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t. We review re
ent theoreti
al progress on the statisti
al me
hani
s of error
orre
ting 
odes, fo
using on Low Density Parity Che
k (LDPC) 
odes in general,and on Gallager and Ma
Kay-Neal 
odes in parti
ular. By exploiting the relationbetween LDPC 
odes and Ising spin systems with multi-spin intera
tions one 
an
arry out a statisti
al me
hani
s based analysis that determines the pra
ti
al andtheoreti
al limitations of various 
ode 
onstru
tions, 
orresponding to the dynami
aland thermodynami
al transitions respe
tively, as well as the behaviour of error-exponents averaged over the 
orresponding 
ode ensemble, as a fun
tion of 
hannelnoise. We also 
ontrast the results obtained using methods of statisti
al me
hani
swith those derived in the information theory literature, and show how these methods
an be generalized to in
lude other 
hannel types and related 
ommuni
ation problems.PACS numbers: 02.50.-r, 75.10.Hk, 89.70.+
, 89.20.Kk
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k Codes 21. Introdu
tion1.1. Error Corre
tionEle
troni
 
ommuni
ation plays an important role in the modern so
iety and has aprofound impa
t on the way we live. It appears in various forms and in a broad rangeof appli
ations, from mobile and satellite 
ommuni
ation to 
able TV and the internet.Two features 
ommon to most modern digital 
ommuni
ation systems are theneed for eÆ
ient sour
e and 
hannel 
oding methods. Sour
e 
oding relates to the
ompression of redundant information (e.g., pi
tures, musi
), even at the expense of�delity (lossy 
ompression); while 
hannel 
oding relates to the introdu
tion of some
ontrolled redundan
y prior to transmission in order to prote
t the information against
orruption in a noisy transmission medium (e.g. deep-spa
e, atmosphere, opti
al �bres).In this review paper we mainly fo
us on error 
orre
tion (
hannel 
oding) althoughwe also mention appli
ations of statisti
al me
hani
s analysis to sour
e 
oding, multi-terminal 
ommuni
ation 
hannels, 
ryptography and other areas of information theory.In his 1948 papers Shannon [Sha48℄ proved general results on the limits of
ompression and error-
orre
tion by setting up the framework to what is now knownas information theory (IT). Shannon's 
hannel 
oding theorem states that error-free
ommuni
ation is possible if some redundan
y is added to the original message in theen
oding pro
ess. A message en
oded at rates R (message information 
ontent/
ode-word length) up to the 
hannel 
apa
ity C
hannel 
an be de
oded with a probabilityof error that de
ays exponentially with the message length. Shannon's proof is non-
onstru
tive and assumes en
oding with unstru
tured random 
odes and impra
ti
alde
oding s
hemes (requiring a 
omputing e�ort that grows non-polynomially with the
odeword length) [CT91℄. Finding pra
ti
al 
odes 
apable of rea
hing the 
oding limitsestablished by Shannon has been one of the 
entral issues in 
oding theory ever sin
e;and only re
ently, due to some ingenious 
ode designs, we are within rea
h of 
losingthe remaining gap to the bounds set by Shannon.Figure 1 illustrates the problem of 
hannel 
oding. On the top left of Fig.1 werepresent the spa
e of words (a message is a sequen
e of words), ea
h 
ir
le representsone sequen
e of binary bits. The word to be sent is represented by a bla
k 
ir
le inthe left side �gure. Corruption by noise in the 
hannel is represented in the top right�gure as a drift in the original word lo
ation. The 
ir
le around ea
h word representsa de
ision boundary sphere for the parti
ular word, any signal inside a 
ertain de
isionregion is re
ognized as representing the word at the 
entre of the sphere. In the 
asedepi
ted in Fig.1 the drift 
aused by noise pla
es the re
eived word within the de
isionboundary of another word ve
tor, 
ausing a transmission error. Error-
orre
tion 
odesare based on mapping the original spa
e of words onto a higher dimensional spa
e ina way that the typi
al distan
e between en
oded words in
reases. The 
olle
tion of allen
oded words (
odewords) 
onstitute a 
odebook. If the original spa
e is transformed,the same drift shown in the top of Fig.1 is insuÆ
ient to push the re
eived signal outsidethe de
ision boundary of the transmitted 
odeword (bottom �gure).
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Figure 1. In the top �gure we illustrate what happens when a word is transmittedwithout error-
orre
tion. White 
ir
les represent possible word ve
tors, the bla
k
ir
le represents the word to be sent. The 
hannel noise 
orrupts the original word,represented by a drift in the top right pi
ture. The dashed 
ir
les indi
ate de
isionboundaries in the re
eiver; in the 
ase depi
ted, the 
orruption leads to a transmissionerror. In the bottom �gure we show qualitatively an error 
orre
tion me
hanism. Theredundant information 
hanges the spa
e geometry, in
reasing the distan
e betweenwords. The same drift as in the top �gure does not result in a transmission error.Good 
odes should be as short as possible, yet should 
learly allow for a largenumber of 
odewords (for a large set of words) and de
ision spheres must be as large aspossible (for large error-
orre
tion 
apability). The general 
oding problem 
onsists ofoptimizing one of these 
on
i
ting requirements given the other two.1.2. Low-Density Parity-Che
k CodesFor long, the best pra
ti
al 
odes known were variants of Reed-Solomon 
odeswhi
h form the basis for most 
urrent te
hnologi
al standards (e.g., in deep-spa
e 
ommuni
ations [MS77, VO79℄). The situation has 
hanged dramati
allyabout a de
ade ago with the introdu
tion of Turbo 
odes [BGT93℄. These 
odesare 
omposed of two 
onvolutional 
odes working in parallel and show pra
ti
alperforman
e 
lose to Shannon's bound when de
oded with iterative methods knownas probability propagation [Pea88℄ or belief propagation; these iterative methods were�rst studied in the 
ontext of 
oding by Wiberg [Wib96℄ (ex
luding Gallager's originalformulation [Gal62, Gal63℄). The area experien
ed a se
ond dramati
 developmentwhen Gallager's low-density parity-
he
k 
odes have been redis
overed by Ma
Kay andNeal in 1995 [MN95, Ma
99℄; this led to renewed a
tivity in the general area of low-density parity-
he
k 
odes (LDPC) [RU01a, RSU01, LMSS01℄ leading to the design ofre
ord breaking 
odes (e.g., [Chu00, Dav99, Dav98℄) and greater understanding of theirproperties.Gallager 
odes were �rst proposed in 1962 [Gal62, Gal63℄ and then were all but
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k Codes 4forgotten soon after due to 
omputational limitations of the time and due to the su

essof 
onvolutional 
odes. LDPC 
odes are mu
h easier to understand and analyse thanTurbo 
odes, and arguably represent the future of error-
orre
tion. Throughout thisreview paper we 
on
entrate on LDPC error 
orre
ting 
odes in general and Gallagerand Ma
Kay-Neal 
odes in parti
ular.1.3. Information Theory and Statisti
al Me
hani
s of CodingThe study of error-
orre
ting 
odes is 
learly one of the main topi
s in informationtheory. While the main properties of 
ommuni
ation 
hannels 
an be easily obtainedfrom simple entropi
 
onsiderations [CT91℄, the 
onstru
tion and analysis of pra
ti
al
odes, parti
ularly LDPC 
odes of �nite 
onne
tivity, is rather diÆ
ult. In most 
ases,pra
ti
al and/or theoreti
al limitations are derived, in the in�nite 
odeword limit, inthe form of bounds as dire
t average properties are diÆ
ult to obtain.The statisti
al me
hani
s of 
odes represents a 
ompletely di�erent approa
h. Byexploiting similarities between error-
orre
ting 
odes and spin glass models, as well asmethods developed in the study of Ising spin systems, one 
arries out exa
t averagesover 
ode ensembles, possible messages and noise ve
tors to 
al
ulate the free-energy ofa given system; studying its properties one obtains exa
t results for their pra
ti
al andtheoreti
al limitations.In Se
tion 2 we provide a general des
ription of the 
ommuni
ation 
hannels studiedand the notation used; in se
tion 3 we brie
y review several LDPC 
ode 
onstru
tions,followed by a more detailed review of re
ent statisti
al me
hani
s based analyses andtheir relation to analyses 
arried out in the information theory 
ommunity (se
tion 4).In se
tion 5 we fo
us on analyti
al methods for obtaining the theoreti
al limitations of
odes used in the IT literature and their equivalents in the statisti
al me
hani
s-basedapproa
h; appli
ations of LDPC 
odes to a range of other problems in informationtheory and 
ryptography will be reviewed in se
tion 6 followed by a brief summary.2. Communi
ation ChannelsA general 
ommuni
ation s
enario is des
ribed in Fig.2(a). It is based on en
oding aK dimensional message s to an N dimensional 
odeword t whi
h is then transmittedthrough a noisy 
ommuni
ation 
hannel. Codeword 
orruption during transmission 
anbe des
ribed as a probabilisti
 pro
ess de�ned by the 
onditional probability P (r j t)where t and r represent transmitted and re
eived messages respe
tively. We assume nointerferen
e e�e
ts between 
odeword 
omponents, binary messages/
odewords (f0; 1g)and a memoryless 
hannel, so that P (r j t) =QNi=1 P (ri j ti). The re
eived 
odeword ris then de
oded to retrieve the original message s. In this paper we will 
onsider several
hannel types des
ribed s
hemati
ally in Figs.2(b)-(d), although other 
hannels 
analso be 
onsidered and analysed using similar approa
hes. The di�eren
es between thevarious 
hannels stem from the 
orruption probability P (rj j tj). The Binary Symmetri
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�Figure 2. (a) Mathemati
al model for a 
ommuni
ation system. (b) BinarySymmetri
 Channel (BSC). (
) Binary Erasure Channel (BEC). (d) Real valuedsymmetri
 
hannels (Gaussian - AWGN, Lapla
ian et
.).Channel (BSC), des
ribed s
hemati
ally in Fig.2(b), is de�ned by binary input andoutput alphabets and by the 
onditional probabilityP (r 6= t j t) = p ; P (r = t j t) = 1� p : (1)In the Binary Erasure Channel (BEC) (Fig.2(
)), binary 
odeword bits arriveun
orrupted with probability 1� p; no information is given in the 
ase of 
orruption asindi
ated by the '?' symbol. The 
onditional probability of a re
eive bit being identi
alto the transmitted one is therefore P (r = t j t) = 1 � p : In the 
ase of 
hannelswith real valued noise, des
ribed in Fig.2(d), binary transmitted 
odeword bits be
omereal re
eived values. Su
h 
ommuni
ation 
hannels are des
ribed by some 
onditionalprobability P (r j t); whi
h, for instan
e, in the 
ase of a Additive-White-Gaussian-Noise
hannel (AWGN), takes the form:P (r j t) = 1p2��2 e� 12 (r�t)2�2 ; (2)where �2 represents the varian
e of the Gaussian noise.The maximal information per bit that the 
hannel 
an transport de�nes the 
hannel
apa
ity [CT91℄ and 
an be easily derived from entropi
 
onsiderations; for perfe
tretrieval, the sour
e ve
tor binary entropy plus that of the noise ve
tor must be smallerthan the 
odebook entropy. Sin
e all 
odewords may be used with equal probability,the latter (per symbol) equals the (base 2) logarithm of the alphabet size, i.e., 1 in the
ase of a binary alphabet f0; 1g. The entropy of any binary ve
tor is 
al
ulated dire
tlyfrom the probability of having a value of 0/1. For instan
e, for the binary noise ve
tor
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k Codes 6(1) the entropy per bit be
omesH2(p) = �p log2(p)� (1� p) log2(1� p) ; (3)and the BSC 
apa
ity is given byCBSC = 1� H2(p) ; (4)similarly, for the BEC the 
hannel 
apa
ity isCBEC = 1� p : (5)Channel 
apa
ity expressions for real valued noisy 
hannels are slightly more 
omplex;for instan
e, Shannon's bound in the 
ase of AWGN is given byCAWGN = 12 log2(1 + SNR) ; (6)where SNR is the signal to noise ratio, de�ned as the ratio of energy per bit of the sour
e(squared amplitude) over the spe
tral density of the noise (varian
e). If one 
onstrainsthe en
oded bits to binary values f�1g (binary-input additive-white-Gaussian-noise
hannel - BIAWGNC) the 
apa
ity be
omes:CBIAWGNC = Z dr P (r j 1) log2P (r j 1)� Z dr P (r) log2P (r); (7)where P (r j t) is as in equation (2).The analysis presented in this paper fo
uses on the binary symmetri
 
hannel but
an be easily extended to other 
hannel types [KS99a, VSK99, TS03
, SvMS03, Mon01,FLMRT02℄ that are arguably of greater pra
ti
al relevan
e [VO79, CT91℄.3. Low Density Parity Che
k CodesParity 
he
k 
odes have been used in various error-
orre
tion me
hanisms almost fromthe very beginning of the �eld. One of the most well known parity 
he
k me
hanisms isthe Hamming 
ode [CT91℄ and its generalization to the family of linear 
odes.Most pra
ti
al linear 
odes tend to o�er a relatively low error prote
tion for a giventransmission ratio, far below the Gilbert-Varshamov limit [Var57, Gil52℄, boundingall linear 
odes. The performan
e improves as the number of elements summed inea
h 
he
k grows; however, the de
oding pro
ess be
omes 
omputationally hard andunfeasible for a pra
ti
al 
odeword length.3.1. Gallager's CodeLDPC 
odes have been originally introdu
ed by Gallager in 1962 [Gal62℄. They relyon a sparse linear transformation of binary messages at the de
oding stage, makingit 
omputationally feasible; while en
oding relies on a dense matrix generated by theinverse of the sparse linear transformation. The signi�
an
e of Gallager's dis
overy wasnot fully appre
iated at the time due to the limited 
omputing resour
es at the timeas well as the in
reasing popularity of 
onvolutional 
odes that require only a simplesystem of shift registers to operate e�e
tively.
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k Codes 7Gallager's 
ode is de�ned by a binary matrix H = [A j B℄, 
on
atenating twovery sparse matri
es known to both sender and re
eiver, with B (of dimensionality(N � K) � (N � K)) being invertible and A of dimensionality (N � K) � K. Thematrix H 
an be either random or stru
tured, 
hara
terized by the number of non-zeroelements per row/
olumn. These numbers, whi
h we denote as k and j respe
tively,
an be 
onstants for all rows/
olumns (de�ning a regular 
ode) or may vary from rowto row (or 
olumn to 
olumn) giving rise to an irregular 
ode.Irregular 
odes show superior performan
e with respe
t to regular 
onstru
-tions [RU01a, RSU01, KS99b, KS00b, VSK00b℄ if they are 
onstru
ted 
arefully. How-ever, to simplify the presentation, we fo
us here on regular 
onstru
tions; the gen-eralization of the methods presented here to irregular 
onstru
tions is straightfor-ward [VSK02, VSK00b℄.En
oding refers to the mapping of a K dimensional binary ve
tor s 2 f0; 1gK(original message) to N dimensional 
odewords t 2 f0; 1gN (N > K) by the linearprodu
t t = GTs (mod 2) ; (8)where all operations are performed in the �eld f0; 1g and are indi
ated by (mod 2). Thegenerator matrix is of the formG = [I j B�1A℄ (mod 2) ; (9)where I is the K � K identity matrix. By 
onstru
tion HGT = 0 (mod 2) and the�rst K bits of t 
orrespond to the original message s. Note that the generator matrix isdense and ea
h transmitted parity-
he
k 
arries information about O(K) message bits.In the 
ase of unbiased messages, with equal bit probability of having the values 1and 0, the 
ode rate 
orresponds to the ratio of message to 
odeword bits R = K=N .Counting the number of unit elements in the matrixH one easily establishes the relationj = (1�K=N)k, from whi
h the 
ode rate expression R = (1� j=k) 
an be derived. Inthe 
ase of biased messages one should repla
e the number of bits K by the logarithm(base 2) of the 
orresponding entropy.To demonstrate the way in whi
h Gallager's 
ode is utilized we 
onsider the BSC,where the en
oded ve
tor t is 
orrupted by a noise ve
tor n 2 f0; 1gN with 
omponentsindependently drawn fromP (n) = (1� p) Æ(n) + p Æ(n� 1) : (10)The re
eived ve
tor takes the formr = GTs+ n (mod 2) : (11)De
oding is 
arried out by multiplying the re
eived message by the matrix H toprodu
e the syndrome ve
torz = Hr = Hn (mod 2) : (12)De
oding refers to �nding an estimate of n knowing z and H; this of 
ourse enablesone to obtain the original message ve
tor s (the �rst K bits of r + n (mod 2)). Thefollowing estimators may be employed in prin
iple:
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k Codes 8� Maximum a Posteriori (MAP) - based on sele
ting the noise ve
tor of thelowest weight (smallest number of '1's) that obeys all parity 
he
ks (12); this
orresponds to mapping the re
eived ve
tor onto the nearest 
odeword. It alsoimplies the maximization of the posterior probability P (njz; H). The noise ve
torMAP estimator, whi
h is also the maximum likelihood (ML) estimator of the
odeword, minimizes the blo
k error probability [Iba99℄ (i.e., of having any errorsin a de
oded message) but is 
omputationally demanding and 
annot be used inpra
ti
e.� Marginal Posterior Maximizer (MPM) - sele
ting the most probable noise-bit estimator, while marginalizing over all other bits (i.e., summing up over theprobabilities of all other variables). This relies on 
hoosing the right prior forthe estimated noise ve
tor bits; it has the property of minimizing the bit errorprobability [Iba99℄ (the average error probability per bit) . MPM is in generalequally diÆ
ult to MAP de
oding. However, good approximation methods existfor 
odes that 
an be mapped onto sparse graphs, leading to su

essful de
oding ina broad range of noise values.In pra
ti
e, de
oding is 
arried out mainly by employing some message passing algorithmsu
h as Belief Propagation (BP) [Pea88℄ (also known as probability propagation,Bayesian networks) and its variations.Irregular Gallager 
odes de
oded using BP o�er the best performan
e to date; theseresults follow from the work of [RSU01, RU01a, RU01b℄.3.2. Sourlas CodeIn 1989 Sourlas pointed to the relation between simple LDPC 
odes and spin-glassmodels [Sou89℄. Although the 
odes presented by Sourlas are of limited pra
ti
alrelevan
e they made a signi�
ant 
ontribution to establishing the links betweenstatisti
al me
hani
s and information theory.The 
ode presented by Sourlas is strongly related to both Gallager and MN 
odes. Itis based on a regular generator matrix G giving rise to a 
odeword in the form (11). Thede
oding problem 
an be mapped to known physi
al systems, Sourlas's original paperfo
uses on the SK [SK75, KS78℄ and random energy models [Der81, Saa98℄, where theirperforman
e 
an be analysed.The results presented are of little pra
ti
al signi�
an
e sin
e sparse generatormatri
es of the form presented (e.g., with two non-vanishing elements per row, k = 2)result in a non-vanishing error probability; while using dense generator matri
es, whi
hwould potentially allow for a perfe
t retrieval of messages, is unfeasible due to de
odingdiÆ
ulties (in fa
t, de
oding 
odes with k � 3 is already diÆ
ult).
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k Codes 93.3. MN CodeMa
Kay and Neal introdu
ed the MN 
odes in 1995 [MN95, Ma
99℄, a variation onGallager 
odes whi
h they dis
overed independently, giving rise to renewed interest inLDPC 
odes.MN 
odes are de�ned by two very sparse matri
es; the main di�eren
e with respe
tto Gallager 
odes is that information on both noise and signal is in
orporated to thesyndrome ve
tor. Both en
oding and de
oding follow a similar pro
edure as in (8)-(12)ex
ept that the generator and de
oding matri
es take a di�erent form.The generator matrix G is an N �K dense matrix de�ned byG = B�1A (mod 2) ; (13)with B being an N �N binary invertible sparse matrix and A an N �K binary sparsematrix. Also MN 
odes 
ome in both regular and irregular forms; again, for brevity we
on
entrate here on regular 
odes, where the number of unit elements per row/
olumnin A is k and j respe
tively, and l in B (for both row/
olumn).Using 
ommuni
ation through a BSC as an example, the transmitted ve
tor t isthen 
orrupted by a binary noise ve
tor n 2 f0; 1gN as in (10) and the re
eived ve
tortakes the same form as in (11). De
oding is performed by matrix multipli
ation of the
orrupted 
odeword by the matrix B, giving rise to the syndrome ve
torz = Br = As+Br (mod 2) : (14)Estimating the original message and noise ve
tor from the syndrome z and matri
es Aand B is 
arried out in the same way as in Gallager 
odes.Spe
i�
 
onstru
tions of MN 
odes, espe
ially those using Galois �elds, rather thanthe basi
 binary representation, show very good performan
e [Dav99, Dav98℄.3.4. Designing Capa
ity Approa
hing CodesThe main breakthrough in the design of 
apa
ity approa
hing 
odes 
ame with the workof Ri
hardson and Urbanke [RSU01℄. They analysed a BP-based de
oding me
hanism,by 
onsidering a ma
ros
opi
 representation of the lo
al �elds, in the form of probabilitydistributions. The method, termed density evolution (DE), is employed for analyzingthe de
oding pro
ess and used to derive stability 
onditions whi
h fa
ilitate the design of
apa
ity approa
hing 
odes. In fa
t, DE is similar to the Bethe approximation [MPV87℄used in the study of diluted systems. The relation between BP, density evolution andthe Bethe approximation has been pointed out in [KS98, VSK00a, YFW02℄ (see alsose
tion 4.4). Later on, Chung et al [CRU01℄ presented a Gaussian-based approximatedDE and applied it to the design of 
apa
ity approa
hing 
odes.Both DE and its Gaussian-based approximated version are aimed at designingirregular 
onstru
tions, we will therefore not review them in detail, but rather pointto the similarities between them and the statisti
al me
hani
s approa
h [VSK02℄.
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k Codes 103.5. Turbo 
odesThe ex
iting developments in the area of LDPC 
odes were pre
eded by the dis
overyof another family of 
apa
ity approa
hing 
odes - the Turbo 
odes [BGT93℄. Theintrodu
tion of Turbo 
odes 
reated ex
itement in the information theory 
ommunityas they represented a step in
rease in performan
e towards saturating Shannon's limit,with respe
t to previous re
ord holders - BCH and Reed-Solomon 
odes [M
Eon℄.Turbo 
ode is a variant of re
ursive 
onvolutional 
odes; the latter are based onshift registers (two in most 
ases, but more in general), used to generate 
odewords bya re
ursive 
onvolution of message bits. Various stru
tures 
an be used in general,although in most 
ases, the 
odeword 
omprises the original message segment andre
ursively 
onvoluted segments of it. De
oding 
an be 
arried out in various ways, in
onjun
tion with the 
onvolution me
hanism; for instan
e by employing BP te
hniquesfor �nding the most probable message bits [Fre98, FM98℄.In the 
ase of turbo 
odes two ve
tors, representing the original message and apermuted version of it, are used as inputs in a re
ursive 
onvolutional pro
edure forgenerating the 
odeword. The de
oding pro
ess exploits 
orrelations between bits ofthe message ve
tor and of the permuted ve
tor, to obtain an estimate of the originalmessage.An additional advantage of turbo 
odes is that they 
an be easily implementedusing simple ele
troni
 
ir
uits (shift registers); the drawba
k is that they are diÆ
ultto analyse and systemati
ally improve. Turbo 
odes were also analysed using methodsof statisti
al me
hani
s [MS00, Mon00℄. A brief des
ription of 
onvolutional me
hani
s
ontext, 
an be found in [Nis01℄.4. Statisti
al Me
hani
s of CodingThe link between error 
orre
ting 
odes and statisti
al me
hani
s was �rst pointed out bySourlas [Sou89℄. He mapped a simple parity 
he
k 
ode onto spin glass models [Sou89℄,fo
using on the SK [SK75℄ and random energy models [Der81, Saa98℄ and showing thatthe latter 
an be viewed as an ideal 
ode 
apable of saturating Shannon's bound atvanishing 
ode rates (without taking into a

ount pra
ti
al de
oding 
onsiderations).A few papers relating spin glass models and 
oding have been published sin
e thenand before the renewed interest in LDPC 
odes. Among them one should mentionseveral studies of �nite temperature de
oding [Ruj93, Nis93, Sou94℄ and the analysis of
onvolutional 
odes via transfer-matrix methods and power series expansions [AL95℄.The redis
overy of LDPC 
odes brought with it ex
itement also to the statisti
alme
hani
s 
ommunity. After extending Sourlas's work to the 
ase of �nite 
oderates [KS99a, VSK99℄, regular and irregular MN [KMS00b, MKSV00, VSK00b,KMSV00℄ and Gallager [VSK00a, VSK01, Mon01, KSNS01, vMSK01, vMSK02, NKS01℄
odes have been studied using statisti
al me
hani
s, and a link between the twoframeworks has been established [KS98, VSK02, FLMRT02℄. Insight gained from the
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k Codes 11statisti
al me
hani
s analysis also 
ontributed to the design of highly eÆ
ient irregular
odes [KS99b, KS00b, KS00a, VSK02℄.The similarity between Ising spin models and LDPC 
odes stems from theformulation of the de
oding problem. Employing the isomorphism between the additiveBoolean group (f0; 1g;�) and the multipli
ative binary group (f+1;�1g;�), wherebyevery addition in the Boolean group 
orresponds to a unique produ
t in the binarygroup and vi
e-versa, one 
an map the de
oding problem to a Gibbs distribution by
onstru
ting an appropriate Hamiltonian.The de
oding problem depends on posteriors like P (� j r), where r is theobservation (re
eived message or syndrome ve
tor) and � is a 
andidate estimate of theunknown original message s (or alternatively the noise ve
tor from whi
h an estimateof the noise 
an be obtained). Applying Bayes' theorem this posterior takes the form:P�
(� j r) = 1Z(r) exp [ln P
(r j � ) + ln P�(� )℄ ; (15)where � and 
 are hyper-parameters assumed to des
ribe features like the en
odings
heme, sour
e distribution and noise level. This form suggests the following family ofGibbs measures (� being the inverse temperature):P��
(� j r) = 1Z exp [��H�
(� ; r)℄ (16)H�
(� ; r) = � ln P
(r j � )� ln P�(� ): (17)The re
eived 
orrupted 
odeword depends on the 
oding me
hanism and 
hannel noise,both of whi
h represent the quen
hed disorder in the system.The MAP estimator of s is 
learly obtained at the ground state of the Hamiltonian,i.e. by the sign of thermal averages bsMAPj = sgn(h�ji�!1) at zero temperature.The MPM estimator 
orresponds to the sign of thermal averages bsMPMj =sgn(h�ji�=1) at a �nite temperature, where true prior probability is assumed [Iba99℄.This 
orresponds to using the Nishimori 
ondition [Nis80, Nis93, Nis01, Ruj93℄; and inthe notation we use here to a temperature � = 1.4.1. Gallager's CodeTo provide a more detailed des
ription of the analysis we have to fo
us on a spe
i�

ode and 
hannel noise. We will explain the analysis for Gallager's 
ode and the BSC;the analysis of the MN 
ode and other 
hannel types follows along the same lines.A key point is the de�nition of an appropriate Hamiltonian; this 
an be done invarious ways. We identify two main 
omponents in the Hamiltonians that are ne
essaryfor the analyses of all LDPC 
odes: a term that guarantees that all parity 
he
ks aresatis�ed and a prior term that provides some statisti
al information on the dynami
alvariables (� ). In the 
ase of a BSC, the Hamiltonian takes the form:H =X� ��z� = [H� ℄��� F NXj=1 �j; (18)
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k Codes 12The parity 
he
ks ��z� = [H� ℄�� = 0 if parity 
he
k � is obeyed by the ve
tor �and � (�) = 1 otherwise; this 
orresponds to the parity 
he
ks (12). The 
oeÆ
ientF = (1=2) ln[(1 � p)=p℄, in 
onjun
tion with the appropriate 
hoi
e of temperature� = 1, 
orresponds to the 
orre
t prior assumption for the noise variables � .An expli
it expression for � (�) in this 
ase takes the form��z� = [H� ℄�� = � lim
!1 
 Xhi1���ikiDhi1���iki(Jhi1���iki �i1 � � � �ik � 1) (19)where the tensor J represents the un
orrupted syndrome (12) in the binary (�1)representation Jhi1;i2:::iKi = ni1ni2 : : : nik (ordered indi
es) and the tensor D representsthe 
onne
tivities of the matrix H; it takes the value 1 if the 
orresponding noise ve
torindi
es are 
hosen (i.e., all 
orresponding indi
es of the matrix H are 1) and 0 otherwise.For the time being we assume some �xed value for 
, but later on we will take the limit
 !1 to obtain the desired properties of � (�).To simplify the analysis and de
ouple the two quen
hed variables (true noise ve
torn and the parity 
he
k matrix H) we use the gauge transformation �i 7! �ini andJhi1���iki 7!Jhi1���ikini1 � � �nik = 1 . This maps any general message to the 
ase ni = 18i (ferromagneti
 
on�guration). We rewrite the Hamiltonian in the form:H
(� ) = �
 Xhi1���ikiDhi1���iki (�i1 � � � �ik � 1)� F NXi=1 ni�i : (20)On
e the Hamiltonian has been de�ned one 
an 
al
ulate the free energy of thesystem and study emerging solutions for various 
hoi
es of the parameters k; j andlevels of 
hannel noise.Two main methods 
an be employed for 
arrying out the analysis, therepli
a method for diluted systems [KMS00b, MKSV00, FLMRT02℄ and the Betheapproximation [VSK99℄. In all 
al
ulations 
arried out under the Nishimori
ondition, the dominant solution is known to be obtained under the repli
a symmetry(RS) assumption [NS01℄, providing similar results to those obtained by the Betheapproximation [VSK99℄.4.1.1. Repli
a Cal
ulation - Analyzing the typi
al performan
e of Gallager 
odes isbased on similar studies of diluted systems [WS87a℄. The aim is to 
ompute the freeenergy: F = � 1� limN!1 1N hln ZiD;n where, Z = Tr� exp (��H
(� ;n)) : (21)from whi
h the typi
al ma
ros
opi
 (thermodynami
) behaviour 
an be obtained usingthe Hamiltonian (20). Quen
hed averages are 
arried out over the 
onne
tivity tensorD and the true noise ve
tor n under the following 
onstraints: The 
onne
tivity tensorDhi1���iki 2 f0; 1g is a random symmetri
 tensor with the properties:Xhi1���ikiDhi1���iki = N �K Xhi1=l;���;ikiDhi1=l;���;iki = j 8l; (22)
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orresponding to the sele
tion of N � K sets of indi
es. Noise ve
tor bits ni take thevalues �1=1 with probabilities p=1� p respe
tively.To 
arry out the 
al
ulation one may use the repli
a approa
hF = � 1� limN!1 1N ��n ����n=0 lnhZniD;n : (23)Averages over the 
onne
tivity tensor h(� � �)iD and noise ve
tor n take the forms:h(� � �)iD = 1NXfDg NYl=1 Æ0� Xhi1=l;i2;���;ikiDhi1=l;���;iki � j1A (� � �)= 1NXfDg NYl=1 "I dZl2�i 1Zj+1l ZPhi1=l;i2;���;ikiDhi1=l;���;ikil # (� � �) ; (24)and h(� � �)in = Xn=�1;+1 [(1� p) Æ(n� 1) + p Æ(n + 1)℄ (� � �) (25)respe
tively. Computing the averages and introdu
ing auxiliary variables (orderparameters) through the identityZ dq�1����mÆ q�1����m � 1N NXi Zi��1i � � � ��mi ! = 1 (26)gives rise to the following expression (details of the 
al
ulation 
an be found in [VSK02,MKSV00℄):hZniD;n = 1N Z �dq0dbq02�i � nY�=1 dq�dbq�2�i ! exp24Nkk! nXm=0 Xh�1����mi Tmqk�1����m� N nXm=0 Xh�1����mi q�1����mbq�1����m35 NYi=1 Trf��g "*exp"F�n nX�=1 ��#+n� I dZ2�i exp hZPnm=0Ph�1����mi bq�1����m ��1 � � � ��miZj+1 35 ; (27)where Tm = e�n�
 
oshn(�
) tanhm(�
) and N is a normalization fa
tor.4.1.2. Repli
a Symmetri
 Solution - The repli
a symmetri
 ansatz 
onsists in assumingthe following form for the order parameters:q�1����m = Z dx �(x) xm bq�1����m = Z dbx b�(bx) bxm: (28)By performing the limit 
 ! 1, using (28) in (27), 
omputing the normalization
onstant N , integrating in the 
omplex variable Z, 
omputing the tra
e and using the
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k Codes 14repli
a identity, n! 0, one �nds:F = � 1� Extr�;b�� jk ln2 + j Z dxdbx �(x) b�(bx) ln(1 + xbx)� jk Z kYi=1 dxj �(xj) ln(1 + kYi=1 xi) (29)� Z jYi=1 dbxi b�(bxi)*ln"X�=�1 e��Fn jYi=1(1 + �bxi)#+n) :Variation with respe
t to the parameters yields the saddle-point equations:b�(bx) = Z k�1Yi=1 dxi �(xi) Æ "bx� k�1Yi=1 xi# (30)�(x) = Z j�1Yl=1 dbxl b�(bxl) *Æ "x� tanh �Fn + j�1Xl=1 atanh bxl!#+n ;where � = 1 and F = 12 ln (1�pp ) (Nishimori temperature) for MPM de
oding in BSC.One of the most important ma
ros
opi
 parameters we would like to �nd is thetypi
al overlap � = h 1N PNi=1 nibnjiD;n between the estimate bni = sgn(h�ii�) and thea
tual noise ni; this 
an be 
al
ulated from� = Z dh P (h) sgn(h) (31)P (h) = Z jYl=1 dbxl b�(bxl) *Æ "h� tanh �Fn + jXl=1 atanh bxl!#+n :4.1.3. Typi
al Performan
e - To study the various phases of the system one should �rstsolve the saddle point equations (30). In most 
ases this requires resorting to numeri
almethods, ex
ept for some expe
ted states su
h as the ferromagneti
 and paramagneti
solutions. For instan
e, the free energy for the ferromagneti
 state (F), where�F(x) = Æ[x� 1℄ b�F(bx) = Æ[bx� 1℄ ; (32)and at Nishimori's temperature, is simply FF = �F (1� 2p), with overlap � = 1.The ferromagneti
 solution is the only stable solution up to a spe
i�
 noise level pd, whi
hidenti�es the dynami
al transition noise level, where meta-stable states �rst appear.Above pd, numeri
al 
al
ulations show the emergen
e of a se
ond stable solution with� < 1 (suboptimal ferromagneti
); and 
omputationally eÆ
ient de
oding algorithms
annot identify the dominant solution in feasible time s
ales. A sket
h des
ribing thedependen
e of the free energy lands
ape on the noise level is shown in Fig.3(a) togetherwith a typi
al numeri
ally-obtained suboptimal ferromagneti
 solution (Fig.3(b)) fork = 4, j = 3 and p = 0:2. The ferromagneti
 state is always a stable solution of(30) and is present for all 
hoi
es of noise level and 
onstru
tion parameters j and k.It remains dominant up to the thermodynami
 transition point p
, above whi
h, the
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k Codes 15suboptimal ferromagneti
 solution be
omes the global minimum dominating the systemthermodynami
s. The identi�
ation of both transition points pd and p
 provides a
omplete des
ription of the typi
al performan
e of in�nitely long Gallager 
odes.Transitions for Gallager 
odes with k = 6 
ompared with Shannon's bound (dashedline), the information theory upper bound (full line) and thermodynami
 transitionpoints obtained numeri
ally (Æ) are shown in Fig.4(a). The thermodynami
 transitionpoint obtained p
 
oin
ides, within the numeri
al pre
ision, with the informationtheoreti
 upper bound [Ma
99℄. The ferromagneti
 and suboptimal ferromagneti
 freeenergies are shown in Fig.4(b), for k = 4 and R = 1=4, de�ning the 
riti
al points pdand p
.However, the suboptimal ferromagneti
 solution has been obtained under the RSansatz; one 
an show that above pd its entropy be
omes negative and, therefore,unphysi
al (at p
 the entropy of the suboptimal ferromagneti
 state be
omes positiveagain). This is a 
lear indi
ation that the repli
a symmetri
 solution be
omes unstable.A 1-step repli
a symmetry breaking ansatz has been employed in [FLMRT02℄ to obtainthe solution and 
omplexity of the suboptimal ferromagneti
 state and to identify theexa
t dynami
al transition point pd. The 
al
ulation, that 
onsidered both BSC andBEC, but fo
uses on the latter, leads to the same result as that obtained by the RS
al
ulation.To study the dynami
al transition, Franz et al [FLMRT02℄ 
al
ulated the number ofmeta-stable states with a given energy density �, for the BEC, using established methodsfrom the physi
s of disordered systems [Mon95, FP95℄. The number of metastable states
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Figure 3. (a) Pi
torial representation of the RS free energy lands
ape 
hanging withthe noise level p. Up to pd there is only one stable state F 
orresponding to theferromagneti
 state with � = 1. At pd, a se
ond stable suboptimal ferromagneti
 stateF 0 emerges with � < 1, as the noise level in
reases, 
oexisten
e is attained at p
.Above p
, F 0 be
omes the global minimum dominating the system thermodynami
s.(b) Numeri
ally obtained suboptimal ferromagneti
 solution �F'(x) for the 
ase k = 4,j = 3 and p = 0:2. Cir
les 
orrespond to the experimental histogram obtained byde
oding with BP in 100 runs for 10 di�erent random 
onne
tivity matri
es.
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Figure 4. (a) Transitions for Gallager 
odes with k = 6 
ompared withShannon's bound (dashed line), the information theory upper bound (full line) andthermodynami
 transition obtained numeri
ally (Æ). Transitions obtained by Monte-
arlo integration of the saddle point equations (3) and by simulations of BP de
oding(+, M = 5000 averaged over 20 runs) are also shown. Symbols are 
hosen larger thanthe error bars. (b) Free-energies for k = 4, j = 3 and R = 1=4. The full line 
orrespondsto the free energy of thermodynami
 states. Up to pd only the ferromagneti
 state ispresent. The ferromagneti
 state then dominates the thermodynami
s up to p
, wherethermodynami
 
oexisten
e with suboptimal ferromagneti
 states takes pla
e. Dashedlines 
orrespond to RS free-energies of non-dominant meta-stable states.
an be des
ribed asNMS(�) � eN�(�) ; (33)where �(�) de�nes the 
omplexity. Figure 5 shows a plot of the resulting 
omplexity
urves for three di�erent values of the erasure probability p in the 
ase of a BECand a (6; 3) regular 
ode (an \almost fa
torized" variational ansatz has been used for
al
ulating the 1-step RSB free energy). The pi
ture that emerges is as follows:� In the low noise region (p < pd), no meta-stable states exist and lo
al sear
halgorithms are able to re
over the erased bits.� In the intermediate noise region (pd < p < p
) an exponentially large number ofmeta-stable states appear with energy densities � in the range �s < � < �d, de�ningthe stati
 and dynami
 energies, with �s > 0. The best estimated 
odeword, giventhe 
orrupted one, is the original transmitted 
odeword; however, lo
al algorithmsfail to �nd the best estimate due to a large number of meta-stable solutions.� Above p
 we have �s = 0 and a fra
tion of the metastable states 
onsists of valid
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Figure 5. The 
omplexity �(�) for (from top to bottom) p = 0:45 (below p
),p = 0:5, and p = 0:55 (above p
); 
al
ulated for the 
ase of a BEC and a (6; 3)regular 
ode (Copied under permission from S. Franz, M. Leone, A. Montanari andF. Ri

i-Tersenghi, The Dynami
 Phase Transition for De
oding Algorithms, Phys.Rev. E 66, 046120, (2002)[FLMRT02℄. Copyright (2002) by the Ameri
an Physi
alSo
iety.).
odewords. Moreover, �(0) (whi
h gives the number of su
h 
odewords) 
oin
ideswith the 
omplexity of the paramagneti
 entropy [FLMRT02℄.4.2. Ma
Kay-Neal CodesThe analysis of MN 
odes is quite similar to that of Gallager's 
odes, the onlydi�eren
e being the 
onsideration of both message and noise ve
tors in 
onstru
tingthe appropriate Hamiltonian whi
h, after gauging, takes the formH
(�; � ; s;n) = � 
XhiriDhiri (�i1 � � ��ik�r1 � � � �rl � 1)� Fs kXi=1 si�i � Fn NXr=1 nr�r; (34)where hiri is a shorthand for hi1 � � � ikr1 � � � rli; Fs and Fn 
orrespond to the respe
tiveNishimori 
onditions (Fs = 0 in the 
ase of unbiased messages).A similar analysis to that of Gallager 
odes results in the following expression forthe free energyF = � 1� Extrfb�;�;b�;�gn� ln 2 + j Z dx �(x) dbx b�(bx) ln (1 + xbx)+ � l Z dy �(y) dby b�(by) ln (1 + yby)� � Z " kYi=1 dxi�(xi)#" lYr=1 dyr�(yr)# ln 1 + kYi=1 xi lYr=1 yr!
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k Codes 18� Z " jYi=1 dbxi b�(bxi)#* ln"X�=�1 e�s�Fs jYi=1(1 + �bxi)#+s� � Z " lYr=1 dbyr b�(byr)#* ln"X�=�1 e�n�Fn lYr=1(1 + �byr)#+no;where � = N=K = j=k, and b�; �; b�; � 
orrespond to RS order parameters obtained forboth signal and noise ve
tors, respe
tively, in the same manner as in se
tion 4.1.2. Fulldetails of the 
al
ulation 
an be found in [VSK02, MKSV00℄.The theoreti
al framework employed for both 
odes is very similar; however, thesolutions obtained analyti
ally and numeri
ally show some interesting di�eren
es. Inthe 
ase of biased messages (Fs 6= 0), the results obtained are qualitatively similar tothose obtained for Gallager 
odes, but a di�erent pi
ture emerges when the messagesare unbiased, summarized in Fig.6 for the 
ases k = 1; 2 and k � 3.Arguably the most intriguing solution is for the 
ase of k � 3, suggesting thatall regular MN 
odes with k � 3 are theoreti
ally 
apable of saturating Shannon'slimit [KMS00b, MKSV00℄. This result has been re
eived with great surprise by theinformation theory 
ommunity as it is believed that saturating Shannon's limit is onlypossible by LDPC 
odes of in�nite 
onne
tivity [Ma
99, SU03℄. One intuitive argumentthat we 
an o�er [vMSK02℄ is to do with the randomness of the syndrome ve
tor:Any �nite 
onne
tivity Gallager 
ode takes modulo 2 sums of elements sampled froma biased noise ve
tor and therefore produ
es a slightly biased syndrome ve
tor; it willonly be
ome unbiased on
e the number of elements sampled diverges. In MN 
odes,on the other hand, ea
h syndrome bit is obtained from a 
ombination of biased (noise)and unbiased (message) bits, and is therefore truly unbiased even when the number ofsampled bits is small.4.3. Other ChannelsExtending the analysis above to other 
hannel types is straightforward. The AWGNhas been studied in a very similar 
ontext in [Ruj93, KS99a, NW99, Mon01, TS03
℄.Ea
h real valued 
odeword bit 
an be interpreted as an e�e
tive 
ip rate, leading to asimilar HamiltonianH =N�KX�=1 ��z� = [H� ℄��� NXi=1 log p(�iyi): (35)where the last term represents the re
eived real valued ve
tor y and the e�e
tive 
ip noiseve
tor � . It is the log-likelihood ratio h(yj) � (1=2) log(p(yj)=p(�yj)) of the 
hannelnoise yj that serves as the external �eld a
ting on site j; the 
hannel 
hara
teristi
sde�ne the �eld distribution. Analyzing the e�e
t of having di�erent 
ommuni
ation
hannels on the 
ode properties, therefore redu
es to investigating the e�e
t of di�erent�eld distributions on the physi
al properties of the system. For instan
e, for the AWGN,
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Figure 6. Figures in the left side show s
hemati
 representations free energylands
apes while �gures on the right show overlaps � a fun
tion of the noise level p; thi
kand thin lines denote stable solutions of lower and higher free energies respe
tively,dashed lines 
orrespond to unstable solutions. (a) k � 3 or l � 3, k > 1. The solidline in the horizontal axis represents the phase where the ferromagneti
 solution (F,� = 1) is thermodynami
ally dominant. The paramagneti
 solution (P, � = 0) be
omesdominant at p
, that 
oin
ides with the 
hannel 
apa
ity. (b) k = 2 and l = 2 - Theferromagneti
 solution and its mirror image are the only minima of the free energy upto pd (solid line). Above pd sub-optimal ferromagneti
 solutions (F', � < 1) emerge.The thermodynami
 transition o

urs at p3 is below the maximum noise level given bythe 
hannel 
apa
ity, whi
h implies that these 
odes do not saturate Shannon's boundeven if optimally de
oded. (
) k = 1 - The solid line in the horizontal axis represents therange of noise levels where the ferromagneti
 state (F) is the only minimum of the freeenergy. The sub-optimal ferromagneti
 state (F') appears in the region represented bythe dashed line. The dynami
al transition is denoted by pd, where F' �rst appears. Forhigher noise levels, the system be
omes bistable and an additional unstable solution ofthe saddle point equations ne
essarily appears. The thermodynami
al transition o

ursat the noise level p1 (smaller than Shannon's limit) where F' be
omes dominant.



Statisti
al Me
hani
s of Low Density Parity Che
k Codes 20
τ l

i

µ

τFigure 7. First step in the 
onstru
tion of Husimi 
a
tus with k = 3 and 
onne
tivityj = 4.this redu
es to (for a detailed des
ription see [TS03
℄)pAWGN(h) =r�22�e�(h���2)2=2��2 : (36)The 
al
ulation then follows in a similar way to those des
ribed previously andprodu
es qualitatively the same results for all 
hannels studied [TS03
℄; the exa
tnumeri
al details 
hange from 
hannel to 
hannel. Several di�erent 
hannels for bothGallager and MN 
odes, in a broad parameter range, have been examined in [TS03
℄;among the 
hannels studied: the binary-input additive-white-Gaussian-noise 
hannel(BIAWGNC), the binary-input Lapla
e 
hannel (BILC) and the general binary-inputoutput-symmetri
 (BIOS) memoryless 
hannel.4.4. The Bethe ApproximationAn alternative method for 
arrying out the analysis is by employing the Betheapproximation [WS87b℄ (also termed TAP for diluted systems [KS98, VSK99, VSK02℄and Husimi 
a
tus [VSK00a℄) that is exa
tly solvable [Guj95, BL82, RK92, Gol91℄. Itassumes a tree-like graph of 
onne
tivity j and a polygon of k verti
es with one Isingspin in ea
h vertex. All spins in a polygon intera
t through a single 
oupling elementD�, where � represents a shorthand notation for a sele
tion of indi
es hi1 � � � iki; oneof the spins is 
alled the base spin (generation 0), as shown in Fig.7. In a generi
step, the base spins of the (j � 1)(k � 1) polygons in generation t � 1 are atta
hedto k � 1 verti
es of a polygon in the next generation t. This pro
ess is iterated untila maximum generation tmax is rea
hed, the graph is then 
ompleted by atta
hing jun
orrelated bran
hes of tmax generations at their base spins. In this way ea
h spininside the graph is 
onne
ted to j polygons exa
tly. The lo
al magnetization at the
entre mi 
an be obtained by �xing boundary (initial) 
onditions in the 0-th generationand iterating the related re
ursion equations until generation tmax is rea
hed. Carryingout the 
al
ulation in the thermodynami
 limit 
orresponds to having tmax � lnNgenerations and N !1.We adopt here the approa
h presented in [RK92℄ for obtaining re
ursion relations.The probability distribution P�i(�i) for the base spin of the polygon � is 
onne
ted to(j � 1)(k� 1) distributions P�l(�l), with � 2 G(l) n � (the set of all polygons linked to l
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k Codes 21but �) of polygons in the previous generation:P�i(�i) = 1N Trf�lg exp24�
0�J��i Yl2L(�)ni �l � 11A+ �F�i35 (37)� Y�2G(l)n� Yl2L(�)niP�l(�l);where L(�) denotes the polygon � of the latti
e and the tra
e is over the spins �l su
hthat l 2 L(�) n i; J� represents the 
orresponding syndrome ve
tor.Cal
ulating the e�e
tive �eld bx�l on a base spin l due to neighbours in polygon�, taking 
 ! 1 and � = 1, one obtains the e�e
tive lo
al magnetization due tointera
tions with the nearest neighbours in one bran
h bm�l = tanh(bx�l), wherebx�i = atanh24J� Yl2L(�)ni tanh(F + X�2G(l)n� bx�l)35 (38)The e�e
tive lo
al �eld on a base spin l of a polygon � due to j � 1 bran
hes in theprevious generation and due to the external �eld isx�l = F + X�2G(l)n� bx�l : (39)The set of equations (38-39) 
an be rewritten in terms of bm�l and m�l [Ma
99, KS98,KF98℄ m�i = tanh0�F + X�2G(l)n� atanh (bm�i)1Abm�i = J� Yl2L(�)nim�l (40)giving rise to a 
losed set of iterative equations (identi
al to those of BP) that 
an alsobe used for de
oding. Iterating the 
oupled set of equations (40) one 
onverges to astable minimum and 
an 
ompute the following approximated free energy:F(fm�i; bm�ig) = N�KX�=1 Xr2L(�) ln(1 +m�r bm�r)� N�KX�=1 ln(1 + J� Yr2L(�)m�r)� NXl=1 ln24eF Y�2G(l)(1 + bm�l) + e�F Y�2G(l)(1� bm�l)35 : (41)Equations (40) represent the interdependen
e of mi
ros
opi
 quantities; ama
ros
opi
 des
ription 
an be 
onstru
ted by retaining only statisti
al informationabout the system, namely by des
ribing the evolution of histograms of variables x�i andbx�i. Assuming that the e�e
tive �elds x�i and bx�i are random variables independentlysampled from the distributions P (x) and bP (bx) respe
tively, and that ni is sampled from
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k Codes 22P (n) = (1 � p) Æ(n � 1) + p Æ(n + 1), one 
an then establish the following re
ursionrelation in the spa
e of probability distributions [BL82℄:Pt(x) = Z dn P (n) Z j�1Yl=1 dbxl bPt�1(bxl) Æ "x� Fn� j�1Xl=1 bxl#bPt�1(bx) = Z k�1Yl=1 dxl Pt�1(xl) Æ "bx� atanh k�1Yl=1 tanh(xl)!# ; (42)where Pt(x) is the distribution of e�e
tive �elds at the t-th generation due to the previousgenerations and external �elds; in the thermodynami
 limit the distribution far fromthe boundary is P1(x) (generation t ! 1). The lo
al �eld distribution at the 
entralsite is 
omputed by repla
ing j � 1 by j in the �rst equation (42):P (h) = Z dn P (n) Z CYl=1 dbxl bP1(bxl) Æ "x� Fn� CXl=1 bxl# : (43)It is easy to see that P1(x) and bP1(bx) satisfy equations (30) obtained by the repli
asymmetri
 assumption [KMS00b, MKSV00, VSK00b℄ if the variables des
ribing �eldsare transformed to those of lo
al magnetizations through x 7! tanh(�x). It is thereforenot surprising that one obtains identi
al results to those obtained using the RS analysisand using BP de
oding. In fa
t, the DE method used extensively in the IT 
ommunityfor analyzing LDPC 
odes is similar to the ma
ros
opi
 iterative equations (42).4.5. Weight and Magnetization EnumeratorsA di�erent approa
h to analyzing properties of LDPC 
odes relies on a mi
ros
opi

al
ulation where solution ve
tors are for
ed to lie on a shell de�ned by the overlapwith the true solution (weight enumerator) or by a 
ertain magnetization value(magnetization enumerator); both 
an be used to de�ne 
riti
al transition points ofLDPC 
odes. We fo
us here on the magnetization enumerator (M); 
al
ulationsinvolving the weight enumerator will be mentioned in se
tion 5.2.The 
orresponding Hamiltonian is similar to (20) ex
ept for the se
ond term thatde�nes the magnetization shell (after gauging)H
;m(� ) = �
 Xhi1���ikiDhi1���iki (�i1 � � � �ik � 1)� Æ NXl=1 nl�l �m! : (44)Cal
ulating the related entropy as a fun
tion of the magnetization m provides anintuitive and transparent explanation to the relation between di�erent de
oding s
hemessu
h as typi
al set de
oding, MAP, and �nite temperature de
oding (MPM) [vMSK01,vMSK02℄.Carrying out the analysis along the same lines as before [Mon01, vMSK01,vMSK02℄, one obtains expressions for the magnetization enumerator as a fun
tion of m,similar to those sket
hed in Fig.8; from these plots one 
an provide a simple explanationto the relation between various (theoreti
al) de
oding methods, and 
al
ulate the
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 M(m)
m m+(p)�1 1

b) p=p
 M(m)
m m+(p)�1 1
) p>p
 M(m)

m m+(p)�1 1

m0(p) m0(p)
m0(p)

Figure 8. The qualitative pi
ture of M(m)�0 (solid 
urve lines) for di�erent valuesof p. For MAP, MPM and typi
al set de
oding, only the relative values of m+(p)and m0(p) determine the 
riti
al noise level. Dashed lines 
orrespond to the energy
ontribution of ��F at Nishimori's 
ondition (� = 1). The states with the lowestfree energy are indi
ated by a point �. a) Sub-
riti
al noise levels p < p
, wherem+(p) < m0(p), there are no solutions with higher magnetization than m0(p), andthe 
orre
t solution has the lowest free energy (free energy di�eren
e 
orresponds tothe distan
e between the dashed line and the magnetization enumerator 
urve). b)Criti
al noise level p=p
, where m+(p)=m0(p). The minimal free energy of the sub-optimal solutions 
oin
ides with that of the 
orre
t solution at Nishimori's 
ondition(all meet at m+(p)=m0(p)). 
) Over-
riti
al noise levels p>p
 where many solutionshave a higher magnetization than the true typi
al one. The minimal free energy ofsub-optimal solutions is lower than that of the true solution.thermodynami
 transition point p
. The magnetization enumeratorM(m) (
urved solidline) takes positive values only in the interval [m�(p); m+(p)℄; for even k, M(m) is aneven fun
tion of m and m�(p) = �m+(p). The maximum value of M(m) is always(1�R) ln(2) for Gallager 
odes, and R ln(2) for MN 
odes. The true noise n has thetypi
al magnetization of the noise ve
tor; in the 
ase of a BSC m(n)=m0(p)=1�2p (thetypi
al set magnetization is denoted by a dashed-dotted line). States with the lowestfree energy are denoted by a point (�).Sele
tion of the best estimates by the various de
oding s
hemes 
an be summarizedas follows:� Maximum likelihood (MAP) de
oding - sele
ts the solution ve
tor � (obeyingall parity 
he
ks) with the highest magnetization. As the noise level in
reases, thegap between m0(p) and m+(p)) 
loses; the 
riti
al noise level p
 is determined bythe 
ondition m+(p
)=m0(p
).
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al set de
oding - is based on randomly sele
ting a solution ve
tor �with the expe
ted magnetization m(� ) = m0(p) [AJK+01℄; an error is de
laredwhen there is no su
h ve
tor or when there are several solution ve
tors withmagnetization m(� ) = m0(p). The 
riti
al noise level p
 is determined by the
onditionm+(p
)=m0(p
), and is identi
al to the point obtained by a MAP de
oder.� Finite temperature (MPM) de
oding - Sele
tion is based on a free energyminimization [KMS00b℄, where an energy term �Fm(� ) is added to the parity
he
k term (20). Using the thermodynami
 relation F = U � 1�S, � being theinverse temperature (Nishimori's 
ondition 
orresponds to setting � = 1), U theinternal energy and S the entropy; the free energy of the sub-optimal solutions isgiven by F(m)=�Fm� 1�M(m) (forM(m)�0), while that of the true solution isgiven by �Fm0(p).The sele
tion pro
ess is explained graphi
ally in Fig.8. The energy di�eren
ebetween sub-optimal solutions relative to that of the 
orre
t solution, is given by thedashed line of slope �F through the point (m0(p); 0); to 
al
ulate the free energyof any suboptimal solution one should also 
onsider its entropy, represented by themagnetization enumerator 
urve (the true solution is of zero entropy). Therefore,the distan
e betweenM(m) and the dashed line represents the di�eren
e betweenthe lowest free energy among suboptimal solutions and that of the true solution.Solutions of magnetization m for whi
h M(m) lies above/below this line, have alower/higher free energy, respe
tively. The 
riti
al noise level p
 is de�ned by thelowest p value for whi
h there are sub-optimal solutions with a free energy equal to�Fm0(p) (i.e., a single 
onta
t point between the dashed line and the magnetizationenumerator 
urve). It 
oin
ides with the point obtained by MAP [MN00℄ andtypi
al set de
oding [vMSK02℄.The 
riti
al noise level is de�ned by following the dependen
e of m+ on the noiselevel and �nding the pointm+(p
)=m0(p
) as des
ribed in Fig.9; results obtained for the
riti
al noise level in the 
ase of Gallager 
odes of various parameters are also shown (forboth quen
hed and annealed 
al
ulations of the free energy related to (44), denoted bya subs
ript a=q). The annealed approximation gives a mu
h more pessimisti
 estimatefor p
 as it overestimatesM by giving high weight to exponentially rare events. Resultsobtained by the quen
hed 
al
ulations are similar to those reported in [KSNS01℄ usinganother method as explained in se
tion 5.2, but are more optimisti
 than those reportedin the IT literature whi
h rely on bounding te
hniques.The analysis has also been 
arried out for MN 
odes [vMSK01, vMSK02℄ and ina range of 
hannel types [SvMS03℄. Interestingly, the lo
ation of m+ remains �xedfor MN 
odes with k � 3 and for k = 2; l � 3, leading to a thermodynami
altransition point that saturates Shannon's limit in agreement with our previousresults [KMS00b, MKSV00℄.
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0 pp
;a p
;q m0(p)m+;a(p)m+;q(p)0:5

b) (k; j) (6; 3) (5; 3) (6; 4) (4; 3)Code rate 1=2 2=5 1=3 1=4IT 0.0915 0.129 0.170 0.205p
;a (Ma) 0.031 0.066 0.162 0.195p
;q (Mq) 0.0998 0.1365 0.1725 0.2095Shannon psh 0.109 0.145 0.174 0.214Figure 9. a) Determining the 
riti
al noise levels p
;a=q (quen
hed and annealed
al
ulations) based on the fun
tion Ma=q for Gallager 
odes. b) Comparison ofdi�erent 
riti
al noise level (p
) estimates for Gallager 
odes. Typi
al set de
odingestimates have been obtained via the methods of IT [AJK+01℄, based on the weightenumerator. Shannon's limit denotes the highest theoreti
ally a
hievable 
riti
al noiselevel psh for any 
ode [Sha48℄.5. Optimal Performan
e : Statisti
al Me
hani
s vs. ITDE o�ers a useful framework for evaluating error 
orre
tion performan
e a
hieved bya pra
ti
al de
oding algorithm on the basis of the BP/TAP approa
h. However, thisdoes not ne
essarily mean the best performan
e among all possible de
oding s
hemes.For 
larifying the potential of a 
ode ensemble, it is important to assess the theoreti
alerror 
orre
tion ability, disregarding 
omputational 
ost. Several methods have beendeveloped for this purpose in the IT literature. In this se
tion, we introdu
e tworepresentative s
hemes, termed the Gallager's methodology and typi
al set analysis, andrelate them to methods known in statisti
al me
hani
s (SM). For simpli
ity, we hereafterfo
us on (j; k) regular Gallager-type LDPC 
odes and a BSC of 
ip probability p;extension to other types of 
odes su
h as MN 
odes and other 
hannels is straightforward.5.1. Gallager's Methodology: Error Probability for Finite Code LengthsShannon's seminal papers indi
ated that the best 
ode 
an provide error free
ommuni
ation if 
ode rate R is below Shannon's limit when the 
ode length be
omesin�nite. However, as any 
ode in use has a �nite 
ode length N , it is pra
ti
allyimportant and theoreti
ally interesting to assess the probability of error 
orre
tionfailure as a fun
tion of the 
ode length.Gallager's variational method is a systemati
 s
heme for upper-bounding the errorprobability of the best 
ode in a given 
ode ensemble C by averaging it over the ensemble.In the IT literature, it is usually assumed that de
oding is performed dire
tly on
odewords and, therefore, Gallager's method is 
onventionally introdu
ed in a mannersuitable for this de
oding approa
h. However, this formulation is not 
onvenient herebe
ause the de
oding problem is provided �rst with respe
t to noise ve
tors for Gallager-type 
odes. We therefore introdu
e a slightly di�erent representation of Gallager'smethod, whi
h is appli
able to a range of de
oding s
hemes.
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k Codes 265.1.1. Gallager's Inequality for the MAP Estimator - Suppose that binary ve
torsx and y, whi
h 
onsist of K-bit and N -bit 
omponents, respe
tively, are statisti
allyrelated via a 
ertain joint distribution P (x;y). Let us 
onsider an estimation problemof x given y. Following the Bayesian framework, it 
an be shown that the blo
k errorprobability, whi
h is the probability that the estimation result x̂ given y is not identi
alto the ve
tor x, is minimized by the maximum a posteriori probability (MAP) estimatorx̂MAP = argmaxx fP (xjy)g = argmaxx � P (x;y)Px0 P (x0;y)�= argmaxx fP (x;y)g : (45)In order to evaluate the blo
k error probability of this estimator, we introdu
e anindi
ator fun
tion �MAP (x;y) whi
h returns 1 if x̂MAP 6= x and 0, otherwise. Then,the blo
k error probability is 
omputed asPB =Xx;y P (x;y) �MAP (x;y) : (46)Gallager's methodology relies on upper-bounding this probability by utilizing thefollowing inequality for the indi
ator fun
tion�MAP (x;y) � 0�Xx0 6=x�P (x0;y)P (x;y)��1A� ; (47)whi
h holds for arbitrary � � 0 and � � 0. This inequality is proved as follows: Ifx̂MAP = x, �MAP (x;y) = 0. However, the right hand side is always non-negative,whi
h means that Eq.(47) holds. On the other hand, if x̂MAP 6= x, �MAP (x;y) = 1.However, this implies that there exists at least one ve
tor x00 6= x su
h that P (x00;y) �P (x;y). This 
an be generalized as �MAP (x;y) = 1 � (P (x00;y)=P (x;y))� �Px0 6=x (P (x0;y)=P (x;y))� for 8� � 0; Eq.(47) immediately follows be
ause the ratioP (x0;y)=P (x;y) is always non-negative and 8� � 0, x� � 1 holds for 8x � 1.Inserting Eq.(47) into Eq.(46) we obtain Gallager's inequalityPB � Xx;y P (x;y)0�Xx0 6=x�P (x0;y)P (x;y) ��1A�
= Xx;y P 1���(x;y)0�Xx0 6=xP �(x0;y)1A� ; (48)whi
h provides the tightest inequality by 
hoosing � = 1=(1+�) when � is �xed. As thisinequality holds for 8� � 0 and 8� � 0, the bound 
an be optimized by minimizationof the right hand side with respe
t to � � 0 keeping � = 1=(1 + �).5.1.2. Appli
ation for De
oding Gallager-type Codes - Equation (48) 
an be employedfor evaluating the blo
k error probability of the de
oding problem of Gallager-type 
odes.For this, we introdu
e the joint probability of noise ve
tor n and syndrome ve
tor z
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k Codes 27given a parity 
he
k matrix H; employing the Ising spin representationP (n; zjH) = N�KY�=1 Æ0�z�; Yi2L(�)ni1A� eFPNi=1 ni(2 
osh(F ))N ; (49)where Æ(x; y) = 1 for x = y and 0 otherwise, L(�) denotes the set of indi
es hi1 � � � ikifor non-zero elements in the �-th row of H and F = (1=2) ln[(1 � p)=p℄. The �rstterm enfor
es the parity 
he
ks (12) (representing the likelihood term P (zjn)), whilethe se
ond represents the appropriate prior term; this is be
ause the noise ve
tor n isgenerated in the BSC with the prior probability P (n) = eFPNi=1 ni= (2 
osh(F ))N .Using Eq.(48) in Eq.(49) leads to an upper-bound of the blo
k error probability ofthe MAP de
oding for a given parity 
he
k matrix H asPB(H) � Xn;z P 1���(n; zjH)0� Xn0 6=nP �(n0; zjH)1A� (50)= Xn e(1���)F PNi=1 ni(2 
osh(F ))N 0� Xn0 6=n N�KY�=1 Æ0�1; Yi2L(�)nin0i1A� e�FPNi=1 n0i1A� ;where summation over z has been already 
arried out, resulting in a 
ontributionQN�K�=1 Æ �Qi2L(�) ni;Qi2L(�) n0i� = QN�K�=1 Æ �1;Qi2L(�) nin0i�. For a given 
odeensemble, the minimum of the blo
k error probability P �B is always uppderboundedby the average error probability hPB(H)iH, where h(� � �)iH denotes average overthe ensemble of 
odes (or parity 
he
k matri
es H) under appropriate 
onstraints.Therefore, we here obtain an upper bound for the blo
k error probability of the best
ode in the (j; k)-Gallager 
ode ensemble byP �B � Xn e(1���)F PNi=1 ni(2 
osh(F ))N *0� Xn0 6=nN�KY�=1 Æ0�1; Yi2L(�)nin0i1A� e�FPNi=1 n0i1A�+H ; (51)whi
h 
an be optimized by minimizing the right hand side with respe
t to � � 0, keeping� = 1=(1 + �).5.1.3. Rigorous Bound - It has been shown, using methods of IT, that the right handside of Eq.(51) 
an be de
omposed into two parts asO(N�
) +O(exp [�NE℄); (52)for naively (and 
ompletely randomly) 
onstru
ted (j; k)-Gallager 
ode ensembles,where 
 is a 
ertain power determined by parameters j; k and N is assumed large[Gal63, MB01℄. This implies that the bound vanishes to 0 as N !1 if the exponent E,whi
h depends on the adjustable parameters �; � � 0, 
an be maximized to a positivevalue. The rate of 
onvergen
e is quite slow due to a polynomially small fra
tion ofpoor 
odes in the ensemble, whi
h have short 
y
les of parti
ular kinds in the parity
he
k matri
es (Fig.10). Therefore, the behaviour of the average bound (51-52) 
an be
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(b)i1i2
�1�2�3variables 
he
ksFigure 10. A 
on�guration in a parity 
he
k matrix H of j = 3 that deterioratesthe de
oding performan
e (a), represented as a short 
y
le of a parti
ular type in thegraphi
al expression (b). When two variables indexed by i1 and i2 share all of thesame j = 3 
he
ks whi
h are denoted as �1, �2 and �3, simultaneous 
ips of these twodo not break the parity 
he
k 
ondition. This makes it diÆ
ult to identify 
orre
tlythe true noise ve
tor n. When H is generated uniformly under the (j; k)-
onstrains,this kind of 
on�guration o

urs with a probability of O(N�1) in the 
ase of j = 3,whi
h yields a polynomially slow de
ay in Eq.(51).improved by expurgating su
h 
odes from the ensemble. In [MB01℄, it is shown that theexpurgated ensemble exhibits an exponential behaviour, 
hara
terized by the se
ondterm of Eq.(52).For expurgated ensembles, one 
an evaluate a rigorous lower bound of the exponentE as a fun
tion of � and �, with an extra 
onstraint, by employing Jensen's inequalityhX�i � hXi�, whi
h is valid for a non-negative random number X and 0 � � � 1. Thisyields Ea(�; �;R; p) = Extrjxj<1;jx̂j<1�� �� jk ln�1 + xk2 �+ j ln�1 + x̂x2 �� ln" Xn0=�1 e�Fnn0 �1 + x̂n02 �j!#��35� ln 2 
osh(1� ��)F + ln 2 
oshFg ; (53)where [� � �℄�� = Pn=�1 �� � �)e(1���)Fn=(2 
osh(1� ��)F � and Extr (� � �) denotesextremization over the variables jxj < 1 and jx̂j < 1. This pro
edure is analogousto the annealed approximation of SM, similar to the approa
h taken in [SST92℄.For j; k ! 1, while keeping R = 1 � j=k = K=N �nite, the maximization ofEq.(53) with respe
t to 0 � � � 1 keeping � = 1=(1 + �) reprodu
es the random 
oding
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k Codes 29Eq(�;R; p) �p = p
 low p
high pFigure 11. S
hemati
 pro�les of Eq(�;R; p).exponent ERC(R; p) = 8><>: (1� R) ln 2� ln �pp+p1� p�2 ; 0 � p � pb ;p
 ln p
p + (1� p
) ln 1�p
1�p ; pb < p � p
;0; p
 < p; (54)whi
h is known in IT literature [Gal68℄, where the BSC 
ip rate p = (1� tanh(F ))=2,p
 is a 
riti
al noise rate that satis�es the Shannon's limit R = 1 � H2(p
) andpb = p2
= (p2
 + (1� p
)2), is often termed the Bhatta
halya's limit. For relatively highrates R, it is known that this exponent represents the exa
t de
ay rate of the bestpossible 
odes, whi
h implies that there is no room for improving the bound (54) inthe 
ase of j; k !1 (but obviously not for �nite j; k values where no exa
t expressionexists in the IT literature).5.1.4. Improving the Bound by the Repli
a Method - However, the exa
t result forin�nite j; k does not ne
essarily mean that the exponent (54) provides the tightestbound for �nite j; k as well. A
tually, dire
t evaluation of Eq.(51) using the repli
amethod yields another exponent [KSNS01℄Eq(�; �;R; p) = Extr��(�);�̂(�)(� jk ln* 1 +Qki=1 xi2 !�+� + j ln��1 + x̂x2 ����;�̂� ln*" Xn0=�1 e�Fnn0 jY�=1�1 + x̂�n02 �!�#��+�̂� ln 2 
osh(1� ��)F + ln 2 
oshFg ; (55)under the RS ansatz, where h� � �i� denotes an average with respe
t to dummy variablesxi 2 [�1; 1℄ (i = 1; 2; : : : ; k) over an identi
al variational distribution �(x), andsimilarly for x̂� 2 [�1; 1℄ (� = 1; 2; : : : ; j) and h� � �i�̂. The fun
tional extremizationExtr��(�);�̂(�) f� � �g ex
ludes the ferromagneti
 solution of �F(x) = Æ(x � 1) and �̂F(x̂) =Æ(x̂� 1).For �nite j; k, Eq(�; �;R; p) is maximized by � = 1=(1 + �) for any given � � 0,whereas Ea(�; �;R; p) is not. For the partially maximized exponent Eq(�;R; p) �
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k Codes 30Eq(�; 1=(1 + �);R; p), the following properties generally hold (Fig. 11):lim�!0Eq(�;R; p) = 0 ; (56)�2��2Eq(�;R; p) < 0 : (57)This implies that for a given R, the noise threshold p
 below whi
h max��0fEq(�;R; p)gbe
omes positive, indi
ating that the average error bound vanishes for N ! 1, isdetermined by a 
onditionlim�!0 ���Eq(�;R; p
) = 0 : (58)Inserted into Eq.(55), this redu
es to the phase boundary 
onditionFNF � FF = 0 ; (59)where FF = �F tanh(F ) and FNF are the free energies of the ferromagneti
 and non-ferromagneti
 solutions, respe
tively, 
al
ulated from the quen
hed variational freeenergy (29) for � = 1; the latter validates the RS ansatz, used here, as no repli
asymmetry breaking e�e
t is expe
ted at the Nishimori 
ondition [NS01℄. This alsoimplies that the noise threshold of MAP de
oding, whi
h 
orresponds to the zerotemperature state in statisti
al me
hani
s, is identi
al to that of the MPM de
oding,the performan
e of whi
h is optimized at the Nishimori's temperature, in agreementwith results obtained in the IT literature [MN00℄.As the exponent Eq(�; �;R; p) is dire
tly evaluated from Eq.(51) without employingadditional inequalities, the optimized bound obtained should be tighter and providemore optimisti
 lower bounds for noise threshold p
 than that from Ea(�; �;R; p).Clearly one of the main drawba
ks of the repli
a method is the la
k of mathemati
alrigour; re
ent resear
h [Gue03, Tal03℄ proved the exa
tness of results obtained using therepli
a methods in extensively 
onne
ted systems. One 
an hope that similar proofsfor diluted systems will follow, making these results mu
h stronger. In any 
ase thedi�eren
e between the two exponents be
omes smaller as j; k !1 given a 
ode rate R(Table 1).5.1.5. Reliability Exponent - The exponent that represents the fastest de
ay rateof de
oding error probability a
hievable by the best 
odes in the ensemble is termedreliability exponent (RE) [Gal68℄. The random 
oding exponent (54) 
oin
ides with theRE for relatively high 
ode rates R. However, for a low 
ode rate region, there stillexists a narrow gap between the 
urrent tightest lower- and upper bounds of the RE,and the exa
t expression is yet to be determined [MB01, KSNS01, Bar03℄.Exa
t evaluation of RE by improving lower or upper bounds of the error probability,the preferred approa
h in the IT 
ommunity, may be diÆ
ult sin
e using inequalitieshas the potential to provide loose bounds. In fa
t, starting from inequality (47), one
annot improve the bound further, sin
e inequality (47) itself does not provide a tight
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k Codes 31R (j; k) ANNEAL1 ANNEAL2 QUENCH SHANNON1/2 (3; 6) 0.0678 0.0915 0.0998 0.1092/5 (3; 5) 0.115 0.129 0.136 0.1451/3 (4; 6) 0.1705 0.1709 0.173 0.1741/3 (2; 3) 0 0.0670 0.0670 0.1741/2 (2; 4) 0 0.0286 0.0286 0.109Table 1. Comparison between di�erent evaluation s
hemes of the noise threshold p
for MAP de
oding. ANNEAL1 indi
ates the lower bound of p
 obtained by maximizingEa(�; �;R; p) with respe
t to � with keeping � = 1=(1 + �). Lower bounds forANNNEAL2 are evaluated by maximizing the same exponent with respe
t to � � 0and � � 0 without imposing additional 
onditions; it provides a tighter bound sin
e theoptimization with respe
t to �, for a �xed �, is not 
ommutable with the average overa 
ode ensemble. QUENCH denotes the estimates of p
 obtained from Eq(�; �;R; p),evaluated dire
tly from Eq.(48) using the repli
a method without employing any extrainequalities; it therefore provides the most optimisti
 estimate. SHANNON o�ers
riti
al noise rates psh at Shannon's limit for given 
ode rates R. Di�eren
e in theestimates between the three evaluation s
hemes be
omes smaller as j and k in
reases,keeping the 
ode rate �nite for j � 3. On the other hand, ANNEAL2 and QUENCHgenerally provide the same estimates for j = 2 sin
e p
 for this parti
ular parameter
hoi
e is determined by the lo
al instability of the ferromagneti
 solution for whi
hthe two methods 
oin
idently provide an identi
al 
ondition, whereas a dis
ontinuousphase transition between the ferro- and paramagneti
 solutions determines p
 for j � 3.bound for the low R region [Gal68, KSNS01℄. Instead, evaluation based on an equalitywith respe
t to the error indi
ator�MAP (njH) = lim��!+1;��!�1Z�++ (�+jn; H) Z��� (��jn; H); (60)might provide the exa
t expression of RE, where n and H are the true noise and parity
he
k matrix, respe
tively, andZ+(�jn; H) � Xn0 6=nN�KY�=1 Æ0�1; Yi2L(�)nin0i1A� e��FPNi=1 n0iZ�(�jn; H) � Xn0 N�KY�=1 Æ0�1; Yi2L(�)nin0i1A� e��FPNi=1 n0i (61)are the two partition sums.Equation (60) provides an expression for the blo
k error probabilityPB(H) = lim��!+1;��!�1Xn P (n) Z�++ (�+jn; H) Z��� (��jn; H); (62)for a given parity 
he
k matrix H. Noti
e that the ability to separate suboptimalsolutions from the ferromagneti
 solution relies on the gap in the magnetizationenumerator that exists for all p < p
 (see Fig.8). Furthermore, employing an equalityP �B = minH fPB(H)g = limr!�1 (hP rB(H)iH)1=r, a dire
t expression of RE for a given
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ode ensemble is obtained asERE(R; p) = � 1N lnP �B = � limr!�1;��!+1;��!�1� 1rN� ln*"Xn P (n) Z�++ (�+jn; H) Z��� (��jn; H)#r+H) ; (63)whi
h 
an be evaluated by the repli
a method, 
onsidering �� and r as repli
a powers.A re
ent study along this dire
tion revealed that an expressionERE(R; p) = ( max0<r�1 n (1�R) ln 2r � 1r ln �1 + 2rpr=2(1� p)r=2�o 0 � p � paERC(R; p) pa < p � 1 ;(64)is derived for LDPC 
ode ensembles in the limit j; k ! 1, where ERC(R; p) isthe random 
oding exponent (54) and pa a 
riti
al noise rate for whi
h (1�R) ln 2r �1r ln �1 + 2rpr=2(1� p)r=2� is maximized at r = 1 [SvMSK03℄. It is worthwhilementioning that this is identi
al to the existing lower bound of the RE evaluated forthe ensemble of all possible 
odes (in expurgated ensembles) [Gal68℄. It is well knownthat LDPC 
ode ensembles for j; k ! 1 have very similar properties to those of theensemble of all possible 
odes [MB01, Ma
99℄; therefore, this result suggests that theexisting tightest lower bound of the RE represents the exa
t expression of the fastesterror exponent a
hievable by the best possible 
odes, as is widely believed, while arigorous proof is still sought after.5.2. Typi
al Set Analysis: Simpler Method for Assessing Criti
al Noise LevelsAlthough Gallager's variational method is powerful enough to tightly bound the blo
kerror probability of MAP de
oding for a wide 
lass of 
ode ensembles, it generallyrequires rather 
ompli
ated 
omputation even just for evaluating the noise threshold.In addition, it is quite te
hni
al and provides few insights for intuitive understandingthe various types of de
oding errors.Typi
al set (pairs) analysis is an alternative approa
h to lowerbound the noisethreshold for a given 
ode ensemble fo
using on typi
al set (pairs) de
oding, whi
h is aslightly weaker de
oding s
heme than the MAP de
oding (e.g., in rare 
ases, the truenoise may have a higher magnetization than that of the typi
al set; in su
h a 
ase thetwo de
oding s
hemes will di�er). Error evaluation in this s
heme is relatively easy tounderstand be
ause o

urren
es of de
oding failure are dire
tly studied using the lawof large numbers and the weight enumerator; the latter is a standard quantity in ITliterature 
hara
terizing the distribution of distan
es between 
odewords. This methodwas pioneered by Shannon for the ensemble of all 
odes more than 50 years ago [Sha49℄;but was not applied to other ensembles until re
ently. Only after Ma
Kay su

essfullyemployed it for analysis of 
ertain LDPC 
ode ensembles, it is now be
oming morepopular in the IT 
ommunity [Ma
99, AJK+01℄.5.2.1. Typi
al Sequen
es and Classi�
ation of Errors - In order to introdu
e the typi
alset de
oding approa
h, let us �rst provide the de�nition of a noise ve
tor being typi
al.
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k Codes 33Due to the law of large numbers, a noise ve
tor n0 generated by a BSC satis�es a
ondition ����� 1N NXi=1 n0i � p����� � �N ; (65)with a high probability for large N and a positive number �N � O(N�
) (0 < 
 < 1=2),where 0 < p = (1� tanhF )=2 < 1=2 is the 
ip rate 
hara
terizing the BSC. We de�neas typi
al any noise ve
tor n0 for whi
h this 
ondition holds. We also term the set ofall typi
al ve
tors the typi
al set.In typi
al set de
oding one sele
ts a ve
tor that belongs to the typi
al set andsatis�es the parity 
he
k equation (12), as a valid noise ve
tor estimate (see alsose
tion 4.5). Two types of de
oding errors 
an o

ur in this de
oding s
heme: TypeI error o

urs when the true noise ve
tor n is atypi
al. Type II error o

urs when nis typi
al and there are multiple typi
al ve
tors that satisfy the parity 
he
k equation.By a straightforward extension of the law of large numbers, it 
an be shown that theo

urren
e probability of type I errors, PI, vanishes in the limit N ! 1 [AJK+01℄.Therefore, the noise threshold p
 is determined only by the 
ondition that probabilityof type II errors PII vanishes. Sin
e PII depends on ea
h realization of the parity 
he
kmatrix H, we de�ne p
 for a given 
ode ensemble C as the highest 
ip rate below whi
hthe average type II error probability hPII(H)iH vanishes in the limit N !1.5.2.2. Lower bound of Noise Thresholds and Weight Enumerator - In order to evaluatehPII(H)iH, it is 
onvenient to introdu
e an indi
ator fun
tion �II(njH) that returns 1,if the type II error o

urs, and 0 otherwise, for a true noise ve
tor n and parity 
he
kmatrix H. Then, the type II error probability for a given H is 
al
ulated asPII(H) =Xn P (n) �II(njH) ; (66)and hPII(H)iH is obtained by averaging this over the 
ode ensemble.Unfortunately, it is diÆ
ult to dire
tly express �II(njH) in a rigorously treatableform. However, one 
an easily produ
e an upper bound�II(njH) � VII(njH)� Æ NXi=1 ni �N tanhF! ; (67)in the Ising spin representation, whereVII(njH) � Xn0 6=nN�KY�=1 Æ0�1; Yi2L(�)nin0i1A Æ NXi=1 n0i �N tanhF!= Xx6=1N�KY�=1 Æ0�1; Yi2L(�) xi1A Æ NXi=1 nixi �N tanhF! : (68)Sin
e �II(njH) = 1 when errors do o

ur, it is always upper-bounded by the number ofsolution ve
tors of the parity 
he
k equation (ex
luding the true noise n) that belong to
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k Codes 34the typi
al set, VII(njH). In the last expression (68), we rewrote the summation over thedummy variable n0 using a new variable x = (xi) � (n0ini); the N -dimensional ve
tor1, with all elements being 1, represents the true noise ve
tor n in the new expression.Inserting Eqs.(67) and (68) into Eq.(66), and taking an average over the expurgated(j; k)-Gallager 
ode ensemble (i.e., of no atypi
ally poor 
odes) in 
onjun
tion withthe identity 1 = R dw Æ(PNi=1 xi � Nw), an upper bound of the average type II errorprobability is obtained ashPII(H)iH � Z dw exp [N (�K(w; p) +R(w))℄ ; (69)where K(w; p) is derived independently of the 
ode ensemble as exp [�NK(w; p)℄ �Pn P (n)Æ �PNi=1 nixi �N tanhF� Æ �PNi=1 ni �N tanhF� imposing a 
onstraint(1=N)PNi=1 xi = w; the weight enumeratorR(w) = 1N ln*24Xx6=1 N�KY�=1 Æ0�1; Yi2L(�) xi1A Æ NXi=1 xi �Nw!35+H ; (70)
hara
terizes the 
ode ensemble. Equation (69) implies that hPII(H)iH vanishes in thelimit N !1 as long as maxwf�K(w; p) +R(w)g < 0, whi
h yields a lower bound forp
. The meaning of the exponent in the right hand side of Eq.(69) is intuitivelyunderstandable by 
onsidering the me
hanism that gives rise to a de
oding failure.Firstly, exp [�NK(w; p)℄ represents the probability that a `gauged noise ve
tor' n + x(mod 2) is typi
al, as well as the true noise ve
tor n, under a 
ondition that the numberof non-zero elements of x, PNi=1 xi, is 
onstrained to N(1 � w)=2 (also termed weightin this Boolean representation). In pra
ti
e, a 
odeword ve
tor t = GTs (mod 2),alternatively 
hara
terized by the equation Ht = H(GTs) = 0 (mod 2), plays the roleof x; a type II error o

urs if both of n and the gauged ve
tor n + x (mod 2) be
ometypi
al be
ause there are at least two typi
al noise ve
tors satisfying the parity 
he
kequation. However, this just provides an error probability 
aused by a single 
odewordx. Therefore, se
ondly, we have to evaluate the number of 
odewords that have aweight w, whi
h is provided by the weight enumerator R(w). Multiplying this numberof 
odewords to exp [�NK(w; p)℄ and taking a summation over the possible weight w,we �nally obtain Eq.(69).In the bound (69), all relevant properties of the 
ode ensemble are represented bythe weight enumerator R(w). This fun
tion is maximized to R ln 2 at w = 0, in general,and has a mirror symmetry R(�w) = R(w), in parti
ular, for even k. Pi
torially, thelower bound of p
 
an be obtained through the value for whi
h K(w; p) makes 
onta
twith R(w) (somewhat similar to the magnetization enumerator of Fig.8) at a 
ertainpoint w�, marked by a (�) in Fig.12. This 
an be analyti
ally performed in the 
ase ofj; k !1 asR(w) 
an be expressed analyti
ally, providing Shannon's limit psh as a lowerbound for p
. However, psh also serves as the upper bound of p
 for any 
ode ensembles,this means that p
 = psh indi
ating that the Gallager 
ode saturates Shannon's limit
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Figure 12. The weight enumeratorR(w) for (j; k) = (3; 6) and in the limit of j; k !1with keeping the 
ode rate R = 1� j=k = 1=2. For p = 0:0915, the fun
tion K(w; p)has a 
onta
t with the weight enumerator of (j; k) = (3; 6) at w� ' 0:735, whi
himplies p
 � 0:0915 holds for the (3; 6)-Gallager 
ode ensemble. K(w; p) is generallyde�ned only for 1� 4p < w � 1 and be
omes lower as p in
reases. Therefore, roughlyspeaking, the lower bound of p
 be
omes higher as a 
ode ensemble has a narrowerweight enumerator. For a �xed 
ode rate R, the 
ode ensemble of j; k ! 1 hasthe narrowest possible pro�le of R(w), whi
h provides the exa
t estimate of the noisethreshold p
 = psh where psh is Shannon's limit that satis�es R = 1� H2(psh).when j; k !1.Thus, typi
al set analysis 
an exa
tly evaluate p
 of the Gallager 
ode ensemblesin the limit j; k ! 1. Unfortunately, this may not ne
essarily be the 
ase for �nitej; k. It 
an be shown that the lower bounds of p
 o�ered by the typi
al set analysis arethe same as those obtained by Gallager's methodology for MAP de
oding [AJK+01℄,whi
h in itself provides more pessimisti
 evaluations than the repli
a method as shownin Table 1. The gap between SM and typi
al set analysis results may be attributed tothe di�erent de
oding s
hemes used. However, one 
an show that the repli
a methodyields more optimisti
 lower bounds for p
 also when typi
al set de
oding is used, whi
himplies that evaluation of the noise threshold utilizing the typi
al set analysis is rigorousbut not tight enough for �nite j; k.5.2.3. Improving the Bound by the Repli
a Method - A possible short
oming of thetypi
al set analysis relates to the upper-bounding of the average type II error probabilityby a produ
t of the error probability 
aused by a single 
odeword (exp [�NK(w; p)℄)and the number of 
odewords (exp [NR(w)℄), fo
using on the most relevant weightw = w�. This bound would have been tight if ea
h 
odeword brought aboutestimation errors ex
lusively (i.e., ea
h noise ve
tor estimation error is generated by
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Figure 13. A possible short
oming of the typi
al set analysis. (a) If ea
h de
odingerror in noise estimation were asso
iated with a single 
odeword, a simple produ
texp [�NK(w�; p)℄ � exp [NR(w�)℄ would have 
orre
tly evaluated hPII(H)iH . (b)However, when a single de
oding error is asso
iated with multiple 
odewords, theprodu
t overestimates hPII(H)iH .a di�erent 
odeword). However, sin
e ea
h noise ve
tor estimation error may beasso
iated with multiple 
odewords belonging to the same 
odebook, the simple produ
texp [�NK(w�; p)℄�exp [NR(w�)℄ may overestimate the 
orre
t type II error probability(Fig.13). Therefore, it is ne
essary to take 
orrelations between multiple 
odewordsasso
iated with a single error into a

ount in order to improve the evaluation of p
.An analysis based on an equality with respe
t to the error indi
ator�II(njH) = lim�!+0V�II(njH)  NXi=1 ni �N tanhF! ; (71)might naturally introdu
e su
h 
orrelations asV�II(njH) = 0�Xx6=1N�KY�=1 Æ0�1; Yi2L(�) xi1A Æ NXi=1 nixi �N tanhF!1A� ;
reates 
ertain intera
tions among `
odeword ve
tors' x. Substituting Eq.(71) intoEq.(66) and taking an average over the 
ode ensemble provide an equalityhPII(H)iH = lim�!+0 exp [�NEII(�;R; p)℄ ; (72)where EII(�;R; p) = � 1N ln*"Xn P (n)V�II(njH) Æ NXi=1 ni �N tanhF!#+H ; (73)that 
an be evaluated by the repli
a method. Equation (72) indi
ates that p
 
an beassessed from the limit where lim�!+0EII(�;R; p) be
omes positive.A re
ent study showed that noise thresholds obtained by SM typi
al setde
oding s
heme are identi
al to those assessed by the repli
a approa
h to MAPde
oding [KNvM02℄. This indi
ates that di�eren
es of error 
orre
tion abilities between
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al set and MAP de
oding s
hemes are relatively small and vanish in the limitof long message lengths.6. Appli
ations of LDPC 
odesSo far we have fo
used on LDPC as error 
orre
ting 
odes. However, 
oding te
hniquesare required for various purposes in digital 
ommuni
ation. In this se
tion, we mentionhow LDPC 
odes 
an be utilized for various purposes, other than simple error 
orre
tion.6.1. Lossless Data CompressionData 
ompression, or sour
e 
oding, is a s
heme to redu
e the message size (data)by modifying the information representation. This is usually 
arried out prior totransmission in order to optimize 
ommuni
ation eÆ
ien
y by minimizing the data to besent. The possibility of data 
ompression was �rst pointed by Shannon in his 
elebratedsour
e 
oding theorem [Sha48℄. He showed that for an information sour
e representedby a distribution P (s) of N -dimensional Boolean ve
tors s, one 
an employ anotherrepresentation of K(� N) dimensions without any distortion, if the 
ode rate R = K=Nsatis�es R � H2(S) in the limit K;N !1, where H2(S) � �(1=N)Ps P (s) log2 P (s)denotes the binary entropy per bit of the sour
e (S) distribution P (s). On the otherhand, it 
an also be shown that su
h redu
tion is impossible when R < H2(S). Therefore,H2(S) represents the optimal 
ompression rate, or 
ompression limit.Unfortunately, the sour
e 
oding theorem is non-
onstru
tive and suggests few
lues for designing good pra
ti
al 
ompression methods. However, after mu
h e�ort,a pra
ti
al 
ode that asymptoti
ally saturates the optimal limit was �nally dis
overedmore than a de
ade later [Jel68℄. Therefore, the 
ompression s
heme based on LDPC
odes presented below may not 
ompete with existing good pra
ti
al 
odes su
h as thearithmeti
 
odes [Jel68℄ and Lempel-Ziv (LZ) 
ompression [ZL77℄. Nevertheless, thisstill serves as a useful prototype for 
onstru
ting a more advan
ed 
ompression s
hemeused in network 
ommuni
ation [SW73, Mur02℄, des
ribed in the following se
tion.In order to 
ompress an N -dimensional Boolean sour
e ve
tor s to a K(< N)-dimensional 
odeword z on the basis of an LDPC s
heme, let us introdu
e aK�N sparseBoolean matrix H with j and k non-zero elements per 
olumn and row, respe
tively.Using this matrix, one 
an 
ompress s to a shorter ve
tor z byz = Hs (mod 2) : (74)On the other hand, de
oding z to retrieve the original representation s is performedwith a knowledge of the sour
e distribution P (s) utilizing the posterior distributionP (�jz) = P (�)Æ (z = H�)P� P (�)Æ (z = H�) ; (75)whi
h 
an be pra
ti
ally 
arried out employing the BP/TAP algorithm.Similarly to the 
ase of error 
orre
tion, the performan
e of this s
heme 
an beevaluated utilizing the repli
a method [Mur02℄. In the Ising spin representation, the
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an be evaluated fromF = Extr�(�);�̂(�)(� jk *ln 1 +Qki=1 xi2 !+� + j �ln�1 + x̂x2 ���̂;�� 1N *ln"X�  NYi=1 jY�=1�1 + x̂�i�i2 �! P (� 
 s)#+�̂;s9=; ; (76)under the RS ansatz, where � 
 s = (�isi) (i = 1; 2; : : : ; N) stands for sour
e ve
torsgauged by the true sour
e ve
tor s in the Ising spin expression and P (� 
 s) representsthe sour
e distribution in this expression. h� � �is denotes an average over the sour
edistribution.For j � 3, the ferromagneti
 solution �F(x) = Æ(x� 1) and �̂F(x̂) = Æ(x̂� 1), whi
hrepresents de
oding su

ess, always extremizes the free energy (76) toFF = � 1N Xs P (s) lnP (s) = H2(S) ln 2: (77)In addition to this, another solution, whi
h stands for de
oding failure, appears whenR is below a 
ertain 
riti
al rate Rd, whi
h is determined by j and k. For �nite j,this solution is obtained only numeri
ally. However, this solution 
an be analyti
allyexpressed as �NF(x) = Æ(x) and �̂NF(x̂) = Æ(x̂) in the 
ase of j; k ! 1 under the �xed
ode rate. Inserting this solution into Eq.(76) provides the free energyFNF = jk ln 2 = R ln 2: (78)This, in 
onjun
tion with Eq.(77), means that the de
oding su

ess solution isthermodynami
ally dominant and, therefore, the original expression s is potentiallyde
odable from the 
ompressed ve
tor z for R � H2(S) and an arbitrary sour
edistribution P (s). This implies that the 
urrent s
heme a
hieves Shannon's 
ompressionlimit for j; k !1.However, this does not imply that z 
an be de
oded in pra
ti
al time s
ales. TheBP/TAP algorithm is likely to be trapped in suboptimal solutions for R < Rd; the
ompression limit for pra
ti
al de
oding is therefore provided by Rd whi
h is alwayshigher than a 
riti
al rate R
, determined by the thermodynami
 transition betweenthe de
oding su

ess and failure solutions. Roughly speaking, as j grows under a �xedrate R = j=k, R
 de
reases, while Rd in
reases. In parti
ular, in the 
ase of j !1, thepotential and pra
ti
al limits R
 and Rd 
onverge to H2(S) and 1, respe
tively, whi
hmeans that the 
urrent s
heme is impra
ti
al in this limit although the theoreti
alperforman
e 
an saturate Shannon's limit.On the other hand, other existing s
hemes su
h as the LZ 
odes are exe
utable inpra
ti
al time s
ales and asymptoti
ally a
hieve the 
ompression limit even if details ofthe sour
e distribution are unknown [ZL77℄. Therefore, the LDPC-based 
ompressions
heme may not be 
ompetitive when used for the purpose of the simple noiseless data
ompression.
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k Codes 396.2. Lossless Compression of Distributed Sour
esAlthough the pra
ti
al signi�
an
e of the LDPC-based s
heme seems weaker than thatof existing state-of-the-art methods for the simple lossless 
ompression, it may not bethe 
ase for more advan
ed problems. This is be
ause optimal strategies sometimes
annot be employed when 
onditions 
hange. A data 
ompression problem of distributedsour
es, �rst addressed by Slepian and Wolf for data transmission in a network [SW73℄,o�ers one su
h example.Let us assume that two 
orrelated sour
e ve
tors s1 and s2 of N dimensionsare generated from a joint sour
e distribution P (s1; s2). In a general s
enario of theSlepian-Wolf problem, s1 and s2 (from sour
es S1 and S2 respe
tively) are independently
ompressed to K1- and K2-dimensional ve
tors z1 and z2, respe
tively. On the otherhand, a single de
oder simultaneously retrieves the original expressions s1 and s2 fromthe 
odewords z1 and z2 utilizing the knowledge of P (s1; s2) at the de
oding stage(Fig.14(a)). For instan
e, this kind of problem arises when two satellites 
overingoverlapping regions transmit digital images to a single base station on earth.It is 
lear that a region spe
i�ed by R1 = K1=N � H2(S1) and R2 = K2=N � H2(S2)is a
hievable without any distortion by optimal 
ompression 
odes for a single sour
e,dealing with s1 and s2 as ve
tors that independently follow marginal distributionsP (s1) = Ps2 P (s1; s2) and P (s2) = Ps1 P (s1; s2), respe
tively. However, Slepianand Wolf showed that the a
hievable region 
an be further extended potentially asR1 � H2(S1jS2) ;R2 � H2(S2jS1) ;R1 +R2 � H2(S1;S2) ; (79)(Fig.14(b)) if the knowledge of the joint distribution P (s1; s2) is fully utilized, whereH2(S1;S2) = �(1=N)Ps1;s2 P (s1; s2) log2 P (s1; s2), H2(S1jS2) = H2(S1;S2) � H2(S2)and similarly for H2(S2jS1). Unfortunately, it is diÆ
ult to a
hieve this limit by theoptimal 
odes for a single sour
e sin
e in
orporating the 
orrelation between s1 and s2with su
h s
hemes is generally non-trivial.On the other hand, the LDPC-based 
ompression s
heme is easily extended for thedistributed sour
e by using the LDPC matri
es H1 and H2, of dimensionalities K1 �Nand K2 �N respe
tively, su
h thatz1 = H1s1; (mod 2) ;z2 = H2s2; (mod 2) : (80)In this s
heme, one 
an dire
tly in
orporate the sour
e distribution P (s1; s2) in thede
oding stage through the Bayes formulaP (�1;�2jz1; z2) = P (�1;�2)Æ (z1 = H1�1) Æ (z2 = H2�2)P�1;�2 P (�1;�2)Æ (z1 = H1�1) Æ (z2 = H2�2) : (81)Murayama showed that this s
heme a
hieves the Slepian-Wolf limit (79) when thenumbers of non-zero elements per 
olumn/row in H1 and H2 be
ome in�nite [Mur02℄.Furthermore, he illustrated that utilizing LDPC matri
es of �nite non-zero elements
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(s1; s2) en
odingen
oding de
odings1s2 z1z2 (ŝ1; ŝ2)(a) (b)

0H2(S2jS1)H2(S2)R2
H2(S1jS2)H2(S1) R1Figure 14. (a) The Slepian-Wolf System. En
oding is 
arried out independently atdistributed sites, whereas de
oding is simultaneously performed by a single user. (b)The a
hievable limit of the Slepian-Wolf System.per 
olumn/row, pra
ti
al de
oding by BP/TAP be
omes possible beyond the singlesour
e 
oding limit R1 � H2(S1) and R2 � H2(S2) for a 
ertain distributed sour
es;this implies that LDPC-based 
ompression s
hemes may be a promising dire
tion fordistributed data 
ompression problems of this type.6.3. Lossy Data CompressionThe sour
e 
oding theorem indi
ates that it is impossible to redu
e the size of data belowthe 
ompression limit without allowing for any distortion. However, if a 
ertain level ofdistortion is allowed, one 
an further redu
e the data size. Compression of this type istermed lossy 
ompression. JPEG and MPEG, whi
h are examples of 
urrent standards
hemes in use for 
ompressing data of images and movies, fall into this 
ategory.In general, as the allowed distortion in
reases, the a
hievable data size de
reases;namely, there is a tradeo� between the optimal 
ompression rate and the distortion,whi
h is provided by the rate-distortion theorem presented by Shannon more than ade
ade after the sour
e 
oding theorem [Sha59℄.Unlike lossless 
ompression, no pra
ti
al algorithm 
apable of saturating theoptimal performan
e predi
ted by the rate-distortion theory is known for lossy
ompression, even for simple information sour
es. Therefore, the quest for better lossy
ompression 
odes remains one of the important resear
h areas in IT [YZB97℄.Let us here fo
us on a simple lossy data 
ompression problem of an unbiasedBoolean sour
e of N -dimensional ve
tor s, the distribution of whi
h is assumed uniformP (s) = 1=2N . The distortion fun
tion d(s; ~s) is used to evaluate the distortion, where ~sis an N dimensional representative Boolean ve
tor used to approximate s with a redu
edinformation 
ontent. Here, we employ the Hamming distan
ed(s; ~s) = NXi=1 (1� Æsi;~si) ; (82)
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k Codes 41where Æx;y = 1 if x = y and 0, otherwise.In the 
urrent 
ase, the lossless 
ompression limit is given by the binary entropy perbit of the sour
e distribution R � H2(S) = �(1=N)Ps 2�N log2 2�N = 1, whi
h impliesthat it is impossible to redu
e the size of the data any more without allowing somelevel of distortion. However, when a distortion up to ND measured by the Hammingdistan
e is allowed, it 
an be shown analyti
ally that one 
an 
ompress s into aK = NR-dimensional Boolean ve
tor z if R � R(D), whereR(D) = 1� H2(D) ; (83)is termed the rate-distortion fun
tion of the 
urrent unbiased Boolean sour
e [CT91℄;su
h analyti
al expressions of the rate-distortion fun
tions are not known for most othersour
es.In order to devise a lossy 
ompression s
heme, it is ne
essary to appropriately designa map from the 
ompressed expression z to the representative ve
tor ~s. One possible
onstru
tion of this map is to employ an N �K LDPC matrix H su
h that~s = ~s(z) = Hz (mod 2) : (84)Then, given an N -dimensional sour
e ve
tor s, en
oding is 
arried out by sele
ting su
ha ve
tor z that satis�es the distortion 
onstraint d (s; ~s(z)) � ND as the 
ompressedrepresentation of s. On the other hand, one 
an easily de
ode z to approximate theoriginal ve
tor s employing Eq.(84). It 
an be shown that this s
heme saturates therate-distortion fun
tion (83) when the numbers of non-zero elements per 
olumn/row ofH be
ome in�nite [MO03, MY02℄.One short
oming of this LDPC-based s
heme in the 
urrent suggestion is the
omputational diÆ
ulty at the en
oding stage. Sin
e �nding z for a given s, whereboth are dis
rete variables, is a non-trivial sear
h problem that be
omes pra
ti
allydiÆ
ult as the message length N in
reases. A naive use of the BP/TAP approa
h doesnot serve as a satis�able approximation algorithm in this 
ase sin
e en
oding requiressele
tion of a single ve
tor z, whereas the BP/TAP method generally 
al
ulates variableaverages over the posterior distribution in whi
h 
lues for sele
ting a single ve
tor areerased. However, this diÆ
ulty may be resolved by 
ertain advan
ed methods [MPZ02℄although further investigation is ne
essary.Another drawba
k of the 
urrent method is the diÆ
ulty in dire
tly extending thes
heme to biased sour
es. It 
an be shown that for a uniformly biased Boolean sour
e
hara
terized by P (s) =QNi=1 psi(1�p)1�si where 0 � p � 1, the rate-distortion fun
tion(83) is modi�ed toR(D) = ( H2(p)� H2(D) for 0 < D < p0 for p � D � 1 ; (85)whi
h indi
ates that the data size 
an be redu
ed further than Eq.(83) for biased sour
esbe
ause the original message distribution in itself in
ludes some redundan
y. Thislimit 
an be a
hieved by appropriately 
onstru
ting biased representative ve
tors thatapproximate the biased ve
tors with the required distortion using as little information as
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k Codes 42possible. However, as addition modulo 2 generally redu
es the statisti
al bias of ea
h bit,
onstru
tion of su
h representative ve
tors by a linear map (84) is diÆ
ult; this preventsthe 
urrent method from saturating the rate-distortion fun
tion of biased sour
e (85).In a re
ent study [HKN02℄, this diÆ
ulty has been resolved by repla
ing the linearmap (84) with a non-linear map 
onstru
ted by per
eptrons whi
h are 
hara
terized bynon-monotoni
 transfer fun
tions of a spe
i�
 type [vMWB00℄.6.4. Error Corre
tion in a Broad
ast ChannelAs most existing 
odes are 
onstru
ted for simple point-to-point 
ommuni
ation, theydo not ne
essarily o�er the optimal performan
e for multi-terminal 
ommuni
ation su
has the Internet, mobile phones and satellite 
ommuni
ation. Designing 
odes that utilize
hara
teristi
 features of these 
ommuni
ation 
hannels may enhan
e their performan
e;this would greatly bene�t overloaded 
ommuni
ation 
hannels that su�er from an everin
reasing information 
ow.The broad
ast 
hannel, whi
h models television and radio broad
asting, is one ofthe most fundamental examples of multi-terminal 
ommuni
ation [CT91℄. We here showhow LDPC 
odes 
an be utilized for improving the 
ommuni
ation performan
e in abroad
asting setup.In a general s
enario, a single sender (station) broad
asts a 
odeword 
omposedof di�erent messages to multiple re
eivers. For simpli
ity, we fo
us on the 
ase of twore
eivers; a single 
odeword t of N bits, 
omprising two messages s1 (NR1 bits) ands2 (NR2 bits), is transmitted to two re
eivers. As ea
h 
hannel is noisy, re
eivers 1and 2 obtain two 
orrupted 
odewords r1 and r2, respe
tively, whi
h is modelled by a
onditional probability P (r1; r2jt). The re
eived 
odewords are de
oded by respe
tivere
eivers to retrieve only the message addressed to ea
h of them.Combining 
odes is a known empiri
al strategy for designing high performan
e
ommuni
ation s
hemes for broad
ast 
hannels on the basis of multiple linear error-
orre
ting 
odes of relatively short message lengths [MS77, vG83, vG84℄. Inspired bythis, the performan
e of a linearly 
ombined 
oding s
heme was re
ently examined forLDPC 
odes [NKMZS03℄. The 
ode is spe
i�ed by a parity 
he
k matrix of an uppertriangular formH =  H1 H20 H3 ! ; (86)where the sizes of sub-matri
es H1, H2, H3 are [(1 � �)N � R1N ℄ � (1 � �)N ,[(1� �)N �R1N ℄� �N and [�N � R2N ℄� �N , respe
tively.Based on this matrix, the generator matrix GT is 
onstru
ted asGT =  GT1 GT20 GT3 ! ; (87)where Gti (i = 1; 3) are systemati
ally designed so as to satisfy HiGTi = 0 (mod 2) andGT2 = �HT1 [H1HT1 ℄�1[H2GT3 ℄. In this s
heme, two messages are en
oded into a single
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p1 p2StationRe
eiver 1

Re
eiver 2 (b)1� H2(p2)
1� H2(p1)0 R1

R2
Figure 15. (a) A broad
ast 
hannel of a single station and two re
eivers. (b) As
hemati
 pro�le of Cover's limit (thi
k full 
urve). The dashed line indi
ates thetime-sharing limit a
hievable by 
on
atenating two independent 
odes.
odeword using GT as t = GT (s1s2)T (mod 2). On the other hand, two 
orrupted
odewords r1 and r2 are independently de
oded by ea
h re
eiver solving the parity
he
k equations zi = Hri = Hni (mod 2) (i = 1; 2).Analogously to the 
ase of single 
hannels, error free 
ommuni
ation be
omestheoreti
ally possible if the 
orresponding 
ode rate ve
tor (R1; R2) is pla
ed withina 
ertain 
onvex region, whi
h is termed the 
apa
ity region, when the 
ode lengthgrows in�nite. In parti
ular, the 
apa
ity region 
an be analyti
ally expressed asR2 < 1� H2(Æ � p2) ;R1 < H2(Æ � p1)� H2(p2) ; (88)where the noise models for re
eivers 1 and 2 are assumed as BSC spe
i�ed by 
ip ratesp1 and p2(< p1), respe
tively. Here, we introdu
e the notation Æ � p = Æ (1 � p) +(1� Æ) p. Eq.(88) is often termed Cover's 
apa
ity, depi
ted by a solid 
urve in Fig.15.Unfortunately, the derivation of Cover's 
apa
ity is non-
onstru
tive and o�ers few
lues to design eÆ
ient pra
ti
al 
odes. Furthermore, even a
hieving the time-sharing
apa
ity (a dotted straight line in Fig.15), whi
h is theoreti
ally a
hievable by simple
on
atenation of two independent 
odewords, separately optimized for ea
h 
hannel, isin pra
ti
e never trivial, as there are no known 
odes that saturate the Shannon's boundeven for a single 
hannel.A statisti
al me
hani
s based analysis for the broad
ast 
hannel of this type revealsthat the suggested linearly 
ombined LDPC 
oding s
heme provides an improvedperforman
e over the simple 
on
atenation method, in both potential and pra
ti
allimits, when the number of non-zero elements per 
olumn/row in the parity 
he
k matrixis �nite [NKMZS03℄. Unfortunately, it was also shown that the optimal performan
ea
hievable by this s
heme 
annot go beyond the time-sharing 
apa
ity even theoreti
ally.This analysis implies that di�erent 
oding s
hemes su
h as non-linear 
odes should beexamined for a
hieving Cover's limit.
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k Codes 446.5. LDPC for CDMAMultiple a

ess 
ommuni
ation is at the opposite end to broad
asting, where multiplesour
es transmit simultaneously to a single re
eiver; the task of the re
eiver is toseparate the 
ombined (possibly 
orrupted) signal and retrieve the original sour
es.Several methods 
an be used for separating the sour
es; two obvious solutions are forthe di�erent sour
es to transmit at di�erent times or using di�erent frequen
ies [Ver98℄.A di�erent, arguably more eÆ
ient, approa
h is based on Code Division Multiple A

ess(CDMA), where messages are en
oded prior to transmission.Conventional modulation te
hniques are based on modulating ea
h signal by arandom modulation ve
tor shown s
hemati
ally in Fig.16(a). Demodulation is then
arried out by multiplying the re
eived signal by the modulation sequen
e for ea
hsour
e and estimating the original message. A statisti
al me
hani
s based analysis of
onventional CDMA modulation was re
ently introdu
ed by Tanaka [Tan02℄.
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Figure 16. (a) Modulation in 
onventional CDMA, where random modulationsequen
es are used to generate the transmitted signal from the original message. (b)LDPC 
oding of the sour
e sequen
es si prior to modulation by random modulationsequen
es �i. Demodulation and de
oding provide the estimates ŝi.The idea of 
ombining LDPC 
odes with CDMA systems was originally introdu
edin [dBD03, dBD02, ADU03℄. The idea is to en
ode the messages by di�erent LDPC
odes prior to the modulation stage as des
ribed s
hemati
ally in Fig.16(b). Resultsobtained by 
omputer simulations, and after 
arefully designing LDPC 
odes by DE,show ex
ellent performan
e [ADU03℄. However, these studies are limited to 
ases wherethe number of users is O(1) (one ex
eption is in [RCGV02℄, where the number of users isexpe
ted to be large; however, it relies on the assumption of near-
apa
ity-approa
hingLDPC 
odes to be available).A re
ent study [TS03b, TS03a℄ o�ers a statisti
al me
hani
s based analysis of thejoint dete
tion/de
oding for LDPC-
oded CDMA system in the large-system limit. Theanalysis provides both pra
ti
al and theoreti
al limitations of the suggested methodobtained from the statisti
al me
hani
s based analysis, in the form of dynami
al and
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k Codes 45thermodynami
al transition point, respe
tively. The results reported indi
ate thatwhile the theoreti
al limits of the new methods are ex
ellent, the pra
ti
al performan
eis limited by a relatively low dynami
al transition point [TS03b, TS03a℄. However,the analysis was 
arried out for regular LDPC 
odes; it is highly likely that pra
ti
alperforman
e 
an be pushed 
lose to the theoreti
al limits by 
lever irregular 
ode designs.6.6. Publi
 Key CryptographyPubli
-key 
ryptography plays an important role in many aspe
ts of modern informationtransmission, for instan
e, in the areas of ele
troni
 
ommer
e and internet-based
ommuni
ation. It makes it possible for the servi
e provider to distribute a publi
key whi
h may be used to en
rypt messages in a manner that 
an only be de
ryptedby the servi
e provider [DH76℄ (Fig.17). The on-going quest for safer and more eÆ
ient
ryptosystems produ
ed many useful methods over the years su
h as the RSA [RSA78℄,ElGammal [ElG85℄ and M
Elie
e 
ryptosystems [M
E78℄ to name but a few. We hereshow that another example of su
h systems, whi
h is somewhat similar to the onepresented by M
Elie
e, 
an be devised on the basis of signi�
antly di�erent behaviourfor LDPC 
odes of the MN and Sourlas-types [KMS00a, SKM01℄.In the suggested 
ryptosystem, a plaintext represented by a K-dimensionalBoolean ve
tor s is en
rypted to the N -dimensional Boolean 
iphertext r utilizinga predetermined Boolean matrix GT of dimensionality N � K, and a 
orrupting N -dimensional ve
tor n, the elements of whi
h be
ome 1 with probability p and 0,otherwise, in the following mannerr = GT t + n (mod 2) : (89)The matrix GT and the 
ip probability p 
onstitute the publi
 key. The 
orruptingve
tor n is generated in the transmitting terminal.The matrix GT , whi
h is at the 
entre of the en
ryption/de
ryption pro
ess, is
onstru
ted by randomly 
hoosing a K�K dense invertible matrixD and two randomlysele
ted LDPC matri
es A (of dimensionality N �K) and B (of dimensionality N �Nand invertible), via GT = B�1AD (mod 2). Similarly for the MN 
odes, the matri
es Aand B are 
hara
terized by j and l non-zero elements per 
olumn and k and l non-zeroelements per row respe
tively in the simplest 
ase, whereas irregular 
onstru
tion usingvarying k; j and l for ea
h 
olumn/row may also be 
onsidered. The parameters j; k andl de�ne a parti
ular 
ryptosystem while the matri
es A, B and D 
onstitute the privatekey. The authorized user may de
rypt the 
iphertext r in a similar manner to the MN
odes. Namely, a parity 
he
k equation of the formz = Br = A(Ds) +Bn (mod 2) ; (90)whi
h is o�ered by multiplying the 
iphertext r (89) by the private key B; it is �rstsolved for ~s = Ds using the BP/TAP algorithm. Due to properties of the MN 
odes,
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k Codes 46(a)s! r: Easy (b)r ! s:� Easy with a se
ret keyHard without a se
ret keyFigure 17. Required properties of publi
 key 
ryptosystem. (a) A plain text s isen
rypted into a 
ipher text r using the publi
 key with a low 
omputational 
ost. (b)De
ryption of the 
ipher text r is 
omputationally hard without utilizing the se
retkey, while it 
an be easily 
arried out if the se
ret key is available.this is easy if p is set below the dynami
al transition point pd that is determined by theset of (j; k; l). After that, the plain text is �nally retrieved as s = D�1~s.On the other hand, an unauthorized user must extra
t s from Eq.(89) knowingonly the 
iphertext r and the publi
 key (GT ; p). The �rst straightforward attemptto enumerate all possible s is 
learly doomed, unless p is vanishingly small, enoughto 
orrupt just a few bits. De
omposing GT into a 
ombination of sparse and densematri
es is known to belong to a 
lass of NP-
omplete problem [GJ79℄.Another approa
h is to approximately de
rypt r using the BP/TAP s
heme, whi
hyields an e�e
tively identi
al de
oding problem to that of the Sourlas-type 
odes, withthe generator matrix GT being dense. However, due to properties of the Sourlas
odes, �nding solutions to Eq.(89) is strongly dependent on initial 
onditions. Inparti
ular, when GT is dense, whi
h is the 
ase in the 
urrent problem, for all initial
onditions other than the plaintext itself, the BP/TAP algorithm fails to 
onverge to theplaintext solution [KMS00a, Ma
99, KS87℄. Obtaining the 
orre
t solution for Eq.(89)without knowledge of the private key will therefore be
ome unfeasible, whi
h impliesthat de
ryption by unauthorized users is pra
ti
ally impossible. Several atta
ks byunauthorized parties who have a
quired partial knowledge of private key 
omponentsand/or of the plaintext have been re
ently studied, showing that the 
ryptosystem isfairly se
ure [SSK03℄.Before 
losing this se
tion, it may be worth while to brie
y 
ompare the 
urrentLDPC-based method to the leading publi
 key publi
 key 
ryptosystem of RSA [RSA78℄.RSA de
ryption takes O(K3) operations while the 
urrent method naively requiresO(K2) operations, whi
h 
an be further redu
ed to O(K logK) by 
onstru
ting a densematrix D as a produ
t of random permutation and triangular matri
es. From thisaspe
t, the LDPC-based s
heme may be superior to the RSA 
ryptosystem. En
ryption
ost is O(K2), whi
h is similar to that of RSA, whereas inverting the matri
es B andD is 
arried out only on
e and is of O(K3). A major drawba
k of the 
urrent methodis the size of publi
 key. Sin
e GT is a dense matrix, the size of the publi
 key is ofO(N�K), while that for RSA is only O(K). However, as the transmission of the publi
key is 
arried out only on
e, this may not be of great signi�
an
e.
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k Codes 477. SummaryIn summary, we have surveyed re
ent progress in statisti
al me
hani
s resear
h on low-density parity 
he
k 
odes. Identifying the similarity between 
odes de�ned by a sparsematrix and Ising spin systems of multi-spin intera
tion makes it possible to analyse anddevelop a family of high-performan
e error 
orre
ting 
odes. This relies on employingmethods from statisti
al me
hani
s in general and the theory of spin glasses in parti
ular.EÆ
a
y of this approa
h is not limited to basi
 error 
orre
tion, similar approa
hes havebeen also su

essfully applied to several other 
oding s
hemes su
h as data 
ompression,multi-terminal data transmission, 
ryptography, et
.Resear
h a
tivities in these dire
tions revealed great similarity and some di�eren
e,in both the problems studied and methods used, between information s
ien
es andphysi
s, whi
h makes it mu
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