An EM Algorithm for GTM-FS

Dharmesh M. Maniyar*
maniyard@aston.ac.uk

November 2, 2005

Abstract

We propose a generative topographic mapping (GTM) based data visualization with simultaneous feature selection (GTM-FS) approach which not only provides a better visualization by modeling irrelevant features ("noise") using a separate shared distribution but also gives a saliency value for each feature which helps the user to assess their significance. This technical report presents a varient of the Expectation-Maximization (EM) algorithm for GTM-FS.

1 GTM Architecture

In GTM-FS, the Gaussians in the constrained mixture of Gaussians have diagonal covariance. Roughly, GTM-FS Architecture can be displayed as below:

Figure 1: Schematic representation of the GTM model.

Following are the important dimension variables and indexes:

[^0]$N=$ Number of input data points. Index used : n.
$M=$ Number of components (latent grid points). Index used : m.
$D=$ Number of features (dimension of the data space). Index used : d.
$K=$ Number of basis function for RBF mapping. Index used : k.

2 GTM with Feature Selection (GTM-FS)

GTM has a non-linear transformation from the latent space to the data space given by a linear combination of the basis functions. So that each point \mathbf{z}_{m} in latent space is mapped to a corresponding point t_{m} in the D-dimensional data space (which acts as the centre of a Gaussian m) given by

$$
\begin{equation*}
\mathbf{T}=\boldsymbol{\Phi}(\mathbf{z}) \mathbf{W} \tag{1}
\end{equation*}
$$

where \mathbf{T} is an $M \times D$ matrix, $\mathbf{\Phi}$ is an $M \times K$ matrix, and \mathbf{W} is a $K \times D$ matrix.
If we denote the node locations in latent space by \mathbf{z}_{m}, then eq. (1) defines a corresponding set of 'reference vectors' given by

$$
\begin{equation*}
t_{m d}=\sum_{k=1}^{K} \phi_{m k}\left(\mathbf{z}_{m}\right) w_{k d} \tag{2}
\end{equation*}
$$

where $t_{m d}$ is a scalar and it represents estimated the d th feature of the m th component.

Each of the reference vectors then forms the centre of a Gaussian distribution in data space. For feature saliency purpose, we have one dimensional Gaussian for each feature,

$$
\begin{equation*}
p\left(x_{n d} \mid t_{m d}, \sigma_{m d}\right)=\frac{1}{\sqrt{2 \pi \sigma_{m d}^{2}}} \exp \left\{-\frac{\left(x_{n d}-t_{m d}\right)^{2}}{2 \sigma_{m d}^{2}}\right\} \tag{3}
\end{equation*}
$$

The probability density function for the GTM model is obtained by summing over all the Gaussian components, to give

$$
\begin{equation*}
p\left(\mathbf{x} \mid T, \Sigma^{2}\right)=\sum_{m=1}^{M} P(m) p\left(\mathbf{x} \mid \mathbf{t}_{m}, \sigma_{m}\right) \tag{4}
\end{equation*}
$$

We assume that the features are conditionally independent given the (hidden) component label, so

$$
\begin{equation*}
p(\mathbf{x} \mid \boldsymbol{\Theta})=\sum_{m=1}^{M} \alpha_{m} \prod_{l=1}^{D} p\left(x_{n d} \mid \theta_{m d}\right) \tag{5}
\end{equation*}
$$

where $p\left(\cdot \mid \theta_{m d}\right.$ is the pdf of the d th feature for the m th component. $\theta_{m d}=$ $\left\{t_{m d}, \sigma^{2}{ }_{d}\right\}$ and α_{m} is $P(m)$ (prior).

The d th feature is irrelevant if its distribution is independent of the class labels, i.e., if it follows a common density, denoted by $q\left(x_{n d} \mid \lambda_{d}\right)$. Let $\Psi=$
$\left(\psi_{1}, \ldots, \psi_{D}\right)$ be an ordered set of binary parameters, such that $\psi_{d}=1$ if feature d is relevant and $\psi_{d}=0$, otherwise. The mixture density in eq. (5) is now:

$$
\begin{equation*}
p\left(\mathbf{x}_{n} \mid \Psi, \alpha_{m}, \theta_{m d}, \lambda_{d}\right)=\sum_{m=1}^{M} \alpha_{m} \prod_{l=1}^{D}\left[p\left(x_{n d} \mid \theta_{m d}\right)\right]^{\psi_{d}}\left[q\left(x_{n d} \mid \lambda_{d}\right)\right]^{\left(1-\psi_{d}\right)} \tag{6}
\end{equation*}
$$

Our notion of feature saliency is summarised in the following steps:

1. We treat the $\psi_{d} \mathrm{~S}$ as missing variables
2. We define the feature saliency as $\rho_{d}=P\left(\psi_{d}=1\right)$, the probability that the d th feature is relevant.

So the resulting model can be written as

$$
\begin{equation*}
p\left(\mathbf{x}_{n} \mid \boldsymbol{\Theta}\right)=\sum_{m=1}^{M} \alpha_{m} \prod_{l=1}^{D}\left(\rho_{d} p\left(x_{n d} \mid \theta_{m d}\right)+\left(1-\rho_{d}\right) q\left(x_{n d} \mid \lambda_{d}\right)\right) \tag{7}
\end{equation*}
$$

where $\Theta=\alpha_{m}, \theta_{m d}, \lambda_{d}, \rho_{d}$ is the set of all the parameters of the model.
The complete-data log-likelihood for the model in eq. (7) is

$$
\begin{equation*}
P\left(\mathbf{x}_{n}, y_{n}=m, \boldsymbol{\Theta}\right)=\alpha_{m} \prod_{l=1}^{D}\left(\rho_{d} p\left(x_{n d} \mid \theta_{m d}\right)\right)^{\psi_{d}}\left(\left(1-\rho_{d}\right) q\left(x_{n d} \mid \lambda_{d}\right)\right)^{\left(1-\psi_{d}\right)} \tag{8}
\end{equation*}
$$

We can define the following quantities

$$
\begin{align*}
s_{n m} & =P\left(y_{n}=m \mid \mathbf{x}_{n}\right) \tag{9}\\
u_{n m d} & =P\left(y_{n}=m, \psi_{d}=1 \mid \mathbf{x}_{n}\right), \tag{10}\\
v_{n m d} & =P\left(y_{n}=m, \psi_{d}=0 \mid \mathbf{x}_{n}\right) \tag{11}
\end{align*}
$$

They are calculated using the current parameter estimate $\Theta^{\text {new }}$. Now that $u_{n m d}+v_{n m d}=s_{n m}$ and $\sum_{n=1}^{N} \sum_{m=1}^{M} w_{n m}=N$. The expected complete data log-likelihood based on $\Theta^{o^{\text {old }}}$ we get

$$
\begin{align*}
E_{\theta^{n e w}}[\ln P(X, \mathbf{z}, \Theta)]= & \sum_{m}\left(\sum_{n} s_{n m}\right) \ln \alpha_{m}+ \\
& \sum_{m d} \sum_{n} u_{n m d} \ln p\left(x_{n d} \mid \theta_{m d}\right)+ \\
& \sum_{d} \sum_{n m} v_{n m d} \ln q\left(x_{n d} \mid \lambda_{d}\right)+ \tag{12}\\
& \sum_{d}\left(\ln \rho_{d} \sum_{n m} u_{n m d}+\ln \left(1-\rho_{d}\right) \sum_{n m} v_{n m d}\right)
\end{align*}
$$

The four parts in the equation above can be maximised separately.

3 EM Algorithm

E-Steps: Compute the following quantities:

$$
\begin{align*}
a_{n m d} & =P\left(\psi_{d}=1, x_{n d} \mid z_{n}=m\right)=\rho_{d} p\left(x_{n d} \mid \theta_{m d}\right), \tag{13}\\
b_{n m d} & =P\left(\psi_{d}=0, x_{n d} \mid z_{n}=m\right)=\left(1-\rho_{d}\right) q\left(x_{n d} \mid \lambda_{d}\right), \tag{14}\\
c_{n m d} & =P\left(x_{n m} \mid z_{n}=m\right)=a_{n m d}+b_{n m d}, \tag{15}\\
s_{n m} & =P\left(z_{n}=m \mid \mathbf{x}_{n}\right)=\frac{\alpha_{m} \prod_{d} c_{n m d}}{\sum_{m} \alpha_{m} \prod_{d} c_{n m d}}, \tag{16}\\
u_{n m d} & =P\left(\psi_{d}=1, z_{n}=m \mid \mathbf{x}_{n}\right)=\frac{a_{n m d}}{c_{n m d}} s_{n m}, \tag{17}\\
v_{n m d} & =P\left(\psi_{d}=0, z_{n}=m \mid \mathbf{x}_{n}\right)=s_{n m}-u_{n m d} . \tag{18}
\end{align*}
$$

To obtain re-estimation of the parameters, we consider complete log likelihood (eq. (12)) and using eq. (3) and eq. (2), we get following for the second term in eq. (12):

$$
\begin{align*}
& \mathcal{L}_{2 n d p a r t}=\sum_{m d} \sum_{n} u_{n m d} \ln p\left(x_{n d} \mid \theta_{m d}\right) \tag{19}\\
& \mathcal{L}_{2 n d p a r t}=\sum_{m d} \sum_{n} u_{n m d} \ln \left\{\frac{1}{\sqrt{2 \pi \sigma_{d}^{2}}} \exp \left\{-\frac{\left(x_{n d}-t_{m d}\right)^{2}}{2 \sigma_{d}^{2}}\right\}\right\} \tag{20}\\
& \mathcal{L}_{2 n d p a r t}=\sum_{m d} \sum_{n} u_{n m d}\left[\left(-\frac{1}{2} \ln \left(\sigma_{d}^{2}\right)\right)-\frac{\left(x_{n d}-\Phi_{m} \mathbf{w}_{d}\right)^{2}}{2 \sigma_{d}^{2}}\right] \tag{21}
\end{align*}
$$

Now differentiating above equation w.r.t $w_{i d}$ (where $i \in 1, \ldots, K$, we get

$$
\frac{\partial \mathcal{L}_{2 \text { ndpart }}}{\partial w_{i d}}=\sum_{m} \sum_{n} u_{n m d}\left[\frac{\left(x_{n d}-\Phi_{m} \mathbf{w}_{d}\right)}{\sigma_{d}^{2}} \phi_{m i}\right],
$$

setting above equation to 0 and solving it we get

$$
\begin{equation*}
\sum_{m} \sum_{n} u_{n m d}\left[\left(x_{n d}-\Phi_{m} \mathbf{w}_{d}\right) \phi_{m i}\right]=0 . \tag{22}
\end{equation*}
$$

This can be written in matrix notation in the form

$$
\begin{equation*}
\Phi_{i}^{T} \mathbf{U}_{d} \mathbf{x}_{d}=\Phi_{i}^{T} \mathbf{G}_{d} \Phi_{m} \mathbf{w}_{d} \tag{23}
\end{equation*}
$$

where Φ_{m} is a $1 \times K$ vector, \mathbf{w}_{d} is a $K \times 1$ weight vector for the feature d, \mathbf{R}_{d} is a $M \times N$ responsibility matrix for the feature d, \mathbf{x}_{d} is a $N \times 1$ data vector for the feature d, and \mathbf{G}_{d} is a $M \times M$ diagonal matrix with elements

$$
\begin{equation*}
g_{m m d}=\sum_{n}^{N} u_{n m d} \tag{24}
\end{equation*}
$$

So for all $i \in\{1,2, \ldots, K\}$, we have,

$$
\begin{equation*}
\boldsymbol{\Phi}^{T} \mathbf{U}_{d} \mathbf{x}_{d}=\boldsymbol{\Phi}^{T} \mathbf{G}_{d} \boldsymbol{\Phi} \mathbf{w}_{d} \tag{25}
\end{equation*}
$$

Similarly, differentiating eq. (21) w.r.t σ_{d}, we get

$$
\begin{equation*}
\frac{\partial \mathcal{L}_{2 n \text { dpart }}}{\partial \sigma_{d}}=\sum_{m} \sum_{n} u_{n m d}\left[-\frac{1}{2 \hat{\sigma}_{d}^{2}}+\frac{\left(x_{n d}-\Phi_{m} \hat{\mathbf{w}}\right)^{2}}{2\left(\hat{\sigma}_{d}^{2}\right)^{2}}\right] \tag{26}
\end{equation*}
$$

setting above equation to 0 and solving it, we get

$$
\begin{equation*}
\hat{\sigma}_{d}=\frac{\sum_{m} \sum_{n} u_{n m d}\left(x_{n d}-\Phi_{m} \hat{\mathbf{w}}_{d}\right)^{2}}{\sum_{m} \sum_{n} u_{n m d}} \tag{27}
\end{equation*}
$$

M-Steps: Reestimate the parameters according to following expressions:

$$
\begin{align*}
\hat{\alpha_{m}} & =\frac{\sum_{n} s_{n m}}{\sum_{n m} s_{n m}}=\frac{\sum_{n} s_{n m}}{N}, \tag{28}\\
\boldsymbol{\Phi}^{T} \mathbf{U}_{d} \mathbf{x}_{d} & =\boldsymbol{\Phi}^{T} \mathbf{G}_{d} \boldsymbol{\Phi} \mathbf{w}_{d}, \text { Solve this to find the updated } \mathbf{w}_{d} \tag{29}
\end{align*}
$$

$\widehat{\text { Mean in }} \theta_{m d}=\Phi_{m} \hat{\mathbf{w}}_{d}$,

$$
\begin{equation*}
\widehat{\operatorname{Var} \operatorname{in}} \theta_{m d}=\frac{\sum_{m} \sum_{n} u_{n m d}\left(x_{n d}-\Phi_{m} \hat{\mathbf{w}}_{d}\right)^{2}}{\sum_{m} \sum_{n} u_{n m d}} \tag{30}
\end{equation*}
$$

$\widehat{\text { Mean in }} \lambda_{d}=\frac{\sum_{n}\left(\sum_{m} v_{n m d}\right) x_{n d}}{\sum_{n m} v_{n m d}}$,
$\widehat{\operatorname{Var} \operatorname{in}} \lambda_{d}=\frac{\sum_{n}\left(\sum_{m} v_{n m d}\right) x_{n d}}{\sum_{n m} v_{n m d}}$,

$$
\begin{equation*}
\hat{\rho}_{d}=\frac{\sum_{n} u_{n m d}}{\sum_{n m} u_{n m d}+\sum_{n m} v_{n m d}}=\frac{\sum_{n} u_{n m d}}{N} \tag{33}
\end{equation*}
$$

More later ...

[^0]: *Please note that this is an ad-hoc technical note. More structured report with clear notations will follow soon. Contact the author for a newer version.

