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Spatially extensive summation of contrast energy
is revealed by contrast detection
of micro-pattern textures
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Vision must analyze the retinal image over both small and large areas to represent fine-scale spatial details and extensive
textures. The long-range neuronal convergence that this implies might lead us to expect that contrast sensitivity should
improve markedly with the contrast area of the image. But this is at odds with the orthodox view that contrast sensitivity is
determined merely by probability summation over local independent detectors. To address this puzzle, | aimed to assess the
summation of luminance contrast without the confounding influence of area-dependent internal noise. | measured contrast
detection thresholds for novel Battenberg stimuli that had identical overall dimensions (to clamp the aggregation of noise)
but were constructed from either dense or sparse arrays of micro-patterns. The results unveiled a three-stage visual
hierarchy of contrast summation involving (i) spatial filtering, (ii) long-range summation of coherent textures, and (iii) pooling
across orthogonal textures. Linear summation over local energy detectors was spatially extensive (as much as 16 cycles)
at Stage 2, but the resulting model is also consistent with earlier classical results of contrast summation (J. G. Robson &
N. Graham, 1981), where co-aggregation of internal noise has obscured these long-range interactions.
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Introduction

Most visual environments contain fine detailed infor-
mation that requires analysis over tiny distances across the
retina. For example, a blade of grass (2 mm wide) seen
from a distance of 57 cm produces a retinal image that is
only 60 um wide (0.2 deg). The human primary visual
cortex contains visual neurons with receptive fields that
are well suited to this scale of analysis, and these mech-
anisms (filter elements) are easily capable of resolving
the blades of grass. But how might an entire sports field
be represented? One possibility is that it is encoded by
mechanisms that operate at a coarser scale of analysis,
such that the sports field falls within a single large
receptive field. An obvious method by which this could
be achieved is through neuronal convergence, where
higher-order texture mechanisms pool over many lower-
order filter elements (Bergen & Adelson, 1988; Lennie,
1998; Motoyoshi, Nishida, Sharan, & Adelson, 2007;
Pollen, Przybyszewski, Rubin, & Foote, 2002; Victor &
Conte, 2005; Wilson & Wilkinson, 1998). In this scheme,
the properties of the filter elements (that respond to
luminance contrast) and their variation across the retina
characterize the texture mechanisms, which could encode
various attributes of the patterns including their form
and regularity (Bergen & Adelson, 1988; Wilson &
Wilkinson, 1998), their depth gradients (Meese & Holmes,
2004), and other parameters (Kingdom & Keeble, 1996;

doi: 10.1167/10.8.14

Received March 12, 2010; published July 21, 2010

Li & Zaidi, 2000). However, the orthodox interpretation
of typical psychophysical detection studies does not fit
well with this idea. When contrast detection threshold is
measured as a function of the area of a sine-wave grating,
larger areas offer a benefit no greater than that predicted
by probability summation (PS) among many small filter
elements, each perturbed by independent additive noise
(Anderson & Burr, 1991; Foley, Varadharajan, Koh, &
Farias, 2007; Howell & Hess, 1978; Meese & Williams,
2000; Meese, Hess, & Williams, 2005; Robson & Graham,
1981) (Figure la). Thus, the standard psychophysical
model of contrast detection makes no provision for
detecting the sports field (large luminance contrast area)
per se; aggregation at threshold is limited to individual
blades of grass (local luminance contrast elements).

To address this conundrum, we must first consider some
formal properties of several models of signal summation
(for mathematical derivations, see Appendix A). For
contrast detection, the PS model is usually implemented
by Minkowski summation (Bonneh & Sagi, 1998; Meese
& Williams, 2000; Quick, 1974; Robson & Graham, 1981;
Watson, 1979; Watson & Ahumada, 2005) over i =1 to n
independent detecting mechanisms as follows:

1 /mink
mink
I€SPoverall = [Z ’V," ] ) (1)

i=1:n

where, 7; is the response of the ith mechanism in the pool,
respoveranl 1S the observer’s decision variable (Figure 1f),
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and the Minkowski exponent (mink) is typically about 4
(Anderson & Burr, 1991; Bonneh & Sagi, 1998; Robson
& Graham, 1981; Meese & Williams, 2000; Meese et al.,
2005; Tyler & Chen, 2000). For a sine-wave grating, this
predicts that contrast sensitivity should improve in
proportion to the fourth-root of its area (area’’?). Another
way of expressing the benefit of increasing stimulus area
is as a summation ratio (SR), where SR = thresh(area/2)/
thresh(area), or 20 times the log( of this when expressed
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in dB. The variable thresh() is the contrast at detection
threshold for each of two stimuli, one of which has twice
the area of the other. Thus, in Figure 1, these stimuli
would excite either n/2 or n input lines. Assuming equally
sensitive input lines this gives an SR ~1.5 dB (a factor of
~1.2) for PS (and mink = 4), consistent with human data
(Bonneh & Sagi, 1998; Foley et al., 2007; Meese &
Williams, 2000; Meese et al., 2005; Meese & Hess, 2007;
Meese & Summers, 2007; Robson & Graham, 1981). This
is markedly less than the 6 dB (factor of 2) prediction
made by the linear summing model (Figure 1b), where the
signals combine linearly against a background of fixed
internal noise. Note that in this model (and the next),
summation extends over a fixed number of signal lines,
some of which might not always carry signal.

Another possibility, for which there is growing evidence
(Goris, Wagemans, & Wichmann, 2008; Lu & Dosher,
2008; Meese & Summers, 2009), is that the signals first
pass through accelerating contrast transducers (point-wise
nonlinearities). When the transducer has a contrast exponent
of 2 (a square-law), this forms the basis of the energy
model (Green & Swets, 1966; Kersten, 1984; Kukkonen,
Rovamo, Tiippana, & Nisédnen, 1993; Manahilov, Simpson,
& McCulloch, 2001; Watson, Barlow, & Robson, 1983)
(Figure 1c). However, this model also predicts too much
summation (SR = 3 dB; a factor of v2) compared to
empirical results, at least in the central visual field (Foley
et al.,, 2007; Manahilov et al., 2001; Meese et al., 2005;
Meese & Hess, 2007).

Consider next the ideal summation model (Figure 1d).
This model is similar to the linear summation model but the
observer is able to perform selective pooling, choosing
the range of signals over which summation takes place,
thereby matching the summation region to the stimulus.
In this case, the observer can perform the ideal strategy
of bypassing the summation of internal noise associated
with the irrelevant inputs (Campbell & Green, 1965;
Meese & Holmes, 2004; Tyler & Chen, 2000). With this

Figure 1. Various model architectures and their summation ratios
(SR). In each case, the SR is for the situation where the number
of signals is doubled from n/2 to n, for all even n. (a) Independent
signals are perturbed by independent noise (N = zero mean, unit
variance, additive Gaussian noise) and are combined probabilisti-
cally. An SR of 1.5 dB is consistent with the widely used fourth-root
summation rule (mink = 4 in Minkowski summation). (b) Mandatory
linear summation. (c) Signals are squared and followed by additive
noise before mandatory summation to calculate energy. (d) The
linear summation model but without restriction to mandatory
summation. In this model, the observer selects only the relevant
input lines, permitting ideal summation of signal and noise. (e) The
combination model for which the SR depends upon whether
summation is selective or mandatory. It behaves like the energy
model when it is mandatory and the PS model when it is selective.
Architecturally, this model combines features from the energy
model (c) and the ideal summation model (d).
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arrangement, sensitivity will always be greater than or
equal to that achieved with the linear summation model
(Figure 1b), but we must keep in mind that summation
is a relative measure. Thus, the benefit of doubling the
number of signals is not as great as in the linear sum-
mation model because performance is being compared
with a more efficient (less noisy) starting point. The ideal
model predicts SR = 3 dB (because it selectively sums
both signal and noise), the same prediction as for the energy
model. Thus, although linear summation (Figure 1b), energy
measures (Figure 1c), and ideal summation (Figure 1d)
might each be relevant to our interest in the aggregation of
visual contrast texture, none appears consistent with the
classical fourth-root empirical result at threshold.

Finally, consider the combination model in Figure le.
This involves the square-law transducer, as in the energy
model, and a facility for selective pooling, as in the ideal
summation model. The cascade of these effects means that
the model predicts a fourth-root result (SR = 1.5 dB),
exactly the same as the PS model (Meese & Summers,
2007). This offers a solution to the conundrum above: per-
haps neuronal convergence for contrast detection does take
place over area after all but offers a performance benefit at
threshold no better than probability summation. Since the
completely different architectures in Figures la and le
make identical predictions, how might we tell them apart?

To do this, I used micro-patterns like those in Figure 2a
to construct the novel stimuli in Figure 3, which I call
Battenbergs (see figure caption). This stimulus arrange-
ment has two advantages over the conventional sine-wave
grating. First, it allows the contrast area to be manipulated
without changing the overall stimulus dimensions. This
is a desirable property as I now explain. Let’s assume
that the observer does not have templates matched to these
peculiar stimulus configurations (Meese & Summers, 2007;
Nasianen, Kukkonen, & Rovamo, 1994). Let’s also assume
that summation is uniform over signal and gap regions for
Battenbergs (j > 1; Figure 3). It then follows that the
signal-to-noise ratio (SNR) is given by:

SNR o< nC?/+/(2n), (2)

where n is the number of signal elements and C is the
signal contrast. From this, it is easy to show that contrast
sensitivity increases with n for any positive nonlinearity p.
Thus, even though the proposed strategy aggregates noise
from gap regions that contain no signal, the system still
benefits from aggregating over as large a stimulus area as
possible. For the combination model, this strategy holds
the overall variance of internal noise constant (the
summation region is the same for each of the stimuli in
Figure 3a), which means that it behaves exactly like the
energy model (Figure 1c) and the predicted level of sum-
mation exceeds that for PS (Figures 1a and le). Of course,
if the assumptions above are incorrect and the system is
able to perform selective pooling by rejecting the gap
regions from aggregation, then the experiment will have
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Figure 2. Stimulus and model elements. (a) A micro-pattern made
from a single square cycle of a sine-wave grating (2.5 c/deg)
multiplied by an orthogonal half-cycle of a cosine function. The
Michelson contrasts of our stimuli were identical to the Michelson
contrasts of these elements. The experiments measured sensitivity
to these contrasts. (b) Spatial weighting used to simulate retinal
inhomogeneity across the stimulus region. This is derived from
experiments that have reported a sensitivity loss of 0.3 dB per cycle
in the horizontal meridian and 0.5 dB per cycle in the vertical
meridian (Pointer & Hess, 1989). (c, d) Sine and cosine phase log
Gabor filter elements used in the filter models (spatial frequency
bandwidth = 1.6 octaves and orientation bandwidth = +25° at half
height). Note that panels a, ¢, and d are to the same scale. The
“attenuation field” in panel b is to a much smaller scale.

failed to achieve its aim and behavior will be indistinguish-
able from probability summation (Figures la and le).

The second advantage of the Battenberg is that the
stimuli used here are almost immune from the deleterious
effects of retinal inhomogeneity (Pointer & Hess, 1989)
because of their signal dispersion (Appendix B). This
improves on previous work by providing an effective way
of studying area summation of contrast in the central
visual field, which is where most visual processing is
performed for everyday visual tasks.

For clarity, I now review the five models in Figure 1 in
the contexts of grating and Battenberg stimuli. Strictly
speaking, the stimulus type makes no difference for
summation predictions in any of the models. The
predictions are derived from the simple consideration of
what happens when the number of signals is doubled,
regardless of their spatial dispersion. Because the models
in Figures 1a—1c have no flexibility, they must predict the
same behavior for each stimulus type. The crucial point
for the combination model (Figure le), as discussed
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Figure 3. Battenberg stimuli used in the two experiments made from the micro-patterns in Figure 2a. (The stimuli are named after a
distinctive cake that was made for the wedding between Prince Louis of Battenberg and Queen Victoria’'s granddaughter. The cake
contains large yellow and pink checks of sponge wrapped in a marzipan casing and is available at supermarkets and corner shops
throughout the UK.) (a) The stimuli used in the “gaps” experiment, indexed by j. The numerical insets indicate the number of micro-
patterns. For j > 0, the number of micro-patterns is approximately constant. Note that the full stimuli (j = 0) contain the same number of
micro-patterns as the sum of the complementary pairs (Gap 1 and Gap 2) of each of the other patterns. (b) The stimuli used in the
“crossed” experiment. The only difference between the two experiments was that in the “crossed” experiment, the blank regions of the
stimuli from the “gaps” experiment were filled with micro-patterns with orthogonal orientation. Note that the stimuli (j = 0 to 8) in this

experiment have identical contrast energy to each other.

above, is the assumption that the model is able to operate
in selective pooling mode for gratings (Summers &
Meese, 2007) but not for Battenbergs. Finally, note that
if the ideal summation model in Figure 1d were also
unable to operate in selective pooling mode, it would
revert to the linear summation model of Figure 1b.

All observers were given several sessions of practice
before formal data collection began and wore their normal
optical correction. Contrast detection thresholds (75%
correct, estimated by probit analysis) were measured using

interleaved staircases and a two-interval forced-choice
(2IFC) technique where observers had to indicate which
of two temporal intervals contained a target. Auditory
feedback was provided to indicate correctness of response.
The stimulus duration was 100 ms and the duration
between the 2IFC intervals was 400 ms. For each observer,
data were averaged from between 4 and 8 runs, each based
on 100 trials per condition (i.e., average threshold estimates
were based on 400 to 800 trials). When the standard error
determined by probit analysis for a single threshold
estimate was >3 dB, the data were discarded and the
conditions were re-run. In each experimental session,
stimuli were interleaved trial by trial from both rows of
either Figure 3a or Figure 3b and from either the odd or
even numbered columns to produce manageable session
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lengths of about 20 minutes (6 conditions). Sessions were
alternated between the odd and even columns.

Stimuli (Figure 3) were displayed on luminance cali-
brated raster monitors (120 Hz; Eizo F553M and Eizo
6600M) using a Cambridge Research Systems VSG2/5
and average mean luminance of 58 cd/m?. The experi-
ments were controlled by a PC. Observers were the author
(TSM) and four undergraduate optometry students (OS,
KM, MN, and IM) who completed the study as part of
their course requirement. The experiments were per-
formed in a darkened room and with the aid of a chin
and headrest at a viewing distance of 72 cm.

Spatial summation: The “gaps” experiment

Figure 4 shows contrast detection thresholds for the
stimuli in Figure 3a. These have been normalized to
indicate summation ratios between the full stimulus (j = 0)
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Figure 4. Contrast detection thresholds for the “gaps” experiment.
Results are averaged across five observers (error bars are +1SE
of the means in dB). Detection thresholds are normalized to those
for the “full” stimulus (Figure 3a, far left). This gives the SR for
each of the check patterns verses the “full” stimulus. The thick
curves are predictions for the filter models (based on Figure 1a
and mandatory pooling in Figure 1e) for the stimuli in the top and
bottom rows of Figure 3a (dashed and solid curves, respectively).
The thresholds predicted by image contrast measures for energy
(second power) and fourth power are shown by the thin curves.
Note that the slight differences between the curves for the gap 1
and gap 2 stimulus series derive from the slightly different numbers
of micro-patterns contained in the stimuli (see Figure 3a). The pink
arrows highlight the effects of short- and long-range summation at
Stages 1 and 2 in the main (three-stage) filter model (Figure 6).
RF: receptive fields (i.e., filter elements).
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and each of the patchy stimuli, thereby illustrating the
benefit of filling the gaps in the patchy stimuli with
additional micro-patterns. For example, when this was
done for the first pair of “check” stimuli (j = 1; threshold
~6 dB), detection thresholds halved (j = 0; threshold =
0 dB), consistent with full linear summation (Figure 1b).
However, this does not imply that linear summation
extends over the entire signal region; it could be that
behavior is determined by summation only between
neighboring micro-patterns. The spatial extent of summa-
tion can be assessed by grouping the micro-patterns in
blocks of increasing size, as in the stimulus sequence in
Figure 3a. By the time the central check region (j) is 6
or 8 micro-patterns square (Figure 4, far right), the benefit
of the extra micro-patterns in the “full” stimulus has
declined but is still >3 dB. Thus, between j =1 and j = 8,
summation falls from perfectly linear to quadratic. This
transition is discussed later, but assuming that aggrega-
tion is contiguous and because sensitivity to the full
stimulus is at least 3 dB (v2) greater than it is to each of
the other stimuli in Figure 3a, the implication is that
quadratic summation extends over at least twice as many
micro-patterns (Figure le) as the width (or height) of the
largest cluster in the stimuli on the far right (j = 8). That
is, at least 16 (2j) micro-patterns, or 16 grating cycles:
much more extensive than the orthodox view of contrast
detection (Anderson & Burr, 1991; Bonneh & Sagi, 1998;
Carney et al., 2000; Foley et al., 2007; Meese et al., 2005;
Robson & Graham, 1981; Rovamo, Luntinen, & Nisidnen,
1993), although within the range indicated by cortical
physiology (Pollen et al., 2002; Sclar, Maunsell, & Lennie,
1990; Von der Heydt, Peterhans, & Dursteler, 1992).

To provide formal assessment of the results, I devel-
oped a computational model including retinal inhomoge-
neity (Pointer & Hess, 1989) (Figure 2b) and the combined
architectures in Figures 1b and le, where short-range linear
summation of contrast (Figure 1b) occurs within oriented
filter elements (Figures 2c and 2d) followed by squaring
and a stage of long-range linear summation across the
entire signal region and across two phases of filter
(Figure 1c) (Appendix C; see also Figure 6). Predictions
for the two stimulus series (Figure 4, thick black curves,
with no free parameters) are very good—much better than
for the competing PS model (Figure 4, medium green
curves), which was implemented using the same filtering
and the same retinal inhomogeneity but followed by
Minkowski summation with mink = 4 (Appendix D).
Note that the combination of spatial filtering and boundary
effects (within the stimulus) mean that both filter models
predict more summation than expected from second
(energy)- or fourth-power metrics applied to the raw
contrast images (Appendix E) (compare thin and thick
curves in Figure 4). Note also that for summation studies
such as this one—where the analysis is restricted to just
a single criterion level of performance—the energy model
is identical to Minkowski summation with mink = 2
(see The energy model is equivalent to Minkowski
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summation (with mink = 2) at a single level of perfor-
mance section).

Spatial segmentation: The “crossed”

experiment

The “gaps” experiment reveals long-range summation,
similar to an energy detection process. But is this process
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completely general, aggregating contrast over the entire
image, or is it selective for particular local features such as
orientation? In general, we might reason that if long-range
summation is indiscriminate then, to a first approximation,
sensitivity should remain the same (0 dB) when half of the
micro-patterns in the full stimulus are rotated by 90°, as for
the stimuli in Figure 3b. Indeed, the contrast energy is
identical for each of the stimuli in this figure. However,
spatial filtering complicates matters a little because of
short-range summation effects at the boundaries of the
micro-patterns, and this means that filter models are needed
to make detailed predictions. These are shown in Figure 5a
for PS (green curve) and energy (gray curve) (see
Summation across orientation section). Neither of these
anticipated the results of the “crossed” experiment (circles
in Figure 5a), where performance was consistently worse
than they predicted. This implies that, contrary to the
orthodox view (Meese & Williams, 2000; Robson &
Graham, 1981; Watson & Ahumada, 2005), vision does
not use a global summation process (neither PS nor
energy) that pools indiscriminately over space and
orientation.

In fact, performance in the “crossed” experiment
(circles) varied with stimulus configuration in a similar
way to the first experiment (squares), although overall
sensitivity was slightly higher. This was quite well
predicted by Minkowski summation of signal responses
from orthogonally oriented filters following long-range
spatial summation within each orientation band (the three-
stage model; Minkowski summation between orthogonal
energy mechanisms: The three-stage model section;
Figure 6). The average difference between the thresholds
in the two experiments (for j > 0 in Figure 3) was 1.88 dB
(Figure 5c). This represents the average summation
between the orthogonal signals and is very similar to
previous estimates for superimposed stimulus pairs where
components have differed widely in orientation (Carney
et al., 2000; Georgeson & Shackleton, 1994) and spatial
frequency (Carney et al., 2000; Graham & Nachmias,
1971). Plotting the results this way suggests a Minkowski

Figure 5. Results from the “crossed” experiment. (a) Contrast
detection thresholds for the “crossed” experiment (circles) with
those replotted from the “gaps” experiment (squares). The lower
two curves indicate predictions for the “crossed” experiment for
each of the two filter models assuming indiscriminate summation
over area and orientation. (b) The same as in panel a but for
Minkowski summation across orthogonal filters following orienta-
tion selective long-range summation (i.e., predictions for the three-
stage model; Figure 6). The RMS error of the model predictions
with the single free parameter, mink = 1.75, is 0.5 dB. The pink
arrows highlight the effects of cross-group summation at Stage 3
in the three-stage model (Figure 6). (c) Mean differences (in dB)
between the results and model predictions for the two experi-
ments. Note that predictions for mink = 4 are excluded from
panel b for clarity.
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Figure 6. A new model of contrast summation and detection
involving a three-stage hierarchy. Stage 1 involves linear spatial
filtering, which performs mandatory short-range spatial summation
of signal contrast within each filter element (receptive field) (see
Figure 1b). Noise at this stage is insignificant (and not shown)
relative to the performance limiting noise at the next stage. For
simplicity, filter elements are shown for only one phase (see A
deterministic implementation of the combination model section).
At Stage 2, signals are summed over area following nonlinear
(square-law) transduction of the contrast response. Area summa-
tion takes place within each of one or more groups of filter
elements, permitting representations of multiple textures or con-
tours (here, a pair of orthogonal orientations). The figure depicts
a flexible long-range summation mechanism for each group,
although selective pooling might be achieved using multiple hard-
wired mechanisms instead (see text for details). Stage 3 pools
across the filter groups from Stage 2 and the output forms the
decision variable. The only free parameter in the model is mink,
which sets the strength of cross-orientation summation at Stage 3.
Note that retinal inhomogeneity is omitted from the figure for
simplicity but is placed at the far left in the model.

7

exponent (mink) of about 1.75 (thin curves, Figure 5c) for
summation across orthogonal filter orientations.

The principal result is that Battenberg stimuli produce
quadratic summation over a much greater area than might
have been expected from earlier experiments using gra-
tings. Looking back to Figure 1, we see that three of the
five models are able to achieve this: energy summation
(Figure 1c), ideal summation (Figure 1d), and the combi-
nation model (Figure le). However, only the combination
model is able to also achieve the result with gratings
(Meese & Summers, 2007; Summers & Meese, 2007).

Overall, the experiments point to three stages of
summation for simple luminance contrast textures. These
are (1) short-range linear summation within oriented filter
elements (classical receptive fields) that segment the
textures, (2) long-range linear summation across filter
elements (following response nonlinearity) for coherent
textures, and (3) a final stage of pooling across orthogonal
filter groups that delivers the psychophysical decision
variable. This hierarchy of neuronal convergence is
schematized in Figure 6 and the details of each stage are
discussed below.

The properties of short-range spatial
summation (Stage 1)

Linear summation of luminance contrast suggests a
convolution process that can be thought of as linear spatial
filtering. This is a well-established property of spatial
vision and the model filters here were identical to those
used in a closely related model of a conventional area
summation experiment in which the target area grew in
proportion to the square of the stimulus diameter (Meese &
Summers, 2007). Their spatial frequency and orientation
bandwidths (1.6 octaves; +25°) are similar to other
psychophysical estimates (Foley et al., 2007; Kersten,
1984; Watson & Ahumada, 2005) and are consistent with
cells in primary visual cortex (De Valois, Albrecht, &
Thorell, 1982), but how critical are those parameters here?
When the model bandwidths are made broader (and the
receptive fields become smaller), the spatial filtering
becomes less relevant (not shown) and the model predic-
tions approach those made by the power transforms on the
raw luminance images in Figure 4. However, the large
differences between the data and those predictions,
towards the left of Figure 4, imply that the filters do
impose their presence and are inconsistent with such
broad bandwidths. The filter model also fails when the
bandwidths are made much narrower (and the number of
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lobes in the receptive field increases) because this raises
the right hand limb of the predictions (Figure 4) above the
data (not shown). Thus, the spatial filters assumed here
have both external validity and consistency with the
results. Nevertheless, the precise parameter values are
not critical; allowing the filter parameters to be free in the
model fitting produced a slight change in their values
(1.4 octaves; £20°) and a slight improvement in the fit.
This detailed analysis of spatial filter bandwidths as well
as their relation to the model’s transducer exponent is
presented in Appendix G.

Long-range summation (Stage 2)

The “crossed” experiment suggests that long-range
summation is selective for orientation, quite different from
the usual interpretation of PS. Furthermore, the strength
of long-range summation is greater than that which is
usually associated with PS (Appendix H). All this points
to deterministic physiological convergence such as that
depicted by Stage 2 in Figure 6. Note that linear
summation takes place at both Stage 1 and Stage 2 in
the model, but the benefit of summation is less at the
second stage owing to the intervening square-law contrast
nonlinearity. Thus, as the clusters of micro-patterns fall
outside the short range of individual filter elements
(Stage 1), summation declines from about a perfect factor
of 2 (Figure 1b; Figure 4, j = 1) to about a factor of V2,
consistent with long-range detection by the energy model
(Figure 1c; Figure 4, j = 8).

Selective pooling (Stage 2)

The details of selective pooling were not seen for the
experiments here because the results were entirely con-
sistent with simple mandatory pooling over all of the co-
oriented filter elements at Stage 1. However, for the model
to generalize beyond these experiments, greater flexibility
is needed. For example, previous studies have investigated
the effects of varying grating diameter on contrast sensi-
tivity and found fourth-root summation (SR = 1.5 dB),
consistent with spatial PS (see Introduction section). But
this raises a problem because the PS model is rejected by
the analysis here. Conveniently, the new model (Figure 6)
has the flexibility to accommodate the fourth-root results
by selective pooling for various n (Meese & Summers,
2007) (Figure 1le). In general, this is a good strategy for
detecting a range of stimulus sizes. For example, when the
target is small, not only is spatial resolution preserved
(i.e., the observer is able to access individual filter
elements to help identify individual blades of grass) but
the selectivity prevents the aggregation of noise from
irrelevant filter elements that would degrade the signal-
to-noise ratio. In contrast, when the target is large, the
detection process benefits from the aggregation of local
signals.

Meese
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For simplicity, Figure 6 depicts selective pooling by a
mechanism at Stage 2 that is able to select its range of
inputs. However, an equivalent arrangement involves
multiple hard-wired mechanisms at this stage, each
summing over different ranges (various n), and the
appropriate selection by the observer of the relevant
summing mechanism. Each of these methods is easily
achieved with the assumption of labeled lines (Watson &
Robson, 1981). However, the observer does not always
have the information necessary to make the appropriate
selection—as in the case where stimulus conditions are
interleaved from trial to trial—but this appears to have
little affect on the form of area summation (Meese et al.,
2005). One explanation for this involves nonlinear pooling
(e.g., either fourth-root summation (Tyler & Chen, 2000)
or a MAX operation (Summers & Meese, 2007)) over
multiple long-range mechanisms that sample the contin-
uum of n. This type of scheme can be arranged to produce
the summation behavior of selective pooling, even when
the observer does not have complete knowledge of the
stimulus (Tyler & Chen, 2000) (see also Appendix A).

Further properties of long-range spatial summation
(Stage 2)

As stated in the Results section, quadratic summation
extends over at least 16 micro-patterns, implying that
long-range summation also extends over this range.
However, I present this figure with some caution. For
simplicity in the model, long-range summation was
performed over the entire stimulus region. This worked
well (Figures 4 and 5), but the experiments here did not
determine the upper range for long-range summation nor
the number of long-range mechanisms involved. It is
plausible that several long-range mechanisms are scattered
over the visual field and that performance depends on PS
(or other nonlinear combination) between them (e.g., at
Stage 3) (Syvijarvi, Nasidnen, & Rovamo, 1999). In that
case, a system involving mechanisms with a somewhat
shorter range of long-range summation at Stage 2 might
be supported by the results.

Another issue is the shape of the summation region. For
simplicity, the model sums evenly over the two spatial image
dimensions, but the results do not rule out the possibility
that long-range summation is elongated along the direction
of the contours (Meese & Hess, 2007), orthogonal to the
contours, or a combination of the two. Thus, in principle,
the 16 micro-patterns referred to above might be arranged
in rows (snakes), columns (ladders), or two-dimensional
arrays containing 16 x 16 micro-patterns.

An important question raised by the work here is as
follows. Why can the visual system perform selective
summation for conventional gratings but not for
Battenbergs (Figure 7)? It seems likely that this has to do
with the peculiar shape of the signal regions in Battenbergs.
For example, one possibility is that the visual system is
limited to summing over smooth contiguous (amoeboid)
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Selective pooling Mandatory pooling is not possible

Internal noise Internal noise is
increase with signal fixed
area

Figure 7. Summation regions (red squares) for the combination
model. The internal noise is proportional to the square root of the
areas enclosed by the red squares. For conventional area
summation experiments where the area of the signal increases
with stimulus size, internal noise also increases with signal area.
The combination of nonlinear contrast transduction (C”) and noise
summation results in a fourth-root summation rule when p = 2. For
Battenberg stimuli, summation cannot be restricted to the signal
area but performance does benefit from summing over the entire
stimulus region (from Equation 2). Because noise is not a factor
for Battenberg summation, the level of long-range summation is
affected only by nonlinear contrast transduction and follows a
square root rule for p = 2. For simplicity of presentation, the
operations are shown over smaller stimulus regions than those
thought to be used in the experiments.

regions of the retina. This would happen if the summing
templates were pre-wired, for example (see also the
previous subsection and Appendix A). With this single
restriction and a need to maximize the SNR (Equation 2),
the system would operate in selective pooling mode for
gratings (Meese & Summers, 2007; Summers & Meese,
2007), but mandatory pooling model for Battenbergs
(Figure le), just as the results require. Clearly, this is an
important topic for future research.

Finally, a comparison of the results from the two
experiments (Figure 5) indicates that orthogonal orienta-
tions did not benefit from the long-range summation
process (see also Appendix G), suggesting processes of
texture segmentation and grouping (Bergen & Adelson,
1988; Graham & Sutter, 1998; Grossberg & Mingolla,
1985; Victor & Conte, 2005). This is achieved in the
model (Figure 6) by performing long-range summation
only within orientation bands, but more flexible or
dynamic arrangements (e.g., Gestalt-type grouping rules)
are possible. For example, it is plausible that long-range
summation extends over smooth variations of local
features (the Gestalt law of “good continuation”) to per-
form contour and form integration (Field, Hayes, & Hess,
1993; Kingdom & Prins, 2009; Wilson & Wilkinson,
1998; Wilson, Wilkinson, & Habak, 1998) and more
general texture processing (Grossberg & Mingolla, 1985;
Motoyoshi & Kingdom, 2004; Motoyoshi & Nishida,
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2004), such as that involved in pictorial depth cues (Li &
Zaidi, 2000; Meese & Holmes, 2004).

Further detailed investigation is required to more fully
understand each of the factors above.

Summation across textures and filter groups
(Stage 3)

The results here show that (i) contrast detection improves
when orthogonal micro-patterns are placed in the gaps of
the stimuli used in the first experiment (Figure 5) but (ii)
the level of improvement is less than that achieved by
filling the gaps with micro-patterns of the same orientation
(Figures 4 and 5). The first result implies that some form
of pooling must exist across orthogonal orientations, and
the second implies that it is not simply a consequence of
indiscriminate long-range summation at Stage 2 (see also
Appendix G). Thus, Stage 3 pools across the different
groups of filter elements that emerge at Stage 2 (in this
case, horizontal and vertical), but how should this final
stage of summation be interpreted?

One possibility is that Stage 3 involves a process of
PS. However, the estimate of the summation exponent at
Stage 3 (mink = 1.75; Figure 5c) is much too low for this.
Most contemporary models of PS would put this around
mink = 4 (Tyler & Chen, 2000) (see also Appendix H).
Even older models that assume the summation exponent
can be estimated directly from the slope of the psycho-
metric function (Quick, 1974; Sachs, Nachmias, &
Robson, 1971) would fail. For example, for TSM I have
estimated the Weibull slope of the psychometric function
for Battenbergs to be 8 =4.06, no different from those for
gratings (Mayer & Tyler, 1986; Meese & Williams, 2000)
and much higher than the mink = f = 1.75, that is needed.

Thus, the work here not only challenges the orthodox
position on PS across area but also PS across feature
dimensions such as orientation. Perhaps this is surprising
because the levels of summation between the orthogonal
elements here (Figure 5c) are very similar to those found
in other studies using more conventional grating stimuli:
they are all close to a fourth-root prediction (where SR =
1.5 dB), consistent with PS. However, the canonical
model for PS involves a linear transducer (Tyler & Chen,
2000). When this is replaced with the squaring transducer
implied by the “gaps” experiment, PS drops to about SR =
0.75 dB owing to the cascade of nonlinearities—markedly
less summation than is found in the experiments (compare
data and lower dashed green line in Figure 5c). Thus,
whatever the process at Stage 3, its limit on summation is
less severe than PS. Motoyoshi and Nishida (2004) came
to a similar conclusion in a study on the segregation of
suprathreshold textures.

An alternative possibility is that there is higher-order
physiological summation, where mink = 1.75 (Figure 5c)
represents further nonlinear contrast transduction prior to
linear summation at Stage 3. However, there are problems
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with this since the model’s limiting noise is at Stage 2,
placing it before the additional transducer. According to
Birdsall’s theorem (Klein & Levi, 2009; Lasley & Cohn,
1981), early limiting noise will linearize the effects of
subsequent nonlinearities on the d' psychometric function
and computer simulations have shown that this diminishes
the transducer’s effect on summation (Meese & Summers,
2009).

Yet another possibility is that observers performed ideal
summation (Figure 1d) across the noisy outputs of the
Stage 2 filter groups. This predicts mink = 2, close to the
estimate from the results (Figure 5c¢). Why the estimate of
mink here is a little less than this (1.75) is not clear, but it
might be expected if a further source of additive (though
not dominant) noise were to be injected at a later stage.
Furthermore, whether pooling at Stage 3 is an explicit part
of a higher-order visual code (e.g., for complex “gingham”
textures) or represents a more general-purpose decision
strategy by the observer is also unclear. Nonetheless,
whatever the details of Stage 3, the experiments and
analyses here suggest a strict sequence to the summation
stages (Figure 6) owing to the relative sizes of the effects.
Short-range summation (Stage 1 filtering; ~6 dB) precedes
long-range summation (Stage 2 aggregation; ~3 dB), and
this precedes summation across filter groups (Stage 3
pooling; ~1.9 dB).

Energy models

Energy models have been championed with much con-
viction in the past (Bergen & Adelson, 1988; Manahilov
et al., 2001; Morrone & Burr, 1988; Rovamo et al., 1993;
Watson & Ahumada, 2005; Watson et al., 1983), although
they have received little direct empirical support when testing
over extended regions in the central visual field at threshold
(Campbell & Green, 1965; Howell & Hess, 1978; Meese
& Holmes, 2004; Meese, Hess, & Williams, 2005; Meese
& Williams, 2000; Kukkonen et al., 1993; Watson et al.,
1983). Indeed, it is clear from Figure 4 that contrast sen-
sitivity is not characterized by a direct measure of overall
stimulus energy. However, the results do provide good evi-
dence for spatially extensive energy detection following
oriented spatial filtering. As alluded above, previous fail-
ures to reveal this process can be explained by the accom-
panying spatial aggregation of noise that caused energy
detection to masquerade as PS (Figures la and le).

Nonlinear contrast transduction and Birdsall’s theorem

A serious objection to accelerating transducer models
(including the energy model here) is that the slope of the
empirical psychometric function is too steep when contrast
sensitivity is measured in the presence of external noise
(Lu & Dosher, 2008; although see also Kersten, 1984).
According to Birdsall’s theorem, if the external noise is the
performance-limiting noise, then this should “linearize” the
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transducer and the psychometric function should be
shallow (a d’ slope of unity) (Klein & Levi, 2009; Lasley
& Cohn, 1981). So how could the accelerating contrast
nonlinearity—central to the model here—seemingly out-
maneuver Birdsall’s theorem? There are several possibil-
ities (Klein & Levi, 2009; Lu & Dosher, 2008), but one is
“distraction.” The psychophysical performance of a dis-
tracted observer is similar to an uncertain observer—each
produce steep psychometric functions (Kontsevich & Tyler,
1999). Thus, the linearizing effects of Birdsall’s theorem
would not be observed if the external noise pattern also
served to distract the observer’s attention away from the
relevant target mechanisms. In other words, the usual
objection to nonlinear contrast transduction need not apply
if the observer is distracted by external noise. See also
Burgess and Colborne (1988) and more recent papers by
Lu and Dosher (2008) and Klein and Levi (2009).

Spatial summation in noise

One experimental approach related to that here has been
to try and clamp the total noise level by swamping it with
high contrast external noise. This was done by Kersten
(1984) who found little or no evidence for summation
beyond a single grating cycle in dynamic large-field one-
dimensional noise. Why long-range summation was not
found in that study is unclear, but it is possible that
Kersten’s external noise interfered with Stage 2 in the
model (Figure 6), providing counter-evidence for the
presence of coherent textures and disabling the pooling
process. Other factors that are probably also involved in
noise-masking studies (including Kersten’s), although
have been often overlooked, are pedestal masking (Legge
& Foley, 1980; Meese, 2004), dilution masking (Meese &
Summers, 2007), surround suppression (Meese, 2004;
Meese, Challinor, Summers, & Baker, 2009; Meese et al.,
2005), and retinal inhomogeneity (Pointer & Hess, 1989;
Foley et al., 2007). Furthermore, other groups have found
different results from Kersten. Syvéjarvi et al. (1999) used
two-dimensional static white noise and found that area
summation was very similar with and without external
noise. Thus, a detailed picture of the relation between
external noise and area summation is yet to be elucidated.

Second-order contrast detection

Although our interest throughout has been with first-
order contrast detection (this is what we measured), our
Battenberg stimuli are contrast modulated (second-order)
stimuli when j > 0 (Figure 3). One view of second-order
spatial vision is that second-order mechanisms pool
information from first-order mechanisms (Henning, Hertz,
& Broadbent, 1975). In fact, the contrast mechanisms that
we propose can be thought of exactly this way: they are
second-order mechanisms sensitive to the DC (0 c/deg)
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component of contrast modulation. But could it be that
other second-order mechanisms were used to detect the
contrast boundaries in our Battenbergs? We cannot rule
this out, although the low sensitivity to second-order
modulation found in other experiments makes this seem
unlikely (Schofield & Georgeson, 1999, 2003). Further-
more, if it were the contrast boundaries that were detected
in our Battenbergs, this could not apply to the full
stimulus (j = 0) where there are no contrast boundaries.
Thus, the high level of summation that we find in our
“gaps” experiment would still need to be explained.

Summation above threshold and contrast
gain control

Despite the initial motivation of the present work
regarding aggregation of visual texture (see Introduction
section), the evidence here for extensive area summation
of contrast poses a problem when the contrast is raised
above detection threshold. For example, while it makes
good ecological sense to sum broadly when signals are
weak, a large sports field should not appear to have higher
contrast than a small front lawn. In fact, a similar problem
has been encountered in binocular vision. Summation of
contrast between the eyes is typically substantial at
threshold (>3 dB) (Meese, Georgeson, & Baker, 20006),
but under normal viewing conditions, the world does not
appear to be of higher contrast when viewed with two
eyes instead of one. This ocularity invariance (Meese et al.,
20006) is achieved by suppressive gain control within and
between the eyes (Baker, Meese, & Georgeson, 2007;
Ding & Sperling, 2006; Meese et al., 2006). An analogous
process (area invariance) involving suppression across the
visual field is presumably also involved in area summation
(Meese et al., 2005; Meese & Summers, 2007; Sclar et al.,
1990), providing a plausible solution (Meese & Summers,
2007) to the problem identified above.

Conclusions

The Battenberg stimuli developed here (Figure 3)
provide a new method by which neuronal convergence
can be assessed in human vision. Experiments using these
stimuli shed a very different light on the processes of early
spatial vision compared with the orthodox interpretation
established in the early 1980s (Graham & Nachmias, 1971;
Graham, Robson, & Nachmias, 1978; Robson & Graham,
1981; Sachs et al., 1971). In those studies, the performance
benefit achieved by either increasing the area of a grating
or adding further gratings at different orientations or
spatial frequencies was attributed to a single unselective
(dumb) process of PS. The work presented here suggests a
more strategic arrangement: the long-range process of area

1

summation is more potent than once thought, consistent
with a contrast transducer exponent of 2 and energy
detection within—but not between—spatial textures. None-
theless, when the aggregation of internal noise covaries
with stimulus size—as I propose it does in conventional
studies of area summation—the degree of area summation
drops to more modest levels (Figure le), typical of those
usually attributed to PS. The mechanistic hierarchy
proposed here (Figure 6) offers valuable insights into the
missing link between early sensory processes of contrast
vision and later stages in which substantial neuronal
convergence is needed to represent larger shapes, forms,
structures, and surfaces. Therefore, understanding the
details of stimulus selection by the long-range summation
at Stage 2 is a top priority for future research.

Appendix A

Mathematical derivations of summation ratios
for the models in Figure 1

With reference to Figure 1, let the standard deviation of
each of the independent noise sources be o = 1, and let
the signal strengths (Michelson contrasts) on each signal
line be C. I consider summation ratios (SR) where the
sensitivity of each of the input lines is equal and where the
number of signals is doubled from /2 to n for any even n.
I denote the contrasts in these cases as Ciyr and Cyyy,
respectively, and refer to the conditions as the “half” and
“full” conditions. The signal-to-noise ratio (SNR) at a
given output is signal/c,,,;, where signal is the response to
n/2 or n signals as appropriate and oy, is the standard
deviation of the noise on that output line. Without losing
generality we can set the criterion SNR required for
detection to unity. Thus, the summation ratio (SR) is
given by: Cpa¢/Crp, for SNR = 1. Note also, because
noise variances sum, the standard deviation of the sum of
n noise sources is v(n).

For the ideal summation model and the combination
model (when in selective mode), I first assume that the
observer knows what signals are being presented and uses
this information to sum over the appropriate inputs. This
requirement is then relaxed.

Throughout the Appendices, contrast gain parameters
are ignored for simplicity. This is safe since the expressions
for contrast response are ultimately normalized (i.e., they
are used to calculate summation ratios) and the effects of
response gain cancel.

Probability summation (Figure 1a)

If the assumptions of high-threshold theory hold
(negligible false-positive responses in 2IFC and a hard
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detection threshold, only above which the system is in a
“detect” state) and the noise has a Weibull distribution,
then the psychometric function (percent correct as a
function of contrast) is a Weibull function and its slope
is given by the Weibull slope parameter . For probability
summation (PS), this is equal to the exponent (mink) in
Minkowski Summation (Quick, 1974) (Equation 1 main
body). Typical empirical estimates give f = 4 in contrast
detection studies (e.g., see Meese & Williams, 2000),
which results in a fourth-root rule where SR =2~ * = 1.2,
or 1.5 dB. This is also equivalent to the vector summation
model of Quick (1974).

However, the assumptions behind a strict derivation of
Minkowski summation (Equation 1 in main body) from
PS have long been falsified (Nachmias, 1981), and
contemporary treatments of PS use a MAX operator
within a two-interval forced-choice (2IFC) signal detec-
tion framework. There is no simple derivation of PS
within this framework and the reader is referred to Pelli
(1985) and Tyler and Chen (2000) for details. However,
for a linear transducer and reasonable assumptions about
uncertainty and knowledge of the signal, Tyler and Chen
showed that PS is well approximated by Minkowski
summation with a Minkowski exponent of =~4. Thus,
contemporary treatment of PS is also equivalent to a two-
signal summation ratio (SR) of =1.2, or =1.5 dB.

Note that in each of the schemes above, contrast trans-
duction (i.e., the growth of the contrast response with signal
contrast) is assumed to be linear, albeit with the involve-
ment of subsequent threshold nonlinearity in the first deri-
vation. If, on the other hand, contrast transduction is an
accelerating nonlinearity (as evidence suggests: Meese &
Summers, 2009), then the SR for PS will decrease with an
increase in the contrast-response exponent in each scheme.

Mandatory linear summation (Figure 1b)

For the full condition we have: SNR = nCg /N (n) = 1,
which rearranges to give: Cgy = 1/J(n). For the half
condition we have: nCy,¢/2v(n) = 1, which rearranges to
give: Chalf = 2/\/(”) Thus, SR = Chalf/cfull =2 =6dB.

Energy model (Figure 1c)

For the full condition, we have: SNR = nC3,,/N(n) = 1,
which rearranges to give: Cpy = 1/n'*. For the half
condition, we have: nCﬁalf/Z\/(n) = 1, which rearranges to
give: Char = V(2)/n'""*. Thus, SR = Cpa/Cran = v2 = 3 dB.

Ideal summation (Figure 1d)

For the full condition, we have: SNR = nC,/N(n) = 1,
which rearranges to give: Cgy = 1/J/(n). For the half
condition, we have: nCy,¢/2v(n/2) = 1, which rearranges
to giVC: Chalf = \/(2)/\/(1’1) ThUS, SR = Chalf/cfull = \/(2) = 3 dB
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This is the summation expected for an ideal observer
and is identical to that predicted by the energy model.
Strictly speaking, the ideal observer knows the stimulus
exactly on each trial and detects it using a linear matched
filter, a strategy depicted by Figure 1d and described
above. However, as Tyler and Chen (2000) point out
(pp. 3130-3131), the same level of summation (though
not the same overall sensitivity) might be expected in less
specific situations. Suppose that the observer has several
mechanisms that sample the size (diameter) dimension of
the target gratings but does not know the size of the target
to be presented on each trial. In that case, if each
mechanism is weighted by the reciprocal of its expected
noise level then fourth-root (Minkowski) summation over
the set of mechanisms will also produce the behavior of
ideal summation (Tyler & Chen, 2000). Thus, the same
summation ratio (3 dB) might be expected in the ideal
framework (Figure 1d) regardless of whether the exper-
imental trials are blocked or interleaved across stimulus
conditions.

Combination model (Figure 1e)

When the model is in mandatory pooling mode it sums
over all of its available inputs and is identical to the
energy model. Thus, SR = y2 = 3 dB (see above). When
the model is in selective pooling mode, it operates in a
similar way to the ideal summation model above.
However, the model is not ideal (in the formal sense)
because of the squaring nonlinearity. For the full
condition, we have: SNR = nCiy N(n) = 1, which
rearranges to give: Cyy = 1/n"*. For the half condition,
we have: nClye/2J(n/2) = 1, which rearranges to give:
Chalf = 21/4/111/4. Thus, SR = Chalf/Cfull = 21/4 =12=1.5dB.
This is identical to the PS model with mink = 4.
Following similar analysis to Tyler and Chen above, it
can be shown that this level of summation is to be
expected (under reasonable assumptions) for both blocked
and interleaved experimental designs (Summers & Meese,
2007).

Appendix B

Battenberg stimuli combat the effects of
retinal inhomogeneity

Figure B1 shows the results (squares) and filter model
predictions (thick black curves) from the “gaps” experi-
ment from Figure 5. The thinner (red) curves are for the
same model (see main body and Appendix C) but with
retinal inhomogeneity removed. The thinnest (blue) curves
are for the model with retinal inhomogeneity reinstated,
but with twice the severity as in the main model (i.e.,
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Figure B1. The effects of retinal inhomogeneity on performance of
the filter models used here are negligible. See text for details.

sensitivity losses of 0.6 dB and 1.0 dB per cycle in the
horizontal and vertical meridians respectively). Each of
these adjustments had a negligible affect on the behavior of
the model, indicating that (for the range of conditions used
here) the stimulus design provides an effective counter-
measure to the deleterious effects of retinal inhomogeneity
(for further details, see Appendix C).

Appendix C

Main model implementation

A deterministic implementation of the
combination model

Here I describe the “combination model” (Figure le) in
conjunction with spatial filtering and retinal inhomogene-
ity. The basic model architecture and filtering is the same
as that used by Meese and Summers (2007), although here
I use a transducer exponent of 2 instead of 2.4. The
exposition here is slightly different from that used in the
supplementary material of Meese and Summers but is
formally equivalent (with the exception of the value of the
transducer exponent). For the stimuli here, I assume that
the model operates in mandatory summation mode and is
therefore equivalent to the energy model. (If, instead, the
observer were able to sum selectively over only those
stimulus locations that contained target micro-patterns,

Meese
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then fourth-root summation would be expected and the
model predictions would be inconsistent with the exper-
imental results.)

Images had a contrast of 100% and were sampled with a
resolution of 10 pixels per carrier cycle (though this was
not critical) and multiplied by the attenuation surface
shown in Figure 2b to simulate the effects of retinal
inhomogeneity. This surface was derived from the
empirical results of Pointer and Hess (1989) who found
a sensitivity loss of 0.3 dB per carrier cycle in the
horizontal meridian (x coordinate) and 0.5 dB per cycle in
the vertical meridian (y coordinate). The attenuated image
was then filtered by a pair of quadrature’ log-Gabor
filters (see Appendix C), with spatial frequency bandwidth
of 1.6 octaves (full width at half-height) and orientation
bandwidth of £25° (half-width at half-height). The filters
were matched to the spatial frequency (2.5 c/deg) and
orientation (horizontal) of the micro-patterns in the “gaps”
experiment and their outputs (2D arrays: Hsfilt and Hcfilt)
were full-wave rectified. With this formulation, the basic
filter responses did not represent a response to particular
stimulus contrast, but the spatial distribution of responses
of the filter elements (convolution kernels) across space
for a particular stimulus. The contrast response was then
derived by multiplying this pattern of filter responses by
the Michelson contrast (0:1) of the stimulus. (This
describes Stage 1 of the model in Figure 6.)

Each pixel value was raised to a power of 2.0 to
represent the accelerating contrast-response nonlinearity
of the mechanism at each pixel location. Unit-variance,
zero-mean, Gaussian noise was added to each mechanism
(pixel) and linear summation was then performed across
the square stimulus region, which was identical for each
stimulus, and across the quadrature filters. This gave a
deterministic noise level of v(2n) for each image, where n
is the number of mechanisms (pixels) in the stimulus.
Thus, the signal-to-noise ratio (SNR) for the summation
process is given by:

3 (|cstim x Hsfilty]? + |Cyim chilt[|2)
SNR — i=1:n ,

V2n

(C1)

where Cg;, 18 the Michelson contrast of the stimulus (in
the range O to 1), and Hsfilt; and Hcfilt; are the sine- and
cosine-phase filter responses at the ith of n pixels in the
image, scaled to a response range of —1 to 1 for all
stimuli. Assuming a criterion signal-to-noise ratio (SNR)
of unity at detection threshold (this is arbitrary), it follows
that:

Ctzhresh (’HSfilti‘z + ‘HCfilt,"2>

1= = , C2
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and solving for Cyesn gives:

3 (|Hsf11t,-|2 + |Hcfilti|2>

Cthresh = | == \/ﬂ . (C3)

As filter gain parameters have been omitted for
simplicity, the contrast units of Cy,eq, are arbitrary. These
arbitrary units cancel when the model predictions are
normalized by the response to the full stimulus (j = 0 in
Figure 3) to calculate a summation ratio. Note also that for
the stimuli used here, the noise level in the model was
constant and therefore irrelevant to the calculation of the
model summation ratios. This describes the output of the
summation box for the horizontal filter at Stage 2 in
Figure 6.

The energy model is equivalent to Minkowski
summation (with mink = 2) at a single level of
performance

The equation for Minkowski summation over i = 1 to n
linear contrast-response mechanisms 7r; is:

SNR =

i=1:n

1/mink
Z |ri|mink] ) (C4)

Let the SNR = 1 at a criterion level of performance
(e.g., 75% correct). Then Equation C4 rearranges to give:

Z ‘I’,“mink - 1. (CS)

i=l:n

The formulation of the energy model here is:

E i
SNR = =2 (Co)
no?

where o is the standard deviation of independent zero-
mean Gaussian noise added to the output of each contrast-
response mechanism after squaring. At the same criterion
level of performance as above, Equation C6 rearranges to
give:

Z |ri|2 = ka (C7)
i=l:n

where £ is the standard deviation of the total noise. This is
absolved by an implicit contrast gain parameter in each
model. Thus, there is an equivalence between energy

Meese 14

summation (Equation C7) and Minkowski summation
(Equation C5) when mink = 2. Note that this holds only
for a single level of performance owing to the outer
exponent (1/mink) in Equation C4. Put another way, the
slope of the psychometric function (performance as a
function of signal strength) is different for the two
formulations. See also Meese and Summers (2009).

Log-Gabor filters

The choice of filter type in the model here is not
particularly important. However, the log-Gabor filter has
the convenient property that it has zero response to mean
luminance for all filter phases (unlike a regular Gabor
filter) and also has a modulation transfer function that
resembles those of cortical cells. The two-dimensional
modulation transfer function for the filters here is
described by the following equation:

logGab2D( f,0) = logGab1D( f,60) x orthFunc(f,6),
(C8)
where (f, ) are polar coordinates in the Fourier plane

(spatial frequency [in c/deg] and orientation [in degrees]).
The first term on the right is defined as:

- {10g2 (f\cos(e;h— 90)\) }2 o

2(0.4240)* ’

logGab1D(f, 0) = exp

where fi and 6, are the preferred spatial frequency and
orientation of the filter and w is the filter’s spatial
frequency bandwidth (full-width at half-height, in
octaves). This is a Gaussian function on a log spatial
frequency axis.

The second function is defined as follows:

orthFunc(f,0) = exp (-{fsin(@ — 90)}2> , (C10)

272

where

L :fosm(h)\/_ <2'ln{logGabllg)éo, 0o + h)}) 71’
(C11)

where / is the filter’s orientation bandwidth (half-width at
half-height, in degrees).

Thus, the filters have modulation transfer functions that
are the product of two one-dimensional functions in
Fourier space. One is defined along a radial spatial
frequency axis and would be a Gaussian shape if this axis
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were logarithmic. The other is a Gaussian at right angles
to this. The positions and dimensions of these filters (in the
frequency domain) are defined entirely by four of the
parameters above: fy, 0y, @, and /. The phase of the filters
is set directly in the phase spectrum of the Fourier domain.
Note that the filters here are different from the polar
separable log Gabor filters that have been described else-
where: http://www.csse.uwa.edu.au/~pk/research/matlabfns/
PhaseCongruency/Docs/convexpl.html.

Appendix D

Probability summation and Minkowski
summation

Minkowski summation with mink = 4 was used as a
model of spatial probability summation (PS). Following
the retinal inhomogeneity and spatial filtering described in
Appendix C, this gives:

1= Z (|Cthresh X Sfﬂti|mink + ’Cthresh % Cfﬂti’mink)7
i=1:n
(D1)
at detection threshold. SO]Ving for Cthresh we have:

—1/mink
|sfile; ™" + |cfﬂt,-|’"""k)] . (D2)

Cibvesh = [Z (

i=l:n

Appendix E

Second- and fourth-power metrics applied
to the image

Second- and fourth-power metrics (p = 2 and 4,
respectively) are calculated by summing over the i = 1
to m image pixels thus:

p

Li — Ly (EI)

Lo

Metric(p) = Z

i=1:m

where L; is local pixel intensity and L, is the mean pixel
intensity across the image. For convenience, these metrics
are normalized such that Metric(p) = 1, at detection
threshold. This is equivalent to:

1= Cl:hresh Z |imagei|p7 (EZ)

i=1:m

Meese

15

where Cyesn 1S the Michelson contrast at detection
threshold, and image is the luminance profile of the
stimulus scaled to the range: —1:1. Solving for Cyyesn
gives:

~1/p
Cthresh = (Z |imagei|P) . (E3)

i=1:m

Thus, Equation E3 solves for detection threshold in
Figure 4 and is the normalized reciprocal of Metric(p). It
is equivalent to spatial Minkowski summation across raw
local contrasts, where p = mink.

Appendix F

A model with two filter orientations

Summation across orientation

Following retinal inhomogeneity, the images in
Figure 3b were filtered by the horizontal filters described
above and similar vertical filters (i.e., filters with preferred
orientations of 90° and 0°). The 2D arrays of responses of
the vertical filters to stimuli with a Michelson contrast of
100% are denoted Vsfilt and Vcfilt. These were combined
with horizontal filter responses using Minkowski summa-
tion. As the summation region is constant, the noise level
is also constant. This is absolved by the implicit gain
parameters and for our purposes here can be safely
dropped (though see below). Thus, following the develop-
ments above, we have:

Citresh = {Z (\Hsfilt,-|mmk + |Hefile;|™"™*

i=1:n

) ) —1/mink
Vsl " 1 |chilt,-|”””k>] . (F1)

This is the arrangement used for the two lower curves
(green and gray) in Figure 5a, where mink = 2 for energy
(see The energy model is equivalent to Minkowski sum-
mation (with mink = 2) at a single level of performance
section) and mink = 4 for PS (Appendix A).

Minkowski summation between orthogonal energy
mechanisms: The three-stage model

Strictly speaking, when the noise is placed before the
summation process within each orientation band (as here;
Figure 6), then it should not be dropped from expressions
that combine signal and noise across multiple filters.
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However, since some interpretations of Minkowski sum-
mation take the effects of noise into account, we drop the
noise terms in the first instance, and return to them when
interpreting the results and the meaning of mink in the
Discussion section of the main report. Using the nomen-
clature above, the system response (resp) for Minkowski
summation between vertical and horizontal energy filters
following long-range spatial summation is given by:

mink
IHsfilt;|> + |Hcfilt,-|2)>

resp = [(CZZ (

i=l:n

mink
+ <sz <|stilt,~|2 + |chﬂt,~\2)> ]

i=l:n

1/mink

(F2)

Setting resp = 1 at detection threshold, and solving for
Cihresn We have:

mink
Clmesh = [(Z <|Hsfilt,~]2 + yHcfﬂt,»\z)>

i=1:n
mink-y —1/(2mink)
IVsfilt;|> + \chﬂt,-\z)) ] .

+ <Z (
(F3)

i=1:n

This is the model used in Figures 5b and Sc, following
retinal inhomogeneity and for various values of mink, which
is the only free parameter. This describes the output of
Stage 3 in Figure 6, where the model is operating in man-
datory summation mode for each of the filter orientations.

Note the different placements of the parameter mink in
Equations F1 and F3. In Equation F1, mink operates on
the contrast response of each filter element, whereas in
Equation F3, the exponent applied to each filter element is
set to 2 (consistent with energy detection), and mink
operates on the responses at each orientation after long-
range summation within each of those orientation bands.

Appendix G

Narrower bandwidths and higher exponents

Alternative models

The three-stage model in the main report here
(Equation F3) performed well using spatial filters with
spatial frequency and orientation bandwidths of 1.6
octaves and +25°, respectively (Table G1, Line 13). These
bandwidths were not chosen to optimize the fit but were
the same as those used in a previous study (Meese &
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Summers, 2007). In fact, the best fit (Table G1, Line 14)
was found using slightly narrower bandwidths of 1.4
octaves and £20° (see Figure G2a), which also correspond
exactly with the median estimates from single-cell
physiology (De Valois et al., 1982; De Valois, Yund, &
Hepler, 1982). Decreasing the filter bandwidths further
causes the right hand limb of the model predictions to rise
above the human data (not shown). However, increasing
the contrast-response exponent can overcome this mis-
match. Thus, to evaluate the effects of filter bandwidths
for the conclusions here, I compared the results from both
experiments with the more conservative two-stage model
described by Equation F1 for various bandwidths and
exponent values (mink). (This model involves only one
stage of indiscriminate pooling beyond the initial filter-
ing.) To illustrate the point, I began by arbitrarily halving
the bandwidths (to 0.8 octaves and +12.5°) and optimizing
the exponent by fitting to the data from both experiments.
This gave an exponent value of 2.9. With this arrange-
ment, the model performed well and the results are shown
in Figure G2b and Table G1 (Line 1).

I then performed a more thorough test by varying
spatial frequency and orientation bandwidths in steps of
0.1 and £1°, respectively, and the exponent (mink) in steps
of 0.1. Local minima (nearest neighbor comparisons) in
the three-dimensional error surface (expressed as the RMS
error in dB) are shown in Table G1 (Lines 2-9). The best
exponent always had a value of mink = 2.9. Essentially,
Table G1 (Lines 2-9) describes a contour through spatial
frequency/orientation space where the quality of the fit is
almost constant. Put another way, Table G1 implies that a
fairly extensive receptive field is needed to produce the
level of spatial summation found in the experiments
when only a single stage of pooling is used after spatial
filtering (i.e., Equation G13 instead of Equation G15).
This can be achieved by making the filter element long
and thin (narrow orientation bandwidth), short and fat
(narrow spatial frequency bandwidth), or anything along
a continuum of combinations between the two. The
nonlinear exponent must also be set higher than in the
energy model but lower than for fourth-root summation
(i.e., mink = 2.9).

The best alternative filter bandwidths are too narrow

The analysis above prompts the question of whether any
of the filters in Table G1 (Lines 1 to 9) are reasonable
estimates of psychophysical filter bandwidth. One of the
most extensive studies relevant to this question is that
performed by Foley et al. (2007). They measured
detection thresholds for Gabor-type targets for a wide
range of stimulus heights, widths, and phases. From their
extensive analysis of the area summation functions, I
have deduced the following absolute lower limits for
filter bandwidths: 1.5 octaves for spatial frequency and
approximately *16° for orientation (Table G1, Line 10).
However, most of their data suggested broader bandwidths
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Transducer exponent

SF B/W Orient BIW  (mink in Equation F1 and  RMS error

Line Filter derivation and extra parameters (octaves) (+deg) fixed at 2 in Equation F3) (dB)
1 Equation F1 and bandwidths = half those in main report 0.8 12.5 29 0.383
2 Optimized fit using Equation F1 0.4 23 29 0.350
3 “ 0.5 15 2.9 0.338
4 “ 0.6 12 2.9 0.336
5 “ 0.7 11 29 0.337
6 0.8 10 2.9 0.337
7 1.0 9 2.9 0.339
8 “ 1.5 8 2.9 0.342
9 “ 5.9 7 29 0.351
10 Foley et al. narrow 1.5 16 — —

11 Foley et al. broad 4.9 30 — —

12 Foley et al. mid (Equation F3; mink = 1.75) 21 22 2 0.498
13 Main model in main report (Equation F3; mink = 1.75) 1.6 25 2 0.499
14 Optimized fit using Equation F3 (mink = 1.75) 1.4 20 2 0.388

Table G1. Filter bandwidths and figures of merit (RMS error in dB, set in italics) for comparisons between models and results from both
experiments. Entries set in bold are fixed parameters. Entries in plain text (not bold or italics) are free parameters. Line 1: The bandwidths
used in Figure G2b. They are half those used in the model in the main report. Lines 2—9: Bandwidths that produced local minima (nearest
neighbor comparisons) in the RMS error surface comparing model (Equation F1) and data. Lines 10—12: Bandwidths estimated from
Foley et al.’s (2007) study on area summation of contrast. Line 13: The default bandwidths used in the model (Equation F3) in the main
part of the report. Line 14: The best fitting bandwidths for the three-stage model (Equation F3). Performance for this implementation of the
model is shown in Figure G2a (B/W: bandwidth; Orient: orientation; RMS: root mean square; SF: spatial frequency).
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Figure G2. Alternative model fits. (a) The same model as in the main part of the report (Equation S15) but using filter bandwidths of 1.4
octaves and +20° (see inset). These are the filters that produced the optimum fit to the gaps experiment with no other free parameters
(Table G1, Line 14). (b) Example of using Equation G13 with bandwidths half of those in the main report. They are 0.8 octaves and +12.5°
(see inset) and mink = 2.9 (Table G1, Line 1). However, this filter element is too large (e.g., it has too many lobes) to be consistent with
most other psychophysical estimates.
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than these (see Table G1; Lines 10-12). In general, the
estimates from Foley et al. are much broader than those
derived in the alternative analysis above. In other words,
if the stimuli here were detected by the large receptive
fields implied in Table G1 (Lines 1-9), then those same
mechanisms should have also shown up in Foley et al.’s
summation experiment. That is, performance should
have improved with Gabor target area more rapidly than
was found in their experiment (over the initial range at
least). This makes a model involving the combination of
Equation F1, the filters in Table G1 (Lines 1 to 9) and an
exponent of mink = 2.9 an unlikely candidate.

The bandwidths used in the main model here are
about right

In contrast to above, the model bandwidths used in the
main part of the report are within the bounds of those
derived by Foley et al. (2007) and are fairly typical of
those implied by single-cell physiology. Furthermore, the
main model behavior here (Figure 5b) was almost
identical (not shown) to that found when the filters were
switched to the intermediate estimates (Table G1, Line 12)
from the Foley et al. study. Finally, as noted above, the
bandwidths that achieved the optimum fits for the “gaps”
experiment in the three-stage model (Table G1, Line 14)
were similar to those used in the main report and matched
De Valois et al.’s estimates (De Valois, Albrecht, et al.,
1982; De Valois, Yund, et al., 1982) from single-cell
physiology exactly. These are within the range of
orientation bandwidths derived from Foley et al. but just
outside their range of spatial frequency bandwidths
(Table G1, Lines 10 and 11).

Appendix H

PS and super PS

As outlined in Appendix A, typical interpretations
of probability summation (PS) predict fourth-root
summation—an SR of 1.5 dB. However, there are
theoretical situations (Tyler & Chen, 2000) in which PS
can achieve the same levels of summation as that
predicted by Minkowski summation with mink = 2. This
theoretical super PS occurs when the target region is
doubled so as to fill the attention window—in the situation
here, the set of Stage 1 filter elements monitored by the
observer. In principle, this could be responsible for the
long-range summation in the “gaps” experiment where
the observer’s attention window might have been matched
to the full stimulus. However, studies that have measured
the slope of the psychometric function (Meese &
Summers, 2009; Meese & Williams, 2000; Robson &
Graham, 1981) have consistently found it to be far too
steep to be consistent with super PS, which requires a
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linear transducer and d psychometric slope of unity
(equivalent to a Weibull slope parameter f ~ 1.3). A
steep empirical slope might be attributed to uncertainty
(Pelli, 1985) rather than a nonlinear transducer, but in
either case, super PS would be abolished (Meese &
Summers, 2009; Tyler & Chen, 2000). Alternatively, the
steep slope of the psychometric function is consistent with
a second-power (i.e., square-law) contrast transducer (plus
a little uncertainty; Meese & Summers, 2009) such as that
proposed here and elsewhere (Graham & Sutter, 1998;
Klein & Levi, 2009; Lu & Dosher, 2008; Manahilov,
Simpson, & McUlloch, 2001). In sum, it seems unlikely
that the summation results in the “gaps” experiment here
can be attributed to PS of the super PS variety or any
other.

Another place where super PS should be considered is
across orthogonal filters at Stage 3 of the model (Figure 6).
However, the blocking of trials across the two experi-
ments means that the uncertainty conditions that are
needed for this interpretation (Meese & Summers, 2009;
Tyler & Chen, 2000) are unlikely to have been met (i.e., it
is unlikely that the observer monitored the additional
mechanisms needed for the second experiment during the
first). Thus, super PS also seems an unlikely candidate for
summation at Stage 3 in the model.
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