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Abstract. We present a mean field theory of code-division multiple-access (CDMA)
systems with error-control coding. On the basis of the relation between the free energy
and mutual information, we obtain an analytical expression of the maximum spectral
efficiency of the coded CDMA system, from which a mean-field description of the
coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose
variances in general vary at different code symbol positions. Regular low-density parity-
check (LDPC)-coded CDMA systems are also discussed as an example of the coded
CDMA systems.
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1. Introduction

In modern societies, many information technology-based applications, such as cellular

telephony networks, require unconstrained connectivity, which rely heavily on wireless

communications. In recent years, spin glass theory has been applied to analysis

of wireless communication systems, such as code-division multiple-access (CDMA)

and multiple-input multiple-output (MIMO) systems, by mapping these systems onto

disordered spin systems [1–6].

Replica analysis has successfully provided quantitative characterizations of these

wireless communication systems in terms of single-body mean-field descriptions. Guo

and Verdú [3], extending analysis of Tanaka [1, 2], have claimed that a randomly-spread

CDMA channel, where users modulate their symbols with randomly generated spreading

sequences, is statistically equivalent to a bank of scalar Gaussian channels in the large-

system (thermodynamical) limit. Their claim, which they termed the “decoupling

principle,” can be regarded as one form of mean field theory. It is nevertheless

of particular significance, because the resulting mean-field description, which gives a

representation of a complex communication system in terms of scalar Gaussian channels,

makes sense from a communication theory point of view.
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Most existing studies discussed uncoded CDMA systems, in which error-control

coding is not explicitly taken into account. On the other hand, real-world CDMA-based

systems, such as the third-generation cellular phone systems, are equipped with error-

control coding in order to achieve high-performance communication [7]. In this paper,

we study a mean field theory of coded CDMA systems, in order to obtain explicitly

their mean-field descriptions, similar to those of uncoded systems, and to see whether

the derived mean-field formulation provides a simplified representations of coded CDMA

systems in terms of simple communication systems.

This paper is organized as follows. In section 2 we introduce the coded CDMA

channel model to be analyzed. In section 3 we present a mean field theory of the model.

On the basis of a relation between the mutual information of the channel model and

the free energy of the system [8], we show a mean-field description of the coded CDMA

systems. In section 4, we discuss regular LDPC-coded CDMA systems as an example

of coded CDMA systems, followed by a conclusions section.

2. System model and multiuser detection

We consider an uplink of a randomly-spread coded CDMA system with K users. User

k encodes an original message ξk into a codeword ck = (ci
k) with ci

k = ±1, with an

encoding function gk(·)

ck = gk(ξk). (1)

We assume that codelengths M are the same for all users.

Codewords are modulated with spreading sequences, and then transmitted to a

receiver. The spreading sequence used to modulate ith symbol of the codeword of

kth user, ci
k, is denoted by si

k = 1√
W

(si
1k, . . . , si

Wk), for which we assume random

spreading, meaning that si
µk’s are independent and identically-distributed (i.i.d.) real-

valued random variables with zero mean, unit variance and finite higher-order moments.

The received signals at the receiver through the CDMA channel are given by

yi
µ =

1√
W

K∑

k=1

Akc
i
ks

i
µk + ni

µ (i = 1, . . . , M ; µ = 1, . . . , W ), (2)

where Ak ∈ R denotes an amplitude of user k’s signal, representing attenuation (fading)

effects, and where ni
µ’s are real-valued additive noise, which are assumed i.i.d. random

variables following a probability distribution ρ0(·). Equation (2) is simplified by letting

xi
k = Akc

i
k:

yi
µ =

1√
W

K∑

k=1

xi
ks

i
µk + ni

µ (i = 1, . . . , M ; µ = 1, . . . , W ). (3)

In the present paper we follow the Bayesian framework. By letting xk =

(x1
k, . . . , xM

k ) and yµ = (y1
µ, . . . , yM

µ ), the entire channel input and output are denoted

by x⃗ = (x1, . . . , xK) and y⃗ = (y1, . . . , yW ), respectively. From the above-mentioned

setting, all information of the users’ encoding schemes as well as the channel attenuation
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are encapsulated in a prior distribution p0(x⃗) of the entire channel input x⃗. The

receiver postulates that the prior distribution of the channel input is p(x⃗) and that the

distribution of the noise is ρ(·). The true and postulated distributions of y⃗ conditioned

on x⃗ are thus given by

p0(y⃗|x⃗) =
M∏

i=1

W∏

µ=1

ρ0

(
yi

µ − 1√
W

K∑

k=1

si
µkx

i
k

)
and (4)

p(y⃗|x⃗) =
M∏

i=1

W∏

µ=1

ρ

(
yi

µ − 1√
W

K∑

k=1

si
µkx

i
k

)
, (5)

respectively. The receiver has to infer x⃗ from y⃗, which is called multiuser detection. On

the basis of the Bayesian framework, multiuser detection is formulated as a statistical

inference problem of x⃗ from y⃗. A broad range of multiuser detectors [9], including

optimal and linear ones, can be constructed by the generalized posterior mean estimator

(GPME) [2, 3]

[xk] =

∫
xk p(x⃗|y⃗) dx⃗, (6)

where p(x⃗|y⃗) is the posterior distribution postulated by the receiver, given by

p(x⃗|y⃗) =
p(y⃗|x⃗)p(x⃗)

π(y⃗)
, (7)

with π(y⃗) =
∫

p(x⃗)p(y⃗|x⃗)dx⃗ being the postulated marginal distribution of y⃗.

The posterior distribution p(x⃗|y⃗) can alternatively be represented as a Boltzmann

distribution:

p(x⃗|y⃗) ∝ exp(−γH(x⃗)), (8)

with the Hamiltonian

H(x⃗) = −
∑

i,µ

log ρ

(
yi

µ − 1√
W

K∑

k=1

si
µkx

i
k

)
− log p(x⃗), (9)

and where the inverse temperature is γ = 1. Accordingly, GPME [xk] can be regarded

as a site magnetization of the system characterized by the Hamiltonian H(x⃗). Note that

in this system each “spin” variable, xk, is a collection of M variables, each of which

corresponds to a codeword symbol with fading effects.

3. Mean field theory

3.1. Mutual information and free energy

Mutual information [10] quantifies theoretical information transmission capabilities of

a given channel model. We define a generalized mutual information I(X⃗; Y⃗ ) of the

introduced model as

I(X⃗; Y⃗ ) =

∫
p0(x⃗)

∫
p0(y⃗|x⃗) log

p(y⃗|x⃗)

π(y⃗)
dy⃗ dx⃗, (10)
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where, and hereafter, logarithms are taken to base e. The conventional definition of

mutual information, denoted by I0(X⃗; Y⃗ ), is recovered if we let p(y⃗|x⃗) = p0(y⃗|x⃗) and

p(x⃗) = p0(x⃗) in (10). The spectral efficiency (an upper limit of data rates, divided by

bandwidth, where reliable communication is possible) [11], which is also a performance

measure frequently used in the context of wireless communication, is defined as

C =
1

W
I(X⃗; Y⃗ ). (11)

The generalized mutual information can be decomposed as

I(X⃗; Y⃗ ) = H(Y⃗ ) − H(Y⃗ |X⃗), (12)

where

H(Y⃗ ) = −
∫

π0(y⃗) log π(y⃗)dy⃗ (13)

is the (Shannon) differential entropy of y⃗, where the true marginal distribution of y⃗ is

π0(y⃗) =
∫

p0(x⃗)p0(y⃗|x⃗) dx⃗, and where

H(Y⃗ |X⃗) = −
∫

p0(x⃗)

∫
p0(y⃗|x⃗) log p(y⃗|x⃗)dy⃗ dx⃗ (14)

is the conditional differential entropy of y⃗ conditioned on x⃗, which is equal to the

differential entropy of the channel noise. By noticing that − log π(y⃗) is the free energy

of the system characterized by the posterior distribution p(x⃗|y⃗), we are encouraged to

adopt statistical mechanical approaches to evaluate H(Y⃗ ), which is the free energy

averaged with respect to the received signals. The relation between the mutual

information and the free energy (averaged over the received signals) was pointed out

explicitly in [8].

We consider the large-system limit, where K and W go to infinity with the load

β = K/W fixed, and the random spreading, in which one has to evaluate H(Y⃗ |S),

where S = {si
µk} denotes the collection of the spreading sequences. Assuming the self-

averaging property for H(Y⃗ |S), we evaluate, in the large-system limit, the quantity:

h = lim
K→∞

1

K
H(Y⃗ |S). (15)

We evaluate h using the replica method. We first rewrite (15) as

h = − lim
K→∞

1

K
lim
n→0

∂

∂n
log Ξn = − lim

n→0

∂

∂n
lim

K→∞

1

K
log Ξn, (16)

where

Ξn =

∫
ES {π0(y⃗) [π(y⃗)]n} dy⃗, (17)

with ES{·} denoting averaging with respect to the spreading sequences S. We evaluate

limK→∞ K−1 log Ξn in the large-system limit, assuming that n is a positive integer, and

then extend the result to real values of n in the vicinity of 0 to obtain h.
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Following the replica analysis of [2, 3], we obtain, under the assumption of replica

symmetry (RS) (see Appendix A for the derivation),

h = −β−1

M∑

i=1

∫
ρ̄0

(
yi −

√
β(mi)2

qi
ti

)
log

[
ρ̄(yi −

√
βqi ti)

]
Dtidyi

+
∑

i

{
ri F

i − Ei

2
+ miEi − 1

2
qiF i − F i

2Ei
− Ei

2
ri
0 −

1

2
log

2π

Ei

}

− lim
K→∞

1

K

〈〈
log

∫
p(x⃗)

∏

k

ρG(zk|xk) dx⃗

〉〉
, (18)

where ρ̄0(·) and ρ̄(·) are defined as

ρ̄0

(
wi

)
=

∫
ρ0

(
wi −

√
β

(
ri
0 −

(mi)2

qi

)
n

)
Dn, (19)

ρ̄(wi) =

∫
ρ

(
wi −

√
β (ri − qi) n

)
Dn, (20)

with Dn = e−n2/2 dn/
√

2π being a Gaussian measure, where ρG0(zk|x0k) and ρG(zk|xk),

with zk = (z1
k, z

2
k, . . . , z

M
k ), are defined as

ρG0(zk|x0k) =
M∏

i=1

[√
(Ei)2

2πF i
exp

{
−(Ei)2

2F i

(
zi

k − xi
0k

)2
}]

, (21)

ρG(zk|xk) =
M∏

i=1

[√
Ei

2π
exp

{
−Ei

2

(
zi

k − xi
k

)2
}]

, (22)

and where the order parameters {Ei, F i, ri
0, ri, mi, qi; i = 1, . . . , M} should satisfy

the RS saddle-point equations

Ei =

∫
ρ̄′

0

(
yi −

√
β(mi)2

qi
ti

)
ρ̄′(yi −

√
βqi ti)

ρ̄(yi −
√

βqi ti)
Dtidyi, (23a)

F i =

∫
ρ̄0

(
yi −

√
β(mi)2

qi
ti

)(
ρ̄′(yi −

√
βqi ti)

ρ̄(yi −
√

βqi ti)

)2

Dtidyi, (23b)

ri
0 = lim

K→∞

1

K
〈〈

∣∣xi
0

∣∣2 〉〉, ri = lim
K→∞

1

K
〈〈 〈

∣∣xi
∣∣2〉 〉〉, (23c)

mi = lim
K→∞

1

K
〈〈xi

0 · 〈xi〉 〉〉, qi = lim
K→∞

1

K
〈〈

∣∣〈xi〉
∣∣2 〉〉. (23d)

Here we let xi
0 = (xi

01, . . . , x
i
0K) and xi = (xi

1, . . . , x
i
K). Definitions of the symbols 〈· · ·〉

and 〈〈· · ·〉〉 are

〈· · ·〉 =

∫
(· · ·) p(x⃗)

∏K
k=1 ρG(zk|xk)∫

p(x⃗)
∏K

k=1 ρG(zk|xk)dx⃗
dx⃗, (24)

〈〈· · ·〉〉 =

∫
(· · ·)p0(x⃗0)

K∏

k=1

ρG0(zk|x0k)dz⃗ dx⃗0, (25)
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respectively. One can regard the last term on the right-hand side of (18) as the per-user

(Shannon) differential entropy of the outputs z⃗ = (z1, . . . ,zK) when the codewords

ck are sent separately over a bank of Gaussian channels with fading, ρG0(zk|x0k),

k = 1, . . . , K, and when the receiver assumes the Gaussian channels with fading,

ρG(zk|xk), k = 1, . . . , K.

The maximum spectral efficiency of the present channel model, which can be

achieved by letting p(x⃗) = p0(x⃗) and p(y⃗|x⃗) = p0(y⃗|x⃗), is given by

C0 = lim
W→∞

1

W
I0(X⃗; Y⃗ )

= −
∑

i

∫
ρ̄0

(
yi −

√
βqi ti

)
log

[
ρ̄0(y

i −
√

βqi ti)
]
Dtidyi

−β

2

∑

i

{
1 + F i(ri − qi) + log

2π

F i

}
− lim

K→∞

β

K

〈〈
log

∫
p0(x⃗)

∏

k

ρG0(zk|xk) dx⃗

〉〉

+ lim
K→∞

β

K

∫
p0(x⃗)

∫
p0(y⃗|x⃗) log p0(y⃗|x⃗)dy⃗ dx⃗. (26)

This result can be regarded as an extension of Tanaka’s result [12] for uncoded CDMA

systems, in which each user sends one symbol, to the case where M symbols are

transmitted. It should be noted that the latter is not a straightforward extension of

the former because in the latter we allow statistical correlations among M symbols,

which can arise due to coding in coded systems and are to be utilized in decoding.

3.2. Mean field description of coded CDMA systems

The expectations 〈· · ·〉 and 〈〈· · ·〉〉, as defined in (24) and (25), respectively, have the

following interpretations. Let us consider a bank of K independent single-user scalar

Gaussian channels, where the kth user sends M symbols via the kth Gaussian channel,

and assume that the true input-output characteristic of the whole channel usage is

defined by
∏

k ρG0(zk|x0k) and that the input-output characteristic postulated at the

receiver is represented by
∏

k ρG(zk|xk). Then, 〈· · ·〉 denotes the generalized posterior

mean with respect to the posterior distribution of x⃗ given channel output z⃗, which is

derived by postulating the prior distribution p(x⃗) and the channel
∏

k ρG(zk|xk). On

the other hand, 〈〈· · ·〉〉 is the expectation with respect to the true prior distribution

p0(x⃗0) and the channel
∏

k ρG0(zk|x0k).

Indeed, by performing replica analysis for joint moments of [xk] and x0k, just

as in [3] (see Appendix B for detailed analysis), one can show that the joint

distribution of ([xk],x0k) conditioned on the spreading sequences in the coded CDMA

system converges, under random spreading and in the large-system limit, to the joint

distribution of (〈xk〉,x0k) in the system composed of the scalar Gaussian channels:

p([xk],x0k|S) → p(〈xk〉,x0k), (27)

which means that the decoupling principle [3] also holds for the coded CDMA system,

and that the mean-field description has been obtained in terms of the single-user
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x i

1

x i

2

x i

K

{s i

µ1}

{s i

µ2}

{s i

µK}

{n }i

µ

Multiuser

detector:

GPME (6)

[x1]

[x2]

[xK]

x M

1x 1
1

x M

2x 1
2

x M

Kx 1
K

(a) CDMA multiuser channel

x i

1

x i

2

x i

K

GPME (24)

x M

1x 1
1

x M

2x 1
2

x M

Kx 1
K

N(x , F /(E ) )i

1
i i 2

N(x , F /(E ) )i

2
i i 2

N(x  , F /(E ) )i

K

i i 2

x1

x2

xK

z i

1

z i

2

z i

K

(b) A bank of scalar Gaussian channels

Figure 1. (a) Schematic representation of the coded CDMA channel. (b) Decoupling
structure of the coded CDMA channel. N(µ, σ2) denotes a Gaussian channel in which
µ is a channel input and the channel noise is drawn i.i.d. from a Gaussian distribution
with mean zero and variance σ2.

Gaussian channels, with 〈xk〉 regarded as a “site magnetization.” Schematic pictures for

the decoupling structure of the coded CDMA system are shown in figure 1. The coded

CDMA channel with a multiuser detector which uses GPME (6) is, in the large-system

limit, statistically equivalent to a bank of single-user scalar Gaussian channels whose

noise variances are the same across users but generally different at different code symbol

positions. The dependence of the variances of the scalar Gaussian channels on input

symbol positions, due to effects of coding, is one unique aspect of the coded systems.

4. LDPC-coded CDMA systems

In this section we apply the findings obtained in the previous section to the LDPC-coded

CDMA systems, focusing on a Gallager code [14], which is arguably the most common

LDPC codes.

Let N be the length of the original message. Gallager codes are defined by a

(M − N) × M parity check matrix A (see [8, 15] for an elucidation of Gallager codes)

in which the γth row weight (the number of non-zero elements in the γth row) is Lγ

and the ith column weight (the number of non-zero elements in the ith column) is Ci.

The code rate for unbiased messages is given by R = N/M . If the row and column

weights are the same across the rows and columns, respectively, such LDPC codes are

called regular. On the other hand, irregular LDPC codes have non-constant row and/or

column weights. In this paper we consider regular LDPC-coded systems for simplicity.

It is straightforward to extend our formulation to cases with irregular codes.

We consider binary phase-shift-keying (BPSK) modulation and no fading effect,

where codewords belong to {1,−1}M . In general, the receiver knows exactly the parity

check matrices, which define the prior distribution of the codewords. We therefore

assume that the true prior distribution p0(x⃗0) and the postulated one p(x⃗) are the

same. We also assume that each user’s code is randomly chosen from the same

LDPC code ensemble. By letting the kth user’s parity check matrix Ak, we have
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p0(x⃗0) =
∏

k p(x0k|Ak) and p(x⃗) =
∏

k p(xk|Ak), where p(xk|Ak) takes a nonzero value

(= 2−N) only if xk is a codeword of the code defined by Ak. The GPME 〈xk〉 is rewritten

as

〈xk〉 =
∑

xk={1,−1}M

xk
p(xk|Ak)ρG(zk|xk)∑
x′

k
p(x′

k|Ak)ρG(zk|x′
k)

. (28)

The third term of the right-hand side of (18) and the order parameters (23), for the

regular LDPC-coded CDMA systems, can be evaluated on the basis of the calculation

given in [16]: We therefore omit details of the derivation. Denoting the third term of

(18) divided by the codelength M as hz, and letting L and C be the row and column

weights, respectively, we obtain, in the infinite codelength limit (M → ∞ with R fixed),

hz = log 2 − C

L

∫
log

(
1 +

L∏

l=1

ul

)
L∏

l=1

{σ(ul)dul} + C

∫
log (1 + uû) σ(u)σ̂(û)du dû

−
∫

log

[ ∑

x=±1

C∏

c=1

(1 + xûc) ×
√

E

2π
exp

{
−E

2
(z − x)2

}]

×
√

E2

2πF
exp

{
−E2

2F
(z − 1)2

}
D̄ûC dz, (29)

where D̄ûC ≡
∏C

c=1 {σ̂(ûc) dûc}, and where the functions σ(u), σ̂(û) are determined by

the following saddle-point equations, under the RS ansatz,

σ(u) =

∫
δ

(
u − tanh

(
Ez +

C−1∑

c=1

tanh−1 ûc

))

×
√

E2

2πF
exp

{
−E2

2F
(z − 1)2

}
D̄ûC−1 dz, (30a)

σ̂(û) =

∫
δ

(
û −

L−1∏

l=1

ûl

)
L−1∏

l=1

{σ(ul)dul}, (30b)

and where the order parameters {Ei, F i,mi, qi} do not depend on the symbol positions

in the regular LDPC code setting and are given, dropping the index i, by

E =

∫
ρ̄′

0

(
y −

√
βm2

q
s

)
ρ̄′(y −

√
βq s)

ρ̄(y −
√

βq s)
Ds dy, (31a)

F =

∫
ρ̄0

(
y −

√
βm2

q
s

) (
ρ̄′(y −

√
βq s)

ρ̄(y −
√

βq s)

)2

Ds dy, (31b)

m =

∫
tanh

(
Ez +

∑

c

tanh−1 ûc

) √
E2

2πF
exp

{
−E2

2F
(z − 1)2

}
D̄ûC dz, (31c)

q =

∫
tanh2

(
Ez +

∑

c

tanh−1 ûc

) √
E2

2πF
exp

{
−E2

2F
(z − 1)2

}
D̄ûC dz. (31d)

Note that ri
0 = ri = 1 in (23c) because xi

0 and xi take values in {1,−1} in the present

setting.
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GPME (28)N(x , F/E  )i

1
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N(x , F/E  )i

2
2

x i

1

x i

2

x i

K
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1x 1
1

x M

2x 1
2
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Figure 2. Decoupling structure of the regular LDPC-coded CDMA systems. The
variances of the Gaussian channels take the same value, independent of users and
symbol positions.

By substituting the result (29) into (18), the maximum spectral efficiency per

symbol for the regular LDPC-coded CDMA system is obtained. By particularizing

the channel noise of our model to additive white Gaussian noise (AWGN), our result

is reduced, as it should be, to that of replica analysis of the regular LDPC-coded

CDMA system over AWGN channel, presented in [17]. The mean-field description, i.e.,

the decoupling structure for the regular LDPC-coded CDMA systems, is schematically

shown in figure 2. Since the order parameters Ei, F i do not depend on code symbol

positions, in contrast to the general mean-field description of coded CDMA systems

given in section 3, the regular LDPC-coded CDMA systems with GPME (28) are

decoupled into a bank of single-user Gaussian channels whose variances are the same

independently of the code symbol positions. This independence is due to statistical

uniformity of code symbol positions in the regular LDPC code ensemble.

As shown in [17], when the row weight is not so large, the regular LDPC-coded

CDMA system has two kinds of phase transitions, the decoding threshold and the

information-theoretic threshold, just as those found in statistical mechanical analysis

of single-user LDPC codes [8, 15, 16]. The former is also called the dynamical transition

point, and the only stable solution is the perfect ferromagnetic solution when noise level

is smaller than that, while the suboptimal ferromagnetic solution appears when noise

level exceeds the point. The latter transition point is termed the thermodynamical

transition point, at which the free energies of the above-mentioned solutions become

equal, and over which the suboptimal ferromagnetic solution is dominant. Therefore,

the thermodynamical transition point determines the theoretical limitation, up to which

the performance could be achieved if we were given infinite computational time.

From the decoupling structure (see figure 2), one can regard that each user in

the LDPC-coded CDMA system is utilizing separately from other users the single-user

LDPC code over AWGN channel where the true noise variance is Σ0 = F/E2 and the

noise variance postulated at the receiver is Σ = 1/E. Assuming an LDPC-coded CDMA

system over AWGN channel, and letting σ2
0 and σ2 be the true and the postulated

noise variances of the AWGN channel, this observation leads to a relationship between

the noise variances (σ2
0, σ2) of the original LDPC-coded CDMA system over AWGN



A mean field theory of coded CDMA systems 10

channel and the noise variances (Σ0, Σ) of the single-user LDPC code over AWGN

channel. According to the relationship, one can establish correspondence between the

decoding threshold of the regular LDPC-coded CDMA system over AWGN channel

and that of the single-user LDPC code over AWGN channel. A numerical example of

this correspondence of the decoding thresholds is shown in figure 3, where we focus

on the matched case p0(y⃗|x⃗) = p(y⃗|x⃗) for simplicity, thereby showing the relationship

between σ2
0 = σ2 and Σ0 = Σ. On the other hand, the thermodynamical transition

points of the regular LDPC-coded CDMA system and the single-user LDPC code over

AWGN channel do not correspond; because the perfect ferromagnetic solution and

the suboptimal ferromagnetic solution of the regular LDPC-coded CDMA system at

thermodynamical transition point are respectively mapped onto a ferromagnetic solution

and a suboptimal ferromagnetic solution of the single-user LDPC code over AWGN

channel, which, however, are with different noise variances.

For the mismatched cases where p0(y⃗|x⃗) and p(y⃗|x⃗) are not equal, one can obtain

the correspondence of the decoding thresholds exactly in the same way, on the basis of

the relationship between (Σ0, Σ) and (σ2
0, σ2).

Given a regular LDPC-coded CDMA system, one can determine analytically the

maximum load the system can accommodate, which is given in the matched case.

Figure 4 (a) shows the decoding thresholds and the thermodynamical transition points

of a regular LDPC-coded CDMA system with AWGN channel. Figure 4 (b) shows the

maximum spectral efficiencies of the system, achieved at the maximum loads determined

by the two transition points for given signal-to-noise ratios Eb/N0 = 1/(2Rσ2
0). It can

be seen that the theoretically achievable spectral efficiency of this system comes close to

the single-user AWGN capacity [11], which is an upper bound of the spectral efficiency

of multiple-access systems.

5. Conclusions

We have presented the mean field theory of the coded CDMA systems, in which we have

obtained the analytical expression of the maximum spectral efficiency, derived on the

basis of the relation between the free energy of the coded CDMA system and the mutual

information. The mean-field description of the coded CDMA system with a multiuser

detector based on GPME (6) has been given by a bank of single-user Gaussian channels

which in general take different variances at different code symbol positions. By utilizing

the result obtained for the general coded CDMA systems, the mean-field description of

the regular LDPC-coded CDMA system has been characterized in terms of a bank of

Gaussian channels whose variances are the same independently of code symbol positions.

Using this mean-field description, we have established the correspondence between the

decoding threshold of the regular LDPC-coded CDMA system and that of the single-user

LDPC code over a Gaussian channel.

It is known that CDMA and MIMO systems can be modeled by a linear vector

channel. Extension of our analysis to coded vector channel systems is the subject of

future work.
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Figure 3. Relationship between the decoding threshold of a regular LDPC-coded
CDMA system with AWGN channel and that of the LDPC code over AWGN channel,
in the matched case. (C, L) = (3, 6) for both of them. (a) Bit error rate P s

b of the
single-user LDPC code over AWGN channel with noise variance Σ0 = Σ (where Σ0 and
Σ denote true and postulated variances, respectively, in the single-user LDPC code over
AWGN channel), (b) Noise variance of the decoupled system, F/E2, versus actual noise
variance σ2

0 = σ2 (where σ2
0 and σ2 denote true and postulated variances, respectively),

and (c) Bit error rate Pm
b of the LDPC-coded CDMA system. The thick solid line in

(a) is obtained by evaluating numerically the saddle-point equations derived in [8] with
AWGN (variance: Σ0 = Σ). Those in (b) and (c) are given by evaluating numerically
the saddle-point equations (30) and (31) with AWGN (variance: σ2

0 = σ2) and β = 0.5.
The dot-dashed lines denote unstable solutions, which are not obtained numerically,
but are schematically drawn for better understanding. At the decoding threshold of
the LDPC-coded CDMA system (marked by the vertical dashed line), the variance
of the Gaussian channel given in the decoupling structure, F/E2, corresponds to the
decoding threshold, characterized by Σ0, of the single-user LDPC code over AWGN
channel (marked by the horizontal dashed line). In (b) and (c), the circles ◦ and
squares ¤ denote, respectively, the perfect ferromagnetic solution and the suboptimal
ferromagnetic solution at the thermodynamical transition point. The circle ◦ and
square ¤ in (a), which are mapped from (b), are located at different noise variances.
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Appendix A. Evaluation of the conditional differential entropy conditioned

on the spreading sequences

In this appendix we evaluate the conditional differential entropy h, by basically following

the procedures in [2, 3]. We denote the original channel input and the replicated channel

inputs as x⃗0 and {x⃗a; a = 1, . . . , n}, respectively. We let xi
a = (xi

a1, . . . , x
i
aK) for

a = 0, . . . , n. Assuming that n is a positive integer, one obtains

Ξn =

∫ [∫
ES

{
n∏

a=0

(
M∏

i=1

W∏

µ=1

ρa

(
yi

µ − 1√
W

K∑

k=1

si
µkx

i
ak

))}
dy⃗

]
n∏

a=0

[pa(x⃗a) dx⃗a] ,(A.1)

where ρa(·) = ρ(·) and pa(x⃗a) = p(x⃗a) for a = 1, . . . , n.

Independence of the spreading sequences with respect to index µ allows us to rewrite

Ξn as

Ξn =

∫
eWG

n∏

a=0

[pa(x⃗a) dx⃗a] , (A.2)

where

eG =

∫
Es

{
n∏

a=0

(
M∏

i=1

ρa

(
yi −

√
βvi

a

))}∏

i

dyi, (A.3)

vi
a = vi

a(s
i) =

1√
K

K∑

k=1

si
kx

i
ak, a = 0, . . . , n. (A.4)

Here, si = (si
1, . . . , s

i
K) and Es{· · ·} denotes averaging over {si; i = 1, . . . , M}.

Since vi
a is a sum of the i.i.d. random variables of si, vi = (vi

1, v
i
2, . . . , v

i
n) conditioned

on {xi
a; a = 0, . . . , n} follows, in the large-system limit, a multivariate Gaussian

distribution with mean 0 and covariance matrix Qi = (Qi
ab) with

Qi
ab =

1

K

K∑

k=1

xi
akx

i
bk, (A.5)
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via the central limit theorem (vi and vj (i ̸= j) are independent as the spreading

sequences are also independent with respect to coded symbol indices i, j). The

expectation Es{· · ·} in (A.3) therefore reduces to averaging over Gaussian random

variables vi(i = 1, . . . , M), yielding

eG(Q) = exp

(
M∑

i=1

g(Qi)

)
, (A.6)

where Q = (Q1, Q2, . . . , QM) and exp (g(Qi)) is given by

eg(Qi) =

∫
Evi

{
ρ0(y

i −
√

βvi
0)

n∏

a=1

ρ(yi −
√

βvi
a)

}
dyi. (A.7)

Since eG(Q) depends on {x⃗a; a = 0, . . . , n} only via Q, we obtain

Ξn =

∫
eWG(Q)µK(Q)dQ, (A.8)

where dQ =
∏

i

∏
a≤b dQi

ab, and where µK(Q) is the probability measure of Q, which is

defined as

µK(Q) =

∫ n∏

a=0

pa(x⃗a)
M∏

i=1

∏

a≤b

δ

(
K∑

k=1

xi
akx

i
bk − KQi

ab

)
n∏

a=0

dx⃗a. (A.9)

Assuming that the measure µK(Q) satisfies the large-deviation principle as K → ∞
with a rate function Λ(Q), we have the heuristic formula µK(Q) ≈ e−KΛ(Q) in the

large-system limit [18], which allows us to apply the saddle-point method to obtain

lim
K→∞

1

K
log Ξn = sup

Q
[β−1G(Q) − Λ(Q)]. (A.10)

The rate function Λ(Q) is given by the Legendre transform of the cumulant generating

function φ(Q̃), as

Λ(Q) = sup
Q̃

[
Q · Q̃ − φ(Q̃)

]
, (A.11)

where Q ·Q̃ =
∑

i

∑
a≤b Qi

abQ̃
i
ab, and φ(Q̃) is defined by the following formula, assuming

that the limit exists:

φ(Q̃) = lim
K→∞

1

K
log

{∫ n∏

a=0

pa(x⃗a) exp

(
M∑

i=1

∑

a≤b

Q̃i
ab

K∑

k=1

xi
akx

i
bk

)
n∏

a=0

dx⃗a

}
. (A.12)

Summarizing the above results, one obtains

lim
K→∞

1

K
log Ξn = sup

Q
inf
Q̃

[
β−1G(Q) − Q · Q̃ + φ(Q̃)

]

= sup
Q

inf
Q̃

[
β−1

∑

i

g(Qi) − Q · Q̃ + φ(Q̃)

]
. (A.13)

Now let us make the replica symmetry (RS) assumption to proceed further, on the

basis of which we let, for a ̸= b, a ̸= 0, b ̸= 0,

Qi
00 = ri

0, Qi
aa = ri, Qi

0a = mi, Qi
ab = qi,

Q̃i
00 =

Gi
0

2
, Q̃i

aa =
Gi

2
, Q̃i

0a = Ei, Q̃i
ab = F i. (A.14)
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Using expressions of the Gaussian random variables {vi
a} in terms of standard Gaussian

random variables ni
0, n

i
a, t

i,

vi
0 =

√
ri
0 −

(mi)2

qi
ni

0 +

√
(mi)2

qi
ti, (A.15)

vi
a =

√
ri − qi ni

a +
√

qi ti, a = 1, . . . , n, (A.16)

we obtain, under the RS ansatz,

eg(Qi) =

∫
ρ̄0

(
yi −

√
β(mi)2

qi
ti

)[
ρ̄(yi −

√
βqi ti)

]n

Dtidyi, (A.17)

where ρ̄0(·) and ρ̄(·) are defined by (19) and (20), respectively. Using the Hubbard-

Stratonovich transform

ex2

=

√
η

2π

∫
exp

[
−η

2
z2 +

√
2η xz

]
dz, (A.18)

one finds that

φ(Q̃) = lim
K→∞

1

K
log

[∫ {∫
p0(x⃗0) × e

∑
k,i

Gi
0

2
(xi

0k)2
∏

k

ρG0(zk|x0k) dx⃗0

}

×

{∫
p(x⃗) × e

∑
k,i

Gi−Fi+Ei

2
(xi

k)2
∏

k

ρG(zk|xk) dx⃗

}n

e
n
2

∑
k,i Ei(zi

k)2dz⃗

]

+
n

2

∑

i

log
2π

Ei
, (A.19)

where ρG0(zk|x0k) and ρG(zk|xk) are given by (21) and (22), respectively. Q ·Q̃ is given,

under the RS ansatz, by

Q · Q̃ =
∑

i

(
ri
0

Gi
0

2
+ nri G

i

2
+ nmiEi +

n(n − 1)

2
qiF i

)
. (A.20)

Saddle-point equations of the order parameters are derived from the extremum

conditions in (A.13). The saddle-point equations for {Gi
0, G

i} are, in the limit n → 0,

Gi
0 = 0, (A.21)

Gi =

∫
ρ̄0

(
yi −

√
β(mi)2

qi
ti

)
ρ̄′′(yi −

√
βqi ti)

ρ̄(yi −
√

βqi ti)
Dtidyi. (A.22)

Those of {Ei, F i, ri
0, r

i,mi, qi} are given by (23a)–(23d). By observing that

Gi + Ei − F i = 0 (A.23)

holds for additive channel noise, and that

lim
K→∞

1

K

∫
1

2

∑

k,i

Ei(zi
k)

2 p0(x⃗0)
∏

k

ρG0(zk|x0k) dz⃗ dx⃗0 =
∑

i

(
F i

2Ei
+

Ei

2
ri
0

)
, (A.24)

the final form of h (18) is obtained.
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Appendix B. Derivation of the decoupling structure of the coded CDMA

systems

We assume that the joint distributions p([xk], x0k|S) and p(〈xk〉, x0k) in (27) are

uniquely determined by their joint moments, on the basis of which we will show that

these distributions are asymptotically statistically equivalent with each other by showing

that their joint moment sequences coincide with each other in the large-system limit. We

also assume the self-averaging property of the joint moments of p([xk], x0k|S) over the

random spreading sequences in the large-system limit. It is sufficient to show that the

expectation of any arbitrary joint moment of p([xk], x0k|S) over the random spreading

sequences converges to the corresponding joint moment of p(〈xk〉,x0k), in the large-

system limit and under the random spreading assumption. The joint moments are

evaluated in a similar way to the evaluation of the conditional differential entropy in

Appendix A, using the replica method.

Given a class K which accommodates K1 = ε1K users for 0 < ε1 < 1, we consider

a set X = {xak; a = 0, . . . , n, k ∈ K }. We define a function f(X ) as

f(X ) =
∑

k∈K

M∏

i=1

{
(
xi

0k

)λi ∏

bi∈αi

(
xi

bik

)
}

, (B.1)

where αi is a mutually disjoint subset composed of µi different replicas for i = 1, . . . , M .

For a fixed ε1, we now define, using the function f(X ), a quantity similar to the

conditional differential entropy (15)

h̃ = lim
K→∞

1

K1

log Ξ̃n, (B.2)

where Ξ̃n is given by

Ξ̃n =

∫ n∏

a=0

pa(x⃗a)

[∫
ES

{
n∏

a=0

pa(y⃗|x⃗a) exp (ωf(X ))

}
dy⃗

]
n∏

a=0

dx⃗a. (B.3)

We thus obtain joint moments of p([x⃗], x⃗0|S) as

lim
n→0

∂h̃

∂ω

∣∣∣∣
ω=0

= lim
K→∞

1

K1

∑

k∈K

ES

[∫
p0(x⃗0)p0(y⃗|x⃗0)

∏

i

{(
xi

0k

)λi [
xi

k

]µi
}

dy⃗ dx⃗0

]
. (B.4)

Evaluation of (B.2) can be done as follows. By assuming existence of the limit

φ̃(Q̃)

= lim
K→∞

1

K
log

{∫ n∏

a=0

pa(x⃗a) exp

(
ωf(X ) +

M∑

i=1

∑

a≤b

Q̃i
ab

K∑

k=1

xi
akx

i
bk

)
n∏

a=0

dx⃗a

}
, (B.5)

(B.2) is rewritten as

h̃ =
1

ε1

sup
Q

inf
Q̃

[
β−1G(Q) − Q · Q̃ + φ̃(Q̃)

]
. (B.6)

Therefore we obtain

∂h̃

∂ω

∣∣∣∣
ω=0

=
1

ε1

× ∂φ̃(Q̃)

∂ω

∣∣∣∣
ω=0

, (B.7)
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where

∂φ̃(Q̃)

∂ω

∣∣∣∣
ω=0

= lim
K→∞

1

K

{∫ ∏
a p(x⃗a)f(X ) exp

(∑
i

∑
a≤b Q̃i

ab

∑
k xi

akx
i
bk

) ∏
a dx⃗a

}

{∫ ∏
a p(x⃗a) exp

(∑
i

∑
a≤b Q̃i

ab

∑
k xi

akx
i
bk

) ∏
a dx⃗a

} .(B.8)

By evaluating (B.5) under the RS ansatz (A.14), the right-hand side of (B.7) in the

limit n → 0 is given by

lim
n→0

{
1

ε1

× ∂φ̃(Q̃)

∂ω

∣∣∣∣
ω=0

}
= lim

K→∞

1

K1

∑

k∈K

〈〈∏

i

(xi
0k)

λi〈xi
k〉µ

i
〉〉

, (B.9)

where 〈· · ·〉 and 〈〈· · ·〉〉 are defined by (24) and (25), respectively. From (B.4) and (B.9)

we obtain

lim
K→∞

1

K1

∑

k∈K

ES

[∫
p0(x⃗0)p0(y⃗|x⃗0)

∏

i

{(
xi

0k

)λi [
xi

k

]µi
}

dy⃗ dx⃗0

]

= lim
K→∞

1

K1

∑

k∈K

〈〈∏

i

(xi
0k)

λi〈xi
k〉µ

i
〉〉

. (B.10)

Letting ε1 → 0, so K1 → 1 (whose justification is not discussed here, but will be given

on the basis of an argument in [13]), we have, in the large-system limit K → ∞,

ES

[∫
p0(x⃗0)p0(y⃗|x⃗0)

∏

i

{(
xi

0k

)λi [
xi

k

]µi
}

dy⃗ dx⃗0

]
=

〈〈∏

i

(xi
0k)

λi〈xi
k〉µ

i
〉〉

, (B.11)

which means that the joint distributions p([xk], x0k|S) and p(〈xk〉, x0k) share the same

joint moments under random spreading and in the large-system limit.
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