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Parametric resonance in mechanical oscillators can onset from the periodic modulation of at least one of
the system parameters, and the behaviour of the principal (1st order) parametric resonance has long been
well established. However, the theoretically predicted higher orders of parametric resonance, in excess of the
first few orders, have mostly been experimentally elusive due to the fast diminishing instability intervals.
A recent paper experimentally reported up to 28 orders in a micromachined membrane oscillator. This
paper reports the design and characterisation of a micromachined membrane oscillator with a segmented
proof mass topology, in an attempt to amplify the inherent nonlinearities within the membrane layer. The
resultant oscillator device exhibited up to over a hundred orders of parametric resonance, thus experimentally
validating these ultra high orders as well as overlapping instability transitions between these higher orders.
This research introduces design possibilities for the transducers and dynamics communities, by exploiting the
behaviour of these previously elusive higher order resonant regimes.
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I. INTRODUCTION

Parametric resonance is a nonlinear vibratory phe-
nomenon that onsets when at least one of the system pa-
rameters are periodically perturbed and the system oper-
ates within one of the instability regimes. Unlike directly
forced systems, the response frequency of a parametri-
cally excited system is not directly linked to the external
excitation, but instead matches the natural frequency.
This intriguing vibratory phenomenon dates back to an
observation reported by Michael Faraday in 18311, sub-
sequently experimentally verified by Lord Rayleigh (J.
Strutt) in the 1880’s2,3 and its mathematical formulation
established by Mathieu4, Floquet5 and Hill6. A paramet-
ric oscillator, in the most basic form, can be described by
the generic Mathieu function shown in equation 1.

ẍ+ [δ − 2ε cos (2t)]x = 0 (1)

where, x is the oscillatory displacement, δ relates to
an arbitrary frequency squared parameter, ε represents
an arbitrary parametric excitation amplitude, and t is
the time domain.

While the characteristics of the first order (principal)
parametric resonance has long been well established and
its instability Strutt chart characteristics has been com-
prehensively experimentally validated7,8, the behaviour
of higher order parametric resonances has received rel-
atively less attention in the research community. Ex-
perimentally, it is significantly more difficult to observe
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and study the higher orders due to the increasingly rapid
diminishing instability intervals at higher orders9, for a
damped Mathieu type system. Turner et al.10 and Jia
et al.11 observed up to 5 orders of parametric resonance
in MEMS oscillators, while Yu et al.12 observed up to
4 orders of parametric resonance in a nanowire oscilla-
tor. More recently, Jia et al.13 reported up to 28 orders
using a MEMS disk membrane with a central mass. It
showed preliminary evidence that instability intervals at
some higher orders start to overlap, despite the rapid in-
crease in stability gap. Such a behaviour, while predicted
in theory, has not been reported in experiment. There-
fore, the overlap and the instability transitions at higher
orders are experimental behaviour that warrant further
investigation. This paper builds on to previous work by
designing and testing a MEMS membrane topology that
has segmented proof mass in an attempt to maximise
nonlinearity.

The applications of parametric resonance have poten-
tial implications for the transducers research and devel-
opment. The phenomenon has already been implemented
as a mechanical amplifier for enhancing the sensitivity
of MEMS vibratory sensors such as gyroscopes14 and
magnetometers15, as well as improving the power density
generated by vibration energy harvesters at both macro-
scale16,17 and in MEMS devices18. The experimental in-
vestigation of ultra high orders of parametric resonance,
thus opens up avenues of design to exploit these previ-
ously elusive resonant regimes for further applications.

II. THEORY AND SIMULATION

It has previously been shown that Duffing nonlinearity
can lead to small perturbations described by the Mathieu
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function13. The residual stress on the piezoelectric (AlN)
MEMS device can be a source of inherent geometric non-
linearity. This is specifically apparent for nitride based
layer on a silicon layer, due to the distinct thermal ex-
pansion coefficients. Equation 2 describes a parametric
oscillator with nonlinear damping and stiffness16.

ẍ+2εζ1ω0ẋ+ζ2ẋ|ẋ|+[ω2
0+εω2α cos (ωt)]x+µx3 = 0 (2)

where, ε is the bookmark term19 used to numerically
study the function, ζ1 is linear damping ratio, ζ2 is non-
linear damping ratio, ω is the excitation frequency, ω0 is
the natural frequency as well as the parametric resonant
response frequency, α is the parametric excitation ampli-
tude, and µ is the mass normalised third order nonlinear
spring stiffness coefficient.

The instability region can be accessed when ω is in the
vicinity of 2ω0/n; where, n is the order number of para-
metric resonance as well as the interval number between
each Mathieu instability zones in the Strutt instability
diagram (figure 1). At higher orders, the instability re-
gions become narrower at small amplitudes. However,
at larger amplitudes, the overlap between neighbouring
instability regions also become more substantiated.

FIG. 1: Strutt instability diagram of first 14 orders.
Blue lines traces out the loci separating the unstable

(greyed area) and the stable zones. Mild grey represents
the odd orders, medium grey represents the even orders,

and dark grey illustrates the overlapping transitional
regions between neighbouring instability zones.

For n = 101, an example of the time domain and phase
plane response can be seen in figure 2. In both scenarios,
the values for excitation frequency ω and amplitude α
were fixed, while varying µ values were explored.

Figure 3 shows the time domain response of equation 2
for n = 1. It can be seen that the response frequency
(near the natural frequency) is at half the frequency of
the excitation.

III. DESIGN AND METHOD

The deign of the proposed MEMS topology can be seen
in figure 4. The central mass of the disk membrane is seg-
mented along various arcs. Therefore, in addition to the
circular membrane sections, the lines and core between
the segmented mass also experience significant stress.

(a) Within stable region (b) Within instability region

FIG. 2: Simulated response near the vicinity of
n = 101. (a) represents non-resonant response at low µ

(b) illustrates parametric resonance at high µ.

FIG. 3: Time domain of parametric oscillation with
parametric nonlinear stiffness. Output (near ω0) is at

half the frequency of the input ( 2ω0).

FIG. 4: FE simulated first mode shape at f1 = 1505 Hz
(equivalent to the 0,1 circular membrane mode),
showing top view (left) and back view (right).

Comparing with a previously reported plain membrane
topology with a centered mass13, the segmented mass
topology aims to intentionally accumulate more residual
stress. The MEMS devices were fabricated using an AlN-
on-SOI process. A 0.5 µm AlN piezoelectric layer is used
as the transducer of the MEMS oscillator, a 1 µm Al layer
is used as the top electrode and bond pads, while a 10
µm doped silicon layer acts both as the bottom electrode
as well as the device layer. Further details of the process
is given in the supplementary document.

View of a fabricated device can be seen in figure 5.
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The net membrane radius between the anchors is 4 mm,
while the effective radius of the central mass is 2.5 mm.
Mass segmentations of 300 µm width section the centred
mass into 8 equal sized circular sectors. Two 500 µm
wide circular electrode rings are placed on the circular
membrane surface to route out the electrical signals.

(a) Top view (b) Back view

FIG. 5: Fabricated MEMS oscillator device. The silicon
die is 11 mm by 11 mm in dimensions.

The MEMS dies were integrated with leadless chip car-
riers and measurement board. The devices were exper-
imentally characterised using a mechanical shaker setup
controlled by a digital function generator and measured
using a digital oscilloscope. The experimental method is
described further in the supplementary document.

IV. RESULTS AND DISCUSSION

As variations due to fabrication tolerances exist across
the same batch of fabricated devices, different dies exhib-
ited slightly different natural frequencies and the number
of orders of parametric resonance observable. One device
recorded up to 101 orders of confirmed parametric reso-
nance (figure 6).

FIG. 6: Excitation frequency values of the resonant
peaks of 1 ≤ n ≤ 101 orders of parametric resonance.

While parametric oscillatory response may still exist
beyond n = 101 for this specific MEMS oscillator, it
was not experimentally feasible to verify the higher order
responses as the signal amplitude was embedded within
the inherent noise floor. A key verification step was to
compare the input and output frequencies relative to the
ω : 2ω0/n ratio8. For instance, at n = 1, the input

frequency was 2900 Hz and the response frequency was
1450 Hz; and at n = 101, the input frequency 28.7 Hz,
while the response frequency was also 1450 Hz.

Figure 7 presents the frequency domain characteristics
of the parametric oscillator. Duffing behaviour of the
oscillator driven into direct resonance can also be seen.
Despite sharing the same frequency vicinity, n = 2 does
not superimpose with direct resonance; and only one of
the two resonant responses can exist.

FIG. 7: Frequency domain response of the oscillator
when excited at 1 g acceleration amplitude.

At higher orders, the instability regions diminishes in
both amplitude response and frequency bandwidth as
theoretically predicted. This points to the historic diffi-
culty in conducting practical measurements in built me-
chanical systems. For MEMS oscillators with high natu-
ral frequencies, the absolute bandwidth is relatively wider
and can be more readily measured. Table I lists the fre-
quencies of a few selected higher orders.

TABLE I: Frequency values for selected higher orders.

Order number n Excitation frequency ω (Hz)
95 30.5
96 30.2
97 29.9
98 29.6
99 29.3
100 29.0
101 28.7

Figure 8 illustrates the overlapping nature of the in-
stability regions near these high orders. When sweeping
downwards, the activated instability region extends into
the vicinity of the next order. For all higher orders (in
excess of ∼30), a qualitatively similar overlapping tran-
sition has been observed. However, there is a degree of
experimental uncertainty of at which specific order the
overlapping transition onsets.

While theoretically the overlapping transition of insta-
bility regions is predicted as shown in figure 1, this has
been difficult to experimentally verify thus far. One of
the main reasons is because the overlapping transitions
only emerges to become more significant relative to the
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rest of the instability regions at higher orders. Though,
within the practical confines of this experiment, an addi-
tional reason for observing an apparent overlapping be-
haviour could be attributed to the limited frequency res-
olution and purity of the excitation signal provided by
the mechanical shaker, thus adding to the uncertainty of
when a genuine instability overlap onsets. However, this
also implies that in practical applications where external
excitations lack infinitesimal resolution, such an overlap
could manifest.

FIG. 8: Frequency domain response showing
overlapping instability transition between orders n = 96

and n = 97.

The investigation of the instability transition can prove
valuable, as the frequency at which the transition takes
place is extremely sensitive to boundary conditions.
Therefore, by charting the loci of the ultra high order
parametric resonant instability regions, any variations in
external influences can be mapped. Therefore, analogous
to the frequency-dependent resonant MEMS sensors20, a
potential instability transition dependent sensing mech-
anism can potentially be designed21.

CONCLUSION

This paper reports a segmented mass membrane topol-
ogy for MEMS parametric oscillators. The oscillator
utilises inherently high geometric nonlinearity from the
proposed design in order to promote the Duffing-Mathieu
link. Up to 101 orders of parametric resonance were
experimentally observed, along with overlapping transi-
tional regions between the higher order instability zones.
This opens up the possibility to investigate the behaviour
of these ultra high orders and exploit these previously
elusive resonant regimes for transducer and oscillator re-
search.

SUPPLEMENTARY MATERIAL

Please see the accompanying supplementary document
for the details of the MEMS fabrication process, experi-
mental method, measured data, and postulation of possi-
ble hypotheses in discussion of interpreting the observed
experimental results.
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