
The \Moving Targets" Training AlgorithmRichard RohwerCentre for Speech Technology ResearchUniversity of Edinburgh80 South BridgeEdinburgh EH1 1HNrr@uk.ac.ed.eusipAbstractA simple method for training the dynamical behavior of a neural network is derived. It isapplicable to any training problem in discrete-time networks with arbitrary feedback. Themethod resembles back-propagation in that it is a least-squares, gradient-based optimizationmethod, but the optimization is carried out in the hidden part of state space instead ofweight space. A straightforward adaptation of this method to feedforward networks o�ersan alternative to training by conventional back-propagation. Computational results arepresented for simple dynamical training problems, with varied success. The failures appearto arise when the method converges to a chaotic attractor. A patch-up for this problem isproposed. The patch-up involves a technique for implementing inequality constraints whichmay be of interest in its own right.1 IntroductionThis paper presents an algorithm for training the dynamical behavior of a discrete-time neuralnetwork model. In some ways this method is similar to back-propagation. It is based on thecalculation of the gradient of an error measure, the error measure is a sum of squares, andthe algorithm is intended for pattern classi�cation. But this algorithm is very di�erent inother ways. It applies to totally connected networks with full feedback, not just feedforwardnetworks. It is intended for pattern completion as well as pattern classi�cation, and makes noformal distinction between the two. It is applicable to dynamical patterns in fully recurrentnetworks and presents a radically altered framework for treating static patterns in feedforwardnetworks. The central idea is to avoid setting the minimization problem in weight space bytransforming the problem so that the minimization takes place in state-trajectory space. Werbos[21] used the term "moving targets" to describe the qualitative idea that a network should setitself intermediate objectives, and vary these objectives as they are found to be more or lesshelpful for achieving overall objectives, or more or less achievable themselves. This algorithmof (by accidental coincidence) the same name can be regarded as a quantitative realization ofthis qualitative idea.A minimization approach to dynamical problems is provided by a simple extension to theback-propagation method, back-propagation through time [17]. This method is reasonablysuccessful as long as it does not have to react to distant temporal correlations. The methodof Rohwer and Forrest [15] for training state transitions is also vulnerable to this criticism.The forward propagation of derivatives [22, 7] may overcome this problem. Its main defect is alarge memory requirement, cubic in the number of nodes, for recording the derivative of eachnode value with respect to each weight. Perlmutter [8] has presented methods for training the



dynamics of continuous-time networks. These networks are not readily trainable by the movingtargets method.It is known that a feedforward network can implement a wide variety of nonlinear �lters,but little is known about whether a similarly rich set of dynamical behaviors can be achieved. Ifthis were not the case, then dynamical training algorithms would be shackled by the limitationsof the underlying model. Numerical studies of the attractors produced with random networkssuch as provide encouragement (but not proof) that any such limitations are not severe [11].The problem is formalized in section 2, and the general scope of the formalism is noted.The \moving targets" training method is de�ned in section 4, concluding a discussion of similarmethods in section 3. The main formulas required are derived and discussed in sections 5 and6. Estimates for the computational requirements of the method are given in 7, and compared tothe computational requirements for back-propagation. The analogous method for feedforwardnetworks is outlined in section 8. Section 9 takes up two problems with the method and discussessolutions. The proposed solutions involve a treatment of inequality constraints which may beof interest for other purposes. Computational results are given in 10.2 Notation and statement of the training problemConsider a neural network model with feedback as a dynamical system in which the dynamicalvariables xit change with time according to a dynamical law given by the mappingxit = Xj wijf(xj;t�1) i > 0x0t = bias constant 9=; (1)unless speci�ed otherwise. The weights wij are arbitrary parameters representing the connectionstrength from node j to node i. f is an arbitrary di�erentiable function, usually taken to bethe logistic: f(x) = 1=(1 + e�x): (2)Let us call any given variable xit the \activation" on node i at time t. It represents the totalinput into node i at time t.We have made a small departure from the usual notation in which the dynamical variablesare the node \outputs" yit = f(xit). In the usual formulation, a \bias node" y0t = 1 is usedto give the weights wi0 the signi�cance of activation thresholds. For complete equivalence wemust take the bias constant to be f�1(1), which is in�nite for the logistic. However the samedynamics results from the choice y0t = 1 � �, for any small positive �, with a correspondingrescaling of the threshold weights.In normal back-propagation, a network architecture is de�ned which divides the networkinto input, hidden, and target nodes. The moving targets algorithm makes itself applicable toarbitrary training problems by de�ning analogous concepts in a manner dependent upon thetraining data, but independent of the network architecture. Let us call a node-time pair an\event". To de�ne a training problem, the set of all events must be divided into three disjointsets, the input events I , target events T , and hidden events H . For every input event (it) 2 I ,we require training data Xit with which to overrule the dynamical law (1) usingxit = Xit (it) 2 I: (3)(The bias events (0t) can be regarded as a special case of input events.) For each target event(it) 2 T , we require training data Xit to specify a desired activation value for event (0t). No



notational ambiguity arises from referring to input and target data with the same symbol Xbecause I and T are required to be disjoint sets. The training data says nothing about thehidden events in H .Considerable 
exibility in the de�nition of the training problem arises from the fact that thetime dimension can be used to separate the three classes of events from each other. Suppose,for example, that a sequence of inputs is to be recognized as a particular phoneme by havinga particular node \turn on" whenever the sequence goes by. If it were necessary to specify atarget value for this node at every time step, then one would have to make some rather arbitrarydecisions about what target value to assign when only some of the data needed to recognize thephoneme has been presented. For instance, Watrous [19] uses various functions to interpolatebetween 0 and 1 during the course of a sequence. The moving targets method allows the nodeto be classi�ed as hidden during these ambiguous times, and as a target otherwise.In general, di�erent sequences will result if the dynamical law (1) is applied to di�erentinitial conditions xi0. If the network is always initialized to a particular state, then these initialevents are classi�ed as inputs. If no such training data exists, they can be classi�ed as hiddenevents, in which case the training algorithm will generate values for them which should be usedwhen the network is run. If they are given target values, the network will seek an optimalcompromise between the given values and others which might be needed to obtain the desiredfuture behavior.3 Related least-squares training methodsThe least-squares training methods, typi�ed by back-propagation, proceed by minimization ofan \error" function such as the \output de�cit"Eod = 12 X(it)2Tfyit � Yitg2; (4)where yit = f(xit) and Yit = f(Xit). A minimization method employing the derivatives of thiserror with respect to the weights is used. The conjugate gradient method was used in the workreported here [10]. The moving targets method requires an \activation de�cit" error function:Ead = 12 X(it)2Tfxit �Xitg2: (5)If either of these functions is zero, then so is the other. To this extent they are equivalent.However if the minima are nonzero, they are generally di�erent, and represent a di�erenttradeo� of errors between di�erent target events. These di�erences are discussed quantitativelyin [14]. The di�erences are relatively small when the activations are in the linear region of thelogistic (jXitj 6� 1), but can be seriously di�erent in the saturated regions. Unfortunately itis (4) which represents the more sensible trade-o�s in these cases. But since (5) is stronglypreferable for a technical reason stated below, this problem is addressed in an indirect andsomewhat inelegant manner presented in section 9.Back-propagation and related methods for networks with feedback [15, 16, 1, 9] are basedon a calculation of the derivative of the error (4) with respect to the weights. Let us trace theweight dependence of the error through the three di�erent types of events by expanding theterm xit in (5):E = 12 X(it)2T8<: Xj2It�1wijf(Xj;t�1) + Xj2Ht�1wijf(xj;t�1) + Xj2Tt�1wijf(xj;t�1)�Xit9=;2 : (6)



The subscripts on I , H , and T , denote the nodes of the input, hidden, or target events re-spectively at the indicated time step. Commas have been used to separate subscripts whereconfusion is possible. Besides the explicit w-dependence in each sum, there is an implicit de-pendence through the factor xj;t�1 in the �nal two sums. The �rst sum does not raise thiscomplication because it has an X instead of an x. Using the chain rule to follow this depen-dence from time step to time step back to the initial conditions leads to the \back-propagationthrough time" method [17].Besides being the most complicated part of the calculation, the recursion of the chain rulethrough time is di�cult to do accurately because with each time step the terms involved aremultiplied by the derivative of the logistic (2). This derivative has a maximum of 14 . The termsare also multiplied by the weights, but large weight magnitudes produce saturated node values(unless there are delicate cancellations) which in turn produce exponentially small derivativesof the logistic. Therefore the method has di�culties with problems requiring attention tocorrelations of inputs separated by several time steps.The basic strategy in this paper is to stop the chain-rule recursion by turning x's into X 's in(6). This is easier to do for the third sum than the second, because training data exists for thetarget events but not for the hidden events. By simply capitalizing the 'x' in the third term,we arrive at the teacher forcing error function [16, 22]. If a solution can be found for which theteacher forcing error vanishes exactly, then the usual error will vanish as well, because a feed-forward pass through the network will produce x's which happen to equal their correspondingX 's anyway.In addition to simplifying the calculation, one can argue that the derivatives computedfrom the teacher forcing error point more directly at a solution than the usual derivatives do.Suppose that on a particular time step t, a partially trained network is performing poorly ontarget event (it). In either method, the next adjustment of the weights will take account of errorproduced at (it), which re
ects the inadequacy of the weight matrix for getting the trajectoryright before time t. The usual calculation of errors produced after time t assumes that thenetwork will produce the incorrect value xit at time t. Unless the training is doomed to failanyway, this assumption is false; the trained network will actually produce the correct valueXit. Therefore corrections intended to reduce errors produced after time t should be made usingthe assumption that the trained network will perform correctly at time t, which is preciselywhat teacher forcing accomplishes.This argument has a loophole which will become a major issue in section 9. The trouble isthat the assumption that the trained network will work correctly at every time step is usually notexactly true, even though it provides the only reasonable guess, early in training, for the eventualtrajectory of the trained network. The trained network may produce a chaotic attractor, inwhich case small errors on an early time step will become large errors later. Even if training isperfect, the network cannot be expected to work as intended with inputs slightly di�erent fromthe training data. There is nothing to prevent the usual method from training to a chaoticattractor as well, but it has the merit of basing future error estimates on the past trajectorythat the network actually produces.4 The \moving targets" methodNow we come to the main idea of this paper. How can we change the `x' into a `X ' in the secondterm of (6) without having any training data to specify target values for Xit with (it) 2 H?The trick is to declare that the hidden X 's shall be independent variables in the minimizationproblem. Let us pretend for explanatory purposes that there were desired values for events in



H after all, so that the union of H and T would be the set of target events. Then the teacherforcing error function would be:E = 12 X(it)2T[H8<:Xj wijf(Xj;t�1)�Xit9=;2 : (7)This is a function of the weights wij , and because there are no x's present, the full dependence onwij is explicitly displayed. We do not actually have desired values for theXit with (it) 2 H . Butany values for which weights can be found which make (7) vanish would be suitable. Thereforelet us regard E as a function of both the weights and the \moving targets" Xit; (it) 2 H .This is the main trick. The moving targets are independent variables, like the weights. Theyare not computed from 1. The derivatives with respect to all of the independent variablescan be computed and plugged into a standard minimization algorithm. (Note that \moving"of targets in the algorithm's name does not refer to changes during the time in which thenetwork operates, but during the time in which the minimization algorithm operates. Theformer resembles a spatial coordinate from the viewpoint of the latter.)The reason for preferring the activation de�cit form of the error (5) to the output de�citform (4) is that the activation de�cit form makes (7) purely quadratic in the weights. Thereforethe equations for the minimum, dE=dwij = @E=@wij = 0; (8)form a linear system, the solution of which provides the optimal weights for any given setof moving targets. Therefore these equations might as well be used to de�ne the weights asfunctions of the moving targets, thereby making the error (7) a function of the moving targetsalone.At this point the hidden activations x and the weights w have undergone a kind of rolereversal. In the usual formulation of back propagation, the error depends on the activations andthe weights, but the weights are the only independent variables because the activations dependon the weights in a complicated way involving recursion. In the moving targets formulation, theerror again depends on activations and weights, but the activations are the only independentvariables because the weights depend on the activations in a relatively simple way involving asystem of linear equations.5 The optimal weightsIn this and the following section we shall dispense with the chores of computing the formula forthe weights in terms of the moving targets, and derivatives of (7) with respect to the movingtargets.Let us abbreviate eit =Xj wijf(Xj;t�1)�Xit; (9)and let �it = ( 1 (it) 2 T [H0 (it) 62 T [H (10)so that the error (7) can be written as an unrestricted sum:E = 12Xit �it8<:Xj wijf(Xj;t�1)�Xit9=;2 : (11)



The linear system which de�nes the weights is0 = dE=dwab = Xit �iteit�iaXj �jbf(Xj;t�1) (12)= Xt �ateatYb;t�1 (13)= Xj wajXt �atYj;t�1Yb;t�1 �Xt �atXatYbt: (14)The Kronecker � (�ij = 1 if i = j and 0 if i 6= j) has been used. For each node a, de�ne thematrix M as a correlation matrix of the node outputs:M (a)ij =Xt �atYi;t�1Yj;t�1 (15)The inverses M (a)�1 of M (a), de�ned by Pk M (a)ik M (a)�1kj = �ij , solve the linear system (14),providing the formula for w: wij =Xk  Xt �itXitYk;t�1!M (i)�1kj : (16)In the event that any of the matricesM are singular, a pseudo-inversion method such as singularvalue decomposition [10] can be used to de�ne a unique solution among the in�nite numberavailable.From equation (16) it would seem that a di�erent matrix inversion problem must be solvedfor every node. In general this is true, but in practice the symmetry of typical problems makesonly a few inversions necessary. Typically, many nodes switch between being input and non-input nodes at the same times, so �at in (15) and (16) usually represents the same temporalpattern for several di�erent nodes. For example, it would be normal practice to designate somenodes as inputs for all time, making � vanish for all time. From the way � enters (16) one couldconclude that connections leading into always-input nodes should be set to 0, which is quitesensible. Note that (15) implies that the corresponding M matrices are all singular, however, soactually this means that weights leading into the always-input nodes are unde�ned. In a way,this is even more sensible, because the choice of these weight values has no e�ect on the network.The main reason for changing a node from input to non-input is to initialize the network forlearning about a new sequence. But this operation usually involves all the non-input nodes atthe same time; every such node is set to some standard value during the same time step. Thiscovers a wide class of problems, including the test problems discussed below, and requires onlyone matrix inversion.6 The gradient in moving target spaceNext let us compute the derivatives of the error with respect to the moving targets. Letf 0it = df(x)dx ����x=Xit : (17)Then dEdXas = Xit �iteit 24Xj dwijdXasYj;t�1 +Xj wijf 0j;t�1�ja�s;t�1 � �ia�st35 (18)= Xij dwijdXas Xt �iteitYj;t�1 +Xi �i;s+1ei;s+1wiaf 0as � �aseas: (19)



The calculation of the derivative of the weights with respect to the moving targets in the�rst term of (19) would be a somewhat troublesome task, so it is fortunate that its coe�cientPt �iteitYj;t�1 is zero by equation (13). This phenomenon, the \orthogonality of the signal tothe error" is well known in electrical engineering [13]. If the weights are de�ned by (8), thenthis will occur for any de�nition of the error becausedEdXas = Xij @E@wij dwijdXas + @E@Xas (20)= @E@Xas : (21)The nonzero terms of the gradient in moving-target space are therefore simplydEdXas =Xi �i;s+1ei;s+1wiaf 0as � �aseas: (22)This is a pleasantly simple formula with clear intuitive signi�cance. The second term says themoving targets at time s should be moved toward their computed values, thus reducing theerror on the current time step. The �rst term says that these same moving targets should bemoved so as to reduce the error on the following time step.7 Computational requirementsIn this section we compare the computational requirements of a gradient evaluation in movingtarget space to a gradient evaluation in weight space using back-propagation through time.For simplicity, and to enable a direct comparison with back-propagation through time, let ussuppose that each node remains either an input, hidden, or target node for all time. Let therebe I input nodes, H hidden nodes, and T target nodes, making a total of N = I+T +H nodes.Let there be P time steps. A forward propagation for one time step in order to update thehidden and target node outputs requires about N(H+T) multiply-and-add operations. Let usneglect the mere (H+T) logistic evaluations. Back-propagation through one time step requiresroughly the same number of operations. Therefore the completion of one forward and onebackward pass requires roughly Tbp = 2PN(H + T ) (23)operations.The moving targets method also requires P forward and backward passes at a cost of2PN(H + T ) (although unlike back-propagation, activations are reset to their (data-speci�edor moving) target values at each time step). At �rst glance it may seem that the formationof the matrix M in (15) requires N2P operations, but it is possible to do better than this.Only those blocks of M which involve the hidden nodes need to be updated; the others canbe initialized and left alone. Furthermore M is symmetric, so only half the terms need to becomputed. An inspection of (15) written as a product of matrices in block form shows thatonly about PH(N � H=2) operations are needed. By similar reasoning, about PH(N + H)operations are needed to do the �rst matrix product in (16). The matrix inversion requiresabout 43N3 if done by LU decomposition, more by a small factor if done by singular valuedecomposition [10]. The �nal matrix product in (16) requires about N2(T + H) operations.The total for a computation of w is thereforeTmt = 4PN(H + T ) + 12PH2 + (H + T )N2 + 43N3: (24)



After a little algebra, we conclude that the time required for a gradient evaluation by the movingtargets method is a factor ofTmtTbp = 2 HH + T �1 + 116HN �+ 43NP �74 + IT +H� (25)times the time required by backpropagation through time. The �rst term is strictly less than218 , and is smallest when there are many more target nodes than hidden nodes. The secondterm is the most important for evaluating the method. It is small if there are many more timesteps than nodes, and large in the opposite situation. It can also be large if most of the nodesare inputs.The moving targets calculation is therefore not signi�cantly more di�cult than a comparableback-propagation calculation, if there are many fewer nodes than time steps, and at least amodest number of hidden and target nodes compared to the number of inputs.This calculation does not address the question of how many gradient evaluations will beneeded to �nd a minimum. This is di�cult to estimate, because it concerns the nature ofthe error surfaces in weight space and moving-target space. We scarcely know how to frameincisive questions on this topic, and have even less idea of how to answer them. But one thingwe can expect is that the di�culty of the problem will increase as the number of variablesin the minimization problem increases. There are N(H + T ) variables in the backpropagationproblem, and PH in the moving-targets problem. Therefore there may be di�culties with usinglots of training data. However, if many subsequences of the training data are similar to manyothers, then the minimization problem may not become proportionately more di�cult as theamount of training data increases. Alternatively, training might be done on a small part of thetraining data initially, and resumed with more data for �ne-tuning.8 Feedforward networksThe basic ideas used in the moving targets algorithm can be applied to feedforward networksto provide an alternative method to back-propagation. The hidden node activations for eachtraining example become the moving target variables. The calculation involves a di�erentmatrix inversion problem for each layer of weights. This method is analogous to one derivedby Grossman, Meir, and Domany [4] for networks with discrete node values. Birmiwal, Sarwal,and Sinha [2] have developed an algorithm for feedforward networks which incorporates the useof hidden node values as fundamental variables and a linear system of equations for obtainingthe weight matrix. Their algorithm di�ers from the feedforward version of moving targetsmainly in the (innessential) use of a speci�c minimization algorithm which discards most of thegradient information except for the signs of the various derivatives. Heileman, Georgiopoulos,and Brown [5] also have an algorithm which bears some resemblance to the feedforward versionof moving targets.Computational trails are planned for the feedforward version but results are not yet avail-able. Unfettered by sober fact, let us note a philosophical reason for expecting moving targetsto outperform backpropagation in feedforward nets! The moving targets method directly variesthe internal representations present on the hidden nodes; the very heart of the problem accord-ing to current dogma [17]. The weight matrix variations are largely subservient to the movingtarget variations, and are accomplished by a direct calculation using well-studied methods forsolving linear systems; methods which contribute to the impressive speed of radial basis func-tion methods [12, 3]. Additionally, it is possible to use prior knowledge about a problem (forexample, a principle components analysis of the training data [20, 18]) to initialize the internal



representations. Finally, this method may be more successful for \deep" feed-forward networks(networks with many layers) than back-propagation because errors are never back-propagatedmore than one layer, and therefore do not become diminished by repeated multiplications byderivatives of the logistic. Incompatibilities between distant layers are expressed by terms inthe error function on layers between them.9 Problems and PatchesTwo major problems were discovered during the course of the simulations described below.Both were mentioned in section 3. One pertains to the discrepancy between the error measures(5) and (4), and the other is convergence to chaotic attractors.The �rst problem is that the activation de�cit error measure punishes activations whichhave the correct sign but greater magnitude than some arbitrary cuto� for the inverse logistic.Let us call this the \overshooting" problem. This problem does not occur on hidden events,because the moving targets are free to become as large as necessary to accommodate a computedactivation. But the target events require constant target activations.The constant targets need to be replaced by inequality constraints. One way of introducinginequality constraints, used by Jordan [6], is to turn the constant targets into variables whileintroducing a term in the error function which punishes them for violating the constraint.This type of meddling with the error function inevitably introduces tunable parameters whichre
ect the relative importance of constraint violation to the other sources of error. Instead, theconstant targets can be replaced by a function of another variable, choosing a function with arange that satis�es the inequality constraint. Speci�cally, let the desired, somewhat arbitraryconstant target values, formerly called X , now be called D, and for target events let X in allabove formulas be rede�ned as a function g of D and a new minimization variable �:Xit = g(Dit; �it) = Dit + DitjDitj�2it (it) 2 T: (26)This makes the X values free to wander anywhere they like, consistent with the constraint,without a�ecting the error at all. And the error function retains its all-important quadraticdependence on the weights.The inelegant point is that more minimization variables have been introduced, one for everytarget event.This technique was used successfully in the simulations. Without it, it was possible startwith a hand-made solution to a dynamical training problem, initialize the moving targets to theactivations produced on the hidden nodes by running the solution network, and neverthelessstray far away from the solution during training.Next let us turn to the chaos problem. The moving targets error (7) is based on thedi�erences between the computed activations and the moving targets at each time step. Themoving targets can be varied within a small neighborhood of the computed activations withoutincurring a large error penalty. If the weight matrix is such that these small variations on onetime step can produce large variations on the next step, then any of a large set of possiblemoving target values on the next time step can be accommodated cheaply. Consequently thealgorithm has an incentive to �nd weight matrices which make the trajectories in activation-space highly sensitive to initial conditions; ie, chaotic. Such matrices are of no use when thenetwork is asked to perform without the aid of training data with which to correct itself onevery time step.



Weight matrices with large weight values give high sensitivity to initial conditions, so oneway to combat the chaos problem is to insert a weight decay term12�Xij w2ij (27)into the error. This does not spoil the quadratic dependence on the weights, but it doesintroduce the tunable parameter � and addresses only one manner in which chaotic behaviorcan arise. But it is easy to do, and was used in the simulations as an interim measure.If noise were added to the training data, then the network would have to be able to producetransitions similar to those in the original training data, starting from slightly perturbed statesat each time step. This addresses the chaos problem, but also raises issues concerning howmuch noise to use, and introduces extra minimization variables.I suggest (but have not tested) a method which is meant to concentrate on the fundamentalmotive for training with noise. There are two versions, one which requires no extra variablesand one which requires as many as there are hidden events. Both methods involve tunableparameters, but their settings do not re
ect di�cult decisions about how much of one type oferror is equivalent to how much of another. They are parameters analogous to the amplitudeof the noise one might have trained with, and re
ect easier decisions about the extent to whichthe �nal state of a transition should be immune to variations in the initial state.Both methods use functions ��(Y ) which produce small perturbations toward and awayfrom 12 with magnitude controlled by a small tunable parameter �:��(Y ) = (1� 2�)Y � �: (28)The �rst method is to rede�ne the error as:E = 12Xit �it8><>:24Xj wij�+(f(Xj;t�1))�Xit352 + 24Xj wij��(f(Xj;t�1))�Xit3529>=>; : (29)Another possible variation is to choose �xed random combinations of �+ and �� in each innersum. This error function produces penalities if variations of the node output values on one timestep do not get \back on track" for the next time step.It is unreasonable to expect both sets of variations represented in (29) to produce identicalactivations, so it is manifestly impossible for the error to become 0. Therefore there will alwaysbe some uncertainty about whether the optimal solution will settle on some senseless errortradeo�. To �x this, inequality constraints can be placed on the moving target activationsin (29). This would introduce two new variable parameters for each moving target. The ��variation is arguably more important than the �+ variation because the former variations aretoward the linear region of the logistic, where they have a greater e�ect. Therefore let us cut thenumber of extra variables in half by considering only the �� variations. The extra parametersmight as well be called �, just as they were for the target constraint parameters. Let�(�) = (1��+ 2�f(�)); (30)where f is the logistic (2) and � (without an argument) is a small tunable parameter. Thenthe error functionE = 12Xit �it8><>:24Xj wij(f(Xj;t�1)�Xit352 + 24Xj wij��(f(Xj;t�1))��(�it)Xit3529>=>; : (31)can be minimized to 0 if small perturbations in the node outputs produce small enough varia-tions in the activations on the following time steps.



10 Computational ResultsThe algorithm was tested on a few simple problems. Some succeeded and some failed. Thefailures appear to be due to the chaos problem.Figures 1.1{1.8 concern a network trained to switch between two limit cycles under inputcontrol. Time proceeds from left to right. There is 1 input node, 1 target node and 1 hiddennode as shown. The input node is an input node for all 8 time steps. The target and hiddennodes become input nodes where the vertical lines are drawn; the vertical lines separate di�erentexamples of sequences. The values shown at vertical lines also serve as target values for theproceeding transition. The input values, and �xed and moving target values are shown as heavylines, while computed values are shown as light lines. Node output values between 0 and 1 areshown in all cases, rather than the activation values.The heavy lines in the I and T rows of �gure 1.1 specify the training problem. They canbe seen with less clutter in �gure 1.5. The �rst 4 time steps tell the target node to exhibit thesequence 010, when the input node is 0, and to return to the initial state so that the sequenceshould repeat itself in the freely running network. The last 5 time steps (step 4 does doubleduty.) tell the target node to repeat the sequence 0110 when the input node is 1.The hidden node's moving target values are randomly initialized to the solid black line inrow H of �gure 1.1. The corresponding weight matrix produces the trajectory shown by thelight lines in rows H and T . These light lines show the values computed during one time step,starting from the correct values (the solid black lines) on the previous time step.Figures 1.1{1.5 show the same diagrams at various stages of training. The error has de-creased by at least a factor of 5 between each �gure. Note that the computed values graduallyapproach the moving target values. In row T the light lines approach the �xed solid lines, whilein row H both the solid and light lines are allowed to vary.Figure 1.5 shows the situation when training stopped. Figure 1.6 shows the results ofrunning the network on the training data. It works. Figure 1.7 shows the results from runningthe network long enough to allow the cycles to repeat a few times. The vertical lines signifythat the network is reset whenever the input is changed. That works too. Finally �gure 1.8shows the network running without reseting it when the input is changed. That works. This isa success story.Figures 2.1{2.8 show a partial success story, or partial failure, depending on your attitude.Here the problem is to switch between 4 limit cycles under the control of 2 input nodes. Themeaning of �gures 2.1{2.8 is identical to that of the correspondingly numbered �gures 1.1{1.8.Note that little or no perceptible error is evident in �gure 2.5, at the end of training. (In fact,the error was small but signi�cantly nonzero.) Running on the training data produced smallbut noticeable errors in �gure 2.6. But when those errors are allowed to accumulate in �gures2.7 and 2.8, some of the limit cycles are severely degraded.Figures 3.1{3.5 show a dramatic failure. In �gure 3.1 the problem is solved correctly by asimple handmade network. The problem is to notice when the second of two impulses occuron the second input node. The �rst input node is intended as a reset signal and is super
uousto the problem when the network is reset anyway as the vertical lines signify. The target nodeturns on immediately after the second of two pulses occur on the second input node, regardlessof the temporal separation of the pulses. If only one pulse occurs, the target remains o�.A single node with a suitable positive feedback feedback and negative bias can act as a
ip-
op. When an input large enough to outweigh the bias comes along, the node turns onand remains on due to its positive feedback. The handmade network works by using both the



hidden and target nodes as 
ip-
ops. The hidden node is biased to turn on when any inputcomes by. The target takes positive input from the hidden node, and is biased to turn on whenboth the hidden node and input node are on.The training algorithm, alas, does not �nd this simple solution. At the end of trainingit performs as shown in �gure 3.4. There are only small errors, but they occur at the mostimportant time steps. Figure, 3.5 shows the network running on the training data, and failingto make any sense. The small displacements between the computed and moving target valuesshown in �gure 3.4 are large enough to completely change the future behavior. Hopefullythis problem will be solved by one of the methods designed to prevent chaotic solutions fromforming.11 AcknowledgementsThis work was supported by the UK Information Engineering Directorate/ Science and Engi-neering Research Council as part of the IED/SERC Large Scale Integrated Speech TechnologyDemonstrator Project (SERC grants D/29604, D/29611, D/29628, F/10309, F/10316), in whichMarconi Speech and Information Systems are the industrial partner.References[1] L. Almeida, \Backpropagation in Non-Feedforward Networks", in Neural ComputingArchitectures, I. Aleksander, ed., North Oxford Academic, (1989).[2] K. Birmiwal, P. Sarwal, and S. Sinha, \A new Gradient-Free Learning Algorithm", Tech.report, Dept. of EE, Southern Illinois U., Carbondale, (1989).[3] D. S. Broomhead and D. Lowe, \Radial Basis Functions, Multi-Variable Functional Inter-polation and Adaptive Networks", Memorandum 4148, Royal Signals and Radar Estab-lishment, St. Andrews Rd., Great Malvern, WORCS. UK. (1988)[4] T. Grossman, R. Meir, and E. Domany, \Learning by Choice of Internal Representations",Dept. of Electronics, Weizmann Institute of Science, Rehovot, Israel, (1988).[5] G. L. Heileman, M. Georgiopoulos, and A. K. Brown, \The Minimal Disturbance BackPropagation Algorithm", Tech. report, Dept. of EE, U. of Central Florida, Orlando, (1989).[6] M. Jordan, \Supervised learning and systems with excess degrees of freedom", Computerand Info. Sci. Tech. Report 88-27, U. Mass. at Amherst, (1988).[7] G. Kuhn, \Connected Recognition with a Recurrent Network", to appear in proc. NEU-ROSPEECH, 18 May 1989, as special issue of Speech Communication, v. 9, no. 2, (1990).[8] Perlmutter, B., \Learning State Space Trajectories in Recurrent Neural Networks", Proc.IEEE IJCNN 89, Washington D. C., Publ. IEEE TAB Neural Network Committee., p.II-365, (1989).[9] F. Pineda, \Dynamics and Architecture for Neural Computation", J. Complexity 4, p.216, (1988).[10] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes,The Art of Scienti�c Computing, Cambridge, (1986).



[11] S. Renals and R. Rohwer, \A Study of Network Dynamics", Edinburgh University Centrefor Speech Technology Research preprint, submitted to J. Stat. Phys., (1989).[12] S. Renals and R. Rohwer, \Phoneme Classi�cation using Radial Basis Funcrtions", Proc.IEEE IJCNN 89, Washington, D. C., Publ. IEEE TAB Neural Network Committee., p.I-461, (1989).[13] R. A. Roberts and C. T. Mullis, Digital Signal Processing, Addison Wesley, p.262 (1987).[14] R. Rohwer, \Instant Solutions for Perceptron-Like Nets", Edinburgh University Centrefor Speech Technology Research preprint, (1988).[15] R. Rohwer and B. Forrest, \Training Time Dependence in Neural Networks" Proc. IEEEICNN, San Diego, p. II-701, (1987).[16] R. Rohwer and S. Renals, \Training Recurrent Networks", in Neural Networks from Modelsto Applications, L. Personnaz and G. Dreyfus, eds., I.D.S.E.T., Paris, p. 207, (1989).[17] Rumelhart, D., Hinton, G. and Williams, R., \Learning Internal Representations by ErrorPropagation" in Parallel Distributed Processing, v. 1, MIT, (1986).[18] Sanger, T., \Optimal Unsupervised Learning in a Single-Layer Linear Feedforward NeuralNetwork", Tech. Report NE43-743, MIT AI Lab, (1988).[19] R. L. Watrous, \Phoneme Discrimination using Connectionist Networks", Tech. Report,Dept. of Computer Science, U. Penn., submitted to J. Acoustical Soc. of America, (1989).[20] Webb, A. and Lowe, D., \A Theorem Connecting Adaptive Feed-forward Layered Net-works and Nonlinear Discriminant Analysis" Memorandum 4209, Royal Signals and RadarEstablishment, St. Andrews Rd., Great Malvern, WORCS. UK. (1988)[21] P. Werbos, Energy Models and Studies, B. Lev, Ed., North Holland, (1983).[22] R. Williams and D. Zipser, \A Learning Algorithm for Continually Running Fully Recur-rent Neural Networks", ICS Report 8805, UC San Diego, (1988).


