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Abstract 

We report on the mechanical behavior of a dense brush of small-diameter (1-3 nm) non-

catalytic multiwall (2-4 walls) carbon nanotubes (CNTs), with ~10 times higher density than 

CNT brushes produced by other methods. Under compression with spherical indenters of 

different radii, these highly dense CNT brushes exhibit a higher modulus (~17-20 GPa) and 

orders of magnitude higher resistance to buckling than vapor phase deposited CNT brushes or 

carbon walls. We also demonstrate the viscoelastic behavior, caused by the increased influence 

of the van der Waals’ forces in these highly dense CNT brushes, showing their promise for 

energy-absorbing coatings.  
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1. Introduction 

Layers of vertically aligned carbon nanotubes (CNTs), known as CNT brushes, forests or 

arrays, have been suggested for applications in superhydrophobic, compliant and energy-

absorbing coatings[1, 2]. While individual CNTs have been announced as the strongest material 

known [3] and have shown extremely high strength and Young’s modulus in tensile tests on 

individual tubes [4], much less is known about the CNT brushes in terms of their mechanical 

behavior. Moreover, the low density of the reported CNT brushes[1, 5, 6] also poses a serious 

obstacle in obtaining significant compression strength/modulus needed for their energy-

absorbing applications.  

Instrumented indentation has been the most common method for studying mechanical 

properties of films and coatings, however, only a handful of studies have been conducted on 

CNT brushes. The extremely high aspect ratio of the CNTs makes them highly susceptible to 

buckling under compression [6], which is generally believed to be the reason for the significantly 

lower values of stiffness, ranging anywhere from 0.25 [7] to 50 [1] to 800 [8] MPa, reported 

during nanoindentation compression experiments on CNTs, as compared to exceptionally high 

values computed from theory [9] and tensile tests (~1-5 TPa [3]). At the same time, the ability to 

elastically sustain loads at large deflection angles has earmarked the CNTs as uniquely tough 

materials for energy-absorbing applications [10]. Buckling and post-buckling analysis of CNTs 

under a variety of loading conditions such as axial compression, bending, torsion and external 

pressure have been studied by simulation [9, 11-14]. Experimentally, large diameter (~100 nm) 

CNTs produced in alumina templates with no catalyst added were tested using a sharp 

(Berkovich) and a spherical indenter [5], as well as a flat punch [6] and a low buckling load 

(~2.0-2.5 �N) was measured. Very low buckling loads and high compliance of nanotubes were 

also observed for long CVD tubes in compression tests [8]. The modulus measured in 

compression was well below 1 GPa, in contrast to the tens to hundreds GPa in tension, with even 

lower values reported for CNT turf [15]. A compressive modulus of 0.25 MPa was measured for 

20-30 nm diameter CNT brushes and was found to be independent on the array height [7]. 

Deformation during compression for CVD CNT films has been shown to be reversible in both, 

normal [1] and radial [16] directions. Sidewall chemical modification has been shown to affect 

interaction of the CNTs with the indenter (friction) [17]. Indentation studies have also been done 



 

 

 

 

 Publication E - 128 - 

on CNT-polymer composites [18], but those provide little information about properties of 

nanotubes inside the composite.  

Indentations with an atomic force microscope (AFM) tip have also been used to study 50-

100 nm diameter tubes vertically aligned in CNT films grown by catalytic chemical vapor 

deposition (CVD) and a very high bending modulus was reported [19]. Low buckling loads (~ 30 

nN) and mechanical instabilities, including viscoelasticity and negative stiffness regimes (where 

the axial force decreases with increasing compression), have been reported in individual 

multiwalled CNTs (MWCNTs) for a wide range of aspect ratios. The negative stiffness behavior 

of the CNTs is highly promising as a possible route to designing composite systems with 

enhanced overall stiffness and damping [20, 21]. Similar negative stiffness regimes have also 

been demonstrated for single-walled CNTs (SWCNTs) using molecular dynamic simulations [9, 

14].    

It is important to note that, while small-diameter SWCNTs show much higher tensile 

strength and modulus compared to large-diameter MWCNTs [22], no indentation studies have 

been performed on double-wall CNTs or brushes of SWCNTs. One of the reasons may be the 

extremely low density of SWCNT brush (>90% porosity). Super-compressible MWCNTs 

reported by Cao et al. [1] had porosity of about 87%.  It is very difficult to expect any significant 

compression strength/modulus from such a porous body. In addition, since tubes in CVD arrays 

are located at distances of at least a tube diameter (often as much as 100-200 nm [6, 8]) from 

each other, the interactions between the tubes in an array are weak and a low energy dissipation 

is expected [13]. Similarly the negative stiffness of CNTs has only been demonstrated for 

individual MWCNTs [20, 21], whereas any practical application of these materials in composite 

systems is likely to involve a large number (~ thousands to millions) of CNTs in close proximity 

to each other.   

Although lower density and wider spaced CNT brushes have been indented with flat 

punch [6, 7] and sharper Berkovich [5] indenters, each of these indenters have their own 

disadvantages. While maintaining parallel contact between the indenter and the sample is a major 

concern for the flat punch indenter [5], the sharper contact in Berkovich indentation can cause 

the CNTs to bend away from the indenter [19]. On the other hand, the smoother stress fields in 

spherical indentation, as compared to sharper indenters [23], allows indentation stress-strain 

curves to be extracted from the raw load-displacement data [24-26], which in turn enables one to 
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follow the entire evolution of the mechanical response in the CNT array, from initial elasticity to 

the initiation of buckling to post-buckling behavior at finite plastic strains. Because of these 

advantages, spherical nanoindentation with 3 different indenter tip sizes (1, 5 and 13.5 �m radii) 

was chosen to analyze the buckling response of the CNT brushes in this work. The higher 

density of these brushes, which makes them ideal for indentation testing, is evident in the 

scanning electron micrograph (SEM) image in Fig. 1a of the CNT brush grown at 1700 
o
C, 

where no apparent porosity is visible.   
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Figure 1. Indentation scheme used to analyze the mechanical properties of the CNT brushes. (a) SEM 

micrograph showing the CNT brush – graphite interface. The SiC wafers were treated at 1700
o
C. (b) and 

(c) show a comparison of spherical indentation (indenter radius, Ri = 1 µm) load-displacement responses 

between the CNT brush and the graphite coating up to an indentation depth of 300 nm.  

 

The lower density of the CVD CNT brushes [1, 6, 8] also makes them unsuitable for 

measuring their viscoelastic properties. Although nanoindentation studies have often been used 

in characterizing the viscoelastic behavior in solids [27, 28], their utility in measuring the 

viscoelasticity of CNTs has been limited to studies of CNT-polymer composites [29-31]. The 



 

 

 

 

 Publication E - 130 - 

dense CNT brushes produced in this work thus provide a unique opportunity to address the time 

dependent mechanical behavior of the CNT brush assembly. 

In this paper, we report on the mechanical behavior under contact loading of dense CNT 

brushes (~10 times higher density than CNT brushes produced by other methods) produced by 

vacuum decomposition of SiC. Our results demonstrate a significantly higher loading modulus 

and buckling resistance in these dense CNT brushes. The CNT brushes are shown to exhibit 

negative stiffness in their post-buckled regime – a behavior previously noted only in individual 

CNTs. The close proximity of the CNTs in these highly dense brushes also results in an 

increased influence of van der Waals’ forces between the tubes, which is evident in their 

viscoelastic behavior during indentation. 

2. Experimental 

2.1. Sample preparation 

In this work, highly dense CNT brushes were produced by high temperature vacuum 

decomposition of 6H SiC single crystals. The 6H-SiC single crystal wafers, 0.37 mm in 

thickness with epi-ready polished (0001) Si face and optical polished ( )1000  C face on axis 

without any dopants (resistivity > 10
5
 Ohm·cm), were obtained from Intrinsic Semiconductor 

Corporation. It has been shown [32] that high temperature decomposition of SiC by the reactions 

SiC � Si(g) + C          (1) 

SiC + 1/2O2 (g) � SiO (g) + C        (2) 

leads to the formation of CNTs growing normal to the carbon terminated ( )1000  C-face of 

hexagonal SiC with primarily zigzag chirality [33] and graphite growth on the Si terminated 

( )0001  Si-face. These carbide-derived carbon (CDC) nanotube brushes have been shown to have 

a density close to 0.95 g/cm
3
 [34], which is significantly (10 times or more) higher than in 

catalytic CVD growth of any kind of nanotubes (see also Fig. 1a). This higher density is 

generally thought be due to a conformal transformation of SiC into carbon. These dense CDC 

CNT brushes consist of small-diameter (1-3 nm outer diameter, 1-4 walled) non-catalytic CNTs 

with double walled CNTs being the most common, as determined from transmission electron 

microscopy (TEM), and a strong RBM mode in Raman spectra [34]. Assuming an average outer 

diameter of 3 nm and 0.35 nm as the inter-tube distance, this would correspond to an aerial 
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density of ~100,000 tubes per µm
-2

 for a hexagonal arrangement of CNTs, and ~89,000 tubes per 

µm
-2

 for a square arrangement. The actual aerial density of the CNTs packed randomly in a 

dense brush is likely to be somewhere in between.   

Three different sets of samples were used in this study. Graphite or CNT structure, and 

thickness of carbon coating on SiC were controlled by changing the synthesis temperature as 

described by Cambaz et al. [34]. The first set of samples (Figs. 1 and 2) were produced by 

heating the SiC wafers to 1700 
o
C for 4 hrs in a Solar Atmospheres (US) vacuum furnace with an 

electric resistance carbon heater. The heating rate was 5°C min
-1

. For these samples the SiC 

wafers were patterned by sputtering carbon on the C-face. Sputtering of carbon formed a 

diffusion barrier and largely suppressed the growth of CNT on the C-face, allowing tubes to 

grow only on the coating-free area. ~200 nm thick CNT brush patterns were grown by this 

technique. Significantly thicker (1.2 – 1.4 µm thickness) CNT brushes were grown in the second 

set of samples (shown in Figs. 3 and 4) by heating the SiC wafers to 1800 
o
C for 4 hrs. The final 

set of samples (Fig. 4, Test C) consisted of a dense ~3 µm thick CNT/carbon wall layer grown by 

heating the SiC wafers to 1900 
o
C for 4 hrs. All samples were investigated by using field-

emission SEM (Supra 50VP, Zeiss, Germany). For these investigations, samples were fractured 

after vacuum decomposition to study both the cross-section and the surface of the coatings. 

2.2. Indentation Stress-Strain Curves 

The MTS NanoIndenter XP
®
 (Nano Instruments, MTS Systems Corporation, USA) was 

used for the spherical nanoindentation studies. Standard protocols prescribed in the MTS 

machine manual were used to determine the machine frame stiffness, the harmonic frame 

stiffness and other calibrations. In order to probe different material volumes in the CNT brushes, 

three diamond indenter tips of increasing tip radii (1, 5 and 13.5 µm) were used in this work. The 

choice of these three indenter tip sizes results in varying indentation zone sizes at buckling, 

ranging from values much smaller than the film thickness to the values larger than the film 

thickness.  

The tests were carried out under closed loop displacement control using the continuous 

stiffness measurement (CSM) attachment. Several (15-20) tests were conducted to ascertain 

repeatability. Similar tests, using the same indenter tips, were carried out in aluminum, fused 

silica and tungsten with known values of Young’s moduli, and these were used to validate the 
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procedures described below. Note that the CSM applies a very small sinusoidally varying signal 

(~ 2 nm oscillations) on top of the DC force signal driving the motion of the indenter. For a 

material with a low modulus-to-hardness ratio such as the CNT brushes (modulus-to-hardness 

ratio ~ 45) the amplitude of these essentially elastic oscillations is unlikely to affect the 

deformation process [35]. Further, since the CSM signal was used in this work to calculate the 

contact radius during indentation (see Eq. (4) below), these values are also not expected to be 

affected by concerns of edge or substrate effects raised in a few recent reports [36]. Note also 

that the contact stiffness of the CNT brushes is significantly smaller than the CSM machine 

stiffness – for example, the elastic stiffness (as measured by the CSM) at buckling for the 1.2-1.4 

µm thick CNT brush using the larger 13.5 µm indenter is ~ 70,000 N/m while the machine 

stiffness of the CSM is around 8 ×10
6
 N/m, and as such, it is unlikely to affect the measurements 

for the indenter sizes used in this study. 

Indentation stress-strain curves were extracted from the raw load-displacement-CSM data 

following the technique described in our recent papers [24, 25]. In brief, the extraction of reliable 

indentation stress-strain curves from the measured load displacement data is essentially a two-

step process. The first step in this process is an accurate estimation of the point of effective initial 

contact in the given data set, i.e. a clear identification of a zero-point that makes the 

measurements in the initial elastic loading segment consistent with the predictions of Hertz’s 

theory [37, 38]. For spherical nanoindentation this relationship was expressed as [24, 25] 
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, and S are the measured load signal, the measured displacement signal, and the 

CSM signal in the initial elastic loading segment from the machine, and P* and h* denote the 

values of the load and displacement signals at the point of effective initial contact. A linear 

regression analysis was used to establish the point of effective initial contact (P* and h*) in the 

indentation experiment. 

In the second step of the data analysis method for the extraction of the indentation stress-

strain curves, Hertz’s theory [37, 38] was recast in the following set of equations for frictionless, 

elastic, spherical indentation (see also [24, 25]): 
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where 
indσ  and 

indε  are the indentation stress and the indentation strain, a is the radius of the 

contact boundary at the indentation load P, he is the elastic indentation depth, S is the elastic 

stiffness described earlier, Reff and Eeff are the effective radius and the effective stiffness of the 

indenter and the specimen system, ν  and E are the Poisson’s ratio and the Young’s modulus, 

and the subscripts s and i refer to the specimen and the indenter, respectively. When compared to 

other currently used data analysis methods [39, 40], these indentation stress-strain curves have 

been demonstrated to provide much more reliable estimates for the elastic moduli measured in 

loading and unloading segments [24-26], and the changes in the indentation yield points [41]. 

These methods have also been used for identifying and explaining several of the surface 

preparation artifacts typically encountered in nanoindentation measurements [42]. 

2.3. Visco-elastic Nanoindentation 

The micro-scale dynamics properties of the CNT brushes were analyzed using the nano-

DMA (Dynamic Mechanical Analysis) mode of the Hysitron Triboscope® (Hysitron Inc., 

Minneapolis, MN, USA) with a 1 �m radius spherical fluid tip. The nano-DMA technique takes 

into account the elastic as well as the viscous contribution of the test material, which allows the 

calculation of δtan . In the frequency mode of the nano-DMA software the applied load is 

specified, which fixes the indentation depth, and the probe is oscillated across a range of 

frequencies. The frequency dependent dynamic response of the material can be ascertained using 

the following equation 

=δtan
S

S

k

C

E

E ω
=

′

"
          (5) 

where E ′  and E ′′  denote the storage and loss moduli, ω  is the frequency of the applied force 

and Sk  and SC  are the sample stiffness and damping coefficients respectively. Details of the 

model can be found in Ref. [27]. The indenter was held for 2 mins at the applied load in order to 

dissipate any creep effects before starting the probe oscillations. Standard protocols prescribed in 

the machine manual for the Triboscope® and the nano-DMA were used to determine the machine 
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frame stiffness and other calibrations. Similar tests were done on polycarbonate with known 

values of δtan  to validate the accuracy of the method. The noise level in the machine, 

determined by conducting frequency sweeps in non-viscoelastic materials such as aluminum and 

tungsten, was found to be around 0.03 δtan .    

3. Results and discussion 

3.1. Buckling of CNTs 

The SEM micrograph of the CNT brush – graphite interface, produced by heating the SiC 

wafers to 1700 
o
C for 4 hrs, is shown in Fig. 1a. Figs. 1b and 1c show a comparison of the 

indentation load-displacement responses, measured with a 1 �m spherical indenter, between a 

thin CNT brush (thickness ~ 200 nm) and a thinner (thickness ~ 5 nm) graphite coating on a 

patterned single-crystal SiC substrate. As seen from Fig. 1b, after about 200 nm of penetration 

into the CNT brush, the indenter experiences the SiC substrate, which is marked by a sharp rise 

in the load-displacement response. On the other hand, the corresponding curve for indentation on 

the thinner graphite coating (Fig. 1c) shows an almost immediate influence of the SiC substrate. 

These two distinctly different indentation behaviors allow one to determine the location of the 

CNT brushes using only the mechanical response. The lower hardness of the CNT brush 

compared to the graphite film on the SiC substrate is also evident from these figures.  

It is interesting to note that the indentation response of the CNT brush with the spherical 

indenter (see the expanded view of the CNT indentation curve in Fig. 2a) is qualitatively similar 

to the one recorded with a flat punch indenter for 25-nm MWCNTs partially released from an 

alumina membrane [6], as well as to the axial compression of MWCNT (diameter 30 nm, aspect 

ratio 80-220) attached to an AFM tip [20]. As in both these cases, three distinct stages are visible 

during indentation of the CNT brushes: there is an initial linear portion where the indenter 

elastically compresses the CNT array (see the schematic in Fig. 2b), followed by the initiation of 

buckling at a critical load (see Fig. 2a inset), and finally a sharp increase in the slope of the curve 

signaling the influence of the SiC substrate. The associated indentation stress-strain curve, shown 

in Fig. 2b, depicts these three stages even more clearly while at the same time also allowing one 

to calculate the elastic modulus and the stress at buckling in the indentation experiment. From 

this figure, the modulus of these 200 nm thick CNT brushes was estimated to be ~17 GPa (using 

Eqs. (3) and (4)) and the critical buckling stress was estimated as ~0.3 GPa at a load of 0.02 mN.  
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Figure 2. (a) Enlarged view of Fig. 1b showing the loading of a 1 µm spherical indenter on the ~200 nm 

thick CNT brush. Three distinct responses are visible during indentation. (a inset) Enlarged view of the 

initiation of buckling at a critical load. (b) The corresponding indentation stress-strain curve allows a 

better representation of these three stages of CNT indentation. (b inset) Schematic illustration of buckling 

of the CNTs in a dense CNT brush in the indentation zone. 
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Figure 3. Indentation loading response as a function of indenter radius. The initial elastic behavior 

followed by the buckling instability is evident from both (a), the load-displacement and (b), the 

corresponding indentation stress-strain response. Note the lower bucking stress for the larger 13.5 µm 

indenter. (b inset) SEM micrograph of the 1.3 µm thick CNT brush grown by decomposition of SiC at 

1800
o
C for 4 hours.  

 

Fig. 3 shows the indentation response on a much thicker CNT brush grown at 1800 
o
C 

(thickness 1.2-1.4 �m, see Fig. 3 inset) for 3 different indenter radii. As seen from this figure, the 

indentation stress-strain response of the CNT brush shows an initial elastic behavior (modulus 

~18 GPa), followed by a sharp drop at a critical stress – a trend that is highly repeatable in 
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several experiments conducted across the range of indenter sizes. The good agreement between 

the indentation stress-strain curves in the initial elastic segments provides additional validation 

for the data analyses procedures used in this work. The buckling behavior is also discernable as a 

slight shift in the slope from the associated load-displacement data (Fig. 3a): this transition point 

is interpreted as the onset of buckling instability in the CNT brush. After buckling, the stress 

drops significantly for the remainder of the indenter loading. The CSM contact stiffness values 

after buckling (not shown) indicate these regions of stress drop have negative stiffness values 

during contact loading of the CNT brushes. Such incremental negative stiffness, where the stress 

decreases with increasing strain, has been noted before for individual CNTs in modeling [9, 14] 

and in axial compression experiments [20, 21], but not for CNT brushes. The fact that this 

phenomenon is exhibited even in dense CNT brushes can have significant design implications in 

devices containing CNTs that take advantage of this behavior. 

Table 1. Summarized average and standard deviation (of �5 tests) values of indentation buckling stress, 

contact radius and indentation zone size at buckling for the 3 different indenters used in this work. 

Indentations were performed on the 1.2-1.4 µm thick CNT brush sample shown in Fig. 3. 

1 µm radius 
indenter

5 µm radius 
indenter

13.5 µm radius 
indenter

Indentation buckling 
stress

0.59±0.41 GPa 0.40±0.11 GPa 0.09±0.02 GPa

Contact radius at 

buckling 
0.16 µm 0.36 µm 1.49 µm

Indentation zone size 
at buckling 

0.39 µm 1.01 µm 3.58 µm

1 µm radius 
indenter

5 µm radius 
indenter

13.5 µm radius 
indenter

Indentation buckling 
stress

0.59±0.41 GPa 0.40±0.11 GPa 0.09±0.02 GPa

Contact radius at 

buckling 
0.16 µm 0.36 µm 1.49 µm

Indentation zone size 
at buckling 

0.39 µm 1.01 µm 3.58 µm

)(a

)4.2( a≈
 

Another interesting point to note from Fig. 3 is that the values of buckling stresses vary 

significantly between the three different indenters, where indentation with the smaller 1 µm 

indenter shows the highest buckling stress, followed by the 5 µm indenter, while buckling with 

the largest 13.5 µm indenter occurs at a significantly lower indentation stress. This point is 

further illustrated in Table 1, where the average and standard deviation values (of �5 tests) of the 

indentation buckling stress, and the average values of contact radius (a) and indentation zone 

size (~2.4a; see Eq. (4)) at buckling from these tests for the 3 different indenters are presented. 

The indentation zone for spherical indentation, as described in detail in Refs. [24, 25], is 

generally approximated as a cylinder of radius a and height 2.4a, where the majority of the 

indentation stresses are confined. Note the significant variation in size of the indentation zone at 
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buckling in between the 3 indenters. While the indentation zone for the larger 13.5 µm indenter 

at buckling (~3.58 µm) is well beyond the CNT brush thickness (1.2-1.4 µm), only a limited 

thickness of the CNT brush (~0.39 µm) is affected by the smaller 1 µm indenter at buckling. 

Unlike uniaxial loading, the stress field during indentation is highly heterogeneous.  In fact, 

beyond a certain depth, the material hardly experiences any significant stress. Thus, with a 

smaller indenter, there is a much smaller effective buckling length (shorter than the overall CNT 

film thickness) and hence the material is able to withstand a much higher stress level with the 

smaller indenter. Note also that for a dense material with low defect density (as in these dense 

CNT brushes), increase in the indenter probe size also increases the likelihood of encountering a 

defect in the indentation zone. This is evidenced by large variations observed in the buckling 

stress values (0.59±0.41 GPa) for the smaller 1 �m indenter. This larger spread stems from the 

higher sensitivity of the smaller indentation zone to variations in defect density, when different 

regions of the sample are probed. 

 These numbers suggest that these CNT brushes have a respectable level of the 

mechanical properties with the modulus of elasticity 1-2 orders of magnitude higher compared to 

a CVD CNT turf [15]. The critical buckling loads for the CDC CNT brushes in this work for the 

larger 13.5 �m indenter, which is closest in approximation to flat punch indentation, are found to 

be in the range of 0.5-0.7 mN. The critical buckling loads for CVD CNT brushes under flat 

punch indentation have been reported to significantly lower, 2.2-2.6 �N [5, 6], in spite of the 

higher wall thickness (50 nm outer diameter, 40 nm inner diameter) of the CNTs used in those 

studies. This difference in orders of magnitude between the two values can be explained by a 

much higher density of the tubes per unit area which results in considerably higher mechanical 

properties. Molecular dynamics simulation have shown that a much higher buckling load results 

from CNT clusters [43] because of van der Waals’ interactions between CNTs. Van der Waals’ 

forces act over a range of < 5 nm, so low density CNT turf does not have a cluster strengthening 

effect. Assuming no carbon loss (as suggested by the conformal coating, Fig. 1b) or addition of 

carbon from environment, the density [34] of the CNT brush is close to 0.95 g/cm
3
, which is 

significantly higher than for catalytic CVD nanotube brushes [1, 44]. This is of extreme 

importance for making selective CNT membranes for gas or liquid filtration/separation or CNT 

coatings for tribological applications. 
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The Euler beam theory has generally been used in literature for analyzing the buckling 

behavior of the CNTs [1, 8] with an aspect ratio of greater than 200. According to this theory, the 

critical buckling load for a hollow pin-ended cylinder in the fundamental mode of buckling is 

given by [45]   

,
2

2

L

EI
PCR

π
= ( )44

4
iOx rrI −=

π
       (6) 

where CRP  is the buckling load, E  is the elastic modulus, I is the moment of inertia, L is the 

length of the column, and ro and ri are the outer and inner radii of the hollow cylinder 

respectively. Using Eq. (6), the critical buckling load for a CNT forest consisting of 

approximately half a million CNTs (corresponding to the number of CNTs in contact with the 

largest 13.5 µm indenter at buckling, see Table 1) each of average outer and inner diameters of 4 

and 3 nm respectively, column length 1.2 �m, negligible inter-tube spacing (0.35 nm), and a 

modulus value of 1 TPa [4], is calculated to be in the range of 0.03 mN. This value is an order of 

magnitude lower than the values seen from Figs. 2 and 3. Obviously Eq. (6) does not represent 

buckling of a dense CNT brush.  

In a highly dense CNT brush (such as the ones reported in this work) the close proximity 

of the CNTs, where each tube is separated from its neighbor by a van der Waals’ bond length, 

makes it extremely unlikely for the CNTs to fail independently in the primary buckling mode. 

Such a dense array of CNTs would then necessitate a close interaction between the CNTs 

themselves, as well as between the indenter and the CNT – forces which have been generally 

neglected in literature for wider spaced tubes. In fact, this scenario bears more resemblance to an 

idealized structure in which a hollow cylinder is supported by an array of springs in the 

indentation zone along its length (see schematic in Fig. 2b inset), which provides it with 

additional support in withstanding large compressive stresses. Hence these CNTs could be 

expected to buckle in a more energetically favorable zigzag morphology (multimode buckling) 

leading to a higher compressive buckling threshold. A detailed quantitative analysis of these 

support systems is, however, beyond the scope of the present paper.  

3.2 Visco-elastic behavior of CNTs 

Repeated load-unload cycles on these CNT brushes result in two distinct indentation 

responses from the nanotubes depending on the maximum indentation load used, as shown in 
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Fig. 4a for the 1 �m spherical indenter. As seen from this figure, cyclic loading and unloading of 

indenter in the post buckling state (Fig. 4a, Test B) produces hysteresis loops which suggest 

energy dissipation in each cycle. On the other hand, cyclic indentation at load levels well below 

the buckling load (Fig. 4a, Test A) show an increasing displacement at every load cycle – a 

behavior that is suggestive of delayed elasticity in the material due to van der Waals’ interactions 

between the CNTs. Similar qualitative behaviors have also been noticed during axial 

compression of individual MWCNTs using AFM tips [21].    
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Figure 4. (a) Cyclic loading with a 1 µm radius spherical indenter in a 1.3 µm thick CNT brush grown by 

decomposition of SiC at 1800
o
C for 4 hours at load levels before buckling (Test A), after buckling (Test 

B) and in a CNT/carbon wall mixture, grown by heating SiC wafer to 1900
o
C for 4 hours (Test C). Three 

cycles are shown in each test. (b) Viscoelastic indentation measurements showing significantly higher 

values of tan � at load levels before buckling in the CNT brush, than for CNTs after buckling or in a 

CNT/carbon wall mixture.  
 

This damping behavior of the CNTs is also evident in the viscoelastic nanoindentation 

measurements shown in Fig. 4b conducted using a 1 �m spherical indenter. In this figure, the 

values for δtan , defined as the loss modulus normalized by the storage modulus, serves as a 

measure of the energy loss in the material. As seen from Fig. 4b, oscillation of the indenter probe 

at a load level that is less than the critical buckling load results in a significant viscous response 

(higher values of δtan , similar to those reported for individual MWCNTs [21]) from the CNT 

brush. On the other hand, indentations on the CNT brush at load levels higher than the buckling 

load do not show any appreciable viscoelasticity (low values of δtan  which are comparable to 

the noise level of the machine). This is in contrast to the observations of Yap et al. [21], who 
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noticed an increase in δtan  in the initial post-buckled regime. The decrease in the δtan  values 

in our case is most likely caused by the increased adhesive interactions between the individual 

CNTs in the brush when they are squeezed together after buckling. Note that the experiments in 

the work of Yap et al. were conducted on individual MWCNTs, where such adhesive interactions 

are non-existent. A similar response is seen in polymeric materials like rubber [46], where an 

increase in cross linking leads to a decrease of the viscoelastic response in the polymer.  

Samples consisting of a mixture of carbon walls (graphitic structures growing normal to 

the surface) and CNTs, where a stronger interaction (cross-linking) between the graphite sheets 

is expected, also show a lower viscoelastic response, as evident in Fig. 4b. The observed 

viscoelastic behavior of the CNT brushes is expected to have significant implications in damping 

applications that utilize these materials. Note that the hysteresis loops in the CNT brushes (Fig. 

4a, Test A) obtained at a rate of 0.01 Hz indicate energy losses on the order of 30%. This implies 

that for large allowed displacements, motions over large sections of CNTs cause breaking of van 

der Waals’ bonds, while the high frequency oscillations with small displacements show much 

lower losses (Fig. 4b). This is similar to polymer chains that have δtan  peaks at different 

frequencies depending on what portion of the polymer chain is involved in the motion. Here, 

since the losses for hysteresis loop occur for displacements of ~75 nm, a relatively long portion 

of each CNT must be involved in the motion.   

Note also that the mechanical properties of the CNT brushes are far superior to those of 

other graphitic structures such as vertically aligned carbon walls, which form during 

decomposition of SiC at a higher temperature of 1900 
o
C [34]. The modulus values calculated 

during cyclic indentations on a mixture of CNTs and carbon walls shown in Fig. 4a (Test C) is 

around ~7 GPa, which is significantly lower compared to that of the CNT brushes. No buckling 

behavior is noted in these samples. However these specimens still show hysteresis loops upon 

cyclic loading ( Fig. 4a Test C), which indicates that van der Waals’ forces still play an 

important role in these graphitic structures.    

4. Conclusion 

In summary, this study has shown that dense CNT brushes exhibit a mechanical behavior 

which is unique for this kind of material and distinctly different from that of graphite [47]. The 

ability of these dense non-catalytic CNTs to dissipate energy, while withstanding at least an 
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order of magnitude higher loads compared to other nanotube brushes [5, 6] makes them highly 

promising for a variety of applications, especially in MEMS devices.    
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