np>10 so sin	( VW� ) can be well 

approximated by π/Np giving 

y� = _l
3P��(18P��) ^

rs
4 sin	̂ (2� − 1)/VWh + 1h           Equation 3-35 

 

To minimize this, k needs to be the closest integer to (3Np+2)/4 so that (2� − 1)/VW will be close to 

3π/2 and so sin	̂ (2� − 1)/VWh will be close to -1. Provided that Np is reasonably large the +1 term 

can be ignored giving  

yM�c ≈ 8_lrs
3P��(18P��)4     Equation 3-36 

 

Similarly we have  

yMN� ≈ +(PVW2=NO(1 − =NO) 
Equation 3-37 

 

Vm is reached by starting at um and increasing at a rate of 1/ dav for a time dm, so  

xM = yM + =M=NO = yM + 1 + (P=NO QR�(2q/VW)	 
Equation 3-38 

 

The last term has no Np in the numerator so it will be small compared to the other terms. Thus we have  

xMN� ≈ yMN� + 1 ≈ 1 + _lrs
3P��(18P��)4	  Equation 3-39 

 

This gives a pu ripple magnitude above that for a fixed duty cycle of  

xMN� − yM�c ≈ 1 + _lrs
P��(18P��)4	  Equation 3-40 

 

The value of theoretical inductor ripple is compared to experimental and simulation results and 

further analysed in Section 5.3.  

The purpose of this analysis is to understand the extra ripple the inductor could be subject to prior to 

understanding the design calculations. This value could be obtained from the Fourier analysis results 

but requires that the inductor value is already pre-specified. Similar analysis can be used for the battery 

voltage ripple variation. The voltage ripple variation also depends on the low-frequency and Ad 

variation.  
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3.3 DC/DC Converter with variable switching 

frequency PWM 

In this method of injecting a low frequency component to the battery circuit, the same power 

electronic system is used. However, the switching frequency is no longer fixed but is allowed to vary. 

The change of frequency changes the inductor reactance. However, the calculations below are based on 

inductance rather than reactance, which is unchanging, so this variation has been accounted for. Any 

additional impact of the changing reactance would be considered future work. The switching frequency 

has the same average value but now oscillates around this value with a low frequency to induce a low 

frequency into the gate drive circuit according to Equation 3-41. 

�T(6) = �NO + (w cos(/�6) Equation 3-41 

Where �NO = the average switching frequency, and (w = the amplitude of the offset. 

3.3.1 Harmonic analysis of gate drive circuit PWM 

To analyse the gate drive harmonics, the same assumptions as described in section 3.2.1 are used. 

However, the duty cycle is now fixed and the switching period is allowed to vary, so the time that the 

pulses are on for is varying. The pulses are switched on at the start of each switching period and stay 

on for a period defined by	=UT(6). Where Ts(t) = 1/fs(t). An example of a switching pattern for the 

proposed waveform defined by �T(6)	compared to a fixed frequency, �T is shown in Figure 3-11.  

Figure 3-11 : Comparison of a variable frequency (fav = 2 kHz, f0 = 125 Hz) with a fixed frequency of 2kHz 
 

The PWM signal is a summation of q separate functions as shown in Figure 3-12.  
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Figure 3-12 : Time shift calculation for the mth function 

τ0 is the on time for the first function and τm-1 is the on time for the q;v function. The same definitions 

as for section 3.2.1 are used to calculate the first function of the periodic function starting at origin with 

period of U�	and the second function is a periodic square wave, shifted by time 6w;Mwith a period of U�.  
��6 − 6w;M� = *(/)789:;�mn Equation 3-42 

The Fourier series of a periodic square wave in this analysis is therefore: 

��6w;M� = o3_`nXa + 3_
:aXa∑ 1

c (sin(d/�eM)c QR�(d/S6) + 1
c (1 − cos(d/�eM))�gd(d/S6)p 789c:Y;�mn  

Equation 3-43 

 Where eM	= the width of the rectangular pulse train, and U� the low frequency time period. The time 

shift delay is 6w;M for the q;v function with	U�	, the time between switching this function. This time 

delay for the q;vfunction can be defined as: 

6w;M = ∑ UTMM81ck�   Equation 3-44 

The pulse width of rectangle wave can be calculated as: 

eM = = × UTM Equation 3-45 

Where d is fixed and 

UTM = 1
�T(6) =

1
�NO + (w cos(/�6) 

Equation 3-46 

Thus the frequency spectrum is equal to: 

U� 

UT1 VWUTNO 

e� e1 eM e� 

6w;M 

UTM t=0 
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i� = ∑ ^_`nXY h
rs81Mk� 	  Equation 3-47 

ic = ∑ ^ 3_
c:aXa (sin(d/�eM) − .(1 − cos(d/�eM)))hrs81Mk� 789c:Y;�mn  Equation 3-48 

The calculated frequency magnitude is shown in Figure 3-13 using Equation 3-48 for two low-

frequency cycles T0 for an example case. In comparison with Figure 3-7 the low frequency component 

of	��	is induced in the PWM signal and the switching frequency is now spread over a range defined by 

�NO ± (w as expected. The first harmonic represents the injected low frequency component and the 

sixteenth harmonic represent the switching frequency harmonic.  

 
Figure 3-13 : Low frequency components of variable frequency Fourier coefficient Cn for an average switching 
frequency of 2kHz, a low frequency component of 125Hz and Af = 400 

 

3.3.2 Harmonic analysis of variable switching frequency PWM current waveform  

The current waveform analysis is undertaken as a summation of sawtooth functions. The first function 

is a periodic sawtooth with a positive slope with period of T0. The second function is a periodic saw 

tooth wave with the negative slope with a period of To but shifted with respect to the first waveform by 

dTsm from vo to u1. The second function is similar to the first one but has an additional time shift and 

the “on”/”off” pulse time will have changed with the variable frequency. Figure 3-14 shows a sketch of 

the current waveform with variable frequency. In this figure, τ0 is the “on” time for the first function 

and τm-1 is the “on” time for the mth function. 

(a) 

Low 
frequency 
component �S 

Range of switching frequency 
components �T between harmonic 
number 12 and 20. 



101 
 

 
Figure 3-14 : Current Waveform for a variable switching frequency 

 

The Fourier series of the periodic sawtooth function is shown in Appendix C. The harmonic spectrum 

using the values set in hardware using Table 3-1 is shown in Figure 3-15 using Equation C-61 for two 

low-frequency cycles.  

 
Figure 3-15 : Theoretical harmonics of the Li-ion battery current signal at variable switching frequency with a low 
frequency of 125Hz with Af= 400. 

 

3.3.3 Inductor ripple calculation of variable frequency 

The boost ratio is identical to a fixed frequency switching period as the duty cycle has not changed. 

However, the peak to peak ripple compared to a fixed switching frequency varies. The current ripple in 

this interval is dependent on the switching frequency as shown in Figure 3-16. When the frequency is 

lower than the average, the time period for that pulse is longer than average and therefore the inductor 

current increase and decreases for a longer time relative to the fixed duty cycle. The peak to peak ripple 

is therefore the ripple of the lowest frequency from Equation 3-41 (fav – Af). 
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Figure 3-16 : Example of current ripple over a low frequency cycle  

Assume that a circuit with a fixed switching frequency and duty cycle has a ripple current of 

magnitude 1pu over a switching time period 1pu, such that on each interval �q VW⁄ 6R	 (q + =) VW⁄ �	 
the current increases at a steady rate of 1/d and in each interval	�(q + =) VW⁄ 6R	 (q + 1) VW⁄ �	the 

current decreases at a steady rate of	1/(1 − =). The duty cycle stays the same but the switching period 

in pu now increases to a maximum with the reduction in switching frequency to a minimum giving: 

 

�g  ¡7	�\6gR = �NO�NO − (w 	 
Equation 3-49 

 

The per unit current therefore both increases and decreases at the same steady rates but for the longer 

time period than a fixed switching signal: 

ESc,MN� = 1
=	

�NO�NO − (w 	 
Equation 3-50 

ESww,MN� = 1
1 − =	

�NO�NO − (w 
Equation 3-51 

Therefore the ripple increases by 

�g  ¡7	gdQ�7\�7 = �NO�NO − (w 	 
Equation 3-52 

Since the duty cycle and average frequency are constant, the increased theoretical ripple current is only 

a function of Af. As this increases then the ripple current increases and there is no dependency on Np. 
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3.4 DC/DC Converter with variable starting point PWM 

In this method of injecting a low frequency component to the battery circuit, the same power 

electronic system is used. The switching frequency is fixed as is the duty cycle, but the starting position 

of the “on” signal varies within the switching period. Previously the pulse was turned on at the start of 

the switching period. However this starting position has been shifted to allow a sinusoidal variation 

about the midpoint of the switching time period. This variation is shown in Equation 3-53. 

6Wv 	(6) = 6NO + (; cos(/�6) Equation 3-53 

Where 6NO = an average switching on time, (X = the amplitude of the position offset and /� = the 

modulated frequency. 

This method of introducing a low frequency harmonic is restrictive in nature because the “on” pulse 

shouldn’t cross over to either of the adjacent switching periods, so the value of At is limited by this.  

Figure 3-17shows an example of this concept. The red lines are the start of each switching period, while 

the green dotted line is the average time in the cycle when the pulse is turned on. The blue lines show 

the pulse at the start of the switching period and the end of the switching period indicating the range of 

starting positions. In this case, if the switching frequency is 2kHz and the duty cycle is 0.6, the starting 

position equation has a maximum variation (not taking into account deadband) of:  

6Wv 	(6) = 0.0001 + 0.0001 cos(/�6) Equation 3-54 

 

 
Figure 3-17 : Example showing limitation of At for a duty cycle of 0.6 in a switching frequency of 2kHz 

 

Earliest starting position Latest starting position 

Scope to vary starting 
position 

tav 
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3.4.1 Harmonic analysis of gate drive circuit PWM 

Similar to sections 3.2.1 and 3.3.1 the harmonic analysis is considered as a sum of a set of rectangular 

pulses with period of To shifted based on the starting position of the pulse and with “on” duration fixed 

by duty cycle and switching frequency (dTs). An example of the comparison of the time shifted pulse 

with a regular fixed start PWM signal is shown in Figure 3-18. 

 
Figure 3-18 : Example showing comparison of variable starting position and fixed starting position for a pulse with  
duty cycle of 0.6, a switching frequency of 2kHz and an At = 0.00005. 

 

In this case, because of the definition of the starting point in Equation 3-54, the first pulse does not 

start at the origin but is shifted by the delay in turn on. The Fourier series of a periodic square wave 

(equivalent to the first rectangular pulse train) is  

��(6) = ^3_`Xa + 3_
:aXa∑ 1

c (sin(d/�e)c QR�(d/S6) + 1
c (1 −

cos(d/�e))�gd(d/S6))h 789c:Y;s£mn               

Equation 3-55 

Where τ = the width of the rectangular pulse train and To = the time period and 6Wv;�k	6NO + (; is the 

time delay of the first pulse switching on.  

The harmonic spectrum for this function is 

i�,ck	 o 3_
:aXa∑ 1

c (sin(d/�e)c QR�(d/S6) + (1 − cos(d/�e))�gd(d/S6)p 789c:Y;s£mn                      
Equation 3-56 

The time delay for the mth function can be represented as: 

6Wv;M = qUT + 6Wv(6) = 	qUT + 6NO + (; cos(/�6)                                       Equation 3-57 

The resulting mth function is as follows 



105 
 

�(6M) = ^	3_`Xa + 3_
:aXa∑ 1

c (sin(d/�e)c QR�(d/S6) + (1 − cos(d/�e))�gd(d/S6))h 789c:Y;s£mn	              Equation 3-58 

The frequency spectrum is therefore equal to  

i� = ∑ ^3_`Xa h
rs81Mk� 	  Equation 3-59 

Qc = ∑ 2(
d/0U0 (sind/0e− .(1 − cosd/0e))7−.d/0�6 ℎ�+(�)U��rs81�k�   Equation 3-60 

The full Fourier analysis calculations are presented in Appendix B. Figure 3-19 shows an example of 

the harmonics of the gate drive signal for a variation of the starting point with a low frequency harmonic 

using Equation 3-60. As can be seen, a low frequency component is visible. 

 
Figure 3-19 : Low frequency components of variable starting point Fourier coefficient Cn for an average switching 
frequency of 2kHz, a duty cycle of 0.6, a low frequency component of 125Hz and At= 0.00004. 

 

3.4.2 Harmonic analysis of variable starting point PWM current waveform  

Similar to the variable duty cycle method, fourier analysis can be used to study the current waveform 

seen from the battery as shown in Figure 3-20 . The first function is a periodic sawtooth function with 

a period of T0 and duration τ from uo to vo with the time shift of tph0. The second function is a periodic 

sawtooth wave with the opposite slope with a period of To but shifted with respect to the first waveform 

by dTs+tph0 from vo to u1. The second function is identical to the first one but has an additional time 

shift and the “on”/”off” pulse time will remain the same with the variable starting point. The harmonic 

spectrum of the 	q;v function is shown in Appendix C in full. 

 

Low frequency 
component �S 

Switching Frequency 
Component �T 
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Figure 3-20 : Current Waveform for a variable starting point 

The current as seen by the battery follows a saw tooth pattern dependent on the switching pattern. 

The harmonics of this waveform (which looks very similar to that in Figure 3-8 but are not identical 

due to the different methodology) can be analysed in a similar way.  The derivation of the harmonic co-

efficient is shown in Appendix C. This produces a harmonic spectrum as shown in Figure 3-21.  

 
Figure 3-21 : Theoretical harmonics of the Li-ion battery current signal at variable starting point with a low 
frequency of 125Hz with At= 0.00004 and tav= 0.00026  . 

 

3.4.3 Inductor ripple calculation of varying start positi on 

The analysis of the current peak to peak value can be found by considering a similar process to that 

used to calculate ripple in the variable duty cycle current peak to peak ripple case. 

Assume that a circuit with a fixed duty cycle, fixed switching frequency and fixed starting position 

has a ripple current of magnitude 1pu over a switching time period 1pu, such that on each interval =	 
the current increases at a steady rate of 1/ d and in each interval	= − 1	the current decreases at a steady 

rate of	1/(1 − =). Over the period of a high frequency pulse in equilibrium the net current is zero. 
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A change in starting position is applied within this pulse as shown in Figure 3-19. However, the total 

pu time that the pulse is on is unchanged at d and over this interval the current continues to increase at 

a steady rate of 1/d as shown by the red trace (on for the same amount of time in each pulse with the 

same gradient). The total pu time that the current decreases remains constant at 1-d and the rate of 

decrease remains constant at 1/(1-d). However, because of the change of start position, this decrease 

can now be thought of as split into two sections as shown in Figure 3-19. Over the period of a pulse the 

net current remains zero as shown by the thick black line, and the total change in current over a pulse 

period remains unchanged at 1pu as shown by the blue arrow. However, the effect of starting position 

of the pulse introduces an increased ripple component – shown by the thick red arrow. The worst case 

scenario (when the starting position changes between a minimum and a maximum position) as shown 

in Figure 3-17 means that this can be as high as 2pu. However, if the starting position doesn’t vary by 

this amount then the ripple can be calculated by considering the extreme cases from Equation 3-53. 

 

 
Figure 3-22 : Variation of starting position on ripple 
 

The peak current will be found when tph(t) is a minimum and the minimum current will be found 

when tph(t) is a maximum. The peak current is found when the starting phase is at a minimum and 

therefore the smallest reduction in current occurs before the current starts to increase plus the increase 

in current. This value is equal to the minimum pu period of time the current is reducing, times the rate 

of reduction (1/(1-d)) plus the 1pu increases over time 1/d (the current increase).  

   

EMN� = 1 − 6NO − (;(1 − =)UT 
Equation 3-61 

The minimum current is found at the time where the starting phase is at a maximum and before the 

current starts to increase. This is the pu time that the current is reducing times the rate of reduction. 

EMN� 

EM�c 

ref 
∆gSww 
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EM�c = − 6NO + (;(1 − =)UT 
Equation 3-62 

The total pu ripple current is therefore the peak value over the ref plus the minimum value below the 

ref. 

�g  ¡7	gdQ�7\�7 = EMN� − EM�c = 1 − 6NO − (;(1 − =)UT +
6NO + (;(1 − =)UT 

Equation 3-63 

�g  ¡7	gdQ�7\�7 = 1 + 2(;(1 − =)UT 
Equation 3-64 

The ripple current for a fixed starting position is 1. Therefore the pu increase in ripple current between 

a fixed starting position of tav and variable staring position is	 3_m
(18P)XZ. 
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3.5 DC/DC Converter with an Impulse Function 

An alternative method of adding a low frequency harmonic into the gate drive circuit is to add in one 

directly. Ideally it would be useful to add a low frequency impulse function. However, it’s not possible 

within the control system to add an impulse function directly, but rather a low frequency square wave 

pulse train with as small a width as possible could be considered. There are several different ways of 

doing this as shown in Figure 3-23. The first is that the impulse function is combined in an OR function 

with the usual switching frequency waveform. However, because the impulse function is on for a finite 

amount of time, the circuit is switched on for longer than the normal switching frequency duty cycle 

and therefore the average duty cycle with time over several periods of a low frequency pulse increases 

causing a change to the boost ratio. To overcome this issue, either the duty cycle needs to be reduced 

or an XOR function can be used so that the time the impulse function is on is both added and subtracted 

at different times resulting in no net change to the average duty cycle. 

These methods are okay as long as the impulse function frequency isn’t a multiple of the switching 

frequency such that the impulse function isn’t then invisible to the gate drive circuit as shown in Figure 

3-24.  

 
Figure 3-23 : Example showing adding a low frequency impulse stream to the switching pattern with an OR and 
XOR function gate drive signal (low frequency wave 634Hz, switching frequency 2kHz, duty cycle = 0.6) 
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Figure 3-24 : Example showing adding a low frequency impulse stream to the switching pattern with an OR function 
for an integer value of high to low frequency pulses (low frequency 250Hz, switching frequency 2kHz) 

Care is needed under this scenario to match the impulse function timing to the switching frequency. 

When the low switched wave is a function of the switching frequency, one method is to increase the 

size of the “impulse function” so it forms a square wave pulse that has a low frequency, but the duty 

cycle is just sufficient so that when passed through an OR function with the pulse train it results in an 

increase in the pulse width as shown in Figure 3-25 

 

 
Figure 3-25 : Example showing detecting a low frequency impulse stream to the switching pattern with an OR 
function for an integer value of high to low frequency pulses for different duty cycle of a) 0.02, b) 0.1 (low frequency 
250Hz, switching frequency 2kHz) 

(a) 

(b) 
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It is easier to analyse the impact of an impulse function when it is at a low frequency that is an integer 

value of the switching frequency as this can be done explicitly for comparison purposes with other 

sections having a non-integer values of Np results in an analysis which need to be undertaken in code 

because of the complexity of the pulse formation with an OR or XOR function. Therefore the analysis 

in this thesis will look only at integer values of low frequency waveforms for convenience in 

conjunction with an OR function. 

Table 3-2: Comparison of using integer and non-integer low frequency in PWM with an Impulse function 
simulation model 

 
Current ripple OR 

combination 
Current ripple XOR 

combination 
Fourier analysis 

�� as an integer 
multiple of �T 

Increase average duty cycle 
due to additional impact of 

pulse width 

Not practical Straight forward 
Fourier analysis 

�� as a non-integer 
multiple of �T 

No addition to 
average boost ratio 

Complex  Fourier 
analysis 

 

 

3.5.1 Harmonic analysis of gate drive circuit PWM  
 

 

 
Figure 3-26 : Impulse function combined with first pulse in series 

When the low frequency is an integer of the switching frequency then the Fourier series of a periodic 

square wave where the first function is the combination of the impulse function and normal pulse train 

as shown in Figure 3-26  is: 

eS¥ e e eS¥ 

VWUT qUT 

U� 

6P;M 
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��(6) = 3_`Y¦
Xa + 3_

:aXa∑ 1
c (sin(d/�eS¥)c QR�(d/S6) + 1

c (1 −
cos(d/�eS¥))�gd(d/S6))                

Equation 3-65 

Where eS¥ is the width of the “OR” of the impulse and pulse train which re-occurs again after time, To 

The harmonic spectrum for this first function is 

i1,ck	 3_
:aXa �∑ 1

c (sin(d/�eS¥)c QR�(d/S6) + 1
c (1 − cos(d/�eS¥))�gd(d/S6)�  Equation 3-66 

The remaining functions are made up of the regular rectangular pulse train with a time delay	6P;M, 

which can be calculated from: 

6P;M = qUT Equation 3-67 

These functions have a different pulse width to the first one as they have no impulse component as: 

�(6M) = o	3_`Xa + 3_
:aXa �∑ 1

c (sin(d/�e)c QR�(d/S6) + 1
c (1 −

cos(d/�e))�gd(d/S6)�p 789c:Y;lmn  

Equation 3-68 

The combined frequency spectrum of all the pulses is therefore equal to   

i� = 3_eR�
Xa + ∑ 3_`

Xa 	
V −1�=1   Equation 3-69 

ic =	 2(/0U0 �sind/0eR� − .(1 − cosd/0eR�)�+ 

3_
c:aXa∑ (sin d/�e − .(1 − cos d/�e))789c:a(�)XZ 	V −1�=1   

Equation 3-70 

The full Fourier analysis calculations are presented in Appendix B. Figure 3-27 shows an example of 

the harmonics of the gate drive signal for a variation of the starting point with a low frequency harmonic 

using Equation 3-70. As can be seen, a low frequency component is visible. 
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Figure 3-27 : Low frequency components of PWM with an Impulse function Fourier coefficient �� with a 125Hz 
impulse wave of width 0.0004s 

 

The width of the impulse function is dependent on the simulation and experimental hardware 

accuracy available. The work in this thesis uses an OpalRT real time controller to generate and capture 

waveforms operates, in real time with a fixed time step solver [286], [287], with a minimum fixed time 

step of 20µs. In order to get accurate and repeatable impulse type functions it is necessary to ensure that 

the pulse start, end and pulse width, over the defined low frequency duty cycle and period are all 

multiple integers of this minimum fixed time step. Some examples of this are shown in Figure 3-28. 

What this shows is that the duty cycle for the impulse function changes depending on the frequency of 

the pulse required. This complicates the coding when sweeping the frequency across a range to replicate 

EIS. 

 

 

Switching Frequency Component �T 

Low Frequency 

Component �S 
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Figure 3-28 : Example showing how the impulse width can be chosen for a) 10Hz, b) 125Hz, c) 1kHz 

 

3.5.2 Harmonic analysis of impulse PWM current waveform  

The current waveform analysis is undertaken as a summation of sawtooth functions. The first function 

is a periodic sawtooth function with a period of T0 and duration τor from uo to vo. The second function 

is a periodic sawtooth wave with the opposite slope with a period of To but shifted with respect to the 

first waveform by Ti+dTs from vo to u1. The second function is identical to the first one but has an 

additional time shift. As shown in Figure 3-29 the battery current increased at each interval the impulse 

function is added seen by the extra rise time on the first pulse eS¥. 
 

(a) 

time 

0.1s 

20µs 

10Hz - duty cycle = 0.02% 

(b) 

0.008s 

20µs 

125Hz - duty cycle = 0.25% 

(c) 

0.001 
20µs 

1kHz - duty cycle = 2% 
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Figure 3-29 : Current Waveform for a PWM with an impulse function 

The harmonic spectrum of the 	q;v function is shown in Appendix C in full. This produces a harmonic 

spectrum as shown in Figure 3-30 using Equation C-120.  

 
Figure 3-30 : Harmonics of the Li-ion battery current signal with an impulse function added at 125Hz. 

 

3.5.3 Cross check of circuit boost ratio 

The boost ratio for this method is higher than for a fixed duty cycle wave due to the extra “on” time 

of the pulse over one low frequency impulse. This can either be considered negligible and ignored or 

can be compensated for by reducing the boost ratio by a proportionate quantity. As the impulse function 

only operates once every low frequency cycle, its effects are transient in nature and the circuit then 

settles back to a steady state condition as shown in Figure 3-29. 

In steady state condition the inductor current over the first switching cycle in boost mode in an ideal 

converter can be calculated as by using Equation 3-71 and Equation 3-72 
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∆gSc,1 =	1z  {N;(=UT + U� 	) Equation 3-71 

∆gSww,1 =	 1� ( {N; −  P�)(UT − U� − =UT)  Equation 3-72 

where  {N; is battery voltage,  P� 	is the converter output voltage,  UT is the switching period, U� is the 

width of the impulse function, ∆gSc,1 increasing inductor current  and ∆gSww,1 decreasing inductor 

current over the 1st switching cycle period. In equilibrium the change in inductor current over a low 

frequency cycle is zero: 

1
3 z∑ ∆g�n3rs81Mk� = 0  Equation 3-73 

∑ ∆gSc,Mrs81Mk� +∑ ∆gSww,Mrs81Mk� = 0    Equation 3-74 

∑ ∆gSc,Mrs81Mk� =	 1�  {N; 	�(=UT + U�	) + ∑ =UTrs81Mk1 � = 1
�  {N;VW=UT +	1�  {N;U�   

Equation 3-75 

∑ ∆gSww,Mrs81Mk� =	 1� ( {N; −  P�)(UT − U� − =UT) + ∑ 1
� ( {N; −  P�)(UT − =UT)rs81Mk1   Equation 3-76 

∑ ∆gSww,Mrs81Mk� = XZ
� VW( {N; −  P�)(1 − =) − X§

� ( {N; −  P�)  Equation 3-77 

Summing the current gives:  

   
1
�  {N;VW=UT +	1�  {N;U� 	+	XZ� VW( {N; −  P�)(1 − =) − X§

� ( {N; −  P�) = 0 Equation 3-78 

Simplifying gives: 

  {N;VWUT −  P�VWUT +  P�VWUT= +  P�U� = 0 Equation 3-79 

setting Ti as a function of Np and Ts by including a constant i1 allows further simplification: 

U� = i1VWUT Equation 3-80 

 {N; −  P� +  P�= +	i1 P� = 0  Equation 3-81 

   
�l�
���m = 1

(18P8¨~) 
Equation 3-82 

For example, at a low frequency of 125Hz in a 0.6 duty cycle, 2kHz switched waveform with a 20µs 

impulse pulse this equates to a constant C1 of 12.5x10-3 and a boost ratio of 2.58 compared to 2.5 without 

the impulse function. The increase in duty cycle is dependent on the pulse width which is a function of 

the hardware. 

3.5.4 Inductor ripple calculation of impulse method 

The peak to peak ripple compared to a fixed boost ratio varies due to the extra “on” time of the pulse 

over one low frequency impulse. This can be calculated by considering the extra rise time on the first 

pulse. Assume that a circuit with a fixed duty cycle, fixed switching frequency and fixed starting 
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position has a ripple current of magnitude 1pu over a switching time period 1pu, such that on each 

interval =	 the current increases at a steady rate of 1/ d and in each interval	= − 1	the current decreases 

at a steady rate of	1/(1 − =). The extra time on due to the impulse function increases the current at the 

same rate 1/d but for a longer time period. This period is dependent on the width of the “impulse” in 

relation to the regular switching pattern. The increase in ripple is therefore 

  ̀
Y¦
` =	 PXZ�X§PXZ   Equation 3-83 
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3.6 Battery balancing circuit 

This section looks at using hardware in the battery balancing circuiting to inject a low frequency 

excitation signal. 

In battery systems, battery cells can be connected in series and/or parallel depending on the type of 

application they are used in. Charging and discharging battery cells as a series string can cause charge 

imbalance in the battery cells. This is because of the mismatch in battery internal impedance, different 

state of charge level, capacity range, self-discharge rate differences, varying operating conditions, and 

temperature difference across the cells [135]–[137].  Battery charge imbalance may result in over 

charging or over discharging of the cells with lower capacity. In imbalanced battery systems; the voltage 

of the individual battery cells could drift apart and lead to a decrease in lifespan and possible failure of 

the battery pack [137], [288], [289]. Therefore using an equaliser or balancing system, is usual in 

applications. Battery balancing uses extra hardware to equalise the battery series strings.  

Battery balancing system can be categorised into two groups; passive and active balancing. In passive 

balancing [290]–[292], a resistor is used to dissipate the energy from the fully charged cell till its voltage 

reaches the same level as battery with lower voltage value. This is also known as shunt resistor 

balancing. This method is straightforward to implement at low-cost, but system energy is dissipated as 

heat within the resistors. Active balancing may be more expensive and may require a control system. 

In an active balancing group, battery cells are balanced by transferring the energy from the higher 

energy to the lower energy cell. This is subcategorised as capacitor based balancing [293]–[298], 

converter based balancing [299]–[303], and inductor/ transformer based balancing [304]–[311].  

Authors [136], [137], [312]–[314] compared and reviewed current balancing methods. According to 

[136], [137], a capacitor based balancing topology requires more straightforward control methods and 

is well used compared to a converter based or transformer based balancing. In this research, a capacitor 

based balancing method is therefore chosen for proof of concept of the methodology. A comparison of 

different active capacitor based balancing is presented in Table 3-3. In inductor and transformer based 

balancing topologies, inductors and transformers are used to transfer the energy from single cells or 

group of cells with higher energies to the lower energies. These methods can be sub categorised as 

single/multi-inductor [293], [308], [309], single windings transformer , multi windings transformer 

[304], [310], [313]. This balancing approach is reported as being more expensive, with fast balancing 

speed with complex control systems and accurate voltage sensing. Energy converters namely: Cuk 

converter [315], buck or/and boost converter [316]–[318], flyback converter [319], [320], and ramp 

converter [321], [322] are described as alternative  methods of cell balancing. These types of circuits 

are complex and may contain stacked converters. It is not clear at this stage if there is scope to introduce 

low frequency excitation through battery balancing aspect of the converter. There is scope for future 

work to look at alternative battery balancing methods to produce a low frequency excitation signal but 

this is considered beyond the scope of this these. 
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Table 3-3: capacitor based battery balancing method comparison 

Balancing methods Summary 

Switched capacitor Energy is transferred from the cell with higher energy to the lower energy cell 

through the switching capacitor. n-1 capacitors and 2n switching component are 

required to balance n cells. An example of the switched capacitor balancing for 3 

battery cells is shown in Figure 3-31 a. and described in more detail below 

Single Switched 

capacitor 

Figure 3-31 b shows battery balancing using a single switched capacitor. Only one 

capacitor and n+5 switches are used to balance n battery cells. A control system is 

needed to detect the higher and lower voltage battery cells to transfer the energy 

between the cells using the corresponding switches.      

Doubled-tiered 

capacitor   

This balancing topology is similar to the switched capacitor method but requires n 

capacitors. As illustrated in Figure 3-31 c, the first capacitor tier is used to balance 

the battery cells and the second tier capacitor is used to speed up the balancing time. 

Modularised 

Switched Capacitor 

As shown in Figure 3-31 d, the battery cells are divided into modules, in each 

module the batteries are balanced with the sub-modules cells with a separate 

balancing system. In this technique n-1 capacitor and 2n+2m switches are required. 

Where n is number of battery cell and m is number of modules.  

 

In this study, a straightforward switched capacitor balancing system is used to generate excitation 

low-frequency signal as a proof concept due to its popularity in literature. The schematic figure of two 

battery cells and converter with the switched capacitor balancing technique is shown in Figure 3-32. 

The switched capacitor system is connected to the battery and it is proposed to use this circuit to inject 

a low-frequency signal. The impedance of the battery is calculated by harmonic analysis of the 

measured battery current and voltage data at the frequency point, then the frequency is swept to generate 

the EIS impedance measurement over the frequency range. 
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Figure 3-31 : Examples of switched capacitor balancing: a) Switched Capacitor, b) Single Switched Capacitor, c) 
Double-tiered Capacitor, d) Modularised Switched capacitor[136] 

 

 

(d) 

(c) 

(b) 
(a) 
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Figure 3-32 : Switched capacitor battery balancing circuit 

 

3.6.1 Circuit Operation 

For proof of concept, two series battery cells (as opposed to one, in contrast to the other methods in 

this thesis) are connected to the load through the boost converter while the terminals of each battery are 

connected to the balancing circuit (see Figure 3-32). In this battery balance circuit, one capacitor and 

four MOSFET (switches) are used. The switch M1 – M4 were operate to produce a low frequency 

excitation signal. The value of the capacitor was chosen so that the low frequency switching allows 

energy transfer between the two batteries. The time constant of the battery balancing system is set to 

approx. 0.3ms so over several high frequency switching operations the capacitor will have charged. 

This was done by assuming a circuit resistance of approx. 30mΩ made up of battery resistance, 

capacitor ESR, MOSFETs on resistance, leads and connectors and choosing a capacitor at 10mF. The 

system works in two stages as shown in Figure 3-33; 

For example, when the voltage of the battery 1 is higher than battery 2. 

1) Switch M1 and M3 are turned on and M2 and M4 are turned off, the capacitor will connected in 

parallel with the battery 1 through M1 and M3 (see Figure 3-33a). The capacitor then starts to 

charge from battery 1.  

2) Switches M2 and M4 are turned on and M1 and M3 are turned off, the capacitor will be connected 

in parallel with the battery 2 through M2 and M4 (see Figure 3-33b). The capacitor starts to 

discharge to battery 2.  
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Two pulse signals with the duty cycle of less than 0.5 are used for controlling the switches M1-M4 

[295]. The reason for choosing a duty cycle less than 0.5 is to avoid a short-circuit condition or current 

shoot-through when all switches are turned on at once. In this system, a duty cycle of 0.45 is used for 

the pulse signals. One pulse signal is used for charging the capacitor from the battery cell with higher 

voltage. The other pulse signal is used for discharging the capacitor to the battery cell with lower 

voltage. The frequency of the battery balancing is at a lower battery frequency than the boost converter 

switching frequency, to induce the low frequency excitation signal. 

 

 
Figure 3-33 : Switching capacitor battery balancing circuit operation a) stage one b)stage two 

 

In this thesis the duty cycle, d of the converter, is fixed giving a traditional sawtooth pattern through 

the inductor. However, the battery voltages are subject to a small perturbation caused by the balancing 

capacitor charging and discharging low frequency injection as shown in Figure 3-34. The minimum 

voltage of the balancing capacitor is equal to the battery with lower voltage value ( {N;3), and the 

maximum value of the balancing capacitor is equal to the battery with higher voltage value ( {N;1).  

(b) (a) 
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Figure 3-34 : Charging and discharging voltage Waveform for the Balancing capacitor at the low frequency 

 

When the switches M1 and M3 are on the capacitor charges from battery 1 with a current equal to:  

g�{_�vN¥ªL = i (	���m~8	���m�)
`� 	78 m

«�  
Equation 3-84 

When the switches M2 and M4 are on the capacitor discharges to battery 2, with a current equal to: 

g�{_P�T�vN¥ªL = i = �l§Z�£�¦¬§¬=6 = −i (	 {N;1 −	 {N;3)e� 78 ;̀
� 

Equation 3-85 

 

3.6.2 Harmonic analysis of the battery balancing current waveform 

It is not necessary to look at the harmonics of the boost converter gate drive circuit as this is operating 

with a fixed duty cycle at fixed frequency. The harmonic analysis of the battery current is therefore 

undertaken by considering the superposition of the boost converter current and the current caused by 

the battery balancing circuit using the Fourier transform property of linearity. The current on the battery 

with the higher voltage increases at each interval f0 as the capacitor current added to the boost converter 

current. While the current on the battery with the lower voltage decreases when connected to the 

capacitor. Figure 3-35 shows the charge and discharge current of battery 1 and battery 2. The current of 

each battery needs to be analysed separately for calculating the impedance of the individual cell. 

 

 {N;1 

 {N;3 
6 = 0 

V
o

lta
ge

 A
m

p
lit

u
d

e 

Time 
 

U� 

Charge Discharge 

eP�T�vN¥ªL e�vN¥ªL 



124 
 

 

 
Figure 3-35 : Current Waveform for a Battery Balancing method a) Battery 1 discharge current, b)Battery 2 charge 
current 
 

The converter current over one switching cycle in boost mode in an ideal converter for battery 1 can be 

calculated traditionally as: 

∆gSc =	 1� ( {N;1 +  {N;3)=UT   Equation 3-86 

∆gSww =	 1� ( {N;1 +  {N;3 −  P�)(UT − =UT)  Equation 3-87 

While the capacitor current is given by Equation 3-84 and Equation 3-85. The current waveform of 

the battery 1 is the sawtooth waveform with the exponential signal of the balancing capacitor. The 

harmonic spectrum of the current waveform is shown in Appendix C in full. This produces a harmonic 

spectrum as shown in Figure 3-36 and Figure 3-37 using Equation C-148. 
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Figure 3-36 : Theoretically derived harmonics of the Li-ion battery1 current signal with a balancing capacitor charge signal 
at a low frequency of 125Hz, Vbat1=3.2V, Vbat2= 3V  

 

 
Figure 3-37 : Theoretically derived harmonics of the Li-ion battery2 current signal with a balancing capacitor discharge 
signal at a low frequency of 125Hz, Vbat1=3.2V, Vbat2= 3V 

 

 

3.6.3 Inductor ripple calculation of battery balancing method 

There is a negligible extra inductor current as the current from the capacitor will act to charge 

/discharge the batteries because of the low impedance path. This is dependent on the difference in 

battery voltage, so it is not fixed with time but varies as a function of the current. This gives rise to two 

points:  

Switching frequency harmonic 

Low frequency harmonic 

Switching frequency harmonic 

Low frequency harmonic 
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• The low frequency excitation is significantly reduced if the battery voltages are close. This 

is ok as monitoring is most valuable when a battery is degraded and therefore likely to be 

unbalanced. 

• To keep this constant the low frequency which impacts the exponential decay through, can 

be altered based on the voltage difference to keep a constant ripple current. 

• The method is dependent on a 
P�
P;  change in the capacitor. It is not clear if this technique can 

be used with a resistive balancing method similar to [138]. 

However, there is extra ripple current in each battery. This can be calculated by considering the 

increase in current due to the balancing capacitor current: 

E�{ = i (	 ]\61−	 ]\62)eQ 	7− 6eQ   Equation 3-88 
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3.7 Earth Leakage monitoring circuit 

This section looks at a different method of injecting a low frequency excitation signal by 

manipulating Earth Leakage Monitoring (ELM) hardware that may be present in the system. In the UK, 

Earth leakage monitoring is required on any dc IT system, without an earth connection, with a voltage 

of over 50V [279]. There are a number of commercial earth leakage monitoring relay’s on the market. 

These are split between devices which detect and monitor both ac and dc circuits [323], [324] and those 

that look only at dc systems [325]. An example of the operation for these devices (there are others) is 

shown in Figure 3-38. A low frequency power source applies a signal between the positive and negative 

terminals of the dc system and ground. This is designed so that negligible current flows through the 

monitor under normal operation when there is no fault. In the event of an earth fault, an earth leakage 

current is detected by the instrumentation. 

This research looks at a new method of using an earth leakage monitoring system to inject the low 

frequency component necessary for on-line EIS measurement to the battery and then sweep this 

frequency across a range of values to replicate the functionality of the EIS without the need for a 

separate excitation circuit, while maintaining the earth leakage detection functionality. The battery, as 

in the other sub sections, is connected through a dc/dc converter to a load. The battery voltage and 

current are measured and used to determine the harmonic impedance. The technique is conducted on-

line with the battery system operating under normal operation. The changes to the earth leakage 

monitoring method means that, similar to the case where there is a separate EIS excitation circuit, the 

power electronic circuit and boost inductor will see a harmonic component not present under traditional 

ELM operation.  

 

 
Figure 3-38 : A representation of Earth leakage monitoring circuit operation 
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3.7.1 Circuit Operation 

The key requirement of this method is that it has to generate a low frequency waveform of variable 

frequency for the EIS calculation while at the same time ensuring normal operation of the remainder of 

the power system, in this case, a boost converter and the earth leakage monitoring system. The battery 

is connected to a boost converter, while the terminals of the battery are connected to an earth leakage 

monitor (ELM) to detect any leakage current between the battery terminals and ground. The key to 

using the ELM hardware is to generate a slightly different voltage across the terminal of the battery 

such that a low frequency signal can excite the circuit. Under normal operation there is a high impedance 

leakage to ground usually in the order of MΩ. This means that a small current exists in the circuit. Due 

to the low impedance of the battery (mΩ) it is difficult to pick up any current flowing through this in 

normal operation. Figure 3-39 shows some ways in which the circuit can be manipulated to increase the 

flow of leakage current through the battery system by deliberately skewing the current in the impedance 

connected to the positive and negative terminals of the battery. The circuit looks like a Wheatstone 

bridge circuit, and under traditional operation if the impedance in each leg of the ELM is set equal, the 

current through the battery would be zero as the leakage impedance from both terminals to ground is 

sufficiently high to be considered identical. A current source has a high impedance associated with it 

and therefore under normal battery operation there is a negligible DC current flowing from the battery 

through the ELM. The current source has been replaced in this thesis with a voltage source to tie up 

better with available laboratory equipment and the high impedance to dc is provided by a capacitor in 

series with the impedance in each leg of the ELM. 

In this chapter the ELM is represented by the circuit in Figure 3-39c for convenience (this is assumed 

reasonable as many ELM devices are protection relays and therefore have multiple power sources). The 

AC sources have the same voltage amplitude but have a phase shift with respect to each other. The 

frequency of the ac source is swept over the frequency range for the EIS calculation. The ELM circuit 

also sees the input impedance of the power converter and load and therefore there is an additional ac 

component present in the power electronics.   
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Figure 3-39 : Different methods of generating an excitation signal through ELM equipment 

The ELM signal adds to the normal circuit operation through super-position to create additional ripple 

across the battery. To determine what this extra ripple will be – it is necessary to consider the small 

signal model of the boost converter under open loop control (in this case with ideal components). 

When the switch is on: 

 {N; = 	z =E{N;=6 	 Equation 3-89 

 P�®� = −i = �=6  
Equation 3-90 

When the switch is off: 

 {N; = 	z P@��mP; +  P�  Equation 3-91 

 P�®� = E{N; − i = P�=6  
Equation 3-92 

For a small signal model, averaging, perturbation and linear approximation are used. The averaged 

equations are: 

 ̄{N; = 	z P	(	@��m)P; + (1 − =̅) ̄P�  Equation 3-93 

 ̄P�®� = (1 − =̅)E{̅N; − i = ̄P�=6  
Equation 3-94 

a) Different values of high impedance 
resistors 

b) Same impedance but an added 
phase shift 

c) Different power source signals 

Battery 

Boost converter input 
impedance 
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In this thesis the duty cycle, d, is fixed, but the voltage  {N; can be considered subject to a small 

perturbation caused by the ELM low frequency injection. 

 ̄{N; + x±?�² = 	z P	(	@��m�³̃´µ¶)P; + (1 − d)( ̄P�+	x"P�)  Equation 3-95 

 ̄P�+	x"P�®� = (1 − =)(E{̅N; + ¸?̃�²) − i =( ¯̄ P̄�+	x"P�)=6  
Equation 3-96 

Using linearisation, a set of DC equations can be obtained as follows: 

 ̄{N; =	 (1 − d) ̄P�  Equation 3-97 

 ̄P�®� = (1 − =)E{̅N; Equation 3-98 

Giving a DC input impedance to the power electronic converter of: 

>̅¹? =	  ̄{N;E{̅N; = (1 − d)3R� 
 

Equation 3-99 

From the parameters in the simulation chapter 4.7. This approximates to: 

>̅¹? = 16(1 − 0.6)3 ≈ 2.56Ω ≫ >¿_X Equation 3-100 

A similar set of equations for the AC signal can be obtained: 

x±?�² = 	�z¸?̃�² + (1 − d)	x"P�  Equation 3-101 

	x"P�®� = (1 − =)¸?̃�² − �i	x"P� Equation 3-102 

Substituting gives 

�"´µ¶�	ZµÀ̃´µ¶(~�Á)
Kµ =	 (1 − =)¸?̃�² − �i O±´µ¶8	T�³̃AzÂ

(18Ã)   

 

Equation 3-103 

x±?�² − 	�z¸̃?�² =	®�(1 − =)3¸?̃�² − �i®�(x±?�² − 	�z¸?̃�²) 
 

Equation 3-104 

x±?�²(1 + �i®�) = 	®�(1 − =)3¸̃?�² + �z¸?̃�² + �i®?�²	�z¸̃?�² 

 

Equation 3-105 


̃¹? =	 O±AzÂ³̃AzÂ =	Kµ(18P)
��T��T�¨Kµ	�

(1�T¨Kµ)     
Equation 3-106 

At a value of 125Hz using the parameters from the simulation chapter (section 4) this results in an 

impedance of approximately: 


̃¹? =	 1Ä×�.1Ä�ÅÆÇ×È.Æ×1��É�ÅÆÇ×ÅÆÇ×�.�1ÈÄ×1Ä×È.Æ×1��É(1�ÅÆÇ×�.�1ÈÄ×1Ä)   
Equation 3-107 
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̃¹? =	 3.ÇÄ��.È�Ç1(1�1Å�) = 315qΩ  Equation 3-108 

This is again greater than the battery impedance. Therefore it can be assumed that the voltage produced 

by the ELM will produce negligible additional ripple on the current. The impedance of the circuit to the 

ac perturbation is shown in Figure 3-40. Which gives a voltage across the battery of approximately: 

 {N;,N� ≈ Ë��mm
Ë��mm�3� 	12 ^�gd(/6) − sin	(/6 + 4

Ì)h  Equation 3-109 

 {N;,N� ≈ Ë��mm
Ë��mm�3� 	24 ^�gd ^/6 + 4

Æh sin	(− 4
Æ)h  Equation 3-110 

 {N;,N� ≈ Ë��mm
Ë��mm�3� 	9.2 ��gd ^/6 + 4

Æh�  Equation 3-111 

This gives a peak of approximately 5mV which is small but detectable through the scope probes and of 

similar magnitude to EIS excitation signals in Table 2-7.  

The earth leakage current in the event of a fault (as shown for example in Figure 3-39c) would register 

a current of approx. 2A rms: 

E?�² ≈ 	1.2 ^�gd(/6) + sin	(/6 + 4
Ì)h  Equation 3-112 

E?�² ≈ 	2.4 ^�gd ^/6 + 4
Æh cos	(4Æ)h  Equation 3-113 

E?�² ≈ 	2.21 ��gd ^/6 + 4
Æh�  Equation 3-114 

Within this circuit it is therefore possible to detect both an earth leakage current and a small EIS signal. 

 

Figure 3-40 : An approximate circuit representation of the Earth leakage monitoring circuit under a) normal 
operation and b) under fault 
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3.7.2 Harmonic analysis of the ELM current method waveform 

The current waveform seen from the battery using the ELM methods is the superposition of the ELM 

waveform and the sawtooth waveform. Fourier analysis can also be used to study the current waveform 

seen from the battery as shown in Figure 3-41. The harmonic spectrum of the current waveform is 

shown in Appendix C in full, but key equations are noted here. 

 
Figure 3-41 : Current Waveform for a ELM method 
 

In steady state condition the inductor current over one switching cycle in boost mode in an ideal 

converter can be calculated as: 

∆gSc =	 1� ( {N; + x±?�²)=UT   Equation 3-115 

∆gSww =	 1� ( {N; + x±?�² −  P�)(UT − =UT)  Equation 3-116 

∆gSc + ∆gSww = 1
� ( {N; + x±?�²)=UT + 1

� ( {N; + x±?�² −  P�)(UT − =UT)  Equation 3-117 

∆gSc + ∆gSww = 1
�  {N;=UT + 1

� x±?�²=UT + 1
� ( {N; −  P�)(UT − =UT) +

1
� x±?�²(UT − =UT)  

Equation 3-118 

∆gSc + ∆gSww = 1
�  {N;=UT + 1

� ( {N; −  P�)(UT − =UT) + 1
� x±?�²(UT − =UT) +

1
� x±?�²=UT  

Equation 3-119 

 

Simplification gives: 

∆gSc + ∆gSww = 1
�  {N;=UT + 1

� ( {N; −  P�)(UT − =UT) + 1
� x±?�²UT  Equation 3-120 

 

Where x±?�² is the earth leakage voltage as seen by the battery and can be calculated using Equation 

3-111: 
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x±?�² = >]\66
>]\66+20 	9.2 ��gd ^/6 + 

8h�	  Equation 3-121 

Therefore Equation 3-119 can be defined as:  

∆gSc + ∆gSww = 1
�  {N;=UT + 1

� ( {N; −  P�)(UT − =UT) + 1
�

>]\66
>]\66+20 	9.2 ��gd ^/6 +


8h�UT  

Equation 3-122 

The Fourier analysis of the current waveform is shown in Appendix C. This produces a harmonic 

spectrum as shown in Figure 3-42 using Equation C-154. 

 
Figure 3-42 : Theoretically derived harmonics of the Li-ion battery current signal with an ELM signal at a low 
frequency of 125Hz  

 

3.7.3 Inductor ripple calculation of ELM 

The extra inductor ripple current is negligible. However, the increase in battery ripple current caused 

by the super-position of the ELM produced current in conjunction with the normal ripple current from 

the boost converter operation. This can be seen in Figure 3-43 which shows the ripple current through 

the inductor (blue) is equal to the super-position of the inductor current with no ELM (orange) and the 

small signal inductor current which is a function of the ELM (grey). 

Switching frequency harmonic 

Low frequency harmonic 



134 
 

 
Figure 3-43 : Ripple current through the inductor 

The increase in current compared to the scenario with no ELM is therefore: 

�g  ¡7	gdQ�7\�7 = 1 + g ̃]\6,\Q
E]\6 = 1 +

9.2
>]\6+201
z=U� ]\6

  

 

Equation 3-123 

�g  ¡7	gdQ�7\�7 = 1 + 9.2z
(>]\66+20)PXZ���m  

Equation 3-124 

The ripple increase is a function of the impedance of the battery. As the battery degrades this will 

increase allowing a less accurate calculation of impedance.  

3.8 Summary 

Six different methods of generating a low frequency excitation signal using hardware found in most 

battery systems have been analysed with regard to their applicability for use in an online EIS 

measurement system. These are: 

1. Using existing dc/dc converter hardware but using variable duty cycle  

2. Using existing dc/dc converter hardware but using variable frequency 

3. Using existing dc/dc converter hardware but using variable pulse starting position 

4. Using existing dc/dc converter hardware but adding an impulse function 

5. Using battery balancing hardware converter hardware  

6. Using Earth Leakage Monitoring hardware 

Generating a low frequency excitation signal by varying the duty cycle in the dc-dc converter has 

been previously considered. However, the other methods (variable frequency, starting position and 

impulse function) have not previously been considered. The other techniques, in particular utilising the 

Earth Leakage Monitoring hardware and the battery balancing hardware in this manner have not been 

previously reported in literature and are a novel contribution of this thesis. 
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As part of the analysis, focus has been given to looking at determining the harmonic current through 

the battery using Fourier analysis and looking at the subsequent increased ripple current on the inductor. 

In all these methods, it was assumed that the DC-DC converter operates in continuous boost mode with 

a fixed duty cycle to allow comparable analysis. A summary of the key points in this chapter are shown 

in Table 3-4. 

Table 3-4: low frequency excitation method comparison 

Method Battery current shape Summary of 

Harmonics 

Inductor ripple 

increase 

Fourier co-

efficient 

amplitude 

@125Hz 

1 

The current increases and decreases 

at fixed rates but over different time 

periods defined by the varying duty 

cycle within a fixed switching 

period. 

 

Main harmonics 

fs,  fo, fs ± fo 

 

Approximate expression 

dependent on frequency and 

duty cycle variation 

1 + (PVW=NO(1 − =NO) 

0.27 

2 

   
The duty cycle is fixed – so the 

current increases and decreases more 

at a lower frequency than a higher 

frequency. 

 

Main harmonics 

fo,  

harmonic spread  

fs-Af → fs+Af, 

additional 

sidebands  

fs-Af –f0 → 

fs+Af + f0 

 

Approximate expression 

dependent on frequency 

variation and average 

switching frequency 

 

�NO�NO − (w 

0.26 

3 

The duty cycle and switching 

frequency are fixed. Therefore the 

time the inductor is discharging is 

fixed but the time is split. This results 

is a  skewed pattern compared to 

method 1 

 

Main harmonics 

fs,  fo, fs ± fo 

 

Approximate expression 

dependent on variable 

starting point variation, duty 

cycle and switching 

frequency 

 

1 + 2(;(1 − =)UT 

0.055 
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4 

The duty cycle and switching 

frequency are fixed. However the 

first “on” time is higher and therefore 

this increases the current. 

Main harmonics 

fs,  fo, fs ± fo  

harmonic spread  

 

 

Approximate expression 

dependent on the width of 

the impulse function and the 

“on” time of the signal 

=UT + U�=UT  

0.15 

5 

The duty cycle and switching 

frequency are fixed. However the 

battery current is the superposition of 

the dc-dc converter system and 

battery balancing circuit resulting in 

an increase in current in one battery 

and a decrease in the other in anti-

switching. 

Main harmonics 

fs,  fo, fs ± fo 

Negligible increase in 

inductor ripple but 

increased battery 

current ripple. 

0.2 

6 

Although the shape of the waveform 

looks similar to method 1. It is not 

the same as formed by a different 

process and is the superposition of 

the boost converter saw tooth 

waveform and the sinusoidal ELM 

produce current 

Main harmonics 

fs,  fo,  

 

 

Negligible increase in 

inductor current. Increase in 

ripple of battery current. 

 

0.15 

 

The theoretical results are a promising indicating that it is possible to generate a low frequency 

excitation signal in order to undertake on-line EIS measurement. However, there are potential trade-

offs. The key trade-off is the increase in ripple current through the battery and inductor. There are 

however other issues, the variable frequency (method 2) produces a range of frequencies around the 

switching frequency. This may make it more difficult to deal with possible EMI issues. The results are 

also potentially subject to hardware limitations. In particular, the fixed time step operation of the 

controller at 20µs, limits the accuracy that can be obtained when adding an impulse function or 
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controlling where the starting position of a pulse may be. Using the impulse function may also result in 

an overall increase in the duty cycle which may need to be adjusted to compensate. 

Chapter 3 looks at simulating these circuits using MATLAB Simulink to compare the theoretical 

derived expressions in this chapter with simulated ones. Chapter 4 then looks to determine equivalent 

values through experimental investigations. 
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4 Simulation of on-line EIS 

techniques 
 

4.1 Introduction 

In-order to help understand the operation of the circuit with respect to the theory and experimental 

work, it is necessary to look at modelling the circuit within a suitable package. For the purposes of this 

work Matlab SIMULINK (R2014b) was chosen. To undertake a circuit simulation the impedance of 

the battery was predetermined by EIS measurement and represented in a MATLAB simulation as an 

equivalent circuit in series with a dc voltage source which represents the battery voltage level. The 

different components of the circuit modelled include a Battery, the dc/dc converter and a load. 

An A123 Lithium-ion phosphate battery with 2.5 Ah capacity and 3.2V nominal voltage was used in 

this work and the parameters were estimated using an EIS impedance analyser (solatron 1260 and 1287) 

as shown in Figure 4-1. 

 

 

Figure 4-1 : Lithium-ion phosphate battery EIS impedance plot and equivalent circuit model 

 

The equivalent circuit in Figure 4-1 is the closest and most common representation for this battery 

type [172]. There are alternative circuit model for CPE representations in literature [326]–[328]. This 

includes a cascade connection of multiple parallel RCs, a parallel connection of multiple cascade RC, 

and a multiple parallel RC in parallel connection. However, in this work, the CPE, which normally 

represents an impure capacitor element [143] is represented as a capacitor in MATLAB; to avoid 
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complexity in battery model within MATLAB. Table 4-1 represents the estimated values of these 

components, where C1 is set equal to CPE1 and C2 is set equal to CPE2. 

Table 4-1: Battery Model component specifications 

Components  Lithium-ion Battery 
®1(Ω) 0.0069 

®3(Ω) 0.0056 

®È(Ω) 0.0000089 

iÐA1(S) 2.36 

iÐA3(S) 36.75 

 

This battery model is included within an ideal component system model as shown in Figure 4-2.  

Figure 4-2 : High level circuit simulation model with ideal components 
 

Gate drive control 

Battery model (1) 

Battery models with battery 

balancing Circuit   (2) 

Battery model with ELM 

Circuit (3) 

(3) (2) 

(1) 
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To determine the circuit components and dc-converter parameters the following design practice was 

used [329]. 

 

1. Key design parameters were specified 

• The input voltage range of the converter, Vbat is set to 3.2V to 2.8V (set by typical battery 

operating range) 

• The output voltage, Vout (voltage drop across diode VD and load Vdc) was chosen to be 

approximately 8V to limit the boost ratio and avoid the complexities of a high boost ratio. 

• The ripple across the load ∆vload is targeted to be approximately 0.01V (approximately 1.5% of 

output voltage) as a typical figure. 

• The maximum Output current is set to 450mA to keep the total output power low in keeping 

with the low power rating of the battery. 

• The circuit is designed to operate in continuous mode so that the comparison with theory and 

experimental results is more straightforward.  

• A switching frequency of 2kHz was chosen as the controller struggles with complex 

calculations if the switching frequency is set to a higher value and to avoid other trade offs of 

a high switching frequency such as the switching loss of the switch itself and the gate drive and 

dropout voltage.  

 

2. Inductor selection 

This thesis is looking primarily at adjusting the ripple current to inject a low harmonic waveform and 

therefore the boost converter needs to be designed to deal with an unusually large ripple current in order 

to test all the different methods, as see the excitation signal. 

Based on the inductor ripple increase from section 2.4 for the different methods of introducing a low 

frequency harmonic, a value of ripple current increase of approximately 200% of the output current has 

been chosen so that the low frequency ripple is visible. 

∆E� = 2	Ñ	ES|;,MN�	Ñ	 �YÒm���m ≈ 2.4A Equation 4-1 

This enables the inductor value to be calculated. 

z = ���m�	(�YÒm8���m)
∆@µ	�	wZ	�	�YÒm = È	�	(Æ8È)

3.Ì	�	3���	�	Æ ≈ 390Ó	  Equation 4-2 

The nearest available inductor size of 380Ó	 was used. 

3. Maximum switch current 
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Duty cycle, D is calculated from Equation 4-3 (assuming 100% efficiency) 

Ô = 1 −	���m,n§	
�YÒm = 1 − 3.Æ

Æ ≈ 0.65  Equation 4-3 

A value of 0.6 was chosen so that there was more leeway to look at variable starting position as a method 

of introducing low frequency ripple. 

The maximum switch current can then be calculated from 

E = ∆@µ
3 + @YÒm,n�Õ

18Ö ≈ 2.4(  Equation 4-4 

 

4. Rectifier Diode Selection 

 

The forward current needs to be equal to the maximum output current and the power dissipation 

rating has to be at least 

ÐÖ = E× 	Ñ	 ×  Equation 4-5 

 

An HER204G Rectifier Diode with maximum 2A with a 1.1V forward voltage drop was used because 

of its fast recovery time and low forward voltage. It was convenient to use as this was available in the 

laboratory. 

5. Output capacitor value 

When the switch is on, the current of the capacitor at time, 6 = e, is equal to the load average current. 

Therefore, the voltage ripple of the capacitor can be calculated from: 

∆xØSNP = 1
¨ 5 ES|;`

� =	 @YÒm`¨   Equation 4-6 

The capacitor value can be calculated by substituting	e = Ö
wZ in Equation 4-6: 

i = @YÒmÖ
∆OÙY�lwZ = �.ÌÇ	�	�.Ä

�.�1×3��� = 13500	Ó*  Equation 4-7 

A capacitor with value of the 13600µF was used in the hardware setup. 

6. Output load resistor value 

 The load resistor is used to balance the capacitor voltage and also to provide a load to discharge the 

battery when the switch is off. The value of load resistor is therefore output voltage/output current 
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®� =	 Å
�.ÌÇ ≈ 16Ω  Equation 4-8 

The chosen components used in the experimental chapter 5 and replicated in simulation are 

summarised in Table 4-2. The mosfet used was available in the laboratory. 

Table 4-2 : Boost converter component specifications 

Boost Converter Components Specifications 

Inductance 380µH, 20 A ,Toroidal 

Capacitance 13600µF, 16V Electrolytic 

Load 16Ω resistor 

Switch MOSFET FDPF045N10A, 100 V, 67 A, 4.5 mΩ 

Isolated dc/dc converter for 
derivers 

IE0515S (15 V) 

Drivers  HPCL 3140 (0.4A peak current driver) 

Diode HER204G Rectifier Diode with maximum 2A with a 1.1 
forward voltage drop 

Prior to investigating the different methods of introducing a low-frequency ripple, the base case with 

fixed duty cycle of 0.6 and fixed switching frequency of 2kHz was simulated. This provides a useful 

comparison to the methods under investigation in this thesis. Table 4-3 shows the simulated waveforms 

of this base case circuit. In this model, the circuit boosts at a ratio of 2.27 compared to the design 

equations, the simulated values of the load output voltage and ripple and the load current and ripple are 

as per the design equations. The battery voltage has been set to the upper level of the battery voltage 

range and the inductor ripple current is close to the calculated 2.4A from Equation 4-1.  These results 

are referred to as the “base” results by which the other results from the methods of introducing a low 

frequency component of ripple will be compared. 

Table 4-3: Simulated results of fixed duty cycle 

 Simulation 

Fixed Duty Cycle ideal component 

Average Value Peak-Peak ripple 

E{N;; 1.55 A 2.42 A 

 {N;; 3.21 V 16.8 mV 

EØSNP 456 mA 0.7 mA 

 P� 7.3 V 11.1 mV 
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The simulated waveforms of the battery voltage, current, converter output voltage and load current 

are shown in Figure 4-3 and Figure 4-4. The waveforms show the circuit is operating in continuous 

mode as expected.   

Figure 4-3 : Simulated Li-ion battery Current and Voltage waveforms. The battery is excited with PWM at a fixed 
duty cycle of 0.6 and switching frequency of 2kHz. 

 

Figure 4-4 : Simulated Load Current and output Voltage waveforms. The battery is excited with PWM at a fixed 
duty cycle of 0.6 and switching frequency of 2kHz. 

The calculated harmonics found from Fourier analysis of the battery current using the model from 

Figure 4-2 is shown in Figure 4-5 using the FFT calculation MATLAB code. Under the normal 

operation of the dc/dc converter, only the switching frequency harmonics are visible. This graph will 

Simulated Battery Voltage Measurement 

PWM 

Simulated Battery Current Measurement 

Simulated Vdc Measurement 

Simulated Load Current Measurement 
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be compared to the other simulated curved with a low-frequency component and with theoretical and 

experimental values.  

 
Figure 4-5 : Simulated current harmonics at switching frequency of 2kHz, Where the fundamental frequency is 
defined as 125kHz to enable comparison with low frequency produced analysis. 

 

The following sections will look at simulating the different methods of introducing a low-frequency 

component into the battery. 

 

Switching frequency 1st harmonic 

Switching frequency 
2nd harmonic 
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4.2 DC/DC Converter with varying duty cycle PWM 

To generate a low-frequency component by varying the duty cycle, the gate drive control is replaced 

with the model in Figure 4-6 (a). The gate drive includes a PWM generator block, a constant value, 

which represents the average duty cycle and a sinewave block to generate the low-frequency variation 

to the duty cycle. The PWM generator is a Simulink predefined function which creates a pulse signal 

based on an input duty cycle and the switching frequency, using a sawtooth function. In the sub block 

of the PWM generator block the output rectangular function is generated from the comparison of the 

scaled sawtooth signal with the input duty cycle. 

 

 

 

 
Figure 4-6 : (a) Variable duty cycle gate drive control (b) generating PWM signal sub-block 

 

The circuit was simulated with 2kHz switching frequency and a duty cycle of 0.6 with a low 

frequency sine wave of amplitude of 0.01 to produce the variable duty cycle signal. The comparison of 

the simulated circuit data with a fixed duty cycle (from section 4.1) and this variable duty cycle at 

frequencies of 125Hz and 175 Hz are shown in Table 4-4 and Table 4-5 respectively. 

 

 

(a) 

Variable Duty cycle 

(b) 
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Table 4-4: Comparison of simulated results of fixed and variable duty cycle at 125Hz with Ad =0.01, 

 Simulation 

Fixed Duty Cycle Variable Duty Cycle  

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E{N;; 1.55 A 2.42 A 1.55 A 2.72 A 

 {N;; 3.21 V 16.8 mV 3.21 V 18.8 mV 

EØSNP 456 mA 0.7 mA 459 mA 1.5 mA 

 P� 7.3 V 11.1 mV 7.3 V 23.3 mV 

 

 

Table 4-5: Comparison of simulated results of fixed and variable duty cycle at 175Hz with Ad =0.01 

 Simulation 

Fixed Duty Cycle Variable Duty Cycle  

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E{N;; 1.55 A 2.42 A 1.56 A 2.67 A 

 {N;; 3.21 V 16.8 mV 3.21 V 18.5 mV 

EØSNP 456 mA 0.7 mA 458.2 mA 1.2 mA 

 P� 7.3 V 11.1 mV 7.3 V 18.7 mV 

 

The results show that the load current and load voltage have the same average value but there is 

additional ripple on the current when the input current ripple is increased through the use of variable 

duty cycle. The simulated variable duty cycle converter boosts at the same ratio as the simulated base 

model circuit. The injected low-frequency signal added ripple to the battery and converter waveforms 

(Equation 3-40) which results in an increase in the peak to peak value of Vbatt, Ibatt, Vdc, and Iload. 

However, the added ripple reduced as Np value decreases (Equation 3-40). The battery current has the 

same average value, but there is an increase in ripple of 12% at 125Hz and 10% at 175Hz. 

The simulated battery current and voltage, PWM, dc/dc boost converter load current, and output 

voltage waveforms at switching frequency of 2kHz and duty cycle of 0.6 are shown in Figure 4-7 to 

Figure 4-10. The waveforms clearly show an increase in the ripple on the battery current of the same 

shape as described in the theory section 3.2.4.  
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Figure 4-7 : Simulated Li-ion battery Current and Voltage waveforms. The battery is excited with PWM with 
variable duty cycle at a low frequency of 125Hz with Ad = 0.01. 

 

Figure 4-8 : Simulated Load Current and Voltage (Vdc) waveforms. The battery is excited with PWM with variable 
duty cycle at a low frequency of 125Hz with Ad = 0.01. 
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Figure 4-9 : Simulated Li-ion battery Current and Voltage waveforms. The battery is excited with PWM with 
variable duty cycle at a low frequency of 175Hz with Ad = 0.01.  

 

Figure 4-10 : Simulated Load Current and Voltage (Vdc) waveforms. The battery is excited with PWM with variable 
duty cycle at a low frequency of 175Hz with Ad = 0.01. 

Figure 4-11 shows the Fourier analysis of the simulated battery current signal with an injected low 

frequency component of 125Hz at a switching frequency of 2kHz using the variable duty cycle 

technique. The simulated current harmonics in Figure 4-11 can be compared to Figure 4-5 with a fixed 

duty cycle, and show that a low-frequency component has been added. 

Simulated Battery Voltage Measurement 

Variable duty cycle PWM 

Simulated Battery Current Measurement 

Simulated Vdc Measurement 

Simulated Load Current Measurement 
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Figure 4-11 : Simulated current harmonics at variable duty cycle of low frequency of  125Hz and switching frequency 
of 2kHz 

 

These and other results in this chapter will be compared to theory and experimental results in chapter 

5, along with more calculated sensitivity studies. 

 

  

Switching frequency harmonic 

Low frequency harmonic 
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4.3 DC/DC Converter with varying frequency PWM 

The same simulated circuit from Figure 4-2 was used with a variable frequency PWM gate drive 

generated in the gate drive sub-block as shown in Figure 4-12. The variable frequency PWM generator 

sub block consists of a pulse generator, an integrator block and an external reset point to generate the 

sawtooth signal as shown in Figure 4-13. The signal from the sawtooth and the duty cycle subtraction 

is used as an input of the sign block to create a rectangular waveform. The gain and the constant block 

are used for scaling the created rectangular waveform. The switching frequency of the pulse signal is 

set to an average value of 2kHz with an added low frequency component. 

 
Figure 4-12 : Simulated Variable frequency gate drive control 

 

Figure 4-13 : The subsystem model for a variable frequency PWM generator 
 

The circuit was simulated with an average switching frequency of 2kHz with a sine wave of amplitude 

of Af = 400 to produce a variable switching frequency signal with a duty cycle of 0.6. The comparison 

of the simulated circuit data with fixed duty cycle and variable switching frequency at the low-

frequencies of 125Hz and 175 Hz are shown in Table 4-6 and Table 4-7 respectively. 

 

Variable switching frequency 



151 
 

Table 4-6: Comparison of simulated results of fixed and variable switching frequency at 125Hz 
with A f = 400 

 Simulation 

Fixed Duty Cycle Variable Frequency  

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E{N;; 1.55 A 2.42 A 1.63 A 2.99 A 

 {N;; 3.21 V 16.8 mV 3.21 V 20.7 mV 

EØSNP 456 mA 0.7 mA 458 mA 1.4 mA 

 P� 7.3 V 11.1 mV 7.3 V 22.1 mV 

 

Table 4-7: Comparison of simulated results of fixed and variable switching frequency at 175Hz 
with A f = 400 

 Simulation 

Fixed Duty Cycle Variable frequency  

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E{N;; 1.55 A 2.42 A 1.62 A 2.99 A 

 {N;; 3.21 V 16.8 mV 3.21 V 20.7 mV 

EØSNP 456 mA 0.7 mA 459 mA 1.2 mA 

 P� 7.3 V 11.1 mV 7.3 V 18.9 mV 

 

Similar to the variable duty cycle technique, the variable switching frequency increases the battery 

ripple current. The current ripple increased by 24% at both low frequency values as indicated in section 

3.3.3 . The variation of the ripple current appears to depend on the amplitude of the sinewave in the 

excitation signal from Equation 3-52. The Vdc average value remains the same as does the boost ratio 

from the base case circuit. 

Figure 4-14 to Figure 4-17 show the simulated battery and load waveforms at the frequencies of 

125Hz and 175Hz. The low frequency signal was induced to the system by varying the switching 

frequency with a sinewave with amplitude of Af = 400. The current ripple waveform shows the change 

in frequency from low to high as expected from the theory in section 3.3.2. The current ripple increases 

at the time that the switching frequency of the gate drive is reduced. 
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Figure 4-14 : Simulated Li-ion battery Current and Voltage waveforms. The battery is excited with PWM with 
variable frequency at a low frequency of 125Hz with Af = 400. 

 

Figure 4-15 : Simulated Load Current and Voltage (Vdc) waveforms. The battery is excited with PWM with variable 
frequency at a low frequency of 125Hz with Af = 400. 
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Figure 4-16 : Simulated Li-ion battery Current and Voltage waveforms. The battery is excited with PWM with 
variable frequency at a low frequency of 175Hz with Af = 400. 

 

Figure 4-17 : Simulated Load Current and Voltage (Vdc) waveforms. The battery is excited with PWM with variable 
frequency at a low frequency of 175Hz with Af = 400.  

Figure 4-18 shows the calculated harmonics of the battery current with a low-frequency component 

of 125Hz and switching frequency of 2kHz with Af = 400. The amplitude of the current harmonics are 

smaller than the current harmonic using variable duty cycle technique shown in Figure 4-11. The 	�T 
harmonic is spread across the range between 1600Hz and 2400Hz (e.g. (	�T ±	(w)) as previously 

mentioned in section 3.3.1. This is not necessarily a desirable characteristic from an EMI perspective. 
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Current ripple increased 
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Simulated Vdc Measurement 

Simulated Load Current Measurement 



154 
 

 
Figure 4-18 : Simulated current ripple at low frequency of 125Hz and switching frequency of 2kHz. Af = 400. 

 

  

Low frequency 
harmonic 

Range of switching frequency 
components �T between harmonic 
number 12 and 20. 
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4.4 DC/DC Converter with variable starting point PWM 

In order to induce a low frequency ripple to the battery signals using a variable starting point method, 

a pulse position modulation (PPM) signal was used. To generate the PPM signal in MATLAB Simulink, 

a signal generator block was used to generate a saw tooth waveform, a sine wave generator was used to 

produce sinewave and a rational operator block, and a monostable is used (see Figure 4-20). The rational 

operator block compares the amplitude of the saw tooth and the sinewave signal. When the value of the 

sawtooth is bigger than the sinewave the state of the pulse signal is high and when it is lower, the state 

is low. This generates the pulse width modulation signal. The PPM signal is at high state when the 

PWM is at low state. This is shown in Figure 4-19. The monostable block is used to generate the PPM 

signal at the falling edge of the PWM signal and to set the duty cycle of the generated pulse. 

 
Figure 4-19 : Example showing adding a low frequency variable starting point using a sawtooth waveform with 
frequency 2kHz and a sinewave with low frequency wave 175Hz, duty cycle = 0.6. 

 

 
Figure 4-20 : Simulation model of the gate drive circuit  to generate a variable starting points pulse 

The circuit was simulated under the conditions of continuous mode operation with a switching 

frequency of 2kHz with an average starting point of 0.00026s and amplitude of variation At= 0.00004s 

to produce a rectangular function with a variable starting point and the duty cycle of 0.6. The 

comparison of the simulated circuit data with fixed duty cycle and variable starting point at the low 

frequencies of 125Hz and 175 Hz are shown in Table 4-6 and Table 4-7 respectively. 

The average value of load voltage  P� remained the same as does the boost ratio. The current ripple 

increases by 25% with the addition of the low-frequency ripple with no obvious variation due to low 

frequency value as described in section 3.4.3 .  

PPM signal generator 

Falling Edge 
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Table 4-8: Comparison of simulated PWM with variable starting point at 125Hz effects on 
Current and Voltage ripple 

 Simulation 

Fixed Duty Cycle Variable starting point 

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E{N;; 1.55 A 2.42 A 1.58 A 3.02 A 

 {N;; 3.21 V 16.8 mV 3.21 V 21.3 mV 

EØSNP 456 mA 0.7 mA 462 mA 2.2 mA 

 P� 7.3 V 11.1 mV 7.38 V 35.7 mV 

 

Table 4-9: Comparison of simulated PWM with variable starting point at 175Hz effects on 
Current and Voltage ripple 

 Simulation 

Fixed Duty Cycle Variable starting point  

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E{N;; 1.55 A 2.42 A 1.59 A 3.13 A 

 {N;; 3.21 V 16.8 mV 3.2 V 22 mV 

EØSNP 456 mA 0.7 mA 465 mA 2.5 mA 

 P� 7.3 V 11.1 mV 7.38 V 40.4 mV 

 

Figure 4-21 to Figure 4-24 show the simulated waveforms of the battery and dc/dc converter using 

the variable starting point method. Similar to waveforms with variable duty cycle, the voltage and 

current signals have sinusoidal shape. However, the wave shape is distorted. This is believed to be a 

function of the accuracy by which MATLAB can handle the variable starting position due to the 20µs 

limitation in accuracy in the controller as described in section 3.5.3. 
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Figure 4-21 : Simulated Li-ion battery Current and Voltage waveforms. The battery is excited with PWM with 
variable starting point at a low frequency of 125Hz with A t= 0.00004.  

 

Figure 4-22 : Simulated Load Current and Voltage (Vdc) waveforms. The battery is excited with PWM with variable 
starting point at a low frequency of 125Hz with At= 0.00004.   
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Simulated Load Current Measurement 



158 
 

Figure 4-23 : Simulated Li-ion battery Current and Voltage waveforms. The battery is excited with PWM with 
variable starting point at a low frequency of 175Hz with A t= 0.00004.  

 

Figure 4-24 : Simulated Load Current and Voltage (Vdc) waveforms. The battery is excited with PWM with variable 
starting point at a low frequency of 175Hz with At= 0.00004.   

The battery current harmonic analysis at low-frequency of 125Hz by varying the starting point of the 

PWM signal with At= 0.00004 is shown in Figure 4-25. It is clear that both low frequency 125Hz and 

the switching frequency of 2kHz harmonics are extracted from the simulated current waveform.  

Simulated Battery Voltage Measurement 

PWM 

Simulated Battery Current Measurement 

Simulated Vdc Measurement 

Simulated Load Current Measurement 
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Figure 4-25 : Simulated variable starting point current ripple at low frequency of  125Hz and switching frequency 
of 2kHz 

 

  

Switching frequency harmonic 

Low frequency 
harmonic 
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4.5 DC/DC Converter with an Impulse Function  

In the simulation of the boost converter with an Impulse function, two pulse generator blocks were 

used as shown in Figure 4-26. One of them is used for generating pulse signals with a duty cycle of 0.6 

and frequency of 2kHz, the other pulse generator is used to create an impulse signal. A logical operator 

function block was use to OR the signals from the pulse generator blocks. 

 
Figure 4-26 : Example showing a simulation model for Impulse function 

A fixed time step of 20µs is used in the OpalRT hardware, so the chosen duty cycle and the frequency 

of the Impulse function must be chosen as a multiple integer of the time step as explained in section 

3.5.1. For consistency with section 3.5.1, it is easier to analyse the circuit when the low frequency 

impulse is an integer multiple of the switching frequency. There are two ways to generate this impulse; 

• A small pulse width of 20µs can be used but the start of the pulse needs to be time shifted. 

• A pulse of slightly larger width than the 2kHz switching frequency can be used but the start 

of both pulses needs to be co-incident. 

The latter is easier to generate through the OpalRt control so will be used. For example at 125Hz the 

impulse duty cycle must be chosen such that the impulse width is longer than the switching frequency 

pulse which is 0.0003s. A duty cycle of 0.04 is used to generate a pulse width of 0.00032s. In this case 

the low frequency component is then visible to the gate drive after passing through the OR function. 

The circuit was simulated under the conditions of continuous mode operation with the average 

switching frequency of 2kHz and duty cycle of 0.6. The simulation was run for OR combination of the 

PWM signal and a pulse function with a low-frequency component set to be as an integer value of the 

switching frequency. The comparison of the simulated circuit data at the low frequencies of 125 Hz 

with duty cycle of 0.04 and 166.7Hz with duty cycle of 0.06 are shown in Table 4-10 and Table 4-11 
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respectively. It was chosen not to carry out the second point at 175Hz as this is not an integer of the 

switching frequency so 166.7Hz was used as the closest integer value. 

Table 4-10: Comparison of simulated PWM with Impulse (OR-4 %) at 125Hz effects on Current 
and Voltage ripple 

 Simulation 

Fixed Duty Cycle Using impulse function 

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E{N;; 1.55 A 2.42 A 1.56 A 2.7766 A 

 {N;; 3.21 V 16.8 mV 3.21 V 18.2 mV 

EØSNP 456 mA 0.7 mA 458.4 mA 1.4 mA 

 P� 7.3 V 11.1 mV 7.34 V 22.2 mV 

 

Table 4-11: Comparison of simulated PWM with Impulse (OR-6%) at 166.7Hz effects on Current 
and Voltage ripple 

 Simulation 

Fixed Duty Cycle Using impulse function  

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E{N;; 1.55 A 2.42 A 1.56 A 3.43 A 

 {N;; 3.21 V 16.8 mV 3.21 V 22.4 mV 

EØSNP 456 mA 0.7 mA 475 mA 2.8 mA 

 P� 7.3 V 11.1 mV 7.6 V 45.3 mV 

 

The peak to peak ripple increased with the extra width of the impulse function according to the 

Equation 3-83. The pulse width at 125Hz increased from 0.0003 to 0.00032s, while the pulse width 

increased to 0.00036s at 166.7Hz. The ripple and boost ratio of the 166.7Hz impulse function is 

therefore higher compared to the 125Hz signal as expected, because the circuit is switched on for longer 

time and therefore the boost ratio of the circuit changes due to the increase in the average duty cycle 

with time over the T0 pulses period.  

 Figure 4-27 to Figure 4-30 illustrate the simulated waveforms of the battery and dc/dc converter for 

an OR combination of PWM and Impulse signal. The battery current increased at each interval of the 

f0 of the low frequency waveform as the switching pulse width, Ti is added as described in section 3.5.4. 
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Figure 4-27 : Simulated Li-ion battery Current and Voltage waveforms. The battery is excited with an impulse signal 
at a low frequency of 125Hz with pulse duty cycle of 0.04. 

 

Figure 4-28 : Simulated Load Current and Voltage (Vdc) waveforms. The battery is excited with an impulse signal 
at a low frequency of 125Hz with pulse duty cycle of 0.04.  

 

The extra width Ti added to the Switching pulse 

Low frequency ripple added to the current waveform 

Simulated Battery Voltage Measurement 

PWM 

Simulated Battery Current Measurement 

Vdc Measurement 

Simulated Load Current Measurement 
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Figure 4-29 : Simulated Li-ion battery Current and Voltage waveforms. The battery is excited with an impulse signal 
at a low frequency of 166.7Hz with pulse duty cycle of 0.06. 

 

Figure 4-30 : Simulated Load Current and Voltage (Vdc) waveforms. The battery is excited with an impulse signal 
at a low frequency of 166.7Hz with pulse duty cycle of 0.06. 

Figure 4-31 shows the harmonic analysis of the battery current using the Impulse method for �� =
125	
 and duty cycle of 0.04.  
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Figure 4-31 : Simulated PWM with an Impulse function current ripple at low frequency of 125Hz with pulse width 
of 0.0004s and switching frequency of 2kHz 

 

4.6 Battery Balancing  

The switched capacitor balancing method is modelled for the balancing of two battery cells. To 

balance these two cells, four MOSFET switching components with a capacitor are used. For each battery 

two switches are needed as shown in Figure 4-32. Two pulse generator blocks are used to control the 

MOSFETs. One pulse generator with a duty cycle of 0.45 controls switches M1 and M3. The other 

pulse generator controls switches M2 and M4. Because switches M2 and M4 should be turned off while 

switches M1 and M3 are turned on, a logical operator function block is used to NOT the pulse control 

signal with the duty cycle of 0.55. So the output signal is a pulse signal with 0.45 duty cycle. A 10mF 

capacitor was used for the balancing capacitor. As mentioned in section 3.6, the value of this balancing 

capacitor affects the speed of the balancing time. Some authors [295], [298] also use a series inductance 

for soft-switching of the battery balancing. They chose the capacitor values based on the resonance 

circuit design. In this research a series inductance wasn’t used, however it would be considered in future 

work. This method is presented as a proof of concept and the use of the resonance circuit as a balancing 

method for EIS calculation adds complexity and requires further consideration which is out of scope of 

this thesis. The model in Figure 4-32 was used. However, using a voltage source within the battery 

model does not allow the charge transfer to be seen as part of the balancing. To specifically observe 

this a high value capacitor could be used. One potential disadvantage, is that it may only be possible to 

detect the low frequency ripple on the batteries waveforms when the batteries are not balanced. This is 

because when the batteries are balanced there is no current to be shared between the batteries and 

therefore the low-frequency ripple may not be seen.  

 

Low frequency harmonic 

Switching frequency harmonic 
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Figure 4-32 : Example showing a simulation model for a switched capacitor battery balancing circuit connected to the converter  

Battery Model 

Switched capacitor battery balancing circuit 
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To keep consistency with the other methods, the circuit was simulated such that the boost converter 

is switched at a frequency of 2kHz and a duty cycle of 0.6. The battery balancing is set as two pulse 

signals with fixed duty cycle of 0.45 at the low-frequency required. The voltage values of the batteries 

were chosen such that the sum of the two battery voltages has been set to 3.21V to allow comparison 

with the fixed duty cycle case. Although, these values are smaller than the threshold voltage level of 

the li-ion battery and are not safe for practical operation as used.  The values of the two battery 

voltages have been offset to simulate the process of balancing, so that current flows through the 

battery balancing circuit. The comparison of the simulated circuit data with fixed duty cycle and 

switching frequency at the low frequencies of 125Hz and 166.7Hz are shown in Table 4-12 and Table 

4-13 respectively. It was chosen not to carry out the second point at 175Hz as this is not an integer 

of the switching frequency so 166.7Hz was used as the next closet integer. This is again because of 

the fixed time step 20µs used by the Opal-rt unit (refer to section 3.5.1). 

Table 4-12: Comparison of simulated battery balancing excited signal at 125Hz effects on 
Current and Voltage ripple 

 Simulation 

Fixed Duty Cycle Battery with Balancing circuit 

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E� 1.55 A 2.42 A 1.56 A 2.73 A 

E{N;;1 1.55 A 2.42 A 1.8 A 3.51 A 

E{N;;3 1.4 A 3.88 A 

 {N;;1 3.21 V 16.8 mV 1.7 V 25 mV 

 {N;;3 1.51 V 26.7 mV 

EØSNP 456 mA 0.7 mA 455 mA 0.8 mA 

 P� 7.3 V 11.1 mV 7.3 V 12.5 mV 

Table 4-13: Comparison of simulated battery balancing excited signal at 166.7 Hz effects on 
Current and Voltage ripple 

 Simulation 

Fixed Duty Cycle Battery with Balancing circuit  

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E� 1.55 A 2.42 A 1.56 A 2.73 A 

E{N;;1 1.55 A 2.42 A 1.86 A 3.49 A 

E{N;;3 1.34 A 3.35 A 

 {N;;1 3.21 V 16.8 mV 1.7 V 24.8 mV 

 {N;;3 1.51 V 24 mV 

EØSNP 456 mA 0.7 mA 456 mA 0.8 mA 

 P� 7.3 V 11.1 mV 7.3 V 12.1 mV 
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The boost ratio, load current and voltage remain the same. The ripple in the inductor increases in 

comparison to the theory because some of the capacitor current passes through the inductor as a 

function of impedance. The waveform of the batteries and circuit waveforms are shown in Figure 

4-33 to Figure 4-36. The waveforms show that the added ripple to the battery waveforms, using the 

battery balancing method as explained in section 3.6.2, are visible in the simulation. The current in 

battery 1 and battery 2 is the superposition of the balancing capacitor charging and discharging 

currents with the boost converter current waveforms (refer to section 3.6.2). When battery 1 is 

connected and discharging to the balancing capacitor, the current ripple of the battery follows an 

exponential decay related to the time constant of the circuit until the capacitor is disconnected. In 

battery 2 which is charging from the capacitor the reciprocal action occurs. 

Figure 4-33 : Simulated Li-ion battery Current and Voltage waveforms. The battery is subject to battery 
balancing at a low frequency of 125Hz.  
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Figure 4-34 : Simulated Load Current and Voltage (Vdc) waveforms. The battery is subject to battery balancing 
at a low frequency of 125Hz.   

 

Figure 4-35 : Simulated Li-ion battery Current and Voltage waveforms. The battery is subject to battery 
balancing at a low frequency of 166.7 Hz.    
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Figure 4-36 : Simulated Load Current and Voltage (Vdc) waveforms. The battery is subject to battery balancing 
at a low frequency of 175Hz.     

 

This method may not be useful for the batteries when there is a high voltage difference between the 

two batteries, because this results in a high value of capacitor current. For example, when  {N;;1 =
3.18 	and  {N;;3 = 0.043 	a large current flows as is shown in Figure 4-37 and Figure 4-38. But 

the voltage value of 43mV is not practical and safe for li-ion battery. However, this is chosen for 

proof of concept of the methodology. Additionally the battery low frequency current ripple is not 

visible when there is a small voltage difference between the two batteries.  

 

Simulated Vdc Measurement 

Simulated Load Current Measurement 
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Figure 4-37 : Simulated Li-ion battery Current and Voltage waveforms. The battery is subject to battery 
balancing at a low frequency of 125Hz. With Vbat1 =3.18V and  Vbat2 =0.043V 

 

Figure 4-38 : Simulated Load Current and Voltage (Vdc) waveforms. The battery is subject to battery balancing 
at a low frequency of 125Hz.     
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Figure 4-39 shows the Fourier analysis of the simulated current of both batteries using the battery 

balancing circuit at switching frequency of 2kHz and low frequency of the 125Hz. The harmonics of 

�� and �T are present in the harmonic spectrum of the simulated currents. 

 

 
Figure 4-39 : Simulated current ripple at a low frequency of 125Hz and a switching frequency of 2kHz using the 
battery balancing method. a) Battery 1 current harmonics, b) Battery 2 current harmonics 
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(b) 

Switching frequency harmonic 

Low frequency harmonic 
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4.7 Earth Leakage Monitoring 

The ELM low-frequency injection technique was simulated in Simulink. The same battery and 

boost converter models, from section 4.1, were used. The earth leakage monitoring circuit simulation 

includes two AC voltage sources to inject the low frequency signal, and two ELM resistors and 

capacitors. The voltage sources are then connected to the battery terminals through the resistors. The 

AC voltage sources generate low-frequency sinewave signals with the same amplitude of 12V but a 

45˚ phase difference with respect to each other. The battery is connected to the boost converter as 

shown in Figure 4-40.  

 
Figure 4-40 : Example showing a simulation model for Earth leakage monitoring battery connected to the 
converter.  

The circuit was simulated with a boost converter switching frequency of 2kHz, a duty cycle of 0.6 

and the ELM circuit active. The comparison of the simulated circuit data with fixed duty cycle and 

switching frequency at the low frequencies of 125Hz and 175 Hz are shown in Table 4-14 and Table 

4-15 respectively. The boost ratio and load current and voltage remain the same as the base model.  

There is no obvious low frequency dependence on ripple, but the indication of increasing frequency 

giving rise to decreasing ripple, is in keeping with Equation 3-124.  

 

 

 

 

ELM Circuit 
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Table 4-14: Comparison of simulated Earth leakage Monitoring excited signal at 125Hz effects on 
Current and Voltage ripple 

 Simulation 

Fixed Duty Cycle Earth Leakage connected to the 

converter  

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E{N;; 1.55 A 2.42 A  1.7 A 3.323 A 

 {N;; 3.21 V 16.8 mV 3.21 V 24.1 mV 

EØSNP 456 mA 0.7 mA 455 mA 0.74 mA 

 P� 7.3 V 11.1 mV 7.3 V 11.8 mV 

 

Table 4-15: Comparison of simulated Earth leakage Monitoring excited signal at 175Hz effects on 
Current and Voltage ripple 

 Simulation 

Fixed Duty Cycle Earth Leakage connected to the 

converter  

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E{N;; 1.55 A 2.42 A 1.7 A 3.321 A 

 {N;; 3.21 V 16.8 mV 3.21 V 23.9 mV 

EØSNP 456 mA 0.7 mA 455 mA 0.71 mA 

 P� 7.3 V 11.1 mV 7.3 V 11.4 mV 

 

The waveform of the batteries and circuit waveforms are shown in Figure 4-40 to Figure 4-44. At 

first glance, the waveforms look similar to the waveforms in the variable duty cycle method. 

However, they are different, as in this method the sinusoidal waveform is the results of the 

superposition of the generated ELM current and the boost converter as described in section 3.7.3.  
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Figure 4-41 : Simulated Li-ion battery Current and Voltage waveforms. The battery is excited with an Earth 
leakage Monitoring signal at a low frequency of 125Hz. 

 

Figure 4-42 : Simulated Load Current and Voltage (Vdc) waveforms. The battery is excited with an Earth leakage 
Monitoring signal at a low frequency of 125Hz. 
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Figure 4-43 : Simulated Li-ion battery Current and Voltage waveforms.  The battery is excited with an Earth 
leakage Monitoring signal at a low frequency of 175Hz. 

 

 
Figure 4-44 : Simulated Load Current and Voltage (Vdc) waveforms.  The battery is excited with an Earth 
leakage Monitoring signal at a low frequency of 175Hz. 

Figure 4-45 illustrates the Fourier analysis of the simulated current of the ELM method at a 

converter switching frequency of 2kHz and a low frequency ELM signal of 125Hz. Both low 

frequency and switching frequency harmonics are observed in the harmonic spectrum of the 

simulated current.  
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Figure 4-45 : Simulated current harmonics at low frequency of  125Hz and switching frequency of 2kHz using 
the ELM method 

 

4.8 Summary 

This chapter looked at simulating the circuits of the different presented methods for injecting a 

low frequency harmonic from chapter 3. The DC- DC converter was modelled to operate in 

continuous mode with a fixed duty cycle and 2kHz switching frequency. The circuit and battery 

waveforms under the different methods of adding low frequency ripple were obtained through 

simulation. This chapter also calculated the harmonics of the simulated current through the battery 

using the Fourier analysis of the simulated battery current using MATLAB. Key results compared to 

a circuit with no low frequency ripple are summarised in Table 4-16. 

In all these methods, the low-frequency component has been detected from the simulated battery 

waveforms. This indicates the possibility of using the low-frequency excitation signal methods to 

undertake an on-line EIS measurement. However, there are some issues in using these methods; 

• The variable frequency method produces a spread range of switching frequency across the 

(	�T ±	(w) range. This may result in EMI/EMC issues.  

• In the impulse function, starting position, and battery balancing method, the accuracy of the 

data is limited by the time step size of 20µs.  

• The battery balancing method can’t be used when the battery voltages are equalised as the 

low-frequency ripple is not visible in the waveforms. Also, using the battery balancing may 

result in an increase in the current ripple when the voltage difference between the batteries is 

high. 

 

Switching frequency harmonic 

Low frequency harmonic 
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 Table 4-16: key results from simulation  
Method Boost ratio 

compared to 

base case 

Key controlling 

parameters 

Inductor current ripple 

increase @125Hz 

Ripple dependency on 

frequency 

Fourier co-efficient 

amplitude @125Hz 

1- Variable 

duty cycle 

 Same Ad = 0.01 in D = 

0.6 

12.4% Yes 0.16 

2- Variable 

frequency 

Same Af = 400Hz in fs = 

2kHz 

20% Not visible in 

simulation 

0.047 

3 – Variable 

starting point 

Same At = 40µs in 260µs 42% Yes 0.27 

4 – Impulse 

function 

Higher Ti = 0.00002s in a 

pulse width of 

0.0003s 

14.7% 

 

Yes – but hardware 

dependent 

0.13 

5 – Battery 

Balancing 

Same voltage difference 

0.19V in 3.21V 

14% (average) Not visible in 

simulation 

0.33 

6 - ELM Same Fixed voltage 

difference of 9.2V 

37% 

 

Not visible in 

simulation 

0.46 

Modelling of these circuits for the purposes of understanding their viability as an on-line EIS 

measurement technique has not previously been published in literature. The techniques for producing 

the excitation signals through standard control components which are then used in the experimental 

section can be considered novel for this application. Although simulation is a useful tool, but 

experimental validation is needed to show full proof of concept. 

Chapter 4 looks at validation of these methods through experimental results. The measured data is 

then compared with the simulated results from this chapter and the theoretical expressions from 

chapter 3. Chapter 4 also investigates using these techniques to generate an EIS plot by looking at 

the measured and simulated results over a range of frequencies and comparing this to off-line EIS 

measurement. 
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5 Experimental results of on-line EIS 

techniques 
 

5.1 Experimental setup 

This chapter describes the experimental setup used to validate the feasibility of using existing 

hardware to produce on-line EIS measurement. Figure 5-1 shows the experimental setup used to look 

at on-line low frequency impedance measurements as described in the theory in Chapter 3 and then 

simulated in Chapter 4. The components used in the dc/dc boost converter are shown in Table 4-2. 

The converter and balancing circuit represented in section 5.7 have integrated gate drivers. Each 

drivers include a driver ic and an isolated dc/dc converter (up to ±15V). An isolated Opto-coupler 

HCPL 3140 has used to drive the MOSFETs. The opto-coupler can isolate up to 1kV. This driver 

has a low peak current of 0.4A which can drive a low voltage MOSFETs with a low gate charge. The 

integrated gate driver is shown in Figure 5-2. The impedance at different frequencies was calculated 

from a measurement of the battery voltage and current on a lecroy scope using a Lecroy CP031 

100MHz current probe and a Tektronix P2220 200MHz voltage probe but IL300 voltage sensor and 

ACS712 current sensor measurement devices linked to the controller have also been used to get the 

same results. The manufacturer stated sensitivity of the probes are 10mA/division and 2mV/division. 

The gate drive signals were derived from an Opal-RT controller with a fixed time step of 20µs. 

 
Figure 5-1 : Experimental setup 

 

The methods previously described were applied to a lithium-ion battery to investigate the 

measured on-line impedance across a range of conditions. The tests were conducted at room 

temperature in a controlled temperature laboratory and it is assumed this temperature remained 
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constant through the experimental stages. The battery was started at full state of charge and the tests 

were conducted as close to this level as possible to guard against variation in impedance due to SOC. 

To investigate the proposed methods, the calculated battery impedance data from experimental and 

simulation were compared with offline measured EIS data over a range of frequencies.  

 
Figure 5-2 : Integrated driver circuit 

 

Isolated dc/dc converter 

Isolated Opto-coupler 
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5.2 DC/DC Converter operating with no low frequency 

component 

5.2.1 Circuit operation 

The converter was first operated with a fixed switching frequency of 2kHz, duty cycle of 0.6 and 

fixed starting position. This was to generate a base set of results from which all the methods of 

introducing a low frequency excitation signal could be compared against, to allow the impact of each 

of the methods to be clearly seen. The measured battery current and voltage are shown with the PWM 

signal in the oscilloscope trace in Figure 5-3 while the load current and voltage are shown in Figure 

5-4. The waveforms show the circuit is operating in continuous mode as expected.   

Figure 5-3 : Measured Li-ion battery Current (Green) and Voltage (Yellow) waveforms. The battery is excited 
with PWM at a fixed duty cycle of 0.6 and switching frequency of 2kHz (red). 

 

 
Figure 5-4 : Measured Load Current (Green) and Voltage (Blue) waveforms.  The battery is excited with PWM 
at a fixed duty cycle of 0.6 and switching frequency of 2kHz. 

Table 5-1 shows the experimentally measured waveform parameters of the base case circuit. The 

boost ratio is calculated as 2.14. Compared to the design equations and simulated results in section 
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4.1, the experimental values of the load output voltage and ripple and the load current and ripple are 

lower than the design equations and the simulation. Table 4-3 is reproduced in Table 5-2 for 

comparison purpose. This is primarily as a result of the non-ideal and non-linear components eg 

diode, mosfet, ESR resistances and leads in the experimental circuit compared to the ideal 

components used in the theory and simulation chapters. These results are referred to as the “base” 

results by which the other experimental results from the methods of introducing a low frequency 

component of ripple will be compared. Table 5-3 shows the simulated waveforms of this base case 

circuit using non-ideal component. In this model, the circuit boosts at a ratio of 2.12 compared to the 

experimental, the simulated values of the load output voltage and ripple and the load current and 

ripple are as per the experimental results.  

Table 5-1: Experimental results of fixed duty cycle 

 Experimental 

Fixed Duty Cycle ideal component 

Average Value Peak-Peak ripple 

E{N;; 1.18 A 1.49 A 

 {N;; 3.21 V 12.5 mV 

EØSNP 420 mA 6 mA 

 P� 6.89 V 73 mV 

 

Table 5-2: Simulated results of fixed duty cycle 

 Simulation 

Fixed Duty Cycle ideal component 

Average Value Peak-Peak ripple 

E{N;; 1.55 A 2.42 A 

 {N;; 3.21 V 16.8 mV 

EØSNP 456 mA 0.7 mA 

 P� 7.3 V 11.1 mV 

 

Table 5-3: Simulated results of fixed duty cycle using non-ideal component 

 Simulation 

Fixed Duty Cycle non-ideal component 

Average Value Peak-Peak ripple 

E{N;; 1.1 A 2.2 A 

 {N;; 3.21 V 16.8 mV 

EØSNP 422 mA 4.5 mA 

 P� 6.8 V 72 mV 
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In comparison with the simulation circuit power losses, the experimental output power loss is 

higher. This additional loss as a result of the non-ideal components such as the ESR component of 

the inductor, the switching MOSFET, and the diode can be estimated to aid understanding. The 

additional power losses in the experimental DC-DC boost converter circuit can be thought of: 

• Inductor resistor power loss  

• MOSFET switching power loss 

• MOSFET conduction power loss 

• Diode switching power loss 

• Diode conduction power loss 

 

5.2.2 Harmonics 

Figure 5-5 shows the harmonic analysis of the experimentally measured inductor current under 

fixed duty cycle operation of the boost converter using the MATLAB FFT code for 16 cycles of 

switching frequency. The harmonic spectrum of the current contains only switching frequency 

harmonics similar to Figure 4-5, which is repeated in Figure 5-5b for comparison purpose.  

 
Figure 5-5 : a) Experimentally derived harmonics and b) simulated harmonics of the Li-ion battery current. The 
battery is excited with PWM at a fixed duty cycle of 0.6 and switching frequency of 2kHz. 

 

 

Switching frequency 1st harmonic 

Switching frequency 
2nd harmonic 

(b) 

Switching frequency 1st harmonic 

2nd harmonic 

(a) 
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5.3 DC/DC Converter with varying duty cycle PWM 

The circuit was operated with a varying duty cycle to introduce a low frequency component. The 

results were then compared to those previously generated by theory and simulation from sections 3.2  

and 4.2 respectively.  

5.3.1 Circuit Operation 

The battery and load voltage and current waveforms for two frequencies, 125Hz and 175Hz, were 

captured and are shown in Figure 5-6 to Figure 5-9. Two different frequencies are plotted to show 

the effect of the frequency variation on the key circuit and battery parameters. 

 
Figure 5-6 : Measured Li-ion battery Current (Green) and Voltage (yellow) waveforms. The battery is excited 
with PWM with variable duty cycle at a low frequency of 125Hz with Ad = 0.01 (red). 

 

 
Figure 5-7 : Measured Load Current (Green) and Voltage (Blue) waveforms.  The battery is excited with PWM 
with variable duty cycle at a low frequency of 125Hz with Ad = 0.01. 
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Figure 5-8 : Measured Li-ion battery Current (Green) and Voltage (yellow) waveforms. The battery is excited 
with PWM with variable duty cycle at a low frequency of 175Hz with Ad = 0.01 (red). 

Comparison of the data shows that the experimental model of the converter is performing in a 

manner similar to the simulation in section 4.2 albeit at a lower battery current indicating an 

understanding of circuit behaviour. The simulated results from Table 4-4 are replicated in Table 5-6 

for comparison purpose. The peak to peak current has increased due to the addition of the low 

frequency ripple compared to base operation as shown in Figure 5-3. The low-frequency ripple 

indicates that the low frequency harmonic has been introduced to the system.  A comparison of key 

parameters from these figures compared to the experimental base case is replicated below in Table 

5-4 and Table 5-5. 

Figure 5-9 : Measured Load Current (Green) and Voltage (Blue) waveforms.  The battery is excited with PWM 
with variable duty cycle at a low frequency of 175Hz with Ad = 0.01. 
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Table 5-4: Comparison of experimental results of fixed and variable duty cycle at 125Hz with Ad 
=0.01 
 Experimental  

Fixed Duty Cycle Variable Duty Cycle  

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E{N;; 1.18 A 1.49 A 1.19 A 1.76 A 

 {N;; 3.21 V 12.45 mV 3.21 V 14.14 mV 

EØSNP 420 mA 6 mA 420 mA 6 mA 

 P� 6.89 V 73 mV 6.88  V 85 mV 

 
Table 5-5: Comparison of experimental results of fixed and variable duty cycle at 175Hz with Ad = 
0.01. 
 Experimental  

Fixed Duty Cycle Variable Duty Cycle  

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E{N;; 1.18 A 1.49 A 1.17 A 1.69 A 

 {N;; 3.21 V 12.45 mV 3.21 V 13.80 mV 

EØSNP 420 mA 6 mA 460 mA 8 mA 

 P� 6.89 V 73 mV 6.93 V 105 mV 

 

Table 5-6: Comparison of simulated results of fixed and variable duty cycle at 125Hz with Ad =0.01, 

 Simulation 

Fixed Duty Cycle Variable Duty Cycle  

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E{N;; 1.55 A 2.42 A 1.55 A 2.72 A 

 {N;; 3.21 V 16.8 mV 3.21 V 18.8 mV 

EØSNP 456 mA 0.7 mA 459 mA 1.5 mA 

 P� 7.3 V 11.1 mV 7.3 V 23.3 mV 

 

The measurements were undertaken with a fully charged battery. Therefore the average value of 

the battery voltage and the output voltage and hence the boost ratio of the circuit can be considered 

to remain the same. The converter boost is the same value as the base circuit in section 5.2. The 

battery ripple (peak to peak) values have changed because of the injected low frequency ripple. The 

converter load current ripple have increased as the low-frequency ripple injected to the circuit 

through the switching signal.  
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5.3.2 Harmonics 

Figure 5-10 shows the FFT analysis of the experimental current waveform with the 125 Hz ripple. 

Compared to Figure 5-5, the current harmonics show that low-frequency ripple has been added. The 

low-frequency and switching frequency harmonics of the experimental current is less than that 

calculated through theory and simulation. As with the base case, this is because of there is a reduction 

in battery current of the experimental setup due to the non-ideal components. 

 
Figure 5-10 : Experimentally derived harmonics of the Li-ion battery current signal with a variable duty cycle at 
a low frequency of 125Hz with Ad= 0.01. 

5.3.3 Inductor Ripple 

It is important to understand how the method impacts the ripple current. For example, the ripple 

current varies as the low frequency value changes as shown in Figure 5-11.  The value of Ad is kept 

fixed but the value Np is reduced from 18 (at 125Hz) to 11.4 (at 175Hz). These values from Table 

5-4 and Table 5-5 can be compared against the theoretical increase in ripple from Equation 3-40 as 

shown in Table 5-7. Additional testing was used to understand the impact of Ad value variation, also 

shown in Table 5-7 and Figure 5-12 which shows the experimentally captured current ripple variation 

based on an (P value variation at a low-frequency of 175Hz. 

(a) 

Switching frequency harmonic 

Low frequency harmonic 
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Figure 5-11 : Comparison of the low frequency ripple at different low frequencies (a) f0 = 125Hz, (b) f0 = 175Hz, 
With d av = 0.6 and Ad = 0.01. 

 

  

  
Figure 5-12 : Comparison of the low frequency ripple at different Ad (a) Ad = 0.06, (b) Ad = 0.04, (c) Ad = 0.02, 
and (d) Ad = 0.01. With dav = 0.6 and f0 = 175Hz. 

 

The ripple current increases as Ad and Np increase according to Equation 3-40. A trade off therefore 

exists between the magnitude of the ripple on the duty cycle and the effectiveness of the 

instrumentation to measure the maximum and minimum current and voltage ripple on the battery. 

 

Ipk-pk = 1.76 A 

(a) 

Ipk-pk=1.69 A 

(b) 

Ipk-pk = 2.52 A 

(a) 

Ipk-pk = 2.22 A 

(b) 

Ipk-pk= 1.88 A 

(c) 

Ipk-pk=1.69 A 

(d) 



188 
 

Table 5-7: Calculated increase in current ripple as a % with variable duty cycle compared to a fixed duty cycle 
Frequency/Ad Experimental Simulation Theoretical 

125Hz, Ad = 0.01 118% 115% 121% 

175Hz, Ad = 0.01 113% 112% 115% 

175Hz, Ad = 0.02 126% 123% 130% 

175Hz, Ad = 0.04 149% 140% 160% 

175Hz, Ad = 0.06 168% 155% 191% 

 

The experimental results confirm the effect of Np, the variation of the ratio of the low frequency 

wave to the high frequency wave on the current ripple. However, the current ripple cannot increase 

indefinitely as Np increases in practice. The main reason for this is that the theory is based on an ideal 

case, whereas the real circuit contains non-ideal components. For example, the ESR of the inductance 

which would prevent the current from increasing to infinity. The theoretical equations would need to 

be adapted to deal with this, however this is considered further work beyond the scope of the thesis. 

Figure 5-13 shows the % variation of the increase of ripple with low frequency component.  

 
Figure 5-13 : Variation on current ripple with Np with  Theory (red) Simulation (black dash) Experimental (blue 
dots)  
 

Obviously if the value of Ad gets too large then the circuit enters discontinuous mode as shown in 

Figure 5-14. Further work is needed to look at the theoretical analysis of a discontinuous circuit as 

this is considered outside of the scope of this thesis.  
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Figure 5-14 : battery current low frequency ripple  with Ad = 0.1 at f0 = 175Hz 

 

5.3.4 EIS Calculation 
 

The main reason for undertaking this work is to investigate if it is possible to use this method to 

produce an EIS plot of the battery. This method of producing a low frequency excitation signal under 

different frequencies was used to produce waveforms from which the voltage and current ripple could 

be measured to determine complex impedance. Figure 5-15 to Figure 5-17 show the calculated 

complex impedance, amplitude and phase plots of a li-ion battery from offline EIS measured data (in 

red), experimental test data (in blue dots), and simulation (in black) during discharge mode. The 

impedance of the battery was calculated for 36 low-frequency points. The battery current and voltage 

waveforms were measured and captured by the oscilloscope probes at each low-frequency points. 

The impedance of battery was then calculated by Fourier analysis of the waveforms at each frequency 

points using the FFT MATLAB code. Results from simulation and experimentally measured data 

gives values similar to that produced using off-line EIS equipment. 

A switching frequency of 2kHz was used while the low frequency signal �S was varied from 1 to 

2kHz. To ensure that the system is always operating in continuous mode a duty cycle of 0.6 with (P 

set to 0.01 was used.  
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Figure 5-15 : Impedance Nyquist plot of the lithium-ion phosphate battery with EIS (red), Simulation (black 
dash), and Experimental data (blue dots) for variable duty cycle 
 

 
Figure 5-16 : Impedance Bode plot of the lithium-ion phosphate battery with EIS (red), Simulation (black), and 
Experimental data (blue dots) for variable duty cycle 
 

 
Figure 5-17 : Impedance Bode plot of the lithium-ion phosphate battery with EIS (red), Simulation (black), and 
Experimental data (blue dots) for variable duty cycle 
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Figure 5-15 to Figure 5-17 show that it is feasible to use this method to generate an EIS plot of a 

battery over a range of frequencies designed to characterise the battery.  

It is therefore possible to use this method to undertake EIS measurements on-line. This work has 

extended the preliminary work in this area described in chapter1 to show applicability to EIS. 

 

5.4 DC/DC Converter with variable switching 

frequency PWM 

The circuit was operated with a varying switching frequency to introduce a low frequency 

component to look more closely at how the circuit behaves in comparison with fixed duty cycle 

operation and with the theory and simulation of this method from sections 3.3 and 4.3 respectively. 

5.4.1 Circuit Operation 

The battery and load voltage and current waveforms for the different frequencies of 125Hz and 

175Hz were captured and are shown in Figure 5-18 to Figure 5-21. The low frequency signal was 

induced to the system by varying the switching frequency with a sinewave with amplitude of Af = 

400. Similar to the simulated waveforms in section 4.3, the waveform ripple increases with the 

injection of the low frequency. This ripple appears approximately constant for different values of 

low-frequency. 

Figure 5-18 : Measured Li-ion battery Current (Green) and Voltage (Yellow) waveforms. The battery is excited 
with PWM (red) with variable switching frequency at a low frequency of 125Hz and Af = 400. 
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Figure 5-19 : Measured Li-ion Battery setup, Load Current (Green) and Voltage (Blue).  The battery is excited 
with PWM with variable switching frequency at a low frequency of 125Hz and Af = 400. 

 

Figure 5-20 : Li-ion battery Current (Green) and Voltage (Yellow) waveforms. Measured Li-ion battery Current 
(Green) and Voltage (Yellow) waveforms. The battery is excited with PWM (red) with variable switching 
frequency at a low frequency of 175Hz and Af = 400.  

 

 
Figure 5-21 : Li-ion Battery setup, Load Current (Green) and Voltage (Blue) waveforms. The battery is excited 
with PWM with variable switching frequency at a low frequency of 175Hz and Af = 400. 
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Comparison of the data shows that the experimental model of the converter is performing in a 

manner similar to the simulation indicating an understanding of circuit behaviour. Compared to the 

simulated results in section 4.3, the experimental values of the load output voltage and ripple and the 

load current and ripple are lower than the design equations and the simulation. This is as a result of 

the non-ideal and non-linear components eg diode, mosfet, and ESR resistances and the voltage drop 

of the diode in the experimental circuit compared to the ideal components used in the theory and 

simulation chapters. The peak to peak current is increased due to the addition of the low frequency 

ripple compared to base case operation as shown in Figure 5-18 and Figure 5-21. The low-frequency 

ripple clearly shows that the low frequency harmonic has been introduced to the system.  A 

comparison of key parameters from these figures is replicated below in Table 5-8 and Table 5-9.  

 

 

 

Table 5-8: Comparison of experimental results of fixed and variable frequency at 125Hz with Af 
= 400. 

 Experimental  

Fixed Duty Cycle Variable Frequency  

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E{N;; 1.18 A 1.49 A 1.18 A 1.79 A 

 {N;; 3.21 V 12.45 mV 3.21 V 14.4 mV 

EØSNP 420 mA 10 mA 419 mA 6 mA 

 P� 6.89 V 67 mV 6.89 V 80 mV 

 
 

Table 5-9: Comparison of experimental results of fixed and variable frequency at 175Hz with Af 
= 400 

 Experimental  

Fixed Duty Cycle Variable frequency  

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E{N;; 1.18 A 1.49 A 1.18 A 1.82 A 

 {N;; 3.21 V 12.45 mV 3.21 V 14 mV 

EØSNP 420 mA 10 mA 427 mA 7 mA 

 P� 6.89 V 67 mV 6.92 V 96 mV 

 
The measurement was undertaken with a fully charged battery. So the average value of the battery 

voltage, the output voltage and boost ratio of the circuit remain the same and only the ripple peak to 

peak values increased due to the low frequency excitation.  
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5.4.2 Harmonics 

The Fourier analysis of the experimental and simulated current waveform with the ripple of the 

125Hz, switching frequency of 2 kHz, and ripple amplitude of 400 Hz is shown in Figure 5-22. 

Figure 4-15 is repeated in Figure 5-22b for comparison purpose. The harmonics of the switching 

frequency is spread over the range of the 1600Hz and 2400Hz as described in section 3.3.1. The 

magnitude of the current Fourier coefficient using variable switching frequency is very small 

compared to the current harmonic coefficient in Figure 5-10 from variable duty cycle in section 5.3.2. 

This indicates that the variation of the frequency added less ripple to the battery signals. Therefore 

the impedance of the battery cannot be calculated as accurately since the effect of noise from the 

measurement instrumentation is included in the Fourier coefficient of the battery voltage signal.  

 

 
Figure 5-22:a) Experimentally derived harmonics and b) simulated harmonics of the Li-ion battery current signal 
with a variable frequency at a low frequency of 125Hz with A f= 400. 

Low 
frequency 
harmonic 

Range of switching frequency 
components �T between harmonic 
number 12 and 20. 

(a) 

Low frequency 
harmonic 

Range of switching frequency 
components �T between harmonic 
number 12 and 20. 

 

(b) 
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5.4.3 Inductor Ripple 
 

The effect of the Af variation on the added ripple to the current waveform is shown in Figure 5-23. 

As Af is increased, the ripple of the waveform is increased. The relationship between ripple increase 

and theory as per Equation 3-52 is shown in Table 5-10. The data indicates that the circuit waveform 

ripple depends only on the variation of the injected sine wave amplitude to the switching frequency. 

Table 5-10: Calculated increase in current ripple as a % with variable duty cycle compared to a fixed duty 
cycle 

Frequency/Af Experimental Simulation Theoretical 

125Hz, Af = 400 118% 118% 125% 

175Hz, Af = 400 118% 118% 125% 

175Hz, Af = 600  137% 132% 143% 

175Hz, Af = 200  109% 110% 111% 

175Hz, Af = 100  105% 104% 105% 

  

Figure 5-23 : Comparison of the low frequency ripple at different frequency (a) Af = 600, (b) Af = 400, (c) Af = 
200, and (d) Af = 100. With  fav = 2kHz and f0 = 175Hz 
 

Ipk-pk = 2.05 A 

(a) 

Ipk-pk = 1.82 A 

(b) 

Ipk-pk = 1.64 A 

(c) 

Ipk-pk = 1.55 A 

(d) 
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Figure 5-24 shows the variation of the signal ripple does not significantly change with low 

frequency value as expected. From Equation 3-52 the ripple changes remains constant over the range 

of the low frequency interval. The comparison of experimental, simulation and theoretical calculation 

of the waveform ripple for the different Np values is shown in Figure 5-25. 

Figure 5-24 : Comparison of the low frequency ripple at different frequencies (a) f0 = 125Hz, (b) f0 = 175Hz, 
With fav = 2kHz and Af = 400. 

Figure 5-25 : Comparison of the low frequency ripple at different frequencies using theory (Line), Simulation 
(dash), and Experiment (dots).Af = 400 
 

When the value of AÛ gets too large the battery current peak to peak values inceases and the 

converter starts operating in discontinuous mode. The battery current waveform is shown in Figure 

5-26 at a frequency of 175Hz with AÛ = 1500.  

(a) 

Ipk-pk = 1.79 A 

(b) 

Ipk-pk = 1.82 A 
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Figure 5-26 : discontinuous battery current low frequency ripple  with Af = 1500 at f0 = 175Hz 

5.4.4 EIS Calculation 
 

In Figure 5-22, the derived value of low frequency harmonic component is very low. This in turn 

leads to loss of accuracy. The resultant calculated impedance plot based on this measured data is 

therefore not sufficiently accurate to be useful as a means of looking at on-line battery impedance. 

 

 
Figure 5-27 : Impedance Nyquist plot of the lithium-ion phosphate battery with Experimentally derived results 

 

This method suffers from issues of accuracy. Therefore it is not recommended as a possible 

method of undertaking EIS measurement. 
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5.5 DC/DC Converter with variable starting point 

PWM 

This method looks to vary the starting point of PWM signal within a switching pulse to inject a 

low frequency component. The circuit was used to experimentally measure voltage and current and 

to compare these with the base case and with the theory and simulation from sections 3.4 and 4.4 

respectively. 

5.5.1 Circuit Operation 

The battery current, voltage and circuit output voltage and current waveforms for two frequency 

points of 125 Hz and 175Hz were captured and are shown in Figure 5-28 to Figure 5-31. The low 

frequency signal was injected into the system by varying the starting point with a sinewave with 

amplitude of At = 0.00004s and an average start time of 0.00026s. The ripple values increased when 

the low-frequency component was injected. 

 

 

Figure 5-28 : Measured Li-ion battery Current (Green) and Voltage (yellow) waveforms. The battery is excited 
with PWM (red)  with a variable starting point set to a low frequency of 125Hz and At = 0.00004s. 
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Figure 5-29 : Measured Load Current (Green) and Voltage (Blue) waveforms. The battery is excited with PWM 
(red)  with a variable starting point set to a low frequency of 125Hz and At = 0.00004s. 

 

Figure 5-30 : Measured Li-ion battery Current (Green) and Voltage (yellow) waveforms. The battery is excited 
with PWM (red)  with a variable starting point set to a low frequency of 175Hz and At = 0.00004s. 

 

 
Figure 5-31 : Load Current (Green) and Voltage (Blue) waveforms. The battery is excited with PWM with a 
variable starting point set to a low frequency of 175Hz and At = 0.00004s. 
 



200 
 

The comparison of results shows that the converter is operating similar to the simulated model in 

section 4.4. The simulated results from Table 4-8 are replicated in Table 5-13 for comparison 

purpose.  The current ripple is increased as the low frequency ripple is added compared to normal 

operation as shown in Figure 5-28 and Figure 5-30. The low-frequency ripple clearly shows that the 

low frequency harmonic has been induced to the system. The key parameters of the experimental 

results of the variable starting point PWM and the base circuit signal for two low-frequency points 

of 125Hz and 175Hz are given in Table 5-11 and Table 5-12.  

Table 5-11: Comparison of PWM with variable starting point at 125Hz effects on Current and 
Voltage ripple 

 Experimental  

Fixed Duty Cycle Variable starting point 

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E{N;; 1.18 A 1.49 A 1.19 A 2.12 A 

 {N;; 3.21 V 12.45 mV 3.21 V 17.2 mV 

EØSNP 420 mA 10 mA 435 mA 8 mA 

 P� 6.89 V 67 mV 6.94 V 123 mV 

 

Table 5-12: Comparison of PWM with variable starting point at 175Hz effects on Current and 
Voltage ripple 

 Experimental  

Fixed Duty Cycle Variable starting point  

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E{N;; 1.18 A 1.49 A 1.21 A 2.14 A 

 {N;; 3.21 V 12.45 mV 3.21 V 16.2 mV 

EØSNP 420 mA 10 mA 434 mA 7 mA 

 P� 6.89 V 67 mV 6.90 V 95 mV 

 

Table 5-13: Comparison of simulated PWM with variable starting point at 125Hz effects on 
Current and Voltage ripple 

 Simulation 

Fixed Duty Cycle Variable starting point 

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E{N;; 1.55 A 2.42 A 1.58 A 3.02 A 

 {N;; 3.21 V 16.8 mV 3.21 V 21.3 mV 

EØSNP 456 mA 0.7 mA 462 mA 2.2 mA 

 P� 7.3 V 11.1 mV 7.38 V 35.7 mV 
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The average value of the battery, load voltage and the boost ratio of the circuit remain the same as 

the base circuit in section 5.2. The ripple values increased as the low-frequency component is induced 

to the circuit. 

5.5.2 Harmonics 

Figure 5-32 shows the battery current harmonic analysis at low-frequency of 125Hz by varying 

the starting point of the PWM signal with At= 0.00004. It is clear that both low frequency 125Hz and 

the switching frequency of 2kHz harmonics can be extracted from the experimental current 

waveform. 

 
Figure 5-32 : Experimentally derived harmonics of the Li-ion battery current signal with a variable starting 
position at a low frequency of 125Hz with At = 0.00004s. 

5.5.3 Inductor ripple 

The effect of the At variation on the added ripple to the current waveform is shown in Figure 5-33. 

As At increased, the ripple of the waveform is increased. The relationship between ripple increase 

experimentally, theory, and simulation as per Equation 3-64 is shown in Table 5-14.  

Table 5-14: Calculated increase in current ripple as a % with variable starting position compared to a fixed starting 
position for a switching frequency of 2kHz and a tav = 0.00026 

Frequency/At Experimental Simulation Theoretical 

125Hz, At = 0.00004 142% 125% 140% 

175Hz, At = 0.00004 143% 129% 140% 

175Hz, At = 0.00005 149% 162% 150% 

175Hz, At = 0.00008 160% 168% 180% 

175Hz, At = 0.00002 121% 116% 120% 

 

Switching frequency harmonic 

Low frequency harmonic 
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Figure 5-33 : Comparison of the low frequency ripple at different frequency (a)At = 0.00008, (b) At = 0.00005, (c) 
At = 0.00004, and (d) At = 0.00002. With fs = 2kHz and f0 = 175Hz 

 

Figure 5-34 shows the current ripple change over the two low-frequency components. From 

Equation 3-64, the ripple variation depends on the changes of the At value and therefore the ripple is 

expected to remain constant over the low frequency range.  

Figure 5-34 : Comparison of the low frequency ripple at different frequency (a) f0 = 125Hz, (b) f0 = 
175Hz, With tav = 0.00026s and At = 0.00004. 
 
Figure 5-35 shows the expected variation of the current ripple value based on Np value variation 

over the low-frequency range. The data shows that the current ripple value remains approximately 

constant as the Np value changes. However, the ripple variation is distorted at the lower frequency 

Ipk-pk = 2.39 A 

(a) (b) 

Ipk-pk = 2.22 A 

(c) 

Ipk-pk = 2.14 A 
Ipk-pk = 1.80 A 

(d) 

Ipk-pk = 2.12 A 

(a) 

Ipk-pk = 2.14 A 

(b) 
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points and as the frequency approaches switching frequency as there is little scope to add variation 

to starting position. This is believed to be a function of the accuracy with which MATLAB can handle 

the variable starting position due to the 20µs limitation in accuracy in the controller as described in 

section 3.5.3. This inaccuracy then propagates to influence the ripple component. 

Figure 5-35 : Comparison of the low frequency ripple at different frequencies using theory (Line), Simulation 
(dash), and Experiment (dots) 

As the value of A; increases, the battery current peak to peak values inceased and converter starts 

operating in discontinuous mode. The battery current waveform is shown in Figure 5-36 at a 

frequency of 175Hz with an A; = 0.0002. 

 

Figure 5-36 : battery current low frequency ripple  with A t = 0.0002 at f0 = 175Hz. 
 

5.5.4 EIS Calculation 

Figure 5-37 to Figure 5-39 show the derived complex impedance, amplitude and phase plots of the 

li-ion battery from off line EIS measurement equipment (in red), experimentally measured data (in 

blue dots), and simulation (in black). Experimentally calculated impedance is similar in magnitude 

to that calculated by offline EIS data. A switching frequency of 2kHz was used while the low 
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frequency signal �S was varied from 1 to 2kHz. To ensure that the system is always operating in 

continuous mode the duty cycle is 0.6 with (; and 6NO are set to 0.00004s and 0.00026s for the 

lithium-ion battery. The impedance of the battery was calculated for 20 low-frequency points. The 

battery current and voltage waveforms were measured and captured by the oscilloscope probes at 

each low-frequency points. The impedance of battery was then calculated by Fourier analysis of the 

waveforms at each frequency points using the FFT MATLAB code. 

 

 

Figure 5-37 : Impedance Nyquist plot of the lithium-ion phosphate battery with EIS (red), Simulation (black), 
and Experimental data (blue dots) 

 

 

 

Figure 5-38 : Amplitude bode plot of the lithium-ion phosphate battery  with EIS (red), Simulation (black), and 
Experimental data (blue dots) 

 



205 
 

 

Figure 5-39 : Phase bode plot of the lithium-ion phosphate battery with EIS (red), Simulation (black), and Experimental 
data (blue dots) 
 

The EIS plot is not as accurate as that produced by the variable duty cycle method. This is 

thought to be due to the inaccuracy in start position location and its follow on impact on the calculated 

phase angle of the two waveforms. This method is also more complex to set up with the control 

system. 
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5.6 DC/DC Converter with an Impulse Function 

The method uses a gate drive signal controlled by a PWM signal with an additional impulse 

function to induce a low frequency component. The experimentally measured values are compared 

to the base circuit and with theory and simulation from sections 3.5 and 4.5 respectively. As 

previously explained, the opal-rt unit runs at a fixed time step of 20µs.  A pulse with a pulse width 

and frequency value that is a multiple integer of the time step as explained in section 3.5.1 was used 

to allow comparison with theory and simulation. 

5.6.1 Circuit Operation 

The battery current, voltage and circuit output voltage and current waveforms for two frequency 

points of 125 Hz and 166.7Hz for a PWM with added impulse signal were captured and are shown 

in Figure 5-28 to Figure 5-31. A low-frequency of 125Hz with the pulse width of 0.00032s, and 

166.7Hz signal with a pulse width of 0.00036s are added to the gate drive PWM signal. The 

waveform peak to peak value increased with the low-frequency ripple excitation. The ripple values 

changes at the different frequency because of the need to use different pulse widths. The battery 

current increased each time an impulse function, Ti is added to the switching pulse width as described 

in section 3.5.4. 

Figure 5-40 : Measured Li-ion battery Current (Green) and Voltage (yellow) waveforms. The battery is excited 
with a PWM (red) with an impulse function at a Low frequency of 125Hz, with 4% impulse duty cycle. 

 

The extra width T
i 
added to the Switching pulse 

Low frequency ripple added to the current waveform 
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Figure 5-41 : Measured Load Current (Green) and Voltage (Blue) waveforms. The battery is excited with a PWM 
(red) with an impulse function at a Low frequency of 125Hz, with 4% impulse duty cycle. 

 

Figure 5-42 : Measured Li-ion battery Current (Green) and Voltage (yellow) waveforms. The battery is excited 
with a PWM (red) with an impulse function at a Low frequency of 166.7Hz, with 6% impulse duty cycle.  

 

Figure 5-43 : Measured Load Current (Green) and Voltage (Blue) waveforms. The battery is excited with a PWM 
(red) with an impulse function at a Low frequency of 166.7Hz, with 6% impulse duty cycle. 
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The converter is operating in a similar manner to the simulated model. The low-frequency ripple 

shows that a low frequency harmonic has been induced on the system. The experiment was run with 

combinations of the PWM signal and an impulse function with a low-frequency as an integer value 

of fs. The key parameters of the experimental results of the low frequencies of 125 Hz with duty 

cycle of 0.04 and 166.7Hz with duty cycle of 0.06 are shown in Table 5-11 and Table 5-12.  

Table 5-15: Comparison of PWM with Impulse (OR-4%) at 125Hz effects on Current and 
Voltage ripple 

 Experimental  

Fixed Duty Cycle Using impulse duty Cycle  

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E{N;; 1.18 A 1.49 A 1.18 A 1.72 A 

 {N;; 3.21 V 12.45 mV 3.21 V 13.6 mV 

EØSNP 420 mA 10 mA 450 mA 16 mA 

 P� 6.89 V 67 mV 6.91 V 262 mV 

 

Table 5-16: Comparison of PWM with Impulse (OR-6%) at 166.7Hz effects on Current and 
Voltage ripple 

 Experimental  

Fixed Duty Cycle Using impulse duty Cycle 

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E{N;; 1.18 A 1.49 A 1.22 A 2.16 A 

 {N;; 3.21 V 12.45 mV 3.21 V 16.9 mV 

EØSNP 420 mA 10 mA 460 mA 10 mA 

 P� 6.89 V 67 mV 8.86 V 250 mV 

 

The waveform ripple values increase with the Ti value of the pulse function according to the 

Equation 3-83. The pulse width at 125Hz increased from 0.0003 to 0.00032s, while the pulse width 

increased to 0.00036s at 166.7Hz. The ripple and boost ratio of the converter on the 166.7Hz pulse 

function is therefore higher compared to the 125Hz signal as described in section 3.5.3. This is 

because the circuit is switched on for longer time and therefore the boost ratio of the circuit changes 

due to the increase in the average duty cycle with time over the T0 pulses period according to 

Equation 3-82.  

5.6.2 Harmonics 

Figure 5-32 shows the battery current harmonic analysis at low-frequency of 125Hz by the pulse 

function and the PWM signal with duty cycle of 0.04. The harmonic spectrum of the current contains 
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switching frequency and low frequency component harmonics similar to Figure 4-31, which is 

repeated in Figure 5-44b for comparison purpose. As it shown the low frequency component is 

detected in both simulated and experimentally captured waveforms. 

 
Figure 5-44 : a) Experimentally derived harmonics and b) simulated harmonics of the Li-ion battery current 
signal with an impulse function at a low frequency of 125Hz with d=4%.  

 

5.6.3 Inductor ripple 

The effect of the Ti variation on the added ripple to the current waveform is shown in Figure 5-45. 

As Ti increased, the ripple of the waveform is increased. Table 5-17 shows the relationship between 

ripple increases experimentally, simulation, and theoretically as per Equation 3-83. 

 

Table 5-17: Calculated increase in current ripple as a % with pulse function compared to a fixed Pulse for a 
switching frequency of 2kHz 

Frequency/dimpulse Experimental Simulation Theoretical 

125Hz, dimpulse = 0.04 115% 116% 107% 

166Hz, dimpulse = 0.06 144% 142% 120% 

166Hz, dtimpulse= 0.07 194% 200% 140% 

166Hz, dimpulse = 0.08 222% 232% 160% 

166Hz, dimpulse = 0.1 244% 249% 300% 

 

Low frequency 
harmonic 

Switching frequency harmonic 

(b) 

Switching frequency harmonic 

Low frequency 
harmonic 

(a) 
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Figure 5-45 : Comparison of the low frequency ripple at different frequency (a) dimpulse = 0.06, (b) dimpulse = 0.07, 
(c) dimpulse = 0.08, and (d) dimpulse = 0.1. With fs = 2kHz and f0 =166.7Hz  

 

As shown in Figure 5-46, the current ripple changes over the range of the low-frequency 

components, because of the different duty cycle values of the low-frequency pulse function. As 

shown in Equation 3-83, the ripple variation depends on the changes of the Ti value and therefore 

when Ti increases the current ripple value increases. 

Figure 5-46 : Comparison of the low frequency ripple at different frequency (a) f0 =125Hz with dimpulse = 0.04, 
(b) f0 =166.7Hz with dimpulse = 0.06 and fs = 2kHz. 
 

Ipk-pk = 2.16 A 

(a) 

Ipk-pk = 2.90 A 

(b) 

Ipk-pk = 3.32 A 

(c) 
Ipk-pk = 3.65 A 

(d) 

(a) 

Ipk-pk = 1.72 A 

(b) 

Ipk-pk = 2.16 A 
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Figure 5-47 shows the variation of the current ripple based on the Np value variation over the low-

frequency range. Because the different frequencies require a different duty cycle, the graph below 

only shows those low-frequencies that allow a pulse width of the 0.00032s. The data shows that the 

current ripple value remains constant as the Np value increases as expected.  

Figure 5-47 : Comparison of the low frequency ripple at different frequencies using theory (Line), Simulation 
(dash), and Experiment (dots) 

 

5.6.4 EIS Calculation 
 

Figure 5-15 to Figure 5-17 show the calculated complex impedance, amplitude and phase plots of 

the li-ion battery from off-line EIS measurement equipment (in red), experimentally measured data 

(in blue dots), and simulation (in black). Results show that on-line measured data has a reasonable 

correlation with the off-line measurement.  

A switching frequency of 2kHz was used while the low frequency signal �S was varied from 1 to 

2kHz. To ensure that the system is always operating in continuous mode the duty cycle is 0.6 during 

discharge mode. The impedance of the battery was calculated for 22 low-frequency points. The 

battery current and voltage waveforms were measured and captured by the oscilloscope probes at 

each low-frequency points. The impedance of battery was then calculated by Fourier analysis of the 

waveforms at each frequency points using the FFT MATLAB code. 
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Figure 5-48 : Impedance Nyquist plot of the lithium-ion phosphate battery with EIS (red), Simulation (black), 
and Experimental data (blue dots) 
 

 

 

Figure 5-49 : Impedance amplitude bode plot of the lithium-ion phosphate battery with EIS (red), Simulation 
(black), and Experimental data (blue dots) 
 

 

 

Figure 5-50 : Impedance phase bode plot of the lithium-ion phosphate battery with EIS (red), Simulation (black), 
and Experimental data (blue dots) 
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5.7 Battery balancing circuit 

In this method, the battery balancing circuit was used to generate a low frequency excitation signal. 

The battery balancing circuit includes a 10mF capacitor and 4 switch MOSFETs. The Opal-RT was 

used to generate the two low-frequency PWM signals with the duty cycle of with a duty cycle of 0.45 

controls switches M1 and M3. The other pulse generator controls switches M2 and M4. As it 

mentioned previously in section 4.6, the switches M2 and M4 should be turned off while switches 

M1 and M3 are turned on, a logical operator function block is used to NOT the pulse control signal 

with the duty cycle of 0.55. So the output signal is a pulse signal with 0.45 duty cycle. The switches 

were connected to the opal-rt through the gate drive circuits. A 10mF capacitor was used for the 

balancing capacitor as previously mentioned in 4.6. The experimental setup is shown in Figure 5-51 

and the block diagram is shown in Figure 3-32. The battery balancing circuit was connected to the 

battery terminals and to the boost converter. 

 
Figure 5-51 : Experimental setup 
 

5.7.1 Circuit Operation 

This method is different from those previously described as it doesn’t use the power electronic 

components to generate a low frequency, but instead uses the battery balancing circuit. This makes 

it harder to directly compare as there are now two batteries in the circuit. The combined battery 

voltage of the two batteries are set equal to the single battery to allow comparison against the same 

base case. However this results in the battery SOC being less than the 100% used in other 

experiments. The EIS measurements of the batteries are run at these reduced values of voltage to try 

to make the comparison as valid as possible.  

Converter circuit 
Balancing circuit 

Balancing circuit 

Switches with integrated drivers 
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The battery currents, voltages and circuit output voltage and current waveforms for two frequency 

points of 125 Hz and 166Hz for a low frequency excitation signal from with duty cycle of 45% for 

switches M1 and M3 and 45% for switches M2 and M4 were captured and are shown in Figure 5-52 

to Figure 5-55. As mentioned previously in section 4.6, the ripple current in battery 1 and 2 is a result 

of the superposition of the balancing capacitor charging and discharging currents with the converter 

sawtooth waveform. The current ripple of both batteries follows an exponential decay related to the 

time constant of the capacitor balancing circuit. 

 
Figure 5-52 : Li-ion battery1 Current (Green), Li-ion battery2 Current (blue), Li-ion battery1 Voltage (yellow), 
and Li-ion battery2 Voltage (red) waveforms, at Low frequency of 125Hz.  

 

 
Figure 5-53 : Load Current (Green) and output Voltage (blue) waveforms, the battery is excited at Low frequency 
of 125Hz. (need to do this again). 

 

Battery 2 charging 

Battery 1 discharging 
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Figure 5-54 : Li-ion battery1 Current (Green), Li-ion battery2 Current (blue), Li-ion battery1 Voltage (yellow), 
and Li-ion battery2 Voltage (red) waveforms, at Low frequency of 125Hz. 

 

 
Figure 5-55 : Load Current (Green) and output Voltage (blue) waveforms, the battery is excited at Low frequency 
of 166Hz. 

The circuit was run with a boost converter switching frequency of 2kHz, a duty cycle of 0.6 in 

continuous mode and the battery balancing circuit active. Table 5-18 and Table 5-19 represents the 

comparison of the key parameters of the experimental results at the low frequencies of 125 Hz and 

166.7Hz. Table 4-12 is reproduced in Table 5-20 for comparison purpose. The results shows that the 

experimental model of the converter and balancing circuit are performing in a manner similar to the 

simulation in section 4.6. The average value of the load voltage and current and the boost ratio of the 

circuit remain the same as the base circuit in section 5.2. The measured data shows that the peak to 

peak ripple value remained approximately constant at different low-frequency values according to 

Equation 3-95. In this example, the voltage value of 43.6mV for battery 2 is not practical and safe 

for the battery and this is only used for proof of concept and requires further consideration. 

In order to observe the waveforms, the batteries were set to have a large difference in voltage. This 

is because the resistance in the experimental circuit is greater than that in simulation which is based 

on an ideal case and as such Equation 3-85 indicates that charging current will be reduced. 
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Table 5-18: Comparison of the based circuit data with battery balancing at 125Hz effects on 
Current and Voltage ripple 

 Experimental 

Fixed Duty Cycle Battery with Balancing circuit 

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E� 1.18 A 1.49 A 1.18 A 1.59 A 

E{N;;1 1.18 A 1.49 A 1.25 A 2.44 A 

E{N;;3 0.99 A 2.35 A 

 {N;;1 3.21 V 12.45 mV 3.18 V 17.7 mV 

 {N;;3 43.6 mV 26.7 mV 

EØSNP 420 mA 10 mA 397 mA 7 mA 

 P� 6.89 V 67 mV 6.8 V 86 mV 

 

Table 5-19: Comparison of the based circuit data with battery balancing at 166Hz effects on 
Current and Voltage ripple 

 Experimental 

Fixed Duty Cycle Battery with Balancing circuit 

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E� 1.18 A 1.49 A 1.18 A 1.60 A 

E{N;;1 1.18 A 1.49 A 1.31 A 2.56 A 

E{N;;3 0.88 A 2.30 A 

 {N;;1 3.21 V 12.45 mV 3.18 V 18.24 mV 

 {N;;3 33 mV 25 mV 

EØSNP 420 mA 10 mA 398 mA 7 mA 

 P� 6.89 V 67 mV 6.9 V 78 mV 

 

Table 5-20: Comparison of simulated battery balancing excited signal at 125Hz effects on 
Current and Voltage ripple 

 Simulation 

Fixed Duty Cycle Battery with Balancing circuit 

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E� 1.55 A 2.42 A 1.56 A 2.73 A 

E{N;;1 1.55 A 2.42 A 1.8 A 3.51 A 

E{N;;3 1.4 A 3.88 A 

 {N;;1 3.21 V 16.8 mV 1.7 V 25 mV 

 {N;;3 1.51 V 26.7 mV 

EØSNP 456 mA 0.7 mA 455 mA 0.8 mA 

 P� 7.3 V 11.1 mV 7.3 V 12.5 mV 
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The sum of the two battery voltages has been set to 3.21V to allow comparison with the base case.  

The boost ratio, load current and voltage remain the same. The waveforms show that the added ripple 

to the battery waveforms, using the battery balancing method as explained in section 3.6.2, are visible 

in the experiment. However, the battery voltage of the second battery is set much lower than that in 

simulation in order to observe the ripple. 

5.7.2 Harmonics 

Figure 5-56 shows the battery current harmonic analysis showing the boost converter switching 

frequency of 2kHz and battery balancing circuit low-frequency of 125Hz. Both low frequency 125Hz 

and the switching frequency of 2kHz harmonics are extracted from the experimentally measured 

current waveform. 

Figure 5-56 : Experimentally derived harmonics of the Li-ion battery current signal with battery balancing at a 
low frequency of 125Hz (a) battery1 (b) battery2. 

 

5.7.3 Inductor ripple 

The effect of the balancing circuit low-frequency variation on the added ripple to the inductor 

current waveform is shown in Figure 5-57. According to Equation 3-95, the inductor current variation 

remain constant over the frequency range. As the inductor current ripple is independent of the 

balancing circuit and the low-frequency component. Table 5-21 gives an estimate of inductor ripple 

increase above the base case. As it is difficult to match the total voltage the base case current is 

adjusted in proportion to the total voltage measured against base voltage. 

 

 

 

(a) 

Switching frequency harmonic 

Low frequency harmonic 

(b) 

Switching frequency harmonic 

Low frequency harmonic 



218 
 

Table 5-21: Calculated increase in current ripple as a % with battery balancing method compared to the base case 
for a switching frequency of 2kHz 

Frequency/��Ü�� Experimental Simulation Theoretical 

125Hz,	��Ý�Þ$ =
3.3 , ��Ü�� =3.15 V 

104% 100% 100% 

166Hz, ��Ý�Þ$ =
3.3 , ��Ü�� =3.15 V 

104% 100% 100% 

166Hz,	��Ý�Þ$ =
3.6 , ��Ü�� =2.74 V1 

104% 117% 100% 

166Hz,	��Ý�Þ$ =
3.7 , ��Ü�� = 2.67V1 

102% 116% 100% 

166Hz,	��Ý�Þ$ =
4.0 ,  ��Ü�� = 2.27V1 

106% 119% 100% 

 

Figure 5-57 : Comparison of the low frequency ripple at different voltage difference (a) Vdiff  = 2.27V, (b) Vdiff  = 
2.67V, (c)Vdiff  = 2.74V, and (d) Vdiff  = 3.15V. With fs = 2kHz and f0 = 166.7Hz 

                                                      
1 Battery 1 was kept at constant voltage but battery 2 voltage was increased to reduce the voltage difference. The increase in ripple has 

been estimated with reference to the increased current by multiplying the base case current by the ratio of VTOTAL/3.21 and then calculating 
measured current as a function of adjusted base current. 

Ipk-pk = 1.93A 

(a) 

Ipk-pk = 1.76 A 

(b) 

Ipk-pk = 1.74 A 

(c) 

Ipk-pk = 1.5856 A 

(d) 



219 
 

Figure 5-58 shows the inductor current ripple appears constant over two different low-frequency 

values.  

Figure 5-58 : Comparison of the low frequency ripple at different frequency (a) f0 = 125Hz, (b) f0 = 166.7Hz, 
With fs = 2kHz at Vdiff  = 3.15V 
 
Figure 5-59 shows the variation of the current ripple based on the Np value variation over the low-

frequency range. The data shows that the current ripple value remains approximately constant as the 

Np value increases as expected. 

 

Figure 5-59 : Comparison of the low frequency ripple at different frequencies using theory (Line), Simulation 
(dash), and Experiment (dots) 

 

5.7.4 EIS Calculation 

Figure 5-60 to Figure 5-62 shows the calculated complex impedance, amplitude and phase plots 

of the li-ion battery from off-line EIS measurement equipment (in red), experimentally measured 

data (in blue dots), and simulation (in black). Data from experimental tests show similar values 

compared to the EIS data. 

A switching frequency of 2kHz was used while the low frequency signal �S was varied from 1 to 

2kHz. To ensure that the system is always operating in continuous mode the duty cycle was set to 

Ipk-pk = 1.60 A 

(a) 

Ipk-pk = 1.59 A 

(b) 
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0.6 during discharge mode. The impedance of the battery was calculated for 21 low-frequency points. 

The battery current and voltage waveforms were measured and captured by the oscilloscope probes 

at each low-frequency points. The impedance of battery was then calculated by Fourier analysis of 

the waveforms at each frequency points using the FFT MATLAB code. 

 

 

Figure 5-60 : Impedance Nyquist plot of the lithium-ion phosphate battery1 with EIS (red), Simulation (black), 
and Experimental data (blue dots) 

 

 

 

Figure 5-61 : Impedance amplitude bode plot of the lithium-ion phosphate battery1 with EIS (red), Simulation 
(black), and Experimental data (blue dots) 

 

 

 

Figure 5-62 : Impedance phase bode plot of the lithium-ion phosphate battery1 with EIS (red), Simulation (black), 
and Experimental data (blue dots) 
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As battery 2 was run at a low SOC it was not possible to generate an EIS figure. More works needs 

to be done on this method to properly appreciate when the balancing circuit is appropriate. 

5.8 Earth Leakage monitoring circuit 

In this method, the ELM circuit was used to generate a low frequency excitation signal. The ELM 

circuit includes two ELM loads and a function generator to generate two low-frequency sinewave 

signals with the same amplitude of 12V but a 45˚ phase difference with respect to each other. The 

AC signals were generated by using the signal arbitrary function generator (arbstudio 1104). The 

voltage sources are then connected to the battery terminals through the 10Ω resistors and two 

capacitors. ELM circuit and the boost converter circuit were connected to the battery terminals. The 

experimental set-up is shown in Figure 5-63 and the block diagram is shown Figure 3-38. 

 
Figure 5-63 : Experimental setup of ELM method 
 

5.8.1 Circuit Operation 

The measured battery current, voltage and circuit output voltage and current waveforms for two 

frequency points of 125 Hz and 175Hz are shown in Figure 5-64 to Figure 5-67. The injected low-

frequency using the ELM added a ripple to the battery and circuit waveforms. The resulting 

waveform is the results of the superposition of the boost converter and the ELM current signals as 

described in section 3.7.3.  

Converter circuit 

ELM 10Ω resistors 

Arbstudio 1104 
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Figure 5-64 : Li-ion battery Current (Green) and Voltage (yellow) waveforms. The battery is excited with fixed 
duty cycle PWM (red) and a low ELM signal at 125Hz.  

 

Figure 5-65 : Load Current (Green) and Voltage (blue) waveforms. The battery is excited with fixed duty cycle 
PWM and a low ELM signal at 125Hz. 

 

 
Figure 5-66 : Li-ion battery Current (Green) and Voltage (yellow) waveforms. The battery is excited with fixed 
duty cycle PWM (red) and a low ELM signal at 175Hz. 
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Figure 5-67 : Load Current (Green) and Voltage (blue) waveforms. The battery is excited with fixed duty cycle 
PWM and a low ELM signal at 175Hz.   

 

The circuit was run with the boost converter switching frequency of 2kHz, a duty cycle of 0.6 in 

continuous mode and the ELM circuit active. Table 5-11 and Table 5-12 show the comparison of the 

key parameters of the experimental results at the low-frequencies of 125 Hz and 175Hz. The average 

value of the load voltage and current and the boost ratio of the circuit remain the same as the base 

circuit in section 5.2. The peak to peak ripple value remained approximately constant at different 

low-frequency values as per Equation 3-124. 

 

Table 5-22: Comparison of the based circuit data with the ELM circuit at 125Hz effects on 
Current and Voltage ripple 

 Experimental  

Fixed Duty Cycle Earth Leakage connected to the 

converter 

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E{N;; 1.18 A 1.49 A 1.25 A 1.77 A 

 {N;; 3.21 V 12.45 mV 3.21 V 23.9 mV 

EØSNP 420 mA 10 mA 420 mA 6 mA 

 P� 6.89 V 67 mV 6.88 V 81 mV 
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Table 5-23: Comparison of the based circuit data with the ELM 175Hz effects on Current and 
Voltage ripple 

 Experimental  

Fixed Duty Cycle Earth Leakage connected to the 

converter 

Average Value Peak-Peak ripple Average Value Peak-Peak ripple 

E{N;; 1.18 A 1.49 A 1.24 A 1.78 A 

 {N;; 3.21 V 12.45 mV 3.21 V 24.0 mV 

EØSNP 420 mA 10 mA 420 mA 6 mA 

 P� 6.89 V 67 mV 6.88 V 83 mV 

 

5.8.2 Harmonics 

Figure 5-68 shows the battery current harmonic analysis at the boost converter switching frequency 

of 2kHz and ELM low-frequency of 125Hz using the ELM circuit method. Both the low frequency 

125Hz and the switching frequency of 2kHz harmonics are extracted from the experimental and 

simulated current waveform. Figure 4-45 is repeated in Figure 5-68b for comparison purpose 

 
Figure 5-68 :a) Experimentally derived harmonics b)simulated harmonics of the Li-ion battery current signal 
with an ELM signal at a low frequency of 125Hz  

 

5.8.3 Inductor ripple 

The impedance of the power electronics to the ELM circuit is such that the inductor ripple current 

increase is negligible. The results presented below show the increase on ripple current for the battery 

as opposed to the ripple on the inductor as this is more useful in this case. The effect of the VELM 

amplitude variation on the added ripple to the current waveform is shown in Figure 5-69. As VELM 

decreases, the ripple of the waveform is decreased. The relationship between ripple increase 

experimentally, theory, and simulation as per Equation 3-64 is shown in Table 5-24.  

Switching frequency harmonic 

Low frequency 
harmonic 

(b) 

Switching frequency harmonic 

Low frequency 
harmonic 

(a) 
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Table 5-24: Calculated increase in current ripple as a % with ELM circuit compared to the base case for a switching 
frequency of 2kHz 

Frequency/ VELM Experimental Simulation Theoretical 

125Hz, VELM = 12V 103% 117% 118% 

175Hz, VELM = 12V 104% 117% 118% 

175Hz, VELM = 8V 100% 103% 118% 

175Hz, VELM = 5V 98% 102% 118% 

175Hz, VELM = 3.5V 96% 101% 118% 

 

 

Figure 5-69 : Comparison of the low frequency ripple at different frequency (a)VELM  = 3.5V, (b)VELM  = 5V, (c) 
VELM  = 8V, and (d) VELM  = 12V. With fs = 2kHz and f0 = 175Hz 

 

Figure 5-70 shows the current ripple for two low-frequency components. As determined in 

Equation 3-124, the ripple variation depends on many factors of	
?�²,	
¹?,	 {N;, 
{N;, z, and =UT 
values and therefore is less easy to predict the experimental outcome. 

Ipk-pk = 1.64 A 

(a) 

Ipk-pk = 1.67 A 

(b) 

Ipk-pk = 1.71 A 

(c) 

Ipk-pk = 1.78 A 

(d) 
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Figure 5-70 : Comparison of the low frequency ripple at different frequency (a) f0 = 125Hz, (b) f0 = 
175Hz 

Figure 5-71 shows the variation of the current ripple value based on Np value variation over the 

low-frequency range experimentally, theory using Equation 3-124, and simulation. The value of 	
¹?  

and 	
{N;	 changes depending on the variation of the frequency. The impedance of the battery and 

power electronics is calculated for different low-frequency points to calculate the battery current 

ripple theoretically. The data shows that the ripple mostly remains constant and the effect of the low 

frequency value on ripple variation is small. 

 

Figure 5-71 : Comparison of the low frequency ripple at different frequencies using theory (Line), Simulation 
(dash), and Experiment (dots) 

 

5.8.4 EIS Calculation 

Figure 5-72 to Figure 5-74 show the calculated complex impedance, amplitude and phase plots of 

the li-ion battery from off-line EIS measurement equipment (in red), experimentally measured data 

(in blue dots), and simulation (in black). Data from experimental tests show similar values compared 

to the EIS data. 

Ipk-pk = 1.77 A 

(a) 

Ipk-pk = 1.78 A 

(b) 
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A switching frequency of 2kHz was used while the low frequency signal �S was varied from 1 to 

2kHz. To ensure that the system is always operating in continuous mode the duty cycle was set to 

0.6 and  ?�² was set to 12V. The method could be suitable for implementation. The impedance of 

the battery was calculated for 23 low-frequency points. The battery current and voltage waveforms 

were measured and captured by the oscilloscope probes at each low-frequency points. The impedance 

of battery was then calculated by Fourier analysis of the waveforms at each frequency points using 

the FFT MATLAB code. 

 

 

 

Figure 5-72 : Impedance Nyquist plot of the lithium-ion phosphate battery with EIS (red), Simulation (black), 
and Experimental data (blue dots) 
 

 

 

Figure 5-73 : Impedance amplitude bode plot of the lithium-ion phosphate battery with EIS (red), Simulation 
(black), and Experimental data (blue dots) 
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Figure 5-74 : Impedance phase bode plot of the lithium-ion phosphate battery with EIS (red), Simulation (black), 
and Experimental data (blue dots) 
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5.9 Summary 

This chapter looked at implementing the methods of inducing a low frequency excitation signal in 

hardware. The measurements were used to look at the different circuit operations, the ripple current 

increase and its dependency on other variables. Finally the circuits were used to generate an EIS plot 

by sweeping the frequency across a range from 1Hz to 2kHz to try and understand the suitability of 

each method to be further investigated as an on-line measurement technique. 

These methods of using the existing hardware in the power electronics to produce an on-line EIS 

measurement have not previously been reported and shown at this level of detail and is a contribution 

of this thesis to knowledge in the area. Key results of the experimental data are shown in Table 5-25. 

Comparison with Table 4-16 show that the simulated and experimental results follow the same 

trends. The simulation has been carried out with ideal components and therefore the battery current 

is lower in the experimental setup than that in simulation.  

Table 5-25: key results from experimentally derived data 
Method Boost ratio 

compared 

to base case 

Inductor current 

ripple increase 

@125Hz 

Inductor current 

ripple increase 

@125Hz 

Fourier co-efficient 

amplitude @125Hz 

Ripple 

dependency 

on frequency 

Suitability for 

On-line EIS 

3- Variable 

duty cycle 

 Same Ad = 0.01 in D = 

0.6 

17.7% 0.09 Yes yes 

4- Variable 

frequency 

Same Af = 400Hz in fs = 

2kHz 

19.7% 0.013 Not visible in 

experiment 

no 

3 – Variable 

starting point 

Same At = 40µs in 260µs 41.8% 0.2 Yes yes 

4 – Impulse 

function 

Higher Ti = 0.00002s in a 

pulse width of 

0.0003s 

15.1% 0.45 Yes – but 

hardware 

dependent 

yes 

5 – Battery 

Balancing 

Same voltage difference 

0.19V in 3.21V 

0% 0.16 Not visible in 

experiment 

maybe 

6 - ELM Same Fixed voltage 

difference of 9.2V 

0% 0.081 Not visible in 

experiment 

yes 

The work contained with Chapters 3-4 looks at the methods of introducing a low frequency 

component into the battery circuit and deriving and validating the impact that this has on the circuit 

behaviour. This chapter has gone beyond that initial work and has looked at using the low frequency 

signals to generate an EIS type plot. However, this has been done under ideal conditions (fixed 

battery voltage and oscilloscope data capture using an open-loop control system and a fixed load).  

Chapter 5 looks at expanding on this work to firstly investigate if this work can be used for different 

battery chemistries and also if it has a use within other fields such as solar power generation. Chapter 

5 then goes on to explore the practical limitations of an on-line system based on these methods.  
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6 Practical implementation issues 
 

6.1 Introduction 

The work in chapters 2-4 has concentrated on proving the feasibility of different methods of EIS 

measurement for consideration towards on-line techniques. These were undertaken with a single 

battery chemistry under controlled conditions at a fixed SOC using a high speed oscilloscope. This 

chapter builds on the feasibility studies to look at other issues including: 

• Applicability to different battery chemistries 

• Applicability to different devices characterised by EIS 

• Working towards a practical on-line scheme including issues with 

o Instrumentation 

o Variable SOC 

o Data processing 

o Multiple cells 

   

6.2 Applicability to other battery types 

The variable duty cycle method was applied to measure the impedance of a 1.5V Ansmann 

rechargeable AA NiMH (nickel-metal hybrid) battery with 2.86Ah capacity. The same circuit design 

as presented in chapter 4, was used for the impedance calculation of the NiMH battery.  

 

 
Figure 6-1 : NiMH battery EIS impedance plot and equivalent circuit model 
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The equivalent circuit used is shown in Figure 6-1, which is the closest and most common 

representation for the Nickel Metal Hybrid (NiMH) [227] Table 6-1 represents the estimated values 

of these components for use in simulation. 

Table 6-1: Battery Model component specifications 
Components  Ni-MH Battery 

®1(Ω) 0.052  

®3(Ω) 0.0041  

®È(Ω) 0.0051  

iÐA1(S) 6.43  

iÐA3(S) 11.28  
 

Using the variable duty cycle method, Figure 6-2 to Figure 6-4 show the calculated complex 

impedance, amplitude and phase plots of the NiMH battery from offline EIS measured data (in red), 

experimental test data (in blue dots), and simulation (in black). Results from simulation and 

experimentally measured data give values similar to that produced using the off-line EIS equipment. 

A switching frequency of 2kHz was used while the low frequency signal �S was varied from 1 to 

2kHz. To ensure that the system is always operating in continuous mode the duty cycle is increased 

to 0.7 (as the voltage of the NiMH battery is lower), with an (P of 0.01. 

 

 
Figure 6-2 : Impedance Nyquist plot of the NiMH battery with EIS (red), Simulation (black), and Experimental 
Validation (blue dots) 
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Figure 6-3 : Impedance Bode plot of the NiMH battery with EIS (red), Simulation (black), and Experimental 
Validation (blue dots) 

 

 

 
Figure 6-4 : Impedance Bode plot of the NiMH battery with EIS (red), Simulation (black), and Experimental 
Validation (blue dots) 

 

The results indicate that this method is appropriate for consideration with other battery chemistries. 
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6.3 Applicability to PV panels 

To undertake analysis of a solar panel, two operational conditions were chosen as shown in Figure 

6-5 the maximum power point (MPP) and Point A was chosen as alternative operating points by way 

of comparison. Point A also lies on a more linear part of the I-V curve, such that a small perturbation 

of current will result in a linear perturbation of voltage about this operating point [330]. 

An off-the shelf multicomp polycrystalline 800mW Solar Panel was used in these experiments. 

The solar equivalent circuit parameters were obtained using the EIS impedance analyser (solatron 

1260 and 1287) as shown in Figure 6-6. The impedance of the solar cell was excited by 73mA Ac 

current and a dc discharge current of 140mA in the frequency interval of (500Hz to 100 kHz). The 

dc discharge current value was chosen to match the inductor current of the converter under later 

experimental conditions. The useful EIS data is contained over a much higher frequency range than 

for a battery so an increased switching range needs to be considered. 

 

Figure 6-5: Solar Panel current (blue) and power rating (red) characteristic 

 

The Nyquist diagram of the solar panel comprises a semicircle (represented as a parallel resistor 

and constant phase element, CPE, due to impurity in capacitor behaviour [143]) and a series resistor 

[243][331]. Table 6-2 shows the EIS derived values of these components under the two operating 

points. 

MPP

A 
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Figure 6-6 : Photovoltaic solar panel EIS impedance plot and equivalent circuit model 

 

Table 6-2: Solar panel Equivalent Circuit Model component specifications 
Components Photovoltaic solar panel 

MPP operation 
R_1(Ω) 1.372 
R_2(Ω) 2.26 
iÐA1(F) 8.67e-5 

Point A operation 
R_1(Ω) 1.163 
R_2(Ω) 1.077 
iÐA1(F) 6.404E-5 

 

In order to generate a set of comparable simulation results the PV panel and boost converter are 

modelled using Matlab Simulink software. The component values in the simulation model are based 

on the experimental hardware components. The component values of the converter were selected to 

ensure that for the purposes of the continuous mode operation of the converter at a duty cycle of 0.5 

at 100 kHz frequency. 

The 0.8W polycrystalline solar panel was operated with an output voltage of 3.4V. The dc-dc 

converter was used to boost this to 7.19V with a corresponding load output current of		6.8	q(. The 

hardware setup was set to always operate the converter in continuous mode with a boost ratio of 2. 

Converter components were calculated according to this assumption. An HER204G Rectifier Diode 

with maximum 2A forward current was used. The specifications of the components are summarised 

in Table 6-3. 

MPP 

A 



235 
 

Table 6-3: Boost converter component specifications 

Components Specifications 

Inductance 360µH, 20 A, Toroidal 

Capacitance 470µF, 16V Electrolytic 

Load 1kΩ Resistor 

Switch MOSFET FDPF045N10A, 100 V, 67 A, 4.5 mΩ 

 

The experimental setup is shown in Figure 6-7 panel voltage and current are measured every time 

that the low frequency is changed for impedance measurement in the low frequency range. The 

voltage and current were measured using a Lecroy 100MHz current probe and a Tektronix P2220 

200MHz voltage probe The gate drive signals were derived from a signal generator because of high 

frequency switching. 

 

Figure 6-7 : Solar panel Experimental Set Up 
 

The methodology was applied to a photovoltaic panel to investigate the impedance across a range 

of low frequencies. The low frequencies were chosen in the frequency range of 500Hz to 90 kHz to 

tie up with the EIS results. The tests were conducted under constant luminance with a fixed light 

source in a dark room. The solar cell was operated at point A and MPP on its operational voltage and 

current curve. The maximum measured power of the solar panel occurs at point MPP on the operating 

chart. This occurs with a load resistance of 1kΩ and an equivalent power of 0.798W under the same 

illumination as the experiments above. This is close to the published manufacturers data. The short 

circuit current was measured at 0.270 mA and the open circuit voltage was 3.6V.  

Light source 

Boost converter Solar panel 

  

Oscilloscope  
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Issues with the solar panel are that the relevant frequency range containing useful information is 

much higher and therefore to cover this range a much faster switching frequency is required for the 

dc/dc converter. The switching frequency is therefore chosen to be 100 kHz while the low frequency 

signal �S was varied from 500Hz to 90kHz. To ensure that the system is always operating in 

continuous mode the duty cycle is set to 0.5 with an (P= 0.012 for the solar panel. This increase in 

switching frequency makes it difficult for other methods such as varying the start position to be used 

as the control equipment generating the pulses will struggle with the high level of fidelity needed. 

Figure 6-8 and Figure 6-9 show the experimentally captured I and V waveform with a variable 

duty cycle including a low-frequency ripple of 10 kHz and a fixed duty cycle. 

 
Figure 6-8 : Solar Current (Green) and Voltage (yellow) waveforms, the panel is excited with variable duty cycle 

with a low frequency component of 10 kHz, Ad= 0.012. 

 
Figure 6-9 : Solar Current (Green) and Voltage (yellow) waveforms, the panel is excited with constant duty cycle 

(no low frequency ripple is included) 

s 

s 
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The experimental results show a component of low frequency ripple has been added to the solar 

panel increasing the peak to peak ripple. A full comparison of the key parameters using a fixed duty 

cycle and variable duty cycle under experimental and simulated conditions at 10kHz low frequency 

ripple are shown in Table 6-4. 

Table 6-4: Comparison of fixed duty cycle with variable duty cycle at 10 kHz effects on Current and Voltage ripple 

 Experimental  
Fixed Duty Cycle Variable Duty Cycle 

Average Value Peak –Peak 
value 

Average Value Peak –Peak value 
 Ð�c 486 mW 490 mW 

ETSØN¥ 135 mA 61 mA 140 mA 74 mA 

 TSØN¥ 3.6 V 

 

3.5 V 

 

EØSNP 6.7 mA 6.9 mA 

 P� 7.19 V 7 V 

ÐS|; 48.17 mW 48.3 mW 
 
 Simulation 

Fixed Duty Cycle Variable Duty Cycle  
Average Value Peak –Peak 

value 
Average Value Peak –Peak value 

 Ð�c 459 mW 476 mW 

ETSØN¥ 135.2 mA 57.1 mA 140.2 mA 68.4 mA 

 TSØN¥ 3.4V  3.4 V  

EØSNP 6.8 mA 6.75 mA 

 P� 6.8 V 6.75 V 

ÐS|; 46.24 mW 45.88 mW 
 

Table 6-4 shows the values of the input and output current, voltage and power of the boost 

converter measured from simulation model and experiments. Comparison of the data shows that the 

simulation model of the converter is performing in a manner similar to the experimental data 

indicating a good understanding of circuit behaviour and the validity of the EIS impedance in the 

simulation.  

The peak to peak current is increased due to the low frequency ripple. The pu increase in ripple 

between variable and fixed duty cycle is 1.2 which is slightly higher than the calculated increase 

from Equation 3-40 of 1.15. To verify the proposed method the calculated solar impedance data from 

experimental and simulation was compared with the measured EIS data. Impedance data is presented 

in three typical impedance formats; amplitude, phase, and complex plots in Figure 6-10 to Figure 

6-13 EIS measurement equipment (in blue), experimental test (in red dots), and simulation (in black). 

These show the measured complex impedance of the PV panel from EIS measurement equipment 

(in blue), experimental test (in red dots), and simulation (in black).  
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Figure 6-10 : Impedance Nyquist plot of solar panel with EIS (blue), Simulation (black), and Experimental 

Validation (red dots) operation at A 

 
 

 

Figure 6-11 : Impedance Nyquist plot of solar panel with EIS (blue), Simulation (black), and Experimental 
Validation (red dots). operation at MPP 
 

 

operation at A 

operation at MPP 
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Figure 6-12 : Impedance phase Bode plots of solar panel with EIS (blue), Simulation (black), and Experimental 
Validation (red dots) operation at A 

 

 

Figure 6-13 : Impedance Amplitude Bode plots of solar panel with EIS (blue), Simulation (black), and 

Experimental Validation (red dots) operation at MPP 

 
 

operation at A 

operation at MPP 
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Figure 6-14: Impedance phase Bode plots of solar panel with EIS (blue), Simulation (black), and Experimental 
Validation (red dots) operation at A 

 

Figure 6-15 : Impedance phase Bode plots of solar panel with EIS (blue), Simulation (black), and Experimental 
Validation (red dots) operation at MPP 

 
 
The key result is that the on-line method of producing Impedance spectroscopy through the power 

electronics switching can give comparable results to off-line measurements under similar conditions 

and that circuit simulations using an equivalent circuit derived from these values performs in a similar 

manner. This means there is scope to use this methodology in conjunction with other devices which 

may benefit from EIS analysis and it allows the impact of degradation to be observed in real time in 

a visual manner. 

operation at A 

operation at MPP 
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6.4 Measurements over variable SOC 

A practical on-line EIS technique needs to take data from the battery under any condition using 

low cost instrumentation and then turn this into useful data which can be used by the controller, BMS 

or battery system operator. The EIS techniques described in this thesis produces measured data which 

needs to be analysed and turned into useful information. It is suggested that a process similar to that 

shown below is employed to do this. Due to the complexity of such a system it is beyond the scope 

of this thesis to implement the full system in hardware. This chapter provides pointers as to the key 

considerations that would be needed to be undertaken to produce a realisable and commercial system. 

A full second life battery system, for example similar to that described in ref [332] uses batteries of 

different capacities, SOC and SOH in a cascaded dc/dc system. The system controls the import and 

export of power to and from the batteries based on the relative estimated states of the batteries. The 

data from a real time EIS measurement could potentially provide an indication as to which batteries 

should be charged/discharged and to what level.  

 

Figure 6-16 : Path of measured values to information 
 

Although it is possible to take an EIS measurement at full SOC only, it is more desirable to have 

a continuous real time indication of the battery under any SOC and, if possible to use the EIS data to 

predict the SOC. Providing a real time indication of the battery condition using EIS is complicated 

as the EIS impedance curves change with both temperature and SOC [161], [163]. The EIS method 

could therefore be used to predict the SOC or an alternative method of predicting SOC could be used 

to allow the EIS to predict the degradation at a known SOC. Various methods of predicting SOC of 

batteries have been presented in Chapter 1. EIS measures impedance data of the battery over a 

Battery and power 
electronic hardware 

Power electronic 
controller/BMS 
system 

Gate drive 
signals 

Measured values such as 
voltages and current 

EIS data 
processing and 
curve fitting Battery status 

indication 

Use the EIS 
data to predict 
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? 

Use another 
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SOC and use EIS 
for degradation  

? 



242 
 

frequency range using different charge/discharge current rate. The measured impedance values of an 

equivalent circuit model are correlated to the known impedance at different SOC levels [161], [168]. 

However, the accuracy of this method is affected by temperature variation and its not clear what 

impact capacity changes have. In this thesis, it was felt that it was better to estimate SOC by 

alternative means and then continuously sweep the low frequency EIS excitation  to generate a set 

of curves which go from fully charged to fully discharged. A simplification of this can be seen in 

Figure 6-17 which shows each low frequency exciation sweep as a different colour, but the 

impedance curves are changing dynamically as the SOC continuously changes. 

 

 

Figure 6-17 : Real time EIS data continuously changes over a low frequency excitation sweep 
 

 

In this experiment the 100% SOC was set to 3.2V the maximum possible charging value to start. 

The battery was discharged continuously with a constant discharge current of 1.18A using the 

variable duty cycle method till it reached 2.7V SOC. The current and voltage of the battery were 

measured over the frequency range at a sweep time interval of 3min. The impedance of the battery 

over the range of the frequencies were calculated using the measured voltage and current data. Figure 

time 

Im Z (ohms) 

Re Z (ohms) 

SOC 

Time 
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6-18 to Figure 6-20 show the calculated impedance of the battery from the experimentally measured 

data at the different frequency sweep conditions. The curves show that battery EIS impedance 

changes as the battery SOC changes, so as the SOC of the battery reduced the impedance of the 

battery increased. The process is continuous in real life and therefore the next section discusses how 

best to understand this changing data. 

 

 

Figure 6-18 : Battery Impedance Nyquist plot for different state of charge 
 

 

Figure 6-19 : Battery Impedance Amplitude bode plot for different state of charge 
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Figure 6-20 : Battery Impedance Phase bode plot for different state of charge 
 

 

6.5 Integrating into a battery management strategy 

Calculation of equivalent circuit parameters using curve fitting gives useful values which can be 

used by the BMS/power electronic controller. The impedance data of the battery can be used as a 

basis to curve fitting battery model parameters. An equivalent circuit of the battery impedance curve 

is used to fit the impedance data over the frequency domain. In this work, an equivalent circuit the 

same as shown in Figure 4-1 in section 4.1 is used. The circuit includes two parallel RCPE 

components (R2CPE1, R3CPE2) in series with R1. To simplifying the model, capacitor components 

are used instead of CPE components. The transfer function from the presented equivalent circuit can 

be written as: 

  

à(�) = O(T)
�(T) = ®1 + K�

1�TK�¨á + Ká
1�TKá¨�= Equation 6-1 

Simplifying the Z(s) we have:  

à(�) = K~�K��Ká�T(K~K�¨~�K~Ká¨��K�Ká¨��K�Ká¨~)�T�K~K�¨~Ká¨�
1�T(Ká¨��K�¨~)�T�K�¨~Ká¨�   Equation 6-2 

Substituting s=jω in Equation 6-2: 

à(./) = K~�K��Ká�9:(K~K�¨~�K~Ká¨��K�Ká¨��K�Ká¨~)�9:�K~K�¨~Ká¨�
1�9:(Ká¨��K�¨~)�9:�K�¨~Ká¨�   Equation 6-3 

 

A complex nonlinear least square method was undertaken to predict the parameter values of the 

battery equivalent circuit to match the measured impedance data [141]–[145]. This method 



245 
 

minimizes the error between the measured data and the estimated data using a set of battery model 

parameters. The impedance of the battery model in Figure 4-1 can be written as: 

>(./) = �(./, â�)  Equation 6-4 

Where â� = ®1, ®3, i1, ®È, i3	are the equivalent circuit parameter of the lithium-ion 

battery, and can be calculated from: 

Φ = ∑ ä®7(à� − >�)3 + Eq(à� − >�)3åc�k�   Equation 6-5 

Where à� is the measured impedance from the experiment data, and >� is the calculated 

impedance data. In this method a Taylor series method was used to predict the parameters. 

In the Taylor series, the impedance value can be calculated from its previous value and the 

variation of its approximation parameters. By defining the approximation values of the 

parameters with ∆ and using Taylor series the below expression can be represented as: 

>(./)9�1 = >(./)9 + æË(:)ç
æè§ ∆â�  Equation 6-6 

Where the value of  ∆â� can be calculated from the following expression:  

∆â� = é81ê  Equation 6-7 

Where é and G can be calculated as: 

é =	 ä(>KL)X>KL + (>@M)X>@Må  Equation 6-8 

ê = 	 ä(>KL)X∆àKL + (>@M)X∆à@Må  Equation 6-9 

ä>®7å�9 = ®7	 ^ë>gëâgh;                             ä>Eå�9 = Eq	 ^ë>gëâgh 
�∆à®7�9 = ®7	(à� − >�)  ;                   �∆àEq�9 = Eq	(à� − >�) 

Equation 6-10 

The above process was performed using Excel on the generated data from the measured experiments 

impedance data. The first value of the		Φ	was generated using the initial value of the 

approximated equivalent circuits components and updates of the value of the components 

for the next repetition. The different estimation data of the battery model parameters is 

shown in Figure 6-21 and Table 6-5. 
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Figure 6-21 : comparison of different fitting curves 
 

Table 6-5: Equivalent circuit components variation 

Components Values from  To  

®3 1.18 Ω 0.0081 Ω 

®È 0.0000026 Ω 0.00095 Ω 

i1 0.02 F 3.8 F 

i3 6.65 F 45.7 F 

 

Converting the measured data into useful information is computationally complex and 

requires data to go through an FFT process followed by a curve fitting process. Before these 

methods can be adapted large scale low cost means of undertaking these calculation online 

must be realised. 
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6.6 Investigating a degraded battery in a series 

battery connection 

In most practical systems there is more than one battery cell depending on the type of application 

many battery cells may be connected in series and/or parallel. This leads to the possibility of 

mismatch between different battery cells in a battery bank based on different temperature conditions 

and variation on the batteries impedance, capacity and etc. Battery charge and/or discharge imbalance 

may result in over charging or over discharging of the cells with lower capacity.  This research uses 

the on-line EIS method to generate impedance traces of each of the two cells one with low capacity 

and the other with high capacity to consider if the variation of cell impedance allows the detection 

of the battery cell with the higher capacity from the impedance data of the battery cells. The batteries 

were connected in series and connected to the DC-DC converter from section 5. The joint measured 

impedance data of these two battery cells was then compared with the measured data using the 

laboratory EIS equipment. The calculated complex impedance, amplitude and phase plots of the li-

ion battery cells from offline EIS measured data (in red battery with higher capacity, black battery 

with lower capacity, and yellow two battery cells in series) and experimental test data (in blue dots) 

is shown in Figure 6-22 to Figure 6-24. Results from experimentally measured data gives values 

similar to that produced using off-line EIS equipment. However, it is unlikely there is sufficient 

information to detect the battery with smaller capacitor and requires further work considered outside 

the scope of this thesis. 

 

Figure 6-22 : Battery Impedance Nyquist plot, impedance of two batteries in series connection experiment (blue 
dots), EIS of two batteries in series (red line), EIS of degraded battery (black dash), EIS of new battery (yellow 
dash) 

 

Battery impedance with higher 

capacity 



248 
 

 

Figure 6-23 : Battery Impedance Amplitude bode plot of two batteries in series connection experiment (blue dots), 
EIS of two batteries in series (yellow line), EIS of degraded battery (black line), EIS of new battery (yellow line) 

 

 

Figure 6-24 : Battery Impedance Phase bode plot of two batteries in series connection experiment (blue dots), 
EIS of two batteries in series (yellow line), EIS of degraded battery (black line), EIS of new battery (yellow line) 

  

6.7 Closed loop control model 

It is typical to control the output voltage across the capacitor to a fixed value and to control the 

inductor current with a faster inner control loop. By adjusting the duty cycle to give a variable ripple 

on the inductor at a slow speed there is the danger that the control system can negate the impact of 

this by re-adjusting the average duty cycle more quickly. A closed loop control system was added to 

the boost converter to investigate this. A typical current and voltage control system of a boost 

converter is shown in Figure 6-25.  
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Figure 6-25 :Typical control system model 
 

Figure 6-27 shows that a low frequency ripple is still presented in the battery current indicating that, 

undertaking this technique in closed loop control is feasible. However the impact on the excitation 

current needs further work.  

 

 

Figure 6-26 : Current (Green), PWM signal (yellow), fixed duty cycle and switching frequency using closed loop 
control 

 

 

 

Figure 6-27 : Current (Green), PWM signal (yellow), variable duty cycle at low frequency of 125Hz using closed 
loop control 
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6.8 Summary 

This chapter looked at the complexity of taking forward the development of these new techniques 

towards a practical real time solution for use with a real system. Key areas that need investigation 

include; 

Instrumentation over different voltage and current ranges to a suitable level of accuracy to allow 

work on all sizes of systems. Having measured the data it is necessary to undertake a time consuming 

FFT process to access the voltage and current measurement for use. There is very little literature on 

undertaking real time FFT and what there is suggests that this is complex. In this work the OpalRT 

controller was used to undertake this process but this is not practical in a real system because of its 

expense. Therefore a separate controller, will be needed to undertake these intensive calculations 

before feeding the results back to the system Power Electronic/BMS controller. The data itself is 

changing in real time and is a function of temperature and SOC. Although lookup tables can be 

generated to help understand what the data is referring to, it is not clear how these tables would 

change with aging and degradation. 

There are still many areas to be solved within this thesis which is beyond the scope of this thesis. 

Chapter 6 provides a summary of all the work completed and also provides a summary of the future 

work needed to arrive at a commercially useful system. 
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7 Conclusions and Future Work 
 

A key challenge in a battery energy storage system is understanding the availability and reliability 

of the system from the perspective of the end customer. This thesis started by taking a look at data 

collected as part of the FALCON project in particular the difference that a battery maintenance cycle 

can make to the availability of a battery. [The presented results represent a contribution to knowledge 

of this thesis]. A key task of a battery system is recognising when a battery or a module within a 

system starts to degrade and then mitigating against this using the control system or battery 

management system. Battery characterisation parameters such as internal impedance and state of 

health and state of charge of the battery are a useful representation of the battery conditions. These 

representations can be used to estimate the battery remaining lifetime, energy storage capacity, and 

degradation. Recent work in published literature has started to investigate the feasibility of 

performing Electrochemical Impedance Spectroscopy methods online to generate an understanding 

of battery impedance. In order to perform an EIS measurement, an excitation signal of fixed 

frequency must be generated and the voltage and current measured and used to calculate the 

impedance. The work in this thesis has been undertaken in parallel to most of the published literature 

in this field. However, because of the rapid independent development of knowledge in this area, the 

techniques developed in parallel have been categorised according to their hardware and control. [The 

categorisation of different on-line EIS methods represents a contribution to knowledge of this thesis] 

This thesis proposed different methods of generating a low-frequency excitation signal using 

hardware found in most battery systems to extract the harmonic impedance of a battery cell to allow 

low cost on-line impedance estimation. This work focuses on producing impedance spectroscopy 

measurements through the power electronics system, a battery balancing system and the earth 

leakage monitoring system to attempt to get comparable results to off-line measurements under 

similar conditions.  

The proposed methods included: a) using DC-DC converter hardware with variable duty cycle, b) 

using DC-DC converter hardware with variable switching frequency, c) using DC-DC converter 

hardware with variable pulse starting position, d) using DC-DC converter hardware with an added 

impulse function, e) using capacitive battery balancing hardware, and f) using Earth Leakage 

Monitoring hardware. In all these methods, the DC-DC converter operated in continuous mode with 

a fixed duty cycle and load to allow comparable analysis between the techniques. Although utilising 

variable duty cycle to generate a harmonic impedance has been previously published in literature, 

the other techniques analysed within this these have not previously been considered.  [Five new 

proposed methods of on-line EIS methods represents a contribution to knowledge of this thesis] 
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Chapter 3 focused on the theoretical aspects of the proposed methods. This included looking at the 

waveforms that would be generated by changing the switching of the power electronics, the battery 

balancing or the earth leakage monitoring and then using these waveforms to determine the harmonic 

current in the battery using Fourier analysis to understand how much excitation current would be 

available [The analysis of the harmonics in the battery current waveform to show that an excitation 

signal has been generated represents a contribution to knowledge in this thesis] 

  Explicit equations were derived to try to understand the increase in ripple current on the inductor 

– such that these can be used at a design phase prior to component choice to understand the impact 

on the inductor. [The derivation of explicit equations to describe the increase in inductor current 

ripple for each power electronic hardware based method represents a contribution to knowledge of 

this thesis] 

The key conclusions from this chapter are that the theoretical results indicate that all methods have 

the capability to generate a low frequency perturbation signal to undertake on-line EIS measurement. 

However, there are potential trade-offs. They key trade-off is the increase in ripple current through 

the battery and possibly the inductor (depending on method). The methods that used the power 

electronics to generate the excitation signal all saw an increase ripple on the battery which was 

matched by an increase in inductor ripple. The methods of using a variable starting point had the 

potential to generate less excitation current. 

Chapter 4 looked at using an equivalent circuit of the battery to allow each method to be simulated 

and analysed with a DC- DC converter circuit. The  simulation of the proposed methods for injecting 

a low frequency harmonic were undertaken while the converter was deemed to be operating in a 

continuous mode with a fixed duty cycle and 2kHz switching frequency. The harmonics of the 

simulated current through the battery using the Fourier analysis of the simulated battery current using 

MATLAB were calculated. The detected low-frequency component from the harmonic spectrum of 

the simulated battery current matched that found in the Chapter 2.  

As part of this work it was necessary within simulation to determine how to generate the signals 

needed to induce the excitation signals developed in chapter 2. [The method of producing the control 

signals needed to generate the low frequency excitation of 3 of these methods (variable starting point, 

capacitive balancing and earth leakage monitoring) represents a contribution to knowledge of this 

thesis]. 

The key conclusions from this chapter can be represented as: 

• In the impulse function method, the boost ratio of the DC-DC converter increased depending 

on the pulse width of the impulse function injected to the gate drive PWM. Therefore, the duty 
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ratio of the impulse function may need to be adjusted. However, in other methods the boost 

ratio of the converter remains the same as base case circuit. 

• The current ripple of the impulse function with the gate drive PWM signal highly depends on 

hardware and frequency. 

• The variation of the current ripple in variable duty cycle and variable starting position depends 

on the injected low frequency signal. But dependency of the ripple variation on the low 

frequency on methods of battery balancing, variable frequency, and ELM is not visible in 

simulated current. 

• The inductor current ripple variation in ELM method and battery balancing method is 

negligible over the low-frequency change, however the excitation ripple can be seen in the 

battery current.  

• There were issues identified through simulation of these methods; 

o The accuracy of the data is limited by the time step size of 20µs for methods of 

impulse function, starting position, and battery balancing method. 

o In the battery balancing method, when the battery voltages are equal then there is 

negligible low-frequency ripple on the battery waveforms. Also, a high voltage 

difference between the batteries results in an increase in the battery current ripple. 

o The variable frequency method produces a spread range of switching frequency 

across the (	�T ±	(w) range. This may result in EMI/EMC issues.  

[The observations from the simulations on each method and the realisation of the dependency of 

inductor current with the frequency of the applied ripple current in some methods is a contribution 

to knowledge of this thesis] 

All the proposed methods of inducing a low-frequency excitation signal were implemented in 

hardware in chapter 5. The measurements were used to look at the different circuit operations, the 

ripple current increase and its dependency on other variables. Finally, the hardware was used to 

generate an EIS plot by sweeping the frequency across a frequency range to investigate the suitability 

of each method. The experimental setup was run under conditions of fixed battery voltage and fixed 

load and duty cycle to tie in with simulations as far as possible. The key results of the experimental 

data are: 

• The experimental results follow the same trends as the simulated results. However, the 

battery current in the experimental setup is lower. This is because the simulation has been 

carried out with ideal components. 

• In all the proposed methods, the low-frequency component has been detected from the 

measured battery waveforms from the experimental setup. This indicates the possibility of 

using these methods to undertake and implement an on-line EIS measurement.  
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• The generated EIS results from the experimentally measured data indicates that the variable 

duty cycle, addition of an impulse function, battery balancing method and the ELM can be 

considered suitable as measurement to take forward for further testing. The variable 

switching frequency method was less suitable and did not generate good EIS results.  

 

[The use of all these methods to produce or otherwise an on-line EIS plot of comparable quality to 

off-line techniques is a contribution of this thesis to knowledge] 

Chapter 6 looked at expanding on the knowledge around the experimental testing to further the 

understanding on practical implementation issues. The key summaries of this chapter include: 

• These new techniques are applicable to other battery types and different devices 

characterised by EIS such as a solar cell was investigated. There is only a small body of 

previously published work on using this technique to look at solar cells and none of these 

considered an on-line condition [The use of all on-line EIS techniques to solar cells is a 

contribution of this thesis to knowledge] 

• Instrumentation over different voltage and current ranges was undertaken to work towards a 

practical on-line scheme, and the measured by sensors shows good accuracy of the 

measurement instruments. 

• This methodology can be used to provide a real time indication of the battery SOC by 

measuring the impedance of the battery over the different frequency sweep interval. 

However, the impact of the temperature variation on the battery capacity and the impedance 

changes is not clear. 

• The least square method was undertaken to predict the battery model components values 

which is useful for battery condition estimation. 

• The data from the online method was used to see if it was possible to detect a degraded cell 

in series with a normal cell. However this was not immediately possible and would require 

further work. 

 

To summarise, 1 previously published and 5 new methods of performing on-line impedance 

spectroscopy using existing hardware in the system have been proposed and analysed. This 

represents a significant novel change in the knowledge in this field. 

7.1 Future work  

This work proposed different online impedance measurement methods. However, because of the 

novelty of the proposed methods, there are still many areas to be solved within this topic area. The 

following list gives a selection of ideas for consideration for further work:  
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Theoretical analysis 

• In the variable duty cycle method, the current ripple is defined as a function of Np . However, 

this value cannot increase indefinitely as Np increases in practice. This is because the theory 

analysis is based on an ideal case, whereas the real circuit contains non-ideal components. 

Further theoretical analysis needs to be adapted to deal with the circuit nonlinearity.  

 

• There is a need to extend the analysis to investigate the analysis and impact of the 

discontinuous mode operation of the DC-DC converter on the current ripple variation over 

the frequency ranges. 

 

• The harmonic analysis showed that some of the methods were producing signals at multiple 

low frequency components. This could be utilised to reduce the sweep time of a signal and 

look at more than one harmonic at a time. 

 

Simulation 

• The simulation looked at ideal components to allow easy comparison with the theory. The 

next step would be to look at the simulation with non-ideal components in both boost and 

buck mode. 

 

Other hardware Systems 

• Only a limited amount of research was done on battery balancing. There is scope for future 

work to look at other alternative battery balancing methods than published methods to 

produce a low-frequency excitation signal for impedance measurement. 

 

• In the same way – there are many published dc/dc converter systems and implementing the 

methodologies on different circuit eg the flyback converter could generate further means of 

on-line analysis and extend its applicability. 

 

• In a switched capacitor balancing circuit, a series resonant inductor may be considered for 

soft switching.  Further work is required to look into the effect of the resonant switched 

capacitor balancing circuit to produce a perturbation signal.  
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• The battery balancing used in this work needed a clear voltage difference between two 

battery cells to detect a signal. Alternative balancing circuit need to investigate the effect of 

low battery voltage differences on the battery and inductor current ripple variation. 

 

• The battery balancing circuit was designed to balance two battery cell. A more sufficient 

circuit design for balancing more battery cells is needed. 

 

Implementation issues 

 

• The hardware and control system lack accuracy especially for variable switching frequency 

and variable starting pulse position. Further work is required to look at alternative controllers 

and control methods to improve the system accuracy.  

 

• The proposed methods were applied on one and two battery cells. An improved hardware 

system needs to be adapted for bigger battery system.  This will have implications for the 

I/O control count needed if all measurements if each battery is monitored independently or 

the ability to use the method to pick out a degrade cell needs to be refined. 

 

• Improvements to the design of the DC-DC converter such that the switching frequency is 

increased to allow operation at higher frequency points would allow the system to be applied 

to different applications.  

 

• In this research, it was difficult to implement full system in hardware to calculate the state 

of the battery. The full implementation of the system would be needed to be undertaken to 

produce an online realisable and commercial system for battery states calculation. 

 

• This research assumes the constant room temperature for the battery impedance and SOC 

estimation. Including the temperature variation effects explicitly into the online techniques 

analysis is required.  

 

• The impedance data itself is changing in real time as a function of SOC. Although lookup 

tables can be generated to help understand what the data is referring to, it is not clear how 

these tables would change with aging and degradation. 
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• New measurement devices and controller need to be specified, purchased and tested as part 

of the next level demonstration. This is because OpalRt controller is a rapid prototyping 

system and unsuitable for a normal system. This would be replaced by a more standard 

microprocessor or FPGA solution and an additional low cost controller may be needed to be 

added to deal with the measurement signals and produce a valid output to the FPGA card to 

allow it to use the results of the measurement within its control. The reason for a separate 

controller is because the low frequency signal needs to be extracted from the measurements 

by FFT which are dominated by the switching frequency produced ripple. 
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Appendix AAppendix AAppendix AAppendix A    ----    Battery Nyquist plotBattery Nyquist plotBattery Nyquist plotBattery Nyquist plotssss        
 

Despite dissimilarity in chemistry between different batteries, there are key common elements; 

porous electrodes, electrolyte and separator.  Generally, porous electrodes comprise the energy storage 

materials and a conductive additive. The study of impedance of batteries based on their kinetics can 

give a precise evaluation of impedance response of components and comparison of different chemistries 

[158]. The kinetic steps of batteries were originally introduced for lithium ion batteries [158], [207], 

[333]. These steps are shown in Figure A1-1 and can be separated into six areas: 

 

 

Figure A1-1 : Typical Impedance spectra of electrode intercalation by Barsoukov et al [340], [207]. 

1. After electrode excitation, the separated charges move into the conductive section of the active 

particle and ionized charges move into the active layer of the particles. This results in high 

frequency performance of the material above 10 kHz. 

2. A factor of inductive behaviour of electrodes winding occurs at higher frequency above 

10kHz. 
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3. The conducted ions diffuse via the insulated surface of the particles layer.  

4. The electron charges transfer from the active material layer because of electrochemical 

reaction in active particles surface. 

5. Ions diffuse into the solid phase and cause phase-transfer where a capacitive behaviour is 

presented. This reaction presented as a semicircle and a straight line in frequency range of 

0.15 kHz - 1mHz.  

6. Creation of the crystalline layer in the battery due to phase-transfer from 1mHz to 50µHz. 

 

The key components in the Nyquist plot may include the following; 

 

Inductor: At high frequency, the electrochemical impedance of the cell appears inductive. In some EIS 

analysis, it is described as an inductive behaviour of the system and in others, it is presented as an error 

in measurement due to non-ideal perturbation signal and measurement errors [334]. 

Charge Transfer Resistor: This is also called faradaic resistor, Rct. This resistor represents the 

interface between the electrolyte and the working electrode (WE). In an equivalent circuit, it is generally 

presented in a parallel connection with a double layer capacitor. 

Double Layer Capacitor: When the electrode is dipped into an electrolyte, the positive and negative 

charge separate, due to effect of the electrolyte atoms. A fixed layer of positive ions cover the electrode 

surface. In the electrolyte, negative ions attract to the bare surface and form a layer near the electrode 

bar. The interface between the fixed layer of the electrode surface and the diffused layer characterises 

a double layer capacitor ���.  
Impedance of Electrolyte: Generally in the battery electrolyte, conductive salts are used to increase 

the conductivity. Within the EIS process, conductivity of the electrolyte and its impedance is small and 

is presented as a series resistor in the high frequency region. This is due to adsorption of ions in the 

charge and discharge reaction and the thin layer of electrolyte. To measure the conductivity and 

impedance of electrolyte excluding electrode effects, the four-terminal connection measurement 

techniques should be implemented.  

Surface Impedance: Particle surface impedance involves a double layer formation, adsorption, and 

electrochemical reaction. Because of the limit in adsorbed material diffusion inside active materials 

especially in metal anodes [158], it is suggested that the Warburg impedance be used to present the 

adsorption effect. The Warburg impedance is a frequency dependant impedance created by the effect 

of diffusion. It appears as a line with a phase shift and slope of 45° in bode and complex plot. The 

impedance is very small at high frequency and can only be observed at low frequency [157],  [335]. If 

the diffusion has an infinite thickness in its layer the impedance is an infinite Warburg impedance.  
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Diffusion Impedance: Crystals of the batteries materials are less active, compared to the material 

surface because of their dense structure. Ions can easily exchange within the open crystalline structure. 

Further, solid-state diffusion is proposed to protect the crystalline structure from the compress form and 

control the ion transfer inside the crystal. In other word diffusion is presented as a result of the species 

concentration at the electrolyte/electrode interface (depending on applied potential). It is generally 

followed by a resistor (i.e. represent the charge transfer process between electrode and solution) in series 

in equivalent circuits. In case of semi-infinite diffusion; the impedance of the diffusion is represented 

as positive real and negative imaginary part with same magnitude and phase angle of -45˚. 

Corrosion: In electrochemical characterisation of the power system/batteries, some heterogeneity in 

behaviour can be observed. This heterogeneity occurs at the termination of the impedance curve and 

looks like a negative resistor mode as the frequency decreases. This is due to sudden dissolution and 

conduction of the mobile ions in electrolyte and electrode surface, which leads to the low current flow 

through the solution. This chemical process can be defined as a result of three corrosion effect 

mechanisms. 

Table A-1: Description of different cause of corrosion 

Corrosion types  Description  

Active dissolution  This mechanism appeared when the metal dissolves into the solution 

and electrolyte. 

Active-Passive 

Transition 

The active/passive mechanism generally happens when the 

electrode-electrolyte interface of a battery is abounded and covered 

by the product of corrosion. So the charge conduction into the 

electrolyte is blocked and a passive layer due to the concentration 

of the charges is created. 

Passive State Because of electrical potential and concentration of mobile 

ions/charges; the ions from the metal-solution interfaces into the 

electrolyte though the corroding surface exchange instantly.  
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Figure A-2 : Example of corrosion effects (a), (b) impedance from EIS experiment on Lithium-ion battery (c) 

impedance spectra of an electrode in NH4F solution presented by [326] 

 

Constant Phase Element: Constant phase element (CPE) is an equivalent circuit that is used for 

impedance data fitting in EIS. It is used to represent the imperfection behaviour of the impedance 

spectra which cannot be described by the simple electric circuit elements such as capacitance, 

resistance, and inductance. The heterogeneity of impedance can attribute to the boundary effects such 

as current and potential distribution, inhomogeneity in variation of the electrode surface thickness, and 

time constant distribution.  
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Element Example of Nyquist plot 

R and C in series 

 

�� � � � 1 
���  

 

 

 

�� → 	� when � → ∞ 

R and L in series 

 

�� � � � 
�� 

 

 

 

�� → 	∞ when � → ∞ 

R and C in parallel 

 

 

 

|��| � ��� � ������������� � 1  

The impedance spectrum of parallel resistor and pure capacitance trace out 

a semicircle When � → ∞ the total impedance goes to zero when � →0the total impedance becomes real; �� �	�� 

 

� →∞	

R C � → 0	

� → 0	

� →∞	

R 

C � → 0	
� →∞	
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Two or more R and C in parallel 

 

�� � 1
��� � ���� �
1
��� � 1 

Where �� �	����and �� � ���� 
An alternative is a nested circuit 

 

 

 

 

Series Connection of Two Parallel RC, (a) when ���� reaction speed is 
faster than  ����, (b) ���� reaction speed is slower than ����, (c) ���� 
reaction speed is the same as ����, [143]. 

 When the values of the resistors and capacitors (time constants) merge, 
the two separate semicircles also merge resulting in a large semicircle 
which behaves similar to one parallel RC circuit 

 

Parallel RC in series with RC 

 

�� � 11 � 
��� � 1
��� 
Where, �� �	����, 	�� �	���� 

�� �
 !
" 1 � 1#��� 					$%&														� ≪ 1��11 � 
��� 				$%&						 1�� ≪ � ≪ 1��

 

 

The resistor R2 and capacitor �� produce a semicircle from high to low 
frequencies. At low frequencies the impedance ( �()) of the circuit goes 
to negative infinity because the C2 blocks the dc current flow through the 
circuit. 

� � ∞	

� � 0	
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Parallel RC with diffusion effect 

 

�� � � � 1
�� � 1 ��* � ����  

Alternative diffusion effect 

representations [336]. 

[337] 

	 

 

 

This effect can be represented by a circuit element called the Warburg 
impedance. The total impedance is illustrated as a combination of a 
semicircle due to parallel connection of RC and an inclined line with a 
slope of 45° caused by the diffusion impedance in the low frequency 
region in complex plot. 

Parallel R and CPE 

�� � � � ��1 � �+,-�� 
 

 

Constant phase element (CPE) components are used instead of capacitors 
to represent the impurity in capacitance behaviour and frequency 
distribution that are presented in the impedance data [143]. This 
component only acts as pure capacitor when its constant number is 1, and 
for the values between 0 and 1 shows imperfect behavior [338]. 

  

� � 0	

� � ∞	

CPE

R1 
R
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Appendix B Appendix B Appendix B Appendix B ––––    Gate drive signal Fourier Gate drive signal Fourier Gate drive signal Fourier Gate drive signal Fourier 

analysisanalysisanalysisanalysis    
 

Fourier analysis of PWM function with varying duty cycleFourier analysis of PWM function with varying duty cycleFourier analysis of PWM function with varying duty cycleFourier analysis of PWM function with varying duty cycle    

Functions to be analysed 
 

The function set to be analysed is a set of square pulses with period To and varying pulse widths which 

tie up with the varying duty cycle.  

$.�/� � 01									0 < / ≤ �.0						�. < / ≤ 45                      
Equation B-1 

$��/� � 01										45 < / ≤ �� � 450						�� � 45 < / ≤ 245   
Equation B-2 

$��/� � 01																						245 < / ≤ �� � 2450											�� � 245 < / ≤ 345 � 245  Equation B-3 

.   

$9�/� � 01																:45 < / ≤ �9 � :450					�9 � :45 < / ≤ �: � 1�45  Equation B-4 

.   

$;<=��/� � >1										?@A − 1C45 < / ≤ �;<=� � �@A − 1�450																					�;<=� � �@A − 1�45 < / ≤ @A45   
Equation B-5 

Fourier co-efficient calculation for first function  
 

D.,. � �EF GH 1	I/JF. � H 0	I/EKJF L  Equation B-6 

D.,. � �EF MH 1	I/JF. N  Equation B-7 

D.,. � �EF O1�.P  Equation B-8 
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D.,. � �QJFEF   Equation B-9 

DR,. � �EF GH 1 cos V�./ I/JF. � H 0 cos V�./ 	I/EKJF L  Equation B-10 

DR,. � �EF MH 1	 cos V�./ I/JF. N  Equation B-11 

DR,. � �EF G QRWF sin V�.�.L  Equation B-12 

DR,. � �QRWFEF sin V�.�.  Equation B-13 

Fourier coefficient calculation for the kth function 
 

Where k goes from 1to Np-1 

D.,9 � �EF GH 1	I/JZ[9EK9EK � H 0	I/�9[��EKJZ[9EK L  Equation B-14 

D.,9 � �EF GH 1	I/JZ[�9�EK�9�EK L  Equation B-15 

D.,9 � �EF O1�9 � 1�:�45 − 1�:�45P  Equation B-16 

D.,9 � �QJZEF   Equation B-17 

 

DR,9 � �EF GH 1 cos V�./ I/JZ[�9�EK�9�EK � H 0 cos V�./ 	I/�9[��EKJZ[�9�EK L  Equation B-18 

DR,9 � �EF GH 1	 cos V�./ I/JZ[�9�EK�9�EK L  Equation B-19 

DR,9 � �EF G QRWF sin V�.��9 � �:�45� − QRWF sin V�.�:�45L  Equation B-20 

DR,9 � \ �QRWFEF] ^−
V�0�:�4_ sinV�.�:  Equation B-21 

 

`R,9 � �EF GH 1 sin V�./ I/JZ[�9�EK�9�EK � H 0 sin V�./ 	I/�9[��EKJZ[�9�EK L  Equation B-22 

`R,9 � �EF GH 1	 sin V�./ I/JZ[�9�EK�9�EK L  Equation B-23 
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`R,9 � �EF G =QRWF cos V�.��9 � �:�45� � QRWF cos V�.�:�45L  Equation B-24 

`R,9 � \ �QRWFEF]^−
V�0�:�4_�1 − cosV�.�:�  Equation B-25 

Total coefficients 
 

D. � a 21�94.
;<=�
9b.  

Equation B-26 

DR � a c 21V�.4.d^−
V�0�:�4_ sin V�.�:
;<=�
9b.  

Equation B-27 

`R � a c 21V�.4.d^−
V�0�:�4_�1 − cosV�.�:�	
;<=�
9b.  

Equation B-28 

eR � a 21V�040 �sinV�0�: − 
�1− cosV�0�:��^−
V�0�:�4_
;<=�
9b.  

Equation B-29 
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Fourier analysis of PWM function with varying frequencyFourier analysis of PWM function with varying frequencyFourier analysis of PWM function with varying frequencyFourier analysis of PWM function with varying frequency 
Functions to be analysed 
 

The function set to be analysed is a set of square pulses with period To and varying pulse widths which 

tie up with the varying frequency at a fixed duty cycle. 

$.�/� � 01																																							0 < / ≤ �.0																																			�. < / ≤ 45.                      
Equation B-30 

$��/� � 01																															45. < / ≤ �� � 45.0																					�� � 45. < / ≤ 45. � 45�  Equation B-31 

$��/� � 01																						45. � 45� < / ≤ �� � 45. � 45�0												�� � 45. � 45� < / ≤ 45. � 45� � 45�  Equation B-32 

.   

$9�/� � >1																			 ∑ 4_g:−1g�0 < / ≤ �9 � ∑ 4_g:−1g�00																					�9 � ∑ 4_g:−1g�0 < / ≤ ∑ 4_g:g�0   
Equation B-33 

.   

$;<=��/� � h 1																		 ∑ 4_g@i−2g�0 < / ≤ �;<=� � ∑ 4_g@i−2g�00																					�;<=� � ∑ 4_g@i−2g�0 < / ≤ ∑ 4_g@i−1g�0
  

Equation B-34 

Fourier co-efficient calculation for first function 
 

D.,. � �EF GH 1	I/JF. � H 0	I/EKFJF L  Equation B-35 

D.,. � �EF MH 1	I/JF. N  Equation B-36 

D.,. � �EF O1�.P  Equation B-37 

D.,. � �QJFEF   Equation B-38 

 

DR,. � �EF GH 1 cos V�./ I/JF. � H 0 cos V�./ 	I/EKFJF L  Equation B-39 
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DR,. � �EF MH 1	 cos V�./ I/JF. N  Equation B-40 

DR,. � �EF G QRWF sin V�.�.L  Equation B-41 

DR,. � �QRWFEF sin V�.�.  Equation B-42 

 

`R,. � �EF GH 1 sin V�./ I/JF. � H 0 sin V�./ 	I/EKFJF L  Equation B-43 

`R,. � �EF MH 1	 sin V�./ I/JF. N  Equation B-44 

`R,. � �EF G =QRWF cos V�.�. � QRWFL  Equation B-45 

`R,. � �QRWFEF − �QRWFEF cos V�.�.  Equation B-46 

 

Fourier coefficient calculation for the kth function 
 

D.,9 � �EF GH 1	I/JZ[∑ 4_g:−1g�0∑ 4_g:−1g�0 � H 0	I/∑ 4_g:g�0JZ[∑ 4_g:−1g�0 L  Equation B-47 

D.,9 � �EF GH 1	I/JZ[∑ 4_g:−1g�0∑ 4_g:−1g�0 L  Equation B-48 

D.,9 � �EF O1�9 � 1∑ 4_g:−1g�0 − 1∑ 4_g:−1g�0 P  Equation B-49 

D.,9 � �QJZEF   Equation B-50 

 

DR,9 � �EF jH 1 cos V�./ I/JZ[∑ 4_g:−1g�0∑ 4_g:−1g�0 � H 0 cos V�./ 	I/∑ 4_g:g�0JZk∑ 4_g:−1g�0 l   Equation B-51 

DR,9 � �EF GH 1	 cos V�./ I/JZ[∑ 4_g:−1g�0∑ 4_g:−1g�0 L  Equation B-52 

DR,9 � �EF G QRWF sin V�.��9 � ∑ 4_g:−1g�0 �− QRWF sin V�.∑ 4_g:−1g�0 L  Equation B-53 
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DR,9 � \ �QRWFEF] sinV�.��: � ∑ 45)9=�)b. � − \ �QRWFEF] sinV�.∑ 45)9=�)b.   Equation B-54 

DR,9 � \ �QRWFEF] ^−
V�0∑ EKmZnompF sin V�.�:  Equation B-55 

 

`R,9 � �EF GH 1 sin V�./ I/JZ[∑ 4_g:−1g�0∑ 4_g:−1g�0 � H 0 sin V�./ 	I/∑ 4_g:g�0JZ[∑ 4_g:−1g�0 L  Equation B-56 

`R,9 � �EF GH 1	 sin V�./ I/JZ[∑ 4_g:−1g�0∑ 4_::−1:�0 L  Equation B-57 

`R,9 � �EF G =QRWF cos V�.��9 � ∑ 4_g:−1g�0 �� QRWF cos V�.∑ 4_g:−1g�0 L  Equation B-58 

`R,9 � \ �QRWFEF]^−
V�0∑ EKmZnompF �1 − cosV�.�:�  Equation B-59 

 

 Total coefficients 
 

D. � a 21�:40
;<=�
9b.  

Equation B-60 

DR � 21V�.4. sinV�.�. � a c 21V�.4.d^−
V�0∑ EKmZnompF sin V�.�:;<=�
9b�  

Equation B-61 

`R � 21V�040 − 21V�040 cosV�0�0
� a c 21V�.4.d^−
V�0∑ EKmZnompF �1 − cosV�.�:�	;<=�

9b�  

Equation B-62 

eR � 21V�.4. �sinV�.�. − 
	�1− cosV�0�0�� � 
Equation B-63 

∑ 21V�040 �sinV�0�: − 
�1− cosV�0�:��^−
V�0∑ EKmZnompF;<=�9b�   
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Fourier analysis of PWM function with Fourier analysis of PWM function with Fourier analysis of PWM function with Fourier analysis of PWM function with varying starting locationvarying starting locationvarying starting locationvarying starting location    

Functions to be analysed 
 

The function set to be analysed is a set of square pulses with period To and fixed pulse width but starting 

at different times. The first function is defined to start when the wave switches on rather than at time 

t=0 

$.�/� � 01																	/Aq. < / ≤ � � /Aq.0									� � /Aq. < / ≤ 45 � /Aq�                     Equation B-64 

$��/� � 01									45 � /Aq� < / ≤ � � /Aq� � 450						� � /Aq� � 45 < / ≤ 245 � /Aq�   
Equation B-65 

$��/� � 01									245 � /Aq� < / ≤ � � /Aq� � 2450										� � /Aq� � 245 < / ≤ 345 � /Aqr  Equation B-66 

.   

$;A=��/� �
>1								�@i − 1�45 � /Aq�;A=�� < / ≤ � � /Aq�;A=�� � �@i − 1�450																													� � /Aq�;A=�� � �@i − 1�45 < / ≤ @i45 � /Aq.   

Equation B-67 

Fourier co-efficient calculation for first function 
 

D.,. � �EF GH 1	I/J[�<sF�<sF � H 0	I/EK[�<sFJ[�<sF L  Equation B-68 

D.,. � �EF GH 1	I/J[�<sF�<sF L  Equation B-69 

D.,. � �EF M1?� � /Aq.C − 1/Aq.N  Equation B-70 

D.,. � �QJEF   Equation B-71 

 

DR,. � �EF GH 1 cos V�./ I/J[�<sF�<sF � H 0 cos V�./ 	I/EK[�<sFJ[�<sF L  Equation B-72 

DR,. � �EF GH 1	 cos V�./ I/J[�<sF�<sF L  Equation B-73 
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DR,. � �EF G QRWF sin V�.?� � /Aq.C − QRWF sin V�./Aq.L  Equation B-74 

DR,. � �QRWFEF sin V�.?� � /iℎ0C− �QRWFEF sinV�.?/iℎ0C  Equation B-75 

DR,. � �QRWFEF ^−
V�0/iℎ0 sin V�.�  Equation B-76 

 

`R,. � �EF GH 1 sin V�./ I/J[�<sF�<sF � H 0 sin V�./ 	I/EK[�<sFJ[�<sF L  Equation B-77 

`R,. � �EF GH 1	 sin V�./ I/J[�<sF�<sF L  Equation B-78 

`R,. � �EF G =QRWF cos V�.�� � /Aq.� � QRWF cos V�./Aq.L  Equation B-79 

`R,. � �QRWFEF cos V�./Aq. − �QRWFEF cos V�.�� � /Aq.�  Equation B-80 

`R,. � �QRWFEF ^=uRWF�<sF�1 − cos V�.��  Equation B-81 

Fourier coefficient calculation for the kth function 
 

D.,9 � �EF GH 1	I/J[�<sZ[�9�EK�9�EK[�<sZ � H 0	I/�9[��EK[�<sZkoJ[�<sZ[�9�EK L   Equation B-82 

D.,9 � �EF GH 1	I/J[�<sZ[�9�EK�9�EK[�<sZ L  Equation B-83 

D.,9 � �EF M1�� � /Aq9 � �:�45� − 1��:�45 � /Aq9�N  Equation B-84 

D.,9 � �QJEF   Equation B-85 

 

DR,9 � �EF GH 1 cos V�./ I/J[�<sZ[�9�EK�9�EK[�<sZ � H 0 cos V�./ 	I/�9[��EK[�<sZkoJ[�<sZ[�9�EK L    Equation B-86 

DR,9 � �EF GH 1	 cos V�./ I/J[�<sZ[�9�EK�9�EK[�<sZ L  Equation B-87 

DR,9 � �EF G QRWF sin V�.�� � /Aq9 � �:�45� − QRWF sin V�.��:�45 � /Aq9�L  Equation B-88 

DR,9 � \ �QRWFEF] sin V�.?� � /Aq9 � �:�45C − \ �QRWFEF] sin V�. \�:�45 � /Aq9]  Equation B-89 
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DR,9 � \ �QRWFEF] ^−
V�0��:�4_�/iℎ:� sinV�.�  Equation B-90 

 

`R,9 � �EF GH 1 sin V�./ I/J[�<sZ[�9�EK�9�EK[�<sZno � H 0 sin V�./ 	I/�9[��EK[�<sZkoJ[�<sZ[�9�EK L    Equation B-91 

`R,9 � �EF GH 1	 sin V�./ I/J[�<sZ[�9�EK�9�EK[�<sZ L  Equation B-92 

`R,9 � �EF G =QRWF cos V�.�� � /Aq9 � �:�45� � QRWF cosV�.��:�45 � /Aq9�L  Equation B-93 

`R,9 � \ �QRWFEF] cosV�.��:�45 � /Aq9� − \ �QRWFEF] cosV�.�� � /Aq9 � �:�45�  Equation B-94 

`R,9 � \ �QRWFEF]^−
V�0?/iℎ:��:�4_C�1 − cosV�.��  Equation B-95 

Total coefficients 
 

D. � a 21�40 	
;<=�
9b.  

Equation B-96 

DR � a c 21V�.4.d^−
V�0��:�4_�/iℎ:� sin V�.�
;<=�
9b.  

Equation B-97 

`R � a c 21V�.4.d^−
V�0?/iℎ:��:�4_C�1 − cosV�.��	
;<=�
9b.  

Equation B-98 

eR � a 21V�040 �sinV�0�− 
�1− cosV�0���^−
V�0?/iℎ:��:�4_C
;<=�
9b.  

Equation B-99 
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Fourier analysis of PWM function including an impulse functionFourier analysis of PWM function including an impulse functionFourier analysis of PWM function including an impulse functionFourier analysis of PWM function including an impulse function    

Functions to be analysed 
 

The function set to be analysed is a set of square pulses with period To and the first function has an 

increased pulse width while the other functions have the same pulse width. 

$.�/� � 01																	0 < / ≤ �vw0																�vw < / ≤ 45                     Equation B-100 

$��/� � 01									45 < / ≤ � � 450						� � 45 < / ≤ 245   
Equation B-101 

$��/� � 01									245 < / ≤ � � 2450										� � 245 < / ≤ 345  Equation B-102 

.   

$;<=��/� � >1								?@A − 1C45 < / ≤ � � �@A − 1�450																			� � �@A − 1�45 < / ≤ @A45   
Equation B-103 

 

Fourier co-efficient calculation for first function 
 

D.,. � �EF GH 1	I/Jxy. � H 0	I/EKJxy L    Equation B-104 

D.,. � �EF MH 1	I/Jxy. N  Equation B-105 

D.,. � �EF O1�vwP  Equation B-106 

D.,. � �Q�%&EF   Equation B-107 

 

DR,. � �EF GH 1 cos V�./ I/Jxy. � H 0 cos V�./ 	I/EKJxy L    Equation B-108 

DR,. � �EF MH 1	 cos V�./ I/Jxy. N  Equation B-109 
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DR,. � �EF G QRWF sin V�.�vwL  Equation B-110 

DR,. � �QRWFEF sin V�.�%&  Equation B-111 

 

`R,. � �EF GH 1 sin V�./ I/Jxy. � H 0 sin V�./ 	I/EKJxy L    Equation B-112 

`R,. � �EF MH 1	 sin V�./ I/Jxy. N  Equation B-113 

`R,. � �EF G =QRWF cos V�.�vw � QRWFL  Equation B-114 

`R, 0 � �QRWFEF �1 − cos V�.�vw�  Equation B-115 

 

Fourier coefficient calculation for the kth function 
 

D.,9 � �EF GH 1	I/J[�9�EK�9�EK � H 0	I/�9[��EKJ[�9�EK L    Equation B-116 

D.,9 � �EF GH 1	I/J[�9�EK�9�EK L  Equation B-117 

D.,9 � �EF O1�� � �:�45� − 1��:�45�P  Equation B-118 

D.,9 � �Q�EF   Equation B-119 

 

DR,9 � �EF GH 1 cos V�./ I/J[�9�EK�9�EK � H 0 cos V�./ 	I/�9[��EKJ[�9�EK L    Equation B-120 

DR,9 � �EF GH 1	 cos V�./ I/J[�9�EK�9�EK L  Equation B-121 

DR,9 � �EF G QRWF sin V�.�� � �:�45� − QRWF sin V�.�:�45L  Equation B-122 

DR,9 � \ �QRWFEF] sinV�.�� � �:�4_�− \ �QRWFEF] sinV�.�:�4_  Equation B-123 

DR,9 � \ �QRWFEF] ^−
V�0�:�4_ sin V�.�  Equation B-124 



A 19 
 

`R,9 � �EF GH 1 sin V�./ I/J[�9�EK�9�EK � H 0 sin V�./ 	I/�9[��EKJ[�9�EK L    Equation B-125 

`R,9 � �EF GH 1	 sin V�./ I/J[�9�EK�9�EK L  Equation B-126 

`R,9 � �EF G =QRWF cos V�.�� � �:�45� � QRWF cos V�.�:�45L  Equation B-127 

`R,9 � \ �QRWFEF]^−
V�0�:�4_�1− cosV�.��  Equation B-128 

Total coefficients 
 

D. � 21�vw40 � a 21�40 	
;<=�
9b�  

Equation B-129 

DR � 21V�.4. sinV�.�%& � a c 21V�.4.d^−
V�0�:�4_ sinV�.�
;<=�
9b�  

Equation B-130 

`R � 21V�040 �1 − cosV�0�%&�
� a c 21V�.4.d^−
V�0�:�4_�1− cosV�.��	

;<=�
9b�  

Equation B-131 

eR � 21�.4. ?sin V�.�vw − 
�1 − cos V�.�vw�C � 
Equation B-132 

�QRWFEF∑ �sin V�.� − 
�1 − cos V�.���^=uRWF�9�EK 	@i−1:�1   
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Appendix C Appendix C Appendix C Appendix C ––––    Battery current Fourier Battery current Fourier Battery current Fourier Battery current Fourier 

analysis analysis analysis analysis     
 

Fourier Analysis of Sawtooth wave with varying duty cycleFourier Analysis of Sawtooth wave with varying duty cycleFourier Analysis of Sawtooth wave with varying duty cycleFourier Analysis of Sawtooth wave with varying duty cycle    

Functions to be analysed 
 

$.�/� � 0z. �gvR/																			0 < / ≤ �.{. �gv||�/ − �.�			�. < / ≤ 45                     Equation C-1 

$��/� � 0z� �gvR�/ − 45�																		45 < / ≤ �� � 45{� �gv||�/ − �� − 45�				�� − 45 < / ≤ 245   Equation C-2 

$��/� � 0z� �gvR�/ − 245�																245 < / ≤ �� � 245{� �gv||�/ − �� − 245�				�� � 245 < / ≤ 345   
Equation C-3 

.   

$9�/� � 0 z9 �gvR�/ − �:�45�																	�:�45 < / ≤ �9 � �:�45{9 �gv||�/ − �9 	− �:�45�							�9 � �:�45 < / ≤ �: � 1�45  Equation C-4 

.   

$;<=��/� �
} z;<=� �gvR?/ − ?@A − 1C45C											?@A − 1C45 < / ≤ �;<=� � �@A − 1�45{;<=� �gv|| \/ − �;<=� − ?@A − 1C45]				�;<=� � ?@A − 1C45 < / ≤ �@A�45  

Equation C-5 

Fourier co-efficient calculation for first function 
 

D.,. � �EF GH z.	I/JF. � H gvR/	I/JF. � H {.	I/EKJF − H gv||/	I/EKJF � H gv||�.	I/EKJF L  Equation C-6 

D.,. � �EF Gz.�. � )x~� �.� � {.�45 − �.� − )x��� 	?45� − �.�C �gv||�.�45 − �.�L  Equation C-7 

D.,. � ��FJFEF � )x~EF �.� � ��F�EK=JF�EF − )x��EF 	?45� − �.�C � �)x��EF �.�45 − �.�  Equation C-8 

D.,. � �EF GH z. �gvR/	I/JF. � H {. −gv||�/ − �.�	I/EKJF L  Equation C-9 
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DR,. � �EF GH �z. �gvR/� cos V�./ I/JF. � H ?{. �gv||�/ − �.�	C cos V�./ 	I/EKJF L  Equation C-10 

DR,. � �EF GH z. 	cos V�./ I/JF. � H gvR/	 cosV�./ I/JF. � H {. 	cos V�./ I/EKJF �
H gv||/	 cosV�./ I/EKJF − H gv||�. 	cosV�./ I/EKJF L  

Equation C-11 

DR,. � �EF G �FRWF sinV�.�. � )x~RWF �. sin V�.�. − )x~RWF H sinV�./ I/JF. �
�FRWF sinV�.45 − �FRWF sin V�.�. � )x��RWF 	45 sinV�.45 − )x��RWF 	�. sinV�.�. −)x��RWF H 	sin V�./ I/EKJF � )x��RWF �. sin V�.45 − )x��RWF �. sin V�.�.L  

Equation C-12 

DR,. � �EF G �FRWF sinV�.�. � )x~RWF �. sin V�.�. � )x~R�WF� cos V�.�. − )x~R�WF� ��FRWF sinV�.45 − �FRWF sin V�.�. � )x��RWF 	45 sinV�.45 − )x��RWF 	�. sinV�.�. −)x��R�WF� cosV�.45 � )x��R�WF� cos V�.�. � )x��RWF �. sin V�.45 − )x��RWF �. sin V�.�.L  

Equation C-13 

DR,. � ��FRWFEF sin V�.�. � �)x~RWFEF �. sinV�.�. � �)x~R�WF�EF cos V�.�. − �)x~R�WF�EF ���FRWFEF sin V�.45 − ��FRWFEF sin V�.�. � �)x��RWFEF 	45 sin V�.45 − �)x��RWFEF 	�. sinV�.�. −�)x��R�WF�EF cos V�.45 � �)x��R�WF�EF cos V�.�. � �)x��RWFEF �. sinV�.45 − �)x��RWFEF �. sin V�.�.  

Equation C-14 

DR,. � =�)x~R�WF�EF � \ ��FRWFEF � �)x~RWFEF �. − ��FRWFEF] sin V�.�. � \ �)x~R�WF�EF ��)x��R�WF�EF] cos V�.�. � \ ��FRWFEF − �)x��RWFEF	] sinV�.45 � �)x��R�WF�EF cos V�.45  
Equation C-15 

DR � =�)x~R�WF�EF � \ ��FRWFEF � �)x~RWFEF �. − ��FRWFEF] sinV�.�. � \ ��FRWFEF � �)x��RWFEF 	�45 −�.�] sinV�.45 − �)x��R�WF�EF cos V�.45  
Equation C-16 

 

`R,. � �EF GH z. 	sinV�./ I/JF. � H gvR/	 sinV�./ I/JF. � H {. 	sin V�./ I/EKJF �
H gv||/	 sinV�./ I/EKJF − H gv||�. 	sinV�./ I/EKJF L  

Equation C-17 

`R,. � �EF G=�FRWF cos V�.�. � �FRWF − )x~RWF �. cos V�.�. � )x~RWF H cosV�./ I/JF. −
�FRWF cosV�.45 � �FRWF cos V�.�. − )x��RWF 	45 cosV�.45 � )x��RWF 	�. cos V�.�. �)x��RWF H 	cosV�./ I/EKJF � )x��RWF �. cos V�.45 − )x��RWF �. cos V�.�.L  

Equation C-18 
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`R,. � �EF G=�FRWF cos V�.�. � �FRWF − )x~RWF �. cos V�.�. � )x~R�WF� sin V�.�. −�FRWF cos V�.45 � �FRWK cos V�.�. − )x��RWF 	45 cos V�.45 �)x��RWF 	�. cos V�.�. � )x��R�WF� sin V�.45 − )x��R�WF� sin V�.�. �)x��RWF �. cos V�.45 − )x��RWF �. cos V�.�.L  

Equation C-19 

`R,. � =��FRWFEF cos V�.�. � ��FRWFEF − �)x~RWFEF �. cos V�.�. � �)x~R�WF�EF sin V�.�. −��FRWFEF cos V�.45 � ��FRWFEF cos V�.�. − �)x��RWFEF 	45 cos V�.45 ��)x��RWFEF 	�. cos V�.�. − �)x��R�WF�EF sin V�.45 − �)x��R�WF�EF sin V�.�. ��)x��RWFEF �. cos V�.45 − �)x��RWFEF �. cos V�.�.  

Equation C-20 

`R,. � ��FRWFEF � \ ��FRWFEF − ��FRWFEF − �g%VRWFEF �0] cos V�.�. � \ �g%VV2�02EF −�g%$$R�WF�EF] sinV�.�. − �g%$$R�WF�EF sin V�.45 � �− �g%$$RWFEF �45 − �.� 	− ��FRWFEF� cos V�.45  
Equation C-21 

 

Fourier coefficient calculation for the kth function 
 

D.,9 � �EF GH z9 �gvR�/ − :45�	I/JZ[9EK9EK � H {9 �gv||�/ − ��9 ��9[��EKJZo[9EK
:45��	I/L  

Equation C-22 

D.,9 � �EF G−gvR:45�9 � )x~� ���9 � :45�� − :�45�� � z9�9 � )x��� 	���: �
1�45�� − ��9 � :45��� � {9��: � 1�45 − ��9 � :45�� � gv||�−�9 − :45���: �
1�45 − �9 � :45�L  

Equation C-23 

 DR,9 � �EF GH �z9 �gvR�/ − :45�� cos V�./ I/JZ[9EK9EK � H \{9 �gv||�/ −�9[��EKJZ[9EK
��9 � :45��] cos V�./ 	I/L  

Equation C-24 
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DR,9 � �EF �����RWF�JZ[9EK��R)x~WFJZ[�Z ���?RWF�JZ[9EK�CWFR=�Z ����RWF9EK�WFRR�WF� �
���	�RWF�JZ[9EK��)x~=����RWF9EK�)x~[R�EKWF��Z=R�WF�JZ�ZR�WF� �
���	�RWF�9[��EK�REK)x��WF=���	�RWF�9[��EK�R)x��WFJZR�WF� �
���?RWF�9[��EK�C)x��=���	�RWF�JZ[9EK��)x��R�WF� �  

Equation C-25 

 

`R,9 � �EF GH �z9 �gvR�/ − :45�� sin V�./ I/JZ[9EK9EK � H \{9 �gv||�/ −�9[��EKJZ[9EK
��9 � :45��] sin V�./ 	I/L  

Equation C-26 

`R, : � �EF �=���?RWF�JZ[9EK�CR)x~WFJZ=�Z ���?RWF�JZ[9EK�CWFRR�WF� �
�Z ����RWF9EK�WFR[���	�RWF�JZ[9EK��)x~=����RWF9EK�)x~R�WF� �
R�EKWF��Z=R�WF�JZ�Z=�v5	�RWF�9[��EK�REK)x��WF[�v5	�RWF�9[��EK�R)x��WFJZR�WF� �
���?RWF�9[��EK�C)x��=���	�RWF�JZ[9EK��)x��R�WF� �  

Equation C-27 

Total coefficients 
 

D. � a D0,:
;<=�
9b.  

Equation C-28 

DR � a DV,:
;<=�
9b.  

Equation C-29 

`R � a `V,:
;<=�
9b.  

Equation C-30 

eR � a 12?DV,: − #`V,:C�V ≥ 1�12 ?DV,: � #`V,:C�V ≤ 1�
;<=�
9b.  

Equation C-31 

 



A 24 
 

Fourier Analysis of Sawtooth wave Fourier Analysis of Sawtooth wave Fourier Analysis of Sawtooth wave Fourier Analysis of Sawtooth wave with varying frequencywith varying frequencywith varying frequencywith varying frequency    

Functions to be analysed 
 

$.�/� � 0z. �gvR/																																					0 < / ≤ �.{. �gv||�/ − �.�																			�. < / ≤ 45.                     Equation C-32 

$��/� � 0 z� �gvR�/ − 45.�																																							45. < / ≤ �� � 45.{� �gv||�/ − ��� � 45.��															�� � 45. < / ≤ 45. � 45�  Equation C-33 

$��/� � > z� �gvR�/ − �45. � 45���																		45. � 45� < / ≤ �� � 45. � 45�{� �gv||?/ − ��� � 45. � 45��C		�� � 45. � 45� < / ≤ 45. � 45� � 45�  Equation C-34 

.   

$9�/� � >z9 �gvR?/ − ∑ 4599=�9b. C																												∑ 4599=�9b. < / ≤ �9 � ∑ 4599=�9b.{9 �gv||?/ − �	�9 � ∑ 4599=�9b. �C								�9 � ∑ 4599=�9b. < / ≤ ∑ 45999b.   
Equation C-35 

 

Fourier co-efficient calculation for first function 
 

D.,. � �EF GH z. �gvR/	I/JF. � H {. �gv||�/ − �.�	I/EKFJF L                      Equation C-36 

D.,. � �EF GH z.	I/JF. � H gvR/	I/JF. � H {.	I/EKFJF � H gv||/	I/EKFJF −
H gv||�.	I/EKFJF L  

Equation C-37 

D.,. � �EF Gz.�. � )x~� �.� � {.�45. − �.� � )x~� 	?45.� − �.�C − gv||�.�45. −
�.�L  

Equation C-38 

D.,. � ��FJFEF � g%V�02EF � ��F�EKF=JF�EF � g%$$EF 	?45.� − �.�C − �g%$$EF �.�45. − �.�  Equation C-39 

 

DR,. � �EF GH �z. �gvR/� cos V�./ I/JF. � H ?{. �gv||�/ −EKFJF
�.�	C cos V�./ 	I/L                      

Equation C-40 
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DR,. � �EF GH z. 	cos V�./ I/JF. � H gvR/	 cosV�./ I/JF. � H {. 	cos V�./ I/EKFJF �
H gv||/	 cos V�./ I/EKFJF − H gv||�. 	cos V�./ I/EKFJF L  

Equation C-41 

DR,. � �EF G �FRWF sin V�.�. � )x~,FRWF �. sin V�.�. − )x~,FRWF H sin V�./ I/JF. �
�FRWF sin V�.45. − �FRWF sin V�.�. � )x��,FRWF 	45. sin V�.45. −)x��,FRWF 	�. sin V�.�. − )x��,FRWF H 	sin V�./ I/EKFJF − )x��,FRWF �. sin V�.45. �
)x��,FRWF �. sin V�.�.L  

Equation C-42 

DR,. � �EF G �FRWF sin V�.�. � )x~RWF �. sin V�.�. � )x~R�WF� cos V�.�. − )x~R�WF� ��FRWF sin V�.45. − �FRWF sin V�.�. � )x��RWF 	45. sin V�.45. −)x��RWF 	�. sin V�.�. � )x��R�WF� cos V�.45. − )x��R�WF� cos V�.�. −)x��RWF �. sin V�.45. � )x��RWF �. sin V�.�.L  

Equation C-43 

DR,. � ��FRWFEF sin V�.�. � �)x~RWFEF �. sin V�.�. � �)x~R�WF�EF cos V�.�. −�)x~R�WF�EF � ��FRWFEF sin V�.45. − ��FRWFEF sin V�.�. � �)x��RWFEF 	45. sin V�.45. −�)x��RWFEF 	�. sin V�.�. � �)x��R�WF�EF cos V�.45. − �)x��R�WF�EF cos V�.�. −�)x��RWFEF �. sin V�.45. � �)x��RWFEF �. sin V�.�.  

Equation C-44 

DR,. � =�g%VV2�02EF � \ ��FRWFEF � �g%VRWFEF �0 − ��FRWFEF] sin V�.�. � \ �g%VV2�02EF −�g%$$R�WF�EF] cos V�.�. � \ ��FRWFEF � �g%$$RWFEF	] sinV�.45. � �g%$$R�WF�EF cos V�.45.  
Equation C-45 

 

`R,. � �EF GH �z. �gvR/� sin V�./ I/JF. � H ?{. �gv||�/ −EKFJF
�.�C sin V�./ 	I/L                      

Equation C-46 

`R,. � �EF GH z. 	sin V�./ I/JF. � H gvR/	 sin V�./ I/JF. �
H {. 	sin V�./ I/EKFJF � H gv||/	 sin V�./ I/EKFJF − H gv||�. sin V�./ I/EKFJF L  

Equation C-47 
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`R,. � �EF G=�FRWF cos V�.�. � �FRWF − )x~RWF �. cos V�.�. �)x~RWF H cos V�./ I/JF. − �FRWF cos V�.45. � �FRWF cos V�.�. −)x��RWF 	45. cos V�.45. � )x��RWF 	�. cos V�.�. � )x��RWF H 	cos V�./ I/EKFJF �
)x��RWF �. cos V�.45. − )x��RWF �. cos V�.�.L  

Equation C-48 

`R,. � �EF G=�FRWF cos V�.�. � �FRWF − )x~RWF �. cos V�.�. � )x~R�WF� sin V�.�. −�FRWF cos V�.45. � �FRWK cos V�.�. − )x��RWF 	45. cos V�.45. �)x��RWF 	�. cos V�.�. � )x��R�WF� sin V�.45. − )x��R�WF� sin V�.�. �)x��RWF �. cos V�.45. − )x��RWF �. cos V�.�.L  

Equation C-49 

`R,. � =��FRWFEF cos V�.�. � ��FRWFEF − �)x~RWFEF �. cos V�.�. ��)x~R�WF�EF sin V�.�. − ��FRWFEF cos V�.45. � ��FRWFEF cos V�.�. −�)x��RWFEF 	45. cos V�.45. � �)x��RWFEF 	�. cos V�.�. − �)x��R�WF�EF sin V�.45. −�)x��R�WF�EF sin V�.�. � �)x��RWFEF �. cos V�.45. − �)x��RWFEF �. cos V�.�.  

Equation C-50 

`R,. � ��FRWFEF � \ ��FRWFEF − ��FRWFEF − �g%VRWFEF �0] cos V�.�. � \ �g%VV2�02EF −�g%$$R�WF�EF] sinV�.�. − �g%$$R�WF�EF sin V�.45. − ��g%$$RWFEF �4_0 − �0� � ��FRWFEF� cos V�.45.  
Equation C-51 

 

Fourier coefficient calculation for the kth function 
 

D.,9 � �EF GH z9 �gvR�/ − ∑ 4_::−1:�0 �	I/JZ[∑ 4_::−1:�0∑ 4_::−1:�0 � H {9 �∑ 4_:::�0JZ[∑ 4_::−1:�0gv||?/ − ��9 � ∑ 4_::−1:�0 �C	I/L                      
Equation C-52 

D.,9 � �EF G��gv||�9� � ��gvR�9� −gv||�9459 � ��gv||459� � {9�9 −
{9459 − z9�9L  

Equation C-53 



A 27 
 

DR,9 � �EF �H ?z9 �gvR�/ − ∑ 4599=�9b. �C	cos	�V�./�I/JZ[∑ EKZZnoZpF∑ EKZZnoZpF �
H \{9 �gv||?/ − ��9 � ∑ 4599=�9b. �C] cos	�V�./�	I/∑ EKZZZpFJZ[∑ EKZZnoZpF �	  

Equation C-54 

DR,9 � �EF j2 � �R�WF� c�9VgvR�._#V \?∑ 4599=�9b. CV�.] e%_�V�.�9� �
�9VgvR�.e%_ \?∑ 4599=�9b. CV�.] _#V�V�.�9� �
z9V�._#V \?∑ 4599=�9b. CV�.] e%_�V�.�9� �
z9V�.e%_ \?∑ 4599=�9b. CV�.] _#V�V�.�9� −
z9V�._#V \?∑ 4599=�9b. CV�.] � gvRe%_ \?∑ 4599=�9b. CV�.] e%_�V�.�9� −
gvR_#V \?∑ 4599=�9b. CV�.] _#V�V�.�9� − gvRe%_ \?∑ 4599=�9b. CV�.]d� �
�R�WF� c−{9V�._#V \?∑ 4599=�9b. CV�.] e%_�V�.�9� −

{9V�.e%_ \?∑ 4599=�9b. CV�.] _#V�V�.�9� −
�9V�.gv||_#V \?∑ 45999b. CV�.] −
V�.gv||?∑ 4599=�9b. C_#V \?∑ 45999b. CV�.] �
V�.gv||?∑ 45999b. C_#V \?∑ 45999b. CV�.] �
{9V�._#V \?∑ 45999b. CV�.] − gv||e%_ \?∑ 4599=�9b. CV�.] e%_�V�.�9� �
gv||_#V \?∑ 4599=�9b. CV�.] _#V�V�.�9� � gv||e%_ \?∑ 45999b. CV�.]dl  

Equation C-55 

  

`R,9 � �EF �H ?z9 �gvR�/ − ∑ 4599=�9b. �C	sin	�V�./�I/JZ[∑ EKZZnoZpF∑ EKZZnoZpF �
H \{9 �gv||?/ − ��9 � ∑ 4599=�9b. �C] sin	�V�./�	I/∑ EKZZZpFJZ[∑ EKZZnoZpF �  

Equation C-56 
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`R,9 � �EF j2 �− �R�WF� c�9VgvR�.e%_ \?∑ 4599=�9b. CV�.] e%_�V�.�9� −
�9VgvR�._#V \?∑ 4599=�9b. CV�.] _#V�V�.�9� �
z9V�.e%_ \?∑ 4599=�9b. CV�.] e%_�V�.�9� −
z9V�._#V \?∑ 4599=�9b. CV�.] _#V�V�.�9� −
z9V�.e%_ \?∑ 4599=�9b. CV�.] − gvR_#V \?∑ 4599=�9b. CV�.] e%_�V�.�9� −
gvRe%_ \?∑ 4599=�9b. CV�.] _#V�V�.�9� � gvR_#V \?∑ 4599=�9b. CV�.]d� −
�R�WF� c−{9V�.e%_ \?∑ 4599=�9b. CV�.] e%_�V�.�9� �

{9V�._#V \?∑ 4599=�9b. CV�.] _#V�V�.�9� −
�9V�.gv||e%_ \?∑ 45999b. CV�.] −
V�.gv||?∑ 4599=�9b. Ce%_ \?∑ 45999b. CV�.] �
V�.gv||?∑ 45999b. Ce%_ \?∑ 45999b. CV�.] �
{9V�.e%_ \?∑ 45999b. CV�.] � gv||_#V \?∑ 4599=�9b. CV�.] e%_�V�.�9� �
gv||e%_ \?∑ 4599=�9b. CV�.] _#V�V�.�9� − gv||_#V \?∑ 45999b. CV�.]dl  

Equation C-57 

Total coefficients 
 

D. � ∑ D0,:;<=�9b.   
Equation C-58 

DR � a DR,9
;<=�
9b.  

Equation C-59 

`R � a `R,9
;<=�
9b.  

Equation C-60 

eR � a 12 ?DR,9 − #`R,9C�V ≥ 1�12 ?DR,9 � #`R,9C�V ≤ 1�
;<=�
9b.  

Equation C-61 

 



A 29 
 

FFFFourierourierourierourier    Analysis of Sawtooth wave with varying starting positionAnalysis of Sawtooth wave with varying starting positionAnalysis of Sawtooth wave with varying starting positionAnalysis of Sawtooth wave with varying starting position    

Functions to be analysed 
 

$.�/� � >z. �gvR?/ − /Aq.C																																											/Aq. < / ≤ � � /Aq.{. �gv||?/ − � − /Aq.C																									� � /Aq. < / ≤ 45 � /Aq�                    
Equation C-62 

$��/� � >z� �gvR?/ − 45 − /Aq�C																									45 � /Aq� < / ≤ � � /Aq� � 45{� �gv||?/ − � − /Aq�−45C																� � /Aq��45 < / ≤ 245 � /Aq�   
Equation C-63 

$��/� � >z� �gvR?/ − 245 − /Aq�C																		245 � /Aq� < / ≤ � � /Aq� � 245{� �gv||?/ − � − /Aq� − 245C										� � /Aq� � 245 < / ≤ 345 � /Aqr  
Equation C-64 

.   

.   
$;A=��/� �  Equation C-65 

>z;A=� �gvR?/ − �@i − 1�45 − /Aq;A=�C							�@i − 1�45 � /Aq;A=� < / < � � /Aq;A=� � �@i − 1�45{;A=� �gv||?/ − � − /Aq;A=� − �: − 1�45C							� � /Aq;A=� � �@i − 1�45 < / < @i45 � /Aq.  

 

Fourier co-efficient calculation for first function 
 

D.,. � �EF GH z. �gvR�/ − /Aq.�	I/J[�<sF�<sF � H {. �gv||�/ − � − /Aq.�	I/EK[�<sFJ[�<sF L                    Equation C-66 

D.,. � �EF GH z.	I/J[�<sF�<sF � H gvR/	I/J[�<sF�<sF − H gvR/Aq.	I/J[�<sF�<sF �
H {.	I/EK[�<sFJ[�<sF � H gv||/	I/EK[�<sFJ[�<sF − H gv||?� � /Aq.CI/EK[�<sFJ[�<sF L  

Equation C-67 

D.,. � �EF Gz.�� � /Aq.� − z./Aq. � )x~� �� � /Aq.�� − )x~� �/Aq.�� � {.?45 �
/Aq.C − {.?� � /Aq.C � )x��� 	?45 � /Aq.C� − )x��� 	?� � /Aq.C� −gv||�� �
/Aq.�?45 � /Aq.C � gv||�� � /Aq.��L  

Equation C-68 

D.,. � �EF Gz.� � )x~� �� � {.45 − {.� � )x��� 	45� − )x��� 	�� −gv||�45 �
gv||��L ^=uRWF�<sF  

Equation C-69 
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D.,. � ���FJEF � )x~J�EF � ��F�EK=J�EF � )x��EF 	?45� − ��C − �)x��EF ��45 −
���^=uRWF�<sF  

Equation C-70 

  

DR,. � �EF GH ?z. �gvR�/ − /Aq.�C cos V�./ I/J[�<sF�<sF � H ?{. �EK[�<sFJ[�<sF
gv||�/ − � − /Aq.�	C cos V�./ 	I/L  

Equation C-71 

DR,. � �EF GH z. 	cos V�./ I/J[�<sF�<sF � H gvR�/ − /Aq.�	cos V�./ I/J[�<sF�<sF �
H {. 	cos V�./ I/EK[�<sFJ[�<sF � H gv||/	 cos V�./ I/EK[�<sFJ[�<sF − H gv||�� �EK[�<sFJ[�<sF
/Aq.�	cos V�./ I/L  

Equation C-72 

DR,. � �EF G �FRWF sin V�.�� � /Aq.� − �FRWF sin V�./Aq. � )x~RWF ?� �/Aq.C sin V�.?� � /Aq.C − )x~RWF /Aq. sin V�./Aq. −)x~RWF H sin V�./ I/J[�<sF�<sF � �FRWF sin V�.?45 � /Aq.C − �FRWF sin V�.�� �/Aq.� � )x��RWF 	�45 � /Aq.� sin V�.?45 � /Aq.C − )x��RWF 	�� � /Aq.� sin V�.�� �/Aq.� − )x��RWF H 	sin V�./ I/EK[�<sFJ[�<sF − )x��RWF �� � /Aq.� sin V�.�45 � /Aq.� �)x��RWF �� � /Aq.� sin V�.�� � /Aq.�L  

Equation C-73 

DR,. � �EF G �FRWF sin V�.�� � /Aq.� − �FRWF sin V�./Aq. � )x~RWF ?� �/Aq.C sin V�.?� � /Aq.C − )x~RWF /Aq. sin V�./Aq. � )x~R�WF� cos V�.�� �/Aq.� − )x~R�WF� cos V�./Aq. �� �FRWF sin V�.?45 � /Aq.C − �FRWF sin V�.�� �/Aq.� � )x��RWF 	�45 � /Aq.� sin V�.?45 � /Aq.C − )x��RWF 	�� � /Aq.� sin V�.�� �/Aq.� � )x��R�WF� cos V�.�45 � /Aq.� − )x��R�WF� cos V�.�� � /Aq.� − )x��RWF �� �/Aq.� sin V�.�45 � /Aq.� � )x��RWF �� � /Aq.� sin V�.�� � /Aq.�L  

Equation C-74 

DR,. � ��FRWFEF sin V�.�� � /Aq.� − �FRWFEF sin V�./Aq. � �)x~RWFEF ?� �/Aq.C sin V�.?� � /Aq.C − )x~RWFEF /Aq. sin V�./Aq. � �)x~R�WF�EF cos V�.�� �
Equation C-75 
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/Aq.� − �)x~R�WF�EF cos V�./Aq. � ��FRWFEF sin V�.?45 � /Aq.C −��FRWFEF sin V�.�� � /Aq.� � �)x��RWFEF 	�45 � /Aq.� sin V�.?45 � /Aq.C −�)x��RWFEF 	�� � /Aq.� sin V�.�� � /Aq.� � �)x��R�WF�EF cos V�.�45 � /Aq.� −�)x��R�WF�EF cos V�.�� � /Aq.� − �)x��RWFEF �� � /Aq.� sin V�.�45 � /Aq.� ��)x��RWFEF �� � /Aq.� sin V�.�� � /Aq.�  DR,. � � ��FRWFEF sin V�.� � �)x~RWFEF � sin V�.� � �)x~R�WF�EF cos V�.� − �)x~R�WF�EF ���FRWFEF sin V�.45 − ��FRWFEF sin V�.� � �)x��RWFEF 	45 sin V�.45 −�)x��RWFEF 	� sin V�.� � �)x��R�WF�EF cos V�.45 − �)x��R�WF�EF cos V�.� −�)x��RWFEF � sin V�.45 � �)x��RWFEF � sin V�.��^=uRWF�<sF  

Equation C-76 

DR,. � � =�)x~R�WF�EF � \ ��FRWFEF � �)x~RWFEF � − ��FRWFEF] sin V�.� � \ �)x~R�WF�EF −�)x��R�WF�EF] cos V�.� � \ ��FRWFEF � �)x��RWFEF �45 − ��	] sin V�.45 ��)x��R�WF�EF cos V�.45�^=uRWF�<sF  

Equation C-77 

  

`R,. � �EF GH ?z. �gvR�/ − /Aq.�C sin V�./ I/J[�<sF�<sF � H ?{. �EK[�<sFJ[�<sF
gv||�/ − � − /Aq.�C sin V�./ 	I/L  

Equation C-78 

`R,. � �EF GH z. 	sin V�./ I/J[�<sF�<sF � H gvR�/ − /Aq.�	sin V�./ I/J[�<sF�<sF �
H {. 	sin V�./ I/EK[�<sFJ[�<sF � H gv||/	 sin V�./ I/EK[�<sFJ[�<sF − H gv||�� �EK[�<sFJ[�<sF
/Aq.� sin V�./ I/L  

Equation C-79 

`R,. � �EF G=�FRWF cos V�.�� � /Aq.� � �FRWF − )x~RWF �� � /Aq.� cos V�.�� �/Aq.� � )x~RWFJF H cos V�./ I/J[�<sF. − �FRWF cos V�.?45 � /Aq.C ��FRWF cos V�.�� � /Aq.� − )x��RWF 	?45 � /Aq.C cos V�.?45 � /Aq.C � )x��RWF 	�� �

Equation C-80 
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/Aq.� cos V�.�� � /Aq.� � )x��,RWF H 	cos V�./ I/EKFJ[�<sF � )x��RWF �� �/Aq.� cos V�.?45 � /Aq.C − )x��RWF �� � /Aq.� cos V�.�� � /Aq.�L  
`R,. � �EF G=�FRWF cos V�.�� � /Aq.� � �FRWF cos V�.�/Aq.� − )x~RWF �� �/Aq.� cos V�.�� � /Aq.� � �)x~RWFEF �/Aq.� cos V�.�/Aq.� � )x~R�WF� sin V�.�� �/Aq.� − �FRWF cos V�.?45 � /Aq.C � �FRWK cos V�.�� � /Aq.� − )x��RWF 	?45 �/Aq.C cos V�.?45 � /Aq.C � )x��RWF 	�� � /Aq.� cos V�.�� � /Aq.� �)x��R�WF� sin V�.?45 � /Aq.C − )x��R�WF� sin V�.�� � /Aq.� � )x��RWF �� �/Aq.� cos V�.?45 � /Aq.C − )x��RWF �� � /Aq.� cos V�.�� � /Aq.�L  

Equation C-81 

`R,. � =��FRWFEF cosV�.�� � /Aq.� � ��FRWFEF cos V�.�/Aq.� − �)x~RWFEF ?� �/Aq.C cos V�.?� � /Aq.C � �)x~RWFEF �/Aq.� cos V�.�/Aq.� � �)x~R�WF�EF sin V�.�� �/Aq.� − ��FRWFEF cos V�.?45 � /Aq.C � ��FRWFEF cos V�.�� � /Aq.� − �)x��RWFEF 	?45 �/Aq.C cos V�.?45 � /Aq.C � �)x��RWFEF 	�� � /Aq.� cos V�.�� � /Aq.� −�)x��R�WF�EF sin V�.?45 � /Aq.C − �)x��R�WF�EF sin V�.�� � /Aq.� � �)x��RWFEF �� �/Aq.� cos V�.?45 � /Aq.C − �)x��RWFEF �� � /Aq.� cosV�.�� � /Aq.�  

Equation C-82 

`R,. � �−2z.V�.4. cos V�.� � 2z.V�.4. − 2gvRV�.4. � cos V�.� � 2gvRV��.�4. sinV�.�
− 2{.V�.4. cos V�.45 � 2{.V�.4. cos V�.� − 2gv||V�.4. 	45 cos V�.45
� 2gv||V�.4. 	� cos V�.� − 2gv||V��.�4. sin V�.45 − 2gv||V��.�4. sin V�.�
� 2gv||V�.4. � cos V�.45 − 2gv||V�.4. � cos V�.�	�^=uRWF�<sF 

Equation C-83 

`R,. � � 2z.V�.4. � c 2{.V�.4. − 2z.V�.4. − 2gvRV�.4. �d cos V�.�
� c 2gvRV��.�4. − 2gv||V��.�4.d sinV�.� − 2gv||V��.�4. sin V�.45
− �2gv||V�.4. �45 − �� � 2{.V�.4.� cos V�.45�^=uRWF�<sF 

Equation C-84 
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Fourier coefficient calculation for the kth function 
 

D.,9 � 24. �� z9 �gvR�/ − :45 − /Aq9�	I/J[�<sZ[�9�EK
�9�EK[�<sZ

�� {9 �gv||�/ − � − −:45 − /Aq9�	I/�9[��EK[�<sZko
J[�<sZn�[�9�EK � 

Equation C-85 

D.,9 � − 14. M−2gv||/Aq9� � 2gv||/Aq9/Aq9[� − 2gv||/Aq9�
� 2gv||/Aq945 −gv||/Aq9[�� � 2gv||/Aq9[��− 2gv||/Aq9[�45 −gv||�� −gvR�� � 2gv||�45−gv||45� � 2{9/Aq9[� � 2{9� − 2{945 − 2z9�N 

Equation C-86 

  

DR,9 � 24. �� z9 �gvR�/ − :45 − /Aq9�	cos V�./ I/J[�<sZ[�9�EK
�9�EK[�<sZ
�� {9 �gv||�/ − ��9[��EK[�<sZko

J[�<sZn�[�9�EK
−−:45 − /Aq9�	cos V�./ I/� 

Equation C-87 

and  

`R,9 � 24. �� z9 �gvR�/ − :45 − /Aq9�	sin V�./ I/J[�<sZ[�9�EK
�9�EK[�<sZ
�� {9 �gv||�/ − ��9[��EK[�<sZko

J[�<sZn�[�9�EK
−−:45 − /Aq9�	sin V�./ I/� 

Equation C-88 
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DR,9=  Equation C-89 
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`R,9=  Equation C-90 
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Total coefficients 
 

D. � ∑ D.,9;<=�9b.   Equation C-91 

DR � a DR,9
;<=�
9b.  

Equation C-92 

`R � a `R,9
;<=�
9b.  

Equation C-93 

eR � a 12?DR,9 − #`R,9C�V ≥ 1�12 ?DR,9 � #`R,9C�V ≤ 1�
;<=�
9b.  

Equation C-94 
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Fourier Analysis of Sawtooth wave with an impulse functionFourier Analysis of Sawtooth wave with an impulse functionFourier Analysis of Sawtooth wave with an impulse functionFourier Analysis of Sawtooth wave with an impulse function    

 

Functions to be analysed 
 

$.�/� � 0z. �gvR/																																							0 < / ≤ �vw{. �gv||�/ − �vw�																					�vw < / ≤ 45                     Equation C-95 

$��/� � 0z� �gvR�/ − 45�																45 < / ≤ � � 45{� �gv||�/ − � − 45�					� � 45 < / ≤ 245  Equation C-96 

$��/� � 0z� �gvR�/ − 245�																	245 < / ≤ � � 245{� �gv||�/ − � − 245�									� � 245 < / ≤ 345  Equation C-97 

.   

.   
$9�/� � 0 z9 �gvR�/ − �:�45�																										�:�45 < / ≤ � � �:�45{9 �gv||�/ − � − �:�45�																		� � �:�45 < / ≤ �: � 1�45  Equation C-98 

 

Fourier co-efficient calculation for first function 
 

D.,. � �EF GH z. �gvR/	I/JFy. � H {. �gv||�/ − �vw�	I/EKJFy L  Equation C-99 

D.,. � �EF GH z.	I/JFy. � H gvR/	I/JFy. � H {.	I/EKJFw � H gv||/	I/EKJFy −
H gv||�vw	I/EKJFy L  

Equation C-100 

D.,. � �EF �z.�vw � )x~�Jxy �vw� � {.�45 − �vw� � )x��?EK�=JF�C� 	−
gv||�vw�45 − �vw��  

Equation C-101 

 

DR,. � �EF GH �z. �gvR/� cos V�./ I/JFy. � H ?{. �gv||�/ −EKJFy
�vw�	C cos V�./ 	I/L  

Equation C-102 
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DR,. � �EF GH z. 	cos V�./ I/JFy. � H gvR/	 cos V�./ I/JFy. �
H {. 	cos V�./ I/EKJFy � H gv||/	 cos V�./ I/EKJFy −
H gv||�vw 	cos V�./ I/EKJFy L  

Equation C-103 

DR,. � �EF G �FRWF sin V�.�vw � )x~RWF �vw sin V�.�vw − )x~RWF H sin V�./ I/JFy. �
�FRWF sin V�.45 − �FRWF sin V�.�vw � )x��RWF 	45 sin V�.45 −)x��RWF 	�vw sin V�.�vw − )x��RWF H 	sin V�./ I/EKJFy − )x��RWF �vw sin V�.45 �)x��RWF �vw sin V�.�vwL  

Equation C-104 

DR,. � �EF G �FRWF sin V�.�vw � )x~RWF �vw sin V�.�vw � )x~R�WF� cos V�.�vw ��FRWF sin V�.45 − �FRWF sin V�.�vw � )x��RWF 	45 sin V�.45 −)x��RWF 	�vw sin V�.�vw � )x��R�WF� �cos V�.45 − cos V�.�vw� −)x��RWF �vw sin V�.45 � )x��RWF �vw sin V�.�vwL  

Equation C-105 

 

`R,. � �EF GH �z. �gvR/� sin V�./ I/JFy. � H ?{. �gv||�/ −EKJFy
�vw�	C sin V�./ 	I/L  

Equation C-106 

`R,. � �EF GH z. 	sin V�./ I/JFy. � H gvR/	 sin V�./ I/JFy. �
H {. 	sin V�./ I/EKJFy � H gv||/	 sin V�./ I/EKJFy − H gv||�vw 	sin V�./ I/EKJFy L  

Equation C-107 

`R,. � �EF G− �FRWF cos V�.�vw − )x~RWF �vw cos V�.�vw �)x~RWF H cos V�./ I/JFy. − �FRWF cos V�.45 � �FRWF cos V�.�vw −)x��RWF 	45 cos V�.45 � )x��RWF 	�vw cos V�.�vw � )x��RWF H 	cos V�./ I/EKJFy �
)x��RWF �vw cos V�.45 − )x��RWF �vw cos V�.�vwL  

Equation C-108 
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`R,. � �EF G− �FRWF cos V�.�vw − )x~RWF �vw cos V�.�vw � )x~R�WF� sin V�.�vw −�FRWF cos V�.45 � �FRWF cos V�.�vw − )x��RWF 	45 cos V�.45 �)x��RWF 	�vw cos V�.�vw � )x��R�WF� �sin V�.45 − sin V�.�vw� �)x��RWF �vw cos V�.45 − )x��RWF �vw cos V�.�vwL  

Equation C-109 

 

Fourier coefficient calculation for the kth function 
 

D.,9 � 24. j� z9 �gvR�/ − :45�	I/9EK[J
9EK
�� {9 �gv||�/ − :45 − ��	I/�9[��EK

9EK[J l 
Equation C-110 

D.,9 � 24. j� z9 	I/9EK[J
9EK �� gvR/	I/9EK[J

9EK −� gvR:45	I/9EK[J
9EK

�� {9 	I/�9[��EK
9EK[J �� gv||/	I/�9[��EK

9EK[J
−� gv||:45	I/�9[��EK

9EK[J −� gv||�	I/�9[��EK
9EK[J l 

Equation C-111 

D.,9 � �EF Gz9� � )x~� �� − )x~9EK� � � {9�45 − �� � )x��� 	?45� � 2:45� −
2:45� − ��C − gv||:45�45 − �� −gv||��45 − ��L  

Equation C-112 

  

DR,9 � �EF GH �z9 �gvR�/ − :45�� cos V�./ 	I/9EK[J9EK � H �{9 ��9[��EK9EK[J
gv||�/ − :45 − ��� cos V�./ 	I/L  

Equation C-113 

`R,9 � �EF GH �z9 �gvR�/ − :45�� sin V�./ 	I/9EK[J9EK � H �{9 ��9[��EK9EK[J
gv||�/ − :45 − ��� sin V�./ 	I/L  

Equation C-114 
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DR,9 �  Equation C-115 

`R,9= Equation C-116 
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Total coefficients 
 

D. � ∑ D.,9;<=�9b.   Equation C-117 

DR � a DR,9
;<=�
9b.  

Equation C-118 

`R � a `R,9
;<=�
9b.  

Equation C-119 

eR � a 12?DR,9 − #`R,9C�V ≥ 1�12 ?DR,9 � #`R,9C�V ≤ 1�
;<=�
9b.  

Equation C-120 
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Fourier Analysis of Sawtooth Fourier Analysis of Sawtooth Fourier Analysis of Sawtooth Fourier Analysis of Sawtooth wave with Battery Balancingwave with Battery Balancingwave with Battery Balancingwave with Battery Balancing    

Functions to be analysed 
 

This is a combination of the sawtooth function 

$.�/� � 0z. �gvR/																																									0 < / ≤ �{. �gv||�/ − ��																												� < / ≤ 45                     Equation C-121 

And the battery balancing circuit equations 

$��/� � }=+�����J� �^=�/J��																													0 < / ≤ 0.454.0																																																						0.454. < / ≤ 4.                     
Equation C-122 

Fourier co-efficient calculation for first function 
 

D. � �EK GH z � gvR/	I/J. � H { �gvR�/ − ��	I/EKJ L  Equation C-123 

D. � �EK GH z	I/J. � H gvR/	I/J. � H {	I/EKJ � H gv||/	I/EKJ − H gv||�I/EKJ L  Equation C-124   

D. � �EK Gz��� � )x~� ���� � {45 − {� � )x��� 	45� − )x��� 	�� −gv||�45 �
gv||��L  

Equation C-125 

D. � �EK Gz� � )x~� �� � {45 − {� � )x��� 	45� − )x��� 	�� −gv||�45 �
gv||��L  

Equation C-126 

D. � ��JEK � )x~J�EK � ���EK=J�EK � )x��EK 	?45� − ��C − �)x��EK ��45 − ��  Equation C-127 

 

DR � �EK GH �z �gvR/� cos V�5/ I/J. � H ?{ � gv||�/ − ��	C cos V�5/ 	I/EKJ L  Equation C-128 

DR � �EK GH z	 cos V�5/ I/J. � H gvR/	 cos V�5/ I/J. � H {	 cos V�5/ I/EKJ �
H gv||/	 cos V�5/ I/EKJ − H gv||�	 cos V�5/ I/EKJ L  

Equation C-129 

DR � �EK G �RWK sin V�5��� � )x~RWK ��� sin V�5��� � )x~R�WK� cos V�5��� −)x~R�WK� �� �RWK sin V�5�45� − �RWK sin V�5��� � )x��RWK 	�45� sin V�5�45� −
Equation C-130 
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)x��RWK 	��� sin V�5��� � )x��R�WK� cos V�5�45� − )x��R�WK� cos V�5��� −)x��RWK ��� sin V�5�45� � )x��RWK ��� sin V�5���L  DR � ��RWKEK sin V�5��� � �)x~RWKEK ��� sin V�5��� � �)x~R�WK�EK cos V�5��� −�)x~R�WK�EK � ��RWKEK sin V�5�45� − ��RWKEK sin V�5��� � �)x��RWKEK 	�45� sin V�5�45� −�)x��RWKEK 	��� sin V�5��� � �)x��R�WK�EK cos V�5�45� − �)x��R�WK�EK cos V�5��� −�)x��RWKEK ��� sin V�5�45� � �)x��RWKEK ��� sin V�5���  

Equation C-131 

DR � � =�)x~R�WK�EK � \ ��RWKEK � �)x~RWKEK � − ��RWKEK] sin V�5� � \ �)x~R�WK�EK −�)x��R�WF�EF] cos V�.� � \ ��RWKEK � �)x��RWKEK �45 − ��	] sin V�.45 ��)x��R�WK�EK cos V�545�  

Equation C-132 

  

`R � �EK GH �z �gvR�/�� sin V�5/ I/J. � H ?{ � gv||�/ −EKJ
��C sin V�5/ 	I/L  

Equation C-133 

`R � �EK GH z	 sin V�5/ I/J. � H gvR�/�	sin V�5/ I/J. � H {	 sin V�5/ I/EKJ �
H gv||/	 sin V�5/ I/EKJ − H gv||��� sin V�5/ I/EKJ L  

Equation C-134 

`R � �EK G =�RWK cos V�5��� � �RWK − )x~RWK ��� cos V�5��� �)x~RWK H cos V�5/ I/J. − �RWK cos V�5�45� � �RWK cos V�5��� −)x��RWK 	�45� cos V�5�45� � )x��RWK 	��� cos V�5��� � )x��RWK H 	cos V�5/ I/EKJ �
)x��RWK ��� cos V�5�45� − )x��RWK ��� cos V�5���L   

Equation C-135 

`R � �EK G =�RWK cos V�5��� � �RWK − )x~RWK ��� cos V�5��� �� )x~R�WK� sin V�5��� − �RWK cos V�5�45� � �RWK cos V�5��� −)x��RWK 	�45� cos V�5�45� � )x��RWK 	��� cos V�5��� � )x��R�WK� sin V�5�45� −)x��R�WK� sin V�5��� � )x��RWK ��� cos V�5�45� − )x��RWK ��� cos V�5���L  

Equation C-136 
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`R � =��RWKEK cos V�5��� � ��RWKEK − �)x~RWKEK ��� cos V�5��� ��)x~R�WK�EK sin V�5��� − ��RWKEK cos V�5�45� � ��RWKEK cos V�5��� −�)x��RWKEK 	�45� cos V�5�45� � �)x��RWKEK 	��� cos V�5��� − �)x��R�WK�EK sin V�5�45� −�)x��R�WK�EK sin V�5��� � �)x��RWKEK ��� cos V�5�45� − �)x��RWKEK ��� cos V�5���  

Equation C-137 

`R � � ��RWKEK � \ ��RWKEK − ��RWKEK − �)x~RWKEK �] cos V�5� � \ �)x~R�WK�EK −�)x��R�WK�EK] sin V�5� − �)x��R�WK�EK sin V�.45 − ��)x��RWKEK �45 − �� ���RWKEK� cos V�545�  

Equation C-138 

Fourier coefficient calculation for the second function 
 

D.,� � �EF H \− +�����J� �^=�/J��] I/..��EF.   Equation C-139 

D.,� � − �+�����EFJ�� ?1 − �^=..��Ex/J��C  Equation C-140 

  

DR,� � �EF H \− +�����J� �^=�/J��] cos V�./ I/..��EF.   Equation C-141 

DR,� � − �+�����EF?R�WF�J��[�C ?sin�0.45V�.4.� V�.��^=..��Ex/J� � 1 −cos	�0.45V�.4.�^=..��Ex/J�C   
Equation C-142 

 

`R,� � �EF H \− +�����J� �^=�/J��] sin V�./ I/..��EF.   Equation C-143 

`R,� � �+�����EF?R�WF�J��[�C ?^=..��Ex/J� cos�0.45V�.4.� V�.�� − V�.�� �sin	�0.45V�.4.�^=..��Ex/J�C  
Equation C-144 
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Total coefficients 
 

D. � ∑ D.,9�9b.   Equation C-145 

DR �aDR,9�
9b.  

Equation C-146 

`R �a`R,9�
9b.  

Equation C-147 

eR �a12?DR,9 − #`R,9C�V ≥ 1�12 ?DR,9 � #`R,9C�V ≤ 1�
�
9b.  

Equation C-148 
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Fourier Analysis of Sawtooth wave with ELMFourier Analysis of Sawtooth wave with ELMFourier Analysis of Sawtooth wave with ELMFourier Analysis of Sawtooth wave with ELM    

Functions to be analysed 
 

This is a combination of the sawtooth function (similar to the battery balancing method) 

$.�/� � 0 z. �gvR/																																							0 < / ≤ �{. �gv||�/ − ��																											� < / ≤ 45                     Equation C-149 

And the ELM sine wave 

$��/� ≈ �.�����[�. sin��v/�																												 0 < / ≤ 4.                     Equation C-150 

Fourier co-efficient calculation for first function 
 

As per the battery balancing method 

Fourier co-efficient calculation for second function 
 

The magnitude of the sine wave for the bn,1 component only 

Total coefficients 
 

D. � D.,9                     Equation C-151 

DR � DR,9 Equation C-152 

`R �a`R,9�
9b.  

Equation C-153 

eR �a12?DR,9 − #`R,9C�V ≥ 1�12 ?DR,9 � #`R,9C�V ≤ 1�
�
9b.  

Equation C-154 
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