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ABSTRACT
This paper presents a multi-order parametric resonant

MEMS piezoelectric disk membrane, for the purpose of
broadening the operational frequency bandwidth of a
vibration energy harvester by employing the nonlinearity-
induced bandwidth broadening associated with this
phenomenon as well as the multi-frequency response
associated with the higher orders. The fundamental mode
-3dB bandwidth at 2.0 g recorded 55 Hz, while the first
parametric resonant peak exhibited 365 Hz and the -3dB
of the first 8 orders accumulated to 604 Hz. The
membrane parametric resonator also experimentally
demonstrated over 3-folds improvement in power density
compared to a conventional direct resonator (cantilever),
when subjected to band-limited white noise.

INTRODUCTION
The conventional approach within the field of

vibration energy harvesting employs a directly excited
resonator, which typically has a confined operational
frequency bandwidth [1]. A compromise between peak
power and frequency bandwidth is usually made through
adjusting the quality factor for a given resonator. On the
other hand, the use of parametric resonance in MEMS
electrostatic harvesters has been previously shown [2] to
enable multi-frequency operation, while demonstrating
both higher power amplitude and wider frequency
bandwidth than its directly excited counterpart.
Furthermore, with lower damping (under vacuum
conditions), the peak power and the frequency bandwidth
simultaneously increases for a parametric resonator.

Parametric resonance [3] is a nonlinear vibratory
phenomenon associated with periodic modulation in a
system parameter resulting in unstable growth of
oscillations ultimately bounded by nonlinear effects.
Governed by the Mathieu equation (equation 1), under the
right conditions, internal amplification of the resulting
response to external excitation enables accumulation of
significantly more energy within the device than possible
through directly excited resonance [4]. 

ẍ+c ẋ+(δ+2ϵcos 2 t )x=0 (1)

Where, x is the displacement, c is the damping
coefficient, � relates to natural frequency squared, �
relates to the amplitude of parametric excitation and t is
the time domain. Various orders of parametric resonances
are theoretically predicted when the excitation frequency
is in the vicinity of 2ω0/n, where ω0 is the natural
frequency and n is a positive integer denoting the order
number. Figure 1 illustrates the stability chart (Strutt
diagram) of the Mathieu equation for the first eight orders
of parametric resonance. It can be noted that higher orders

are less accessible due to the narrowing frequency bands.

Figure 1: Strutt diagram of the first 8 orders of an
undamped Mathieu oscillator. Shaded areas represent
regions where conditions are favourable to yield the
onset of parametric resonance.

 

The incorporation of this nonlinear vibration principle
at the MEMS-scale has the potential to access multiple
higher orders [5] at regular frequency intervals. This study
further demonstrates the potential of utilizing multiple
orders of parametric resonance as a means of notably
enhancing the intrinsic operational frequency bandwidth
for a piezoelectric vibration energy harvester.

METHOD
A circular disk membrane design topology (device

shown in figure 2) is adopted based on inspiration drawn
from membrane-based musical instruments, such as
timpani, which has a high number of resonant modes [6]. 
 

Figure 2: Photograph of the disk membrane MEMS
piezoelectric vibration energy harvester capable of
being driven into parametric resonance.

 

Figure 3: COMSOL simulated strain distribution along
the radial length, showing opposing strain rings
between the anchor (sides) and the centred proof mass.



Due to opposing strain polarity of the inner ring
(bending strain) and outer ring (anchor strain) of the disk
membrane during oscillation, separate active piezoelectric
regions were established through electrode segmentation.
The boundary of this segmentation was determined
through COMSOL simulation of the design (figure 3).

Figure 4 outlines the material stack of the
piezoelectric device, comprising of a 0.5 μm AlN layer
(piezoelectric transduction layer) on a 10 μm doped Si
layer (active mechanical device layer/bottom common
electrode). Certain regions of the un-etched silicon handle
wafer was utilised as the centred proof mass.

Figure 4: Cross-sectional view of stack of material.

The MEMS harvester was experimentally tested on a
mechanical shaker controlled by a frequency/arbitrary
waveform generator. Both sinusoidal frequency (to drive
the device into resonances) and band-limited white noise
excitation can be programmed into the shaker. An off-the-
shelf MEMS accelerometer was fixed together with the
vibrating platform in order to measure the acceleration
experienced by the device.

RESULTS
Parametric resonance and higher orders

Up to 8 orders of parametric resonance were recorded
when the piezoelectric transducer was connected to a
matched load (~70 kΩ). With a natural frequency fn of
about 980 Hz, the principal (1st order) parametric
resonance was observed when the excitation frequency fex

was about 2fn. However, the response frequency was
always exactly half of the excitation (at around fn). Figure
5 presents the FFT of the time domain voltage output of
the transducer. A small peak around fex represents the non-
resonant directly forced response.

Figure 5: FFT of the voltage response when driven into
the 1st order parametric resonance (excitation 
frequency is twice the natural frequency: ~1.9 kHz).

This excitation frequency to response frequency ratio
is a distinct signature to identify parametric resonance and
its respective order number. On the other hand, for
directly excited resonance, the response frequency always
matches the excitation. Figure 6 further demonstrates this
distinct frequency ratio signature for the 3rd order, where
the excitation frequency fex is at around 640 Hz and the
response frequency is 980 Hz. The same trend of
frequency ratio signatures for each respective order were
observed up to the 8th order, where 4fex = fn. 

Figure 6: FFT of the voltage response when driven into
the 3rd order parametric resonance (excitation 
frequency is twice the natural frequency: ~640 Hz).

At even lower frequency intervals, under the
electrically damped condition, no observable order was
measured within the scanned acceleration range. This is
partly due to the higher initiation threshold amplitude of
the damped higher orders; and the fast narrowing nature
of frequency bandwidth, which makes experimental
measurement practically difficult. 

Multi-frequency operation
The first two orders of parametric resonance and the

directly excited fundamental mode were the most readily
activated resonant peaks in this device. Figure 7 presents
the power response per excitation frequency at 0.05 g of
sinusoidal drive. A strong nonlinearity can be noted for
the parametric resonant peaks and the resonant onset was
sensitive to initial conditions. The higher order parametric
resonances were not detected at this acceleration
amplitude.

Figure 7: Frequency domain power response of the
disk membrane MEMS harvester when subjected to
acceleration amplitude of 0.05 g. Power peaks for
parametric resonance were both wider and higher than
direct resonance.



The response frequency of the 2nd order coincides
with that of the directly excited fundamental mode.
Therefore, the identification criteria for the two
overlapping resonances was the sudden rise and fall of
response when scanning around the boundaries of the
parametric instability region. Furthermore, these two
resonant responses do not co-exist, but can switch
between each other under certain boundary conditions.

The direct resonant peak itself exhibited strong
Duffing nonlinearity in the form of spring softening. This,
along with saturation of the parametric resonant
oscillatory amplitude growth by the presence of nonlinear
damping, the system can thus be modelled as a forced
Mathieu Duffing oscillator with a nonlinear damping term
described in equation 2  [7].

(2)

where, � is the linear damping ratio, � is the
nonlinear quadratic damping coefficient, � is the
geometric Duffing nonlinearity, ε is the parametric
excitation, F is external forcing amplitude, � is the phase
difference between the external forcing and the parametric
excitation, and � is a small parameter that can be added
for use in numerical perturbation method [7].

With increasing excitation amplitude, further
parametric resonances were revealed as shown in figure 8.
At 2.0 g of sinusoidal drive, 8 orders were recorded, albeit
the higher orders exhibited relatively narrower and
smaller peaks compared to the direct resonant regime.

Figure 8: Frequency domain power response when
subjected to sinusoidal acceleration amplitude of 2.0 g.

Table 1 delineates the power peak and the frequency
bandwidth of figure 8. It can be seen from both the figure
and the table that the first three orders can potentially
yield higher power peaks than direct resonance for the
same excitation acceleration amplitude. At 2.0 g, direct
resonance peaked at 2.2 μW, while the parametric
resonant peaks attained 7.0 μW, 6.4 μW and 4.2 μW for
the 1st order, 2nd order and 3rd order respectively.

Table 1: Comparison of direct resonance (DR) and
parametric resonance (PR) of the disk membrane
harvester driven at 2.0 g. HHP: half power point.

Resonance
(peak freq.)

Power
peak
(μW)

Freq. bandwidth (Hz)

HPP HPP of DR

DR (920 Hz) 2.2 55

PR 1 (1640 Hz) 7.0 365 445

PR 2 (730 Hz) 6.4 150 245

PR 3 (640 Hz) 4.2 25 40
Accumulative 
PR 1 to PR 8

604 760

In terms of frequency bandwidth, the 1st order (365
Hz) and 2nd order (150 Hz) demonstrated 6.6 times and
2.7 times wider half power band than the direct peak (55
Hz), respectively. If the half power points of the direct
resonant peak is taken as the reference, this bandwidth
enhancement is approximately 8 times for the 1st order
and almost 4.5 times for the 2nd order. 

Furthermore, the accumulative half power bandwidth
of parametric resonance is nearly 11 times wider than
direct resonance, and almost 14 times wider if the half
power point of the direct peak is considered as the
reference. Therefore, this result illustrated the potential
superior performance of parametric resonators for multi-
frequency operation.

Broadband response
In order to further assess the broadband response of

the disk membrane parametric resonator, a typical direct
resonator (fabricated with the same AlN on SOI process),
using the classic cantilever topology, was employed for
experimental comparison and benchmark. Figure 9 shows
the MEMS cantilevers. A cantilever with 60% of its length
occupied by a suspended end mass was chosen.

Figure 9: Photograph of the cantilever MEMS
vibration energy harvesters (fn ~200 Hz), used for
experimental comparison with the disk membrane.

Both the membrane resonator and the cantilever
resonator were subjected to band-limited (10 Hz to 2 kHz)
white noise vibration of varying amplitudes. Figure 10
illustrates the membrane device subjected to the noise
input from the shaker, which was programmed by a
computer via the arbitrary waveform generator and its
intensity characterised by an accelerometer.



Figure 10: A typical response from the membrane
device when subjected to a band-limited white noise
with a noise intensity of 0.002 g2/Hz. A MEMS
accelerometer was employed to characterize the input
noise amplitude from the programmed shaker.

Figure 11 presents the average power density
response of both the membrane (parametric) resonator and
the cantilever (direct) resonator for noise intensity
between 0.0005 g2/Hz and 0.05 g2/Hz. Due to the
relatively unpredictable and random nature of the power
peaks from noise excitation, average power was chosen as
a more reliable parameter. The power output was averaged
over intervals of 10 seconds. 

The average power values were normalised against
volume for the comparison due to the different sizes of the
two devices. The membrane device had an effective
volume of 0.154 cm3 while the cantilever occupied less
than a third of the volume at 0.0049 cm3. However, the
cantilever also had larger travel (a conservative estimate
of ±1 mm at large amplitudes). Therefore, if the extra
travel is to be taken into account, the smaller cantilever
would still require approximately similar, if not more
active volume than its less compliant membrane
counterpart. 

Figure 11: Measured output power response of the
parametric resonator and the direct resonator for
band-limited white noise excitation (10 Hz to 2 kHz).

Figure 11 illustrates up to over 3-folds enhancement
in the average power output normalised to the device
volume of the parametric resonator over the conventional
direct resonator. The power density calculation only takes
into account the device volume and not the travel (as

discussed above), which thus skews the result in favour of
the cantilever. Furthermore, a trend of increasing gap can
also be noted for the membrane over the cantilever at
larger amplitudes. 

CONCLUSION
This paper presents a piezoelectric membrane

resonator capable of being driven into parametric
resonances for the purpose of multi-frequency vibration
energy harvesting. Up to 8 orders of parametric resonance
were recorded for the harvester and over an order of
magnitude enhancement in operational frequency
bandwidth was observed compared to the direct resonant
peak of the same device. 

When compared to a classic cantilever resonator
fabricated using the same process, the membrane
parametric resonator demonstrated over a 3-fold higher
average power density when subjected to band-limited
white noise excitation. This illustrates the potential of a
membrane-based parametric resonator to capture a wider
region of the available power spectrum.

Future work will investigate the potential to further
improve the operational frequency bandwidth under
vacuum conditions (parametric resonance increases both
in power amplitude and frequency bandwidth at lower
damping [2]), as well as exploring additional design
iterations to further the proof-of-concept device reported
here.
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