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Abstract. We review recent theoretical progress on the statistical mechanics of error
correcting codes, focusing on Low Density Parity Check (LDPC) codes in general,
and on Gallager and MacKay-Neal codes in particular. By exploiting the relation
between LDPC codes and Ising spin systems with multi-spin interactions one can
carry out a statistical mechanics based analysis that determines the practical and
theoretical limitations of various code constructions, corresponding to the dynamical
and thermodynamical transitions respectively, as well as the behaviour of error-
exponents averaged over the corresponding code ensemble, as a function of channel
noise. We also contrast the results obtained using methods of statistical mechanics
with those derived in the information theory literature, and show how these methods
can be generalized to include other channel types and related communication problems.
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1. Introduction

1.1. Error Correction

Electronic communication plays an important role in the modern society and has a
profound impact on the way we live. It appears in various forms and in a broad range
of applications, from mobile and satellite communication to cable TV and the internet.

Two features common to most modern digital communication systems are the
need for efficient source and channel coding methods. Source coding relates to the
compression of redundant information (e.g., pictures, music), even at the expense of
fidelity (lossy compression); while channel coding relates to the introduction of some
controlled redundancy prior to transmission in order to protect the information against
corruption in a noisy transmission medium (e.g. deep-space, atmosphere, optical fibres).
In this review paper we mainly focus on error correction (channel coding) although
we also mention applications of statistical mechanics analysis to source coding, multi-
terminal communication channels, cryptography and other areas of information theory.

In his 1948 papers Shannon [Sha48] proved general results on the limits of
compression and error-correction by setting up the framework to what is now known
as information theory (IT). Shannon’s channel coding theorem states that error-free
communication is possible if some redundancy is added to the original message in the
encoding process. A message encoded at rates R (message information content/code-
word length) up to the channel capacity Cepanner can be decoded with a probability
of error that decays exponentially with the message length. Shannon’s proof is non-
constructive and assumes encoding with unstructured random codes and impractical
decoding schemes (requiring a computing effort that grows non-polynomially with the
codeword length) [CT91]. Finding practical codes capable of reaching the coding limits
established by Shannon has been one of the central issues in coding theory ever since;
and only recently, due to some ingenious code designs, we are within reach of closing
the remaining gap to the bounds set by Shannon.

Figure 1 illustrates the problem of channel coding. On the top left of Fig.1 we
represent the space of words (a message is a sequence of words), each circle represents
one sequence of binary bits. The word to be sent is represented by a black circle in
the left side figure. Corruption by noise in the channel is represented in the top right
figure as a drift in the original word location. The circle around each word represents
a decision boundary sphere for the particular word, any signal inside a certain decision
region is recognized as representing the word at the centre of the sphere. In the case
depicted in Fig.1 the drift caused by noise places the received word within the decision
boundary of another word vector, causing a transmission error. Error-correction codes
are based on mapping the original space of words onto a higher dimensional space in
a way that the typical distance between encoded words increases. The collection of all
encoded words (codewords) constitute a codebook. If the original space is transformed,
the same drift shown in the top of Fig.1 is insufficient to push the received signal outside
the decision boundary of the transmitted codeword (bottom figure).
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Figure 1. In the top figure we illustrate what happens when a word is transmitted
without error-correction. White circles represent possible word vectors, the black
circle represents the word to be sent. The channel noise corrupts the original word,
represented by a drift in the top right picture. The dashed circles indicate decision
boundaries in the receiver; in the case depicted, the corruption leads to a transmission
error. In the bottom figure we show qualitatively an error correction mechanism. The
redundant information changes the space geometry, increasing the distance between
words. The same drift as in the top figure does not result in a transmission error.

Good codes should be as short as possible, yet should clearly allow for a large
number of codewords (for a large set of words) and decision spheres must be as large as
possible (for large error-correction capability). The general coding problem consists of
optimizing one of these conflicting requirements given the other two.

1.2. Low-Density Parity-Check Codes

For long, the best practical codes known were variants of Reed-Solomon codes
which form the basis for most current technological standards (e.g., in deep-
space communications [MS77, VOT79]). The situation has changed dramatically
about a decade ago with the introduction of Turbo codes [BGT93]. These codes
are composed of two convolutional codes working in parallel and show practical
performance close to Shannon’s bound when decoded with iterative methods known
as probability propagation [Pea88] or belief propagation; these iterative methods were
first studied in the context of coding by Wiberg [Wib96] (excluding Gallager’s original
formulation [Gal62, Gal63]). The area experienced a second dramatic development
when Gallager’s low-density parity-check codes have been rediscovered by MacKay and
Neal in 1995 [MN95, Mac99]; this led to renewed activity in the general area of low-
density parity-check codes (LDPC) [RU0O1la, RSU01, LMSS01] leading to the design of
record breaking codes (e.g., [Chu00, Dav99, Dav98|) and greater understanding of their
properties.

Gallager codes were first proposed in 1962 [Gal62, Gal63] and then were all but
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forgotten soon after due to computational limitations of the time and due to the success
of convolutional codes. LDPC codes are much easier to understand and analyse than
Turbo codes, and arguably represent the future of error-correction. Throughout this
review paper we concentrate on LDPC error correcting codes in general and Gallager
and MacKay-Neal codes in particular.

1.3. Information Theory and Statistical Mechanics of Coding

The study of error-correcting codes is clearly one of the main topics in information
theory. While the main properties of communication channels can be easily obtained
from simple entropic considerations [CT91], the construction and analysis of practical
codes, particularly LDPC codes of finite connectivity, is rather difficult. In most cases,
practical and/or theoretical limitations are derived, in the infinite codeword limit, in
the form of bounds as direct average properties are difficult to obtain.

The statistical mechanics of codes represents a completely different approach. By
exploiting similarities between error-correcting codes and spin glass models, as well as
methods developed in the study of Ising spin systems, one carries out exact averages
over code ensembles, possible messages and noise vectors to calculate the free-energy of
a given system; studying its properties one obtains exact results for their practical and
theoretical limitations.

In Section 2 we provide a general description of the communication channels studied
and the notation used; in section 3 we briefly review several LDPC code constructions,
followed by a more detailed review of recent statistical mechanics based analyses and
their relation to analyses carried out in the information theory community (section 4).
In section 5 we focus on analytical methods for obtaining the theoretical limitations of
codes used in the IT literature and their equivalents in the statistical mechanics-based
approach; applications of LDPC codes to a range of other problems in information
theory and cryptography will be reviewed in section 6 followed by a brief summary.

2. Communication Channels

A general communication scenario is described in Fig.2(a). It is based on encoding a
K dimensional message s to an N dimensional codeword ¢ which is then transmitted
through a noisy communication channel. Codeword corruption during transmission can
be described as a probabilistic process defined by the conditional probability P(r | ¢)
where ¢ and r represent transmitted and received messages respectively. We assume no
interference effects between codeword components, binary messages/codewords ({0, 1})
and a memoryless channel, so that P(r | t) = []I_, P(r; | ;). The received codeword =
is then decoded to retrieve the original message s. In this paper we will consider several
channel types described schematically in Figs.2(b)-(d), although other channels can
also be considered and analysed using similar approaches. The differences between the
various channels stem from the corruption probability P(r; | t;). The Binary Symmetric
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Figure 2. (a) Mathematical model for a communication system. (b) Binary

Symmetric Channel (BSC). (c¢) Binary Erasure Channel (BEC). (d) Real valued
symmetric channels (Gaussian - AWGN, Laplacian etc.).

Channel (BSC), described schematically in Fig.2(b), is defined by binary input and
output alphabets and by the conditional probability

Pr#tity=p : Pr=t|t)=1-p. (1)

In the Binary Erasure Channel (BEC) (Fig.2(c)), binary codeword bits arrive
uncorrupted with probability 1 — p; no information is given in the case of corruption as
indicated by the ’?" symbol. The conditional probability of a receive bit being identical
to the transmitted one is therefore P(r =t | t) = 1 — p . In the case of channels
with real valued noise, described in Fig.2(d), binary transmitted codeword bits become
real received values. Such communication channels are described by some conditional
probability P(r | ¢); which, for instance, in the case of a Additive-White-Gaussian-Noise
channel (AWGN), takes the form:

1 _1(-p)?
P(r|t):\/me G (2)

where 02 represents the variance of the Gaussian noise.

The maximal information per bit that the channel can transport defines the channel
capacity [CT91] and can be easily derived from entropic considerations; for perfect
retrieval, the source vector binary entropy plus that of the noise vector must be smaller
than the codebook entropy. Since all codewords may be used with equal probability,
the latter (per symbol) equals the (base 2) logarithm of the alphabet size, i.e., 1 in the
case of a binary alphabet {0, 1}. The entropy of any binary vector is calculated directly
from the probability of having a value of 0/1. For instance, for the binary noise vector
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(1) the entropy per bit becomes

Ha(p) = —plogy(p) — (1 —p)log,(1 —p) (3)
and the BSC capacity is given by

Crsc = 1 — Ha(p) ; (4)
similarly, for the BEC the channel capacity is

Cerc=1-p. (5)

Channel capacity expressions for real valued noisy channels are slightly more complex;
for instance, Shannon’s bound in the case of AWGN is given by

1
CAWGN = 510g2(1 + SNR) s (6)

where SN R is the signal to noise ratio, defined as the ratio of energy per bit of the source
(squared amplitude) over the spectral density of the noise (variance). If one constrains
the encoded bits to binary values {£1} (binary-input additive-white-Gaussian-noise
channel - BIAWGNC) the capacity becomes:

CiawaNe = /dr P(r|1)log,P(r|1)— /dr P(r) log,P(r), (7)

where P(r | t) is as in equation (2).

The analysis presented in this paper focuses on the binary symmetric channel but
can be easily extended to other channel types [KS99a, VSK99, TS03¢, SvMS03, Mon01,
FLMRTO02] that are arguably of greater practical relevance [VO79, CT91].

3. Low Density Parity Check Codes

Parity check codes have been used in various error-correction mechanisms almost from
the very beginning of the field. One of the most well known parity check mechanisms is
the Hamming code [CT91] and its generalization to the family of linear codes.

Most practical linear codes tend to offer a relatively low error protection for a given
transmission ratio, far below the Gilbert-Varshamov limit [Var57, Gil52], bounding
all linear codes. The performance improves as the number of elements summed in
each check grows; however, the decoding process becomes computationally hard and
unfeasible for a practical codeword length.

3.1. Gallager’s Code

LDPC codes have been originally introduced by Gallager in 1962 [Gal62]. They rely
on a sparse linear transformation of binary messages at the decoding stage, making
it computationally feasible; while encoding relies on a dense matrix generated by the
inverse of the sparse linear transformation. The significance of Gallager’s discovery was
not fully appreciated at the time due to the limited computing resources at the time
as well as the increasing popularity of convolutional codes that require only a simple
system of shift registers to operate effectively.
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Gallager’s code is defined by a binary matrix H = [A | B], concatenating two
very sparse matrices known to both sender and receiver, with B (of dimensionality
(N — K) x (N — K)) being invertible and A of dimensionality (N — K) x K. The
matrix H can be either random or structured, characterized by the number of non-zero
elements per row/column. These numbers, which we denote as k and j respectively,
can be constants for all rows/columns (defining a regular code) or may vary from row
to row (or column to column) giving rise to an irregular code.

Irregular codes show superior performance with respect to regular construc-
tions [RU01a, RSUO1, KS99b, KS00b, VSKO0O0b] if they are constructed carefully. How-
ever, to simplify the presentation, we focus here on regular constructions; the gen-
eralization of the methods presented here to irregular constructions is straightfor-
ward [VSK02, VSKO0Ob].

Encoding refers to the mapping of a K dimensional binary vector s € {0,1}*
(original message) to N dimensional codewords ¢ € {0,1}" (N > K) by the linear
product

t=G"s (mod 2), (8)
where all operations are performed in the field {0, 1} and are indicated by (mod 2). The
generator matrix is of the form

G=[I|B'4] (mod?2), (9)
where [ is the K x K identity matrix. By construction HG” = 0 (mod 2) and the
first K bits of t correspond to the original message s. Note that the generator matrix is
dense and each transmitted parity-check carries information about O(K’) message bits.

In the case of unbiased messages, with equal bit probability of having the values 1
and 0, the code rate corresponds to the ratio of message to codeword bits R = K/N.
Counting the number of unit elements in the matrix H one easily establishes the relation
j = (1= K/N)k, from which the code rate expression R = (1 — j/k) can be derived. In
the case of biased messages one should replace the number of bits K by the logarithm
(base 2) of the corresponding entropy.

To demonstrate the way in which Gallager’s code is utilized we consider the BSC,
where the encoded vector ¢ is corrupted by a noise vector m € {0,1}" with components
independently drawn from

Pn)=(1-p)d(n)+pd(n—1). (10)
The received vector takes the form
r=G"s+n (mod?2). (11)

Decoding is carried out by multiplying the received message by the matrix H to
produce the syndrome vector

z=Hr =Hn (mod 2) . (12)
Decoding refers to finding an estimate of n knowing z and H; this of course enables

one to obtain the original message vector s (the first K bits of » + n (mod 2)). The
following estimators may be employed in principle:
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¢ Maximum a Posteriori (MAP) - based on selecting the noise vector of the
lowest weight (smallest number of ’1’s) that obeys all parity checks (12); this
corresponds to mapping the received vector onto the nearest codeword. It also
implies the maximization of the posterior probability P(n|z, H). The noise vector
MAP estimator, which is also the maximum likelihood (ML) estimator of the
codeword, minimizes the block error probability [Iba99] (i.e., of having any errors
in a decoded message) but is computationally demanding and cannot be used in
practice.

¢ Marginal Posterior Maximizer (MPM) - selecting the most probable noise-
bit estimator, while marginalizing over all other bits (i.e., summing up over the
probabilities of all other variables). This relies on choosing the right prior for
the estimated noise vector bits; it has the property of minimizing the bit error
probability [Iba99] (the average error probability per bit) . MPM is in general
equally difficult to MAP decoding. However, good approximation methods exist
for codes that can be mapped onto sparse graphs, leading to successful decoding in
a broad range of noise values.

In practice, decoding is carried out mainly by employing some message passing algorithm
such as Belief Propagation (BP) [Pea88] (also known as probability propagation,
Bayesian networks) and its variations.

Irregular Gallager codes decoded using BP offer the best performance to date; these
results follow from the work of [RSU01, RUO1a, RUO1b].

3.2. Sourlas Code

In 1989 Sourlas pointed to the relation between simple LDPC codes and spin-glass
models [Sou89]. Although the codes presented by Sourlas are of limited practical
relevance they made a significant contribution to establishing the links between
statistical mechanics and information theory.

The code presented by Sourlas is strongly related to both Gallager and MN codes. It
is based on a regular generator matrix G giving rise to a codeword in the form (11). The
decoding problem can be mapped to known physical systems, Sourlas’s original paper
focuses on the SK [SK75, KS78] and random energy models [Der81, Saa98], where their
performance can be analysed.

The results presented are of little practical significance since sparse generator
matrices of the form presented (e.g., with two non-vanishing elements per row, k = 2)
result in a non-vanishing error probability; while using dense generator matrices, which
would potentially allow for a perfect retrieval of messages, is unfeasible due to decoding
difficulties (in fact, decoding codes with k£ > 3 is already difficult).
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3.3. MN Code

MacKay and Neal introduced the MN codes in 1995 [MN95, Mac99|, a variation on
Gallager codes which they discovered independently, giving rise to renewed interest in
LDPC codes.

MN codes are defined by two very sparse matrices; the main difference with respect
to Gallager codes is that information on both noise and signal is incorporated to the
syndrome vector. Both encoding and decoding follow a similar procedure as in (8)-(12)
except that the generator and decoding matrices take a different form.

The generator matrix GG is an N x K dense matrix defined by

G=B"'A (mod?2), (13)

with B being an N x N binary invertible sparse matrix and A an N x K binary sparse
matrix. Also MN codes come in both regular and irregular forms; again, for brevity we
concentrate here on regular codes, where the number of unit elements per row/column
in A is k and j respectively, and [ in B (for both row/column).

Using communication through a BSC as an example, the transmitted vector ¢ is
then corrupted by a binary noise vector n € {0,1}" as in (10) and the received vector
takes the same form as in (11). Decoding is performed by matrix multiplication of the
corrupted codeword by the matrix B, giving rise to the syndrome vector

z = Br = As+ Br (mod 2) . (14)

Estimating the original message and noise vector from the syndrome z and matrices A
and B is carried out in the same way as in Gallager codes.

Specific constructions of MN codes, especially those using Galois fields, rather than
the basic binary representation, show very good performance [Dav99, Dav98|.

3.4. Designing Capacity Approaching Codes

The main breakthrough in the design of capacity approaching codes came with the work
of Richardson and Urbanke [RSUO1]. They analysed a BP-based decoding mechanism,
by considering a macroscopic representation of the local fields, in the form of probability
distributions. The method, termed density evolution (DE), is employed for analyzing
the decoding process and used to derive stability conditions which facilitate the design of
capacity approaching codes. In fact, DE is similar to the Bethe approximation [MPV87]
used in the study of diluted systems. The relation between BP, density evolution and
the Bethe approximation has been pointed out in [KS98, VSK00a, YFWO02] (see also
section 4.4). Later on, Chung et al [CRUO1] presented a Gaussian-based approximated
DE and applied it to the design of capacity approaching codes.

Both DE and its Gaussian-based approximated version are aimed at designing
irregular constructions, we will therefore not review them in detail, but rather point
to the similarities between them and the statistical mechanics approach [VSK02].
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3.5. Turbo codes

The exciting developments in the area of LDPC codes were preceded by the discovery
of another family of capacity approaching codes - the Turbo codes [BGT93]. The
introduction of Turbo codes created excitement in the information theory community
as they represented a step increase in performance towards saturating Shannon’s limit,
with respect to previous record holders - BCH and Reed-Solomon codes [McEon)].

Turbo code is a variant of recursive convolutional codes; the latter are based on
shift registers (two in most cases, but more in general), used to generate codewords by
a recursive convolution of message bits. Various structures can be used in general,
although in most cases, the codeword comprises the original message segment and
recursively convoluted segments of it. Decoding can be carried out in various ways, in
conjunction with the convolution mechanism; for instance by employing BP techniques
for finding the most probable message bits [Fre98, FM98|.

In the case of turbo codes two vectors, representing the original message and a
permuted version of it, are used as inputs in a recursive convolutional procedure for
generating the codeword. The decoding process exploits correlations between bits of
the message vector and of the permuted vector, to obtain an estimate of the original
message.

An additional advantage of turbo codes is that they can be easily implemented
using simple electronic circuits (shift registers); the drawback is that they are difficult
to analyse and systematically improve. Turbo codes were also analysed using methods
of statistical mechanics [MS00, Mon00]. A brief description of convolutional mechanics
context, can be found in [Nis01].

4. Statistical Mechanics of Coding

The link between error correcting codes and statistical mechanics was first pointed out by
Sourlas [Sou89]. He mapped a simple parity check code onto spin glass models [Sou89],
focusing on the SK [SK75] and random energy models [Der81, Saa98] and showing that
the latter can be viewed as an ideal code capable of saturating Shannon’s bound at
vanishing code rates (without taking into account practical decoding considerations).
A few papers relating spin glass models and coding have been published since then
and before the renewed interest in LDPC codes. Among them one should mention
several studies of finite temperature decoding [Ruj93, Nis93, Sou94] and the analysis of
convolutional codes via transfer-matrix methods and power series expansions [AL95].
The rediscovery of LDPC codes brought with it excitement also to the statistical
mechanics community. After extending Sourlas’s work to the case of finite code
rates [KS99a, VSK99], regular and irregular MN [KMS00b, MKSV00, VSKO0O0b,
KMSV00] and Gallager [VSK00a, VSK01, Mon01, KSNS01, vMSKO01, vMSK02, NKS01]
codes have been studied using statistical mechanics, and a link between the two
frameworks has been established [KS98, VSK02, FLMRT02]. Insight gained from the
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statistical mechanics analysis also contributed to the design of highly efficient irregular
codes [KS99b, KS00b, KS00a, VSK02].

The similarity between Ising spin models and LDPC codes stems from the
formulation of the decoding problem. Employing the isomorphism between the additive
Boolean group ({0,1},®) and the multiplicative binary group ({+1,—1}, x), whereby
every addition in the Boolean group corresponds to a unique product in the binary
group and wice-versa, one can map the decoding problem to a Gibbs distribution by
constructing an appropriate Hamiltonian.

The decoding problem depends on posteriors like P(7 | »), where 7 is the
observation (received message or syndrome vector) and 7 is a candidate estimate of the
unknown original message s (or alternatively the noise vector from which an estimate
of the noise can be obtained). Applying Bayes’ theorem this posterior takes the form:

Py (T |7r)= exp[ln Py(r | 7) +In P,(T)], (15)

1
Z(r)
where o and ~ are hyper-parameters assumed to describe features like the encoding
scheme, source distribution and noise level. This form suggests the following family of
Gibbs measures (3 being the inverse temperature):

Paso( | 7) = 7 exp [~ FHor (7:7)] (16)

Hoy(T;7) = —1In Py(r | 7) —In Py(7). (17)
The received corrupted codeword depends on the coding mechanism and channel noise,
both of which represent the quenched disorder in the system.
The MAP estimator of s is clearly obtained at the ground state of the Hamiltonian,
SMap
j

i.e. by the sign of thermal averages = sgn((7j)p—o0) at zero temperature.

The MPM estimator corresponds to the sign of thermal averages §)'"™ =
sgn((7j)s=1) at a finite temperature, where true prior probability is assumed [Iba99].
This corresponds to using the Nishimori condition [Nis80, Nis93, Nis01, Ruj93]; and in

the notation we use here to a temperature 5 = 1.

4.1. Gallager’s Code

To provide a more detailed description of the analysis we have to focus on a specific
code and channel noise. We will explain the analysis for Gallager’s code and the BSC;
the analysis of the MN code and other channel types follows along the same lines.

A key point is the definition of an appropriate Hamiltonian; this can be done in
various ways. We identify two main components in the Hamiltonians that are necessary
for the analyses of all LDPC codes: a term that guarantees that all parity checks are
satisfied and a prior term that provides some statistical information on the dynamical
variables (7). In the case of a BSC, the Hamiltonian takes the form:

H:Z X(z“:[HT]“) —FiTj, (18)
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The parity checks x (Zu [HT] ) = 0 if parity check u is obeyed by the vector T
and y (-) = oc otherwise; this corresponds to the parity checks (12). The coefficient
F = (1/2)In[(1 — p)/p|, in conjunction with the appropriate choice of temperature
[ =1, corresponds to the correct prior assumption for the noise variables .

An explicit expression for x () in this case takes the form

X <Zu = [HT]M> = _715207 Z Dy, . 1k>(‘7<'il"'ik> Tiy o Ty, — 1) (19)
iyeeig)
where the tensor J represents the uncorrupted syndrome (12) in the binary (£1)
representation Ji;, i,..ix) = MiMi, - - - N, (ordered indices) and the tensor D represents
the connectivities of the matrix H; it takes the value 1 if the corresponding noise vector
indices are chosen (i.e., all corresponding indices of the matrix H are 1) and 0 otherwise.
For the time being we assume some fixed value for 7, but later on we will take the limit
7 — oc to obtain the desired properties of x (-).
To simplify the analysis and decouple the two quenched variables (true noise vector
n and the parity check matrix H) we use the gauge transformation 7; — 7;n; and
Ty ig) = Tiy i) iy - -+, = 1. This maps any general message to the case n; = 1
Vi (ferromagnetic configuration). We rewrite the Hamiltonian in the form:

)= > Doy (7375, anm- (20)

(1)

Once the Hamiltonian has been defined one can calculate the free energy of the
system and study emerging solutions for various choices of the parameters k,; and
levels of channel noise.

Two main methods can be employed for carrying out the analysis, the
replica method for diluted systems [KMS00b, MKSV00, FLMRT02] and the Bethe
approximation [VSK99].  In all calculations carried out under the Nishimori
condition, the dominant solution is known to be obtained under the replica symmetry
(RS) assumption [NSO01], providing similar results to those obtained by the Bethe
approximation [VSK99].

4.1.1. Replica Calculation -  Analyzing the typical performance of Gallager codes is
based on similar studies of diluted systems [WS87a]. The aim is to compute the free
energy:

F = —% lim %(ln Z)pn where, Z =Trr exp(—SH,(T;n)) . (21)

N—o00

from which the typical macroscopic (thermodynamic) behaviour can be obtained using
the Hamiltonian (20). Quenched averages are carried out over the connectivity tensor
D and the true noise vector n under the following constraints: The connectivity tensor
Dy

iripy € {0,1} is a random symmetric tensor with the properties:

Y Dijiy=N-K > Dptpiy =4 VI, (22)

(i1---ip,) (1=l ig)
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corresponding to the selection of N — K sets of indices. Noise vector bits n; take the
values —1/1 with probabilities p/1 — p respectively.
To carry out the calculation one may use the replica approach

1 10 N
F =5 Hm 5 g, M @)

Averages over the connectivity tensor ((---))p and noise vector n take the forms:

ZHé Y Dty —J | ()

{D}l 1 (i1=Lsi2,m+ik)
le 1 Z(ilzl,iQ,---,i y Diy=t, iy
N ZH ]{ Qi Zy+1 Z k) Tl SRR (24)
{D} I=1

and
(- D= > [1=p)dn—1) + pdn+1)] (- (25)

respectively.  Computing the averages and introducing auxiliary variables (order
parameters) through the identity

/dqal...amé <qal...am - = ZZTm o ) =1 (26)

gives rise to the following expression (detalls of the calculation can be found in [VSK02,
MKSV00]):

n
dqodqo dqoédq(l NF
’D,n N/( 21 ><:1 21 k! Z Z mqal -,

m=0 (a1 am)

— NZ Z da; - amQal “Qm HTr{Ta} [<exp FﬁnZTO‘]>
(a1+am) s )
dZ eXp [Z Zm:o Z(al...am> Z]\al...am 7-01 RPN Tam:| 27
S i Ziti ’ (27)

where T,, = e "7 cosh"(37) tanh™(B7) and N is a normalization factor.

4.1.2. Replica Symmetric Solution - The replica symmetric ansatz consists in assuming
the following form for the order parameters:

A / dr m(2) 2™ Gy, = / di 7 () 7™, (28)

By performing the limit v — oc, using (28) in (27), computing the normalization
constant N, integrating in the complex variable Z, computing the trace and using the
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replica identity, n — 0, one finds:

. .
F= - 3 Extrﬂﬁ{% In2 +j/dxd§ 7(x) T(Z) In(1 + z7)

_ %/Hdl«j w(a;) n(1+ ]z (29)

)

Variation with respect to the parameters yields the saddle-point equations:
k-1 r k-1
7(@) = /H dz; m(x;) 6 |T — H:r] (30)
i=1 L i=1
Jj=1 j—1
m(z) = /Hd@ 7(7) <5 [x—tanh (ﬁFn + ) atanh @)D ,
=1 n

=1

J

- /Hdi 7(7) <1n > e T+ o)

Lo==+1 =1

where f=1and F =3 In (1%”) (Nishimori temperature) for MPM decoding in BSC.
One of the most important macroscopic parameters we would like to find is the
%Zf\; nin;)pn between the estimate 7; = sgn((r;)3) and the

actual noise n;; this can be calculated from

p = / dh P(h) sen(h) (31)

P(h) = /ﬁd@ (7)) <5 [h — tanh <6Fn + iatanh §l>]> :

=1

typical overlap p = (

4.1.3. Typical Performance - To study the various phases of the system one should first
solve the saddle point equations (30). In most cases this requires resorting to numerical
methods, except for some expected states such as the ferromagnetic and paramagnetic
solutions. For instance, the free energy for the ferromagnetic state (F), where

me(@) =0le — 1] 7(@) =07 — 1], (32)

and at Nishimori’s temperature, is simply 7, = —F (1 — 2p), with overlap p = 1.

The ferromagnetic solution is the only stable solution up to a specific noise level pg, which
identifies the dynamical transition noise level, where meta-stable states first appear.
Above py, numerical calculations show the emergence of a second stable solution with
p < 1 (suboptimal ferromagnetic); and computationally efficient decoding algorithms
cannot identify the dominant solution in feasible time scales. A sketch describing the
dependence of the free energy landscape on the noise level is shown in Fig.3(a) together
with a typical numerically-obtained suboptimal ferromagnetic solution (Fig.3(b)) for
k=4, 57 = 3 and p = 0.2. The ferromagnetic state is always a stable solution of
(30) and is present for all choices of noise level and construction parameters j and k.
It remains dominant up to the thermodynamic transition point p., above which, the
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suboptimal ferromagnetic solution becomes the global minimum dominating the system
thermodynamics. The identification of both transition points p; and p. provides a
complete description of the typical performance of infinitely long Gallager codes.

Transitions for Gallager codes with k£ = 6 compared with Shannon’s bound (dashed
line), the information theory upper bound (full line) and thermodynamic transition
points obtained numerically (o) are shown in Fig.4(a). The thermodynamic transition
point obtained p. coincides, within the numerical precision, with the information
theoretic upper bound [Mac99]. The ferromagnetic and suboptimal ferromagnetic free
energies are shown in Fig.4(b), for k¥ = 4 and R = 1/4, defining the critical points py
and p,.

However, the suboptimal ferromagnetic solution has been obtained under the RS
ansatz; one can show that above p, its entropy becomes negative and, therefore,
unphysical (at p. the entropy of the suboptimal ferromagnetic state becomes positive
again). This is a clear indication that the replica symmetric solution becomes unstable.
A 1-step replica symmetry breaking ansatz has been employed in [FLMRT02] to obtain
the solution and complexity of the suboptimal ferromagnetic state and to identify the
exact dynamical transition point py. The calculation, that considered both BSC and
BEC, but focuses on the latter, leads to the same result as that obtained by the RS
calculation.

To study the dynamical transition, Franz et al [FLMRTO02] calculated the number of
meta-stable states with a given energy density e, for the BEC, using established methods
from the physics of disordered systems [Mon95, FP95]. The number of metastable states

5.0¢10™ w ‘ ‘ T

(a) (b) :

——————————————————— 0.06 s ! ‘ ‘ ‘ %
-1 -0.5 0 0.5 1
0 Ry R

Figure 3. (a) Pictorial representation of the RS free energy landscape changing with
the noise level p. Up to pg there is only one stable state F' corresponding to the
ferromagnetic state with p = 1. At pg, a second stable suboptimal ferromagnetic state
F' emerges with p < 1, as the noise level increases, coexistence is attained at pe.
Above p., F' becomes the global minimum dominating the system thermodynamics.
(b) Numerically obtained suboptimal ferromagnetic solution mp: (z) for the case k = 4,
j = 3 and p = 0.2. Circles correspond to the experimental histogram obtained by
decoding with BP in 100 runs for 10 different random connectivity matrices.
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Figure 4. (a) Transitions for Gallager codes with k¥ = 6 compared with
Shannon’s bound (dashed line), the information theory upper bound (full line) and
thermodynamic transition obtained numerically (o). Transitions obtained by Monte-
carlo integration of the saddle point equations (<) and by simulations of BP decoding
(+, M = 5000 averaged over 20 runs) are also shown. Symbols are chosen larger than
the error bars. (b) Free-energies for k = 4, j = 3 and R = 1/4. The full line corresponds
to the free energy of thermodynamic states. Up to pg only the ferromagnetic state is

present. The ferromagnetic state then dominates the thermodynamics up to p., where
thermodynamic coexistence with suboptimal ferromagnetic states takes place. Dashed
lines correspond to RS free-energies of non-dominant meta-stable states.

can be described as
Nus(€) ~ eVZO (33)

where Y(€) defines the complexity. Figure 5 shows a plot of the resulting complexity
curves for three different values of the erasure probability p in the case of a BEC
and a (6, 3) regular code (an “almost factorized” variational ansatz has been used for
calculating the 1-step RSB free energy). The picture that emerges is as follows:

e In the low noise region (p < pg), no meta-stable states exist and local search
algorithms are able to recover the erased bits.

e In the intermediate noise region (p; < p < p.) an exponentially large number of
meta-stable states appear with energy densities € in the range €, < € < ¢4, defining
the static and dynamic energies, with €, > 0. The best estimated codeword, given
the corrupted one, is the original transmitted codeword; however, local algorithms
fail to find the best estimate due to a large number of meta-stable solutions.

e Above p. we have ¢, = 0 and a fraction of the metastable states consists of valid
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Figure 5. The complexity X(e) for (from top to bottom) p = 0.45 (below p.),
p = 0.5, and p = 0.55 (above p.); calculated for the case of a BEC and a (6,3)
regular code (Copied under permission from S. Franz, M. Leone, A. Montanari and
F. Ricci-Tersenghi, The Dynamic Phase Transition for Decoding Algorithms, Phys.
Rev. E 66, 046120, (2002)[FLMRTO02]. Copyright (2002) by the American Physical
Society.).

codewords. Moreover, ¥(0) (which gives the number of such codewords) coincides
with the complexity of the paramagnetic entropy [FLMRT02].

4.2. MacKay-Neal Codes

The analysis of MN codes is quite similar to that of Gallager’s codes, the only
difference being the consideration of both message and noise vectors in constructing
the appropriate Hamiltonian which, after gauging, takes the form

Hy(o,Ti8,m)= — 7 Zp<ir) (04 -+ 04, Tpy -+ Ty — 1)
(ar)

k N
— F, Z s;o5 — F), Z Ny Ty, (34)
i=1 r=1

where (27) is a shorthand for (iy - -ixry---r); Fs and F, correspond to the respective
Nishimori conditions (Fy = 0 in the case of unbiased messages).

A similar analysis to that of Gallager codes results in the following expression for
the free energy
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- /lljdi %(;a)] <1n [Z e*sﬂst[(Hm) >
)}

A=%1 i=1
!
-« / [H dg, ¢(z7r)] < In [Z il | (YA
r=1
where « = N/K = j/k, and 7, , &5\, ¢ correspond to RS order parameters obtained for

A==+1 r=1

both signal and noise vectors, respectively, in the same manner as in section 4.1.2. Full
details of the calculation can be found in [VSK02, MKSV00].

The theoretical framework employed for both codes is very similar; however, the
solutions obtained analytically and numerically show some interesting differences. In
the case of biased messages (Fy # 0), the results obtained are qualitatively similar to
those obtained for Gallager codes, but a different picture emerges when the messages
are unbiased, summarized in Fig.6 for the cases k = 1,2 and k£ > 3.

Arguably the most intriguing solution is for the case of & > 3, suggesting that
all regular MN codes with k£ > 3 are theoretically capable of saturating Shannon’s
limit [KMS00b, MKSV00]. This result has been received with great surprise by the
information theory community as it is believed that saturating Shannon’s limit is only
possible by LDPC codes of infinite connectivity [Mac99, SU03]. One intuitive argument
that we can offer [vMSKO02] is to do with the randomness of the syndrome vector:
Any finite connectivity Gallager code takes modulo 2 sums of elements sampled from
a biased noise vector and therefore produces a slightly biased syndrome vector; it will
only become unbiased once the number of elements sampled diverges. In MN codes,
on the other hand, each syndrome bit is obtained from a combination of biased (noise)
and unbiased (message) bits, and is therefore truly unbiased even when the number of
sampled bits is small.

4.3. Other Channels

Extending the analysis above to other channel types is straightforward. The AWGN
has been studied in a very similar context in [Ruj93, KS99a, NW99, Mon01, TS03c].
Each real valued codeword bit can be interpreted as an effective flip rate, leading to a
similar Hamiltonian

H :Ni_K X (Zu = [HT]#> - i log p(7iyi)- (35)

where the last term represents the received real valued vector y and the effective flip noise
vector 7. It is the log-likelihood ratio h(y;) = (1/2)log(p(y,)/p(—y;)) of the channel
noise y; that serves as the external field acting on site j; the channel characteristics
define the field distribution. Analyzing the effect of having different communication
channels on the code properties, therefore reduces to investigating the effect of different
field distributions on the physical properties of the system. For instance, for the AWGN,
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(a) Ferro

o
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Figure 6. Figures in the left side show schematic representations free energy
landscapes while figures on the right show overlaps p a function of the noise level p; thick
and thin lines denote stable solutions of lower and higher free energies respectively,
dashed lines correspond to unstable solutions. (a) k > 3 or l > 3, k > 1. The solid
line in the horizontal axis represents the phase where the ferromagnetic solution (F,
p = 1) is thermodynamically dominant. The paramagnetic solution (P, p = 0) becomes
dominant at p., that coincides with the channel capacity. (b) k =2 and I = 2 - The
ferromagnetic solution and its mirror image are the only minima of the free energy up
to pg (solid line). Above p, sub-optimal ferromagnetic solutions (F’, p < 1) emerge.
The thermodynamic transition occurs at p3 is below the maximum noise level given by
the channel capacity, which implies that these codes do not saturate Shannon’s bound
even if optimally decoded. (c) k = 1 - The solid line in the horizontal axis represents the
range of noise levels where the ferromagnetic state (F) is the only minimum of the free
energy. The sub-optimal ferromagnetic state (F’) appears in the region represented by
the dashed line. The dynamical transition is denoted by pg, where F’ first appears. For
higher noise levels, the system becomes bistable and an additional unstable solution of
the saddle point equations necessarily appears. The thermodynamical transition occurs
at the noise level p; (smaller than Shannon’s limit) where F’ becomes dominant.
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v -

Figure 7. First step in the construction of Husimi cactus with £ = 3 and connectivity
j=4.

this reduces to (for a detailed description see [TS03c])

0'2 —(h—5—2)2/25"2
PAWGN (h) =/ 5—e” "7 e (36)

The calculation then follows in a similar way to those described previously and
produces qualitatively the same results for all channels studied [TS03c]; the exact
numerical details change from channel to channel. Several different channels for both
Gallager and MN codes, in a broad parameter range, have been examined in [TS03c];
among the channels studied: the binary-input additive-white-Gaussian-noise channel
(BIAWGNC), the binary-input Laplace channel (BILC) and the general binary-input
output-symmetric (BIOS) memoryless channel.

4.4. The Bethe Approximation

An alternative method for carrying out the analysis is by employing the Bethe
approximation [WS87b] (also termed TAP for diluted systems [KS98, VSK99, VSK02]
and Husimi cactus [VSK00a]) that is exactly solvable [Guj95, BL82, RK92, Gol91]. Tt
assumes a tree-like graph of connectivity 7 and a polygon of k£ vertices with one Ising
spin in each vertex. All spins in a polygon interact through a single coupling element
D,, where /1 represents a shorthand notation for a selection of indices (iy - --ix); one
of the spins is called the base spin (generation 0), as shown in Fig.7. In a generic
step, the base spins of the (j — 1)(k — 1) polygons in generation ¢ — 1 are attached
to k — 1 vertices of a polygon in the next generation ¢. This process is iterated until
a maximum generation tyax is reached, the graph is then completed by attaching j
uncorrelated branches of t;max generations at their base spins. In this way each spin
inside the graph is connected to j polygons exactly. The local magnetization at the
centre m; can be obtained by fixing boundary (initial) conditions in the 0-th generation
and iterating the related recursion equations until generation tyax is reached. Carrying
out the calculation in the thermodynamic limit corresponds to having tmax ~ In NV
generations and N — oo.

We adopt here the approach presented in [RK92| for obtaining recursion relations.
The probability distribution P,;(7;) for the base spin of the polygon s is connected to
(7 —1)(k — 1) distributions P, (7;), with v € G(I) \ = (the set of all polygons linked to [
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but 1) of polygons in the previous generation:
! [ 1
P,i(ri) = G Try.y exp [67 TuTi H =11+ BFTZJ (37)

leL(p\i
X H H P,,l Tl

veG(\plel(p)\i
where L£(1) denotes the polygon pu of the lattice and the trace is over the spins 7; such
that [ € L(u) \ i; J, represents the corresponding syndrome vector.
Calculating the effective field Z,; on a base spin [ due to neighbours in polygon
v, taking v — oc and S = 1, one obtains the effective local magnetization due to
interactions with the nearest neighbours in one branch m, = tanh(z,), where

Zu=atanh |7, [[ tanh(F+ ) 2,) (38)
leL(pu)\i veG()\u

The effective local field on a base spin [ of a polygon p due to j — 1 branches in the
previous generation and due to the external field is

tu=F+ > Fu. (39)
veG(h\p

The set of equations (38-39) can be rewritten in terms of m, and m, [Mac99, KS98,
KF98]

my; = tanh | F + Z atanh (m,,;)
veg(h)\u
ffzm ‘7” H my (40)
leL(pu)\i

giving rise to a closed set of iterative equations (identical to those of BP) that can also
be used for decoding. Iterating the coupled set of equations (40) one converges to a
stable minimum and can compute the following approximated free energy:

N-K
F({mp, My }) Z Z In(1 + my My ) — Z In(1+ 7, H Myr)
p=1

u=1 rel(p rel(u)

- Zln e T[T A+ mu)+e™™ [ @—mu)| . (41)
neg(l) neg(l)

Equations (40) represent the interdependence of microscopic quantities; a
macroscopic description can be constructed by retaining only statistical information
about the system, namely by describing the evolution of histograms of variables z,; and
Ty

Assuming that the effective fields z,, and Z,; are random variables independently
sampled from the distributions P(z) and P(Z) respectively, and that n, is sampled from
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P(n)=(1-=p)d(n—1) +pd(n+1), one can then establish the following recursion
relation in the space of probability distributions [BL82]:

Plr) = /an(n) /j]jd;a Pi() 6

r— Fn— ]i ffl]
P, 1(7) = /l:[ dx; P 1(x;) 6 [:3? — atanh <1:[ tanh(:cl))] , (42)

=1
where P;(z) is the distribution of effective fields at the ¢-th generation due to the previous
generations and external fields; in the thermodynamic limit the distribution far from
the boundary is P (z) (generation ¢t — oc). The local field distribution at the central
site is computed by replacing j — 1 by j in the first equation (42):

P(h) = /dn P(n) /Hd@ Po(@) 6 |z — Fn— Z@] . (43)

It is easy to see that P (z) and Py (%) satisfy equations (30) obtained by the replica
symmetric assumption [KMS00b, MKSV00, VSKO0O0b] if the variables describing fields
are transformed to those of local magnetizations through x — tanh(f8z). It is therefore

not surprising that one obtains identical results to those obtained using the RS analysis
and using BP decoding. In fact, the DE method used extensively in the IT community
for analyzing LDPC codes is similar to the macroscopic iterative equations (42).

4.5. Weight and Magnetization Enumerators

A different approach to analyzing properties of LDPC codes relies on a microscopic
calculation where solution vectors are forced to lie on a shell defined by the overlap
with the true solution (weight enumerator) or by a certain magnetization value
(magnetization enumerator); both can be used to define critical transition points of
LDPC codes. We focus here on the magnetization enumerator (M); calculations
involving the weight enumerator will be mentioned in section 5.2.

The corresponding Hamiltonian is similar to (20) except for the second term that
defines the magnetization shell (after gauging)

N
Hoym(T) = —7 Z Dy iy (Tiy o oomiy —1) =6 (Z T — m) . (44)
=1

(1)
Calculating the related entropy as a function of the magnetization m provides an
intuitive and transparent explanation to the relation between different decoding schemes
such as typical set decoding, MAP, and finite temperature decoding (MPM) [vMSKO1,
vMSKO02].

Carrying out the analysis along the same lines as before [Mon01, vMSKOI,
vMSKO02], one obtains expressions for the magnetization enumerator as a function of m,
similar to those sketched in Fig.8; from these plots one can provide a simple explanation
to the relation between various (theoretical) decoding methods, and calculate the
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Figure 8. The qualitative picture of M(m)>0 (solid curve lines) for different values
of p. For MAP, MPM and typical set decoding, only the relative values of my(p)
and mg(p) determine the critical noise level. Dashed lines correspond to the energy
contribution of —3F at Nishimori’s condition (8 = 1). The states with the lowest
free energy are indicated by a point . a) Sub-critical noise levels p < p., where
my(p) < mo(p), there are no solutions with higher magnetization than mg(p), and
the correct solution has the lowest free energy (free energy difference corresponds to
the distance between the dashed line and the magnetization enumerator curve). b)
Critical noise level p=p., where my(p) =mqo(p). The minimal free energy of the sub-
optimal solutions coincides with that of the correct solution at Nishimori’s condition
(all meet at my(p) =mq(p)). ¢) Over-critical noise levels p > p. where many solutions
have a higher magnetization than the true typical one. The minimal free energy of
sub-optimal solutions is lower than that of the true solution.

thermodynamic transition point p.. The magnetization enumerator M (m) (curved solid
line) takes positive values only in the interval [m_(p), m(p)]; for even k, M(m) is an
even function of m and m_(p) = —my(p). The maximum value of M(m) is always
(1—R)In(2) for Gallager codes, and RIn(2) for MN codes. The true noise n has the
typical magnetization of the noise vector; in the case of a BSC m(n)=mg(p) =1-2p (the
typical set magnetization is denoted by a dashed-dotted line). States with the lowest
free energy are denoted by a point (e).

Selection of the best estimates by the various decoding schemes can be summarized
as follows:

¢ Maximum likelihood (MAP) decoding - selects the solution vector 7 (obeying
all parity checks) with the highest magnetization. As the noise level increases, the
gap between mg(p) and m,(p)) closes; the critical noise level p. is determined by
the condition m.(p.) =mo(pe)-
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e Typical set decoding - is based on randomly selecting a solution vector 7T
with the expected magnetization m(7) = mgo(p) [AJKT01]; an error is declared
when there is no such vector or when there are several solution vectors with
magnetization m(7) = mg(p). The critical noise level p, is determined by the
condition my(p.) =mg(p.), and is identical to the point obtained by a MAP decoder.

e Finite temperature (MPM) decoding - Selection is based on a free energy

minimization [KMS00b], where an energy term —Fm(7) is added to the parity
check term (20). Using the thermodynamic relation F = U — %S, £ being the
inverse temperature (Nishimori’s condition corresponds to setting 5 = 1), U the
internal energy and S the entropy; the free energy of the sub-optimal solutions is
given by F(m)= —Fm—%./\/l(m) (for M(m)>0), while that of the true solution is
given by —Fmq(p).
The selection process is explained graphically in Fig.8. The energy difference
between sub-optimal solutions relative to that of the correct solution, is given by the
dashed line of slope —F through the point (mg(p),0); to calculate the free energy
of any suboptimal solution one should also consider its entropy, represented by the
magnetization enumerator curve (the true solution is of zero entropy). Therefore,
the distance between M (m) and the dashed line represents the difference between
the lowest free energy among suboptimal solutions and that of the true solution.
Solutions of magnetization m for which M(m) lies above/below this line, have a
lower /higher free energy, respectively. The critical noise level p,. is defined by the
lowest p value for which there are sub-optimal solutions with a free energy equal to
—F'my(p) (i-e., a single contact point between the dashed line and the magnetization
enumerator curve). It coincides with the point obtained by MAP [MNO00] and
typical set decoding [vMSKO02].

The critical noise level is defined by following the dependence of m,; on the noise
level and finding the point m.(p.) =mq(p.) as described in Fig.9; results obtained for the
critical noise level in the case of Gallager codes of various parameters are also shown (for
both quenched and annealed calculations of the free energy related to (44), denoted by
a subscript a/q). The annealed approximation gives a much more pessimistic estimate
for p. as it overestimates M by giving high weight to exponentially rare events. Results
obtained by the quenched calculations are similar to those reported in [KSNS01] using
another method as explained in section 5.2, but are more optimistic than those reported
in the IT literature which rely on bounding techniques.

The analysis has also been carried out for MN codes [vMSKO01, vMSK02] and in
a range of channel types [SYMS03]. Interestingly, the location of m, remains fixed
for MN codes with £ > 3 and for £ = 2, [ > 3, leading to a thermodynamical
transition point that saturates Shannon’s limit in agreement with our previous

results [KMS00b, MKSV00].
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a) Im b) (k,7) (6,3) | (5,3) | (6,4) | (4,3)
Code rate 1/2 2/5 1/3 1/4
o IT 0.0915 | 0.129 | 0.170 | 0.205
T ™ya(p) Pea (Ma) | 0.031 | 0.066 | 0.162 | 0.195
ha(P) Peq (M) | 0.0998 | 0.1365 | 0.1725 | 0.2095
0 De,a Peyg 0.5\( D Shannon pg, | 0.109 | 0.145 | 0.174 | 0.214
mo(p)

Figure 9. a) Determining the critical noise levels p, ./, (quenched and annealed
calculations) based on the function M,,, for Gallager codes. b) Comparison of
different critical noise level (p.) estimates for Gallager codes. Typical set decoding
estimates have been obtained via the methods of IT [AJK'01], based on the weight
enumerator. Shannon’s limit denotes the highest theoretically achievable critical noise
level pgp, for any code [Sha48].

5. Optimal Performance : Statistical Mechanics vs. IT

DE offers a useful framework for evaluating error correction performance achieved by
a practical decoding algorithm on the basis of the BP/TAP approach. However, this
does not necessarily mean the best performance among all possible decoding schemes.
For clarifying the potential of a code ensemble, it is important to assess the theoretical
error correction ability, disregarding computational cost. Several methods have been
developed for this purpose in the IT literature. In this section, we introduce two
representative schemes, termed the Gallager’s methodology and typical set analysis, and
relate them to methods known in statistical mechanics (SM). For simplicity, we hereafter
focus on (j, k) regular Gallager-type LDPC codes and a BSC of flip probability p;
extension to other types of codes such as MN codes and other channels is straightforward.

5.1. Gallager’s Methodology: Error Probability for Finite Code Lengths

Shannon’s seminal papers indicated that the best code can provide error free
communication if code rate R is below Shannon’s limit when the code length becomes
infinite. However, as any code in use has a finite code length N, it is practically
important and theoretically interesting to assess the probability of error correction
failure as a function of the code length.

Gallager’s variational method is a systematic scheme for upper-bounding the error
probability of the best code in a given code ensemble C by averaging it over the ensemble.
In the IT literature, it is usually assumed that decoding is performed directly on
codewords and, therefore, Gallager’s method is conventionally introduced in a manner
suitable for this decoding approach. However, this formulation is not convenient here
because the decoding problem is provided first with respect to noise vectors for Gallager-
type codes. We therefore introduce a slightly different representation of Gallager’s
method, which is applicable to a range of decoding schemes.
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5.1.1. Gallager’s Inequality for the MAP FEstimator - Suppose that binary vectors

x and y, which consist of K-bit and N-bit components, respectively, are statistically

related via a certain joint distribution P(x,y). Let us consider an estimation problem

of  given y. Following the Bayesian framework, it can be shown that the block error

probability, which is the probability that the estimation result & given y is not identical

to the vector &, is minimized by the maximum a posteriori probability (MAP) estimator
P(z,y)

T = argmax {P(x = argmax < —————+——
MAP g:v {P(z|y)} gm {Zm’ P(m’,y)}

= arg;:nax{P(a:, y)} . (45)

In order to evaluate the block error probability of this estimator, we introduce an
indicator function Apap(x,y) which returns 1 if £y 4p # @ and 0, otherwise. Then,
the block error probability is computed as

Pp = Z P(z,y) Ayar(z,y) . (46)
.y
Gallager’s methodology relies on upper-bounding this probability by utilizing the

following inequality for the indicator function
P

Ayap(z,y) < Z <M>A ; (47)
~ oz \Pl@y)
which holds for arbitrary A > 0 and p > 0. This inequality is proved as follows: If
Tyap = ®, Apyap(x,y) = 0. However, the right hand side is always non-negative,
which means that Eq.(47) holds. On the other hand, if Zy;ap # @, Ayap(x,y) = 1.
However, this implies that there exists at least one vector &” # x such that P(z",y) >
P(x,y). This can be generalized as Apyap(z,y) = 1 < (P(&",y)/P(z,y)) <
dwpx (Pl y)/ P, y))* for Vp > 0; Eq.(47) immediately follows because the ratio
P(x',y)/P(x,y) is always non-negative and Vp > 0, 2 > 1 holds for Vz > 1.
Inserting Eq.(47) into Eq.(46) we obtain Gallager’s inequality

Py <} Pl@y)| > <%>A |

.y T'#T

=Y P M@y | Y Py) | . (48)
.y T'4T

which provides the tightest inequality by choosing A = 1/(1+ p) when p is fixed. As this

inequality holds for Vp > 0 and VA > 0, the bound can be optimized by minimization

of the right hand side with respect to p > 0 keeping A = 1/(1 + p).

5.1.2. Application for Decoding Gallager-type Codes - Equation (48) can be employed
for evaluating the block error probability of the decoding problem of Gallager-type codes.
For this, we introduce the joint probability of noise vector n and syndrome vector z
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given a parity check matrix H; employing the Ising spin representation

N
eF Zi:l ni

P(n,z|H) O ng| x ——————, 49
| H “’Zel;[m (2 cosh(F))™ (49)
where §(z,y) = 1 for x = y and 0 otherwise, £(u) denotes the set of indices (i - - i)
for non-zero elements in the p-th row of H and F = (1/2)In[(1 — p)/p]. The first
term enforces the parity checks (12) (representing the likelihood term P(z|n)), while
the second represents the appropriate prior term; this is because the noise vector n is
generated in the BSC with the prior probability P(n) = eF i / (2 cosh(F))Y

Using Eq.(48) in Eq.(49) leads to an upper-bound of the block error probability of
the MAP decoding for a given parity check matrix H as

p
Pp(H) < ZPI’A"(n,ZW) Z PA(n/, z|H) (50)
n.z n'#n
p
(12 F N n; Nk N
=y —— 5 nnt | x SFSL |
; (2cosh(F))™ > 11 H

n'+n p=1 €L
where summation over z has been already carried out, resultlng in a contribution
N-K N-K .

| 6(Hi€£(u) N, [Tice n;> = [l[,o 6(1,]_[2.@(”) nln;> For a given code
ensemble, the minimum of the block error probability P} is always uppderbounded
by the average error probability (Pg(H))y, where ((---))y denotes average over
the ensemble of codes (or parity check matrices H) under appropriate constraints.
Therefore, we here obtain an upper bound for the block error probability of the best
code in the (j, k)-Gallager code ensemble by

N p
6(1_/\P)F doimg i

N-K
Pr < < 5 /\FZ?rzln’i , 51
p= ; (2c0sh(F))N < ngn £[1 zelc_[ i >H oy

which can be optimized by minimizing the right hand side with respect to p > 0, keeping
A=1/(1+p).

5.1.3. Rigorous Bound - It has been shown, using methods of IT, that the right hand
side of Eq.(51) can be decomposed into two parts as

O(N™") + O(exp [-NE]), (52)

for naively (and completely randomly) constructed (j,k)-Gallager code ensembles,
where 7 is a certain power determined by parameters j,k and N is assumed large
[Gal63, MBO1]. This implies that the bound vanishes to 0 as N — oo if the exponent E,
which depends on the adjustable parameters p, A > 0, can be maximized to a positive
value. The rate of convergence is quite slow due to a polynomially small fraction of
poor codes in the ensemble, which have short cycles of particular kinds in the parity
check matrices (Fig.10). Therefore, the behaviour of the average bound (51-52) can be
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Figure 10. A configuration in a parity check matrix H of j = 3 that deteriorates
the decoding performance (a), represented as a short cycle of a particular type in the
graphical expression (b). When two variables indexed by i1 and i» share all of the
same j = 3 checks which are denoted as 1, pus and us, simultaneous flips of these two
do not break the parity check condition. This makes it difficult to identify correctly
the true noise vector n. When H is generated uniformly under the (j, k)-constrains,
this kind of configuration occurs with a probability of O(N 1) in the case of j = 3,
which yields a polynomially slow decay in Eq.(51).

improved by expurgating such codes from the ensemble. In [MBO01], it is shown that the
expurgated ensemble exhibits an exponential behaviour, characterized by the second
term of Eq.(52).

For expurgated ensembles, one can evaluate a rigorous lower bound of the exponent
E as a function of p and A, with an extra constraint, by employing Jensen’s inequality
(X*) < (X)?, which is valid for a non-negative random number X and 0 < p < 1. This

yields
j 14 2* , 14 22
E,(p.\:R.p) = FExt _J 1
irn = B o |- (F55) +im (557)
’ ]_+Zi”n,l J
-1 AFnn
(e ()
n'=+1 )\p
— In2cosh(1 — Ap)F 4+ In2cosh F'}, (53)
where [-], = > ,_4; (- /(2cosh(1 — Ap)F) and Extr(---) denotes

extremization over the variables |z| < 1 and |#| < 1. This procedure is analogous
to the annealed approzimation of SM, similar to the approach taken in [SST92].

For j,k — oo, while keeping R = 1 — j/k = K/N finite, the maximization of
Eq.(53) with respect to 0 < p < 1 keeping A = 1/(1 + p) reproduces the random coding
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E,(p; R,p)

Figure 11. Schematic profiles of E,(p; R, p).

exponent

(1-R)In2—In(yp+vT=p)°, 0<p<p,
ERC(RJP) = Pe In % + (1 - pC) In 11__1;6; P <P < DPe, (54)
0, Pe <D,
which is known in IT literature [Gal68], where the BSC flip rate p = (1 — tanh(F))/2,

pe is a critical noise rate that satisfies the Shannon’s limit R = 1 — Hy(p.) and

m = p2/ (P2 + (1 — p.)?), is often termed the Bhattachalya’s limit. For relatively high
rates R, it is known that this exponent represents the exact decay rate of the best
possible codes, which implies that there is no room for improving the bound (54) in
the case of j, k — oo (but obviously not for finite j, k£ values where no exact expression
exists in the IT literature).

5.1.4. Improving the Bound by the Replica Method - However, the exact result for
infinite j, k£ does not necessarily mean that the exponent (54) provides the tightest
bound for finite j, k as well. Actually, direct evaluation of Eq.(51) using the replica
method yields another exponent [KSNSO01]

. k p ~ P
x J T+, . <(1+xm) >
E,(p,\ R, p) = Extr* { —Ln{ [ L= Ti +jIn
i p
_ 1n<[< E eAan’ IJI <1+£unl>> >
2
n'=%+1 /\p #

n=1
— In2cosh(1 — Ap)F 4+ In2cosh F'}, (55)
under the RS ansatz, where (---)_ denotes an average with respect to dummy variables
z; € [-1,1] (1 = 1,2,...,k) over an identical variational distribution 7(z), and
similarly for , € [-1,1] (# = 1,2,...,7) and (---).. The functional extremization

Extr*z()z) {- -} excludes the ferromagnetic solution of 7p(2) = §(x — 1) and 7x(%) =
6z —1).

For finite j, k, E,(p, A\; R, p) is maximized by A\ = 1/(1 + p) for any given p > 0,
whereas FE,(p, \; R,p) is not. For the partially maximized exponent E,(p; R,p) =
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E,(p,1/(1+ p); R, p), the following properties generally hold (Fig. 11):
lim B, (p: R.p) =0 , (56)
p—0
2
op?
This implies that for a given R, the noise threshold p. below which max,~¢{E,(p; R,p)}

Eq(p;R,p) <0 . (57)

becomes positive, indicating that the average error bound vanishes for N — oo, is
determined by a condition

.0
lim a—qu(p; R,p.)=0. (58)

p—0

Inserted into Eq.(55), this reduces to the phase boundary condition
fNF_szoa (59)

where Fr = —F tanh(F') and Fyr are the free energies of the ferromagnetic and non-
ferromagnetic solutions, respectively, calculated from the quenched variational free
energy (29) for f = 1; the latter validates the RS ansatz, used here, as no replica
symmetry breaking effect is expected at the Nishimori condition [NS01]. This also
implies that the noise threshold of MAP decoding, which corresponds to the zero
temperature state in statistical mechanics, is identical to that of the MPM decoding,
the performance of which is optimized at the Nishimori’s temperature, in agreement
with results obtained in the IT literature [MNOO].

As the exponent E,(p, A\; R, p) is directly evaluated from Eq.(51) without employing
additional inequalities, the optimized bound obtained should be tighter and provide
more optimistic lower bounds for noise threshold p. than that from E,(p, A\; R, p).
Clearly one of the main drawbacks of the replica method is the lack of mathematical
rigour; recent research [Gue03, Tal03] proved the exactness of results obtained using the
replica methods in extensively connected systems. One can hope that similar proofs
for diluted systems will follow, making these results much stronger. In any case the
difference between the two exponents becomes smaller as j, k — oc given a code rate R

(Table 1).

5.1.5.  Reliability Fxponent - The exponent that represents the fastest decay rate
of decoding error probability achievable by the best codes in the ensemble is termed
reliability exponent (RE) [Gal68]. The random coding exponent (54) coincides with the
RE for relatively high code rates R. However, for a low code rate region, there still
exists a narrow gap between the current tightest lower- and upper bounds of the RE,
and the exact expression is yet to be determined [MBO01, KSNS01, Bar(03].

Exact evaluation of RE by improving lower or upper bounds of the error probability,
the preferred approach in the IT community, may be difficult since using inequalities
has the potential to provide loose bounds. In fact, starting from inequality (47), one
cannot improve the bound further, since inequality (47) itself does not provide a tight
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R | (j,k) | ANNEAL1 | ANNEAL2 | QUENCH | SHANNON
121 (3,6)| 0.0678 0.0915 0.0998 0.109
2/5 | (3,5)| 0.115 0.129 0.136 0.145
1/3|(4,6)| 0.1705 0.1709 0.173 0.174
1/3 | (2,3) 0 0.0670 0.0670 0.174
172 | (2,4) 0 0.0286 0.0286 0.109

Table 1. Comparison between different evaluation schemes of the noise threshold p,
for MAP decoding. ANNEALL indicates the lower bound of p. obtained by maximizing
E.(p,\; R,p) with respect to p with keeping A = 1/(1 + p). Lower bounds for
ANNNEAL2 are evaluated by maximizing the same exponent with respect to p > 0
and A > 0 without imposing additional conditions; it provides a tighter bound since the
optimization with respect to A, for a fixed p, is not commutable with the average over
a code ensemble. QUENCH denotes the estimates of p, obtained from E,(p, A\; R, p),
evaluated directly from Eq.(48) using the replica method without employing any extra
inequalities; it therefore provides the most optimistic estimate. SHANNON offers
critical noise rates psp at Shannon’s limit for given code rates R. Difference in the
estimates between the three evaluation schemes becomes smaller as j7 and k increases,
keeping the code rate finite for j > 3. On the other hand, ANNEAL2 and QUENCH
generally provide the same estimates for j = 2 since p, for this particular parameter
choice is determined by the local instability of the ferromagnetic solution for which
the two methods coincidently provide an identical condition, whereas a discontinuous
phase transition between the ferro- and paramagnetic solutions determines p, for j > 3.

bound for the low R region [Gal68, KSNSO1]. Instead, evaluation based on an equality
with respect to the error indicator

Apap(n|H) = lim 23 (Bi|n, H) 22 (8_|n, H), (60)

B+ —+oo, Ay —+1

might provide the exact expression of RE, where n and H are the true noise and parity
check matrix, respectively, and

Z,(fn, H) = Z H H n;n, x MFEILim,
n'#n p=1 i€L(y)
N-K
Z_(Bln.H)=> ]9 H ngn) | x FELim (61)
n' p=1 i€L(u

are the two partition sums.
Equation (60) provides an expression for the block error probability

Pp(H) = li P(n) 72+ H) Z) (B_|n, H 2
B( ) Bi—>+olcr,r){i—>:l:12 6+‘n ) - (B |n7 ): (6 )
for a given parity check matrix H. Notice that the ability to separate suboptimal
solutions from the ferromagnetic solution relies on the gap in the magnetization
enumerator that exists for all p < p. (see Fig.8). Furthermore, employing an equality
P}, = ming {Pg(H)} = lim,_,_o ((P5(H))r)"", a direct expression of RE for a given
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code ensemble is obtained as

1., . 1
ERE(R’p) - N ln PB - T._)_oo,ﬂil_l)r-{loo,)\i—):l:l {T—N

X 1n< Y P(n) Z3*(B¢|n, H) Z*-(ﬁ_|n,H)] > } (63)

which can be evaluated by the replica method, considering Ay and r as replica powers.

A recent study along this direction revealed that an expression

(=R)In2 _ 1 ror/2(1 _ m\T/2 }

maxo«, In (1+2 1 0<p<np,

ERE<R,p>={ oora (I (L 2RO ] 0 e g
ERC(Rap) Da <P < 1

is derived for LDPC code ensembles in the limit j,k — oo, where Egrc(R,p) is

the random coding exponent (54) and p, a critical noise rate for which w -

Lin (1+2"p"/2(1 — p)"/?) is maximized at r = 1 [SYMSK03]. It is worthwhile
mentioning that this is identical to the existing lower bound of the RE evaluated for
the ensemble of all possible codes (in expurgated ensembles) [Gal68]. It is well known
that LDPC code ensembles for j, k — oc have very similar properties to those of the
ensemble of all possible codes [MBO01, Mac99]; therefore, this result suggests that the
existing tightest lower bound of the RE represents the exact expression of the fastest
error exponent achievable by the best possible codes, as is widely believed, while a
rigorous proof is still sought after.

5.2. Typical Set Analysis: Sitmpler Method for Assessing Critical Noise Levels

Although Gallager’s variational method is powerful enough to tightly bound the block
error probability of MAP decoding for a wide class of code ensembles, it generally
requires rather complicated computation even just for evaluating the noise threshold.
In addition, it is quite technical and provides few insights for intuitive understanding
the various types of decoding errors.

Typical set (pairs) analysis is an alternative approach to lowerbound the noise
threshold for a given code ensemble focusing on typical set (pairs) decoding, which is a
slightly weaker decoding scheme than the MAP decoding (e.g., in rare cases, the true
noise may have a higher magnetization than that of the typical set; in such a case the
two decoding schemes will differ). Error evaluation in this scheme is relatively easy to
understand because occurrences of decoding failure are directly studied using the law
of large numbers and the weight enumerator; the latter is a standard quantity in IT
literature characterizing the distribution of distances between codewords. This method
was pioneered by Shannon for the ensemble of all codes more than 50 years ago [Sha49];
but was not applied to other ensembles until recently. Only after MacKay successfully
employed it for analysis of certain LDPC code ensembles, it is now becoming more
popular in the IT community [Mac99, AJKT01].

5.2.1. Typical Sequences and Classification of Errors - In order to introduce the typical
set decoding approach, let us first provide the definition of a noise vector being typical.
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Due to the law of large numbers, a noise vector n' generated by a BSC satisfies a
condition

S EN (65)

1 N
N0l —p
N2

with a high probability for large N and a positive number ey ~ O(N~7) (0 < v < 1/2),
where 0 < p = (1 — tanh F')/2 < 1/2 is the flip rate characterizing the BSC. We define
as typical any noise vector n' for which this condition holds. We also term the set of

all typical vectors the typical set.

In typical set decoding one selects a vector that belongs to the typical set and
satisfies the parity check equation (12), as a valid noise vector estimate (see also
section 4.5). Two types of decoding errors can occur in this decoding scheme: Type
I error occurs when the true noise vector m is atypical. Type II error occurs when n
is typical and there are multiple typical vectors that satisfy the parity check equation.
By a straightforward extension of the law of large numbers, it can be shown that the
occurrence probability of type I errors, P, vanishes in the limit N — oo [AJKT01].
Therefore, the noise threshold p. is determined only by the condition that probability
of type II errors Py vanishes. Since P;; depends on each realization of the parity check
matrix H, we define p. for a given code ensemble C as the highest flip rate below which
the average type II error probability (P (H))y vanishes in the limit N — ooc.

5.2.2. Lower bound of Noise Thresholds and Weight Enumerator - In order to evaluate
(Pi(H))p, it is convenient to introduce an indicator function Ay (n|H) that returns 1,
if the type II error occurs, and 0 otherwise, for a true noise vector n and parity check
matrix H. Then, the type II error probability for a given H is calculated as

Py(H) =) _P(n) An(n|H) , (66)

and (Py(H))y is obtained by averaging this over the code ensemble.
Unfortunately, it is difficult to directly express Ar(n|H) in a rigorously treatable
form. However, one can easily produce an upper bound

AH(TL‘H) S VH(TL‘H) X 0 (i n; — NtanhF) s (67)

i=1

in the Ising spin representation, where

N-K N
Vii(n|H) = Z H 6|1, H nin; | 6 (Zn;—NtanhF)
)

n'#n p=1 ieL(u i=1
N-K N
= Z H 511, H z; | 0 <anxz —NtanhF) . (68)
rl pn=1 i€L(p) i=1

Since Ayp(n|H) = 1 when errors do occur, it is always upper-bounded by the number of
solution vectors of the parity check equation (excluding the true noise n) that belong to
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the typical set, Vii(n|H). In the last expression (68), we rewrote the summation over the
dummy variable n’ using a new variable @ = (z;) = (n}n;); the N-dimensional vector
1, with all elements being 1, represents the true noise vector n in the new expression.
Inserting Eqs.(67) and (68) into Eq.(66), and taking an average over the expurgated
(7, k)-Gallager code ensemble (i.e., of no atypically poor codes) in conjunction with
the identity 1 = [ dw 6(2?;1 x; — Nw), an upper bound of the average type II error

probability is obtained as
(Pu(H))n < [ duwesp N (~K(w.p) + R(w), (69

where KC(w,p) is derived independently of the code ensemble as exp [-NK(w,p)] ~
YnP(n)d (Zf\;l n;x; — N tanh F) 3 (Zf\il n; — N tanh F) imposing a constraint
(1/N) 2N, 2; = w; the weight enumerator

R(w):%ln< Zﬁ& I,Hxi 5(2@—]\%{)) > , (70)

r2l n=1 i€L(n) = i

characterizes the code ensemble. Equation (69) implies that (P (H))y vanishes in the
limit N — oo as long as max,,{—K(w,p) + R(w)} < 0, which yields a lower bound for
Pe.

The meaning of the exponent in the right hand side of Eq.(69) is intuitively
understandable by considering the mechanism that gives rise to a decoding failure.
Firstly, exp [— NX(w, p)] represents the probability that a ‘gauged noise vector’ n + x
(mod 2) is typical, as well as the true noise vector n, under a condition that the number
of non-zero elements of @, 3.V, z;, is constrained to N(1 — w)/2 (also termed weight
in this Boolean representation). In practice, a codeword vector £ = GTs (mod 2),
alternatively characterized by the equation Ht = H(G"s) =0 (mod 2), plays the role
of x; a type II error occurs if both of n and the gauged vector n + & (mod 2) become
typical because there are at least two typical noise vectors satisfying the parity check
equation. However, this just provides an error probability caused by a single codeword
x. Therefore, secondly, we have to evaluate the number of codewords that have a
weight w, which is provided by the weight enumerator R(w). Multiplying this number
of codewords to exp [-NK(w, p)] and taking a summation over the possible weight w,
we finally obtain Eq.(69).

In the bound (69), all relevant properties of the code ensemble are represented by
the weight enumerator R(w). This function is maximized to RIn2 at w = 0, in general,
and has a mirror symmetry R(—w) = R(w), in particular, for even k. Pictorially, the
lower bound of p. can be obtained through the value for which I(w,p) makes contact
with R(w) (somewhat similar to the magnetization enumerator of Fig.8) at a certain
point w*, marked by a (e) in Fig.12. This can be analytically performed in the case of
J, k — oo as R(w) can be expressed analytically, providing Shannon’s limit pg, as a lower
bound for p.. However, pg, also serves as the upper bound of p. for any code ensembles,
this means that p. = pg, indicating that the Gallager code saturates Shannon’s limit
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Figure 12. The weight enumerator R(w) for (j, k) = (3,6) and in the limit of j, k — oo
with keeping the code rate R = 1 — j/k = 1/2. For p = 0.0915, the function K(w, p)
has a contact with the weight enumerator of (j,k) = (3,6) at w* ~ 0.735, which
implies p. > 0.0915 holds for the (3,6)-Gallager code ensemble. K(w,p) is generally
defined only for 1 —4p < w < 1 and becomes lower as p increases. Therefore, roughly
speaking, the lower bound of p. becomes higher as a code ensemble has a narrower
weight enumerator. For a fixed code rate R, the code ensemble of j.k — oo has
the narrowest possible profile of R(w), which provides the exact estimate of the noise
threshold p. = psn where pg, is Shannon’s limit that satisfies R =1 — Ha(pgh ).

when j, k — oo.

Thus, typical set analysis can exactly evaluate p. of the Gallager code ensembles
in the limit 5,k — oc. Unfortunately, this may not necessarily be the case for finite
j, k. Tt can be shown that the lower bounds of p. offered by the typical set analysis are
the same as those obtained by Gallager’s methodology for MAP decoding [AJK'01],
which in itself provides more pessimistic evaluations than the replica method as shown
in Table 1. The gap between SM and typical set analysis results may be attributed to
the different decoding schemes used. However, one can show that the replica method
yields more optimistic lower bounds for p. also when typical set decoding is used, which
implies that evaluation of the noise threshold utilizing the typical set analysis is rigorous
but not tight enough for finite 7, .

5.2.3. Improving the Bound by the Replica Method - A possible shortcoming of the
typical set analysis relates to the upper-bounding of the average type II error probability
by a product of the error probability caused by a single codeword (exp [-NK(w,p)])
and the number of codewords (exp [NR(w)]), focusing on the most relevant weight

w = w*. This bound would have been tight if each codeword brought about
estimation errors exclusively (i.e., each noise vector estimation error is generated by
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(a) decoding errors, (b) decoding errors,
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Figure 13. A possible shortcoming of the typical set analysis. (a) If each decoding
error in noise estimation were associated with a single codeword, a simple product
exp [-NK(w*,p)] x exp[NR(w*)] would have correctly evaluated (Pri(H))p. (b)
However, when a single decoding error is associated with multiple codewords, the
product overestimates (Pi(H)) .

a different codeword). However, since each noise vector estimation error may be
associated with multiple codewords belonging to the same codebook, the simple product
exp [~ NK(w*, p)] x exp [NR(w*)] may overestimate the correct type I error probability
(Fig.13). Therefore, it is necessary to take correlations between multiple codewords
associated with a single error into account in order to improve the evaluation of p..

An analysis based on an equality with respect to the error indicator

N
Au(n|H) = lim Vi(n|H) (2 n; — N tanh F) , (71)
might naturally introduce such correlations as
N-K N g
Vi(n|H) = Z H 61, H o (mez — NtanhF) ,
b N i€L(p) i=1

creates certain interactions among ‘codeword vectors’ . Substituting Eq.(71) into
Eq.(66) and taking an average over the code ensemble provide an equality

(Pu(H))m = Jim exp [~ N Ein(p: R.p)]. (72)

> 1 (73)

that can be evaluated by the replica method. Equation (72) indicates that p, can be
assessed from the limit where lim,_, ;o Eii(p; R, p) becomes positive.

A recent study showed that noise thresholds obtained by SM typical set
decoding scheme are identical to those assessed by the replica approach to MAP
decoding [KNvMO02]. This indicates that differences of error correction abilities between

where

1
Eu(p; R, p) = N In <

> P(n)Vi(n|H) 6 (Z n; — NtanhF)

=1
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the typical set and MAP decoding schemes are relatively small and vanish in the limit
of long message lengths.

6. Applications of LDPC codes

So far we have focused on LDPC as error correcting codes. However, coding techniques
are required for various purposes in digital communication. In this section, we mention
how LDPC codes can be utilized for various purposes, other than simple error correction.

6.1. Lossless Data Compression

Data compression, or source coding, is a scheme to reduce the message size (data)
by modifying the information representation. This is usually carried out prior to
transmission in order to optimize communication efficiency by minimizing the data to be
sent. The possibility of data compression was first pointed by Shannon in his celebrated
source coding theorem [Sha48]. He showed that for an information source represented
by a distribution P(s) of N-dimensional Boolean vectors s, one can employ another
representation of K (< N) dimensions without any distortion, if the code rate R = K/N
satisfies R > Hy(S) in the limit K, N — oo, where Hy(S) = —(1/N) > P(s)log, P(s)
denotes the binary entropy per bit of the source (S) distribution P(s). On the other
hand, it can also be shown that such reduction is impossible when R < Hy(S). Therefore,
Hy(S) represents the optimal compression rate, or compression limit.

Unfortunately, the source coding theorem is non-constructive and suggests few
clues for designing good practical compression methods. However, after much effort,
a practical code that asymptotically saturates the optimal limit was finally discovered
more than a decade later [Jel68]. Therefore, the compression scheme based on LDPC
codes presented below may not compete with existing good practical codes such as the
arithmetic codes [Jel68] and Lempel-Ziv (LZ) compression [ZL77]. Nevertheless, this
still serves as a useful prototype for constructing a more advanced compression scheme
used in network communication [SW73, Mur02], described in the following section.

In order to compress an N-dimensional Boolean source vector s to a K(< N)-
dimensional codeword z on the basis of an LDPC scheme, let us introduce a K x N sparse
Boolean matrix H with j and k non-zero elements per column and row, respectively.
Using this matrix, one can compress s to a shorter vector z by

z=Hs (mod?2). (74)
On the other hand, decoding z to retrieve the original representation s is performed
with a knowledge of the source distribution P(s) utilizing the posterior distribution
P(o|z) = P(o)d(z=Ho) | (75)
>.0 P(o)i(z = Ho)
which can be practically carried out employing the BP/TAP algorithm.

Similarly to the case of error correction, the performance of this scheme can be
evaluated utilizing the replica method [Mur02]. In the Ising spin representation, the
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free energy per element can be evaluated from

. k A
j I [ , 1+ 2z
= Bxtr { —= (In [ ——==L2 1
d w(-fﬁf-){ k<n( 2 )> +]<n< 2 o

s es) o) )

> : (76)

under the RS ansatz, where o ® s = (0;s;) (1 = 1,2,..., N) stands for source vectors

gauged by the true source vector s in the Ising spin expression and P (o ® s) represents
the source distribution in this expression. (--:)g denotes an average over the source
distribution.

For j > 3, the ferromagnetic solution 7y (x) = 6(x — 1) and 7x(2) = §(& — 1), which
represents decoding success, always extremizes the free energy (76) to

Fo = ——ZP )In P(s) = Hy(S) In2. (77)

In addition to this, another solution, which stands for decoding failure, appears when
R is below a certain critical rate R;, which is determined by j and k. For finite j,
this solution is obtained only numerically. However, this solution can be analytically
expressed as myp(r) = §(2) and 7y (Z) = §(Z) in the case of j, k& — oc under the fixed
code rate. Inserting this solution into Eq.(76) provides the free energy

}'NF:% In2=nR In?2. (78)

This, in conjunction with Eq.(77), means that the decoding success solution is
thermodynamically dominant and, therefore, the original expression s is potentially
decodable from the compressed vector z for R > Hy(S) and an arbitrary source
distribution P(s). This implies that the current scheme achieves Shannon’s compression
limit for j, k — oc.

However, this does not imply that z can be decoded in practical time scales. The
BP/TAP algorithm is likely to be trapped in suboptimal solutions for R < Ry; the
compression limit for practical decoding is therefore provided by R4 which is always
higher than a critical rate R., determined by the thermodynamic transition between
the decoding success and failure solutions. Roughly speaking, as j grows under a fixed
rate R = j/k, R, decreases, while Ry increases. In particular, in the case of j — oo, the
potential and practical limits R. and Ry converge to Hyo(S) and 1, respectively, which
means that the current scheme is impractical in this limit although the theoretical
performance can saturate Shannon’s limit.

On the other hand, other existing schemes such as the LZ codes are executable in
practical time scales and asymptotically achieve the compression limit even if details of
the source distribution are unknown [ZL77]. Therefore, the LDPC-based compression
scheme may not be competitive when used for the purpose of the simple noiseless data
compression.
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6.2. Lossless Compression of Distributed Sources

Although the practical significance of the LDPC-based scheme seems weaker than that
of existing state-of-the-art methods for the simple lossless compression, it may not be
the case for more advanced problems. This is because optimal strategies sometimes
cannot be employed when conditions change. A data compression problem of distributed
sources, first addressed by Slepian and Wolf for data transmission in a network [SW73],
offers one such example.

Let us assume that two correlated source vectors s; and s, of N dimensions
are generated from a joint source distribution P(s;,s;). In a general scenario of the
Slepian-Wolf problem, s; and s, (from sources S; and S, respectively) are independently
compressed to K- and K>-dimensional vectors z; and z,, respectively. On the other
hand, a single decoder simultaneously retrieves the original expressions s; and s, from
the codewords z; and z, utilizing the knowledge of P(s;,s;) at the decoding stage
(Fig.14(a)). For instance, this kind of problem arises when two satellites covering
overlapping regions transmit digital images to a single base station on earth.

It is clear that a region specified by Ry = K1 /N > Hy(S;) and Ry = Ky /N > Hy(Ss)
is achievable without any distortion by optimal compression codes for a single source,
dealing with s; and s, as vectors that independently follow marginal distributions
P(s1) = Y. g, P(s1,82) and P(sy) = > g P(s1,8), respectively. However, Slepian
and Wolf showed that the achievable region can be further extended potentially as

Ri > Hy(8|S) ,
Ry Ho(Ss|Sh) (79)

R1 + RQ HQ(Sla 52) 3
(Fig.14(b)) if the knowledge of the joint distribution P(s;, ss) is fully utilized, where
Hy(81,82) = —(1/N) Xs, 5, P(81,82) logy P(s1, 82), Ha(81]S2) = Ha(S1,82) — Ha(S2)
and similarly for Hy(S3|S1). Unfortunately, it is difficult to achieve this limit by the
optimal codes for a single source since incorporating the correlation between s; and s,

>
>

with such schemes is generally non-trivial.

On the other hand, the LDPC-based compression scheme is easily extended for the
distributed source by using the LDPC matrices H; and Hs, of dimensionalities K; x N
and K5 X N respectively, such that

zZ1 = H181, (rnod 2),

Z9 = HQSQ, (mod 2) (80)

In this scheme, one can directly incorporate the source distribution P(sq,8s) in the
decoding stage through the Bayes formula

P(O’l,ﬂ'g)5 (Zl = H10'1)5(ZQ = HQO'Q)
P(o,052z1,20) = . (81
( ! 2‘ ! 2) 20-110-2 P(O’l,0'2)5(21:H101)5(22:H20'2) ( )

Murayama showed that this scheme achieves the Slepian-Wolf limit (79) when the
numbers of non-zero elements per column/row in H; and Hy become infinite [Mur(2].
Furthermore, he illustrated that utilizing LDPC matrices of finite non-zero elements
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Figure 14. (a) The Slepian-Wolf System. Encoding is carried out independently at
distributed sites, whereas decoding is simultaneously performed by a single user. (b)
The achievable limit of the Slepian-Wolf System.

per column/row, practical decoding by BP/TAP becomes possible beyond the single
source coding limit Ry > Hy(S;) and Ry > Hy(S,) for a certain distributed sources;
this implies that LDPC-based compression schemes may be a promising direction for
distributed data compression problems of this type.

6.3. Lossy Data Compression

The source coding theorem indicates that it is impossible to reduce the size of data below
the compression limit without allowing for any distortion. However, if a certain level of
distortion is allowed, one can further reduce the data size. Compression of this type is
termed lossy compression. JPEG and MPEG, which are examples of current standard
schemes in use for compressing data of images and movies, fall into this category.

In general, as the allowed distortion increases, the achievable data size decreases;
namely, there is a tradeoff between the optimal compression rate and the distortion,
which is provided by the rate-distortion theorem presented by Shannon more than a
decade after the source coding theorem [Sha59].

Unlike lossless compression, no practical algorithm capable of saturating the
optimal performance predicted by the rate-distortion theory is known for lossy
compression, even for simple information sources. Therefore, the quest for better lossy
compression codes remains one of the important research areas in IT [YZB97].

Let us here focus on a simple lossy data compression problem of an unbiased
Boolean source of N-dimensional vector s, the distribution of which is assumed uniform
P(s) = 1/2N. The distortion function d(s, 3) is used to evaluate the distortion, where 3
is an N dimensional representative Boolean vector used to approximate s with a reduced
information content. Here, we employ the Hamming distance

d(s,8) =) (1= 655) (82)
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where 0, = 1 if = y and 0, otherwise.

In the current case, the lossless compression limit is given by the binary entropy per
bit of the source distribution R > Hy(S) = —(1/N) Y527V log, 27" = 1, which implies
that it is impossible to reduce the size of the data any more without allowing some
level of distortion. However, when a distortion up to ND measured by the Hamming
distance is allowed, it can be shown analytically that one can compress s into a K = NR-
dimensional Boolean vector z if R > R(D), where

R(D) =1-Hy(D) . (83)

is termed the rate-distortion function of the current unbiased Boolean source [CT91];
such analytical expressions of the rate-distortion functions are not known for most other
sources.

In order to devise a lossy compression scheme, it is necessary to appropriately design
a map from the compressed expression z to the representative vector 8. One possible
construction of this map is to employ an N x K LDPC matrix H such that

8§=3(z)=Hz (mod?2). (84)

Then, given an N-dimensional source vector s, encoding is carried out by selecting such
a vector z that satisfies the distortion constraint d (s, 8(z)) < ND as the compressed
representation of s. On the other hand, one can easily decode z to approximate the
original vector s employing Eq.(84). It can be shown that this scheme saturates the
rate-distortion function (83) when the numbers of non-zero elements per column/row of
H become infinite [MO03, MY02].

One shortcoming of this LDPC-based scheme in the current suggestion is the
computational difficulty at the encoding stage. Since finding z for a given s, where
both are discrete variables, is a non-trivial search problem that becomes practically
difficult as the message length N increases. A naive use of the BP/TAP approach does
not serve as a satisfiable approximation algorithm in this case since encoding requires
selection of a single vector z, whereas the BP/TAP method generally calculates variable
averages over the posterior distribution in which clues for selecting a single vector are
erased. However, this difficulty may be resolved by certain advanced methods [MPZ02]
although further investigation is necessary.

Another drawback of the current method is the difficulty in directly extending the
scheme to biased sources. It can be shown that for a uniformly biased Boolean source
characterized by P(s) =[], p* (1—p)'~* where 0 < p < 1, the rate-distortion function
(83) is modified to

(85)

Hg(p)—HQ(D) fOI'O<D<p
0 forp<D<1 ’

which indicates that the data size can be reduced further than Eq.(83) for biased sources
because the original message distribution in itself includes some redundancy. This
limit can be achieved by appropriately constructing biased representative vectors that
approximate the biased vectors with the required distortion using as little information as
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possible. However, as addition modulo 2 generally reduces the statistical bias of each bit,
construction of such representative vectors by a linear map (84) is difficult; this prevents
the current method from saturating the rate-distortion function of biased source (85).
In a recent study [HKNO2|, this difficulty has been resolved by replacing the linear
map (84) with a non-linear map constructed by perceptrons which are characterized by
non-monotonic transfer functions of a specific type [vMWB00].

6.4. Error Correction in a Broadcast Channel

As most existing codes are constructed for simple point-to-point communication, they
do not necessarily offer the optimal performance for multi-terminal communication such
as the Internet, mobile phones and satellite communication. Designing codes that utilize
characteristic features of these communication channels may enhance their performance;
this would greatly benefit overloaded communication channels that suffer from an ever
increasing information flow.

The broadcast channel, which models television and radio broadcasting, is one of
the most fundamental examples of multi-terminal communication [CT91]. We here show
how LDPC codes can be utilized for improving the communication performance in a
broadcasting setup.

In a general scenario, a single sender (station) broadcasts a codeword composed
of different messages to multiple receivers. For simplicity, we focus on the case of two
receivers; a single codeword ¢ of N bits, comprising two messages s; (NR; bits) and
82 (NR;, bits), is transmitted to two receivers. As each channel is noisy, receivers 1
and 2 obtain two corrupted codewords r; and r,, respectively, which is modelled by a
conditional probability P(ry,r3|t). The received codewords are decoded by respective
receivers to retrieve only the message addressed to each of them.

Combining codes is a known empirical strategy for designing high performance
communication schemes for broadcast channels on the basis of multiple linear error-
correcting codes of relatively short message lengths [MS77, vG83, vG84|. Inspired by
this, the performance of a linearly combined coding scheme was recently examined for
LDPC codes [NKMZS03]. The code is specified by a parity check matrix of an upper
triangular form

H, H,
H = 86
(). ’
where the sizes of sub-matrices Hy, H,, Hjz are [(1 — a)N — R{N| x (1 — a)N,

[(1—a)N — Ry{N] x aN and [aN — RyN] x aN, respectively.
Based on this matrix, the generator matrix G7 is constructed as

GT GY
GT — 1 2 87
where Gt (i = 1,3) are systematically designed so as to satisfy H;GT = 0 (mod 2) and
GY = —H!'H,H]|7'[H,GY]. In this scheme, two messages are encoded into a single
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Figure 15. (a) A broadcast channel of a single station and two receivers. (b) A
schematic profile of Cover’s limit (thick full curve). The dashed line indicates the
time-sharing limit achievable by concatenating two independent codes.

codeword using G* as t = G"(s182)" (mod 2). On the other hand, two corrupted
codewords r; and 7y are independently decoded by each receiver solving the parity
check equations z; = Hr; = Hn,; (mod 2) (i = 1,2).

Analogously to the case of single channels, error free communication becomes
theoretically possible if the corresponding code rate vector (Rp, Rs) is placed within
a certain convex region, which is termed the capacity region, when the code length
grows infinite. In particular, the capacity region can be analytically expressed as

R2 < 1—H2(5*p2),
R1 < HQ((S*pl)—HQ(pQ),

where the noise models for receivers 1 and 2 are assumed as BSC specified by flip rates

(88)

p1 and py(< pq), respectively. Here, we introduce the notation § xp = ¢ (1 — p) +
(1 —10) p. Eq.(88) is often termed Cover’s capacity, depicted by a solid curve in Fig.15.
Unfortunately, the derivation of Cover’s capacity is non-constructive and offers few
clues to design efficient practical codes. Furthermore, even achieving the time-sharing
capacity (a dotted straight line in Fig.15), which is theoretically achievable by simple
concatenation of two independent codewords, separately optimized for each channel, is
in practice never trivial, as there are no known codes that saturate the Shannon’s bound
even for a single channel.

A statistical mechanics based analysis for the broadcast channel of this type reveals
that the suggested linearly combined LDPC coding scheme provides an improved
performance over the simple concatenation method, in both potential and practical
limits, when the number of non-zero elements per column/row in the parity check matrix
is finite [NKMZS03]. Unfortunately, it was also shown that the optimal performance
achievable by this scheme cannot go beyond the time-sharing capacity even theoretically.
This analysis implies that different coding schemes such as non-linear codes should be
examined for achieving Cover’s limit.
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6.5. LDPC for CDMA

Multiple access communication is at the opposite end to broadcasting, where multiple
sources transmit simultaneously to a single receiver; the task of the receiver is to
separate the combined (possibly corrupted) signal and retrieve the original sources.
Several methods can be used for separating the sources; two obvious solutions are for
the different sources to transmit at different times or using different frequencies [Ver98].
A different, arguably more efficient, approach is based on Code Division Multiple Access
(CDMA), where messages are encoded prior to transmission.

Conventional modulation techniques are based on modulating each signal by a
random modulation vector shown schematically in Fig.16(a). Demodulation is then
carried out by multiplying the received signal by the modulation sequence for each
source and estimating the original message. A statistical mechanics based analysis of
conventional CDMA modulation was recently introduced by Tanaka [Tan02].

(a) (b)
Transmitted HFI:H:FHII:hFI:F S_

noise

g

=
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. + 1 [ 1 |
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Figure 16. (a) Modulation in conventional CDMA, where random modulation
sequences are used to generate the transmitted signal from the original message. (b)
LDPC coding of the source sequences s; prior to modulation by random modulation
sequences §;. Demodulation and decoding provide the estimates §;.

The idea of combining LDPC codes with CDMA systems was originally introduced
in [dBD03, dBD02, ADUO03]. The idea is to encode the messages by different LDPC
codes prior to the modulation stage as described schematically in Fig.16(b). Results
obtained by computer simulations, and after carefully designing LDPC codes by DE,
show excellent performance [ADUO03]. However, these studies are limited to cases where
the number of users is O(1) (one exception is in [RCGV02], where the number of users is
expected to be large; however, it relies on the assumption of near-capacity-approaching
LDPC codes to be available).

A recent study [TS03b, TS03a] offers a statistical mechanics based analysis of the
joint detection/decoding for LDPC-coded CDMA system in the large-system limit. The
analysis provides both practical and theoretical limitations of the suggested method
obtained from the statistical mechanics based analysis, in the form of dynamical and

Demodulation -
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thermodynamical transition point, respectively. The results reported indicate that
while the theoretical limits of the new methods are excellent, the practical performance
is limited by a relatively low dynamical transition point [TS03b, TS03a]. However,
the analysis was carried out for regular LDPC codes; it is highly likely that practical
performance can be pushed close to the theoretical limits by clever irregular code designs.

6.6. Public Key Cryptography

Public-key cryptography plays an important role in many aspects of modern information
transmission, for instance, in the areas of electronic commerce and internet-based
communication. It makes it possible for the service provider to distribute a public
key which may be used to encrypt messages in a manner that can only be decrypted
by the service provider [DH76] (Fig.17). The on-going quest for safer and more efficient
cryptosystems produced many useful methods over the years such as the RSA [RSAT7S],
ElGammal [EIG85] and McEliece cryptosystems [McE78] to name but a few. We here
show that another example of such systems, which is somewhat similar to the one
presented by McEliece, can be devised on the basis of significantly different behaviour
for LDPC codes of the MN and Sourlas-types [KMS00a, SKMO1].

In the suggested cryptosystem, a plaintext represented by a K-dimensional
Boolean vector s is encrypted to the N-dimensional Boolean ciphertext 7 utilizing
a predetermined Boolean matrix G of dimensionality N x K, and a corrupting N-
dimensional vector m, the elements of which become 1 with probability p and 0,
otherwise, in the following manner

r=G"t +n (mod?2). (89)

The matrix G7 and the flip probability p constitute the public key. The corrupting
vector m is generated in the transmitting terminal.

The matrix G7, which is at the centre of the encryption/decryption process, is
constructed by randomly choosing a K x K dense invertible matrix D and two randomly
selected LDPC matrices A (of dimensionality N x K) and B (of dimensionality N x N
and invertible), via G = B™'AD (mod 2). Similarly for the MN codes, the matrices A
and B are characterized by j and [ non-zero elements per column and k& and [ non-zero
elements per row respectively in the simplest case, whereas irregular construction using
varying k, j and [ for each column/row may also be considered. The parameters j, k and
[ define a particular cryptosystem while the matrices A, B and D constitute the private
key.

The authorized user may decrypt the ciphertext  in a similar manner to the MN
codes. Namely, a parity check equation of the form

z=Br =A(Ds)+Bn (mod 2), (90)

which is offered by multiplying the ciphertext = (89) by the private key B; it is first
solved for 8 = Ds using the BP/TAP algorithm. Due to properties of the MN codes,
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Figure 17. Required properties of public key cryptosystem. (a) A plain text s is
encrypted into a cipher text r using the public key with a low computational cost. (b)
Decryption of the cipher text r is computationally hard without utilizing the secret
key, while it can be easily carried out if the secret key is available.

this is easy if p is set below the dynamical transition point p; that is determined by the
set of (j,k,1). After that, the plain text is finally retrieved as s = D~13.

On the other hand, an unauthorized user must extract s from Eq.(89) knowing
only the ciphertext r and the public key (G7,p). The first straightforward attempt
to enumerate all possible s is clearly doomed, unless p is vanishingly small, enough
to corrupt just a few bits. Decomposing GT into a combination of sparse and dense
matrices is known to belong to a class of NP-complete problem [GJ79].

Another approach is to approximately decrypt = using the BP/TAP scheme, which
yields an effectively identical decoding problem to that of the Sourlas-type codes, with
the generator matrix G7 being dense. However, due to properties of the Sourlas
codes, finding solutions to Eq.(89) is strongly dependent on initial conditions. In
particular, when G7 is dense, which is the case in the current problem, for all initial
conditions other than the plaintext itself, the BP/TAP algorithm fails to converge to the
plaintext solution [KMS00a, Mac99, KS87]. Obtaining the correct solution for Eq.(89)
without knowledge of the private key will therefore become unfeasible, which implies
that decryption by unauthorized users is practically impossible. Several attacks by
unauthorized parties who have acquired partial knowledge of private key components
and/or of the plaintext have been recently studied, showing that the cryptosystem is
fairly secure [SSKO03].

Before closing this section, it may be worth while to briefly compare the current
LDPC-based method to the leading public key public key cryptosystem of RSA [RSA7S].
RSA decryption takes O(K?) operations while the current method naively requires
O(K?) operations, which can be further reduced to O(K log K') by constructing a dense
matrix D as a product of random permutation and triangular matrices. From this
aspect, the LDPC-based scheme may be superior to the RSA cryptosystem. Encryption
cost is O(K?), which is similar to that of RSA, whereas inverting the matrices B and
D is carried out only once and is of O(K?). A major drawback of the current method
is the size of public key. Since G is a dense matrix, the size of the public key is of
O(N x K), while that for RSA is only O(K). However, as the transmission of the public
key is carried out only once, this may not be of great significance.
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7. Summary

In summary, we have surveyed recent progress in statistical mechanics research on low-
density parity check codes. Identifying the similarity between codes defined by a sparse
matrix and Ising spin systems of multi-spin interaction makes it possible to analyse and
develop a family of high-performance error correcting codes. This relies on employing
methods from statistical mechanics in general and the theory of spin glasses in particular.
Efficacy of this approach is not limited to basic error correction, similar approaches have
been also successfully applied to several other coding schemes such as data compression,
multi-terminal data transmission, cryptography, etc.

Research activities in these directions revealed great similarity and some difference,
in both the problems studied and methods used, between information sciences and
physics, which makes it much easier than ever before to apply methods of one discipline
to problems in another. We hope that the current article will contribute to promote
such cross-disciplinary studies.
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