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A trajectory of liquid water simulated using classical molecular dynamics has been analysed in the
framework of symbolic dynamics. The behaviour of symbolic subsequences (words) of nine symbols
long has been studied at very long times of 1µs. Contrary to naive expectations, the molecular
trajectory behaves very differently compared to both a random signal and a random surrogate
with spectral properties identical to the molecular trajectory. The molecular system characteristics
resemble those of a chaotic map, the Standard map. We conclude that the most probable reason
for deviations from randomness in the molecular system is its deterministic dynamics, in particular,
the stickiness of periodic islands in the bulk of chaotic motion.

I. INTRODUCTION

It is commonly believed that memory effects in liq-
uids can be characterized and hence understood by cal-
culating various molecular correlation functions, most of-
ten atomistic velocity or coordinate autocorrelation func-
tions. These indicate the memory of no longer than
few picoseconds, after which time all processes in sim-
ple molecular liquids look purely random. However, it
has recently been shown from several different perspec-
tives that molecular systems exhibit memory that lasts
significantly longer [1–3]. This is especially true for liq-
uid water that has been shown to exhibit slow relaxation,
the phenomenon related to 1/f frequency dependence of
the energy fluctuation spectrum [4, 5].

Apparently, such a simple statistical measure as time
(or ensemble) averaged product of time separated val-
ues, the two-point correlations function, is inadequate
for representing complex multi-point memory effects in
molecular liquids. On the other hand, classical molecular
ensembles, being deterministic dynamical systems, can
benefit from applying geometrical and statistical meth-
ods recently developed in the fields of nonlinear dynamics
and information theory.

Considering liquids as nonlinear dynamical systems
has the advantage of studying the trajectories in suitably
chosen projections of the phase space rather than mere
coordinates and velocities of one atom or a restricted set
of atoms. The full dimensional phase space trajectory
contains, at least theoretically, all possible information
about the system. Thus, analysing various projections of
the phase space trajectory using statistical methods that
have a property of extracting substantial non-random in-
formation can potentially reveal hidden memory in liq-
uids.
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However, direct application of nonlinear dynamics
methods, such as the analysis of dimensions, entropies,
various complexity measures, Lyapunov exponents, etc.,
to the phase space trajectories encounters certain difficul-
ties since most of these methods can deal only with low
dimensional systems. It is, therefore, infeasible to study
the full phase space trajectories of even small molecular
ensembles using these methods, not to mention realistic
models of liquid consisting of thousands of atoms. Thus,
new information theoretic and statistical methods that
can advance the analysis of high-dimensional molecular
trajectories are highly desirable.

In this paper we present an approach that analyses
molecular trajectories in the framework of symbolic dy-
namics. In this framework the molecular trajectory is
converted into a sequence of symbols from an alphabet
consisting of only a few symbols. The resulting symbolic
sequence can be analysed using various statistical meth-
ods. An important point here is that the trajectory is
analysed not as isolated symbols but as a sequence of
symbolic strings (words). This ensues the extraction of
detailed information from the initially continuous trajec-
tory despite seemingly very coarse grained representation
of it with only a few symbols [2].

We have analysed the dynamics of liquid water us-
ing such symbolic representation and found surprisingly
slow convergence of calculated statistical indicators. The
statistics of water time series behave fundamentally dif-
ferent compared to those of a pseudo-random sequences
(for example, the digits of the π number) or a random
surrogate signal that has the correlation function (and
hence the power spectrum) identical to that of water.
Moreover, water dynamics resembles the behaviour found
in a simple chaotic system, the Chirikov-Taylor or Stan-
dard map. Thus, we hypothesise that the origin of such
non-random properties of molecular trajectory can be in
its deterministically chaotic character.
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II. METHOD

We generate molecular trajectories using classical
molecular dynamics. Bulk water (periodic boundary con-
ditions) consisting of 392 SPC [6] molecules was simu-
lated using the GROMACS molecular dynamics [7] pack-
age. The temperature of the system was kept constant at
300K using Berendsen [8] thermostat. A sufficient equi-
libration was performed before collecting data for anal-
ysis. The velocity of the hydrogen atom of one of the
water molecules was used as a time series for the anal-
ysis. At the locations where the velocity pierces the xy
plane the points of a two dimensional map (cross section)
were generated and used as the original real valued time
series for analysis. The analysed trajectory of 1µs long
resulted in approximately 3 · 107 data points.
The real valued two dimensional cross section of the

trajectory was then symbolised using the angle variable
in the polar coordinate frame. The 2π angle was divided
into three equal segments and symbols ‘0’, ‘1’, or ‘2’ were
assigned to the data points depending on the segment
where the values of the angle fall. Such a method of
partitioning the phase space and converting the velocity
vector values (real numbers) into symbols from the three
symbol alphabet provided asymptotically uniform sym-
bolic sequences, that is those with equal occurrence rates
for each symbol.
We would like to note that the choice of an appropri-

ate partition for symbolising the data is not a trivial task.
In the ideal case it is desirable to find a partition that is
generating, i.e. the one that provides a unique represen-
tation of the original real valued time series by a sym-
bolic string. However, generating partitions are known
to be difficult to calculate, even in comparatively sim-
ple cases of two dimensional maps when the equations of
motion are known explicitly [9, 10]. The procedure of ob-
taining a generating partition becomes increasingly more
complicated for higher dimensional systems or when it
is necessary to find it directly from experimental data,
that is when the equations of motion are not known [10].
Our choice of partition is motivated by our earlier ex-
periments [2] where we utilized the method described in
[10] for the analysis of Statistical complexity [11] of water
trajectories. The approximation to the generating par-
tition obtained with the method of [10] coinscides with
the one we use in the present work. Another support for
this choice of partition consists in the observation that it
leads to the highest possible value of topological entropy,
hT = log(3), defined by the three symbol alphabet that
we used. It is known that improper choice of partition
can lead to lower values of topological entropy, at least in
the case of low dimensional dynamical systems [12]. It is
also worth noticing that our partition produces water tra-
jectory time series indistinguishable from both the noise
and the Standard map data in terms of the topological
entropy.

Our further analysis concerns the statistical properties
of small subsequences (words) appearing in the symbolic

FIG. 1: Convergence of the conditional probability p(0) =
p(0|{010200100}) with the length of time series for an arbi-
trarily chosen symbolic word ‘010200100’. The line shows the
linear fit to the result of calculating the p(0) value for vary-
ing length of the symbolic sequence. The coefficient p(0) of
the fit defines the slope of the line whereas the mean square
deviation of points from the linear fit is denoted as σp(0)

sequence obtained from the trajectory. Specifically, we
analyse the distributions of the conditional probabilities
of the next symbol following the given word

p(ai+1|{ai−n . . . ai−1ai}), (1)

where ai is the symbol at the time moment ti, and i varies
from n to the number of points in the trajectory. n is the
length of the symbolic word si ≡ {ai−n . . . ai−1ai}. This
parameter has been chosen to be equal to 9 in all the
results presented below. The choice of n=9 was defined
by the necessity to have high enough number of words
for obtaining reliable statistics.
We were interested in the behaviour of (1) for long time

trajectories, studying the convergence of the conditional
probabilities with time in the limit t → ∞. For this
we calculated the slope p of the linear trend at the final
segment of a long trajectory, as well as the fluctuations
σp of the average value around the trend line (see Fig. 1).
To compare the results obtained for water simulation

with similar characteristics found in other systems with
well known properties we have calculated the same sta-
tistical indicators for (i) a random signal obtained with a
standard random number generator or from a more com-
plicated algorithm generating the digits of the ternary
expansion of the number π, (ii) a random surrogate
obtained from the molecular signal, and (iii) the two-
dimensional sequence of points generated by the Stan-
dard map.
As for the random signals, we used pseudo-random

sequences generated by specially designed algorithms.
Although such signals can be regarded as deterministi-
cally chaotic, they are generated by numerical procedures
equivalent to high dimensional dynamic systems. There-
fore, they can not be easily distinguished in a computer
experiment from genuine random sequences obtained by
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physical (hardware) noise sources, like, for example, ther-
mal noise generators. The simplest example we consider
is randomly shuffled version of the symbolic string ob-
tained from the water data time series. For another ex-
ample we took the ternary expansion of the number π
that, although generated by a deterministic algorithm,
can be considered as a high quality noise source due to
the complexity of the algorithm that performs the cal-
culation. Both types of random signals led to identical
results in terms of distributions of conditional probabili-
ties described here.
The surrogate signal was obtained using a standard

technique [13] of transforming the analysed time series
into the one with identical power spectrum, but belong-
ing to the class of linear Gaussian processes. The com-
putational procedure in its simplest implementation in-
cludes three steps:

• making the Fourier transform of the data;

• randomizing the phases of the Fourier components,
keeping the amplitudes intact;

• making the inverse Fourier transform.

The conclusions on the difference between the original
data series and a set of computer generated surrogates
can be then derived by a suitably chosen discriminating
statistics analysis [13].
The Standard map time series were generated with the

pair of deterministic equations

Pn+1 = Pn +K sin θn,

θn+1 = θn + Pn +K sin θn,

where P and θ are computed mod 2π and K is a positive
parameter that defines the system’s behaviour. An ex-
ample of a chaotic trajectory in this system at the value
of K = 6.908745 is shown in Fig. 2, where the dynamics
contains a large chaotic area with two stability islands
symmetrically located with respect to the origin. Infinite
number of smaller islands also exist close to the large
ones, but they are not discernible at the picture resolu-
tion.
Assigning symbols to the trajectory points was done by

dividing the phase space into three segments, such that
ai ≡ 0 for θ < −π

3
, ai ≡ 1 for −π

3
≤ θ < π

3
, and ai ≡ 2

for θ ≥ π
3
.

III. RESULTS AND DISCUSSION

Fig. 3 shows the scatter plot of conditional probabili-
ties (1), their trend and variance for the random signal.
The values for symbol ‘0’ are shown in the middle and
bottom plots, similar plots for the other two symbols look
identical. The high symmetry of all three characteristics
can be clearly seen.
The results for the random surrogate obtained from

the molecular signal is shown in Fig. 4. Here the statis-
tical correlations produce a distinctive structure on the
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FIG. 2: The Standard map trajectory in chaotic regime

p(0) − p(1) plot. The rotation symmetry of the scat-
ter plot corresponds to the three symbol alphabet used
in the analysis. The difference from the simple random
behaviour consisting in the appearance of three (approx-
imately Gaussian) clusters of points in the top panel of
Fig. 4 instead of a single cluster observed in Fig. 3 is
defined by the presence of short and intermediate time
correlations in the surrogate or, in the language of the
power spectrum, finite equivalent bandwidth of the noise
representing the surrogate time series. Large variations
in the trend and the variance compared to the uncor-
related random signal are obvious. There is also a ten-
dency of more probable symbolic words to have smaller
variance (bottom panel of Fig. 4). Such behaviour can
be interpreted as a natural consequence of the statisti-
cal property of the estimates to have smaller variance for
larger data sets.

A fundamentally different picture presents the molec-
ular system, Fig. 5. Here a much more complex pattern
is formed by the conditional probability points. The dis-
tributions of the trend and the variance are substantially
different from those found for the random signal and the
surrogate time series. Also, in contrast to the surrogate
signal, there is a small number of words that are sub-
stantially more probable than the rest of the sequences.
These more probable sequences also have both smaller
trend and variance compared to the rest of the sequences.

The results for the Standard map present an extremely
different case, Fig. 6. First of all, the conditional prob-
abilities themselves form a very sophisticated pattern in
the scatter plot, which even looses its three fold sym-
metry despite the equal occurrence probability for the
symbols in the analysed symbolic data string. The trend
and the variance show the variations of several orders
of magnitude. We interpret this result as a manifesta-
tion of chaotic dynamics that produces highly dispersed
values for conditional probabilities and, moreover, lead
to poor convergence of their values. Chaotic motion in
the Standard map is known to possess segments of sub-
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stantially different statistical properties when the trajec-
tory visits the areas close to stability islands. The dy-
namics becomes ‘sticky’ in the sense that the trajectory
spends a long time in the vicinity of the periodic islands
if the dynamics brings the trajectory sufficiently close
to one of them. The ‘stickiness’ of the periodic islands,
thus, results in very long convergence times for the con-
ditional probabilities, as well as highly dispersed values
of the probabilities themselves presenting a complicated
pattern shown in the top panel of Fig. 6.
The observed structures in the scatter plots does not

depend on the way we introduce symbolisation of the
data. The pattern shown in Fig. 6 has been obtained
by introducing a partition of the phase space shown in
Fig. 2 into three vertical stripes of equal size. Shifting

FIG. 3: Conditional probabilities of ‘0’, p(0|{si}), and ‘1’,
p(1|{si}) (top), and their trend p(0) (middle) and variance
σp(0) (bottom) against the word occurrence p(si) calculated

for the symbolic string of length 3 ·107 for the purely random
process (ternary expansion of the number π)

the partition along the θ axis or changing the orienta-
tion of partition do not bring qualitative changes into
the patterns presented in Fig. 6. For example, in Fig. 7
we plot the same distributions, but for the case of par-
titioning the phase space into three horizontal stripes of
equal size. Note that the shape of the patterns in the
scatter plots remains qualitatively same, thus support-
ing our hypothesis on its origin from the deterministic
dynamics of the underlying map.

IV. CONCLUSIONS

We have analysed the behaviour of molecular phase
space trajectory in liquid water simulation using classical
molecular dynamics, symbolic dynamics, and statistics.

FIG. 4: Same as the previous picture, but calculated for the
surrogate time series
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Despite the homogeneous nature of the system composed
of identical molecules, we have found significant devi-
ations from ‘simple’ random behaviour at the times of
the order of 1µs. On the other hand, we observed cer-
tain similarities between the trajectories calculated from
the simulation of water dynamics and the dynamics of
a classical two dimensional map modelling the kicked
rotator (the Standard map). Our statistical approach
has been focused on finding the signatures of chaotic dy-
namics in such a high dimensional dynamical system as
the ensemble of interacting molecules. Finally, we came
to a conclusion that the statistical characteristics of the
trajectories in the molecular system occupy intermediate
position between the random surrogate and the chaotic
map. We believe that the deviations from randomness
in the molecular system are caused by its deterministi-

FIG. 5: Same as the previous two pictures, but for water
signal

cally chaotic dynamics that includes ‘sticky’ areas in the
phase space. The stickiness in area preserving (Hamil-
tonian) maps is a well known property of the dynamics,
well-documented for low dimensional systems [14]. There
is, however, very few studies of this phenomenon for sys-
tems with multiple degrees of freedom.

When the dimensionality of the system becomes large,
the transport properties are no longer defined by impen-
etrable barriers formed by tori, but some essentially new
features such as Arnold diffusion emerge as a result of
torus break-up. The destroyed tori have complex struc-
ture, and some of them are unstable (analogous to sad-
dle points in the case of Standard map). The chaotic
trajectories can be trapped by such structures, therefore
the observed statistical properties of an arbitrary chaotic
trajectory can strongly depend on their presence in the

FIG. 6: Same as previous three pictures, but for Standard
map
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FIG. 7: Same as the previous picture, but for different parti-
tioning of the Standard map

phase space. For example, the stickiness has been demon-
strated to exist in the Sinai billiard, although the bar-
rier has zero measure in phase space [15]. Moreover, the
statistics of recurrence times similar to that found in the
Standard map has been recently reported for the case of
Arnold diffusion in a 5-dimensional Hamiltonian system
[16]. This finding suggests that the properties of Arnold
diffusion can be strongly affected by the phenomenon of
stickiness.
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