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ABSTRACT

In recent work we have developed a novel variational in-
ference method for partially observed systems governed by
stochastic differential equations. In this paper we provide
a comparison of the Variational Gaussian Process Smoother
with an exact solution computed using a hybrid Monte Carlo
approach to path sampling, applied to a stochastic double
well potential model. It is demonstrated that the variational
smoother provides us a very accurate estimate of mean path
while marginal variance is slightly underestimated. We con-
clude with some remarks as to the advantages and disadvan-
tages of the variational smoother.

1. INTRODUCTION

Stochastic dynamical systems have been used for modelling
of real-life systems in various areas ranging from physics
to system biology to environmental science. Such systems
are often only partially observed, which makes statistical
inference in those systems difficult. The inference prob-
lem for stochastic dynamical systems usually includes both
state and parameter estimation. In this paper, we focus on
state estimation and assume that the system equation and its
parameters are both known a priori. This is known as fil-
tering and/or smoothing in statistical signal processing. It is
known that the Kushner-Stratonovich-Pardoux (KSP) equa-
tions are the optimal solution to a general filtering/smoothing
problem [1, 2, 3]. For linear systems, the filtering part of
KSP equations reduces to the well-known Kalman-Bucy fil-
ter [4] which is computationally efficient. For non-linear
dynamics in general, however, filtering/smoothing is still
a challenging problem because a numerical solution to the
KSP equations is not feasible for high-dimensional systems.
This paper presents a comparison study between a Markov
Chain Monte Carlo (MCMC) smoother [5] and the varia-
tional smoother which we have recently developed [6].

Mathematically, a stochastic dynamical system is often
represented by a stochastic differential equation (SDE) [7]:

dx(t) = f(x, t)dt + (2D)1/2(x, t)dW(t), (1)

where x(t) ∈ Rd is the state vector, D ∈ Rd×d is the so-
called diffusion matrix, f represents a deterministic dynam-
ical process. The driving noise process is represented by a
Wiener process W(t). Eq. 1 is also referred to as a diffusion
process. The state is observed via some measurement func-
tion h(·) at discrete times, say {tk}k=1,...,M . The observa-
tions are assumed contaminated by i.i.d Gaussian noise:

yk = h(x(tk)) + R
1

2 · η (2)

where yk ∈ Rd′

is the k-th observation, R ∈ Rd′
×d′

is
the covariance matrix of measurement errors, and ξ repre-
sents multivariate white noise. A Bayesian approach to fil-
tering/smoothing is typically adopted in which the posterior
distribution

p(x(t)|{y1, ...,yk, tk < t})

and
p(x([0, T ])|{y1, ...,yM , tM < T}),

respectively, are to be formulated and estimated. Theoreti-
cally, an optimal estimate of p(·) is the solution to the cor-
responding KSP equations. Computational approaches are
based on a variety of approximation schemes or achieved by
MCMC sampling methods.

Using Markov Chain Monte Carlo [8], one is able to
sample from a posterior distribution exactly. At each step
of a MCMC simulation, a new state is proposed and will
be accepted or rejected in a probabilistic way. For applica-
tions to stochastic dynamical systems, it is also referred to
path sampling. A path sampling approach to discrete-time
state-space models has been addressed in [5] and references



therein. In those works, a Gibbs-sampler with single-site
update was used. To achieve better mixing, several algo-
rithms using multiple-site update are explored in [9]. Re-
cently, a Hybrid Monte Carlo (HMC) algorithm for path
sampling is proposed in [10]. We have extended this to
include a prior over the initial state. The HMC method
updates the entire sample path at each step of path sam-
pling while keeping the acceptance of new paths high. In
this work, we first scrutinise the use of HMC for non-linear
smoothing and then assess the performance of the varia-
tional smoother proposed in [6] by comparing its results
with those of HMC.

In contrast to MCMC, all other approaches to non-linear
filtering/smoothing, including the one proposed in [6], are
based on a particular approximation scheme. The extended
Kalman filter is the first attempt to tackle the non-linearity
by linearising the dynamics around the currently available
state estimate [11]. However, unstable error growth is ob-
served in such linearisation methods [12]. To alleviate this
difficulty, the Ensemble Kalman Filter (EnKF) was intro-
duced in [12]. An ensemble of states are integrated forward
in time. Therefore, the Kalman gain can be estimated by
using the error covariances which are not propagated but
calculated from the ensemble of states at each time step.
Note that this method drops the linear approximation of
non-linear dynamics while keeping the Gaussian assump-
tion of error statistics. The particle filter (PF) proposed
in [13] represents a different direction of approximation strate-
gies. Essentially, the posterior density of filtering variables
in PF is approximated by a discrete distribution with ran-
dom support. Each member in the discrete support is called
particle and its probability mass is considered as weight.

In essence, the variational smoother in [6] makes a global
linear approximation of non-linear dynamics. This implies
a Gaussian approximation of the posterior process

p(x([0, T ])|{y1, ...,yM , tM < T}).

The quality of approximation is measured by Kullback-Leibler
(KL) divergence [14] between the true and approximate pos-
terior. The optimal approximate posterior is obtained by
minimising the KL divergence. Following this, any statis-
tical inference in the true system is based on the approx-
imate posterior. This method is within the framework of
variational approximation for Bayesian inference, which is
computationally very efficient and popular in the machine
learning community [15].

The structure of this paper is as follows: First, we present
a Bayesian treatment of non-linear smoothing. In Sec. 3,
the MCMC method is described in detail while we give a
summary of the variational smoother in Sec. 4. For detailed

proofs, we refer to [6]. After that, we compare both meth-
ods in Sec. 5 by numerical experiments with a double-well
potential system. The paper concludes with a discussion.

2. BAYESIAN APPROACH TO NON-LINEAR
SMOOTHING

Both for the MCMC method in [10] and for the variational
smoother in [6], stochastic differential equations are dis-
cretized by using an explicit Euler-Maruyama scheme [7].
The discretized version of Eq. 1 is given by

xk+1 = xk + f(xk, tk)δt + (2D)1/2(xk, tk)
√

δt · ξk, (3)

with tk = k · δt, k = 0, 1, ..., N , and a smoothing window
from t = 0 to T = N · δt. Note that ξk are white noise
random variables. An initial state x0 needs to be set. There
are M observations within the smoothing window, and they
are denoted by

(tkj
,yj)j=1,...,M with {tk1

, ..., tkM
} ⊆ {t0, ..., tN}.

In the following, we formulate the posterior distribution step
by step.

The prior of a diffusion process can be written down as

p(x0, ....,xN ) = p(x0) · p(x1|x0) · .... · p(xN |xN−1),

where p(x0) is the prior of initial states and p(xk+1|xk)
with k = 0, ...., N − 1 are transition densities of the diffu-
sion process. For small enough δt, those transition densities
can be well approximated by a Gaussian density [16]. Ac-
cordingly,

p(xk+1|xk) = N (xk+1|xk + f(xk)δt, 2Dδt).

Therefore, the prior is given by

p(x0, ....,xN ) ∝ p(x0) · exp(−Hdynamics),

where

Hdynamics =

N−1
∑

k=0

δt

4

[

xk+1 − xk

δt
− f(xk, tk)

]>

D−1

[

xk+1 − xk

δt
− f(xk , tk)

]

.

As we assume that measurement noise is i.i.d. Gaussian
random variable, the likelihood is simply given by

p(y1, ...,yM |x(t0), ...,x(tN )) = exp(−Hobs),

where

Hobs =
1

2

M
∑

j=1

[

h(x(tkj
)) − yj

]>
R−1

[

h(x(tkj
)) − yj

]

.

(4)
In summary, we have the posterior

p(x(t)|{y1, ...,yM}) ∝ p(x0)·exp(−1(Hdynamics+Hobs)).



3. MCMC METHOD

In Hybrid Monte Carlo, the molecular dynamics simula-
tion algorithm is applied to make proposals in a Metropolis-
Hastings algorithm, for example,

Xk = {xk
0 , ...,xk

N} −→ Xk+1 = {xk+1

0 , ...,xk+1

N },

at step k. To make a proposal of Xk+1, one simulates a
fictitious deterministic system as follows

dX

dτ
= P

dP

dτ
= −∇XĤ(X,P)

where P = (p0, ...,pN ) represents momentum and Ĥ is
a fictitious Hamiltonian which is the sum of potential en-
ergy Hpot and kinetic energy Hkin = 1

2

∑N
k=1

p2
k. For the

posterior distribution of non-linear smoothing in Sec. 2, the
potential energy is given by

Hpot = − log(p(x0)) + Hdynamics + Hobs.

The above system is initialised by setting X(τ = 0) = Xk

and sampling a random number from N (0, 1) for each com-
ponent of P(τ = 0). After that, one integrates the system
equations forward in time with time increment δτ by using
leapfrog as follows:

X′ = X + δτZP +
δτ2

2
ZZ>(−∇XĤ)

P′ = P +
δτ

2
Z>(−∇XĤ −∇X′Ĥ)

where Z denotes the so-called preconditioning matrix which
accelerates the convergence of matrix iterations. The matrix
Z is a circulant matrix which is constructed from the vector
{1, exp(−α), ..., exp(−α · T )}, where α is a tuning param-
eter. After J iterations, the state X(τ = Jδτ) is proposed
as Xk+1 which will be accepted with probability

min{1, exp
(

−Ĥk+1 + Ĥk
)

}.

4. VARIATIONAL GAUSSIAN PROCESS
APPROXIMATION SMOOTHER

The starting point of the Variational Gaussian Process Ap-
proximation (VGPA) method is to approximate Eq. 1 by a
linear SDE:

dx(t) = fL(x, t)dt + (2D)1/2(x, t)dW(t), (5)

where
fL(x, t) = −A(t)x(t) + b(t). (6)

The matrix A(t) ∈ Rd×d and the vector b(t) ∈ Rd are two
variational parameters to be optimised.

The approximation made by Eq. 6 implies that the true
posterior process, i.e. p(x(t)|y1, ...,yM ), is approximated
by a Gaussian Markov process, q(t). If we discretise the lin-
ear SDE in the same way as the true SDE, the approximate
posterior can be written down as

q(x0, ....,xN ) = q(x0)·
N−1
∏

k=0

N (xk+1|xk+fL(xk)δt, 2Dδt).

In [6], q(x0) is fixed to N (x0|m0,S0), and the prior on ini-
tial states p(x0) is implicitly a uniform distribution.

The optimal A(t) and b(t) are obtained by minimising
the KL divergence of q(·) and p(·) which is given by

KL[q||p] =

∫

dq ln
dq

dp
=

∫ T

0

E(t)dt + const. (7)

with E(t) = Esde(t) + Eobs(t), where

Esde(t) =
1

4

〈

f(x) − fL(x))>D−1(f(x) − fL(x))
〉

qt

and Eobs(t) =
〈

Hobs
〉

qt
where Hobs is defined as Eq. 4 and

<>qt
denotes the expectation w. r. t. the marginal distribu-

tion of the approximate posterior process q(·) at time t.

To compute the KL divergence, we introduce two aux-
iliary variational parameters m(t) and S(t) which are the
mean and covariance matrix of the marginal distribution
qt. However, the pair (m(t),S(t)) is not independent of
(A(t),b(t)), leading to the following constraints:

dm(t)

dt
= −A(t)m(t) + b(t), (8)

and

dS(t)

dt
= −A(t)S(t) − S(t)A>(t) + 2D. (9)

Accordingly, we find optimal (A(t), b(t)), (m(t), and S(t))
by looking for the stationary points of the following La-
grangian

L =

∫

{E − tr{Ψ(
dS

dt
+ AS + SA> − 2D)}

−λ>(
dm

dt
+ Am) − b}dt

where Ψ(t) ∈ Rd×d and λ(t) ∈ Rd are Lagrange multipli-
ers. By definition, Ψ(T ) = 0 and λ(T ) = 0.



By taking the derivatives of L with respect to m, S, A
and b, we obtain a system of so-called Euler-Lagrange (EL)
equations which the optimal m, S, A, b, Ψ and λ should
fulfil [6]. Hence, the non-linear smoothing problem is re-
duced to solving a system of first-order differential equa-
tions. The equation system is solved iteratively.

We start with an initial guess of m, S, A, b, Ψ and λ.
First, we compute m(t) and S(t) by performing standard
Gaussian Process regression [17]. Then, we set Ψ(t) = 0
and λ(t) = 0 for all t. Finally, A and b are initialised using

A(t) =

〈

∂f

∂x

〉

qt

+ DΨ(t) (10)

b(t) = < f(x) >qt
+A(t)m(t) − 2Dλ(t). (11)

Note that Eq. (10-11) are derived from the EL-equations.

At iteration i, we first update m and S by solving Eq. (8-
9) forward in time where Ai and bi are used. Next, Ψ and
λ are updated by solving Eq. (12-15) with final condition
Ψ(T ) = 0 and λ(T ) = 0 where mi+1 and Si+1 are used.
Note that the data are assimilated at this step. Between two
successive observations, we update Ψ and λ by solving

dΨ(t)

dt
= 2Ψ(t)A(t) − ∂Esde

∂S
(12)

dλ(t)

dt
= A>(t)λ(t) − ∂Esde

∂m
(13)

When there is an observation at tkj
, j = 1, ..., M , the fol-

lowing jump-conditions apply

Ψ(t+kj
) = Ψ(t−kj

) − 1

2
H>R−1H (14)

λ(t+kj
) = λ(t−kj

) + H>R−1(yj −Hm(tkj
)). (15)

We consider a linear measurement function which is rep-
resented by a matrix H. Eq. (12-15) are derived from the
EL-equations [6].

Finally, we compute A(t;mi+1,Si+1,Ψi+1, λi+1) and
b(t;mi+1,Si+1,Ψi+1, λi+1) by using Eq. (10-11). To keep
the algorithm stable, the update of A(t) and b(t) is done by

Ai+1(t) = Ai(t) − ω{Ai(t) −A(t; ·, ·, ·, ·}
bi+1(t) = bi(t) − ω{bi(t) − b(t; ·, ·, ·, ·}

where 0 < ω < 1. The iteration stops when L has con-
verged to a constant value.

5. NUMERICAL EXPERIMENTS

The MCMC and variational algorithms are compared on a
double-well potential system which is given by

ẋ(t) = f(x(t)) + κ · ξ(t), (16)

where
f(x) = 4x(1 − x2)

and ξ(t) is white-noise [18]. The parameter κ corresponds
to (2D)

1

2 in Eq. 1 and determines the strength of random
fluctuations within the system. This system has two stable
states, namely x = +1 and x = −1. However, random
fluctuations could cause a transition of the system from one
stable state into another. The average time needed for the
occurrence of such events is called the exit time [18]. In
this study, we set κ = 0.5 and the corresponding exit time
is about 4000 time units [18]. This provides us some prior
knowledge on initial states.

In the numerical experiments, we consider a smoothing
window ranging from t = 0 to t = 12.0. Further, we assume
that states x can be observed directly, which makes h an
identity function. Within the smoothing window, we gener-
ate two data sets, say A and B, from a sample path which
was considered in [18] and [19]. The variance R of mea-
surement errors are 0.04 and 0.36, respectively. Each data
set consists of seven data points which are ”measured” at
times tk1

= 1.0, ...., tkM
= 7.0. Although multiple data sets

are generated and analysed for each of those two R-values
and for some intermediate R-values, the results of data set
A and B are representative and chosen for illustration.

For the MCMC method, Eq. 16 is discretized with time
increment δt = 0.1. The prior on initial states is set to a
Gaussian density with mean at x = +1 and variance equal
to 0.05. This choice is strongly based on our prior knowl-
edge of the system. The tuning parameters of Hybrid Monte
Carlo are chosen as follows: J = 2, δτ = 0.005 and α = 0.02.
The use of the preconditioning matrix Z keeps the neces-
sary J small, which makes the simulation computationally
more efficient. However, the multiplication of the matrix Z

with various vectors would cost extra computational time.
Because of the circulant property of Z, this part of compu-
tational burden is reduced.

For each of 2 data sets, we run a Markov chain of length
5,000,000 and subsample from this chain with sampling in-
terval equal to 1,000. The first 1,000 samples after sub-
sampling are discarded as burn-in period. It turns out that
it is insufficient to determine burn-in only by monitoring
a summary statistic like energy Ĥ. On the contrary, one
has to monitor the traces of state x at different time points.
Particularly, those time points must be chosen from differ-
ent phases of the smoothing window, for example, transi-
tion phases, stationary phases, and the phase before/after
the first/last observation.

For the variational GP approximation method, Eq. 16 is
discretized with time increment δt = 0.01. The only tuning
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Fig. 1. Comparison of mean-path and marginal-variance
estimates between the MCMC- (dashed) and variational
(solid) method with a double-well potential system. Filled
circles represent 7 observations from data set A, with mea-
surement noise variance equal to 0.04. The mean paths are
displayed by thick lines, while each pair of thin lines indi-
cates an envelope of mean path with 2 × standard deviation.

parameter ω is set to 0.15 as in [6]. The number of iterations
required for the convergence of VGPA may increase when
we extend the smoothing window or add more measurement
noise. This is because of a poor estimation of the initial path
by standard GP regression.

In Fig. 1 and Fig. 2, the estimates of both mean path and
marginal variance are displayed for data set A and B, re-
spectively. In each figure, the results of VGPA (solid lines)
are compared with the MCMC results (dashed lines).

For the data sets with relatively small measurement noise,
the estimated mean paths of both methods agree with each
other very well whereas the estimated conditional variance
of VGPA is biased overall but only slightly smaller than that
of MCMC. It is also seen that the estimated mean path is
slightly biased towards zero during both stationary phases.
This can be explained by the fact that although the posterior
of x has a distinct mode at x = +1.0 before the transition
or x = −1.0 after the transition, the mode at another sta-
ble state is not vanishing. Note that this bias is observed for
both VGPA and MCMC. But the effect shown in the MCMC
results is slightly more significant than in the VGPA results.
Moreover, we see that the mean path stays around the mode
at −1.0 long after the last observation. This is also in accor-
dance with the large exit time of the system we consider.

A small dip of mean paths is evident in the results of
the VGPA smoother when we look into the initial period
of the smoothing window. This is accompanied with large
marginal variance S(0). To explain this observation, we run
MCMC simulations with increasingly larger prior variance
of initial states. As expected, the posterior variance of x0
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Fig. 2. The same as in Fig. 1 but with data set B (measure-
ment noise variance = 0.36).

increases with its prior variance. Further, it turns out that a
similar dip of mean paths appears when the prior variance
becomes sufficiently large. It can be understood as follows:
Without any data, a double-well systems does show a bi-
modal probabilistic structure. With a posterior mean of x0

close to +1 and a large value of its posterior variance, the
mean path could be further biased towards zero in the ini-
tial period where the first observation has little influence.
Note that the approximate posterior variance S(0) is not op-
timised, but held fixed.

Finally, we turn our attention to data set B with very
large measurement noise. Note that it is difficult to iden-
tify where the transition starts by visual inspection of the
data themselves. In contrast, this is possible with data set
A. From Fig. 2, we can see that there is significant differ-
ence both in mean path and in marginal variance between
the MCMC and VGPA smoother, particularly in the period
before t = 5.0. Due to the ambiguity shown by the data be-
tween t = 2.0 and t = 4.0, the MCMC sampler seems to be
exploring the bimodal structure of the posterior distribution.
In contrast, the approximate posterior of the VGPA method
is fixed to one particular mode at any time. This may ex-
plain the difference in mean path between two methods and
a significant underestimation of marginal variance for the
VGPA smoother.

6. DISCUSSION

By comparing with Markov Chain Monte Carlo, we evalu-
ate a variational method for non-smoothing which was re-
cently proposed in [6]. Both methods are tested on a double-
well potential systems. Two data sets with different mea-
surement noise are used to determine the strengths and weak-
nesses of the novel smoother.

Our investigation is based on the fact that the MCMC



methods provide an exact inference tool for comparison.
For data sets with small or moderate measurement noise,
it turns out that the VGPA method does produce a very ac-
curate estimate of mean path while the marginal variance
is slightly under-estimated. As expected, the variational
method is computationally more efficient than MCMC. For
the cases we have investigated in this paper, the CPU time
needed for the convergence of the VGPA method is roughly
equal to that for running 50,000 updating steps in MCMC.
Regarding other approximation-based smoothers, it has been
reported that Ensemble Kalman smoother fails to recon-
struct the transition of a double-well system accurately from
a sparse data set [19]. As stated in [19], the failure is due
to the fact that in KF and EnKF the propagated states are
corrected by a linear interpolation scheme when new data
are assimilated.

However, the weakness of the VGPA method is also ev-
ident when the ambiguity due to noisy data becomes signif-
icant. As many other variational approximation methods,
the variational smoother is not good at exploring the multi-
modal structure of some probability measures. In this paper,
the role of prior on initial state is also investigated. It turns
out that the estimates of mean path could be biased in the
initial phase of the smoothing window, where the first ob-
servation has little influence, unless the prior on initial states
is incorporated into the variational smoother, which we will
shortly do.

Many MCMC algorithms suffer from poor mixing when
high-dimensional stochastic complex systems are concerned.
Development of efficient MCMC algorithms is always a
challenging task. A combination of variational approxi-
mation methods and sampling methods would offer a new
promising direction to improve the efficiency of MCMC al-
gorithms, which we will shortly investigate.
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