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Abbreviations used in this paper: 
I B inhibitory subunit of NF kappa B alpha 

LPS, lipopolysaccharide 

NF-κB, nuclear factor-kappaB 

PP2, Src tyrosine kinase family inhibitor 

TG2, transglutaminase 2 

TG2-X, crosslinking activity mutant TG2 

TG2-G1-G2, guanine nucleotide binding mutant forms of TG2 

TG2-S, secretion mutant TG2 

TLR4, toll-like receptor 4 

VN, vitronectin 
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Abstract 

Transglutaminase 2 (TG2) is a protein crosslinking enzyme with several additional 

biochemical functions. Loss of TG2 in vivo results in impaired phagocytosis of apoptotic cells 

and altered proinflammatory cytokine production by macrophages engulfing apoptotic cells 

leading to autoimmunity. It has been proposed that TG2 acts as an integrin 3 coreceptor in 

the engulfment process, while altered proinflammatory cytokine production is related to the 

lack of latent TGF  activation by TG2 null macrophages. Here we report that TG2 null 

macrophages respond to lipopolysaccharide treatment by elevated IL-6 and TNF  production. 

Though TGF  has been proposed to act as a feed back regulator of proinflammatory cytokine 

production in LPS-stimulated macrophages, this phenomenon is not related to the lack of 

active TGF  production. Instead, in the absence of TG2 integrin 3 maintains an elevated 

basal Src family kinase activity in macrophages, which leads to enhanced phosphorylation 

and degradation of the I B Low basal levels of I B  explain the enhanced sensitivity of 

TG2 null macrophages to signals that regulate NF- B. Our data suggest that TG2 null 

macrophages bear a proinflammatory phenotype, which might contribute to the enhanced 

susceptibility of these mice to develop autoimmunity and atherosclerosis. 

Key words: inflammation, macrophages, Toll like receptors, NF-kB pathway, TGF-beta  
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1. Introduction 

 Transglutaminases are a family of thiol- and Ca2+-dependent acyl transferases that 

catalyze the formation of a covalent bond between the -carboxamide groups of peptide-

bound glutamine residues and various primary amines, including the -amino group of lysine 

in target proteins [1]. Eight distinct enzymatically active transglutaminases have so far been 

described [2]. TG2 is very unique among the TG family members, because in addition to 

catalyzing the formation of protein crosslinks, it also possesses GTPase, protein disulfide 

isomerase and protein kinase activities [3]. Although TG2 is localized predominantly in the 

cytoplasm, substantial amounts of the protein is present also on the surface in various cell 

types and in the extracellular matrix [4,5], despite of the fact that TG2 has no leader sequence, 

hydrophobic domains or posttranslational modifications for targeting the endoplasmic 

reticulum or Golgi apparatus. In addition, TG2 also interacts with integrins of the 1 and 3 

subfamilies, and integrin/TG2 complexes are detected inside the cell during biosynthesis and 

accumulate as co-receptors on the cell surface [6,7].  

 We have previously reported that TG2-/- mice develop an age-dependent autoimmunity 

due to defective in vivo clearance of apoptotic cells [8]. TG2 expressed on the cell surface of 

macrophages promotes the engulfment of apoptotic cells by forming a complex with both 

integrin 3 and its bridging molecule, milk fat globule-EGF factor 8 [9]. In the absence of 

TG2 integrin 3 does not accumulate properly in the phagocytic cup, and the apoptotic cell-

induced activation of Rac1 is impaired. As a compensatory response, TG2 null macrophages 

elevate the expression levels of both integrin 3 and RhoG, and the cell adhesion-induced 

integrin 3 signaling is enhanced [9,10]. 

Though studies on knock out mice, in which the in vivo clearance of apoptotic cells is 

impaired, suggested that impaired phagocytosis of apoptotic cells might lead to the 

development of autoimmunity [11, 12], it is very likely that altered proinflammatory cytokine 
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production by macrophages engulfing apoptotic cells contributes to the phenomenon, since 

CD14-/- mice, which show clear defect in the in vivo clearance of apoptotic cells, but no 

alteration in proinflammatory cytokine production during engulfment of apoptotic cells, do 

not develop autoimmunity [13]. In contrast, macrophages from TG2, Mer tyrosine kinase or 

complement C1q null mice, which show also a defect in the in vivo clearance of apoptotic 

cells, but develop autoimmunity, produce elevated levels of proinflammatory cytokines, when 

engulf apoptotic cells [14-16]. Since TGF-  was shown to contribute to the down-regulation 

of proinflammatory cytokine production by macrophages engulfing apoptotic cells [17], and 

TG2 is required for the activation of latent TGF  produced by macrophages [18], it has been 

suggested that altered proinflammatory cytokine production by TG2 null macrophages is 

related to the lack of TGF-  activation [14]. Since TGF-  has been proposed to act also as an 

autocrine feed back regulator of proinflammatory cytokine production of LPS-stimulated 

macrophages [19], we decided to investigate whether loss of TG2 could also alter LPS-

induced production of proinflammatory cytokines. 

The innate immune system copes with infection by producing proinflammatory 

mediators such as TNF-α and IL-6. Conserved pathogen-associated molecular patterns on 

microorganisms are recognized by Toll-like receptors, which mediate signals to activate 

immune cells via association with different intracellular adaptor proteins [20]. LPS, a 

component of the cell wall of Gram-negative bacteria, is recognized by TLR4 together with 

accessory molecules such as CD14, and TLR4 then transduces LPS signaling via both 

myeloid differentiation factor 88-dependent and -independent pathways, each of which 

activates NF-κB, a transcription factor, that controls the expression of various 

proinflammatory cytokine genes [21]. Among many others, it has been reported that v 3 

integrin signaling can also lead to NF- B activation and enhance LPS-induced NF B 

signaling [22,23]. The pathway involves the Src tyrosine kinase, which phosphorylates and 
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activates inhibitory kappa kinase beta. Inhibitory kappa kinase beta then promotes the 

degradation of I B a negative regulator of NF- B activation [24]. 

Here we report that TG2 null macrophages indeed respond by elevated 

proinflammatory cytokine production to LPS stimulation, however, the alteration is not 

related to the lack of TGF- activation, but to an enhanced v 3 integrin signaling, which 

maintains a lower basal I B level.  
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2. Materials and Methods 

2.1 Cell culture 

Resident peritoneal macrophages were isolated from 3-6 months old C57B/6 or TG2-/- 

mice [45] by peritoneal lavage after being killed by ether anesthesia. Study protocols were 

approved by the Animal Care Committee of the University of Debrecen. Peritoneal 

macrophages were maintained for two days prior to experiments in RPMI1640 medium 

supplemented with 10% FBS. 

 

2.2 Adenoviral gene delivery system  

Recombinant, replication-deficient adenoviral vectors encoding either LacZ and the murine 

TG2 gene or the secretion deficient (TG2-S), guanine nucleotide binding deficient (TG2-G1 

and TG2-G2) or crosslinking function deficient (TG2-X) TG2 mutants were produced using 

the AdEasy XL system (Stratagene) according to the manufacturer’s instruction. Virus titers 

were determined by plaque assay in 293 cells after exposing them to virus for 48 hours in 

DMEM medium supplemented with 2% serum and antibiotics. For gene delivery, 2x106 

macrophages were exposed to 2x109 PFU/ml virus particles for 48 hrs in the same medium. 

LacZ expression was determined with X-gal staining, while TG2 expression by Western blot 

analysis using anti-TG2 specific antibodies. 

 

2.3 Determination of cytokine production 

Wild-type and TG2 null peritoneal macrophages were seeded onto 24-well plates at a density 

of 5x105 cells/well in 500 l medium. Cell were treated with 100 ng/ml crude LPS (Sigma) 

for one hour in the presence or absence of increasing concentrations of recombinant TGF  

(Serotec) as indicated in the results section. After one hour LPS was removed and fresh 
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medium was added to the cells containing either recombinant TGF , 4 ng/ml neutralizing 

anti-pan TGF  antibody (R&D Systems), isotype control antibody or vehicle. Supernatants 

were collected and frozen at the indicated time points. IL-6, TNF  and active TGF  cytokine 

levels were measured with R&D Systems ELISA kits. 

 

2.4 Western blot 

Wild-type and TG2 null peritoneal macrophages were seeded onto 6-well plates at a density 

of 2x106 cells/well. Cells were treated with 100 ng/ml LPS for the indicated time periods, 

pretreated with 1 g/ml soluble vitronectin (Sigma) for 30 minutes or pretreated with 2 M 

PP2 (Calbiochem) for 24 hours. Cells were harvested at the indicated time points and boiled 

2x sample buffer and loaded onto SDS PAGE gels. PVDF membranes were probed with anti-

I B  (Santa Cruz Biotechnology), anti-cSrc (Santa Cruz Biotechnology), anti-

phospho(Tyr416)-Src (Cells Signaling Technology), anti-integrin 3 (MBL International), 

anti-phospho (Tyr474) integrin  Santa Cruz Biotechnology anti-TG2 (Santa Cruz 

Biotechnology) and -actin antibodies (Sigma). 

 

2.5 Determination of NF- B p65 nuclear translocation 

107 wild-type and TG2 null peritoneal macrophages were treated with 100 ng/ml LPS for 30, 

60 and 120 minutes. Cell were rinsed with ice cold PBS and nuclei were isolated with Nuclei 

EZ kit (Sigma) according to manufacturer’s instruction. Nuclear p65 subunit was detected 

with TransAM p65 kit (ActiveMotif) according to manufacturer’s instruction. 

 

2.6 Flow cytometry 
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5x105 peritoneal macrophages were labeled in 50 l PBS with FITC conjugated anti-CD14 

antibody (Pharmingen) or rabbit-anti mouse TLR4 antibody (Santa Cruz Biotechnology) 

washed with PBS and incubated further with FITC-anti-rabbit antibody. Cells were analyzed 

on a Becton Dickinson FACS Calibur platform.  

 

2.7 Quantitative PCR 

After various treatments 2x106 peritoneal macrophages were washed with ice-cold PBS. RNA 

was extracted with Tri-reagent. cDNA was synthesized with High-Capacity cDNA Archive 

Kit (Applied Biosystems) according to manufacturers instruction. Cyclophilin D, IL-6 and 

TNF  levels were determined with Taq-Man PCR using FAM-MGB labeled probes (Applied 

Biosystems) on ABI7900 platform. Gene expression was normalized to cyclophilin D 

expression. 

 

2.8 mRNA stability determination 

Wild-type and TG2 null peritoneal macrophages were pre-treated with 100 ng/ml LPS for 1 h 

followed by addition of 1 g/ml Actinomycin D (Sigma). Total RNA was isolated at the 

indicated time points and TNF  mRNA was measured by quantitative RT-PCR. 
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3. Results  

3.1 TG2 null macrophages respond by elevated proinflammatory cytokine 

production to LPS treatment 

To determine the time course of LPS-stimulated proinflammatory cytokine production of wild 

type resident peritoneal macrophages, macrophages were exposed to 100 ng/ml LPS, and the 

LPS-induced IL-6 and TNF production was determined by ELISA at various time points 

(Fig.1). To avoid detection of in vivo induced proinflammatory cytokine production, 

macrophages were plated for 2 days, by a time when no more endogenous cytokine 

production was found, before addition of the LPS. As shown in Figure 1, the IL-6 and 

TNF production of wild-type peritoneal macrophages reached their maximum at 6h 

following LPS stimulation, and these levels remained with no significant alterations during 

the following 20 hours (data not shown). While IL-6 production started to raise only after one 

hour of LPS stimulation (Fig. 1A), a significant amount of TNF was detected already at one 

hour of LPS stimulation (Fig. 1B) indicating that some TNF is stored within the 

macrophages, which is released upon LPS-stimulation. Peritoneal macrophages responded 

with more IL-6 than TNF production to LPS stimulation. 

 Loss of TG2 did not affect the kinetics of IL-6 or TNF  production , but the levels of 

proinflammatory cytokines produced by TG2 null macrophages were higher at each time 

points as compared to that produced by the wild-type ones. These data indicate that in the 

absence of TG2 macrophages are more sensitive to LPS stimulation than their wild type 

counterparts.  

 

3.2 Elevated proinflammatory cytokine production by TG2 null macrophages is 

not related to the lack of TGF  activation 
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Since TG2 is required for the activation of latent TGF  produced by macrophages [18], and 

active TGF  has been proposed to act as an autocrine feed back regulator of proinflammatory 

cytokine production of LPS-stimulated macrophages [19], we decided to test whether the 

enhanced proinflammatory cytokine production is related to the lack of TGF activation by 

TG2 null macrophages.  

 As shown in Figure 2A, in line with the previously reported data about the 

requirement of TG2 for the activation of latent TGF [18], TG2 null macrophages indeed 

were unable to produce detectable amounts of active TGF . However, a pan 

TGF neutralizing antibody [25] failed to enhance the LPS-induced early proinflammatory 

cytokine production (Fig.2B). The neutralising antibody concentration used was sufficient to 

block all the active TGF , because after addition of the neutralising antibody no active TGF  

was detectable in the supernatants by ELISA (data not shown). In addition, recombinant 

TGF , in the concentrations we detected active TGF  in the cell culture medium, could not 

significantly affect LPS-induced proinflammatory cytokine production of TG2 null 

macrophages (Fig. 2C), indicating that TGF has no effect on the short-term LPS-induced 

cytokine formation of macrophages, and not the lack TGF  production is responsible for the 

enhanced proinflammatory cytokine formation by TG2 null macrophages. So we decided to 

test further the characteristics of LPS signaling in TG2 null peritoneal macrophages. 

 

3.3 Basal levels of I B  are decreased in TG2 null macrophages  

LPS is recognized by macrophages via TLR4 together with the accessory molecule CD14 

[21]. To test, whether the expression of the LPS sensing receptors have changed in TG2 null 

macrophages, the cell surface expression levels of CD14 and TLR4 were detected by flow 

cytometry. However, as shown in Fig. 3A, no change in the cell surface expression of these 
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receptors was found in TG2 null macrophages, indicating that not an altered expression of 

these receptors is responsible for the enhanced LPS sensitivity.  

There are several levels, at which LPS-induced production of TNF  and IL-6 can be 

controlled. First we decided to test whether their transcription is altered. As shown in Figure 

3B, using Q-PCR technique we could not detect basal levels of mRNA for the two 

proinflammatory cytokines. Exposure to LPS enhanced the expression of TNF  and IL6 in 

both types of macrophages, but the TG2 null macrophages showed about 2 and 4 fold higher 

mRNA productions, respectively. To differentiate whether the transcription or the stability of 

the mRNA was altered in the absence of TG2, LPS-stimulated macrophages were exposed to 

actinomycin D, a transcription inhibitor and the time dependent decrease in the mRNA 

expression of TNF was followed in both wild-type and TG2 null macrophages (Fig.3C). 

Since no change in the kinetics of the mRNA degradation was found, it is likely that the loss 

of TG2 alters the proinflammatory cytokine production at transcriptional level.   

 Since the signaling pathways induced by LPS transduce their effect on 

proinflammatory cytokine production partly via activating NF-κB, and these pathways 

regulate the degradation of the inhibitory subunit I B [21], a negative regulator of NF-κB, 

we decided to determine the I B levels in wild-type and TG2 null macrophages following 

LPS stimulation. As shown in Figure 3D, there was no change in the kinetics of the I B  

degradation induced by LPS stimulation, but the basal levels of I B  in TG2 null 

macrophages were significantly lower than that of the wild type cells. 

 IκBα is commonly associated with the NF-κB dimer p50(NF- B1)/p65(RelA). 

Following proteolytic degradation of IκBα by the proteasome, the NF-κB dimer becomes free 

to enter the nucleus and to activate transcription of target genes. While NF- B p65 is 

transcriptionally active, NF- B p50 does not possess a transactivation domain [24]. Thus, 

though p65 and p50 can synergistically activate for example the TNF  promoter [26], the 
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presence of p65 is crucial for the initiation of transcription [24]. That is why we decided to 

test the nuclear translocation of the p65 subunit of NF- B by the TransAM p65 kit 

(ActiveMotif). As shown in Figure 3E, LPS stimulation induced the nuclear translocation of 

p65 in both types of macrophages. However, in accordance with the lower I B  levels in 

TG2 null cells, both the basal and the LPS-induced levels of p65 were higher in the nucleus of 

TG2 null macrophages than in that of the wild-type macrophages at each time point tested. 

These data indicate that the loss of TG2 alters a signaling pathway that is coupled to the 

control of I B levels.  

   

3.4 TG2 is required on the cell surface to decrease LPS-induced 

proinflammatory cytokine production in TG2 null macrophages 

Previous studies have already shown association between NF- B activation and TG2. In LPS-

stimulated microglial cells TG2 activates NF- B via a novel pathway. Rather than stimulating 

phosphorylation and degradation of I B , TG2 interferes with its action by protein 

polymerization [27]. On the other hand, in cancer cells overexpression of TG2 enhances NF-

activation by promoting integrin signaling [28]. However, if these mechanisms exist in 

macrophages, loss of TG2 should lead to a decreased, not to an enhanced LPS signaling. 

 To answer which biological functions of TG2 are required to downregulate LPS-

induced proinflammatory cytokine production, adenoviral gene delivery system was used to 

transfect primary peritoneal macrophages with various mutants of TG2 (Fig. 4A). The 

following TG2 mutants were tested: a crosslinking activity mutant (TG2-X) by replacement 

of catalytic Cys277 by Ser [29], two guanine nucleotide binding mutants by replacement of 

Lys172 and Phe173 by Asn and Asp (TG2-G1) [30], and of Glu578and Arg579 by Gln and Glu 

(TG2-G2) [31], and a secretion mutant (TG2-S) by replacement of Tyr274 by Ala [32]. As 

shown in Figure 4B, using IL-6 production as a read out, only the wild type and the 
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crosslinking mutant were able to fully revert the LPS sensitive phenotype, while the secretion 

mutant and the two guanine nucleotide binding mutants were ineffective. Our data indicate 

that cell surface TG2 regulates negatively the LPS-induced proinflammatory cytokine 

production, and the crosslinking activity is not required for this effect. In addition, these data 

confirm those findings, which suggested that the enhanced LPS-induced proinflammatory 

cytokine production of TG2 null macrophages is not related to the lack of TGF  activation, as 

it would require the crosslinking activity of TG2 [18]. 

 

3.5 Altered v 3 signaling is responsible for the enhanced LPS-induced 

proinflammatory cytokine production in macrophages 

On the cell surface TG2 has been shown to act as an integrin-binding adhesion coreceptor and 

acting so to suppress Src kinase activity [33]. Since it has been reported that v 3 integrin 

signaling can lead to NF- B activation and enhance LPS-induced NF- B signaling via 

activating Src kinase [22,23], we decided to test the potential role of an altered v 3 integrin 

signaling in the enhanced LPS-induced proinflammatory cytokine production of TG2 null 

macrophages. Preincubation of TG2 null macrophages with soluble vitronectin, an inhibitor of 

the v 3 integrin signaling [34,35], decreased the LPS-induced pro-inflammatory cytokine 

production on mRNA levels, indicating that v 3 integrin signaling promotes the LPS-

induced proinflammatory cytokine production in TG2 null macrophages (Fig. 4C). 

Interestingly, the same treatment enhanced the proinflammatory cytokine production by wild-

type macrophages (Fig. 4D). In line with these observations, LPS-induced I B  levels were 

further decreased following vitronectin treatment in wild-type cells (Fig. 4F), but remained 

more elevated in knock out cells (Fig. 4E). Since cell surface TG2 was reported to crosslink 

soluble vitronectin [36], and crosslinked soluble vitronectin might enhance instead of 
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inhibiting v 3 integrin signaling, for wild-type macrophages we repeated the experiments in 

the presence of R294, a non-permeable TG2 inhibitor, which blocks the crosslinking activity 

of cell surface TG2 [compound 4 in 37]. As shown in Figure 4D, in the presence of the TG2 

inhibitor and soluble vitronectin wild-type cells responded to LPS with nearly the same 

amount of cytokine mRNA expression as in the absence of them. In control experiments 

addition of the TG2 inhibitor did not influence the response of TG2 null cells to soluble 

vitronectin (Fig. 4C). Alterations in the B levels mirrored these changes in the cytokine 

mRNA expression (Fig. 4E and F). Altogether these data indicate that under our experimental 

conditions in wild type cells ligand-activated v 3 integrin signaling, which can be inhibited 

by soluble vitronectin, does not play a determining role in influencing LPS signaling (though 

stimulation of it by crosslinked vitonectin is capable of its enhancement), while in TG2 null 

cells it does.  

 

3.6 In TG2 null macrophages enhanced v 3 integrin-induced src family 

tyrosine kinase activation is responsible for the enhanced NF B signaling 

Next we decided to test the activation state of Src family tyrosine kinases in TG2 null 

macrophages. The Src-family tyrosine kinases are highly conserved allosteric enzymes 

playing a key role in integrin cellular signaling. Phosphorylation of Tyr416 plays a central 

role in their activation [38]. In line with the report, which suggested that TG2 might 

negatively control v 3 integrin-regulated Src kinase activity [33], an enhanced 

phosphorylation of c-src family kinases was detected at Tyr 416 in TG2 null cells without a 

detectable change in the c-src protein levels as compared to the wild type cells (Fig.5A). LPS 

stimulation enhanced the amount of phosphorylated Src family tyrosine kinases in both types 

of macrophages (Fig. 5A), in line with previous publications, which showed that Src kinase is 

also involved in LPS signaling [23, 39]. 
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The cytoplasmic domain of β3 integrin contains tyrosines at positions 747 and 759 in 

domains that have been implicated in regulation of αvβ3function and that serve as potential 

substrates for Src family kinases [40]. Phosphorylation of Tyr at residue 747 was reported to 

be required for optimal post-ligand binding effects [41], as well as for proper binding of the 

integrin ligands [40] thus participating in both in the “outside in” and “inside out” integrin 

signaling. To test the activation state of 3 integrin in TG2 null cells both the level of 3 

integrin and the phosphorylation state of its Tyr747 residue were determined by Western blot 

analysis. As shown in Figure 5B, in accordance with our previous findings [9,10] the levels of 

3 integrin were elevated in TG2 null macrophages. While in wild-type cells 3 integrin was 

only slightly phosphorylated at the Tyr747 site, in TG2 null cells the phosphorylation level 

was much more pronounced indicating an enhanced activation of integrin 3 in the absence of 

TG2. However, phosphorylation of 3 integrin and Src tyrosine kinases seems to be related to 

each other in reciprocal way, as inhibition of v 3 integrin by soluble vitronectin decreased 

the phosphorylation level of Src tyrosine kinase, and similarly inhibition of Src tyrosine 

kinase with 2 M PP2 [(4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine)], 

an Src tyrosine kinase family inhibitor, inhibited the phosphorylation state of v 3 integrin 

(Fig. 5C). 

 Then we tested whether the decreased I B levels could be related to the enhanced 

activation of Src. Preincubation of macrophages with 2 M PP2 for 24 hours did not affect 

their viability, but as shown in Figure 5D, equalized the basal levels of I B  detected in the 

wild-type and TG2 null macrophages indicating that the enhanced activity of Src kinase is 

responsible for the altered I B  levels in TG2 null cells. In addition, inhibition of Src kinase 

delayed LPS-induced degradation of I B in both types of cells, and in the presence of PP2 

no difference was found in the I B levels following addition of LPS. Finally, addition of 



 17 

PP2 decreased, but at the same equalized the LPS-induced mRNA production of the two 

proinflammatory cytokines within the wild-type and TG2 null macrophages (Fig. 4C and D). 

All together these data provide evidence for the involvement of the v 3 integrin regulated 

Src family tyrosine kinases in the altered LPS signaling in TG2 null macrophages. 

 

4. Discussion 

Previous studies have shown that TG2 null mice develop an age-dependent autoimmunity due 

to defective in vivo clearance of apoptotic cells by macrophages [8]. In addition, it was also 

demonstrated that TG2 null macrophages unlike their wild-type counterparts, when are 

exposed to apoptotic cells, release proinflammatory cytokines, including IL-6 [14]. In the 

present study the LPS responsiveness of TG2 null macrophages was investigated. We found 

that in the absence of TG2 macrophages become more sensitive to LPS treatment and respond 

by enhanced proinflammatory cytokine production as compared to their wild-type 

counterparts.  

Increasing evidence suggests that TGF released by macrophages exposed to either 

LPS [18] or apoptotic cells [17] play a key role in the control or termination of the 

proinflammatory response. However, to act so macrophages have to be exposed prior or for a 

longer time period to the endogenous or rTGF  As a result, though we confirmed 

previous suggestions that TG2 is required for TGF activation by murine macrophages [18], 

testing by addition of neutralizing anti-TGF  antibodies, lack of active TGF  production did 

not significantly affect the LPS-induced proinflammatory cytokine production of TG2 null 

macrophages in short term cultures.  

Instead we found that loss of TG2 altered the v 3 integrin signaling in macrophages 

leading to an enhanced basal Src tyrosine kinase activity. The crosslinking activity of TG2 
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was not required for proper v 3 integrin signaling and LPS-induced cytokine production, but 

TG2 had to be expressed on the cell surface and bind guanine nucleotides. These results are in 

agreement with previous findings, which demonstrated that TG2 modifies integrin signaling 

in guanine nucleotide bound form [43]. Though TG2 can act as a G protein in many 

physiological settings, in the context of regulating integrin signaling proper guanine 

nucleotide binding of TG2 was suggested to be required for stabilizing the protein in a 

conformation state that can facilitate physical interactions with other proteins, such as 

integrins [43]. Our findings seem to confirm that of others, which showed a synergism 

between v 3 integrin signaling and LPS sensitivity [23].  

Interestingly, though loss of TG2 sensitized macrophages to LPS, loss of TG2 

prevented mice from the endotoxic shock induced by LPS [44]. The pathogenesis of the 

endotoxic shock, however, is very complex, and the various effects of the multifunctional 

protein TG2 in various tissues, such as heart, kidney or neutrophils, explain the controversy 

between our findings and the in vivo results [44]. Our data, however, demonstrate that TG2 

null macrophages might be more sensitive to all stimuli that lead to proinflammatory cytokine 

production via activation of the NF- B pathway. This proinflammatory phenotype of TG2 

null macrophages might contribute to the development of autoimmunity in these mice [8] and 

their increased sensitivity to develop atherosclerosis [45, 46]. 
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Figure Legends 

Figure 1 LPS exposed TG2 null macrophages produce higher amounts of TNF  and IL-6 than 

wild-type cells. Wild-type (filled circles) and TG2 null (open circles) peritoneal macrophages 

were treated for 1h with 100 ng/ml LPS. After incubation LPS was washed away and fresh 

medium was added to the cells. Supernatants were collected at the indicated time points and 

kept at -20oC until analysis. IL-6 and TNF  cytokine levels were determined by ELISA 

technique. The results are representative of four independent experiments and are shown as 

mean ± SD. (*significantly different from wild type, p<0.05 determined unpaired Student's t-

test). 

 

Figure 2 The enhanced proinflammatory cytokine production of LPS-stimulated TG2 null 

macrophages is not related to the lack of TGF  activation. Wild-type (black bars) and TG2 

null (grey bars) peritoneal macrophages were treated for 1h with 100 ng/ml LPS (A) alone, or 

(B) in the presence of 4 ng/ml neutralizing anti-TGF  or its isotype control antibody. (C) In 

addition, TG2 null macrophages were also treated by LPS in the presence of increasing 

amounts of recombinant TGF After 1h incubation LPS was washed away, but the indicated 

compounds were re-added in the fresh medium. Supernatants were collected and frozen after 

5h. Active TGF , TNF  and IL-6 cytokine levels were determined by ELISA technique. The 

results are representative of three independent experiments are shown as mean ± SD. 

(*significantly different from wild-type, p<0.05 determined unpaired Student's t-test).

Figure 3 TG2 null macrophages respond to LPS stimulation by an enhanced NF- B activation 

as compared to their wild-type counterparts, and this phenomenon is not related to an altered 

cell surface expression of CD14 or TLR4. (A) Flow cytometric analysis of cell surface CD14 
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(left) and TLR4 (right) expression of wild-type and TG2 null peritoneal macrophages. Open 

histograms on the left indicate isotype controls. (B) Quantitative RT-PCR analysis of TNF  

and IL6 mRNA expression in wild-type and TG2 null peritoneal macrophages cultured for 1 h 

with or without 100 ng/ml LPS. The results are representative of three independent 

experiments and are shown as mean ± SD. (C) Measurement of TNF  mRNA stability in 

wild-type and TG2 null peritoneal macrophages. Cell were treated with 100 ng/ml LPS for 1 h 

followed by addition of 1 g/ml Actinomycin D. TNF  mRNA was measured by quantitative 

RT-PCR. (D) Western blot analysis of I B  degradation in wild-type and TG2 null 

macrophages after exposure to 100 ng/ml LPS. -actin was used as a loading control. (E) 

Determination of the amounts of nuclear p65 NF- B subunit in control and LPS-stimulated 

macrophages. Wild-type and TG2 null peritoneal macrophages were treated with 100 ng/ml 

LPS for the indicated time periods. Nuclear p65 subunit was detected with TransAM p65 kit. 

The results are representative of three independent experiments and are expressed as fold 

induction normalized to the wild-type control samples, and are shown as mean ± SD. 

(*significantly different from wild-type, p<0.05 determined unpaired Student's t-test). 

 

Figure 4 Integrin -associated cell surface TG2 regulates proinflammatory cytokine 

production. (A) Western blot analysis showing TG2 expression in TG2 null peritoneal 

macrophages infected with adenoviruses carrying LacZ gene, wild-type, secretion deficient 

(TG2-S), guanine nucleotide binding deficient (TG2-G1 and -G2) or crosslinking function 

deficient (TG2-X) TG2 genes. (B) IL-6 production of wild-type (black bar) or TG2 null (grey 

bars) peritoneal macrophages infected with the indicated constructs. Macrophages were 

stimulated with 100 ng/ml LPS for 1 h. After 1h incubation LPS was replaced with fresh 

medium. Supernatants were collected and frozen after 5h. IL-6 cytokine levels were 

determined by ELISA technique. Results are shown as mean ± SD of three independent 
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experiments (* significantly different from LacZ control, p<0.05 determined by unpaired 

Student's t-test). (C, D) Quantitative RT-PCR analysis of TNF  and IL6 mRNA expression in 

(C) TG2 null and (D) wild-type peritoneal macrophages cultured for 1 h with or without 100 

ng/ml LPS alone or after one hour pretreatment of soluble vitronectin (VN)(1 g/ml), 2 hrs 

R294 (100 M) or 24 h pretreatment of PP2 (2 M). Target gene expression was normalized 

to cyclophilin D. The results are representative of three independent experiments and are 

expressed as mean ± SD. (* significantly different from the corresponding LPS treated 

samples, p<0.05 determined by unpaired Student's t-test). (E, F) Western blot analysis of I b  

degradation in (E) TG2 null and (F) wild-type peritoneal macrophages following treatment by 

100 ng/ml LPS alone or together with 1 g/ml VN or 100 M R294 (* statistically different 

from LPS treated, * statistically different, p<0.05 determined by unpaired Student’s t-test).  

 

Figure 5 Loss of TG2 leads to enhanced v 3 integrin and Src kinase activity. (A) Increased 

Src family kinase phosphorylation in TG2 null macrophages. Western blot analysis of Tyr416 

phosphorylation of Src family tyrosine kinase in resting wild-type and TG2 null peritoneal 

macrophages and after 30 min LPS (100 ng/ml) exposure. (B) Increased basal integrin 3 

activity in TG2 null macrophages. left: Representative western blot analysis showing Tyr 474 

phosphorylation of the integrin 3 subunit in resting wild type and TG2 null peritoneal 

macrophages. -actin was used as loading control. right: Densitometric quantification of 

phospho-integrin 3 level normalized to total integrin 3 levels in wild-type and TG2 null 

macrophages (n=3, * statistically different from WT, p<0.05 determined by unpaired 

Student's t-test). (C) Effect of 1 hour soluble vitronectin (1 g/ml), pretreatment on the 

Tyr416 phosphorylation of Src family tyrosine kinase, or 24 h PP2 (2 M) pretreatment on 

theTyr 474 phosphorylation of the integrin 3 subunit in resting TG2 null peritoneal 
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macrophages. -actin was used as loading control. (D) Western blot analysis of 

I B degradation in wild-type and TG2 null peritoneal macrophages with or without a 24 h 

PP2 (2 M) pretreatment after triggering or not with 100 ng/ml LPS for 30 min. -actin was 

used as loading control (n=3, * statistically different, p<0.05 determined by unpaired 

Student's t-test). 
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