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Abstract—Recently, we have developed the hierarchical Generative Topographic Mapping (HGTM), an interactive method for
visualization of large high-dimensional real-valued data sets. In this paper, we propose a more general visualization system by
extending HGTM in three ways, which allows the user to visualize a wider range of data sets and better support the model development
process. 1) We integrate HGTM with noise models from the exponential family of distributions. The basic building block is the Latent
Trait Model (LTM). This enables us to visualize data of inherently discrete nature, e.g., collections of documents, in a hierarchical
manner. 2) We give the user a choice of initializing the child plots of the current plot in either interactive, or automatic mode. In the
interactive mode, the user selects “regions of interest,” whereas in the automatic mode, an unsupervised minimum message length
(MML)-inspired construction of a mixture of LTMs is employed. The unsupervised construction is particularly useful when high-level
plots are covered with dense clusters of highly overlapping data projections, making it difficult to use the interactive mode. Such a
situation often arises when visualizing large data sets. 3) We derive general formulas for magnification factors in latent trait models.
Magnification factors are a useful tool to improve our understanding of the visualization plots, since they can highlight the boundaries
between data clusters. We illustrate our approach on a toy example and evaluate it on three more complex real data sets.

Index Terms—Hierarchical model, latent trait model, magnification factors, data visualization, document mining.

1 INTRODUCTION

OPOGRAPHIC visualization of multidimensional data has
been an important method of data analysis and data
mining for several years [4], [18]. Visualization is an
effective way for domain experts to detect clusters, outliers,
and other important structural features in data. In addition,
it can be used to guide the data mining process itself by
giving feedback on the results of analysis [23]. In this paper,
we use latent variable models to visualize data, so that a
single plot may contain several data clusters; our aim is to
provide sufficiently informative plots that the clusters can
be seen to be distinct rather than confining each model to a
single cluster (as would be appropriate for cluster analysis).
In a complex domain, however, a single two-dimensional
projection of high-dimensional data may not be sufficient to
capture all of the interesting aspects of the data. Therefore,
hierarchical extensions of visualization methods [7], [22]
have been developed. These allow the user to “drill down”
into the data; each plot covers a smaller region and it is
therefore easier to discern the structure of the data. Also,
plots may be at an angle and so reveal more information.
For example, clusters may be split apart instead of lying on
top of each other.
Recently, we have developed a general and principled
approach to the interactive construction of nonlinear
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visualization hierarchies [27], the basic building block of
which is the Generative Topographic Mapping (GTM) [4].
GTM is a probabilistic reformulation of the self-organizing
map (SOM) [17] in the form of a nonlinear latent variable
model with a spherical Gaussian noise model.

The extension of the GTM algorithm to discrete variables
was described in [5] and a generalization of this to the
Latent Trait Model (LTM), a latent variable model class
whose noise models are selected from the exponential
family of distributions, was developed in [14]. In this paper,
we extend the hierarchical GTM (HGTM) visualization
system to incorporate LTMs. This enables us to visualize
data of an inherently discrete nature, e.g., collections of
documents.

A hierarchical visualization plot is built in a recursive
way; after viewing the plots at a given level, the user may
add further plots at the next level down in order to provide
more insight. These child plots can be trained using the EM
algorithm [10], but their parameters must be initialized in
some way. Existing hierarchical models do this by allowing
the user to select the position of each child plot in an
interactive mode; see [27]. In this paper, we show how to
provide the user with an aqutomatic initialization mode
which works within the same principled probabilistic
framework as is used for the overall hierarchy. The
automatic mode allows the user to determine both the
number and the position of child LTMs in an unsupervised
manner. This is particularly valuable when dealing with
large quantities of data that make visualization plots at
higher levels complex and difficult to deal with in an
interactive manner.

An intuitively simple but flawed approach would be to
use a data partitioning technique (e.g., [25]) for segmenting
the data set, followed by constructing visualization plots in
the individual compartments. Clearly, in this case, there
would be no direct connection between the criterion for



choosing the quantization regions and that of making the
local low-dimensional projections. By employing LTM,
however, such a connection can be established in a
principled manner. This is achieved by exploiting the
probabilistic nature of the model, which enables us to use
a principled minimum message length (MML)-based learn-
ing of mixture models with an embedded model selection
criterion. This approach has been used for Gaussian
mixture models [11]." Hence, given a parent LTM, the
number and position of its children is based on the
modeling properties of the children themselves—without
any ad hoc criteria which would be exterior to the model.

Previous experience has indicated that magnification
factors may provide valuable additional information to the
user’s understanding of the visualization plots, since they
can highlight the boundaries between data clusters. In [6],
formulas for magnification factors were only derived for the
GTM. In this paper, we derive formulas for magnification
factors in full generality for latent trait models.

In the next section, we briefly review the latent trait
model. In Section 3, a hierarchical latent trait model is
developed. Section 4 presents the model selection criterion
based on minimum message length that we apply to
mixtures of LTMs. Section 5 presents and discusses
experimental results and compares them with existing
methods. We derive a general formula for magnification
factors in LTMs in Section 6. Finally, Section 7 summarizes
the key contributions of the paper.

2 THE LATENT TRAIT MODEL (LTM)

Latent trait models [14] are generative models which are
powerful and principled tools for data analysis and
visualization. As a generalization of the Generative Topo-
graphic Mapping (GTM) [4], the latent trait model family
[14] offers a framework which includes the definition of
appropriate probability models for discrete observations.

Consider an L-dimensional latent space H, which, for
visualization purposes, is typically a bounded 2D Euclidean
domain, e.g., the square [—1,1] x [-1,1]. The aim is to
represent multidimensional data vectors {t,},_,
the latent space so that “important” structural character-
istics are revealed. A nonlinear function maps the latent
space to the data space D = R”. The latent plane (assuming
a two-dimensional latent space) becomes a (nonlinear)
2D manifold in the high-dimensional data space.

For tractability, the latent space is discretized by introdu-
cing a regular array (or grid) of K latent points z;. € H, k =
1,..., K (which are analogous to the nodes of the SOM [18]).
A uniform prior distribution is imposed over the latent
points z;, leading to the following expression for the
unconditional data density of an observed data point t € }P

K 1y
p(t) = pltlze)p(zr) = K p(tlzi). (1)
k=1 k=1

The conditional data distribution, p(t|z;), (conditioned on
the kth latent space point x;, € H) is modelled as a member

1. This framework uses Jeffrey’s priors, which implies that the estimation
of the model parameters is equivalent to a maximum likelihood (ML)
formulation. The MML criterion penalizes overly complex models, but does
not regularize the model parameters themselves.

of the exponential family in a parameterized functional
form [2]

pa(t|zi, ©) = exp{fo(xi)t — B(fo(zr))}po(t).  (2)
Here, © is the parameter vector of the model, B(fg(xi)) =
In [exp(fe(zi)t)po(t) dt denotes the cumulant generating
function of p(t|z;), and py(t) is a factor independent of ©.
Recall that the exponential family includes the Gaussian and
Student t-distributions and also discrete random variables

such as the Bernoulli and multinomial distributions.
The function f(-) represents a smooth mapping from

latent to data space; in order to make training fast, f has the
form of a General Linear Regression model, and is defined
by fe(z) = O¢(z;), where © € R”*M is a parameter
matrix and ¢(-) = (61(),....0u())  dm(-) : H— R, is a
fixed set of M nonparametric nonlinear basis functions.
These could be any smooth functions; typically, Gaussian
radial basis functions are employed. A linear basis function
¢o(x) = 1,Vz, may be included to account for the bias term
(which is set to the data mean). The notation ¢, = ¢(x;,) will
be used as a shorthand.

A latent trait model with fixed parameters © defines a

density in the data space,

z2:H =R, z(zr) = b(OB(zi)) = b(Of (1) (3)
This probabilistic interpretation is fundamental to our
approach to constructing a hierarchy of models. We refer

to the manifold f(H) as the projection manifold of the LTM.
LTMs are trained to maximize the likelihood of the

training set ¢ = {t;,...,ty} using an EM algorithm [10], the
M-step of which consists of solving the equation

TR'®" =b(0@®)G®" (4)
for ®, where the function b(-) denotes the gradient of the
cumulant function B(-),”> ® is an M x K matrix with ¢, in
its kth column, T is the data matrix including N data
vectors {t,} as columns, R = (Rin),_y g1 v and Gisa
diagonal matrix with elements gy = Z::l Ry, where Rp,,
computed via Bayes’ theorem in the E-step,

P(tn.|$k-. Q)P(IA) ‘
Soh_, plta|z, ©)p(zy)

is the “responsibility” of the latent point z; for generating
t,. The E-step and M-step are iterated until the change in

likelihood falls below a user-defined threshold.
Once trained, the LTM can be used for visualization. To

RL‘H = P(IHtH) = (5)

do this, the map f has to be “inverted” so that there is a
latent space point corresponding to each data point. The
latent space representation of a point t,, is taken to be the
mean of the posterior distribution p(z|t,) over the latent
space. This can be computed using (5) and averaging x;
weighted by Ry, over k.

2. It is the inverse link function [21] of the noise distribution.



3 A GeENErRAL FRAMEWORK FOR HIERARCHICAL
LATENT TRAIT MODELS

When dealing with large and complex data sets, a single
global visualization plot is often not sufficient to get a good
understanding of the relationships in the data. In order to
represent complex intrinsic information when visualizing
large data sets, hierarchical visualization systems have been
proposed and developed in the literature, [7], [27]. In [7], a
locally linear hierarchical visualization system was defined.
We have recently extended this system to hierarchies of
nonlinear GTM projection manifolds in [27]. This paper
showed that in many cases, the use of a nonlinear latent
space model significantly reduced the number of visualiza-
tion plots required to get good intercluster separation and
represent the data structure.

In this section, we provide a general formulation of
hierarchical latent trait mixture models. The benefit of this
to the user is that a wider range of conditional density
models pp(t|z;, ©) can be used. For example, binary data
can be visualized using a Bernoulli distribution [14]. If the
data contains outliers, a Student t-distribution may be more
appropriate than the Gaussian used in HGTM. Preliminary
results of organizing LTMs into a hierarchy have been
encouraging [15], and motivated the work described in this
paper.

The hierarchical LTM arranges a set of LTMs and their
corresponding plots in a tree structure 7. The Root is at
level 1, children of level-£ models are at level £ + 1.

Each model M in the hierarchy, except for Root, has an
associated parent-conditional mixture coefficient, or prior,
w(M|Parent(M)). The priors are nonnegative and satisfy
the consistency condition: 37 e cpitgren(v) TMIN) = 1. Un-
conditional priors for the models are recursively calculated
as follows: 7(Root) = 1, and for all other models

Level(M)

m(M) = m(Path(M);|Path(M),_,), (6)

i=2
where Path(M) = (Root,..., M) is the P-tuple of nodes
defining the path of length P in 7 from Root to M.

The leaves(7) of the tree are defined to be the set of
nodes of 7 without children. The distribution defined by
the hierarchical model is a mixture of distributions defined
by the leaves of T

P(t|T) =

>

MeLeaves(T)

7(M)P(t|M). (7)

Nonleaf models have two roles in the hierarchy:

1. Every model is a leaf model at some point during the
construction of the hierarchy.

2. Nonleaf models are useful for determining the
relationship between subplots in the hierarchy.

3.1 Training

The hierarchical LTM is trained using EM to maximize its
likelihood with respect to the datasample ¢ = {t;, ts,... tx}.
Training of a hierarchy of LTMs proceeds in a recursive
fashion. First, the Root LTM is trained and used to visualize
the data. Then, the user identifies interesting regions on the

visualization plot that they would like to model in a greater
detail.

Having trained models A at level ¢, the expectation of
the complete data likelihood of level-(£ + 1) is

N
<Ll >=>" > PWlt,)

n=1 N'eNodes(l)
> PMIN,t,) (8)
MeChildren(N)
K
> RY n{m(N)m(M|N)P(t,, z)}.

k=1

3.1.1 E-Step

In the E-step, we estimate the posterior distribution of all
hidden variables, using the “old” values of LTM para-
meters. Given a data point t,, we compute the model
responsibilities corresponding to the competition among
models belonging to the same parent as

P(M|Parent(M), t,) =
w(M|Parent(M))P(t,|M) (9)
ZM:&[M] m(M'|Parent(M))P(t,|M")’

where

[M] = Children(Parent(M)). (10)

Imposing P(Root|t,) = 1, the unconditional (on parent)
model responsibilities are recursively determined by

P(M|t,) = P(M|Parent(M), t,)P(Parent(M)|t,). (11)

Responsibilities of the latent space centers z7,
k=1,2,..., Ky, corresponding to the competition among
the latent space centers in each model M, are calculated
using (5).

3.1.2 M-Step

In the M-step, we estimate the parameters using the

posterior over hidden variables computed in the E-step.
Parent-conditional mixture coefficients are determined

using

N
m(M|Parent(M)) = —5 2 n—1 PM[ts) . (12)
> ey P(Parent(M)|t,)
Parameters © ! of the LTM M are calculated by solving

TRMTST = b(O@MP)GM T, (13)
v R’ are scaled (by (11))

where R{‘M] = (Rixfjﬂ‘:i ..... Kn=1,..l
responsibilities (5), RM = P(M|t,) Ri.; G™M) is a diagonal
matrix with elements g/ = > | RM.

n=1

When solving (13), if the link function b(-) is the identity,
one gets the closed form M-step of HGTM® [27], but, in
general, a nonlinear optimization algorithm is required. In

3. Even though we treat GTM as a special case of LTM with spherical
Gaussian noise model, (2) does not account for the “width"” parameter. We
decided to use the simplified formulation (2), because it is sufficient for all
other interesting noise models, such as Bernoulli, Poisson, multinomial, etc.
In the case of spherical Gaussian noise model, solving (13) sets the means of
the Gaussians and the width parameter needs to be updated as in [27].



the simplest case, we may employ a gradient-based inner
loop M-step*
A0M  {TRMT —b@MB)GM e, (14)
Training times are dependent on the data set and the
number of levels in the hierarchy. For the examples
presented in this paper (of up to 8,000 data points),
training times for the complete hierarchy were in the
order of 2-4 hours for a 1GHz Linux PC running
MATLAB. For data of a fixed complexity, the algorithm
scales linearly in the number of examples and the
dimensionality of the data space. Note that visualization
of a large data set using a trained model is relatively
quick (less than a minute). Because our model can
generalize, it is always possible to train it on a smaller
subset of the data and, thus, to tackle very large data sets
in practice.

3.2 Model Initialization

When initializing submodels, there are two things to
determine: the number of submodels and the initial
parameters of the submodels. We view the problem of
initializing submodel parameters primarily as one of
locating which region of data space each submodel should
be responsible for. To do this, regions of interest are defined
by the user in the latent (visualization) space. The points c;
selected in the latent space H correspond to the “centers” of
these regions.

These “centers” of the “regions of interest” are mapped
back to the data space and Voronoi compartments [1]
defined by the mapped points z(c;) € D, where z is the map
(3) of the corresponding LTM, are calculated in the data
space. In the case of a Gaussian noise model, the child LTMs
are initialized by local PCA in the corresponding Voronoi
compartments [27]. When using other noise models such as
Bernoulli or multinomial distributions, the PCA-initialized
LTMs are, in addition, individually trained (Section 2) in
their corresponding Voronoi compartments for 1 EM
iteration. The EM iteration “settles” the component LTMs
to their corresponding modeling regions. Empirically, this
initialization strategy works very well. We perform this
additional initialization step when the PCA initialization
alone does not “match” the noise distribution well, e.g.,
when the noise distribution is nonsymmetric or the data
space is discrete.

After the initialization of each child model, the full
hierarchical training described in Section 3.1 is used.

3.3 Plotting the Projections

We adopt the strategy used in [7], [27] and take advantage
of the probabilistic nature of our model by plotting
projections of all the data points on every plot, but
modifying the intensity in proportion to the responsibility
P(M]| t,) (11) which each plot (submodel M) has for the
data point t,. Points that are not well captured by a
particular plot will appear with low intensity.

4. In this partial M-step, we could alternatively use iterative reweighted
least squares [35].
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Fig. 1. An example of strongly overlapping clusters: visualization of a
collection of documents with a single Latent Trait Model. The documents
are classified according to the topic they cover. Each of 10 topic classes
is assigned a unique marker.

4 UNSUPERVISED LEARNING OF MIXTURES OF
LTMs

In previous sections, we have developed a general frame-
work for a visualization hierarchy. The user selects the
“regions of interest” to select initial locations of child
models and extend the visualization hierarchy. This method
is powerful when the clusters are separated clearly in the
two-dimensional latent space. On the other hand, when
facing a cluttered plot like that in Fig. 1, where thousands of
data points are shown (with densely clustered and over-
lapping projections), the user may be unable to determine
where submodels should be placed. In order to resolve this
problem, we have developed an alternative initialization
algorithm which decides both the number of submodels
and their location automatically. As far as we are aware,
there is no other algorithm for automatic initialization of
subplots in a hierarchical visualization model. In this
section, we will focus solely on the algorithm for mixture
models.

4.1 MML Formulation for Unsupervised Learning of
Mixture Models

Given a set ( = {t;,ts,...,ty} of data points, minimum
message length (MML) strategies select, among the models
inferred from ¢, the one which minimizes length of the
message transmitting (¢ [28]. Given that the data is
modeled by a parametric probabilistic model P((|#), the
message consists of two parts—one specifying the model
parameters, the other specifying the data given the model:
Length(@,¢) = Length(@) + Length(({|@).

The MML principle was first applied to unsupervised
learning of mixture models in [29] and was extended to
hierarchical models in [8]. A computer program, Snob, that
uses these principles for both parameter estimation and
model selection was described in [30]; this provides a flat
clustering model. The hierarchical model used in these
papers differs from ours in three main ways. First, only the
leaf nodes define a probability density, while our hierarchy



defines a density at all levels. Second, the earlier model has
relatively simple distribution models for clustering, while
we allow more complex component models (LTMs) which
support visualization. Third, a heuristic algorithm is used to
train the hierarchy, while we use EM.

Recently, Figueiredo and Jain [11] have developed an
MML framework for unsupervised learning of mixture
models; with the choice of a Jeffrey’s prior, the algorithm
selects the “appropriate” number of components while the
parameters of each model are estimated by ML. (A similar
approach for other density models was formulated in [30]
and [32].) The novelty of their proposed approach is that
parameter estimation and model selection are integrated in
a single EM algorithm, rather than using a model selection
criterion on a set of preestimated candidate models.

The particular form of MML criterion adopted in [11] is
of the form @ = argmin £(6, ¢), where

0

L(0.¢) = —log P(8) — log P(¢|0)+

1 c{ 1
alog [1(@)] +§ (l + logﬁ),

(15)

where I(0) is the expected Fisher information matrix, |I(€)| is
its determinant, and ¢ is the number of free parameters, i.e.,
the dimension of @. This approach was first proposed in [33].

By imposing a noninformative Jeffreys’ prior [3] on both
the vector of mixing coefficients {w(M)} and the para-
meters ®™ of individual mixture components [11], (15)
becomes

£0.0=2 > 1o ()

a(M)=0 (16)
A N AQ+1)
210g12+ 5 — log P((|0),

where A is the number of mixture components with
positive prior w(M) >0 and @ is the number of free
parameters of each individual mixture component. The use
of a noninformative prior is mathematically convenient,
since it cancels out the Fisher information matrix term I(#),
which is complex to analyze and very expensive to
compute. However, such a prior is formally equivalent to
a Bayesian prior which favors parameter values around the
values where the model is most sensitive [31], which is less
than ideal for p(f). We can justify the choice by the very
good empirical results that have been achieved [11] and by
the fact that we will use this criterion only for child model
initialization and not for child model training. The Jeffrey’s
prior over mixing coefficients favors extreme estimates (0 or
1) more strongly than other priors (such as minimum
entropy and negative Dirichlet), but this stronger compo-
nent pruning is beneficial for this application.

Minimizing (16) with respect to w(M) under the
constraint that the priors m(M) sum to 1, the following
reestimation formulas are obtained [11]:

max {0 —%-f- z:_l P(M|tn)}

3 o max {0. -2+, P(M’|t,,)}

(M) = (17)

where component responsibilities P(M|t,) are deter-
mined by

m(M)P(t,| M)

P(M|t,) = S v T M) Pt M)’

(18)

SN PIM)
a1 S Plta| M)
Free parameters of the individual LTMs are fitted to the
data ¢ using the EM algorithm outlined in Section 3 applied
to mixtures of LTMs.” This approach is not fully within the
MML formalism, since there is no regularization of the LTM
model parameters themselves: Instead, the mixing coeffi-
cients are regularized by (17). Note that LTMs correspond-
ing to zero #(M) become irrelevant and, so, (17) effectively
performs component annihilation [11].

4.2 The Algorithm

Given the training data ¢ = {t;,t2,...,ty}, we use the
MML approach to find the “appropriate” number of
mixture component LTMs that “explain” ¢ in a probabilistic
manner. LTMs that are good probabilistic generating
models of the data capture the data distribution well and,
hence, yield “good” visualization plots. To start the
training process, we choose the maximum number of
components A,,,, we are willing to consider at the next
level. This can be set to a large value and the MML training
procedure will select the optimal number of components no
greater than A,,,,. If more components are needed, then the
child model can be further refined at lower levels of the
hierarchy. Then, the algorithm initializes the component
LTMs by randomly selecting A, points from ¢ and
applying the method described in Section 3.2. The selected
Apnae points act as centers of regions of interest in the data
space. In other words, they play the role of vectors z(c;)
from Section 3.2.

As in [11], we adopt the component-wise EM (CEM)
algorithm [9], i.e., rather than simultaneously updating all
the LTMs, we first update the parameters ©'") of the first
LTM (13), while parameters of the remaining LTMs are
fixed, then we recompute the component responsibilities
{P(M]t,)} (18) and mixture coefficients {#(M)} (17) for all
components in the mixture. After this, we move to the
second component, update ©®? in the same way, and
recompute {P(M|t,)}, {#(M)}, etc., looping through all
mixture components. If one of the component LTMs dies
(7(M) = 0), redistribution of its probability mass to the
remaining components increases their chance of survival.
After convergence of CEM, we still have to check whether a
shorter message length can be achieved b}}/ using a smaller
number of mixture LTMs (down to A = 1).” This is achieved
by iteratively killing off the weakest LTM (with the smallest
7(M)) and rerunning CEM until convergence. Finally, the

(M) =

(19)

5. A mixture of LTMs can be considered a two-level hierarchical LTM.
Mixture components are children of the Root.

6. This is a nontrivial issue since, while we can measure the quality of
probabilistic models, e.g., via likelihood, there is no universal quality
measure for visualization plots. But, intuitively, good probabilistic proper-
ties of a LTM mean that the projection manifold follows closely the data
distribution and, so, the visualization plot is a “good” representation of the
data distribution.

7. If we knew that the number of mixture components was no less than
some number A,,;,, we would stop at A = A, [11].
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Fig. 2. (a) A two-dimensional manifold in data space. (b) Projection manifolds in data space of the second-level LTMs trained on the toy data.

winning mixture of LTMs is the one that leads to the
shortest message length £(8,¢) (16).

This training algorithm provides a very flexible approach
to building a visualization model. The user can specify a
different maximal number of child plots at each decision
point, and there is no upper limit to the total number of
plots in the hierarchy. Different parts of the hierarchy can
be trained to different depths (i.e., there is no need for the
tree to be balanced if that does not provide information). In
addition, because each level of the hierarchy forms a
probabilistic model of the data, it is possible for the user
to “retract” decisions; if a set of child plots does not provide
additional insight, that group can be removed, returning the
tree to its previous optimal state.

To demonstrate this algorithm, we dld an experiment on
a toy data set of 800 points t = (¢, ,t3)" lying on four two-
dimensional manifolds (“humps”) (see Fig. 2a). We asso-
ciated the points in the four “humps” with four different
classes, C, i =1,2,3,4, having four different labels. After
tnmmg (Apar = 10), a 6-component mixture was con-
structed. Projection manifolds of the six LTMs are shown in
Fig. 2b. Note that six child plots provide understandable
subgroups of the data; and that the six projection manifolds
closely approximate the four “humps”of the original
generating manifold. The corresponding hierarchy of
visualization plots can be seen in Fig. 3.

We stress that there is no contradiction between the
number of components six in the final mixture of LTMs and
the data set composed of four “humps.” There is no driving
force in the MML formalism to achieve this and this is not
the point of our study. The important thing is that the MML
method finds a good number of subplots so that the overall
probability of the data set is high (good projections) and the
mixture model is not too complex (unnecessarily high
number of subplots). At the same time, the MML method
automatically finds appropriate positions of the projection
manifolds in the data space. Another advantage of using the
MML criterion with the EM algorithm is that training is less
sensitive to model initialization [11]. The criterion reduces
the number of local optima in the error function (for
example, removing the pathological cases where the
variance of a component collapses to zero) and, so, the fact
that EM (like all deterministic algorithms) only finds a local
optimum is less of a problem.

8. We used LTMs with Gaussian noise model.

5 SEMISUPERVISED LEARNING OF VISUALIZATION
HIERARCHIES

The procedure for unsupervised learning of mixture models
discussed in Section 4 becomes more complex for nodes
(subplots) in hierarchical models at levels > 2. In this case,
we should consider model responsibilities of parent nodes
for the data points and these are recursively propagated as
we incrementally build the hierarchy. So, (9) and (11) are
used in hierarchical models instead of (18) used in the
simple mixture case. Also, (6) is applied in place of (19).

The proposed system for constructing hierarchies of
nonlinear visualization plots is similar to the one described
in [27]. The important difference is that now, given a parent
plot, its children are not always constructed in the
interactive way by letting the user identify “regions of
interest” for the subplots. In densely populated higher-level
plots with many overlapping projections, this may not be
possible. Instead, we let the user decide whether they want
the children to be constructed in an interactive or
unsupervised way.

In the unsupervised case, we use the MML technique to
decide an “appropriate” number and approximate position
of children LTMs. We collect data points from ¢ for which
the parent LTM has responsibility h1gher than a threshold
A (in our experiments, A was set to” 0.9). We then run
MML-based learning of mixtures of LTMs (Section 4.2) on
this reduced data set. The resulting local mixture is viewed
as an initialization for the full EM algorithm for training
hierarchies of LTMs described in Section 3.1. This way, an
“appropriate” number of LTMs is determined along with
their initial locations.

It should be noted that, by using Jeffrey’s prior, the
approach suggested in [11] implies an improper Dirichlet
prior (over the mixing coefficients) with negative para-
meters. As pointed out in [31], the use of the noninformative
Jeffrey’s prior in general raises problems from the Bayesian
point of view. For instance, improper priors may lead to
inadmissible estimates [26]. However, such priors have
been extensively used mainly due to mathematical conve-
nience: We do not have to compute the Fisher information

9. Other values for A, e.g., A = 0.8, could have been used. However, the
final local mixture of LTMs in the hierarchy is not very sensitive to the exact
value of A, since this is just an initialization step, before running full EM for
hierarchical LTM.
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Fig. 3. Visualization of the toy data constructed with unsupervised MML.

matrix (typically, a computationally expensive step). Never-
theless, as we will demonstrate in the next section, we have
experimentally found that for mixtures of LTMs, the use of
Jeffrey’s prior leads to sufficiently good initial estimates to
be fed to the hierarchical EM described in Section 3.1.
Moreover, the issue is less critical since the MML-based
model selection is used solely to initialize the child models
at higher levels of the hierarchy, while, typically, the user
himself will refine the plots at lower levels of the hierarchy
as in [27]. The Jeffrey’s prior over the mixing coefficients
favors strong component pruning, which is beneficial for
our purposes.

5.1 Experiments

In this section, we illustrate the semisupervised hierarchical
LTM visualization algorithm on three “real-world” data
collections.

Although the algorithm is derived in a general setting in
which individual LTMs M in the hierarchy can have
different sets of latent points ="', k = 1,2, ..., K, and basis
functions ¢;, j=1,2,..., My, in the experiments reported
here, we used a common configuration for all models in the
hierarchy. In particular, the latent space H was taken to be
the two-dimensional interval H = [—1, 1] x [—1, 1], the latent
points z\! € H were positioned on a regular 15 x 15 square
grid and there were 16 radial basis functions ¢; centered on a
regular 4 x 4 square grid. As usual in the GTM literature, the
basis functions were spherical Gaussians of the same
width'® ¢ = 1.0. We account for a bias term by using an

10. The width of the basis functions is related to the “flexibility” of the
generalized linear regression, fg(z) = @¢(z), from the latent space to the
data space. For a discussion on appropriate values for o, see [4], [27].

additional constant basis function ¢ (z) = 1, for all z € H. If
the noise model in LTM is Gaussian, we always consider
only spherical Gaussians, as in the original formulation of
GTM [4]. Complete training equations for hierarchical GTM
can be found in [27].

Note that in the interactive mode, the “centers” of the
regions of interest are shown as circles labeled by numbers.
These numbers determine the order of the corresponding
child LTM subplots from left to right.

5.1.1 Image Segmentation Data

As the first example, we visualize image segmentation data
obtained by randomly sampling patches of 3 x 3 pixels
from a database of outdoor images. The patches are
characterized by 18 continuous attributes and are classified
into four classes: cement + path, brickface + window, grass +
folinge, and sky (see [27]). The final visualization plot of
hierarchical LTM with Gaussian noise model can be seen in
Fig. 4. The Root plot contains clusters of overlapping
projections. Six plots at the second level were constructed
using the unsupervised MML technique (A,... = 10). Note
that the second-level LTMs already separate the four classes
fairly well and are interpretable enough to be analyzed
further in the interactive mode. For example, we selected
two and four “centers” for regions of interest (shown as
circles) in the second and fifth level-two plots, respectively.

5.1.2 Text Data Set

Since our system is based on the LTM, it can deal with
discrete data sets. As an illustration, we tested our system
on a text-collection of 8,000 documents formed by 10 topic
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Fig. 4. Hierarchical visualization of the image segmentation data constructed in a semi-interactive way. Numbered circles represent user-selected

locations for submodels.

classes from a newsgroup'' text corpus. The documents
were binary encoded over a dictionary of D = 100 words.
The initial preprocessing, word-stemming, and removal of
“stop-words” was done using the Bow toolkit.'> To match
the binary encoding, a Bernoulli noise model was em-
ployed, as a Gaussian would be inappropriate. Hence, a
hierarchy of LTMs was used instead of HGTM.

The visualization plot generated in a semi-interactive
way is shown in Fig. 5. The Root is extremely densely
populated with highly overlapping data projections. After
using the unsupervised MML technique (A =10), a
4-component mixture of LTMs was obtained on the second
level. Subclusters in these four level-two plots are decipher-
able. The user can then choose more detailed regions of
interest by using the interactive mode. This is illustrated in
the figure, but for complete class separation, more plots
would be required.

As in [27], this system also includes the child-modulated
ancestor plot technique, which can visualize the regions
captured by a particular child LTM M. This is done by
modifying all the ancestor plots up to the Root, so that
instead of the ancestor responsibilities, the responsibilities
of the model M, P(M|t,), are used in every plot on the
path from M to Root. This improves the understanding of
the relationships among subplots in the visualization
hierarchy. In Fig. 6, we highlight the visualization plots
which include the data points from the topic “sci.space,”
captured by the first model on the fourth-level.

11. http://www.cs.cmu.edu/~textlearning,.
12. http://www-2.cs.cmu.edu/~mecalum/bow.

5.1.3 Protein Localization Site Data Set

In the last experiment, we visualize a data set of 1,484 proteins
encoded as real-valued vectors."” The 6-dimensional data
points'* are classified into 10 classes (localization sites). The
class names are shown in the legend of Fig. 7. Here, we
demonstrate the application of the unsupervised MML
technique at a lower level in the hierarchy.

We trained a four-level hierarchy of LTMs (Gaussian
noise model) on the protein data and the resulting
projections are displayed in Fig. 7. Again, the Root plot
looks cluttered. Two plots at the second level were
constructed using the unsupervised MML technique
(Amar = 10). The first level-two plot is legible enough for
the user to select the “centers” in the interactive mode (as
shown in the figure). We used the MML algorithm as an
initialization technique for constructing child plots of the
second level-two plot (A0 = 5). Two resulting child plots
included readable clusters.

Note that visualization plots for this data set do not
provide a good separation, even at lower levels of the
hierarchy. It follows that the features used to describe the
data are not very discriminative with respect to the
10 binding site classes and the classes are highly over-
lapping. Our system enables the user to detect such
situations by understanding the underlying data distribu-
tion. Our findings are confirmed by the poor classification

13. The data set can be downloaded from the UCI Machine Learning
page: ftp://ftp.ics.uci.edu/pub/machine-learning-databases/ yeast/.

14. The original data is 8-dimensional. Two of the dimensions are
effectively constant and were removed.
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Fig. 5. Hierarchical visualization of the document data constructed in a semi-interactive way.

results (around 55 percent accuracy) obtained on this data
set using various classification techniques [12].

5.2 Comparison

Although the primary focus of this paper is on automating
the development of hierarchical models, it is also useful to
compare our results with another hierarchical visualization
technique. Interest in visualization of large multivariate

data sets has been growing recently; as well as the
generative approach taken by [7], [27] and this paper, more
heuristic methods have also been developed [36], [19], [16].
We have selected the first of these, Interactive Hierarchical
Displays (IHDs), as a benchmark for two main reasons: it is
recent work that unifies several features of earlier techni-
ques and it is the most closely related to our own in several
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Fig. 6. Hierarchical visualization of the document data constructed in a semi-interactive way. The set of points captured by the first LTM at level 4 of

the hierarchy is highlighted in the visualization plots of all its ancestors.

respects. It also has the advantage that an implementation is
publicly available.'®

Like HGTM, IHDs are designed to tackle the clutter
problem faced by traditional multivariate visualization
techniques when analyzing large data sets. The key strategy
is to put fewer items on the screen. This is achieved by first

15. http:/ /davis.wpi.edu/~xmdv.

constructing a hierarchical cluster tree. The tree can then be
visualized at different levels of detail; the user specifies the
point at which the tree is cut. Rather than showing all the
datapoints, each cluster is displayed. The cluster is
summarized by its mean with a band around it giving the
minimum and maximum values in each variable of the
cluster. This can be depicted using any multivariate
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Fig. 7. Hierarchical visualization of the protein data set constructed in a semi-interactive way.

visualization technique that shows all the variables: [36]
uses parallel coordinates [13], [34], star glyphs [24],
scatterplot matrices and dimensional stacking [20]. A band
is assigned the color of the cluster it represents. The strategy
for this, called proximity-based coloring maps colors by
cluster proximity based on the structure of the hierarchical
tree. The strategy has the following properties:

e sibling clusters have similar colors and

e a parent cluster has a color within the range of its
children’s colors.

To create this map, it is necessary to impose a linear

ordering on all the clusters.
Fig. 8 shows the result produced from hierarchical

parallel coordinates when applied to the image segmenta-
tion data set. In current level, five clusters are captured. The
mean points of individual clusters are mapped to a polyline
across all the dimensions with a band indicating the range
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Fig. 8. Hierarchical parallel coordinates visualization plot using the
image data set.

of each cluster. This graph shows that it is difficult to see the
shape of the clusters when compared with the results from
HGTM (see Fig. 4). Fig. 9 displays hierarchical glyphs,
where the mean values are used to generate the basic shape.
Although it suggests the shape of each cluster, it is not clear
which data points belong to it. In Fig. 10, a hierarchical
scatterplot matrix is presented. Again, the points shown in
the figure are the mean points of individual clusters. It is
not clear which clusters are significant.

5.3 Discussion

IHDs are a useful means of visualizing hierarchical clusters.
In [36], controlled experiments showed that most users
could find more structure in data sets using IHDs rather
than a single “flat” plot. They are a generic approach in that
they can be used with any hierarchical tree clustering
algorithm and any multivariate visualization that uses all
the original variables.

Fig. 9. Hierarchical star glyphs visualization plot using the image data
set.

1m 11 12 13 14 15 16 17 18

Fig. 10. Hierarchical scatterplot matrix visualization plot using the image
data set.

In contrast, our aim is more general: We want to
represent the whole data set in two dimensions without
loss of information. Only when this is not possible do we
split the plot up. Consequently, the hierarchical trees that
HGTM generates are usually much shallower and simpler
than those produced by other hierarchical clustering
methods. This allows the user to see the whole data set on
a few plots which means they are less likely to get lost in
multiple plots, but can still see the global picture.

Standard hierarchical clustering algorithms tend to
perform poorly when there is a lot of noise in the data or
when, as is often the case, the data is not split into well-
separated clusters. In addition, they are usually based on
heuristic distance measures. HGTM trees are a powerful
method of clustering data and do not suffer from these
disadvantages. In particular, they provide a probabilistic
density model for the data, which brings many benefits
(including principled automation of structure selection
using Bayesian methods, as demonstrated in this paper).
The fact that all the data is shown is also helpful; it allows
the users to drill down into different regions and find out
more about the data as well as the clusters. Users have
expressed some concern that the coordinate system in the
plots does not correspond with any meaningful variables.
However, this drawback has been overcome by allowing
them to specify regions where they can view the data locally
using parallel coordinates.

Another important benefit of HGTM is that it projects the
data onto a lower-dimensional space, which makes the plots
much easier to interpret. HGTM has been applied to drug
discovery data with more than 30 variables; at this size,
multivariate visualization techniques like glyphs are very
hard for users to understand. This two-dimensional
representation also captures the relationships between
clusters (which is very important to develop real under-
standing of the data); IHDs use a one-dimensional
representation of intercluster relationships (the proximity-
based coloring) that is necessarily less rich in expressive
power.

IHDs are a display technique, so the only time
consuming aspect is the hierarchical clustering algorithm.
HGTM has an efficient EM algorithm: It takes 2-3 minutes
to train a model for a data set of 1,000 examples and see
15 variables on a “standard” 1GHz PC. The automated



Fig. 11. Plots of magnification factors (log2-scaled) in the hierarchy of LTMs fitted on the document data.

initialization algorithm takes somewhat longer since there
is a need to train models of several different structures at
each level: the image segmentation and protein data sets
required in the order of 10 minutes to train. The text data
set, with 8,000 examples and 100 variables, takes rather
longer: in the order of two hours. It is worth noting that
these times are based on a program written using the
MATLAB mathematical toolkit; an implementation in a
3GL such as C would normally be around twice as fast.
Once the model is trained, the user can interact with the
plot with no time delays.

6 LocAL MAGNIFICATION FACTORS OF THE LATENT
TRAIT MANIFOLDS

In this section, we first briefly review the notion of local
magnification factors for the original GTM [6]. We then
rederive the formula for computing magnification factors
for the more general LTM.

The term “magnification factor” [6] refers to the degree
of stretching or compression of the latent space when
embedded into the data space. Previous experience has
indicated that magnification factors are a useful tool for



interpreting 2D nonlinear visualization plots. For example,
projections of well-separated dense clusters of data points
will occupy compressed regions on the visualization plot
(small magnification factors), separated by a band of highly
stretched area (high magnification factors).

Let us consider the Cartesian coordinate system defined
on the latent space and the mapping of this space to a
curvilinear coordinate system defined on the manifold
embedded in the data space. The local magnification factor
corresponding to a point z; in the latent space can be
defined as the ratio between the area of an infinitesimal
rectangle in the latent Cartesian space and the area
generated by mapping it through (3) on the projection
manifold. This ratio is equal to /|S(z)|, where |S(zy)| is
the determinant of the metric tensor S =T'T, where I’
denotes the Jacobian of the mapping (3) at x;. For GTM,
since b(.) is identity function, I" evaluates as ®@V, where V is

the M x L matrix (252 :
9 |z=20 ) =1, M 1=1,...L

For the Latent Trait Models, we have

_ Dz(z) _ b(®¢(zy))

T = = FOV, 20
Jx dx (20)
where the D x D matrix
o ()
OYd ly-e0(x0) d=1,..0d=1....D

is the Fisher information matrix of the noise distribution.
Indeed, if the noise model is Gaussian, F' turns out to be
the identity matrix. With the choice of RBF nonlinearities
for ¢(-), the (I,m)th element of the matrix V is
Vin = —Om(z0) (21 — Cmy)o™2, where c¢,,; denotes the Ith
coordinate of the radial basis center corresponding to the
mth basis function and ¢ is the width of the RBF
functions.

In summary, the magnification factor associated with a
latent space point z; is

VIVIO'FTFev|.

It is easy to see that this formula differs from the one
derived in [6] for the original GTM by the presence of the
matrix F'F, which reduces to identity in the case of
Gaussian noise. So, the formula for computing magnifica-
tion factors for GTM derived in [6] is recovered in the
special case of (21), when the noise is Gaussian.

Note also that in all independent noise models, this
matrix will be diagonal; therefore, the increase in computa-
tional complexity will not be significant. However, this is
not the case for the multinomial trait model (as can be seen
in Appendix A.3).

As an example, we show in Fig. 11 the magnification
factor plots (log-scaled) for the projection hierarchy of the
text data set in Fig. 5. In general, dark bands in the plots
indicate well-separated clusters of points in the data space.
For example, there is a dark band slightly left of the center
of the 11th level-three model. The band divides different
topics in the data space. From the corresponding model in
Fig. 5, we see that the left region mostly involves topic

(21)
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Fig. 12. A rescaled visualization plot of magnification factors for the
fourth LTM at level 3 in the hierarchy shown in Fig. 11.

“talk.politics.misc,” and the right region contains a mixture
of topics.

As an example of detailed analysis of magnification
factors, we focus on the fourth level-three LTM model in
Fig. 11. The corresponding projection plot in Fig. 5 contains
mostly documents from a single topic, “sci.space.” An
enlarged (locally-scaled) view of the magnification factor
plot is presented in Fig. 12. There is a dark band around the
diagonal line of the plot. Hence, we infer that documents on
either side of the band correspond to different clusters and
that a change of subtopic occurs. The list of five most
probable dictionary words for each latent space centre of
the corresponding LTM is shown in Fig. 13. With reference
to Fig. 12, two clusters can be found on each side of the
separating band. Key words for each latent space center
inside the region bounded by the solid border are
completely the same and have the same ordering. They
appear to refer to documents relating to space shuttle
launches, while key words inside the region with the
dashed border seem to be associated with articles concern-
ing space orbits.

7 CONCLUSION

In this paper, we have presented a general system for
hierarchical visualization of large data sets which may be of
either continuous or discrete type. We also derived
formulas for magnification factors in latent trait models.
The proposed system gives the user a choice of initializing
the child plots of the current plot in either interactive, or
automatic mode. This latter feature is particularly useful
when the user has no idea how to choose the area of interest
due to highly overlapping dense data projections. We have
evaluated this system on three real world data sets and
compared the results with an existing method for hierarch-
ical visualization. In many problems, particularly where
there are not clearly defined and separated clusters of data,
hierarchical LTMs offer significant benefits.

The system can be used in many different fields, such as
document data mining, telecommunications, bioinfor-
matics, market-basket analysis, or information retrieval.
We are currently developing this system further to provide
more user feedback during the data exploration process and
to combine visualization with localized modeling (for
example, to predict properties of chemical compounds).
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Fig. 13. The most probable words formed in each of the 15 by 15 latent grid points by the Bernoulli latent trait model obtained in the experiments on

text documents data.

APPENDIX

QuANTITIES REQUIRED FOR COMPUTING
MAGNIFICATION FACTORS IN THE REPORTED
EXPERIMENTAL SETTINGS

The exact form of the matrices F' is dependent on the
specific noise-model being employed. These quantities
require the computation of the first derivatives of the
inverse link function b(). In this Appendix, we will provide
the expressions for those members of the exponential model
family which have been employed in the reported experi-
mental settings.

A.1 Independent Gaussian Noise Model
The Gaussian model is the only member of the exponential

family of distributions which is characterised by a quadratic

cumulant function

1,

By(y) = 53:": .

Therefore, it has a linear inverse-link function and higher

(22)

derivatives vanish.

be (y) = ye, (23)
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A.2 Independent Bernoulli Noise Model

In the case of the Bernoulli model, the cumulant function
has the following form:

Bi(y) = log(1 + eap(y). (25)

The required derivatives are then computed as follows:

_explyr) ,

be(Y) = T exn o) xp )’ (26)
e(y) [0 t £t

oy {b;(y)(l —b(y) t=t. (27)

It can be seen that for independent noise models, the Fisher
information matrix F is diagonal.

A.3 Multinomial Noise Model

The multinomial distribution is identified by the following
cumulant function:

B(y) =log ( Z f::x:p(yg)) . (28)
t=1:T
Accordingly, the derivatives are given by

exp(yr)

bo(y) = gl (29)
r i1 exp(yer)
by (y) _ { —b;.r(y)ba(y) t#t (30)
Ay be(y) — be(y)bi(y) t=1.
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