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A framework that connects computational mechanics and molecular dynamics has been developed

and described. As the key parts of the framework, the problem of symbolising molecular trajectory

and the associated interrelation between microscopic phase space variables and macroscopic

observables of the molecular system are considered. Following Shalizi and Moore, it is shown that

causal states, the constituent parts of the main construct of computational mechanics, the �-machine,

define areas of the phase space that are optimal in the sense of transferring information from the

micro-variables to the macro-observables. We have demonstrated that, based on the decay of their

Poincaré return times, these areas can be divided into two classes that characterise the separation of

the phase space into resonant and chaotic areas. The first class is characterised by predominantly

short time returns, typical to quasi-periodic or periodic trajectories. This class includes a countable

number of areas corresponding to resonances. The second class includes trajectories with chaotic

behaviour characterised by the exponential decay of return times in accordance with the Poincaré

theorem. VC 2011 American Institute of Physics. [doi:10.1063/1.3608125]

Complex dynamics in systems with multiple degrees of

freedom, like, for example, an ensemble of water mole-

cules, seems to be indistinguishable from noise by any

standard statistical method. At the same time, the motion

of every atom is described by deterministic differential

equations; hence, the signatures of deterministic Hamil-

tonian dynamics are contained in the time dependent

coordinates and momenta. We consider computational

mechanics as a bridge between deterministic chaos in

nonlinear dynamical systems with few degrees of freedom

and apparently random trajectories in the high-dimen-

sional phase space. The construction of an �-machine

allows decomposing the phase space into non-overlapping

elementary areas of two qualitatively different classes,

depending on the decay law for Poincaré recurrence

times. By an analogy with standard map, they can be

attributed to “chaotic sea” and quasiperiodic motions in

the vicinity of (“sticky”) periodic islands. The proposed

method of identifying the areas with sticky dynamics in

the high-dimensional phase space has far reaching impli-

cations in understanding the molecular transport, includ-

ing the anomalous diffusion process. It is important, for

example, for elucidating general regularities underlying

the complex motions of protein atoms in the process of

folding or other self-organising biomolecular dynamics.

I. INTRODUCTION

The trajectories of atoms and molecules in liquids can

be described by Newtonian ordinary differential equations of

motion. Therefore, any complex patterns formed by the mol-

ecules due to their mutual interactions have geometric coun-

terparts in the phase space defined by their coordinates and

velocities. The problem of identifying and classifying the

patterns as well as predicting their appearance is crucially

important since they ultimately define the functionality of

the systems and can provide keys to understanding the fun-

damental properties of, for example, protein folding. There

is, however, a profound difficulty in the dynamical picture of

molecular systems related to high dimensionality of their

phase space. Commonly used approaches from non-linear

dynamics, such as Lyapunov exponents, dimensions, and

entropies fail in most cases when the motion occurs in the

phase space of dimension higher than � 10. Therefore, new

conceptually different methodologies have to be developed

for high-dimensional systems.

An alternative description in terms of probability and

statistics can be and has been successfully applied in many

situations to systems with too complicated behaviour. How-

ever, due to the way the probability theory is built, that is its

axiomatic assumption of a priori given distribution functions,

it has limited potential of understanding the dynamic patterns

in open systems demonstrating highly complex non-station-

ary behaviour.

Computational mechanics (CM), a promising new con-

cept aimed at building a statistical and at the same time

dynamical description, has been recently proposed.1 It com-

bines the well-developed theoretical framework of general-

ised Markov chains, called �-machines, with the concept of

short time predictability characteristic to dynamical systems.

Since typical motions of molecules ultimately define

their conformational rearrangements, complete quantitative
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analysis of the patterns in the trajectory provided by CM

gives new insight into molecular mechanisms. Our goal, thus,

is to find persistent structures in the phase space formed by

the trajectories and interpret typical behaviour of such struc-

tures in terms of both the statistical theory and the dynamical

systems approach. We analyse trajectories of molecular dy-

namics (MD) simulated systems where the coordinates and

momenta of the atoms can be obtained with any reasonable

precision. Using the complexity based measures1,2,7 and ana-

lysing the probabilistic properties of symbolic sequences cor-

responding to the phase space trajectories are promising

alternatives for detecting structures in the phase space.

One of the most difficult problems in the analysis of the

high-dimensional molecular trajectories is the definition of

the notion of “structure” or “cluster” in the phase space. We

address this issue in a broad statistical sense considering

deviations from the uniform phase space filling by a typical

trajectory as clusters. The presence of structures in the phase

space of dynamical systems can be interpreted as the exis-

tence of nonuniformities in the invariant measure.3 The latter

defines the probabilities of visiting various parts of the phase

space by trajectories or, under the assumption of ergodicity,

by a typical trajectory observed for a long enough period of

time. The clusters appear in the phase space due to the pres-

ence of abundant resonances that arise as a result of nonlin-

ear interactions between atoms. The borders of resonant

areas are known to be “sticky” in a sense that any trajectory

spends a long time in their vicinity. This is in contrast to

other, non-resonant areas, where the trajectories evolve ran-

domly filling the phase space almost uniformly.

In simple Hamiltonian systems like, for example, low-

dimensional area preserving maps, the resonant areas appear

as the islands of stability in the phase space. They are known,

on the one hand, as sources of nonuniformity in the invariant

measure and, on the other hand, they lead to breaking the

ergodicity due to the formation of impermeable and “sticky”

barriers in their vicinity.4 The islands typically have a fractal

structure, and the finer is the scale of subislands the more

“sticky” are their borders for trajectories, that is a typical tra-

jectory, once trapped by such a structure, remains there for a

very long time.

A quantitative description of the nonuniformity of the

phase space covering by the trajectories can be achieved via

the Poincaré recurrence theory.5 Consider a small element DC
of the phase space C of a Hamiltonian system located around

the point x. A trajectory wanders in the chaotic area visiting

the element DC from time to time (recurring to it). Denoting

the time between successive recurrences as s, the probability

distribution function of recurrence times PðDC; x; sÞ can be

introduced that depends on the phase volume and the position

of the element DC, as well as the value of s itself. If the

motion is ergodic, the dependence of s on the coordinates x

becomes inessential and one can introduce the distribution

function

PðsÞ ¼ limDC!0PðDC; sÞ=DC: (1)

For a typical chaotic trajectory, the following asymptotic

relation holds

PðsÞ ¼ 1

hsi expð�s=hsiÞ; (2)

where hsi is the average recurrence time over the distribution

PðsÞ. Equation (2) can be used, in principle, for distinguish-

ing areas with chaotic motion from those close to sticky areas

by introducing a partition of the phase space into non-over-

lapping volumes and analyzing the distributions PðsÞ for

each of them. Note also, that the problem of choice of the

sizes and shapes of the partition elements is not a trivial one

and, in the general case, the distribution of the Poincaré re-

currence times can depend on the location and shape of the

area DC.

It is also important that stickiness of resonant areas leads

to anomalous transport properties of the trajectories in the

phase space. This issue attracted a lot of attention recently4

and it has been demonstrated that key insights into the details

of the transport can be found in terms of the Poincaré theo-

rem of returns.

In this paper, we show how the analysis of molecular tra-

jectories in terms of �-machine associated with the notion of

statistical complexity (SC) provides a link from a purely sta-

tistical description with Markov chain type modeling to the

dynamical systems theory based on Poincaré recurrence anal-

ysis. One of the pressing questions in the analysis of very

high-dimensional trajectories by Poincaré recurrences is the

choice of areas of interest. In other words, it is not clear how

to create a partition in the phase space that would give a

meaningful description of the dynamics in terms of the recur-

rence times of trajectories. We demonstrate that causal states,

that constitute a core of an �-machine, provide a “natural”

partitioning in the phase space in the sense that for each

causal state the Poincaré recurrence times are distributed in

accordance with Eq. (2). Therefore, every causal state can be

considered as an element of the phase space that contains a

set of Poincaré cycles. Moreover, considering the deviations

from Eq. (2) allows identifying different types of motion in

the phase space, that is finding the causal states with special

properties that correspond to the resonance areas within cha-

otic sea in the phase space. The goal of making a quantitative

distinction between the areas with qualitatively different dy-

namics can thus be achieved by comparing the decay times of

Poincaré recurrences to causal states.

II. COMPUTATIONAL MECHANICS DEALS WITH
CERTAIN PARTITIONING OF THE MOLECULAR
PHASE SPACE

A. Initial symbolisation produces a very coarse
grained partition

A molecular trajectory obtained in the simulation

experiment is a series of 2N-dimensional phase space points

qi, where N is the number of degrees of freedom of the sys-

tem, i.e., the number of atoms multiplied by 3 minus various

constraints such as fixed bond lengths, angles, etc. N is of the

order of several thousands for realistic MD simulations.

Thus, the molecular trajectory is a very high-dimensional

object. The points are generated by the system along the tra-

jectory at fixed time moments (Fig. 1).
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To analyse the data inevitably low-dimensional observ-

ables (macro-observables) are considered, for example, a

velocity of an atom v. This is a projection of the full-dimen-

sional trajectory onto a low-dimensional observable, in this

case v. This low-dimensional projection of the phase space

trajectory is degenerate that is very many different realisa-

tions of the trajectory produce the same series of values of

the low-dimensional projection v (Fig. 1). This is caused by

(i) the discrete time sampling of the trajectory, (ii) the finite

tolerance of the measurements of v, and (iii) the independ-

ence of v at each individual time moment from some other

degrees of freedom, for example the positions and velocities

of atoms at a large distance. Therefore, the whole phase space

C is partitioned into the areas such that on each of them, the

macroscopic observable v takes a single value while the full-

dimensional points qi can have different values (Fig. 1).

The values of the observable variables that we analyse

are discrete and finite. In other words, we deal with a set of

countable number of symbols. In the case of the computer

floating point representation, for example, the number of

symbols is large but limited and defined by the precision used

in the simulation (single, double, etc). The finite precision of

v results in a finite (but large) set of its possible values. More-

over, it is easy to check that even a very coarse representation

of v produces almost the same characteristics of the analysed

molecular signals. Figure 2 shows one of such characteristics,

the common velocity autocorrelation function for a signal

where the velocity coordinates are replaced by only three val-

ues in vx, vy, and vz, such that fx � �1; ifx < �1; x � 0;
if � 1 � x < 1; x � 1; if x � 1g, where x represent vx, vy,

and vz. The total number of possible values of the resulting

coarse grained vector is 33 ¼ 27 that is the signal can be rep-

resented by only 27 symbols. Nevertheless, the autocorrela-

tion function of this signal is very similar to the original one,

calculated from the double precision values of v.

This representation of the dynamics in terms of symbols

from a finite size alphabet is called “symbolic dynamics” and

is the subject of the mathematical field with the same name.6

Summarising, by converting the continuous trajectory

into the symbolic sequence, a coarse grained partition of the

phase space is produced.

B. The dynamics makes the partition finer

The evolution of the phase space points q, sampled at

times t, is governed by an operator T: qtþ1 ¼ Tqt. Consider-

ing an ensemble of such dynamical systems, denote a ran-

dom variable representing the current microstate as Q, that is

a set of all possible values of the phase space points having

probabilities generated by the dynamics T.

A macroscopic observed variable A is a function f of the

microstate Q (for example, the instantaneous temperature
1

Nk

P
i miv

2
i , where N is the number of degrees of freedom, k

is the Boltzmann constant, mi are the atoms’ masses, and vi

are their velocities). As discussed before, the function f parti-

tions the phase-space C into mutually exclusive and jointly

exhaustive sets, on each of which f takes a unique value.

FIG. 1. Illustration of the degeneracy of the macro-observable projection of

the full-dimensional phase space trajectory. The same sequence of the

observable (the velocity) fvtvtþ1vtþ2vtþ3g is generated by two different

pieces of the phase space trajectory fqtqtþ1qtþ2qtþ3g and fq0tq0tþ1q0tþ2q0tþ3g.

FIG. 2. (Color) Autocorrelation functions CðsÞ � 1
T

PT
t vt � vtþs for the orig-

inal velocity of the hydrogen of bulk water (black) and the signal made of

27 symbols (red, see text for details).

FIG. 3. Schematic illustration of the sequences used to define formula (4).

Phase space points fqg and fq0g of two pieces of the trajectory form Markov

sequences. The corresponding observation sequences A and A0 are not Mar-

kovian since the same value At leads to different Atþ1 and Atþ10 depending

on the previous values At�1 and At�10. However, if both histories

f…At�2At�1Atg and f…At�20At�10Atg belong to the same causal state �t than

the next causal state �tþ1 is defined without knowing �t�1, thus making f�g a

Markov sequence.
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Denote the partition of C induced by f as F . The observed

process is At ¼ f ðQÞ and it is not necessarily Markovian

(Fig. 3).

Now, what happens to this partition when the sequences

of At are considered instead of the individual values of A?

Take an observation at time t, At. The corresponding set of

points in C is F t. For a sequence of two observations at the

current and previous time moments, the set of points is

F t \ TF t�1; (3)

which is a refinement of the partition F . This procedure can

be repeated any countable number of times thus providing the

refined partitions for the histories of the macro-observable A.

Thus, the dynamics makes the initial partition induced by the

macro-observable finer, the longer the sequence fAtg (the

“history”) the finer the partition generated by the sequence is.

C. Computational mechanics coarsens the partition

The next step is to apply a special statistic, called CM,7

to the observable A. The rigorous definition of CM is given

in Appendix A. Here, we provide the part of the approach

necessary for answering the main question formulated in the

Introduction.

All past A�i and future Aþi halves of bi-infinite sequences

of the macro observable centered at times i are considered.

Two pasts A�1 and A�2 are defined equivalent if the condi-

tional distributions over their futures PðAþjA�1 Þ and

PðAþjA�2 Þ are equal. A causal state �ðA�i Þ is a set of all pasts

equivalent to A�i : �i � �ðA�i Þ ¼ fk : PðAþjkÞ ¼ PðAþjA�i Þg.
At a given moment, the system is at one of the causal states

and moves to the next one with the probability given by the

transition matrix Tij � Pð�jj�iÞ. The transition matrix deter-

mines the asymptotic causal state probabilities as its left

eigenvector Pð�iÞT ¼ Pð�iÞ, where
P

i Pð�iÞ ¼ 1. The collec-

tion of the causal states together with the transition probabil-

ities define an �-machine. The statistical complexity is the

informational measure of the size of the �-machine:

Cl ¼ H½Pð�iÞ�, where P are the probabilities of the causal

states and H is the Shannon entropy of the distribution of a

random variable �, H½Pð�Þ� � �
P

�
Pð�Þlog2Pð�Þ.

Thus, the essence of CM is in grouping the histories

fAtg into causal states. In terms of the partitions of the phase

space, this corresponds to joining together the cells of C
induced by the dynamics. Importantly, the new cells repre-

sent a Markovian process constructed from the observed pro-

cess At by building the �-machine on A. Now, by the �-
machine definition, the sequence of the causal states f�tg
makes a Markov chain (Fig. 3).

D. The partition generated by computational
mechanics is the most informative one

Shalizi and Moore8 show that, in this setting, the statisti-

cal complexity has a clear physical meaning: it quantifies the

amount of information contained in the new constructed

macro-observable process f�ig about the microstate

Cl ¼ I½Q; ��; (4)

where I is the mutual information between the random varia-

bles X and Y: I½X; Y� ¼ H½X� � H½XjY�; and H½XjY� is a con-

ditional entropy of X given Y: H½XjY� ¼ �
P

PðXÞP
PðXjYÞlog2PðXjYÞ.

This is because the knowledge of the microstate would

specify the macro observable precisely: H½�jQ� ¼ 0, because

all histories contained in �t and the corresponding partition

of Q would uniquely define the next state �tþ1 (the �-machine

definition). Using this and the equality H½X� þ H½YjX�
¼ H½Y� þ H½XjY�, the Eq. (4) follows:

H½Qj�� þ H½�� ¼ H½�jQ� þ H½Q�;

H½Qj�� þ Cl ¼ H½Q�;

Cl ¼ H½Q� � H½Qj��;

Cl ¼ I½Q; ��:

Because of the properties of the �-machine, this is the maxi-

mal information that is possible to extract from the chosen

macro-observable and the specified initial partition of it.

E. Three stages of symbolisation

Summarising, the phase space partition we use in nu-

merical experiments is obtained in three stages.

1. The observed macro variable induces the initial (usually

very coarse grained) partition of the phase space defined

by the procedures of projection, measurement uncertainty,

and symbolisation.

2. The partition elements of this partition are refined by the

dynamics, when we consider words (histories) instead of

single symbols (3). Note also that considering words

instead of symbols is similar to reconstructing the high-

dimensional phase space from the scalar time series by the

Takens embedding procedure.9 In terms of the embedding,

the histories correspond to different points in the phase

space, while the history length l is equal to the embedding

dimension.

3. The refined partition elements (histories) are further

grouped by the process of �-machine reconstruction, thus

providing the final partition that is the minimal, unique,

and most informative one (given the initial partition of C).

III. IMPLEMENTATION

A. Molecular dynamics simulation

In subsequent sections, we apply the developed theoreti-

cal framework to the analysis of dynamics in the ensemble

of interacting water molecules. Molecular dynamics is a

technique for numerically solving the Newton equations

describing the time changes of the atomic coordinates x and

velocities v ¼ _x : _v ¼ 1
m F. The force F is derived from the

prescribed interatomic interaction potential V (also called the

“forcefield”): F ¼ �rVðxiÞji¼1::N , which is a function of all

the coordinates of the atoms. Commonly used forcefields are

empirical functions that are the results of careful balance

between the sophistication of reproducing realistic intera-

tomic interactions and computational effectiveness. The pa-

rameters of forcefields are calibrated to reproduce either
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rigorous quantum mechanical calculations or experimental

thermodynamical data.

In this work, bulk water (periodic boundary conditions)

consisting of 392 or 878 SPC or SPC-E (Ref. 10) molecules

was simulated using the GROMACS molecular dynamics11

package. The temperature of the systems was kept constant

at 300 K using Berendsen12 or Nose-Hoover13 thermostats

whose combination with various coupling constants was

investigated. A sufficient equilibration was performed before

collecting data for analysis. The velocity of the hydrogen

atom of one of the water molecules was used. At the loca-

tions where the velocity pierces the xy plane, the points of a

two-dimensional map were generated and used as the origi-

nal continuous signal for analysis.

We have found that the results do not depend on the pa-

rameters of molecular simulations such as the forcefield, the

temperature, the type of the thermostat, the number of mole-

cules, etc.15

B. Symbolisation

The best possible initial partition for converting the

floating point double precision time series data to a symbolic

string can be achieved using the generating partition (GP).

Although it is not possible to find it exactly, there are meth-

ods for computing approximations to it. GP provides a parti-

tion that preserves all information in the signal. Therefore,

the closer approximation to GP is used the more information

is transferred from the continuous signal to the symbolic

sequence.

For an initial approximation to GP, we have chosen the

partition provided by the application of the method described

in Ref. 14. The example of calculations with this method for

the two-dimensional cross-section of our (three-dimensional)

velocity data using 2, 3, 4, and 5 partition elements are shown

in Fig. 4. For all cases, the resulting approximations to GP

are centrally symmetric (probably, because of the central

symmetry of the data points distribution). The symmetry of

the two-dimensional set of points can be further illustrated by

transforming the data to the polar coordinates ðx; yÞ ! ðq;uÞ
and estimating the probability density wðuÞ for the random

variable u. The histogram corresponding to such wðuÞ distri-

bution is given in Fig. 5. Almost perfect uniformity of the dis-

tribution function is obvious, thus justifying the choice of

centrally symmetric partitions that we used in all subsequent

calculations. The results for three and more partitions (the

number of symbols) are qualitatively the same, see Ref. 15

for the discussion on the number of symbols. We used three

symbol alphabet in all reported results. The simulated trajec-

tory of 1 ls long resulted in approximately 3	 107 data

points (symbols).

C. �-machine reconstruction: CSSR

At the next step of the analysis, we change the descrip-

tion from considering the separate symbols in the symbolic

string to the study of histories (symbolic words of finite

length) and building the �-machine. For this purpose, we use

the method developed by Shalizi with co-authors who also

proposed an algorithm of reconstructing the �-machine from

the given data series.16 In a general case, CM is formulated

using the assumption of infinitely long pasts and futures. In

practice, a finite history length l has to be chosen and this is

one of the adjustable parameters of the CSSR algorithm. The

number of possible histories grows exponentially with the

history length. Therefore, for long histories, an exponential

increase in the number of data points is also needed.

The second parameter of the CSSR algorithm is the

significance level r used in comparing the distributions

Pðs! j si
 Þ for grouping the histories into causal states by their

predictive properties (the Kolmogorov-Smirnov test is used).

Too large r values (too strict threshold for two distributions

to be considered equivalent) lead to artificially too many

causal states. This is equivalent to under-sampling the histor-

ies. The same situation takes place for too long history length

since the number of possible histories is too large and, for

moderately long experimental time series, the distributions

Pðs! j si
 Þ become not statistically significant.

Therefore, for obtaining the robust results, it appears nec-

essary to perform the analysis of the �-machine as a function

of these two parameters. Too long a history or too large a r

FIG. 4. (Color) The process of converting the continuous atomic velocity

signal v into symbolic sequence. On the right, the symbolisation with 2, 3, 4,

and 5 symbols are shown. 3 symbol alphabet was used in all subsequent

calculations.

FIG. 5. The histogram of the random variable u illustrating the uniform

symmetric distribution of points in the vz ¼ 0 cross-section plane of the

hydrogen velocity trajectory.
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value leads to statistically incorrect results. As the authors of

CSSR recommend, the value of r should be chosen such that

there is a “plateau” in the number of causal states as a func-

tion of l. If there are several such values of l, then the lowest

one has to be chosen (according to the minimality principle

of CM). This constant value of l is the “true” value of the his-

tory length for a stable �-machine architecture.

Our analysis of the convergence of CSSR algorithm with

history length is presented in Fig. 6. Here, we compare the

time series from MD simulation of water to a so-called surro-

gate data that has identical power spectrum and hence auto-

correlation function, but is stochastic in the sense of absent

dynamic correlations between adjacent points.19 The results

suggest that the choice of a plateau is not a trivial task. Surro-

gate data (left panel) exhibits a clear plateau at any given

value of the length of time series, but the minimum value of

l (at the smallest r-value) grows from � 3 to � 6 when the

data length increases from 60 ns (� 2 000 000 symbols) to

1 l s (� 30 000 000 symbols). The plateau for the water sig-

nal (right panel in Fig. 6) is less pronounced, but still visible

at the low values of r that corresponds to, e.g., l¼ 10 for the

data length above � 0:45 ls. The very slow convergence of

the �-machine with data size for molecular signals has been

discussed in Refs. 15, 17, 18. The results for l¼ 10 are at the

limit of statistical reliability for the used data lengths. We,

therefore, used l¼ 9 in the analysis discussed here. It is

worth noting however, that the main result of this work, i.e.,

the splitting of the causal states into two groups, does not

depend on the value of l starting from the value of l � 6.

IV. RESULTS

As it has been stated in Sec. II B, the symbolic words

(histories) that we analyse correspond to the elements of par-

titioning the phase space into non-overlapping areas. Further,

joining the histories into the causal states produces a more

coarse grained partition that possesses certain Markovian

properties and defines the �-machine through the distribution

function of their occurrence rates Pð�iÞ. To get a further

insight into the link between the �-machine and the dynam-

ics, we analyse the distribution of recurrence times for the

set of causal states considering them as elements of the phase

space partitioning. In order to introduce the recurrence times,

we looked at the time intervals between the successive

appearances of a causal state in the symbolic time series. For

all the analysed data, we first identified the set of causal

states and then analysed the histograms of the recurrence

times (periods) for each of them.

As it follows from the Poincaré theory, the recurrence

times for chaos in systems where only chaotic motions exist

are distributed in accordance with Poissonian distribution

(Eq. (2)). This turns out to be different in the case of chaotic

dynamics in area preserving maps with divided phase

space20 where areas of chaos coexist with periodic behavior

(periodic islands). In such systems, the exponential decay in

the distribution function turns into a power law

PðsÞ / s�c; (5)

at very large times, as it is shown in Fig. 7.

In numerical analysis, the function PðsÞ depicted in Fig.

7 is usually calculated by averaging the corresponding distri-

bution functions over many trajectories randomly chosen by

specifying arbitrary initial conditions. This corresponds to

the analysis of the recurrence times in many randomly

located small areas centered around the randomly selected

centers. In our calculation, we assume the ergodicity of the

system and calculate similar distributions considering a sin-

gle time series only. We also select the areas for the analysis

of Poincaré recurrences coinciding with the phase space par-

titioning imposed by the set of the causal states. Surprisingly,

we found that for each causal state, the distribution of

FIG. 6. (Color) The logarithm of the number of causal states log2nst in the �-
machines as a function of the history length l, the tolerance r, and the duration

of the time series; left: the Fourier surrogate time series,19 right: the molecular

signal; top: time series duration of 60 ns, middle: 450 ns, bottom: 1 l s.

FIG. 7. A schematic of the probability distribution function for the Poincaré

recurrence time s. The exponential decay at small s changes to apparently

slower decay law for long times.
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recurrence times at large enough times is well approximated

by exponential function, i.e., every causal state contains a set

of statistically independent Poincaré cycles.

In order to compare our results pertaining to the analysis

of the MD trajectories in water to those available in the liter-

ature, we have chosen a well documented two-dimensional

area preserving system known as Standard map (or some-

times called the Taylor-Greene-Chirikov map).21 It is

defined as a transformation of the plane to itself

Pnþ1 ¼ Pn þ K sin hn;

hnþ1 ¼ hn þ Pn þ K sin hn;

where P and h are computed mod 2p and K is a positive pa-

rameter that controls different kinds of behaviour that the

system can demonstrate. For an example of chaotic trajec-

tory in this system, we calculated the time series at the value

of parameter K ¼ 6:908745, where the phase portrait has a

large chaotic area containing two stability islands symmetri-

cally located with respect to the origin. An infinite number

of smaller islands also exists in the vicinity of the large ones,

making the dynamics in their vicinity complicated. Further-

more, we applied a simple uniform partitioning in the vari-

able h into three equal intervals, i.e., we have chosen a three-

symbol alphabet in a similar manner to the case of water

time series analysis.

Our numerical experiments for both the water time se-

ries and that of the Standard map reveal that the causal states

demonstrate a clear separation into two classes that we will

refer to as “periodic” states (those defined by Poincaré recur-

rence times decaying much slower compared to Eq. (2)) and

“chaotic” ones (that demonstrate an exponential decay in ac-

cordance with Poincaré law). In order to quantify the differ-

ence between the two classes, we introduce a dimensionless

parameter D, equal to the discrepancy between the decay

exponent k calculated from the histogram of recurrence

times and its “normal” value 1
hsi defined by the Eq. (2)

D ¼ 1

khsi � 1; (6)

where k is the exponent defining the shape of the distribution

function

PðsÞ / expð�ksÞ; (7)

found numerically. Large D values indicate strong discrep-

ancy between the calculated value of the exponent in Eq.

(7)) and the expected value of 1=hsi.
The power law tail in the distribution of the recurrence

times (Eq. (5)) can be clearly visualised for the case of the

Standard map, if we plot the corresponding distribution aver-

aged over all causal states that constitute the �-machine (Fig.

8(a)). Two segments in the distribution function correspond-

ing to normal chaotic behaviour defined by Eq. (2) and

abnormally long recurrences in the tail are evident. However,

in the case of water time series, there is no apparent distinc-

tion between the two types of behaviour as it is shown in

Fig. 8(b). In the simplest approximation, this could be inter-

preted as the absence of periodic islands in the phase space

of water because of the breaking of all invariant tori that

occurs due to interaction between resonances in the multiple

degrees of freedom system. It should be noted, however, that

the calculation of the average histogram over all causal states

is equivalent to averaging the recurrence rates over all acces-

sible areas of the phase space. Therefore, the motion in the

vicinity of several periodic islands visited moderately often

by the trajectory may be masked by more frequent chaotic

motions. Our analysis of the ensemble of causal states in

terms of the D parameter thus provides an alternative

approach that allows detecting the periodic islands in the

chaotic sea by making a more subtle distinction between the

periodic and chaotic phases of motion.

In Fig. 10, we plot the scatter diagrams representing the

apparent clustering of the causal states into two classes with

respect to the parameter D. The horizontal axis approximates

the occurrence rate (or probability Pð�iÞ) of the causal states,

that is for each of them, we counted the number of its appear-

ances in the symbolic time series and estimated the probabil-

ity Pð�iÞ by dividing it by the total length of the symbolic

series.

It is also interesting to note that the histogram for

“periodic” states possesses a clearly developed peak at the

value of about 0.1 ps (see Fig. 9(b)), while those for the rest

of the causal states are characterized just by a mere exponen-

tial function (Figs. 9(e) and 9(f)). The combination of the

peak at short times with the slowly decaying tail at long times

in the histogram evidences that the trajectory visits the vicin-

ity of periodic islands quite rarely, but, once it is trapped by a

FIG. 8. Distribution of Poincaré return times averaged over all causal states.

(a) Standard map and (b) water time series corresponding to the velocity of a

hydrogen atom.
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sticky boundary, it experiences a sequence of several short

time returns. The causal states characterised by a low value of

D have strictly exponential distribution of the return times

and do not have pronounced low order periodicity.

The short-time returns of the high D-value causal states

are caused by their quasi-periodic character, apparent in the

symbolic sequences constituting these states. They are:

‘000000000’, ‘222222222’, ‘001001001’, ‘010010010’,

‘100100100’, ‘122122122’, ‘212212212’, ‘221221221’.

The repetition with the maximum period of 3 is evident in

all of them.

Additional illustration of the splitting of the set of the

causal states into two qualitatively different classes can be

provided by Fourier analysis. For each of the causal states,

we generated a binary time series that contained “1” at those

time moments where the given causal state was observed

and “0” elsewhere. By calculating the power spectra for bi-

nary time series corresponding to each of the causal states,

we obtain an alternative indication of the difference between

the “periodic” states and the rest of the set. “Periodic” states

have a comparatively high level of spectral density above the

characteristic period of � 1 ps, as well as around � 0.03 ps

where the corresponding autocorrelation function reaches its

first zero value. “Chaotic” states have “white noise” type of

the power spectrum with approximately uniform spectral

density function, Figs. 9(d)–9(f). This finding suggests that

the processes with characteristic time scales of � 0.03 ps

corresponding to the first zero of the correlation function as

well as � 1 ps corresponding to the peak of the power spec-

trum are mainly defined by the “periodic” causal states.

Summarizing, the two classes of “periodic” and

“chaotic” states are present in the analysed time series of

both the velocity of the hydrogen atom and the Standard map.

The “chaotic” states of the �-machine represent long term

mixing processes that describe the way the system explores

the phase space. The number of “chaotic” states is high indi-

cating a prevalence of the areas of chaotic motions (chaotic

sea) over the periodic components (resonance islands), a

rather typical picture previously reported only in low-dimen-

sional nonlinear dynamical systems.4

V. CONCLUSIONS

We have analysed the application of computational

mechanics to Hamiltonian dynamics of molecular systems.

A conceptually important connection of the causal states of

the �-machine built on an initially symbolised trajectory to

the areas of phase space that are optimal in the sense of pre-

dicting the trajectory’s behaviour has been analysed. It has

been shown that the areas in the phase space defined by the

causal states possess special properties in the dynamical

sense, that is their recurrence time distributions follow Poin-

caré law with two distinct exponents. This allows classifying

FIG. 10. Clustering of the causal states for the hydrogen atom velocity time

series (a) and the Standard map (b) into “periodic” (diamonds) and “chaotic”

(triangles) classes. Parameter D is plotted vs. occurrence rates of the causal

states.

FIG. 9. Fourier analysis of water time series. Power spectra (a,d) and histo-

grams of recurrence times (b,c,e,f) for typical causal states belonging to dif-

ferent types: a “periodic” state (a-c) and a “chaotic” state (d-f). The

histograms on (c,f) are zoomed and smoothed fragments of those shown in

(b,e). Spectra in (a,d) are the functions of inverse frequency.
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the causal states into quasi-periodic and chaotic types. Com-

paring our findings to a well studied case of the Standard

map, one can conclude that our approach provides a new

quantitative characteristic that allows to separate the motion

in the phase space into two distinct classes.

Our result on the distribution of recurrence rates over

the ensemble of causal states suggests that the phase space of

the dynamical system corresponding to water has more com-

plex structure than can be concluded from average statistical

analysis of return times. The parameter D introduced as an

indicator of deviation from Poincaré law thus provides a

more subtle distinction between periodic and chaotic phases

of motion, compared to the single histogram analysis pre-

sented in Fig. 8. Several causal states demonstrate much

slower decay rate than can be expected from Poincaré law.

This fact evidences the presence of the areas in the phase

space where the trajectory spends longer time compared to

the rest of the accessible volume. Such areas can not be

detected easily by other methods, most probably due to

abundance of resonant areas in the high-dimensional phase

space that makes difficult a clear distinction between chaotic

and quasi-periodic motions.

From a different perspective, our method also has a spe-

cial importance for the problem of quantifying transport

properties in high-dimensional molecular systems, since it

reveals a (small) number of areas in the phase space playing

crucial importance for particle motion through the phase

space. Finding such areas from the analysis of a single scalar

time series can be very useful in numerical experiments with

large number of interacting particles that typically generate

huge volumes of data. Extracting the essential information

from the trajectory of a single test particle thus looks a prom-

ising approach, for example, in modeling the process of pro-

tein folding or dynamics of complex biomolecules.
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APPENDIX: COMPUTATIONAL MECHANICS

All past s�i and future sþi halves of bi-infinite symbolic

sequences centered at times i are considered. Two pasts s�1

and s�2 are defined equivalent if the conditional distributions

over their futures Pðsþjs�1 Þ and Pðsþjs�2 Þ are equal. A causal
state �ðs�i Þ is a set of all pasts equivalent to s�i :

�i � �ðs�i Þ ¼ fk : PðsþjkÞ ¼ Pðsþjs�i Þg. At a given moment,

the system is at one of the causal states and moves to the

next one with the probability given by the transition matrix

Tij � Pð�jj�iÞ. The transition matrix determines the asymp-

totic causal state probabilities as its left eigenvector

Pð�iÞT ¼ Pð�iÞ, where
P

i Pð�iÞ ¼ 1. The collection of the

causal states together with the transition probabilities define

an �-machine.

It is proven22 that the �-machine is

– a minimal sufficient statistic, therefore, the causal

states can not be subdivided into smaller states; and

– a unique minimal sufficient statistic, any other one sim-

ply re-labels the same states.
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