
Average error exponentin Gallager low-density parity-hek odesN.S. Skantzosy, J. van Mouriky Y. Kabashimaz and D. SaadyyNeural Computing Researh Group, Aston University, Birmingham B4 7ET, UKzDept. of Computational Intelligene & Systems Siene,Tokyo Institute of Tehnology, Yokohama 2268502, JapanNovember 5, 2002AbstratWe present a theoretial method for a diret evaluation of the average error exponent in Gallager error-orretingodes using methods of statistial physis. Results for the binary symmetri hannel (BSC) are presented for odesof both �nite and in�nite onnetivity.1 IntrodutionLow-density parity-hek odes (LDPC) have attrated signi�ant interest in reent years due to their simpliity andexeptionally high performane [1℄. Their simpliity and inherent randomness make them amenable to analysis usingestablished methods in the area of statistial physis. These have been employed in a number of papers [2℄-[8℄ to gaininsight into the properties of LDPC odes and to evaluate their performane.These studies inlude the evaluation of ritial noise levels for given odes [2℄, an exat alulation of weight andmagnetization enumerators [4℄, the performane of irregular odes [3℄, properties of odes in real-valued hannels [5℄,and the derivation of bounds for the reliability exponent [6℄, to name but a few. These studies also represent theinterdisiplinary nature of this researh area and illustrate the suessful interation between researhers in the twodisiplines.The evaluation of error exponents has been a long-standing problem in information theory [10, 11℄. E�orts to obtainexat expressions and/or bounds to the error exponent resulted in partial suess; although tight bounds have beenderived in the ase of random odes and LDPC with in�nite onnetivity [10℄, only limited results have been obtainedfor sparsly onneted odes. Main stream tehniques to takle the problem inlude sphere-paking and union-boundarguments [11, 10℄. Below a ertain ode-rate value, the estimated bounds also beome loose and require using the`expurgated exponent' tehniques [10℄ for obtaining a tighter bound.In this paper, we employ methods of statistial physis to evaluate diretly the typial (average) error exponent inGallager LDPC odes. This an be arried out by averaging the error exponent over the ensemble of randomly generatedLDPC odes of given rate and onnetivity; this results in the emergene of marosopi properties, representative ofthe ensemble properties, that an be obtained numerially and used to alulate the average error exponent. Solutionshave been obtained for both �nite and in�nite onnetivity vetor ensembles.As a referene point to test our theory, we use known results obtained in simple solvable limits (e.g. odes ofin�nite onnetivity), and �nd that our method reprodues them exatly. Perhaps not surprisingly, we also �nd thatat �xed noise level and ode rate, the reliability exponent for odes of �nite onnetivity is always upper-bounded bythat of the in�nite-onnetivity ase.Before we proeed, the distintion between the statistial physis based bounds [6℄ and the urrent alulationshould be lari�ed. In the former, one employs methods of statistial physis to alulate the typial value of a boundbased on inequalities introdued by Gallager; while in the urrent alulation, a diret estimation of the average errorexponent, rather than a bound, is sought. An additional advantage of the urrent approah is that it an be extendedto provide reliability exponent values for LDPC odes by restrited averages over odes of high performane.1



The paper is organized as follows: In setion 2, we introdue the general oding framework and the tehniqueused. In setions 3 and 4 we present an outline of the derivation and the solutions obtained in both �nite and in�niteonnetivity ases respetively. Disussion and onlusions are presented in setion 5.2 De�nitionsA regular (k; j) Gallager error-orreting ode is de�ned by the binary (N�K)�N (parity hek) matrix A = [C1jC2℄,whih is known to both sender and reeiver. The (N �K)� (N �K) matrix C2 is taken to be invertible. The numberof non-zero elements in eah row of A is given by k, while the number of non-zero elements per olumn is given byj � k(N �K)=N .Gallager's enoding sheme onsists of generating a odeword t 2 f0; 1gN from an information (message) vetors 2 f0; 1gK (with N > K) via the linear operation t = GTs (mod 2) where G is the generator matrix de�ned byG = [I jC�12 C1℄ (mod 2). The ode rate is then given by R � K=N = 1�j=k, and measures the information redundanyof the transmitted vetor.Upon transmission of the odeword t via a noisy hannel (taken here be a BSC) the vetor r = t+ n0 (mod 2) isreeived, where n0 2 f0; 1gN is the true hannel noise. The statistis of the BSC is fully determined by the ip ratep 2 [0; 1℄: P (n0i ) = (1� p) Æn0i ;0 + p Æn0i ;1 (1)Deoding is arried out by multiplying r by A to produe the syndrome vetor z = Ar = An0, sine AGT =0 by onstrution. In order to reonstrut the original message s, one has to obtain an estimate n for the truenoise n0. First we selet the parity hek set of A and n0, i.e. all n that satisfy the parity hek equations:Ip(A;n0) � fn j An = An0g. Sine all operations are performed in modulo 2 arithmeti, Ip(A;n0) typiallyontains exp[NR ln(2)℄ andidates for the true noise vetor n0.It was shown (see e.g. [2, 6, 8℄ for tehnial details) that this problem an be ast into a statistial mehanisformulation, by replaing the �eld (f0; 1g;+mod(2)) by (f1;�1g;�), and by adapting the parity heks orrespond-ingly. >From the parity hek matrix A we onstrut the binary tensor A = fAhi1���iki; 1 � i1 < i2 � � � < ik � Ng,where Ahi1���iki = 1 if A has a row in whih the elements fi;  = 1 � � � kg are all 1 (i.e. when the bits hi1 � � � iki areinvolved in the same parity hek), and 0 otherwise. The fat that eah bit i1 = 1 � � �N is involved in exatly jparity heks is then expressed by Pi2<���<ik Ahi1���iki = j; 8 i1 = 1; : : : ; N and the parity hek equations beomeQk=1 ni =Qk=1 n0i , 8Ahi1���iki = 1.Deoding now onsists in seleting an n from Ip(A;n0), on the basis of its noise statistis, whih are fully desribedby its magnetization m(n) = 1=NPi ni (orresponding to the weight in the information theory literature). Note thatthe number n�(n) of ipped bits in a andidate noise vetor n is given by n�(n) = N(1 �m(n))=2. Therefore, weintrodue a Hamiltonian or ost funtion for eah noise andidate that is negatively proportional to its magnetisation:H(n) = �FXi ni = �FNm(n) (2)where we take F = 12 log 1�pp , suh that up to normalisation exp(�H(n)) yields the orret prior for andidate noisevetors generated by the BSC [12℄. Then, a vetor n from Ip(A;n0) with the highest magnetization (lowest weight)is seleted as a solution; this orresponds to MPM deoding.We are now interested in the probability that other andidate noise vetors are seleted from the parity hek setIp(A;n0), other than the orret (i.e. true) noise vetor n0, for any given ombination fn0;Ag; this is termed theblok error probability. In order to alulate this probability, we introdue an indiator funtion:�(n0;A) = lim�1;2!1 lim�1;2!�� hZ�11 (n0;A;�1) Z�22 (n0;A;�2)i����1=�2=� (3)where Z1(n0;A;�1) = Xn2Ip(n0;A)nn0 e��1H(n) Z2(n0;A;�2) = Xn2Ip(n0;A) e��2H(n) (4)The two partition funtions Z1(n0;A;�1) and Z2(n0;A;�2) di�er only in the exlusion of n0 from Z1. If the truenoise n0 has the highest magnetization of all andidates in the parity hek set (deoding suess), the Boltzmann2



fator exp[��H(n0)℄ will dominate the sum over states in Z2 in the limit � ! 1, and �(n0;A) = 0. Alternatively,if some other vetor n 6= n0 has the highest magnetization of all andidates in the parity hek set (deoding failure),its Boltzmann fator will dominate both Z1 and Z2 and �(n0;A) = 1. Note that the separate temperatures �1 and�2, whih are put to be equal to � in the end, and the powers �1;2 whih are taken to be �� in the end, have beenintrodued in order to allow us to determine whether obtained solutions are physial or not.To derive the average error exponent, we take the logarithm of the indiator funtion average with respet to allpossible realisations of true noise vetors n0, and the ensemble of regular (k; j) odes A:Q = limN!1 1N log 

�(n0;A)�n0�A (5)where hf(n0)in0 = 1(2 oshF )N Xn0 exp(FXi n0i ) f(n0) (6)and hf(A)iA = PAQNi1=1 Æ[Pi2<���<ik Ahi1���iki � j℄ f(A)PAQNi1=1 Æ[Pi2<���<ik Ahi1���iki � j℄ : (7)Sine there are only disrete degrees of freedom, physially meaningful solutions must have a non-negative entropy,requiring the disorder-averaged entropies of the two partition funtions (4) to be non-negative. For general values of�1;2 and �1;2, it an be shown that these disorder-averaged entropies are given byhSxi = �Q��x � �x�x �Q��x � 0; x = 1; 2 (8)whih have to be positive.3 General solutionUsing standard statistial physis methods suh as in [12℄, we perform the gauge transformation ni ! nin0i , and theaverages over true noise (6) and ode onstrutions (7); we then assume the simplest replia symmetri sheme [9℄ toarrive at the following expression for the average error exponent:Q(�1; �2; �1; �2) = Extr�;�̂ � jk log I1[�℄� j log I2[�; �̂℄ + log I3[�̂℄� (9)where I1 = Z ( kY=1 d�(x; y)) 1 +Qk=1 x2 !�+  1 +Qk=1 y2 !�� (10)I2 = Z fd�(x; y) d�̂(x̂; ŷ)g�1 + xx̂2 ��+ �1 + yŷ2 ��� (11)I3 = Z ( jY=1 d�̂(x̂; ŷ))*" Xu=�1 e�1Fn0u jY=1�1 + ux̂2 �#�+ " Xv=�1 e�2Fn0v jY=1�1 + vŷ2 �#��+n0 (12)where we have used the short-hand notation df(x; y)=dxdy f(x; y). Funtional extremisation of (9) with respet tothe densities �(x; y) and �̂(x̂; ŷ) results in a losed set of equations (reminisent of `density evolution' equations [1℄):�̂(x̂; ŷ) = Z "k�1Y=1 d�(x; y)# Æ "x̂� k�1Y=1 x# Æ "ŷ � k�1Y=1 y# (13)�(x; y) = R nQj�1=1 d�̂(x̂; ŷ)oDD�++ (x̂;�1) D��+ (ŷ;�2) Æ hx� D�(x̂;�1)D+(x̂;�1)i Æ hy � D�(ŷ;�2)D+(ŷ;�2)iEn0R nQj�1=1 d�̂(x̂; ŷ)oDD�++ (x̂;�1)D��+ (ŷ;�2)En0 (14)3
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p pFigure 1: Average error exponent Q as funtion of the ip rate p for odes of (k; j) = (4; 3) (left piture) and(k; j) = (6; 3) (right piture). Dashed lines orrespond to the �nite (k; j) ases. Dots indiate ritial ip rates whereQ beomes zero. For omparison we also present (solid lines) the value of the average error exponent in the ase ofk; j !1 with R = 1=4 (left) and R = 1=2 (right). Note that the transition from type I to type II solution ours atsmall p values outside the range of this �gure.where D�(z;�) = [e�Fn0 j�1Y=1(1 + z)℄� [e��Fn0 j�1Y=1(1� z)℄ (15)For given (�1; �2; �1; �2) in general, solutions to (13) and (14) an only be obtained numerially. Inserting thesesolutions into (9) we then obtain Q(�1; �2; �1; �2), whih beomes the average error exponent for �1 = ��2 = � > 0,and for �1 = �2 = � !1.We must reall, however, that physially meaningful solutions must satisfy the onditions (8) stating that theentropies related to the full and the restrited partition sums are non-negative.We restrit ourselves to regions below the thermodynami transition where the average ase is dominated by theferromagneti solution, suh that we an safely �x the denominator to the ferromagneti solution. This dominane isguaranteed if the following onstraint is satis�ed �Q�� �����1=��2=� � 0 : (16)It turns out that for given � > 0, the largest value of � for whih (16) is satis�ed is given by � = 1=(1+�). Hene,in order to maximize �, we must look for the smallest value �� that satis�es the onditions on the non-negativity ofthe entropies (8). Unfortunately, in general this value �� an only be obtained numerially. The value obtained forthe average error exponent by this analysis is then given by Q(1=(1+��); 1=(1+��); ��;���) from (9).In �gure 1 we present the obtained average error exponent as a funtion of the ip rate for (k; j) = (4; 3) and(k; j) = (6; 3) odes. We observe that the error exponent indeed onverges to zero, as it should, when the ip rateapproahes its ritial value.Notie the similarity between the equations obtained here and in [6℄ in spite of the di�erent starting points. Ithas been shown in [6℄ that the analysis should be re�ned in low rate regions by applying a more omplex symmetryassumption in the derivation termed one step replia symmetry breaking (for more details see [12℄). The re�nedanalysis resulted in tight bounds of the error exponent even in the region of low ode-rates, similar to those obtainedusing expurgated exponent methods. One an exploit the similarity between the equations obtained in [6℄ and in theurrent manusript to derive similar results in the low-rate region.4



4 An exatly solvable limit: k; j !1Whereas for �nite density odes we were depending on a numerial analysis, in the limit of k; j ! 1 (while keepingthe rate R = 1� j=k �nite) we obtain two types of analyti solutions to equations (13) and (14), whih an be veri�edby substitution:Type I: �(x; y) = 12 [Æ(x� 1) + Æ(x + 1)℄ Æ(y � 1)�̂(x̂; ŷ) = 12 [Æ(x̂� 1) + Æ(x̂ + 1)℄ Æ(ŷ � 1) (17)Type II: �(x; y) = h G+(F (1+�2�+)) Æ(x�tanh(�1F )) +G�(F (1+�2��)) Æ(x+tanh(�1F ))i Æ(ŷ � 1)�̂(x̂; ŷ) = Æ(x̂) Æ(ŷ � 1) (18)with G�(x) = 12 [1� tanh(x)℄.The average error exponent as obtained from the type I solution is given byQI(�; �; �;��) = � jk log 2� log oshF + log osh(�F�) + log 2 osh(F � �F�) : (19)We �nd that the entropies (8) are always identially zero, and that the onstraint (16) requires that � = 1=2, suhthat � = 1 and QI = � jk log 2� log oshF + log[oshF + 1℄ (20)whih is exatly the Bhattaharyya limit [11℄.The average error exponent as obtained from the type II solution is given byQII(�; �; �;��) = � �� jk log 2 + log 2 osh[�F ℄�+ log[2 osh(F � �F�)℄ � log 2 oshF (21)The ondition on the entropy hS2i � 0 is satis�ed for all � > 0 whereas the ondition hS1i � 0 is violated below theritial (freezing) temperature 1=�� obtained from� jk log 2� ��F tanh[��F ℄ + log 2 osh[��F ℄ = 0 (22)This negative entropy is an artifat of a simplisti assumption about the symmetry between replias, and an beremedied by onsidering a `frozen RSB' ansatz [4℄. In this ansatz, for all � � ��, the (frozen) average error exponentis given by QfrII (�; �; �;��) = ��� � �� jk log 2 + log 2 osh[��F ℄�+ log 2 osh[F � �F�℄� log 2 oshF (23)However, ondition (16) is violated for � > 1� ��, suh that the average error exponent is given byQfrII = F tanh[��F ℄ + jk log 2� log 2 oshF (24)What remains is to determine whether the type I or the type II solution is physially dominant, by using Q as agenerating funtion. Results for the ase of k; j !1 are presented in �gure 2 for p = 0:01 and p = 0:05.
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