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Abstract 

 

Human object recognition is considered to be largely invariant to translation across the visual 

field. However, the origin of this invariance to positional changes has remained elusive, since 

numerous studies found that the ability to discriminate between visual patterns develops in a 

largely location-specific manner, with only a limited transfer to novel visual field positions. In 

order to reconcile these contradicting observations we traced the acquisition of categories of 

unfamiliar grey-level patterns within an interleaved learning and testing paradigm that involved 

either the same or different retinal locations. Our results show that position invariance is an 

emergent property of category learning. Pattern categories acquired over several hours at a fixed 

location in either the peripheral or central visual field gradually become accessible at new 

locations without any position-specific feedback. Furthermore, categories of novel patterns 

presented in the left hemifield are distinctly faster learnt and better generalized to other locations 

than those learnt in the right hemifield. Our results suggest that during learning initially position-

specific representations of categories based on spatial pattern structure become encoded in a 

relational, position-invariant format. Such representational shifts may provide a generic 

mechanism to achieve perceptual invariance in object recognition. 
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1. INTRODUCTION 

Our ability to recognize familiar objects is surprisingly robust against displacements of such 

objects within the visual field (Ellis et al. 1989; Biederman & Cooper 1991; Stankiewicz & 

Hummel 2002). However, the explanation of this phenomenon of position invariance has proved 

difficult since psychophysical studies have found pattern-discrimination learning to be largely 

location-specific, with only a limited potential for transfer to novel visual field positions (Foster 

& Kahn 1985; Nazir & O'Regan 1990; Dill & Fahle 1997, 1998). These seemingly contradictory 

observations at the behavioural level are not easily reconciled by neurophysiological findings. 

Neurons in the inferotemporal cortex (IT), an area of crucial importance for object recognition in 

primates, typically show large receptive fields, a property that has previously been linked to 

translational response invariance (Rolls 1992). On the other hand, more recent evidence indicates 

that response behaviour of IT cells is affected by other factors as well and may show a far greater 

sensitivity to retinal position than predicted by receptive field size (DiCarlo & Maunsell 2003; 

Rolls et al. 2003). Such modulation effects and the fact that objects may be represented by the 

combined activity of neuronal populations (Haxby et al. 2001) make it difficult to predict the 

effect of stimulus displacement on the overall response of the visual system on the basis of 

receptive field properties alone. 

Our approach to resolve this debate is based on the notion that object recognition proper 

relies on previously acquired stimulus categories (Rosch 1978), and on evidence that learning 

involves changes in the internal representation of categories (Schyns et al. 1998; Rentschler & 

Jüttner 2007) that may also affect the invariance properties of such representations (Jüttner et al. 

2004). To maximize the potential impact of category learning on the development of position-

invariant object recognition we took advantage of the fact that for the discrimination of 

unfamiliar (i.e. unlearned) structure-only stimuli, i.e. patterns that only differ in the spatial 

arrangement of their constituent parts rather than the shape of those parts, position invariance is 

broken (Dill & Edelman 2001). On this basis we designed classes of unfamiliar patterns that were 

defined by the spatial composition of their constituent parts. Our stimuli were Compound Gabor 

gratings, two-dimensional grey level patterns with a well-defined, one-dimensional part structure 

in terms of bright and dark bars along their horizontal symmetry axis. The use of such patterns 

allowed us to confine positional changes to one-dimensional displacements along the horizontal 

meridian across the visual field. Furthermore, Compound-Gabor gratings represent an elementary 
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stimulus type in early visual processing (Watson et al. 1983; Westheimer 1998) that is 

perceptually highly unfamiliar, thus stimulating learning while minimizing confounding effects 

of prior knowledge (Jüttner & Rentschler 1996, 2000). 

We used a set of fifteen Compound Gabor patterns that were defined within a two-

dimensional Fourier feature space (figure 1a). This feature space allowed to define stimuli in a 

low dimensional “form continuum”, within which each point uniquely defines the appearance of 

a pattern and clusters of points are used to define classes to be learned by the subject. Observers 

were trained to classify the patterns employing a paradigm of interleaved learning and testing that 

involved either the same or different retinal locations during the learning and testing phase of 

each learning unit (figure 2a). The experiments consisted of an induction stage, during which 

learning and testing involved the same retinal location, and two transfer stages, during which the 

test location was shifted to a novel position whereas the learning location remained unchanged. 

Using this paradigm we explored to what extent categorical pattern knowledge during learning 

could be transferred from the left visual field (LVF) to the right visual field (RVF), the RVF to 

the LVF, and from extrafoveal to foveal vision, or vice versa.  

 

2. MATERIAL AND METHODS 

(a) Subjects 

Thirty paid observers (age range 19 to 32 years) participated in the study, with ten subjects (5 

female, 5 male) being assigned to each of the three experiments reported. All participants were 

right-handed and had normal or corrected-to-normal vision. None of them had any prior 

experience with psychophysical experiments. All gave their informed consent prior to the study. 

 

(b) Stimuli 

A set of fifteen compound Gabor gratings, consisting of a fundamental plus its third harmonic 

within a Gaussian aperture, served as learning patterns (figure 1). The stimuli were generated on 

a computer (Research Machines PC; Matrox Millenium G450 graphics) and displayed on 17-inch 

monitor (EIZO  F56; spatial resolution of 1024 x 768 pixel;  refresh rate 75 Hz). Space average 

luminance was kept constant at 60 cd/m2. The fundamental of the Gabor stimuli had a spatial 

frequency was 2.4 cycles/deg and an amplitude of 40 cd/m2. The patterns subtended 1.7 deg at a 

viewing distance of 101 cm when seen foveally. In the 3 deg off-axis viewing conditions, the 
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stimulus size was re-scaled to 2.7 deg according to cortical magnification (Rovamo & Virsu 

1979). Eccentricity was measured between the fixation point and the centre of stimulus patterns.  

 

(c) Interleaved learning and testing 

The experiments used an interleaved learning and testing procedure (Jüttner & Rentschler 1996, 

2000) that was split into a variable number of learning units. Each of them consisted of a learning 

(L) phase and a test (T) phase (figure 2a). During the learning phase, the patterns of the learning 

set were successively presented for 200 ms. Each pattern was shown three times in random order, 

and each presentation was followed, after an interstimulus intervall of 500 ms, by a number, that 

was displayed for 1000 ms and specified the category of the pattern. The test phase employed the 

same temporal parameters for stimulus presentation. However, each pattern was shown only once 

and subjects had to indicate the category of each stimulus by pressing the corresponding key. No 

feedback on the correctness of the response was given. The series of learning units, i.e. the 

alternating sequence of learning and testing, continued until either the observer had achieved a 

criterion of 100% correct in a test phase, or had passed 40 learning units without achieving it.  

Each experiment was divided into three stages, one induction and two transfer stages 

(figure 2b). During induction (IN) the viewing locations during the learning (L) phases and test 

(T) phases of each learning unit were identical; during the two transfer stages (T1 and T2), the 

viewing locations during learning and testing became dissociated from each other. Participants 

proceeded through these stages in one-hour sessions (approximately 10 learning units per 

session) on consecutive days. Upon completion of the induction stage or transfer stage T1 at least 

two learning units of the following stage were performed within the current session to include the 

transition between consecutive stages. 

Throughout all experiments subjects had to fixate a central fixation point on the computer 

display. Patterns were presented on the horizontal meridian either in the left visual field (LVF;  

eccentricity of -3 deg  relative to the fixation target), in the right visual field (RVF; eccentricity 

+3 deg), or centrally (eccentricity 0 deg). Viewing always was binocular. The short stimulus 

duration of 200 ms ensured a presentation to a consistent retinal location and discouraged 

saccadic eye movements. Eye movements were not monitored. Pilot experiments with controlled 

eye position in the context of previous studies employing similar stimuli and viewing conditions 

(Jüttner & Rentschler 1996) showed that for the above learning paradigm fixation errors or 
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erroneous saccades are infrequent (less than 3% of trials) due to the highly repetitive nature of the 

task. 

Experiment 1 contrasted two conditions, in which the subjects learnt the patterns (during 

the L phase of each learning unit) either in the RVF (C1) or in the LVF (C2). During the 

induction stage of the experiment the subjects were also tested (during the T phase) at these 

positions. After completion of this stage subjects entered transfer stage T1, in which the test 

location was moved to the mirror-symmetric location in the contralateral field, i.e. the LVF in C1 

and the RVF in C2. Finally, in stage T2 the test location was moved to the central position for 

both groups.  

Experiment 2 compared two conditions, in which subjects always learnt the patterns 

(during the L phase of each learning unit) in direct view. During the induction stage of this 

experiment, both groups were also tested at the central location. During T1 the test location in 

condition C1 was moved to the RVF, while it was shifted to the LVF in condition C2. Finally, 

during T2 the test location was moved to the mirror-symmetric position in the contralateral field, 

i.e. into the LVF in C1 and into the RVF in C2.  

In Experiment 3 the same sequence of test locations was used as in Experiment 2. In 

contrast to the latter, however, shifts of the test location were always accompanied by identical 

shifts of the learning location. Thus learning and testing always occurred at the same position 

throughout the experiment.  

 

(d) Data analysis 

Observer performance was assessed in terms of learning time (i.e., the number of learning units 

required to reach the learning criterion), and in terms of the relative frequencies of a correct 

response during the three stages of each experiment. 

In order to obtain robust estimates for the transfer across stages time-normalized learning 

curves were derived for each subject from the series of percent-correct scores obtained during the 

test phase of each learning unit. This was done by computing averages for each decile of learning 

units (or quartile, if the learning duration was less than 10 units). The first and last of these 

averages were used as anchor values to assess the transition between induction stage and transfer 

stage T1, and between transfer stage T1 and transfer stage T2. The same anchor values served to 

evaluate learning rate, defined by the ratio of the difference between the anchors within each 
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stage and the absolute number of intervening learning units. 

 To track the development of internal class representations during learning individual 

confusion-error matrices representing the average for the first and last decile (quartile) of learning 

units were computed. The group means of these matrices were analysed in terms of a 

probabilistic virtual prototype model (Jüttner & Rentschler 1996, 2000). The model provides a 

technique to visualize changes in the similarity structure and dimensionality of the conceptual 

space during learning and has been shown to yield, for tasks involving the perceptual 

classification of Gabor patterns, a more parsimonious description than multidimensional scaling 

(Unzicker et al. 1998). Internal representations of pattern classes are modelled as distributions of 

feature vectors around a mean vector, the so-called virtual class prototype, and human 

classification is described in terms of a Bayesian classifier operating on such representations. 

Distances between virtual prototypes reflect the perceived similarity between the corresponding 

class concepts and are varied to minimize the mean squared error between observed and model-

predicted classification frequencies. 

 

3. RESULTS 

(a) Experiment 1 

 In Experiment 1 subjects saw the patterns either in the right visual field (condition C1) or in the 

left visual field (condition C2) during the learning phase of each learning unit (figure 2b, top). 

They were subsequently tested at the same location (during the induction stage IN), the mirror-

symmetric location in the contralateral field (during transfer stage T1) and the fovea (during 

transfer stage T2). In each stage observers were trained to criterion. 

Figure 3a shows the individual, time-normalized learning curves as well as the mean 

classification performance in each learning condition at the beginning and end of the three stages. 

Following the increase during the induction stage, performance significantly drops (F(1,8)=8.17, 

P<0.05, repeated-measurement ANOVA, mixed design, simple contrasts) as the test location is 

moved to the mirror-symmetric position in the contralateral field at the beginning of T1. 

However, as the training at the original location continues, performance at the test location is 

gradually restored indicating an increased robustness to spatial displacement. Shifting the test 

location to the fovea in T2 produced no significant (F(1,8)=1.05, P=0.99) change in recognition 

accuracy suggesting a perfect transfer of classification performance. There were highly 
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significant improvements of performance both during T1 (F(1,8)=12.10, P<0.01) and T2 

(F(1,8)=51.50, P<0.001). These improvements were achieved in absence of any feedback at the 

new test locations, thus ruling out any explanation in terms of position-specific learning.  

Generally, learning the patterns in the left visual field (LVF) led to a better transfer than 

learning in the right visual field (RVF). The effect of learning condition on classification 

performance was highly significant both for the transition between IN and T1 (F(1,8)=5.71, 

P<0.001) and for the transition between T1 and T2 (F(1,8)=20.91, P<0.001), whereas the 

interaction Transition x Condition was not (P>0.1). The difference between the two learning 

conditions becomes prominent in learning time, indicated by the number of learning units needed 

to reach the criterion (figure 3c). Subjects learning the patterns in the LVF (C2) were 

significantly faster than those learning the patterns in the RVF (C1) to learn the patterns in the 

new test locations in transfer stage T1 (t(8)=3.72, p<0.05) and T2 (t(8)= 2.72, p<0.05).   

To track the conceptual space, i.e. the perceived similarity structure of the pattern 

categories, during learning we reconstructed internal class representations from the confusion 

matrices using a probabilistic virtual prototype model (Jüttner & Rentschler 1996, 2000). 

Compared to the two-dimensional configuration of the class means in the defining physical 

feature space (cf. figure 1a), the configurations of the virtual prototypes appear degenerated to 

almost one-dimensional arrangements at the beginning of T1 (solid triangles in figure 3b). This 

deformation, which is more strongly pronounced in condition C1 than in C2, indicates a reduced 

perceptual dimensionality of the conceptual space at the new test location. However, further 

learning restores conceptual space relative to the configuration in the defining feature space 

(dashed triangles in figure 3b), which is preserved in T2, again indicating the increasing degree of 

shift invariance of internal class concepts.  

 

Experiment 2 

In Experiment 1 testing in foveal vision always succeeded testing in extrafoveal vision in both 

conditions. Although patterns in extrafoveal viewing were re-scaled in size in order to 

compensate for differences in terms of spatial resolution (Rovamo & Virsu 1979), the 

performance increase in T2 relative to T1 may be related to a scale-invariant advantage of foveal 

vision for pattern categorization (Jüttner & Rentschler 2000) rather than an increasing degree of 

shift invariance of the internal class representations. Experiment 2 therefore employed a 
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complementary presentation sequence, where subjects learned the patterns in foveal view during 

the induction stage, before being tested for spatial generalisation in extrafoveal vision, both in the 

LVF and in the RVF, in either order (figure 2b, middle). 

Owing to the foveal viewing, recognition accuracy in Experiment 2 rapidly increases 

during induction, which is evident already in the first decile of learning units during that stage 

(figure 4a). Moving the test location into the extrafoveal visual field (T1) led to a sharp initial 

drop in classification performance. However, as the foveal learning continued, performance at the 

test location was fully restored. Shifting the test location to the mirror-symmetric location in the 

contralateral field (T2) still produced a significant (F(1,8)=22.73, P<0.001) drop in recognition. 

However, despite the large shift performance levels at the beginning of T2 are significantly 

higher than at the beginning of T1 (F(1,8)=12.98, P<0.01) indicating the increase of position 

invariance of internal representations of pattern categories.  

Learning condition had no significant effect on classification performance in Experiment 

2. However, it had some effect on learning time in stage T2 (figure 4b, top). Patterns that after the 

foveal induction stage had been transferred to the LVF were significantly faster learned 

(t(8)=3.32, P<0.05) when subsequently transferred to the RVF (condition C2) than when shown 

in the reverse order (condition C1). However, no significant difference between learning 

conditions was observed during T1, which suggests that even a relatively brief foveal 

familiarisation distinctly reduces visual field asymmetry in pattern category learning. 

 

Experiment 3 

The results of Experiment 1 and 2 indicate that, in addition to the increasing degree of position 

invariance at the beginning of the two transfer stages (notably T2), there is a significant 

improvement of recognition performance during both transfer stages, even though subjects 

receive no feedback at the novel test locations. To assess the magnitude of this feedback-free 

learning effect, a control experiment was performed in which the sequence of test locations was 

identical to that in Experiment 2 but accompanied by simultaneous shifts of learning location, 

thus providing a feedback-driven reference condition. Accordingly, learning and testing in 

Experiment 3 first occurred in foveal and then in extrafoveal view, both in the LVF and in the 

RVF, in either order (figure 2b, bottom). Overall learning duration in Experiments 2 and 3 (figure 

4b, top) show similar patterns. The slight reduction in the latter relative to the former can be 
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related to the distinct carry-over effects in Experiment 3 at the beginning of T1 and T2, which 

exceed the transfer observed in Experiment 2 (figure 4a). However, a comparison of the average 

learning rates in T1 and T2 (figure 4b, bottom) showed no significant differences between 

Experiment 2 and 3 (Ps >0.73). Thus the feedback-free improvement of recognition performance 

in Experiment 2 induced by category learning at a fixed location in the visual field proceeds at a 

rate no slower than the improvement observed with position-specific feedback. No left-right 

asymmetry was observed in Experiment 3, in accordance with the learning data for the induction 

stage in Experiment 1 and 2.  

 

4. DISCUSSION 

Our results indicate that knowledge about pattern categories acquired at one particular location in 

the visual field gradually becomes available at other locations. This allows us to reconcile 

apparently contradictory findings of, on the one hand, a limited translation invariance of human 

object recognition observed in tasks involving pattern discrimination (Foster & Kahn 1985; Nazir 

& O'Regan 1990; Dill & Fahle 1997, 1998), and the robustness of recognition against spatial 

displacements found for familiar objects (Ellis et al. 1989; Biederman & Cooper 1991; 

Stankiewicz & Hummel 2002) on the other hand. In concordance with the former we observed an 

initial drop of performance as learning and test location became dissociated from each other (cf. 

beginning of transfer stage T1 in figures 3a and 4a). However, as the learning at the original 

location continued, performance at the test location was gradually restored to criterion level and 

showed increased robustness against further displacement (in transfer stage T2). 

Our experiments differ from earlier work, which has focussed on the position invariance 

of pattern discrimination in same-different matching tasks that either avoided learning (Foster & 

Kahn 1985; Dill & Fahle 1998,  Dill & Edelman 2001) or restricted learning processes to typical 

durations of less than one hour  (Nazir & O'Regan 1990; Dill & Fahle 1997). In contrast, we 

employed a paradigm of long-term category learning that involved three pattern classes defined 

by multiple exemplars and extended over several days for up to eleven hours (median: 6.8 hours 

and 3.5 hours in Exp. 1 and 2, respectively) of total learning time. Throughout Experiment 1 and 

2 subjects only received feedback about category membership at the original learning location but 

not at the test location. Learning progress at the test location therefore was not a practice effect 

owing to position-specific feedback. The translational invariance observed for category learning 
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in the present experiments stands in marked contrast to the positional specificity that has been 

observed for a range of other perceptual learning tasks (Karni & Sagi 1991; Shiu & Pashler 1992; 

Fahle et al. 1995), even though recent evidence suggests that category  learning may affect even 

early perceptual processing (Notman et al., 2005). 

  Further evidence for the crucial role of category learning in the acquisition of position 

invariance comes from the advantage of the LVF relative to the RVF for the learning and 

generalisation of novel patterns. As our stimulus patterns, both within and between categories, 

only differed in terms of the spatial relationships between their constituting part components, the 

results are compatible with previously reported behavioural dissociations showing a LVF 

advantage for the processing of metric coordinate representations (Kosslyn et al. 1989) and 

exemplar-specific encoding of pattern categories (Marsolek 1999). This asymmetry can be related 

to the predominant activation of right prefrontal and parietal areas reported in neuroimaging 

studies for tasks involving visual reasoning (Seger et al., 2000) and visuospatial working memory 

(Jonides et al. 1993; Smith & Jonides 1997). In contrast, a left dorsolateral prefrontal activation 

has been found for tasks involving analytic problem solving (Smith & Jonides 1997) and formal 

reasoning (Wharton & Grafman 1998). For visual learning, this activation shows a distinct 

dependency on learning status (Seger et al. 2000) and might indicate a left-hemispheric 

specialisation for the formation of abstract categories (Marsolek 1999). The bilateral stimulation 

mediated by the foveal learning in Experiment 2 may facilitate the recruitment of predominantly 

left-hemispheric mechanisms involved in category abstraction and their interaction with the 

image-based processing of individual category exemplars predominantly located in the right-

hemisphere, thus yielding an attenuation of behavioural lateralisation with increasing learning 

progress. Consistent with this interpretation, the entry-level categorization of familiar patterns or 

objects often shows no visual-field asymmetry in normal subjects (e.g., Peterzell et al. 1989; 

Biederman & Cooper 1991). 

Insight into how category learning induces position invariance in object recognition is 

provided by computer simulations performed in earlier work involving the same type of stimulus 

material (Jüttner et al. 1997, 2004; Rentschler & Jüttner 2005). These simulations suggest that 

category learning of Compound Gabor gratings relies on production rules that combine multiple 

attributes representing either properties of individual pattern parts or those of part relations.  The 

distinction between two attribute formats allows to account for variations in the degree of 
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perceptual invariance. In the present experiments, a part-specific encoding of visual field position 

of individual pattern components would yield rules that are highly location specific, whereas an 

encoding of relative position for adjacent components would produce rules that are translation 

invariant. These different ways of encoding positional information may have a correspondence in 

the systematic change of receptive field properties along the higher stages of the ventral visual 

pathway in primates involving area V4, the posterior (TEO) and the anterior (TE) region of the 

inferotemporal cortex. Cells in TEO and V4 have smaller receptive fields and a preference for 

simple patterns (Kobatake & Tanaka 1994), and thus may serve the extraction of part-specific 

information. In contrast, cells within TE tend to have large receptive fields that often include the 

fovea (Ito et al. 1995). Nevertheless, such cells show a far greater sensitivity to retinal position 

than predicted by receptive field size (Rolls et al. 2003). Their preference for complex configural 

patterns rather than isolated pattern components (Tanaka 1996) suggests that these cells may play 

an important role in the representation of part-relational information.  

A shift in the format of positional information during category acquisition would then 

become manifest in an emerging position invariance of visual recognition without requiring any 

position-specific feedback. Adaptive use of multiple features during category learning has been 

previously demonstrated behaviourally in humans (Nosofsky 1986; Schyns et al. 1998; Op de 

Beeck et al. 2003) and, at a behavioural as well as neurophysiological level, in monkeys 

(Freedman et al. 2001; Sigala & Logothetis 2002). For foveal viewing we have recently shown 

that flexible use of position-indexing during learning can explain the acquisition and 

generalisation of mirror-image categories (Rentschler & Jüttner 2007). Similar considerations 

with regard to appearance-related attributes may account for other phenomena of perceptual 

invariance, such as against changes in contrast polarity (Jüttner et al. 2004). 

Current approaches to object recognition and understanding generally assume that 

position invariance is achieved at an early level of visual processing and reflects an automatic, 

adaptive response to the spatiotemporal statistics of the visual environment (e.g. Wallis & Rolls 

1997; Riesenhuber & Poggio, 1999; Wiskott & Sejnowski 2002; Cox et al., 2005). Against this 

background our findings add a novel perspective, as they demonstrate that invariance to 

positional changes is also a by-product of the top-down structuring of the visual world imposed 

by the process of category acquisition. In this way, position invariance induced by category 

learning might act complementary to invariance mechanisms of more limited scope, which may 
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be active at early and intermediate levels of feature processing and result from a conjunctive 

sampling of the visual field (Riesenhuber & Poggio 1999) or partial generalizations built upon 

past sensory experience (Ullman & Soloviev 1999). 
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Figure captions 

 

Figure 1. (a) A set of fifteen compound Gabor gratings, consisting of a fundamental plus its third 

harmonic within a Gaussian aperture, served as learning stimuli in the experiments. Stimulus 

variation was restricted to the amplitude b and phase angle φ of the third harmonic. Thus the 

configural structure of each greylevel pattern along its horizontal axis was uniquely determined 

by its coordinates ξ=b cos φ and η= b sin φ in a two dimensional Fourier feature space. Within 

this feature space, the fifteen learning stimuli formed three cluster of equal variance defining 

three classes (1,2,3) to be learned by the subject. Scale: 1 unit = 20 cd/m2. (b) Illustration of the 

actual greylevel representations of the patterns.   

 

Figure 2. (a) Interleaved learning and testing schedule. Subjects were trained to criterion in a 

series of learning units, each having a learning phase (L), during which patterns of the learning 

set were randomly presented followed by their corresponding class label, and a test phase (T), 

during which observers had to categorize each stimulus. (b) In Experiment 1 (top) and 2 (middle), 

viewing location during the learning phase of each learning unit was kept constant, whereas the 

location during the test phase was systematically varied between locations in the left visual field 

(LVF), the right visual field (RVF), and the central position. For example (see inset), in condition 

C2 of Experiment 1 the patterns were always presented in the LVF during the learning phase of 

each learning unit, whereas testing successively involved locations in the LVF (during the 

induction stage IN), the RVF (transfer stage T1) and the centre (transfer stage T2). Experiment 3 

(bottom) replicated the sequence of test locations in Experiment 2, however learning and testing 

always occurred at the same position. 

 

Figure 3. (a) Asymmetric effects of extrafoveal pattern category learning in the right (condition 

C1) and left (C2) visual field on position-invariance. Individual time-normalized learning curves 

of ten subjects derived from the average percent-correct scores across each decile of learning 

units. Symbols show group means for each condition in the first and last decile of each stage. The 

horizontal dashed line indicates chance level. Note the dissociation of the curves in the two 

conditions, even though performance in both groups improves in the absence of location-specific 

feedback during T1 and T2. (b) Visualization of the similarity structure between internal class 
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representations in terms of a virtual-prototype model (see Material and Methods). As indicated 

each prototype configuration corresponds to the group mean of the first or last decile of the 

learning curves shown in (a), with e denoting the root of the mean squared error between 

observed and model-predicted classification frequencies. Compared to the configuration of the 

class means in physical feature space (dashed triangle, cf. figure 1), the virtual prototype 

configurations for subjects in condition C1 appear particularly degenerated, mainly due to an 

insufficient separation of class 2 and class 3. (c) Mean number of learning units (LUs) to reach 

the learning criterion in the three stages of the experiment. Subjects learning the stimuli in the left 

visual field (C2) show a significantly better transfer to the new locations tested in T1 and T2. 

Error bars indicate ±1 s.e. of the mean. 

 

Figure 4. (a) Spatial generalisation of foveal pattern category learning in extrafoveal vision. 

Coloured symbols show group means of classification performance in the first and last decile of 

learning units for the two learning conditions in Experiment 2. Percent-correct scores show a 

distinct drop at the beginning of T2. However, extrafoveal classification accuracy becomes 

increasingly less susceptible to positional changes as foveal learning continues, as a comparison 

with the corresponding performance scores of a reference condition with no separation of 

learning and test location (Experiment 3, black and white symbols) demonstrates. (b) Mean 

learning time (top) and mean learning rate (bottom) in Experiment 2 and 3. Note that the 

feedback-free learning during T1 and T2 in Experiment 2 proceeds at the same rate as the 

feedback-driven learning in Experiment 3. Error bars indicate ±1 s.e. of the mean. 

 










