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Abstract 

With the increasing global demands for energy, fuel supply management is a challenging task of 

today's industries in order to decrease the cost of energy and diminish its adverse environmental 

impacts. To have a more environmentally friendly fuel supply network, Liquefied Natural Gas 

(LNG) is suggested as one of the best choices for manufacturers. As the consumption rate of LNG 

is increasing dramatically in the world, many companies try to carry this product all around the 

world by themselves or outsource it to third-party companies. However, the challenge is that the 

transportation of LNG requires specific vessels and there are many clauses in related LNG 

transportation contracts which may reduce the revenue of these companies, it seems essential to 

find the best option for them. The aim of this paper is to propose a meta-heuristic Binary Particle 

Swarm Optimization (BPSO) algorithm to come with an optimized solution for ship routing and 

scheduling of LNG transportation. The application demonstrates what sellers need to do to reduce 

their costs and increase their profits by considering or removing some obligations. 
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1. Introduction 

1.1. The significance of the study 

Nowadays, the Liquefied Natural Gas (LNG) consumption rate has grown significantly owing to 

CO2 emissions of traditional fuels and the related economic concerns (Khalilpour & Karimi, 2011). 

The 2005-2030 forecasts show that the LNG consumption rate will increase by approximately 

50%. In addition, the LNG market share of the global energy market will increase from 20% in 

2005 to 25% in 2030 (EIA, 2009). Erstwhile, this market was almost monopoly because LNG 

production costs were quite high; however, novel technologies have reduced the design and 

production costs although they are still high for the producers. In addition to price, LNG supply 

chain requires an effective structure capable of transporting this energy to spot markets; in other 

words, the transportation system is an important element for having an efficient LNG supply chain 

(Andersson, Christiansen, & Fagerholt, 2010). Over short distances, LNG (and the like) can be 

transferred through pipelines; however, in longer distances (common in most cases), special 

vessels are safer, more reasonable, and more economical (Grønhaug & Christiansen, 2009). 

Accordingly, the importance of maritime transportation in the LNG industry has increasingly 

attracted attention towards optimizing LNG transportation problems across the seas.  

Another noticeable issue is the nature of the LNG transportation contracts which can be 

either long-term or short-term. The former have less flexibility and often narrow the opportunity 

of short-term contracting (which is more profitable) while the latter are more flexible and have 

attracted the attention of the LNG exporters and importers during recent years (Hartley, Mitchell, 

Mitchell, & Baker, 2013). As a result, many governments, manufacturing companies, exporters, 

importers, and transportation companies analyze this most profitable strategy for entering, 

investing, and competing in the global LNG markets. In signing LNG contracts and setting the 

articles, both sellers and buyers seek to optimize their costs/benefits. 

Investigating literature demonstrate there are a fair number of studies in which various 

routing and scheduling of LNG shipping and inventory are investigated (Christiansen et al. 2013). 

For example,  Grønhaug et al. (2010) have used branch and price method, Goel et al. (2012) have 

applied mixed integer programming (MIP) and arc-flow methods, and Goel et al. (2015) have 

depicted constraint programming to solve LNG issues with inventory routing problem. Halvorsen-

Weare & Fagerholt, (2013) have proposed a new model to solve LNG routing and scheduling 

problems considering inventory and berth constraints and Halvorsen-Weare, Fagerholt, & 
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Rönnqvist, (2013) have analyzed the LNG ship routing and scheduling model in an uncertain 

environment using a mixed integer linear programming (MILP) solved by simulation-based 

optimization methods. In another study, Rakke et al. (2011) have applied MIP-based heuristic 

methods for optimization of LNG transportation. There are also several other similar studies in 

this domain which shows that researchers and practitioners have paid much attention to such 

maritime LNG transportation problems as ship routing and scheduling. 

1.2. The objective of the study 

The aim of this study is to present a mathematical model for minimizing the cost of transporting 

LNG to the destination by ship. As mentioned before, LNG contract can be divided into two 

categories: short-term and long-term contracts. Most of the contracts are long-term in which all 

costs are fixed. These costs are inventory, maintenance, the penalty of delay, the penalty of 

evaporation gas and so on. Hence, fluctuation in cost and price causes negative effects on seller or 

buyer profits. We have focused on sellers’ optimization and so the proposed approach is solved by 

the seller-oriented approach to minimize the cost of LNG transportation and improve the 

bargaining power of the seller. An alternative is a buyer-oriented approach which can be developed 

in a similar manner. 

In the current study, the effort has been made to investigate a real-world problem wherein 

an organization aims at optimizing its LNG shipping transportation operations by considering two 

new constraints as the probable troubles and a mathematical model has been proposed for the 

optimization of the ship routing and scheduling decisions on LNG transportation planning. A 

contribution of this study to the existing literature is that it considers the probability of cargo 

delivery failure during the transferring process and obliges the seller (in the LNG contract) to send 

a reserved ship to successfully deliver the cargo to the buyer; the ship maintenance time has also 

been considered in the model. In LNG transportation contracts, considering a case when a ship 

cannot deliver the cargo to the destination because of any breakdown problem is a key point that 

has considerable effects on both the time and money of the contract parties. 

Our presented model is flexible due to the usage of both stochastic and deterministic data. 

In previous studies, most of the scholars have attempted to present ship routing models using 

deterministic data, or if they have used stochastic data, they have changed them to deterministic 

data and have not investigated all the possible solutions in a specific stochastic data. This may 
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cause losing the chance of finding optimal solutions among uninvestigated local or global 

solutions. By applying stochastic data, the lowest and highest possible data are considered and the 

applied algorithm searches for the optimal solution; in other words, all data have a uniform 

probability for being selected as an optimal solution. Furthermore, utilizing both deterministic and 

stochastic data reflects more realistic situations. To solve the model, we use a kind of the PSO, 

BPSO, which is a well-known meta-heuristic method because it addresses computational 

complexities and in the proposed model we deal with the binary decision variable and stochastic 

and deterministic data concurrently.  This research has extracted its data from Rakke et al. (2011); 

they are real and are based on the databases of the earlier studies.  

The outcomes of this research help LNG buyer/seller companies to make better decisions 

under real and uncertain conditions and contract parties’ managers to decide appropriately before 

signing any LNG contract. The first significant result of this study is that it helps the committed 

party (of successfully delivering LNG by maritime facilities) to find out how many reserve ships 

should be assigned to the hubs of the transportation system and the second is related to considering 

the ship maintenance costs and the benefits of including this item in the LNG contract in order to 

make a more proper decision on whether the buyer or the seller is responsible for this unwanted 

cost. The third finding helps a manager to find out what the suitable number of assigned ships is 

for each LNG contract party to be included in the contract. In particular, while LNG trader 

companies deal with more than one contract per a specific time period, their managers need to 

discover how many ships they should assign to each contract and how to include this issue in their 

contracts. 

1.3. Contribution and organization of the paper 

This study has several contributions. First, in the investigated LNG ship routing problem, this work 

has considered the probability of ship drowning and its related costs during the transferring 

process. Second, in the LNG transport contract, a penalty has been considered for the buyer, if the 

berth is not available for port operations. The third and the main contribution is to the solution 

method; BPSO algorithm is applied to solve the NP-hard model. PSO algorithm is one of the 

methods for solving stochastic data. (Kennedy & Eberhart, 1995). As the decision variable of the 

proposed mathematical model is binary, BPSO is used to deal with the stochastic parameters as 

well as the deterministic ones considering this issue that there are several earlier studies in which 

applying BPSO method has led to viable solutions for solving optimization problems (i.e Liu and 
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Fan, 2009; Yang et al. 2014; Beheshti et al. 2015; Jain et al. 2018). To the best of our knowledge, 

BPSO has not been previously used for LNG ship routing problem in the literature, and formulating 

the LNG ship routing is also a significant novelty.  

The rest of this paper is structured as follow. Section 2 focuses on reviewing the literature 

and highlighting the research gap. Section 3 is devoted to describing the studied problem and 

elaborating on the proposed mathematical model. Section 5 discusses the solution methodology. 

In Section 6, we provide the results and sensitivity analyses. Finally, conclusions and suggest 

several ideas for future studies are given in Section 7. 

2. Related works 

2.1. Optimization in LNG supply chain 

LNG supply chain optimization plays a key role for gas transportation companies to gain more 

competitive advantages. According to Austbø et al. (2014), although there are plenty of earlier 

researches in the area of energy supply chain planning, there are still fewer studies in which LNG 

supply chain optimization problems are investigated considering real constraints. This can be due 

to the fact that although the use of LNG has some merits, it has also some disadvantages compared 

with other fuels. For instance, LNG transportation needs the LNG to be cooled up to −163℃ which 

requires the considerable budget to build a facility; hence, profit can be a key issue in such cases. 

While many manufacturers attempt to use LNG for different reasons, some others are concerned 

about the revenue and cost of this market. This also implies LNG supply chain optimization is a 

research field that still needs to be further investigated.  

Maritime transportation is a leading research area in the LNG supply chain planning. LNG 

shipping optimization problems are more placed in two main categories. The first group is LNG 

inventory routing problems which seek for the optimal inventory level of LNG in the origin and 

destination ports. Some studies like Grønhaug et al. (2010), Goel et al. (2012), Stålhane et al. 

(2012b), Shao et al. (2015), Zhang et al. (2017) and Zhang et al. (2018) have investigated this kind 

of problems. The second group investigates the ship routing and scheduling problems of LNG 

transportation (i.e Rakke et al., 2011; Halvorsen-Weare & Fagerholt, 2013; Halvorsen-Weare et 

al., 2013; Mutlu et al., 2016; Koza et al., 2017). The objective of problems in the second group is 

to develop annual delivery programs (ADP) of LNG transportation. Beside the mentioned 

categories, there are also a few studies in the literature that have focused on the applications of 



6 
 

game theory (cooperative and non-cooperative games) in LNG shipping (i.e.  Gkonis & Psaraftis, 

2009; Massol & Tchung-Ming, 2010). Furthermore, in studies such as Berle et al., (2013) and 

Biobaku et al., (2015), risk analysis tools are also applied in LNG shipping problems. It is 

noteworthy that, all the mentioned quantitative approaches, have tried to provide cost-effective 

solutions for both buyers and sellers across the LNG supply chain. 

2.2. Considered restrictions in LNG maritime optimization models 

Mathematical models are among the optimization approaches which has attracted the attention of 

the LNG ship routing researchers. Reviewing the literature indicates that, in the presented 

mathematical models for LNG ship routing problems, numerous technical constraints have been 

considered for making the mathematical models more realistic. Among the considered technical 

constraints, the terminal inventory is an important element of ship routing problems considering 

the constant daily rate of evaporating LNG at the storage tanks which deals with the inventory 

control policy. Some previous studies encompass Halvorsen et al. (2013), Ghiami et al. (2015), 

Goel et al. (2015), Al-Haidous et al. (2016) and Msakni & Haouari (2018) have considered this 

important constraint in their models.   

There are also several considered constraints in the optimization models of LNG process 

design and operations including Berth availability (Halvorsen-Weare & Fagerholt, 2013; Al-

Haidous et al., 2016; Andersson et al., 2017; Msakni & Haouari, 2018), ship travel time (Halvorsen 

et al., 2013; Agra et al., 2015; Zhang et al., 2017; Msakni & Haouari, 2018), maintenance (Al-

Haidous et al., 2016; Msakni & Haouari, 2018), bunkering requirements (Al-Haidous et al., 2016; 

Msakni & Haouari, 2018) and amount and time of delivery (Rakke et al., 2011; Shao et al., 2015; 

Mutlu et al., 2016; Zhang et al., 2017; Zhang et al., 2018) among other contract constraints. 

2.3. Deterministic versus stochastic optimization algorithms 

Investigating the literature about the characteristics of the optimization models in LNG maritime 

transportation shows that deterministic, non-deterministic (stochastic) parameters or combination 

of them are all used in the in earlier studies. The deterministic parameters are considered discrete 

while stochastic ones are considered as continuous parameters. On the other hand, concentrating 

on the applied solution methods, in the literature, there are both deterministic and stochastic 

optimization algorithms which are all utilized to search for the optimal solutions. In the sphere of 

LNG transportation, applied deterministic optimization algorithms comprise branch-and-price 
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(Grønhaug et al. 2010), Branch and bound (Rakke et al. 2011), branch and cut (Andersson et al., 

2017), dynamic programming (Stålhane et al. 2012b), sequential quadratic programming (Skaugen 

et al., 2013) and other algorithms. In addition, table 1 shows the recent studies on LNG shipping 

problem using stochastic optimization algorithms and highlights the differences between the 

previous studies and the current research. 

 

Table 1. The current study versus the earlier studies on LNG supply chain optimization 

Author(s) Stochastic Solution Algorithm Mathematical model 

Morin et al., (2011) Evolutionary search MILP 

Sayyaadi & Babaelahi (2011) Genetic algorithm NSGA-II Multi-objective optimization 

Tahouni et al., (2011) Simulated Annealing Nonlinear model 

 

Stålhane et al. (2012b) 

 

Multi-start local search MIP 

Goel et al., (2015) Iterative search heuristic  Constraint programming  

Agra et al., (2015) 
Sample average approximation 

method 

Stochastic programming 

model 

Shao et al. (2015) 
Greedy randomized adaptive 

search procedure (GRASP) 

Mixed integer programming 

(MIP) 

Al-Haidous et al. (2016) Heuristic decomposition MIP 

Zhang et al., (2017) Ant colony optimization 
Three-stage stochastic 

programming 

Msakni & Haouari (2018) 

 

Variable-neighborhood search 

heuristic 

MIP 

The current study Binary PSO 

 

Nonlinear model 

 

 

3. Problem description and formulation 

3.1. Problem description 

LNG, a green fuel, is a new source of energy that adapts to the environment, but its transfer is not 

as easy as other kinds of fuels. If a country or a company wishes to transfer LNG elsewhere, they 

should consider the distance; if it is short, it is preferable to transfer it by pipelines, but long 

https://www.sciencedirect.com/science/article/abs/pii/S0360835211002804#!
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distance the use of pipeline transfer is not possible and so vessels can help. Shipping causes some 

problems such as evaporation of LNG during the voyage, and when the amount of LNG is lower 

than that set in the contract and the buyer rejects it, it will cause many economic problems. Hence, 

finding the best route for shipping is vital. Although many problems can affect ship routing 

scheduling, many companies seek to decrease not only the time of shipping but also the related 

costs. These problems can be categorized based on the viewpoints of the buyers or sellers 

according to which the objective function and constraints of the problem will change; in this paper, 

the approach is based on the seller’s viewpoint. Figure 1 illustrates a general scheme of the ship 

routing and scheduling of LNG. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  An outline for the LNG shipping from seller to buyer 

 

3.2. Mathematical model  

We have developed a model based on the previous constraints and the LNG purchase agreement. 

First, consider we have i sellers of LNG (where 1 ≤ i ≤ n) , each sells LNG to the buyer(s) which 
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is represented by j and j′ 1 ≤ j, j′ ≤ n. Assume v shows the set of vessels which ships LNG from 

seller i to the buyer(s) j, j′. Let′s assume t denotes the period of time that vessel v carries LNG 

from seller i to the buyer(s) j, j′. In the port of origin, we have an inventory of LNG that is divided 

into three parts low, average and high levels of inventory that are represented as 𝐼𝑖𝑗𝑗′
𝑡    𝐼𝑖𝑗𝑗′

𝑡  and 

𝐼𝑖𝑗𝑗′
𝑡̅̅ ̅̅ ̅ . The demand of buyers j, j′ of LNG is revealed by𝐷ijj′

𝑡  .The problem has also involved with 

some costs including: the total cost of changing vessels, total cost of staff , total port unavailability 

penalty, total shipping maintenance costs, and the total LNG shipping delay penalty. These costs 

are indicated as 𝑇𝑃𝐹𝑉𝑖𝑗𝑗′
𝑣𝑡 , 𝑇𝐻𝑖𝑗𝑗′

𝑣𝑡 , 𝑃𝑇𝑖𝑗𝑗′
𝑣𝑡 , 𝑇𝑀𝑖𝑗𝑗′

𝑣𝑡  and 𝐷𝐸𝑖𝑗𝑗′
𝑣𝑡  , respectively. Total time of shipping 

LNG is presented by 𝑇𝑂𝑖𝑗𝑗′
𝑣𝑡 . Let’s denote the probability of port unavailability in the destination, 

probability of ship failure during shipping and the probability of delivery delay during the 

shipping, respectively by ∫ 𝑃𝑂𝑖𝑗𝑗′
𝑣𝑡1

0
dr𝑖 , ∫ 𝑃𝐹𝑖𝑗𝑗′

𝑣𝑡1

0
dr𝑖 and ∫ 𝑃𝐷𝑖𝑗𝑗′

𝑣𝑡1

0
dr𝑖  that are in the form of 

stochastic data. The mentioned terms are probabilistic terms of occurring these events during the 

services. The variable 𝑋𝑖𝑗𝑗′
𝑣𝑡  is the binary variable which shows if vessel v in time t from seller i 

goes to buyer(s) j, j′ or not. The notations, parameters, and variables of the presented model are 

summarized as follows:  

Sets 

𝑖 :  set of LNG sellers 

𝑗, 𝑗′ :  set of LNG buyer(s) 

𝑣  :  set of vessels 

𝑡  :  set of time periods 

Parameters 

𝐼𝑖𝑗𝑗′
𝑣𝑡  : Average LNG inventory level in the port of seller 𝑖  sent to buyer 𝑗, 𝑗′ in time 𝑡 

𝐼𝑖𝑗𝑗′
𝑣𝑡̅̅ ̅̅ ̅ : The highest LNG inventory level in the port of seller 𝑖  sent to buyer j𝑗, 𝑗′ in 

time 𝑡 

𝐼𝑖𝑗𝑗′
𝑣𝑡  : The lowest LNG inventory level in the port of seller i sent to buyer j, 𝑗′ in time t 

𝐿𝑖𝑗𝑗′
𝑣𝑡  : The quantity of LNG sent from seller i to buyer j, 𝑗′ by vessel v in time t 

𝐼𝑁𝐿𝑖𝑗𝑗′
𝑡  : Amount of LNG sent from seller i to buyer j, 𝑗′ in time t before and available in 

the destination (port of buyer) in time t  

𝐷ijj′
𝑡  : Amount of LNG that buyer j, 𝑗′ wants from seller i in time t in the destination  
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𝑃𝐹𝐼𝑉𝑖𝑗𝑗′
𝑣  : Cost of changing vessels (for transportation of LNG) when seller i sends cargo 

to buyer j, 𝑗′ by vessel v in time t 

𝑇𝑃𝐹𝑉𝑖𝑗𝑗′
𝑣  : The total cost of changing vessels (for transportation of LNG) when seller i 

sends cargo to buyer j, 𝑗′ by vessel v in time t 

𝐻𝑖𝑗𝑗′
𝑣  : Cost of staff for transportation of LNG when seller i sends cargo to buyer j, 𝑗′ 

by vessel v in time t 

𝑇𝐻𝑖𝑗𝑗′
𝑣  : The total cost of staff for transportation of LNG when seller i sends cargo to 

buyer j, 𝑗′ by vessel v in time t 

𝑇𝑖𝑗𝑗′
𝑣𝑡  : Time of shipping LNG when seller i sends cargo to buyer j, 𝑗′ by vessel v in 

time t 

𝑇𝑂𝑖𝑗𝑗′
𝑣𝑡  : Total time of shipping LNG when seller i sends cargo to buyer j, 𝑗′ by vessel v 

in time t 

𝑃𝐸𝑃𝑖𝑗𝑗′
𝑣𝑡  : Port unavailability penalty for shipping LNG when seller i sends cargo to buyer 

j, 𝑗′ by vessel v in time t 

𝑃𝑇𝑖𝑗𝑗′
𝑣𝑡  : Total port unavailability penalty for shipping LNG when seller i sends cargo to 

buyer j, 𝑗′ by vessel v in time t 

𝑀𝑖𝑗𝑗′
𝑣  : LNG shipping maintenance costs when seller i sends cargo to buyer j, 𝑗′ by 

vessel v in time t 

𝑇𝑀𝑖𝑗𝑗′
𝑣  : Total shipping maintenance costs when LNG is sent from seller i to buyer j, 𝑗′ 

by vessel v in time t 

𝑃𝐷𝐸𝑖𝑗𝑗′
𝑣𝑡  : LNG shipping delay penalty when seller i sends cargo to buyer j, 𝑗′ by vessel v 

in time t 

𝑇𝑃𝐷𝐸𝑖𝑗𝑗′
𝑣𝑡  : Total LNG shipping delay penalty when seller i sends cargo to buyer j, 𝑗′ by 

vessel v in time t 

∫ 𝑃𝑂𝑖𝑗𝑗′
𝑣𝑡

1

0

dr𝑖 
: The probability of port unavailability in the destination when shipping LNG 

from seller i to buyer j, 𝑗′ by vessel v in time t 

∫ 𝑃𝐹𝑖𝑗𝑗′
𝑣𝑡

1

0

dr𝑖 
: The probability of ship failure during shipping LNG from seller i to buyer j, 𝑗′ 

by vessel v in time t   

∫ 𝑃𝐷𝑖𝑗𝑗′
𝑣𝑡

1

0

dr𝑖 
: The probability of delivery delay when shipping LNG from seller i to buyer j, 𝑗′ 

by vessel v in time t   

 

Variables 

𝑋𝑖𝑗𝑗′
𝑣𝑡 = {

1, If the ship travels from seller i to buyer j, 𝑗′ by vessel v in time t 
  

0, otherwise                                                                                             
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Model 

𝑀𝑖𝑛     𝑍 = ∑ ∑ ∑ ∑ ∫ 𝑃𝑂𝑖𝑗𝑗′
𝑣𝑡

1

0

𝑛

𝑣=1

𝑘

𝑡=1

𝑚

𝑗,𝑗′∈𝐽

𝑛

𝑖=1

 dr𝑖 × 𝑃𝑇𝑖𝑗𝑗′
𝑣𝑡 × 𝑋𝑖𝑗𝑗′

𝑣𝑡

+ ∑ ∑ ∑ ∑ 𝑋𝑖𝑗𝑗′
𝑣𝑡 × 𝑇𝐻𝑖𝑗𝑗′

𝑣

𝑛

𝑣=1

𝑘

𝑡=1

𝑚

𝑗,𝑗′∈𝐽

𝑛

𝑖=1

+ ∑ ∑ ∑ ∑ ∫ 𝑃𝐹𝑖𝑗𝑗′
𝑣𝑡

1

0

𝑛

𝑣=1

𝑘

𝑡=1

𝑚

𝑗,𝑗′∈𝐽

𝑛

𝑖=1

dr𝑖 × 𝑇𝑃𝐹𝑉𝑖𝑗𝑗′
𝑣 × 𝑋𝑖𝑗𝑗′

𝑣𝑡

+ ∑ ∑ ∑ ∑ 𝑋𝑖𝑗𝑗′
𝑣𝑡 × 𝑇𝑀𝑖𝑗𝑗′

𝑣

𝑛

𝑣=1

𝑘

𝑡=1

𝑚

𝑗,𝑗′∈𝐽

𝑛

𝑖=1

+ ∑ ∑ ∑ ∑ ∫ 𝑃𝐷𝑖𝑗𝑗′
𝑣𝑡

1

0

𝑛

𝑣=1

𝑘

𝑡=1

𝑚

𝑗,𝑗′∈𝐽

𝑛

𝑖=1

dr𝑖 × 𝑇𝑃𝐷𝐸𝑖𝑗𝑗′
𝑣 × 𝑋𝑖𝑗𝑗′

𝑣𝑡  

 

(1)  

The objective function (Eq. 1) seeks for minimizing the cost of shipping based on stochastic 

parameters including probability of port unavailability, probability of ship failure, probability of 

delay on delivery and deterministic parameters including total cost of staff, cost of changing ship, 

maintenance cost and penalty of delay when ship goes or not. 

s.t: 

𝐼𝑖𝑗𝑗′
𝑡 ≤ ∑ 𝑋𝑖𝑗𝑗′

𝑣𝑡 × 𝐼ijj′
𝑡

𝑛

𝑣=1

≤ 𝐼𝑖𝑗𝑗′
𝑡̅̅ ̅̅ ̅                                             ∀ iϵI, j, j′ϵJ, tϵT 

The first constraint (Eq. 2) ensures the volume of inventory in the destination 

port considering a window of inventory. This constraint is needed considering 

the constant rate of LNG evaporation per day. 

 

 

(2) 

 

 𝐿𝑖𝑗𝑗′
𝑣𝑡 × 𝑋𝑖𝑗𝑗′

𝑣𝑡 + 𝐼𝑁𝐿𝑖𝑗𝑗′
𝑡 ≥ 𝐷ijj′

𝑡                                 ∀ iϵI, j, j′ϵJ, tϵT, vϵV 

The second constraint (Eq. 3) guarantees that the demand of the customer will 

be satisfied. This constraint is necessary to because the seller needs to satisfy 

all the demand of the buyer considering the inventory in the latter’s port. 

 

(3) 
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𝐿𝑖𝑗𝑗′
𝑣𝑡 × 𝑋𝑖𝑗𝑗′

𝑣𝑡 ≤ 𝐼ijj′
𝑡                           ∀ iϵI, j, j′ϵJ, tϵT, vϵV 

The third considered constraint (Eq. 4) ensures lower or equal inventory in the 

destination port. 

 

(4) 

∫ 𝑃𝑂𝑖𝑗𝑗′
𝑣𝑡

1

0

dri × 𝑋𝑖𝑗𝑗′
𝑣𝑡 × 𝑃𝐸𝑃𝑖𝑗𝑗′

𝑣𝑡 ≤ 𝑃𝑇𝑖𝑗𝑗′
𝑣𝑡               ∀ iϵI, j, j′ϵJ, tϵT, vϵV 

In order to consider the port availability of buyer and seller, the fifth 

constraint (Eq. 5), evaluates the probability of berth availability as well as the 

penalty of its unavailability.  

 

 

(5) 

𝐻𝑖𝑗𝑗′
𝑣𝑡 × 𝑋𝑖𝑗𝑗′

𝑣𝑡 ≤  𝑇𝐻𝑖𝑗𝑗′
𝑣𝑡                 ∀ iϵI, j, j′ϵJ, tϵT, vϵV 

Sixth constraint (Eq. 6) considers the cost of human resources and staff of the 

ship which is an important element for both LNG seller and buyer. 

 

(6) 

𝑇𝑖𝑗
𝑣𝑡 × 𝑋𝑖𝑗

𝑣𝑡 + 𝑋𝑗𝑗′
𝑣𝑡 × 𝑇𝑗𝑗′

𝑣𝑡 ≤ 𝑇𝑂𝑖𝑗𝑗′
𝑣𝑡             ∀ iϵI, j, j′ϵJ, tϵT, vϵV 

Seventh constraint (Eq. 7) shows the voyage time and ensures that each ship 

should go from the seller port and return to the destination after delivering LNG 

to one or some buyers. 

 

(7) 

∫ 𝑃𝐹
𝑖𝑗𝑗′
𝑣𝑡

𝑑𝑟𝑖 × 𝑃𝐹𝐼𝑉
𝑖𝑗𝑗′
𝑣 × 𝑋

𝑖𝑗𝑗′
𝑣𝑡 ≤ 𝑇𝑃𝐹𝑉

𝑖𝑗𝑗′
𝑣

 1

0

        ∀ iϵI, j, j′ϵJ, tϵT, vϵV  

The probability of ship failure during the shipping process, costs of changing 

ships, related penalties, and reserving ships are considered in the eighth 

constraint (Eq. 8). From a buyer point of view, this is a very important factor 

to guarantee the on-time delivery of LNG. 

 

 

(8) 

𝑀𝑖𝑗𝑗′
𝑣 × 𝑋𝑖𝑗𝑗′

𝑣𝑡 ≤ 𝑇𝑀𝑖𝑗𝑗′
𝑣                 ∀ iϵI, j, j′ϵJ, tϵT, vϵV 

The ninth constraint (Eq. 9) considers the ship maintenance costs. 

 

(9) 
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∫ 𝑃𝐷𝑖𝑗𝑗′
𝑣𝑡 dri × 𝑃𝐷𝐸𝑖𝑗𝑗′

𝑣𝑡 × 𝑋𝑖𝑗𝑗′
𝑣𝑡 ≤ 𝑇𝑃𝐷𝐸𝑖𝑗𝑗′

𝑣𝑡

1

0

       ∀ iϵI, j, j′ϵJ, tϵT, vϵV 
 

(10) 

Finally, the tenth constraint (Eq. 10) deals with delivery delays and the related penalties. 

Although many papers and contracts consider delivery time window, this paper has added this time 

window to the tolerance time and then has calculated the delay probability together with the LNG 

delivery time after tolerance time. In the objective function, the ship routing costs are decreased 

based on the port unavailability costs, staff costs, delayed delivery costs, maintenance costs, and 

ship changing costs when it fails to work. 

3.3. Assumptions 

The following assumptions are considered in the model which are as follows: 

1. In the first day, all ships are in the origin berth. 

2. All demands are based on annual delivery programs 

3. All ships load cargo and go to their destinations. 

4. The weather condition has no effects on the transportation of ships. 

4. Solution approach 

The proposed model in section 3.2 is solved by a BPSO algorithm. First, we introduce some 

required concept of the BPSO approach and then we elaborate on the solving procedure of the 

model. 

4.1. BPSO algorithm 

The meta-heuristic PSO algorithm (Kennedy and Eberhart, 1995), has been proposed based on the 

fish and bird behavior and uses the population generation and movement of particles to find the 

best solution (space) considering velocity. Since traditional PSO is suitable for continuous space, 

Kennedy and Eberhart (1997) developed the BPSO algorithm which is mainly applicable in 

discrete spaces. The BPSP can better solve the stochastic NP-hard problems, specifically when we 

face binary variables and parameters in the optimization problems (Liu & Fan, 2009; Zhang et al. 

2014).  

The reason why BPSO has been used in this research is that it deals with the stochastic data 

and the binary variable in the presented model and it is a reasonable solution. Moreover, BPSO 

attempts to satisfy all the constraints. If it cannot, it will balance a tradeoff between the number of 

constraints and the objective function. Its other advantages are: i) it is easily coded, ii) it has the 

powerful searching ability, iii) its solution has less sensitivity compared to other methods, iv) it 
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depends less on the initial points, and v) it generates high-quality solutions in shorter time intervals 

and with fewer calculations. 

4.2. Solving procedure 

In this research, the problem-solving procedure is as follows: 

1. Creating the model: first, the mathematical model is created based on the real-world data.  

2. Finding the best solution: after studying different solution methods, BPSO is selected as 

the best algorithm. Figure 2 depicts the procedure of finding the optimal solution via the 

BPSO algorithm. 

 

Figure 2. The procedure for finding the optimal solution 

start

Set n=0

The ship is ready for departure of 
original port

c1=chi*phi1;    c2=chi*phi2;

Initialize a population matrix

Use PSO for updating the particle 
solution

Evaluate cost function

Using PSO algorithm for finding 
the optimum solution

Passing all the iterations

End
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3. Methodology: the problem-solving methodology is based on penalty functions; we add 

constraints to the objective function and add violation for each constraint. The Eq. 11 to 16 

show how this mathematical concept helps us to solve this problem. 

Min f(x) 

s.t: 

𝑔𝑖(𝑥) ≥ 0                𝑖 = 1,2, … , 𝑛  

(11) 

Therefore, we have:  

Min f(x)=
1

n

i i

i

g
=

   (12) 

Equation 13 indicates the violation function in its mathematical form as below: 

G(x)≥ 𝑔0 

V{ g(x)≥ 𝑔0} = {
0        𝑔(𝑥) ≤ 𝑔0

1 −
𝑔(𝑥)

𝑔0
              𝑔(𝑥) < 𝑔0                 

 

G(x)≤ 𝑔0 

V{ g(x)≤ 𝑔0} = {
0        𝑔(𝑥) ≥ 𝑔0

𝑔(𝑥)

𝑔0
− 1              𝑔(𝑥) > 𝑔0                 

 

(13) 

In the Eq. 13, V corresponds to the objective function violation. V controls the amount of violation 

from the optimal solution. Actually, this term lets the algorithm search for the solution within the 

boundary and avoid going beyond the acceptable deviation from the feasible boundary. 

In this work, there are three types of penalty functions: 

A. Additive penalty function 

B. 𝑓(𝑥) = 𝑓(𝑥) + 𝛼*P(v) 

s.t: 

v≥ 0 

(14) 
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C. Multiplicative penalty function 

𝑓(𝑥) = 𝑓(𝑥)(1 + 𝛽*P(v))       ∀ 𝑓(𝑥) ≥ 0 

s.t: 

v≥ 0 

(15) 

D. The hybrid additive-multiplicative penalty function 

𝑓 1̂̂(𝑥) = (𝑓(𝑥) + 𝛼*P(v)) (1 + 𝛽*Q(v))           

𝑓 ̂2̂(𝑥) = (𝑓(𝑥) (1 + 𝛽*Q(v)) + 𝛼 ∗ 𝑃(𝑣) 

s.t: 

v≥ 0 

(16) 

4. Sensitivity analysis: this model will be run for a diverse number of ships to provide a 

comprehensive sensitivity analysis. 

 

5. Computational experiments 

In this study, a numerical example is solved to test the robustness and reliability of the proposed 

model and the applied solution approach. We proceeded based on the four-step solving procedure 

explained in section 4.2. At the first stage, we created the mathematical model presented in section 

3.2 and gathered real data for it. Data were semi-real and semi-artificial. First, boundaries of each 

constraint were found based on real data and then the data were generated based on the random 

generation order in the MATLAB software. Appendix A shows a sample of the generated data for 

the constraints of the proposed model. The source of data was extracted from Rakke et al. (2011) 

study. Based on the Rakke et al. (2011) dataset and other contracts, some data were as follows: 

a) Price of LNG is 150 USD per m3 (fixed) 

b) Penalty cost is 25 USD per m3 for each month 

c) Penalty cost for unavailability of the berth is 1,0000 USD per day  

d) Cost of maintenance is 100,000 USD per day  

e) Average staff cost is 6,000 USD per month per person 

f) Average ship changing cost is 1,000,000 USD 
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Based on the long-term contract, we solved the model for several volumes of the request. 

Following steps 2 and 3 (finding the best solution and methodology), a scenario-based BPSO 

method was coded to solve the ship routing and scheduling of LNG. Accordingly, the model was 

run as follows: 

1: Start; 

2:   Inputs: cost variables; 

3:     Output: minimize cost function; 

4:        𝑋𝑖𝑗𝑗′
𝑣𝑡 = if ship go from port to the destination or not 

5:           if go then 

6:                            consider constraints of problems such as time, inventory, quantity,  

                               port available, maintenance, staff, and so on; 

7:                            number of variables= based on the scenario; 

8:                            maximum iteration=500; 

9:                            nPop=4000; 

10:                          construct coefficient; 

11:                          set velocity limits; 

12:                          run model from 1 to nPop; 

13:                         find the best position of particle based on minimum costs; 

14:                    else cost function equal 0; 

15:        display solution; 

16: End.  

 

This model was run by MATLAB 2015b; PC: CPU Corei3 and RAM 2 G.  Following the 

fourth step, for sensitivity analysis, scenario-based optimization used for finding the solution. We 

used 6 scenarios for coding the BPSO algorithm by a different number of ships. We considered 

the number of ships 10, 100, 200, 300, 400 and 500 for running the scenarios. The results are 

shown in Table 2.  

 

Table 2. Solving problems considering different scenarios 

 

Scenario 
Number of 

ships 
Cost function ($) Time (S) 

1 10 1,008,596,0384,911 425.49 

2 100 5,659,428,075,056 449.51 

3 200 3,510,360,739,829 497.13 

4 300 1,521,982,239,885 482.376 

5 400 1,251,502,223,787 506.68 

6 500 866,419,470,369 493.16 
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Based on the obtained results from 6 scenarios, the relationship between the cost function and the 

number of ships is depicted in figure 3. 

 

Figure 3. The relationship between cost function and the number of ships 

 

Figure 4 demonstrates the relationship between the solution time and the number of ships 

 
 

Figure 4. The relationship between time and number of ships 
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Figures 5 depicts the relationships among the best cost considering a different number of ships.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. The relationship between best cost and iterations considering different ships 

 

Figure 5 shows six cases related to the relationships between the best costs and the 

iterations in different scenarios. With 10 ships, the number of iterations is low for achieving the 

optimal. Considering 100 ships, the iterations to the optimal solution are increased. This event is 

repeated where the number of ships is 200. The number of iterations for finding the optimal 

solution with 300 ships compared to the situation of with 200 ships.  In the cases, 400 and 500 

   

   

10 ships 100 ships 200 ships 

300 ships 400 ships 500 ships 
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ships, the number of ships increases, nonetheless, the iterations for reaching the optimal cost is 

decreased.  

6. Concluding remarks 

In today's global energy systems, the LNG consumption rate is increasing rapidly since its more 

environmental friendly (it is a green fuel) while other fuels such as crude oil, coal, so on, are not. 

Effective ship routing and scheduling play a key role to reduce the cost of fuel supply and feeding 

LNG, as a green fossil fuel, to manufacturing companies is a challenging issue for the 

manufacturers. LNG production needs considerable investigations for its extraction, 

transportation, and regasification. As a result, a ship routing and scheduling model to supply LNG 

is formulated in this paper. Although researches about this kind of problems are not many, most 

of them have attempted to develop a new method for finding not only the best solution but also 

taking the less time for computation. In previous researches, Rakke et al. (2011) have used heuristic 

methods to find exact solutions. In their research, Halvorsen-Weare et al. (2013) have used 

simulation to change uncertain environments into certain ones. Goel et al. (2015) have made use 

of the CPLEX software to solve this problem. In this research, MATLAB software with one meta-

heuristic method, called BPSO, has been used for solving this problem. Results have shown that 

despite the large problem size, cost factor will decrease, but the problem-solving time will increase 

with an increase in the number of variables. 

For future studies, this model can be applied to other productions because they have 

specific transportation situations. In addition, this model can be solved through such other methods 

as Differential Evolutionary, Genetic Algorithm, Tabu Search, and various heuristic and 

metaheuristic methods. Another suggestion for future researches is considering some options and 

adding them to the constraints. This model can be also extended to a multi-objective optimization 

problem. 
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Appendix A 

A sample of MATLAB code for generating data for the equations 2 to 10 of the proposed model 

is as follows: 

P1=@(T) 9.9901e+05*T-2500000; 
P2=@(T) 7.4991e+05*T+2.5009e+05*T-2000000; 
P3=@(T) 7.4984e+05*T-2500000; 
P4=@(T) mean(rand(1,100))*1000*T-1000000; 
P5=@(T) 3.0008e+03*T-1000000; 
P6=@(T) 125.0221*T+50.0210*T-365; 
P7=@(T) mean(rand(1,100))*2500000*T-2500000; 
P8=@(T) 5.0004e+04*T-1000000; 
P9=@(T) mean(rand(1,100))*2000000*T-2000000; 

 


