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Nonlocal Kardar-Parisi-Zhang equation with spatially correlated noise
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The effects of spatially correlated noise on a phenomenological equation equivalent to a nonlocal version of
the Kardar-Parisi-Zhan@<PZ) equation are studied via the dynamic renormalization g@RG) techniques.
The correlated noise coupled with the long ranged nature of interactions prove the existence of different phases
in different regimes, giving rise to a range of roughness exponents defined by their corresponding critical
dimensions. Finally self-consistent mode analysis is employed to compare the non-KPZ exponents obtained as
a result of the long-range interactions with the DRG res{i84063-651X99)11507-1

PACS numbegs): 05.40—a, 05.70.Ln, 64.60.Ht, 68.35.Fx

Interest in nonequilibrium growth mechanisms in the for-long-ranged description of noise in their treatment of the
mation of surfaces and interfaces, the description of directedcaling regimes and critical dimensions in the standard KPZ
polymers, bacterial growth, etc., and, recently, the proteirproblem, as well as in the conserved ci@e Actually, in all
folding problems, although they are apparently the represerpf these cases, the nature of the noise is determined from the
tations of different physical processes, have all been encapact that to maintain turbulence in the flow, energy has to be
sulated in one single nonlinear continuum equation, thesupplied at large length scales near the boundaries, and the
much celebrated Kardar-Parisi-Zhati§PZ) equation[1].  consequent Kolmogorov-type dimensional argument brings
The notion of universality classes, defined by this standar@bout a spatial dependence in the noise correlation.

KPZ equation[1], suggests the existence of a phase transi- Starting with the nonlocal equation proposed[8], we

tion from the Edwards-WilkinsofEW) class[2] to the non-  have gone one step further in putting forth the effects of a
linear KPZ class above a particular critical dimensiah ( nonwhite spatially correlated noise akin to that used4ih

>2). However, although this stochastic equation has, byhe objective being the analysis of special features of the
now, become a model of dynamic critical phenomena for dnteraction of the long-ranged nature of KPZ-type nonlinear-
vast range of growth problems, the fact remains that the bdty with the long-ranged spatial correlation in noise. This, we
sic nonlinearity studied here is of a local nature; that is tohope, will be a justified step in explaining the effects arising
say, the growth occurs along a continuously varying locafrom the nonlocal nature of the flow field, which has been
normal. observed in certain growth models with quenched noise

Incorporating the long-ranged nature of interactions[10,11, where convincing evidence has been found that
which is necessary for a wide class of problems, eg., thehows that the power-law noise goes along naturally with a
long-ranged hydrodynamic interactions, proteins, colloidscertain class of quenched noise modé]. Somewhat simi-
etc., Mukheriji and Bhattacharj¢8] developed a Langevin- lar explanations have been put forward by Xin-Ya Legial.
type equation studying the effects of the long-rangag  [13] in explaining the crossover phenomenon occuring in the
feature of an evolving surface, going beyond the local defluid flow experiments of Rubiet al. [14].
scription of the KPZ nonlinearity for the case of white noise.  In the following analysis, use is made of dynamic renor-
There the approach essentially consisted of introducing #alization group(DRG) techniques in arriving at the dy-
term in the basic Langevin equation capable of correlatinglamic exponents, etc. We see that, evendetd., both
each site of the growing surface with all other sites. Theweak and strong noise interacting with both the local and
objective was the transformation of the local nonlinear termnonlocal natures of the nonlinearity give a range of critical
representing the lateral growth beyond the strict local de€xponents spanning a four-dimensional space in terms of the
scription, such that the correlation length now becomes aflimensionless interaction strengths. Finally, we reconfirm
least the system size. Still, the effects of the interaction oPur DRG results from the self-consistent mode power count-
correlated colored noise with the KPZ or KPZ-type nonlin-ing arguments in the line developed|ib5,16.

earity remain to be seen. The starting point of our analysis is the equation
The results of nonwhite noise for the growth of rough R

interface has been generalized by Medetial. [4]. In two ah(r,t) . 1 T

remarkable papers, Chekhlov and Yakii616], and Hayot o rvhno+s f dr'v(r’)Vh(r+r’,t),

and Jayaprakag|Y] have observed the effects of correlated
noise for the one-dimensional Burgers equation. They ex-
plored the occurence of shocks as well as the large distance,
long time statistics of the fluctuations. Working along this

line Frey, Tauber, and Janssf8] have also resorted to the \(’thferedV b'S the diffusion constant and(r.t) is the noise
efined by

Vh(r—r',t)+ n(r,t), (1)

*Electronic address: tpac2@mahendra.iacs.res.in (n(lz,w) n(lz’ ,w'))= 2D(lz) 5d(|2+ IZ’)é(w+ w'). (2
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Again, going by the prescription df3], the kernelv(r) )\X_)\ o4 ®
has a short-ranged pat5°(r) and a long-ranged part¢. ar M Latz X,
In Fourier space,

- B where x=0 or p, respectively. Here f(q)
v(K)=No+ A k™", 3) =[4IND(K)}/7Ink|,_q and g(a) =[aInv(K)/dInkl;_q,

Kq=Sy/(2m)9, whereS, represents the-dimensional sur-
face of a un|td+1 dimensional sphere.

: In terms of the dimensionless interaction strengﬂﬁsg
The two exponents of interest, the roughness expoaent _ Kd(?\ D,)/+®, where shortranged interaction couples

a”?' the dynar_nlc expo_nerz_t go along with th_e two:pomt with long- ranged n0|séthe Medlnaet al. zone and S|m|lar
height correlation function in the hydrodynamic limk, ) other parametersU _Kd(7\ D )/V Uoo KdO\ Do)/

-0, v® (ordinary KPZ cas)s u? . 0= Kd()\ Do)/v® (the SM and
SMB zone, the flow equatlons can be combined to give

All standard KPZ results are expected foy=0. But the
nontrivial A ,# 0 is the part that we are interested in.

(h(K,0)h(K", "))~ K|z 92059 (k+K') S(w+ o)
. dU,
xf(T). (4) da

|k|?

All information regarding the dynamic universality class
of the phase will be contained in this and z.

2—d+20
2

X[3(d=2)Uds+3.2 7(d—2-3p)U2,
+3(1+27°)(d—2)Ug U, o+3.2°°

U
3 0,0
O,(r+ 8d

d—2-20
0,0 8d

At d=1, the values ofr(= %) andz(=32) can be exactly X(d—2-20-3p)U2  +3(1+277)
determined. But ai = 2, there is a transition from the Gauss- ’
ian fixed point(EW), and the nonlinearity grows under re- X(d=2-20)Up,U, ], 9
scaling. Simple scaling from—bx, h—b®h, andt—b%
shows that both the sho@gi and long-rangedC, g contri- du 2—d+20+2p d-2-20-3p
butions in the interaction kernel are relevantder 2 (where dllm [ > ot 3.2‘P[T}
by CgR interaction we mean the standard KPZ-type nonlin-
earity, and theC g interaction implies a non-KPZ typé 3
dependent part Under this scale transformation the param- XUp ot
eters of the equation change byv—Db* 2p,\,
—b** 7 2\g,\,— b ZTPT2)\ | If the noise strengthD (k) x(d—2- 3P)U 0t 3(1+277)(d=2)UoU 0
in the hydrodynamic limit K,w—0) is given byD(k)=D +3(d—2—20)U0’(,+ 3(1+277)
+D,k %, then Dg—b 92D, and D,
—bT40md2etzp | For2<d<d.=2+2p—40, \,isrel- X(d=2-20)Up,U, ], (10

evant at the EW fixed pointz&2) and, forp>0, a non-
KPZ fixed spectrum should be the outcome. The following
DRG analysis gives a horizon of unfounded results that

du 2—d 2d—3
O’O:[ } 0,0 [ Uoo+ 30[2_’){(3+2_p)d

shrink to the known results il=1 and 2 as in[3] for 2 4d
0'='0 and,. furthermore, the introd_uct.ion of the npnlocal —6— 9p}U H3(1+277)(d-2)+d.2” !
noise provides even more complexity in the interaction.
Due to the Galilean invariance of E(L), A is not renor- XUg U, o0t 3(d—2-20)U3 +3.27°
malized. Since the RG transformation is analytic in nature, 5 ' ~
A, is also not renormalized; only the Galilean identity is X(d=2-20-3p)U; ,+3(1+277)
modified in this case (2 p instead of 2, X (d—2-20)Ug,U, ], (11)
a+z=2-p, (5)
) ) du,, [2—d+2p (3+27°)d—6—-9p
wherep=0 for \q flow. From the above considerations, we = 0 0
. : , ) dl 2 P 8d p:
get the following flow equations for, D’s, and\’s,
p.0 2
dv D(1)v(2)v(1) d—2+f(1)+3g(1) +gq [(4d=6)Uqgp
-5 =V 2_2_ Kd y
dl 3 4d _ i1
©) +{3(1+27°)(d-2)+d.27 "™}
XUgU,ot+3(d—2—-20)U3,
dD(k) DX(1) ) )
TzD(k)[z—Za—d—f(k)]JrKd 17 v(2), +3.2°(d-2-20-3p)U; ,+3(1+277)
14

(7) X (d—2-20)Ug,U, .. (12)
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Y
FIG. 1. A\, vs Ao phase diagram. The solid lines alorgaxis / \
represeniC, g phases, while the dotted line B shows a smooth \
phase.
. D,
Now let us define two sets of parameterf,
=Upo/U,0, Re=Ug,/U,, and S$=Ugo/Ug,, S, FIG. 2. Dy vsD,, flow in theUyovs Uy, plane.X andY are the
=U,o/U, . axial and off-axial fixed points, respectively.
We see thatlR, /dI= y» Wherey=0, o and conse- hi he oh i v identical
quently, this rules out any off—axial fixed point in tRy, R, In this case, the phase diagrams are exactly identical to

Fig. 1, only the critical dimension is now modified th
=2+2p—40 and the unstable zone now lies betwegn
=2+4+20+2p andd=2+20+ 3p in this plane:

parameter spac@xcept for the trivialo=0 case.
In the Ugp, U, o plane, the axial fixed points are given

by
1
CSR_NSREU*Zp,OZOY Z|U32=O:§ (4+d_20'_2p),
L, 2d(d-2) 1 (18
00="5q—3 01|U6;=0=—p+§ (2—d+20+2p).
a+z=2, (13) However, a completely different qualitative behavior is
observed withS, and S,. The S, flow equation reads
o Ne=U**—0 dSy/dI=Sy(— o+ §Uf o+ 272U +27°/4Uo U, g and, as
LR ISR 00T M such, off-axial flxed points eX|st in this case for the four-
dimensional space dfi’s. But in theUqo, Uy, plane, we
“2 4(d—2-2p) get only axial fixed points where now,,, U, ,=const.
p,0_2_p{(3+2_p)d_6_9p}’ Here the axial fixed points are
2 2 2d(d—-2)
a+z=2-p, (14) Csr—Nsg=Ugj,=0, Ugo= d—=3 (19
whereNgr andN, i represent the short- and long-ranged part ) , 4d
in the noise spectrum, respectively. The first s€igg Csr— Nr=Ug=0, UaL,:?. (20)
—Ngp) gives the well-known KPZ fixed point withe
=3/2, a=1/2 for d=1. But the second setC(g—Ngg) This gives
gives the non-KPZ behavior and the results exactly mggth 1
in thisUgqp, U, plane: Z|U3;:O:§ (d+4-20),
2wt o (d—2-2p)(d—2-3p) (22)
Yoo™° [(3+2 7)—6-9p] aluri-0=3 L 2—d-20).
(15 °
, (d—2—-2p)(d—2—-3p) The results exactly match the Mediea al. predictions,
a|U30:0: P [(3+2 %) —6-9p] and the phase diagram is given by Fig.XandY are the

axial and off-axial fixed points, respectively. The point to be
noted here is that, unlike the previous two cases, there is no
unstable excluded region in the non-KPZ case.

Although similar arguments as above apply for t8g
flow, the most spectacular results are seen irlthg, U
plane where the fixed points are given by

In diagramB of Fig. 1, the dotted line gives an unstable
zone betweerd=(9p+6)/(3+27°) to d=2+2p. Above
the critical dimension, diagra@ shows a smooth phase. For
p=0, all of theC, fixed points go over to th€gx ones.

In the Uy, U, , plane defined byR,, there also are

p.o

: . S 2
only two sets of axial fixed points: Clr—Ngg=U*" =0
Csn—Nig= U*.=0, Uso=73 (16) Ui 4d(2—d+2p) | 22
PT o 27P[6+9p—(3+277)]
Clr—Ng= UZ —OU*2 4d(2-d+20+2p) Cir—Npr=U; o =0,
RO T 7 3.2°°(2+20+3p—d)’
(17 £2 4d(2—d+20+2p)

* = . (23
7 3.27°(2+20+3p—d)
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Here for both the sets we have unstable regions boundedhere, in either of the two planes, the non-KPZ values co-
by 2+2p>d>(6+9p)/(3+27°) (C.r—Ngsg) and 2+2¢  incide with Eq.(24). However, thel ,,, U, , plane is spe-
+2p<d<2+20+3p for p,c>0 (C,gr—N_g). Also, both  cial in that it provides two axial non-KPZ values, only one of
of these fixed points give non-KPZ results: which appears in the self-consistent results. The other value
is actually an offshoot of3] where the relevant, gz nonlin-
earity is interacting with theNgg part of the noise, where
both the non-KPZ values o (and «) exist, although no
rough-rough phase transition apparently takes place.
and In summary, we have started with a simple phenomeno-

logical equation, which incorporates a nonlocal term in its
(d—2-2p)(d—2-3p) 25 interaction spectrum and, while coupling with spatially cor-
(3+277)d—6—9p related noise, develops a set of dynamic and growth expo-
nents, which contain a non-KPZ part. As t@gg part in the
and, as such, the phase diagram\jn A,, Do, D,isac-  spectrum becomes unstable, these non-KPZ domains surface,
tually on a four-dimensional space with both axial and non-and a completely different critical behavior comes into exis-
axial fixed points. tence. With negative values for the long- and short-ranged

Now use is made of self-consistent mode analysi@ct nonlinearities, the phase diagrams are modified, wittCthe
in the spherical limit to generate the non-KPZ exponents in roughness now giving way t€sg roughness without the
this complex space, where both of tNeg— N g noises are appearance of any excluded instability in the phases. The
interacting with theCgg— C, g nonlinearity. only exception appears in the case of the special plane al-

Starting with the Dyson equation, given & 1(k,w)=  ready discussed. Also, it would be worthwhile to mention

. 2 > > that although the nonlocal contribution in the nonlinearity
“iot vk®+ X (k,w), whereX (k,w) is the self-energy term o, o generates its short-ranged counterpart, the nonlocal
and following exactly the :c,cheme adaPtec[]J':B] (with the part in the noise spectrum develops a white noise. We recon-
same scaling ansatz f&i(k,») and D(k,®)), in the limit  firm all of these DRG observations from a self-consistent
w—0, takingD(IZ,O): D, k27 andv(l2)=)\p k=?, simple technique and arrive at the same set of non-KPZ exponents
power counting gives when the noise strength remains nonrenormalized. Finally,
comparisons with established resul&4], which constitute
only parts of our whole domain, provide expected results.

1
Zly*>_o== (d+4—20—2p) (24)
p.0 3

z|yx? —o=2+
p,o

1
z= 3 (d+4—-20-2p),
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These values of and o are seen to tally very well with The names of Partha Pratim Ray and Suman Banik also de-
our DRG derivations in th&oo, U,q, Ug,, U, , space serve special mention.

1
a=—p+§ (2—d+20+2p). (26)
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