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1. Introduction

The spin glass theory of infinite-ranged models [1, 2] has inspired a generation of

physicists to study many theoretically challenging and practically important problems

in physics and information processing [3]. These problems share a common feature, in

that the disordered interactions among their elements cause frustration and non-ergodic

behaviour. The replica method [4] has been useful in explaining their macroscopic

behaviour. At the same time, based on the microscopic descriptions of the models, the

cavity method [5] resulted in many computationally efficient schemes. These approaches

have laid the foundation for the study of many problems in complex optimisation

using statistical mechanics, such as graph partitioning [6], travelling salesman [7], K-

satisfiability [8], and graph colouring [9].

Not only the graph colouring problem [10] is among the most basic NP-complete

problems [11], but it also has direct relevance to a variety of applications in scheduling,

distributed storage, content distribution and distributed computing.

In the original problem, one is given a graph and a number of colours, and the task is

to find a colouring solution such that any two connected vertices are assigned different

colours. This is equivalent to the Potts glass with nearest neighbouring interactions

in statistical physics. The problem has been studied by physicists using the cavity

method [9, 12]. For a given number of colours, a phase transition takes place when the

connectivity increases, changing from a colourable to an uncolourable phase. One of the

statistical physics approaches was based on the replica symmetric (RS) ansatz. It gave

an over-estimate of the threshold connectivity of this phase transition [13]. The one-step

replica symmetry-breaking (1RSB) approach takes into account the possibility that the

solution space can be fragmented [9, 12]. Besides giving an estimate of the threshold

connectivity within the mathematical bounds, it correctly predicts the existence of a

clustering phase below the threshold, in which the solution space spontaneously divides

into an exponential number of clusters. This is called the hard colourable phase,

in which local search algorithms are rendered ineffective, and is a feature shared by

other constraint satisfaction problems [14, 15]. The sequence of phase transitions in

the graph colouring problem, and their algorithmic implications, were further refined

recently [16, 17, 18, 19].

These advances in the spin glass theory stimulated the development of efficient

algorithms. The cavity method gave rise to equations identical to those of Belief

Propagation (BP) algorithm for graphical models [20]. Inspired by the 1RSB

solution, Survey Propagation (SP) algorithms were subsequently developed to cope

with situations with fragmented solution space [21], and they work well even in the

hard phase of the graph colouring problem [12].

In this paper, we study a variant of the graph colouring problem, namely, the colour

diversity problem. In this problem, the aim is to maximise the number of colours within

one link distance of any node. This is equivalent to the Potts glass with second nearest

neighbouring interactions in statistical physics, and hence is more complex than the
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original graph colouring problem in terms of the increased number of frustrated links.

Indeed, this variant of the colouring problem has been shown to be NP-complete [22].

This optimisation problem is directly related to various application areas and in

particular to the problem of distributed data storage where files are divided to a number

of segments, which are then distributed over a graph representing the network. Nodes

requesting a particular file collect the required number of file segments from neighbouring

nodes to retrieve the original information. Distributed storage is used in many real world

applications such as OceanStore [23].

Compared with the original graph colouring problem, work done on the colour

diversity problem mainly focused on algorithms [24, 25]. Belief Propagation (BP) and

Walksat algorithms for solving the problem have been presented in [24]. Both algorithms

revealed a transition from incomplete to complete colouring, and the possibility of

a region of hard colouring immediately below the transition point. Approximate

connectivity regimes for the solvable case have been found, given the number of

colours [24]. However, since the algorithms are based on simplifying approximations

(BP) and heuristics (Walksat), both algorithms provide only upper bounds to the true

critical values.

The current study aims at providing a more principled approach to study the

problem, a theoretical estimate of the transition point, and more insights on the nature

of the transition itself. The method employed is based on a tree approximation, which

is equivalent to the RS ansatz of the replica method or the cavity method. It results in

a set of recursive equations which can be solved analytically. The connectivity values

for which the tree approximation is valid and the types of phases present at each value

are also investigated at both zero and finite temperatures.

In section 2 we introduce the model, followed by section 3 that explains briefly

the derivation and how the macroscopic behaviour can be studied. In section 4 we

present the results obtained via population dynamics. Discussions on the behaviour at

finite temperatures are presented in section 5 followed by a concluding section. The

appendices contain further mathematical details.

2. The Model

2.1. The cost function

Consider a sparsely connected graph with connectivity ci and colour qi for node i. The

connectivities ci are drawn from a distribution P (ci) with mean 〈c〉. In this paper we

consider the case of linear connectivity, that is, the nodes have connectivities ⌊〈c〉⌋ or

⌊〈c〉⌋+1, with probabilities 1−〈c〉+⌊〈c〉⌋ and 〈c〉−⌊〈c〉⌋ respectively. The colour qi can

take the values 1, · · · , Q. The colour diversity problem is trivial for the case 〈c〉 > Q, in

which colour schemes with complete sets of colours available to all nodes can be found

easily. Hence we will focus on the more interesting case 〈c〉 ≤ Q, in which a transition

between complete and incomplete colouring exists, as shown in previous work [24].
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The set of colours available at the node and its local neighbourhood is

Li ≡ {qi} ∪ {qj |j ∈ Ni},
where Ni is the set of nearest neighbours of node i. To find a colour scheme that

maximises the number of different colours in Li and averaged over all nodes i, we

consider minimising the energy (cost function) of the form

E =
∑

i

φ (Li). (1)

Since the objective is equivalent to minimising the number of identical colours in the

set, an appropriate form of the function φ is

φ (Li) =
∑

qj∈Li

∑

qk∈Li

δ(qj, qk), (2)

where δ(a, b) = 1 for a = b, and 0 otherwise. φ can be rewritten as

φ (Li) =

Q
∑

q=1

[

δ (q, qi) +
∑

j∈Ni

δ (q, qj)

]2

. (3)

The quadratic nature of φ confirms that it is an appropriate cost function for

diversifying the colours in the neighbourhood of each node. Due to the convexity of its

quadratic form, its minimum solution tends to equalise the numbers of all colours in

the neighbourhood of a node. Thus, besides maximising colour diversity, our choice of

the cost function has an additional advantage for the distributed storage optimisation

task, which has motivated the current study, where an even distribution of segments

(colours) in a neighbourhood is also a secondary objective, offering greater resilience.

The need for an even distribution of colours is especially important when the total

number of colours is less than the connectivity of a node. Consider the contribution

from the function φ centred on a node in such a case. Some colours can appear more

than once. Then the exact form of the function φ determines the selection of these

extra colours. In general, two types of selection can be made. In the first type, one may

still use all colours, but they may be less evenly distributed than in the ground state.

In the second type, one may use fewer colours. The former maximises the number of

available colours, but the latter does not. In this case, an inappropriate choice of the cost

function will mix these two cases assigning the same energies, rendering it impossible

to distinguish optimal and suboptimal colour choices.

On the other hand, Eq. (3) does not suffer from this shortcoming in the topology

considered here. A geometric interpretation is able to illustrate this point. Let nq be the

number of times colour q appears in Li. Then the minimisation of Eq. (3) reduces to the

minimisation of
∑Q

q=1 n2
q subject to the constraint that

∑Q
q=1 nq = |Ni| + 1. Note that

the constraint defines a hyperplane in the Q-dimensional space of nq, and the problem

is equivalent to finding the point with integer coordinates on the hyperplane such that

its distance from the origin is minimised. The optimal solution is the point on the

hyperplane closest to the normal, and no components should be zero when Q ≤ |Ni|+1.
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In fact, the optimal solution is nq = int[(|Ni|+ 1)/Q] for 1 ≤ q ≤ mod(|Ni|+ 1, Q), and

nq = int[(|Ni| + 1)/Q] + 1 otherwise (or its permutations).

We have also considered a worst case analysis of the change in the total cost due

to colour changes in neighbouring nodes when the function φ, centred on a node i,

is minimised. It shows that for networks with linear connectivities and 〈c〉 ≤ Q, the

ground states consist of all satisfied nodes only, if they exist.

2.2. The statistical physics

We note that second nearest neighbour interactions are present in this cost function.

This is different from that of the original graph colouring problem, where the cost

function involves only nearest neighbour interactions. As we shall see, the messages

in the resultant message-passing algorithm will be characterised by two components,

instead of the single components in the case of the original graph colouring problem [13,

9].

Analysis of the problem is done by writing the free energy of the system at a

temperature T , given by

F = −T ln Z, (4)

where Z is the partition function given by

Z = Tr{qi} exp

[

−β
∑

i

φ(Li)

]

, (5)

β ≡ T−1 being the inverse temperature. In the zero temperature limit, the free energy

approaches the minimum cost function. Several methods exist for deriving the free

energy based on the replica and tree-based approximations. Here, the analysis adopts

a tree-based approximation, which is valid for sparse graphs. When the connectivity

of the graph is low, the probability of finding a loop of finite length on the graph is

low, and the tree approximation well describes the local environment of a node. In the

approximation, node i is connected to ci branches in a tree structure, and the correlations

among the branches of the tree are neglected. In each branch, nodes are arranged in

generations. Node i is connected to an ancestor node of the previous generation, and

another ci − 1 descendent nodes of the next generation.

Consider the free energy Fij(a, b) of the tree terminated at node j with colour b,

given its ancestor node i of colour a. In the tree approximation, one notes that this

free energy can be written as Fij(a, b) = NjFav + F V
ij (a, b), where Nj is the number

of nodes in the tree terminated at node j, and F V
ij (a, b) is referred to as the vertex

free energy [26, 27]. That is, the vertex free energy represents the contribution of the

free energy extra to the average free energy due to the presence of the vertex. In the

language of the cavity method, F V
ij (a, b) are equivalent to the cavity fields, since they

describe the state of the system when node i is absent. The recursion relation of the

vertex free energy of a node can be obtained by considering the contributions due to its
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Figure 1. The notations used in computing the vertex free energy FV
ij (a, b).

descendent trees and the energy centred at itself. Using notations described in Fig. 1,

the vertex free energy obeys the recursion relation

F V
ij (a, b) = − T ln Tr{qk|k∈Nj\{i}} exp

[

−β
∑

k∈Nj\{i}

Fjk(b, qk) (6)

− βφ (b, {a} ∪ {qk|k ∈ Nj\{i}})
]

− Fav .

In the above expression, the subtraction of Fav is due to the incorporation of node j

with the descendent trees to form the tree terminated at node j. For brevity, we will

use the alternative simplified notation

F V
ij (a, b) = −T ln Trq exp

[

−β

cj−1
∑

k=1

F V
jk(b, qk) − βφ(a, b,q)

]

− Fav , (7)

where the vector q refers to the colours of all descendants in Fig. 1.

To find the average free energy Fav, one considers the contribution to a node j due

to all its cj neighbours, that is,

Fav = −T

〈

ln Tr{Li} exp

[

−β
∑

j∈Ni

F V
ij (b, qk) − βφ(Li)

]〉

node

, (8)

where the average 〈· · ·〉node denotes sampling of nodes with connectivity c being drawn

with probability P (c). However, since the probability of finding a descendant node

connecting to it is proportional to the number of links the descendant has, descendants

are drawn with the excess probability cP (c)/〈c〉.
Equations (7) and (8) can also be derived using the replica method as presented

in Appendix A. We remark that both the derivation and the results are very similar

to those in the problem of resource allocation on sparse networks [26, 27], where the

dynamical variables are the real-valued currents on the links of the networks. The
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parallelism between resource allocation and colour diversity is apparent when one notes

that the currents in resource allocation can be expressed as the differences between

current potentials defined on the nodes of the networks. Hence the vertex free energies

in both problems can be considered as functions of two variables.

Another useful relation can be obtained by substituting Eq. (7) into Eq. (8),

− T
〈

ln Tra,b exp
[

−βF V
ij (a, b) − βF V

ji (b, a)
]〉

link
= 0 , (9)

where the average 〈· · ·〉link denotes sampling of link vertices with connectivity c with the

excess probability. This relation can be interpreted by considering the free energy of

forming a link between vertices i and j. Since no extra nodes are added in this process,

the extra free energy should average to zero.

The average of a function A(Li) is given by

〈A〉 =

〈Tr{Li} exp

[

−β
∑

j∈Ni

F V
ij (qi, qj) − βφ (Li)

]

A(Li)

Tr{Li} exp

[

−β
∑

j∈Ni

F V
ij (qi, qj) − βφ (Li)

]

〉

node

. (10)

Hence the average energy is given by

Eav ≡ 〈E〉 = 〈φ〉node. (11)

The Edwards-Anderson order parameter qEA [28], whose nonzero value characterises the

Potts glass phase, is given by

qEA =
Q

Q − 1

1

N

∑

i

∑

q

(

〈δ(q, qi)〉node −
1

Q

)2

. (12)

The performance measure of interest is the incomplete fraction fincom, which is defined

as the average fraction of nodes with an incomplete set of colours available at the node

and its nearest neighbours,

fincom =

〈

Θ

[

Q −
Q
∑

q=1

Θ

(

δ(q, qi) +
∑

j∈Ni

δ(q, qj)

)]〉

node

, (13)

where Θ(q) = 1 for q > 0, and 0 otherwise. This performance measure is similar to the

one used in [24], which we refer to as the unsatisfied fraction funsat, and is defined as

the average fraction of colours unavailable at the node and its nearest neighbours (for

the case that Q is not greater than the number of nearest neighbours plus 1),

funsat =

〈[

1 − 1

Q

Q
∑

q=1

Θ

(

δ(q, qi) +
∑

j∈Ni

δ(q, qj)

)]〉

node

. (14)

One might consider using Eq. (13) or (14) to define the cost function to be

minimised, instead of Eq. (3). This is indeed possible and we expect that zero-energy

ground states can be obtained when the condition of full colour diversity for each node

is satisfiable. In the unsatisfiable case, no zero-energy ground states can be found,
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but one might still be interested in finding states that minimise the average number of

colours unavailable to a node. In this case, fincom might not be an appropriate choice,

since it mixes up the energies of selecting more (but unevenly distributed) colours,

and fewer colours. The second measure funsat favours those states with higher colour

diversity, but for the same number of available colours, it does not distinguish states

with different homogeneity of colour distribution. By comparison, the cost function in

Eq. (3) has the additional advantage of favouring homogeneous colour distributions in

the neighbourhood of the nodes.

3. Macroscopic Properties

3.1. Population dynamics

Solutions to the recursive equation (6) are obtained by population dynamics [30]. We

start with samples of N nodes, each with one of Q colours randomly assigned as the

initial condition. At each time step of the population dynamics, all the N nodes are

updated once in random order. At the instant we update node j, we select cj − 1 nodes

to be its descendants, where cj is drawn from the distribution P (cj). Descendants with

connectivities ck are randomly selected with excess probabilities ckP (ck)/〈c〉. The vertex

free energy is then updated for all pairs (a, b) before another node is updated.

We have also computed the solutions using layered dynamics. At each time step of

the layered dynamics, the new vertex free energies of all the N nodes are calculated, but

are temporarily reserved until the end of the time step. Hence at the instant we renew

node j, we select cj − 1 nodes to be its descendants, whose vertex free energies were

computed in the previous time step. Descendants with connectivities ck are randomly

selected with excess probabilities ckP (ck)/〈c〉. After the new vertex free energies of all

the N nodes have been computed, they are then updated synchronously and ready for

the computation in the next time step.

We observe that a modulation instability is present in layered dynamics [29]. This

means that after sufficient layers of computation, the colour distribution no longer

remains uniform. Rather, each layer is dominated by a particular colour, and the

dominant colour alternates from layer to layer. This modulation is expected to be

suppressed in random graphs due to the presence of loops of incommensurate lengths.

Furthermore. the average free energy computed by the layered dynamics has variances

increasing rapidly with layers. Hence the layered dynamics is not adopted in our studies.

3.2. Average free energy at finite temperatures

To avoid growing fluctuations of the vertex free energies in the population dynamics,

their constant components are subtracted off immediately after each update,

fV
ij (a, b) ≡ F V

ij (a, b) − Gij , (15)
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where Gij ≡ ∑

c,d F V
ij (c, d)/Q2 is a constant bias independent of colours a and b. The

recursion relation of the vertex free energy then becomes

fV
ij (a, b) = −T ln Trq exp

[

−β

cj−1
∑

k=1

fV
jk(b, qk) − βφ(a, b,q)

]

+ constant (16)

After every time step, we measure the average free energy. This is done by

repeatedly creating a test node j and randomly selecting cj nodes to connect with

the test node. The average free energy is then given by

Fav = −
〈

T ln Tr{Li} exp

[

−β
∑

j∈Ni

fV
ij (qi, qj) − βφ(Li)

]〉

node

+ 〈c〉〈G〉link . (17)

Note that G is averaged over links, since the descendants are drawn with excess

probabilities. To calculate 〈G〉link we employ the consistency condition (9) for the

average free energy of a link, which requires

−
〈

T ln Tra,b exp
[

−βfV
ij (a, b) − βfV

ji (b, a)
]〉

link
+ 2 〈G〉link = 0. (18)

The node and link samplings are identical for graphs with uniform connectivity. This

allows us to eliminate 〈G〉 in Eqs. (17) and (18), and thus obtain Fav. To tackle the case

of non-uniform connectivities, we need to generalise the consistency condition (18). This

can be done by restricting our consideration to links with vertices of given connectivities

A and B, and consider the free energy due to the link connecting the trees on both sides

of such links

−
〈

T ln Tra,b exp
[

−βF V
ij (a, b) − βF V

ji (b, a)
]〉

Ci=A,Cj=B
= 0 . (19)

The derivation is analogous to that of Eq. (18), resulting in

−
〈

T ln Tra,b exp
[

−βfV
ij (a, b) − βfV

ji (b, a)
]〉

Ci=A,Cj=B
+ 〈G〉A + 〈G〉B = 0, (20)

which facilitates the elimination of the biases G in Eq. (17), resulting in an expression

for the average free energy

Fav = −
〈

T ln Tr{Li} exp

[

−β
∑

j∈Ni

fV
ij (qi, qj) − βφ(Li)

]〉

node

(21)

+
〈c〉
2

∑

A,B

AP (A)

〈c〉
BP (B)

〈c〉
〈

T ln Tra,b exp
[

−βfV
ij (a, b) − βfV

ji (b, a)
]〉

Ci=A,Cj=B
.

To evaluate Fav one first performs the node average in the first term of Eq. (21),

keeping a record of the number of times each node k is sampled. Then one performs

the average in the second term, randomly drawing the vertices i and j of the links from

nodes k with exactly the same number of times they appear in the first term. Hence in

this procedure, the descendants in both terms are drawn from the excess distribution.

Furthermore, it ensures that the Gij ’s appearing in the first term are exactly cancelled

by those appearing in the second term, thus eliminating a source of possible fluctuations.

We also note that there can be a variety of choices of Gij’s to be subtracted from

the vertex free energies in Eq. (15). For example, one may choose Gij to be F V
ij (1, 1)
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and arrive at the same result Eq. (21). In fact, this computationally simple choice is

adopted in our computation.

3.3. Energy and entropy at finite temperatures

Expressions for the energy and entropy follow immediately using the identity E =

∂(βF )/∂β and the averaging of Eq. (10),

Eav =

〈

Tr{Li} exp
[

−β
∑

j∈Ni
F V

ij (qi, qj) − βφ(Li)
] [

∑

j∈Ni
EV

ij (qi, qj) + φ(Li)
]

Tr{Li} exp
[

−β
∑

j∈Ni
F V

ij (qi, qj) − βφ(Li)
]

〉

node

,

(22)

where EV
ij (a, b) is the vertex energy with the recursion relation

EV
ij (a, b) =

Trq exp
[

−β
∑cj−1

k=1 F V
jk(b, qk) − βφ(a, b,q)

] [

∑cj−1
k=1 EV

jk(b, qk) + φ(a, b,q)
]

Trq exp
[

−β
∑cj−1

k=1 F V
jk(b, qk) − βφ(a, b,q)

]

− Eav , (23)

and

S =
Eav − Fav

T
. (24)

Compared with the previous equation (11) for the average energy, Eq. (22) includes

the vertex energies of the descendants. These vertex energies transmit the energy

deviations from the average energy, from the descendants to the ancestors. Hence

Eq. (22) can be regarded as a global estimate of the average energy, and Eq. (11) is

a local estimate. Theoretically, one expects that both estimates should yield the same

result. Numerically, however, we found that this is only valid in the paramagnetic

phase. In the Potts glass phase, the discrepancy between the two estimates can be

very significant. This shows that in the paramagnetic phase, memories about the initial

conditions are lost easily. In contrast, in the Potts glass phase, memories about the

initial conditions can propagate for a long time through the vertex energies.

To avoid propagating fluctuations in the computation of the average energy, we

subtract EV
ij (1, 1) from all components EV

ij (a, b) immediately after each update, and

find Eav using

Eav =

〈

Tr{Li} exp
[

−β
∑

j∈Ni
fV

ij (qi, qj) − βφ(Li)
] [

∑

j∈Ni
EV

ij (qi, qj) + φ(Li)
]

Tr{Li} exp
[

−β
∑

j∈Ni
fV

ij (qi, qj) − βφ(Li)
]

〉

node

− 〈c〉
2

∑

A,B

AP (A)

〈c〉
BP (B)

〈c〉

×
〈

Tra,b exp
[

−βfV
ij (a, b) − βfV

ji (b, a)
] [

EV
ij (a, b) + EV

ji(b, a)
]

Tra,b exp
[

−βfV
ij (a, b) − βfV

ji (b, a)
]

〉

ci=A,cj=B

. (25)
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3.4. Free energy, energy and entropy at zero temperature

The derivation at zero temperature should be carried out with extra care due to possible

degeneracy in the solutions. In the zero temperature limit, Eq. (7) reduces to

F V
ij (a, b) = min

q

[

cj−1
∑

k=1

F V
jk(b, qk) + φ(a, b,q)

]

− Fav . (26)

The expression of the entropy at zero temperature can be computed directly from

the vertex entropies. Differentiating Eq. (7) with respect to T , and taking the zero

temperature limit, one obtains

SV
ij (a, b) = ln





∑

{q∗}

exp

(

cj−1
∑

k=1

SV
jk(b, q

∗
k)

)



− Sav, (27)

where {q∗} is the set of colours minimising the free energy
∑cj

k=1 F V
jk(b, qk) + φ(a, b,q)

at node j. Similarly, differentiating Eq. (21) with respect to T and taking the zero

temperature limit, one obtains

Sav =

〈

ln





∑

{L∗

i }

exp

(

∑

j∈Ni

SV
ij (q

∗
i , q

∗
j )

)





〉

node

(28)

− 〈c〉
2

∑

A,B

AP (A)

〈c〉
BP (B)

〈c〉

〈

ln





∑

{a∗,b∗}

exp
(

SV
ij (a

∗, b∗) + SV
ji(b

∗, a∗)
)





〉

ci=A,cj=B

,

where {L∗
i } are the set of colours minimising the free energy

∑

j∈Ni
F V

ij (qi, qj) + φ(Li)

at node i, and {a∗, b∗} are the set of the pair of colours minimising the free energy

F V
ij (a, b) + F V

ji (b, a) at link ij.

The performance measures are now weighted by the entropies, and Eq. (10) is

replaced by the expression

〈A〉 =

〈Tr{L∗

i }
exp

[

∑

j∈Ni

Sij(q
∗
i , q

∗
j )

]

A(L∗
i )

Tr{L∗

i }
exp

[

∑

j∈Ni

Sij(q
∗
i , q

∗
j )

]

〉

node

. (29)

3.5. The paramagnetic state at finite temperatures

In the paramagnetic state, the vertex free energies are symmetric with respect to

permutation of colours at each node. Hence there are only two distinct values of the

vertex free energy for each node, corresponding to the cases that the colours of the

node and its ancestor are the same or different. Hence, we can derive the recursion

relation for the single variable zij ≡ exp[−β(F V
ij (a, a)−F V

ij (a, b))], where a 6= b. This is

a significant simplification of the original recursion relation for F V
ij (a, b), which involves

Q2 components.
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Specifically, we consider graphs with linear connectivity 3 ≤ 〈c〉 ≤ 4. We first

consider the vertex free energy of a node j with cj = 3, whose descendants are labelled

1 and 2. The recursion relations are given by

F V
ij (a, a) = − T lnTrq1,q2

exp
[

−βF V
j1(a, q1) − βF V

j2(a, q2) − βφ(a, a, q1, q2)
]

− Fav,

F V
ij (a, b) = − T lnTrq1,q2

exp
[

−βF V
j1(a, q1) − βF V

j2(b, q2) − βφ(a, b, q1, q2)
]

− Fav. (30)

By explicitly tabulating the different colour configurations and introducing the notations

z ≡ exp(−β) and Qn ≡ Q − n, one can rewrite Eq. (30) as

F V
ij (a, a) = − T ln

[

z16zj1zj2 + Q1z
10(zj1 + zj2) + Q1z

8 + Q1Q2z
6
]

+
∑

k

F V
jk(a, b) − Fav,

F V
ij (a, b) = − T ln

[

z10zj1zj2 + (z8 + Q2z
6)(zj1 + zj2) + z10 + 3Q2z

6 + Q2Q3z
4
]

+
∑

k

F V
jk(a, b) − Fav. (31)

These give rise to the recursion relation for zij ,

zij = z2

(

Q1Q2 + Q1z
2 + Q1z

4(zj1 + zj2) + z10zj1zj2

Q2Q3 + 3Q2z2 + z6 + (Q2z2 + z4)(zj1 + zj2) + z6zj1zj2

)

. (32)

Similarly, for node j with cj = 4,

zij = z2

(

ZN

ZD

)

, (33)

where

ZN = Q1Q2Q3 + 3Q1Q2z
2 + Q1z

6 + (Q1Q2z
4 + Q1z

6)(zj1 + zj2 + zj3)

+ Q1z
10(zj1zj2 + zj2zj3 + zj1zj3) + z18zj1zj2zj3 ,

ZD = Q2Q3Q4 + 6Q2Q3z
2 + 3Q2z

4 + 4Q2z
6 + z12

+ (Q2Q3z
2 + 3Q2z

4 + z8)(zj1 + zj2 + zj3)

+ (Q2z
6 + z8)(zj1zj2 + zj2zj3 + zj1zj3) + z12zj1zj2zj3 . (34)

Expressions of the average free energy and average energy can be found in Appendix B.

3.6. The paramagnetic state at zero temperature

In the zero temperature limit for Q ≤ 4, Eqs. (32) and (33) reduce to

zij =

(

Q1

Q3

)

z2 → 0 for cj = 3,

zij =
Q1

6 + zj1 + zj2 + zj3
for cj = 4. (35)

For cj = 4, the range of values of zij is 2Q1/(Q1 + 12) ≤ zij ≤ Q1/6. Hence the

distribution of the vertex partition function is given for cj = 4 by

P (z) =
3
∑

k=0

(

3

k

)

f 3−k
3 fk

4

k
∏

r=1

[

∫ Q1/6

2Q1/(Q1+12)

dzrP (zr)

]

δ

(

z − Q1

6 +
∑k

r=1 zr

)

, (36)
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where f3 ≡ 3(4 − 〈c〉)/〈c〉 and f4 ≡ 4(〈c〉 − 3)/〈c〉 are the excess probabilities, and are

distinctive from the connectivity probabilities p3 ≡ 4−〈c〉 and p4 ≡ 〈c〉−3 in subsequent

expressions.

For the average free energy, Eq. (B.2) becomes

Fav|c=3 = 4 − T ln(QQ1Q2Q3),

Fav|c=4 = 7 − T
4
∑

k=0

(

4

k

)

f 4−k
3 fk

4

k
∏

r=1

[

∫ Q1/6

2Q1/(Q1+12)

dzrP (zr)

]

× ln

[

QQ1Q2Q3

(

6 +
k
∑

r=1

zr

)]

,

Flink|C1C2
= − (1 − δC1,4δC2,4)T (1 − f 2

4 ) lnQQ1 − δC1,4δC2,4Tf 2
4

∫ Q1/6

2Q1/(Q1+12)

dz1P (z1)

×
∫ Q1/6

2Q1/(Q1+12)

dz2P (z2) ln [Q(Q1 + z1z2)] . (37)

Hence in the zero temperature limit,

Fav = 3〈c〉 − 5. (38)

This value of the average free energy interpolates between 4 and 7 at 〈c〉 = 3 and 4

respectively. This means that in the paramagnetic phase, there is a freedom in assigning

the colours of the nodes so that all local energies are minimised. For a node with 3

neighbours and Q = 4, the state of local energy minimum has one of each colour among

itself and its neighbours. Hence the energy is 4. Similarly, for a node with 4 neighbours

and Q = 4, the state of local energy minimum has, among itself and its neighbours,

two nodes of the same colour and three nodes of mutually different colours. Hence the

energy is 7. The result of 3〈c〉 − 5 is the average of 4 and 7, weighted by the fraction

of nodes with 3 and 4 neighbours respectively. This is the lowest possible energy of the

system.

The average entropy of the paramagnetic state is given by

Sav = ln(QQ1Q2Q3) + p4f3 ln Q1 −
〈c〉
2

[ln(QQ1) − f 2
4 ln Q1]

− p4

∫ Q1/6

2Q1/(Q1+12)

dzP (z) ln z −
(〈c〉

2
f4 − p4

)

f4

∫ Q1/6

2Q1/(Q1+12)

dz1P (z1)

×
∫ Q1/6

2Q1/(Q1+12)

dz2P (z2) ln[Q(Q1 + z1z2)]. (39)

Consider the case Q = 4. When 〈c〉 = 3, Sav = − ln 3/2. For general values of Q, we

have Sav = ln(Q2Q3/
√

QQ1). Hence the entropy becomes negative for Q = 4, although

the entropy remains positive for Q > 4.

On the other hand, when 〈c〉 = 4, the vertex partition function becomes node

independent, implying z =
√

2 − 1, and Sav = ln[(15 + 12
√

2)/28] = 0.13. Hence at an

intermediate value of 〈c〉, the entropy changes sign. Thus there is a range of negative

entropy for 〈c〉 below 4 where the RS ansatz is unstable.
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4. Numerical results

Numerical solutions to the equations are obtained using population dynamics in the

manner explained in subsection 3.1. Results are obtained for Q = 4 and ensembles of

graphs with linear connectivity 3 ≤ 〈c〉 ≤ 4, mixing nodes with connectivities 3 and 4

in varying proportions. After every time step, we measure the following measures: the

local estimate of the average energy, the incomplete fraction, and the Edwards-Anderson

order parameter. This is done by creating a test node i and randomly selecting ci nodes

to connect with the test node. The node contributions to the average free energy, the

global estimate of the average energy, and (for zero temperature) the entropy are also

computed. The computed measures are repeated for N = 10000 nodes for each sample.

The set of descendant nodes of these N test nodes is recorded. Then, pairs of nodes

are randomly drawn this set to form links, and the link contributions to the average

free energy, the global estimate of the average energy, and (for zero temperature) the

entropy are computed.

4.1. Paramagnetic and Potts glass phases

Figure 2 shows the Edwards-Anderson order parameter as a function of 〈c〉. It can

be seen that the value of qEA is 0 in the paramagnetic phase, which spans the region

〈c〉 ≥ 〈c〉sp = 3.65. In this phase, all nodes have free choices of colours. The Potts glass

phase spans the region 〈c〉 < 〈c〉sp, where qEA remains at a value around 0.7, and its

transition to the paramagnetic phase is of the first order.

3 3.2 3.4 3.6 3.8 4
<c>

0

0.2

0.4

0.6

0.8

q E
A

Figure 2. The dependence of the Edwards-Anderson order parameter qEA on the average

connectivity 〈c〉, obtained from the population dynamics at fixed 〈c〉 (©), at fixed fincom (�) and

for the paramagnetic state (♦). Parameters: N = 10000, Q = 4 and 30 samples.

Figure 3 shows incomplete fraction obtained from the steady state solution of

the population dynamics at fixed 〈c〉 values. It remains nonzero in the Potts glass
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phase, and vanishes discontinuously above 〈c〉sp in the paramagnetic phase. To find the

stable as well as the unstable solutions of the population dynamics, which correspond

to multiple solutions at fixed 〈c〉, we may run the population dynamics at fixed nonzero

fincom. This can be done by monitoring fincom conditionally averaged on the nodes

with cj = ⌊〈c〉⌋ and cj = ⌊〈c〉⌋ + 1 at each step, and adjusting the value of 〈c〉 to

approach its targeted value, which is related to the targeted value of fincom estimated

at each time step by fincom = (〈c〉 − ⌊〈c〉⌋)fincom|c=⌊〈c〉⌋+1 + (1− 〈c〉+ ⌊〈c〉⌋)fincom|c=⌊〈c〉⌋.

The population dynamics at fixed fincom yields both stable and unstable solutions of the

Potts glass state below 〈c〉sp, confirming that the transition to the paramagnetic phase is

discontinuous, and that 〈c〉sp corresponds to the spinodal point. The Edwards-Anderson

order parameter for both stable and unstable Potts glass states are also shown in Fig. 2,

bearing features similar to those in Fig. 3.

3 3.2 3.4 3.6 3.8 4
<c>

0

0.05

0.1

0.15

0.2

f in
co

m

Figure 3. The dependence of the incomplete fraction fincom on the average connectivity 〈c〉.
Symbols and parameters: as in Fig. 2.

Figure 4 shows the average free energy. The paramagnetic free energy of 3〈c〉 − 5

provides a baseline for comparing the energy and free energy of the different phases.

Below the spinodal point 〈c〉sp, the paramagnetic state continues to exist. It is not

accessible by the population dynamics, but one can find the paramagnetic free energy

by first finding a paramagnetic state at 〈c〉 ≥ 〈c〉sp, and then gradually reducing the

connectivity to the desired value. The resultant paramagnetic free energy is identical

to that found directly in subsection 3.5.

As shown in Fig. 4, the Potts glass free energy becomes lower than the paramagnetic

free energy near the spinodal point 〈c〉sp. A first order transition appears to take place at

〈c〉c,zic = 3.48, where the free energies of the two states cross each other. The subscript

zic refers to the zero initial condition used here, as distinguished from the random initial

condition (subscript ric) to be discussed in the next subsection. However, since the Potts

glass energy equals the free energy at zero temperature, this implies that the average
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3 3.2 3.4 3.6 3.8 4
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Figure 4. The dependence of the average free energy on the average connectivity, after subtracting

the baseline 3〈c〉 − 5 of the paramagnetic free energy. Symbols: △: local estimate of the average

energy, other symbols as in Fig. 2. Parameters: as in Fig. 2.

energy is below the lowest possible energy of 3〈c〉 − 5 in the range 3.48 < 〈c〉 < 3.65!

Similar observations of contradictory results have been observed in the RS ansatz of

the original graph colouring problem [13, 9] and the 3-SAT problem [31], This indicates

that the RS ansatz in the present analysis is insufficient, and has to be improved by

including further steps of replica symmetry-breaking. Furthermore, the solution of the

population dynamics is insensitive to this transition point in the large N limit. Instead,

it yields the Potts glass state above this transition point right up to the spinodal point

〈c〉sp. (For smaller values of N , say, N = 1000, the discontinuous transition takes place

below the spinodal point.) Thus, the transition at 〈c〉sp looks like a zeroth order one,

with a discontinuous jump of the average free energy from the Potts glass phase below

〈c〉sp to the paramagnetic phase above 〈c〉sp.
As mentioned in subsection 3.3, the local and global estimates of the average energy

are different and are given by Eqs. (11) and (25) respectively. The global estimate

yields results identical to the average free energy, showing that memories about initial

conditions in both variables have been compensated. However, we observe that the

global average energy is numerically unstable in the Potts glass phase. For N = 1000, it

diverges from the average free energy after about 100 steps in the population dynamics.

As shown in Fig. 4, the local estimate of the average energy is indistinguishable

from the global estimate in the paramagnetic phase. However, the local estimate is

significantly higher than the global estimate in the Potts glass phase. Unlike the global

estimate which contradicts the lowest possible energy, the local estimate remains above

it.

Next, we consider the entropy. The entropy of the paramagnetic state obtained

from the theoretical prediction of Eq. (39) agrees well with the results of population

dynamics. As shown in Fig. 5, the entropy of the paramagnetic state becomes negative
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for 〈c〉 < 〈c〉s = 3.82, while the entropy of the Potts glass state is negative throughout.

At the spinodal point 〈c〉sp, the entropy exhibits a small discontinuous jump. Clearly,

results for 〈c〉 < 〈c〉sp should be investigated using a replica symmetry-breaking ansatz

to identify the exact transition point, which is beyond the scope of this paper.

3 3.2 3.4 3.6 3.8 4
<c>

−0.8

−0.6

−0.4

−0.2

0

0.2
S

av

Figure 5. The dependence of the entropy Sav on the average connectivity. Symbols and parameters:

as in Fig. 2.

4.2. Initial conditions

One puzzle of our results is that the Edwards-Anderson order parameter remains at a

level around 0.7 in the entire Potts glass phase. This implies that a considerable fraction

of nodes have free choices of colours even in the Potts glass phase. This is illustrated by

the distribution of colour moments 〈δ(qi, q)〉 in Fig. 6(a), which consists of a continuous

background with peaks at simple rational numbers (1/5, 1/4, 1/3, 2/5 etc.). In fact, the

existence of free spins at zero temperature has been considered an indication of broken

replica symmetry [9].

However, this is apparently inconsistent with extrapolations from finite

temperatures, which will be discussed in the next section. As will be seen, qEA

approaches 1 in the limit of low but finite temperature, implying that all nodes lose

the freedom of choosing more than one colour.

To resolve this inconsistency, we consider the effects of introducing a small

randomness in the initial condition, that is, a small random bias is added to the

initial values of the vertex free energies, which take integer values otherwise. Such

randomness were known to cause significant changes in the optimal solution in the

graph bipartitioning problem, where the field distribution is initialised to a rectangular

distribution [32].

Figure 6(b) shows that when a very small randomness is introduced in the initial

condition, the final values of the Edwards-Anderson order parameter qEA remain around
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1 in both the paramagnetic and Potts glass phase. This means that effectively all spins

are frozen due to the randomness in the initial condition. The distribution of colour

moments consists of two delta function peaks, located at 〈δ(qi, q)〉 = 0 and 1 respectively.

This is consistent with the extrapolation of finite temperature results. The difference

between zero temperature and low but finite temperature distributions was also observed

in the RS approximation of the original graph colouring problem [9, 13].

Randomness in the initial condition causes a significant change in the transition

point between the Potts glass and paramagnetic states. Figure 6(c) shows that the

average free energy of the Potts glass state crosses that of the paramagnetic state at

〈c〉c,zic = 3.48 and 〈c〉c,ric = 3.65 for the zero and random initial conditions, respectively.

As far as we can tell from our numerical precision, 〈c〉c,ric = 3.65 is effectively the same

as the spinodal point 〈c〉sp = 3.65. As will be seen in the next section, the transition

point 〈c〉c,ric is consistent with the phase transition line at finite temperatures.

The effects of randomness in the initial condition on the performance are shown

in Fig. 6(d). For the random initial condition, the incomplete fraction in the Potts

glass phase vanishes effectively continuously to 0 at 〈c〉sp. This is in contrast with the

incomplete fraction for the zero initial condition, which is much higher, and vanishes

discontinuously at the spinodal point.

The entropy is effectively zero in both the Potts glass phase and the paramagnetic

phase in the case of random initial conditions. This is different from the case of zero

initial conditions shown in Fig. 5, in which the entropy is negative in the entire Potts

glass phase and part of the paramagnetic phase.

4.3. Evolution of damages

To illustrate the difference between the paramagnetic and Potts glass phases, we

consider the evolution of damages for different average connectivities 〈c〉. The damaged

configuration, with colours {q′i}, is initialised identically to {qi}, except that the colours

of the descendants of one randomly chosen node j have been inverted, that is, qk = Q−q′k
where k are the descendants of node j. We define the distance measure between {qi}
and {qi’} as the distance between the colour moments

d =
1

N

∑

i

Q
∑

q=1

(〈δ(qi, q)〉 − 〈δ(q′i, q)〉)2
. (40)

We monitor the population dynamics of the colour configuration {qi} and its

damaged configuration {qi’}. They evolve with the same sequence of updates and choice

of descendants. As shown in Fig. 7, the distance is nonzero in the Potts glass phase,

but vanishes in the paramagnetic phase. This shows that multiple solutions of the

saddle point equation exist in the Potts glass phase, but the solution is unique in the

paramagnetic phase. The spread of damage is consistent with the instability of the

replica symmetric solution in the Potts glass phase.
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Figure 6. Results for system size N = 10000, Q = 4 and 30 samples, obtained from the steady

state solution of the population dynamics using zero and random initial conditions (labelled ©
and � respectively). (a) The colour moments distribution obtained from the zero initial condition

at 〈c〉 = 3. (b) The Edwards-Anderson order parameter qEA. (c) The average free energy after

subtracting the baseline 3〈c〉 − 5 of the paramagnetic free energy. (d) The incomplete fraction.

5. Finite Temperature Behaviour

5.1. The example of 〈c〉 = 3

Further insights about the thermodynamic behaviour can be obtained by considering

the finite temperature behaviour. Let us first study the example of 〈c〉 = 3. Figure 8(a)

shows that qEA of the thermodynamic state vanishes at temperatures above 0.575. To

verify that this phase transition is discontinuous, we look for solutions of the population

dynamics with variable T for given values of qEA, which yield the Potts glass state. As

shown in Fig. 8(b), the Potts glass phase with positive qEA does not vanish continuously

into the paramagnetic phase. Rather, its stable and unstable branches merge at the

temperature 0.575, which is therefore identified to be the spinodal temperature.

Figure 9(a) shows the free energies of the paramagnetic state and the results of the
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Figure 7. The dependence of the distance measure d on the average connectivity 〈c〉 using

population dynamics with 10000 nodes, Q = 4 and 30 samples.
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Figure 8. (a) The evolution of the Edwards-Anderson order parameter qEA in the population

dynamics at 〈c〉 = 3 and T = 0.54, 0.56, 0.58, 0.60, 0.62 (top to bottom). (b)The dependence of qEA

at the steady state on temperature T . Symbols: thermodynamic state (©), Potts glass state (�),

paramagnetic state (♦). Parameters: N = 10000, Q = 4 and 30 samples.

population dynamics. The free energy at the paramagnetic state reaches a maximum at

T = 0.65. Below this temperature, the entropy becomes negative. The population

dynamics is in good agreement with the paramagnetic state down to the spinodal

temperature, below which the population dynamics deviates from the paramagnetic

state.

Figure 9(b) shows the free energies in the neighbourhood of the spinodal

temperature, including the stable and unstable branches of the Potts glass state. The

free energies of the Potts glass and paramagnetic states become equal at T = 0.56.

While this can be interpreted as the thermodynamic transition temperature, we observe
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that it is not relevant to the population dynamics, in which the jump of qEA, as shown

in Figs. 8(a) and (b), takes place at the spinodal temperature instead. This behaviour

is consistent with the irrelevance of the first order transition point 〈c〉c,zic = 3.48 at zero

temperature, as described in subsection 4.1.
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Figure 9. The dependence of the average free energy Fav on temperature at 〈c〉 = 3. Symbols and

parameters: as in Fig. 8(b).

The behaviour of the entropy is shown in Fig. 10(a). The entropy of the

paramagnetic state becomes negative below T = 0.65. The stable and unstable branches

of the Potts glass state are shown in Fig. 10(b), and the population dynamics yields

results jumping discontinuously from the stable branch of the Potts glass state to the

paramagnetic state at the spinodal temperature.
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Figure 10. The dependence of the average entropy Sav on temperature at 〈c〉 = 3. Symbols and

parameters: as in Fig. 8(b), except that N = 1000 and 100 samples for the Potts glass state.

Regions of negative entropy are often found in spin glasses. They usually signal
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that the RS ansatz is unstable. However, in the original Sherrington-Kirkpatrick model,

the region of negative entropy is restricted to the low temperature regime deep inside the

spin glass phase [1, 2]. In contrast, the region of negative entropy at 〈c〉 = 3 spans the

entire Potts glass phase and even covers part of the paramagnetic phase. This indicates

that frustration effects in the present model is unusually strong.

We propose that this increased frustration effect is a consequence of the second

nearest neighbouring interactions present in the colour diversity problem, and does not

exist in most models investigated so far. To verify this, we consider the model

E =
∑

i

[

4 + 2
∑

j∈Ni

δ(qi, qj) + 2λ
∑

j 6=k∈Ni

δ(qj , qk)

]

. (41)

The cases λ = 0 and 1 correspond to the graph colouring and colour diversity problems

respectively, We will consider the range 0 ≤ λ ≤ 1. In the paramagnetic phase,

expressions for the entropy can be derived analogously to Appendix B. As shown in

Fig. 11, the region of negative entropy of the paramagnetic state shrinks when the second

nearest neighbouring interaction is reduced. Thus, in the absence of second nearest

neighbouring interaction, the region of paramagnetic phase with negative entropy is

preempted by the Potts glass phase.
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Figure 11. Regions of positive and negative entropies of the paramagnetic state for 〈c〉 = 3 and

Q = 4.

5.2. General values of 〈c〉

For general values of 〈c〉 we will consider three transition lines in the space of 〈c〉 and T :

the zero entropy line in the paramagnetic phase, the spinodal line of the glassy state,

and the paramagnetic-glass transition line. The transition lines are plotted in Fig. 12.

When extrapolated to T = 0, the zero entropy, spinodal and free-energy crossing lines
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pass through the points 〈c〉 = 3.82, 3.65 and 3.65, respectively, in full agreement with

the results obtained for the zero temperature case.

3 3.2 3.4 3.6 3.8 4
<C>

0

0.2

0.4

0.6

0.8

T

Figure 12. The zero entropy line (©), spinodal line (�) and the paramagnetic-glass transition

line (♦) in the space of the average connectivity 〈c〉 and temperature T for Q = 4.

In summary, the system has a paramagnetic phase at high temperature or high

connectivity. Inferring from the studies of the graph colouring problem [9, 12], we

expect that a phase transition to replica symmetry-breaking states takes place at the

high temperature (and high connectivity) side of the zero entropy line, even when the

system is still in the paramagnetic state. However, the location of this transition cannot

be found in the present framework of replica symmetry.

Nevertheless, the replica symmetric solution has provided us insights on the full

solution, suggesting the following picture. One expects the existence of the spinodal

line, where the Potts glass state with a nonzero Edwards-Anderson order parameter

exists in its low temperature (and low connectivity) side. The Potts glass state exists

as a metastable state in the vicinity of the spinodal line. Then, at the low temperature

(and low connectivity) side of the paramagnetic-glass transition line, the Potts glass

state becomes thermodynamically stable.

6. Conclusion

We have studied the macroscopic behaviour in the colour diversity problem, a variant

of the graph colouring problem of significant practical relevance, especially in the area

of distributed storage and content distribution. To cope with the presence of second

nearest neighbouring interactions, the analysis makes use of vertex free energies of two

arguments, which enable us to study the behaviour in the RS analysis, and lays the

foundation for future analyses incorporating replica symmetry-breaking effects. The

analysis is successfully applied to graphs with mixed connectivities.
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For Q = 4 and graphs with linear connectivity 3 ≤ 〈c〉 ≤ 4, the RS analysis identifies

three transition lines according to: (1) when the entropy becomes negative (ending at

〈c〉s = 3.82 when T = 0), signalling the breakdown of the RS ansatz; (2) when qEA

becomes multiple-valued function of T – the spinodal point (ending at 〈c〉sp = 3.65

when T = 0); and (3) the free-energy crossing point between the paramagnetic and

Potts glass state (ending at 〈c〉c = 3.65 when T approaches 0). The regime of negative

entropy is so extensive that it covers the entire Potts glass phase as well as part of

the paramagnetic phase, and can be attributed to the increased frustration due to the

presence of second nearest neighbouring interactions.

The picture that emerges is that the system is in a paramagnetic state at high

temperature or high connectivity; the RS ansatz breaks down prior to the temperature

that identifies the zero entropy transition point. The Potts glass state exists first as a

metastable state but becomes dominant at a lower temperature (connectivity). Evidence

from the population dynamics shows that the discontinuous transition takes place at

the spinodal point rather than the crossing point. However, the RS analysis results in

the average energy falling below the lowest possible energy for 3.48 < 〈c〉 < 3.65, and a

region of negative entropy.

Since the entropy remains positive at the colourable-uncolourable transition [9, 12],

we conjecture that if replica symmetry-breaking is taken into account, the Potts

glass-paramagnetic transition should take place at the higher temperature (and high

connectivity) side of the zero entropy line. For the optimisation of the colour diversity,

one should consider T = 0, implying that the incomplete-complete transition should

take place at 〈c〉 beyond 〈c〉s = 3.82. This estimate of the transition point seems to be

supported by simulation results using the Walksat and BP algorithms [24].

In summary, we have demonstrated the value of different analytical approaches

and the use of population dynamics in elucidating the system behaviour of the colour

diversity problem on a sparse graph. They provide insights on the estimates of the

transition points, the existence of metastable states, and the nature of phase transitions.
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Appendix A. Replica Approach to Colour Diversity

Consider the minimisation of the energy (cost function) on a graph of connectivity c:

E =
∑

i

∑

j1 6=···6=jc

aij1 · · ·aijc
φ(qi, qj1, · · · , qjc

), (A.1)
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where φ is symmetric with respect to the permutation of the neighbours, qi ∈ {1, · · · , Q},
and aij = 1 if nodes i and j are connected on the graph, and 0 otherwise. Since there

are Qc+1 values of the function φ, one can write

φ(qi, qj1, · · · , qjc
) =

Q
∑

m0,···,mc=1

φm0···mc
qm0

i · · · qmc

jc
. (A.2)

The partition function is

Z = Trq exp

[

−β
∑

i

∑

j1 6=···6=jc

aij1 · · ·aijc

∑

m

φm0···mc
qm0

i · · · qmc

jc

]

. (A.3)

The replicated partition function, averaged over all graph configurations with

connectivity c, is given by

〈Zn〉 =
1

N
∑

aij=0,1

∏

i

δ

(

∑

j

aij − c

)

Trq exp

[

−β
∑

i

∑

j1 6=···6=jc

aij1 · · ·aijc

×
∑

m,α

φm(qα
i )m0 · · · (qα

jc
)mc

]

, (A.4)

where N is the total number of graph representations with connectivity c.

It is convenient to express the exponential argument as an unrestricted sum over

the nodes j1, · · · , jc,

− β

c!

∑

i

(

∑

j1···jc

−B2

∑

j1=j2

∑

j3···jc

− · · ·+ (−)c−1Bc

∑

j1=···jc

)

× aij1 · · ·aijc

∑

m,α

φm(qα
i )m0 · · · (qα

jc
)mc , (A.5)

where B2, · · · , Bc are integers accounting for the over-counting in rewriting the

summations in terms of equal indices. Their precise values are not required in our

final result. This allows us to factorise the expression into

− β

c!

∑

m,α

φm

∑

i

(qα
i )m0

{[

∑

j1

aij1(q
α
j1

)m1

]

· · ·
[

∑

jc

aijc
(qα

jc
)mc

]

− B2

[

∑

j1

aij1(q
α
j1

)m1+m2

][

∑

jc

aij3(q
α
j3

)m3

]

· · ·
[

∑

jc

aijc
(qα

jc
)mc

]

+ · · ·+ (−)c−1Bc

[

∑

j1

aij1(q
α
j1)

m1+···+mc

]}

. (A.6)

Following steps similar to those in [27], one gets

〈Zn〉 = exp N

{

c

2
− c

∑

r,s

Q̂r,sQr,s + ln Trq
∏

m,α

(

∫

dĥα
mdhα

m

2π
exp

[

∑

m,α

(

iĥα
mhα

m

)

])

×





∑

rα
m,sα

m

Q̂r,s

∏

m,α

(−iĥα
m)rα

m(qα)msα
m +

1

2

∑

rα
m,sα

m

∏

m,α

(−iĥα
m)sα

m

rα
m!sα

m!
(qα)mrα

m





c
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× exp

{

−β

c!

∑

m,α

φm(qα)m0

[

hα
m1

· · ·hα
mc

− B2h
α
m1+m2

hα
m3

· · ·hα
mc

+ · · ·

+(−)c−1Bch
α
m1+···+mc

]

}}

, (A.7)

where Qr,s and Q̂r,s are given by the saddle point equations of Eq. (A.7).

Consider the generating function

Ps(z) =
∑

r

Qr,s

∏

m,α

(zα)mrα
m

rα
m!

. (A.8)

In the replica symmetric ansatz, we consider functions of the form

Ps(z) =

〈

∏

α

(

TrµR(zα, µα|T)(µα)
P

m msα
m

)

〉

. (A.9)

Substituting the saddle point equation for Qr,s into Eq. (A.8), one finds Ps(z) = NP/DP

where

NP =

〈

∏

α

{

Trq

c−1
∏

k=1

[

Trµk
R(qα, µα

k |Tk)
]

∏

m

(qα)msα
m

× exp

[

−β

c!

∑

m,α

φm(qα)m0

(

hα
m1

· · ·hα
mc

− B2h
α
m1+m2

hα
m3

· · ·hα
mc

+ · · ·

+ (−)c−1Bch
α
m1+···+mc

)
∣

∣

∣

∣

hα
m=(zα)m+

Pc−1

k=1
(µα

k
)m

]}〉

, (A.10)

and DP is a constant having the same expression as that of NP , except that k runs from

1 to c and zα are set to 0.

The expression in the exponential argument of NP can be further simplified.

Rewriting φ as unrestricted sums over the neighbours analogously to Eq. (A.6),

φ(qα, µα
1 , · · · , µα

c ) =
1

c!

∑

m

φm(qα)m0

{[

c
∑

k=1

(µα
k )m1

]

· · ·
[

c
∑

k=1

(µα
k )mc

]

− B2

[

c
∑

k=1

(µα
k )m1+m2

][

c
∑

k=1

(µα
k )m3

]

· · ·
[

c
∑

k=1

(µα
k )mc

]

+ · · ·

+(−)c−1Bc

[

c
∑

k=1

(µα
k )m1+···+mc

]}

. (A.11)

Identifying each term in the square bracket as hα
1 , · · · , hα

Q, we recognise the exponential

argument as −β
∑

α φ(qα, zα, µα
1 , · · · , µα

c−1). We can now identify a recursion relation for

the function R which does not involve replica indices,

R(z, q|T) =
1

DR

c−1
∏

k=1

[

Trµk
R(q, µk|Tk)

]

exp[−βφ(q, z, µ1, · · · , µc−1)]. (A.12)

The denominator is given, in the limit n approaching 0,

DR = exp

〈

ln

{

Trq,µk

c
∏

k=1

[R(q, µk|Tk)] exp[−βφ(q, µ1, · · · , µc)]

}〉

. (A.13)
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Letting the vertex free energy be defined by F V (z, q|T) = −T ln R(z, q|T), we arrive at

the recursion relation (7) and the average free energy (8).

Appendix B. Free Energy and Energy in the Paramagnetic State

The average free energy is given by

Fav = P (Cj = 3) Fav|C=3+P (Cj = 4) Fav|C=4−
〈c〉
2

∑

CiCj

CiP (Ci)

〈c〉
CjP (Cj)

〈c〉 Flink|CiCj
, (B.1)

where

Fav|C=3 = 4 −
〈

T lnQ
{

Q1Q2Q3 + 3Q1Q2z
2 + Q1z

6

+ [Q1Q2z
2 + Q1z

4](zj1 + zj2 + zj3)

+Q1z
6(zj1zj2 + zj2zj3 + zj1zj3) + z12zj1zj2zj3

}〉

,

Fav|C=4 = 5 −
〈

T lnQ
{

Q1Q2Q3Q4 + 6Q1Q2Q3z
2 + 3Q1Q2z

4 + 4Q1Q2z
6 + Q1z

12

+ [Q1Q2Q3z
2 + 3Q1Q2z

4 + Q1z
8](zj1 + zj2 + zj3 + zj4)

+ [Q1Q2z
6 + Q1z

8](zj1zj2 + zj1zj3 + zj1zj4 + zj2zj3 + zj2zj4 + zj3zj4)

+ Q1z
12(zj1zj2zj3 + zj1zj2zj4 + zj1zj3zj4 + zj2zj3zj4) + z20zj1zj2zj3zj4

}〉

,

Flink|CiCj
= 〈−T ln Q [Q − 1 + zijzji]〉|CiCj

. (B.2)

The average energy is given by

Eav = P (Cj = 3) Eav|C=3 + P (Cj = 4) Eav|C=4 , (B.3)

the components of which take the form

E(3)
av

∣

∣

C=3
=

〈

E
(3)
N

E
(3)
D

〉

, and E(4)
av

∣

∣

C=4
=

〈

E
(4)
N

E
(4)
D

〉

, (B.4)

where

E
(3)
D = Q1Q2Q3 + 3Q1Q2z

2 + Q1z
6 + [Q1Q2z

2 + Q1z
4](zj1 + zj2 + zj3)

+ Q1z
6(zj1zj2 + zj2zj3 + zj1zj3) + z12zj1zj2zj3,

E
(3)
N = 4Q1Q2Q3 + 18Q1Q2z

2 + 10Q1z
6 + [6Q1Q2z

2 + 8Q1z
4](zj1 + zj2 + zj3)

+ 10Q1z
6(zj1zj2 + zj2zj3 + zj1zj3) + 16z12zj1zj2zj3 ,

E
(4)
D = Q1Q2Q3Q4 + 6Q1Q2Q3z

2 + Q1Q2z
4 + 4Q1Q2z

6 + Q1z
12

+ [Q1Q2Q3z
2 + 3Q1Q2z

4 + Q1z
8](zj1 + zj2 + zj3 + zj4)

+ [Q1Q2z
6 + Q1z

8](zj1zj2 + zj1zj3 + zj1zj4 + zj2zj3 + zj2zj4 + zj3zj4)

+ Q1z
12(zj1zj2zj3 + zj1zj2zj4 + zj1zj3zj4 + zj2zj3zj4) + z20zj1zj2zj3zj4,

E
(4)
N = 5Q1Q2Q3Q4 + 42Q1Q2Q3z

2 + 27Q1Q2z
4 + 44Q1Q2z

6 + 17Q1z
12

+ [7Q1Q2Q3z
2 + 27Q1Q2z

4 + 13Q1z
8](zj1 + zj2 + zj3 + zj4)

+ [11Q1Q2z
6 + 13Q1z

8](zj1zj2 + zj1zj3 + zj1zj4 + zj2zj3 + zj2zj4 + zj3zj4)

+ 17Q1z
12(zj1zj2zj3 + zj1zj2zj4 + zj1zj3zj4 + zj2zj3zj4) + 25z20zj1zj2zj3zj4 .
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