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Abstract

We propose a generative topographic mapping (GTM) based data visu-
alization with simultaneous feature selection (GTM-FS) approach which
not only provides a better visualization by modeling irrelevant features
(“noise”) using a separate shared distribution but also gives a saliency
value for each feature which helps the user to assess their significance.
This technical report presents a varient of the Expectation-Maximization
(EM) algorithm for GTM-FS.

1 GTM Architecture

In GTM-FS, the Gaussians in the constrained mixture of Gaussians have di-
agonal covariance. Roughly, GTM-FS Architecture can be displayed as below:

Figure 1: Schematic representation of the GTM model.

Following are the important dimension variables and indexes:

∗Please note that this is an ad-hoc technical note. More structured report with clear

notations will follow soon. Contact the author for a newer version.
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N = Number of input data points. Index used : n.
M = Number of components (latent grid points). Index used : m.
D = Number of features (dimension of the data space). Index used : d.
K = Number of basis function for RBF mapping. Index used : k.

2 GTM with Feature Selection (GTM-FS)

GTM has a non-linear transformation from the latent space to the data space
given by a linear combination of the basis functions. So that each point zm in
latent space is mapped to a corresponding point tm in the D-dimensional data
space (which acts as the centre of a Gaussian m) given by

T = Φ(z)W, (1)

where T is an M ×D matrix, Φ is an M×K matrix, and W is a K×D matrix.
If we denote the node locations in latent space by zm, then eq. (1) defines

a corresponding set of ‘reference vectors’ given by

tmd =

K
∑

k=1

φmk(zm)wkd, (2)

where tmd is a scalar and it represents estimated the dth feature of the mth
component.

Each of the reference vectors then forms the centre of a Gaussian distribution
in data space. For feature saliency purpose, we have one dimensional Gaussian
for each feature,

p(xnd|tmd, σmd) =
1

√

2πσ2
md

exp

{

−
(xnd − tmd)

2

2σ2
md

}

. (3)

The probability density function for the GTM model is obtained by summing
over all the Gaussian components, to give

p(x|T,Σ2) =

M
∑

m=1

P (m)p(x|tm, σm) (4)

We assume that the features are conditionally independent given the (hidden)
component label, so

p(x|Θ) =

M
∑

m=1

αm

D
∏

l=1

p(xnd|θmd) (5)

where p(· |θmd is the pdf of the dth feature for the mth component. θmd =
{tmd, σ

2
d} and αm is P (m) (prior).

The dth feature is irrelevant if its distribution is independent of the class
labels, i.e., if it follows a common density, denoted by q(xnd|λd). Let Ψ =
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(ψ1, ..., ψD) be an ordered set of binary parameters, such that ψd = 1 if feature
d is relevant and ψd = 0, otherwise. The mixture density in eq. (5) is now:

p(xn|Ψ, αm, θmd, λd) =

M
∑

m=1

αm

D
∏

l=1

[p(xnd|θmd)]
ψd [q(xnd|λd)]

(1−ψd) (6)

Our notion of feature saliency is summarised in the following steps:

1. We treat the ψds as missing variables

2. We define the feature saliency as ρd = P (ψd = 1), the probability that
the dth feature is relevant.

So the resulting model can be written as

p(xn|Θ) =

M
∑

m=1

αm

D
∏

l=1

(ρdp(xnd|θmd) + (1 − ρd)q(xnd|λd)) (7)

where Θ = αm, θmd, λd, ρd is the set of all the parameters of the model.
The complete-data log-likelihood for the model in eq. (7) is

P (xn, yn = m,Θ) = αm

D
∏

l=1

(ρdp(xnd|θmd))
ψd((1 − ρd)q(xnd|λd))

(1−ψd) (8)

We can define the following quantities

snm = P (yn = m|xn), (9)

unmd = P (yn = m,ψd = 1|xn), (10)

vnmd = P (yn = m,ψd = 0|xn) (11)

They are calculated using the current parameter estimate Θnew. Now that
unmd + vnmd = snm and

∑N

n=1

∑M

m=1 wnm = N . The expected complete data
log-likelihood based on Θold we get

Eθnew [lnP (X, z,Θ)] =
∑

m

(
∑

n

snm) lnαm+

∑

md

∑

n

unmd ln p(xnd|θmd)+

∑

d

∑

nm

vnmd ln q(xnd|λd)+

∑

d

(

ln ρd
∑

nm

unmd + ln(1 − ρd)
∑

nm

vnmd

)

(12)

The four parts in the equation above can be maximised separately.
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3 EM Algorithm

E-Steps: Compute the following quantities:

anmd = P (ψd = 1, xnd|zn = m) = ρdp(xnd|θmd), (13)

bnmd = P (ψd = 0, xnd|zn = m) = (1 − ρd)q(xnd|λd), (14)

cnmd = P (xnm|zn = m) = anmd + bnmd, (15)

snm = P (zn = m|xn) =
αm

∏

d cnmd
∑

m αm
∏

d cnmd
, (16)

unmd = P (ψd = 1, zn = m|xn) =
anmd

cnmd
snm, (17)

vnmd = P (ψd = 0, zn = m|xn) = snm − unmd. (18)

To obtain re-estimation of the parameters, we consider complete log likeli-
hood (eq. (12)) and using eq. (3) and eq. (2), we get following for the second
term in eq. (12):

L2ndpart =
∑

md

∑

n

unmd ln p(xnd|θmd), (19)

L2ndpart =
∑

md

∑

n

unmd ln

{

1
√

2πσ2
d

exp

{

−
(xnd − tmd)

2

2σ2
d

}}

, (20)

L2ndpart =
∑

md

∑

n

unmd

[

(−
1

2
ln(σ2

d)) −
(xnd − Φmwd)

2

2σ2
d

]

. (21)

Now differentiating above equation w.r.t wid (where i ∈ 1, ...,K, we get

∂L2ndpart

∂wid
=

∑

m

∑

n

unmd

[

(xnd − Φmwd)

σ2
d

φmi

]

,

setting above equation to 0 and solving it we get

∑

m

∑

n

unmd[(xnd − Φmwd)φmi] = 0. (22)

This can be written in matrix notation in the form

ΦTi Udxd = ΦTi GdΦmwd, (23)

where Φm is a 1 ×K vector, wd is a K × 1 weight vector for the feature d, Rd

is a M ×N responsibility matrix for the feature d, xd is a N × 1 data vector for
the feature d, and Gd is a M ×M diagonal matrix with elements

gmmd =

N
∑

n

unmd. (24)
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So for all i ∈ {1, 2, ...,K}, we have,

Φ
T
Udxd = Φ

T
GdΦwd, (25)

Similarly, differentiating eq. (21) w.r.t σd, we get

∂L2ndpart

∂σd
=

∑

m

∑

n

unmd

[

−
1

2σ̂2
d

+
(xnd − Φmŵ)2

2(σ̂2
d)

2

]

(26)

setting above equation to 0 and solving it, we get

σ̂d =

∑

m

∑

n unmd(xnd − Φmŵd)
2

∑

m

∑

n unmd
(27)

M-Steps: Reestimate the parameters according to following expressions:

α̂m =

∑

n snm
∑

nm snm
=

∑

n snm

N
, (28)

Φ
T
Udxd = Φ

T
GdΦwd, Solve this to find the updated wd (29)

M̂ean inθmd = Φmŵd, (30)

V̂ar inθmd =

∑

m

∑

n unmd(xnd − Φmŵd)
2

∑

m

∑

n unmd
, (31)

M̂ean inλd =

∑

n(
∑

m vnmd)xnd
∑

nm vnmd
, (32)

V̂ar inλd =

∑

n(
∑

m vnmd)xnd
∑

nm vnmd
, (33)

ρ̂d =

∑

n unmd
∑

nm unmd +
∑

nm vnmd
=

∑

n unmd

N
(34)

More later ...


