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Abstract

Principal component analysis �PCA� is a ubiquitous technique for data analysis and processing�
but one which is not based upon a probability model� In this paper we demonstrate how the
principal axes of a set of observed data vectors may be determined through maximum�likelihood
estimation of parameters in a latent variable model closely related to factor analysis� We consider
the properties of the associated likelihood function� giving an EM algorithm for estimating the
principal subspace iteratively� and discuss the advantages conveyed by the de�nition of a probability
density function for PCA�
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� Introduction

Principal component analysis �PCA� �Jolli�e 	
��� is a well�established technique for dimension
reduction� and a chapter on the subject may be found in practically every text on multivariate anal
ysis� Examples of its many applications include data compression� image processing� visualization�
exploratory data analysis� pattern recognition and time series prediction�

The most common derivation of PCA is in terms of a standardised linear projection which max
imises the variance in the projected space �Hotelling 	
���� For a set of observed ddimensional
data vectors ftng� n � f	 � � �Ng� the q principal axes wj � j � f	 � � � qg� are those orthonormal
axes onto which the retained variance under projection is maximal� It can be shown that the
vectors wj are given by the q dominant eigenvectors �i�e� those with the largest associated eigen
values �j� of the sample covariance matrix S � E��t� ���t� ��T� such that Swj � �jwj � The q
principal components of the observed vector tn are given by the vector xn �W

T�tn � ��� where
WT � �w��w�� � � � �wq�

T� The variables xj are then decorellated such that the covariance matrix
E�xxT� is diagonal with elements �j �

A complementary property of PCA� and that most closely related to the original discussions of
Pearson �	
�	� is that� of all orthogonal linear projections xn �W

T�tn � ��� the principal com
ponent projection minimises the squared reconstruction error

P
n k tn �

�tn k
�� where the optimal

linear reconstruction of tn is given by �tn �Wxn � ��

One limiting disadvantage of both these de�nitions of PCA is the absence of a probability density
model and associated likelihood measure� Deriving PCA from the perspective of density estimation
would o�er a number of important advantages including�

� The de�nition of a likelihood measure permits comparison with other density�estimation
techniques and facilitates statistical testing�

� Bayesian inference methods may be applied �e�g� for model comparison� by combining the
likelihood with a prior�

� If PCA is used to model the class�conditional densities in a classi�cation problem� the pos
terior probabilities of class membership may be computed�

� The probability density function gives a measure of the novelty of a new data point�

� The single PCA model may be extended to a mixture of such models�

The key result of this paper is to show that principal component analysis may indeed be obtained
from a probability model� This follows from incorporatingW within a particular form of latent
variable density model which is closely related to statistical factor analysis� Under this formulation�
the maximum�likelihood estimator of W is the matrix of �scaled and rotated� principal axes of
the data� Estimation ofW in this way� using an iterative EM algorithm for example� is generally
more computationally expensive than the standard eigendecomposition approach� However� using
the given derivationW may be computed in the standard fashion and subsequently incorporated
in the model in order to realise the advantages listed above�

In the next section we brie�y introduce the concept of latent variable models� and outline factor
analysis in particular� Section � then shows how principal component analysis emerges from a
particular model parameterisation� and we conclude with a discussion in Section �� Proofs of key
results are left to the appendix�
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� Latent Variable Models

A latent variable model seeks to relate the set of d�dimensional observed data vectors ftng to a
corresponding set of q�dimensional latent variables fxng�

t � y�x��� � �� �	�

where y�x��� is a function of the latent variable x with parameters �� and � is an xindependent
noise process� Generally� q � d such that the latent variables o�er a more parsimonious description
of the data� By de�ning a prior distribution over x� equation �	� induces a corresponding distri
bution in the data space and the model parameters may be determined by maximum�likelihood�

In standard factor analysis �Bartholomew 	
��� the mapping y�x��� is linear�

t �Wx� �� �� ���

where the latent variables x � N��� I� have a unit isotropic Gaussian distribution� The error� or
noise� model is Gaussian such that � � N������ with � diagonal� the �d � q� parameter matrix
W contains the factor loadings� and � is a constant whose maximum�likelihood estimator is the
mean of the data� Given this formulation� the model for t is also normal N���C�� where the
covariance C � � �WWT� The motivation� and indeed key assumption� for this model is that�
because of the diagonality of �� the observed variables t are conditionally independent given the
values of the latent variables� x� Thus the reduced�dimensional distribution x is intended to model
the dependencies between the observed variables while � represents the independent noise� This
is in contrast to PCA which treats the inter�variable dependencies and the independent noise
identically� In factor analysis the columns of W will generally not correspond to the principal
subspace of the data� Furthermore� unlike PCA� there is no analytic solution forW and �� and so
their values must be determined by iterative procedures� Note also that because of theWWT term�
the covariance C� and thus likelihood� is invariant with respect to orthogonal post�multiplication
ofW� That is�WR� where R is an arbitrary q � q orthogonal matrix� gives an equivalent C�

� A Probability Model for PCA

Because of the diagonal noise model �� the factor loadings W will� in general� di�er from the
principal axes �even when taking the arbitrary rotation into account�� As considered by Anderson
�	
���� principal components emerge when the data is assumed to comprise a systematic compo
nent� plus an independent error term for each variable with common variance ��� This implies that
the diagonal elements of the error matrix � in factor analysis above should be identical� Indeed�
the similarity between the factor loadings and the principal axes has often been observed in situ
ations in which the elements of � are approximately equal �Rao 	
���� Basilevsky �	

�� further
notes that when the modelWWT� ��I is exact� and therefore equal to S� the factor loadings are
identi�able and can be determined analytically through eigen�decomposition of S� without resort
to iteration�

As well as assuming the accuracy of the model� such observations do not consider the maximum�
likelihood context� By considering the model given by ��� with an isotropic noise structure� such
that � � ��I� we show in this paper that even when the covariance model is approximate� the
maximum�likelihood estimatorWML is that matrix whose columns are the scaled and rotated prin
cipal eigenvectors of the sample covariance matrix S� An important consequence of this derivation
is that PCA may be expressed in terms of a density model� the de�nition of which now follows�
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��� The Probability Model

For the isotropic� noise model � � N��� ��I�� equation ��� implies a probability distribution over
t�space for a given x given by

p�tjx� � �������d�� exp

�
�
	

���
k t�Wx� � k�

�
� ���

With a Gaussian prior over the latent variables de�ned by

p�x� � �����q�� exp

�
�
	

�
xTx

�
� ���

we obtain the marginal distribution of t in the form

p�t� �

Z
p�tjx�p�x�dx� ���

� �����d��jCj
����

exp

�
�
	

�
�t� ��TC���t� ��

�
� ���

where the model covariance is

C � ��I�WWT� ���

Using Bayes� rule� the posterior distribution of the latent variables x given the observed t may be
calculated�

p�xjt� � �����q��j���Mj��� �

exp

�
�
	

�

�
x�M��WT�t� ��

�
T

����M�
�
x�M��WT�t� ��

��
� ���

where the posterior covariance matrix is given by

��M�� � �����I�WTW���� �
�

Note that M is q � q while C is d� d�

The log�likelihood of observing the data under this model is�

L �

NX
n��

lnfp�tn�g�

� �
Nd

�
ln�����

N

�
ln jCj �

N

�
tr
�
C��S

	
� �	��

where

S �
	

N

NX
n

�tn � ���tn � ��T� �		�

the sample covariance matrix of the observed ftng� The parameters for this model can thus be
estimated by maximising the log�likelihood L� and an EM algorithm to achieve this is given in
Appendix B�

��� Properties of the Maximum�Likelihood Estimators

The log�likelihood �	�� is maximised when the columns of W span the principal subspace of the
data� To show this we consider the derivative of �	�� with respect toW�

�L

�W
� N�C��SC��W �C��W�� �	��
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which may be obtained from standard matrix di�erentiation results �see Krzanowski and Marriott
	

�� pp 	���� In Appendix A it is shown� with C given by ���� that the only non�zero stationary
points of �	�� occur for�

W � Uq��q � ��I����R� �	��

where the q column vectors in Uq are eigenvectors of S� with corresponding eigenvalues in the
diagonal matrix �q � and R is an arbitrary q � q orthogonal rotation matrix� Furthermore� it is
also shown that the stationary point corresponding to the global maximum of the likelihood occurs
when Uq comprises the principal eigenvectors of S� and that all other combinations of eigenvectors
represent saddle�points of the likelihood surface� Thus� from �	��� the columns of the maximum�
likelihood estimator WML contain the principal eigenvectors of S� with a scaling determined by
the corresponding eigenvalue and the parameter ��� and with arbitrary rotation�

It may also be shown that forW �WML� the maximum�likelihood estimator for �
� is given by

��ML �
	

d� q

dX
j�q��

�j � �	��

which has a clear interpretation as the variance �lost� in the projection� averaged over the lost
dimensions�

It should be noted that the columns ofWML are not orthogonal since

�WML�
TWML � R

T��q � ��I�R� �	��

which is not diagonal for R �� I� In common with factor analysis� and indeed many other iterative
PCA algorithms� there exists an element of rotational ambiguity� An orthonormal basis for the
principal subspace may easily be extracted using standard techniques if required� Furthermore� the
actual principal axes may also be determined by noting that equation �	�� represents an eigenvector
decomposition of �WML�

TWML� where the transposed rotation matrix R
T is simply the matrix

whose columns are the eigenvectors of the q � q matrix �WML�
TWML�

However� with reference to the optimal reconstruction property of PCA� further processing of
the parameters is not necessary� From ��� it may be seen that the posterior mean projection of
tn is given by hxni � M��WT�tn � ��� When �� � �� M�� � �WTW��� and WM��WT

then becomes an orthogonal projection� and so PCA is recovered� However� the density model
then becomes singular� and thus unde�ned� while for �� 	 �� the projection onto the manifold
becomes skewed towards the origin as a result of the prior over x� Because of this�Whxni is not
an orthogonal projection of tn� However� each data point may still be optimally reconstructed
from the latent variable by taking this skewing into account� With W � WML the required
reconstruction is given by

�tn �WMLf�WML�
TWMLg

��Mhxni� �	��

and is derived in Appendix C� Thus the latent variables convey the necessary information to
reconstruct the original data vector optimally� even in the case of �� 	 ��

� Discussion

In this paper we have shown how principal component analysis may be viewed as a maximum�
likelihood procedure based on a probability density model of the observed data�

In addition� we have given an EM algorithm for determining the necessary model parameters�
and although we are not necessarily advocating that standard principal components should be
estimated in this way� the EM algorithm plays a crucial r�ole when� for example� extending the
approach to mixture models� �Even for standard PCA� there may be an advantage in an iterative
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approach for large d since the algorithm derived in this paper requires at most the inversion of a
q � q matrix� in contrast to a full eigen�decomposition of the d � d covariance matrix� However�
in such instances there are other iterative algorithms available��

Rather than consider the algorithmic perspective of determining principal components� we would
emphasise the advantages� outlined in the introduction� of associating a probability model with
PCA� In many applications� these advantages may be realised by computingUq and�q by standard
eigen�decomposition of the covariance matrix� and subsequently incorporating those parameters
within the probability model using equations �	�� and �	��� thereby avoiding the use of the EM
algorithm�

In practice� the choice of the isotropic noise covariance ��I within the model conveys an advantage
over the diagonal covariance� used in standard factor analysis� In the latter method� considerable
care must be taken in the choice of the number of factors q� An inappropriate choice can easily give
misleading results� and some practitioners have been quite emphatic in their warnings �notably
Chat�eld and Collins 	
��� chapter ��� A major problem is that if the observations can be explained
su�ciently by� say� two factors� a model which attempts to identify only a single factor may often
fail to �nd either of the su�cient two� but may instead �nd a third alternative� This is ultimately
a result of mis�speci�cation of q being compensated for in the factor loadingsW� an e�ect which
does not occur in the case of the proposed model for PCA� In this latter case� the use of the
isotropic noise model implies that the �rst two principal axes will clearly include the �rst alone�

Formulating PCA as a probability model can o�er considerable practical bene�ts� For example� we
are currently incorporating individual PCA models in a mixture model framework �Tipping and
Bishop 	

�a� Tipping and Bishop 	

�b�� An EM algorithm� based on that given in Appendix B�
can be derived for estimating all the model parameters� Such a mixture model has been employed
both for image compression� where the optimal linear reconstruction property of PCA can be
e�ectively exploited� and for visualization� where the implicitly de�ned PCA projections may be
utilised�

A further important implication of such an approach to density modelling �either with individual
or mixture models� is the capacity to control the model complexity through choice of q� by limiting
the number of parameters used to de�ne the covariance structure� This enables density models to
be constructed in high�dimensional spaces where fully�parameterised covariance matrices would be
hopelessly under�constrained� and at the same time avoiding an inappropriate diagonal or spherical
constraint� Classi�cation through the modelling of class�conditional densities can thus become a
realistic option even when d is large�

In addition to placing traditional PCA on a more general statistical footing� the probabilistic
formalism opens the door to a richer class of density estimation techniques with much scope for
practical application� The illustrative examples from the previous paragraph serve to emphasise
that the proposed model has considerable potential�

Acknowledgements� This work was supported by EPSRC contract GR�K�	���� Neural Net�
works for Visualization of High Dimensional Data�
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A Maximum�Likelihood PCA

A�� The Stationary Points of the Log�Likelihood

The expression for the gradient of the loglikelihood �	�� with respect to the weight matrixW is�

�L

�W
� N�C��SC��W �C��W�� �	��

At the stationary points�

C��SC��W � C��W� �	��

and hence

SC��W �W� �	
�

assuming that �� 	 �� and thus that C�� exists� This is a necessary and su�cient condition for
the density model to remain nonsingular� and we will restrict ourselves to such cases� It will be
seen shortly that �� 	 � if q � rank�S�� so this assumption implies no loss of practicality�

There are three possible classes of solutions to equation �	
��

	� W � �� This will be seen to be a minimum of the loglikelihood�

�� C � S� This is the case where the covariancemodel is exact� such as is discussed by Basilevsky
�	

��� In the context of standard PCA� such a result is only attainable if q 	 rank�S�� For
probabilistic PCA it is necessary to consider the case in which the d� q smallest eigenvalues
of S are identical �or trivially� q � d� 	�� because C � S is attainable with �� � �min� the
smallest eigenvalue of S� As discussed in Section ��W is then identi�able since

��I�WWT � S�


 WWT � S� ��I� ����

which has a known solution at W � U�� � ��I����R� where U is a square matrix whose
columns are the eigenvectors of S� with � the corresponding diagonal matrix of eigenvalues�
and R is an arbitrary orthogonal �rotation� matrix�

�� SC��W �W� withW �� � and C �� S�

We are interested in case � where C �� S and the model is approximate� First� we express the
weight matrixW in terms of its singular value decomposition�

W � ULVT� ��	�

where U is a d � q matrix of orthonormal column vectors� L � diag�l�� l�� � � � � lq� is the q � q
diagonal matrix of singular values� and V is a q � q orthogonal matrix� Now�

C��W � ���I�WWT���W�

�W���I�WTW����

� ULVT���I�VLUTULVT����

� ULVTV���I� LUTUL���VT�

� UL���I� L����VT� ����

Then at the stationary points�

SC��W �W�


 SUL���I� L����VT � ULVT�


 SUL � U���I� L��L� ����
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For lj �� �� equation ���� implies that if U � �u��u�� � � � �uq�� then each column vector uj must be
an eigenvector of S� with corresponding eigenvalue �j such that �

� � l�j � �j � and so

lj � ��j � ������� ����

For lj � �� uj is arbitrary� All potential solutions forW may thus be written as

W � Uq�Kq � ��I����R� ����

where Uq is a d � q matrix comprising q column eigenvectors of S� and Kq is a q � q diagonal
matrix with elements�

kj �



�j � the corresponding eigenvalue to uj � or�

���
����

where the latter case may be seen to be equivalent to lj � �� Again� R is an arbitrary orthogonal
�rotation� matrix�

A�� The Global Maximum of the Likelihood

The matrix Uq may contain any of the eigenvectors of S� so to identify those which maximise the
likelihood� the expression forW in ���� is substituted into the loglikelihood function �	�� to give

L � �
N

�

��d ln���� �

q�X
j��

ln��j� �
	

��

dX
j�q���

�j � �d� q�� ln�� � q�

��� � ����

where q� is the number of nonzero lj � Di�erentiating the loglikelihood �	�� with respect to ��

and substituting forW from ���� gives

�� �
	

d� q�

dX
j�q���

�j � ����

and so

L � �
N

�

��
q�X
j��

ln��j� � �d� q�� ln

�� 	

d� q�

dX
j�q���

�j

�A� d ln���� � d

��� � ��
�

Note that ���� implies that �� 	 � if rank�S� 	 q as stated earlier� We wish to �nd the maximum
of the loglikelihood ��
� with respect to the choice of vectors uj to incorporate in W� The
corresponding �retained� eigenvalues �j � j � f	� � � � � q�g� appear in the �rst term in ��
�� while
those �discarded� �and which determine ��� are found in the second term� Equation ��
� is thus
maximised over all possible choices of �j when the expression�

q�X
j��

ln��j� � �d� q�� ln

�� 	

d� q�

dX
j�q���

�j

�A � ����

is minimised� Noting that the righthand term in ���� is the logarithm of an average� Jensen�s
inequality can be applied to rewrite ���� as

q�X
j��

ln��j� �

dX
j�q���

ln��j� �A� ��	�

where A 	 � represents �d � q�� times the di�erence between the mean of the logeigenvalues and
the log of the mean eigenvalue� and is given by

A � �d� q�� ln

�� 	

d� q�

dX
j�q���

�j

�A�

dX
j�q���

ln��j�� ����
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Since the sum of the �rst two terms in ��	� is constant regardless of the choice of retained or
discarded eigenvalues� maximisation of the likelihood is thus equivalent to minimisation of A� We
examine this by �rst assuming that d� q� discarded eigenvalues have been chosen arbitrarily� and�
by di�erentiation� consider how a single such value �k a�ects A�

�A

��k
�
�d� q���k �

Pd
j�q���

�j

�k

�Pd
j�q���

�j

� � ����

From ����� it can be seen that A has a single minimumwhen �k is equal to the mean of the remaining
discarded eigenvalues �j � The eigenvalue �k can only take discrete values� but it is evident that
if a retained eigenvalue �j � j � f	 � � � q�g� lies between �k and the mean� then exchanging the two
eigenvalues will result in a decrease in A and an increase in the likelihood� If we consider that
the eigenvalues of S are ordered� for any combination of discarded eigenvalues which includes a
�gap� occupied by a retained eigenvalue� there will always be a sequence of contiguous eigenvalues
with a lower value of A� It follows then that at the minimum of A with respect to all possible
�k� the discarded eigenvalues �j � j � fq� � 	 � � � dg must be contiguous within the spectrum of all
eigenvalues of S�

Without any additional constraint� no further analytic progress may be made with respect to
which continuous block of eigenvalues minimises A� However� equation ���� indicates that not
all combinations of retained and discarded eigenvalues are stationary points� and that only those
where all retained �j are greater than �� can exist� By reference to equation ����� we can deduce
from this that the smallest eigenvalue must be discarded and included in the righthand term of
����� Given the requirement that the discarded eigenvalues must be contiguous� A must then be
minimised when the smallest d� q� eigenvalues are present in the righthand term of ���� and so
L is maximised when �j � j � f	� � � � � qg� are the largest eigenvalues of S�

It should also be noted that A is minimised� with respect to q�� when there are fewest terms in the
sum in ���� which occurs when q� � q and therefore no lj is zero� Furthermore� L is minimised

whenW � �� which may be seen to be equivalent to the case of q� � ��

A�� The Nature of Other Stationary Points

If stationary points represented by minor eigenvector solutions are stable maxima� then local
maximisation �via an EM algorithm for example� is not guaranteed to converge on the optimal
solution comprising the principal eigenvectors� We may show� however� that minor eigenvector
solutions are in fact saddle points on the likelihood surface�

Consider a stationary point of the gradient equation �	�� at cW � Uq�Kq � ��I����R� where Uq

may contain q arbitrary eigenvectors of S and Kq contains either the corresponding eigenvalue

or ��� Then consider a perturbation to this solution of the form W � cW � 
VR� where 
 is an
arbitrarily small constant and the d� q matrix V is given by�

V �
�
ui � � � � �

	
� ����

It will be su�cient to only consider those ui that are not in Uq � �A solution with a repeated
eigenvector implies one lj becoming zero and thus a decrease in the likelihood�� Arbitrary permu
tations of the columns of V with all valid ui thus implies that the resulting vectors vec�VR� are
a complete orthogonal basis for the directions of interest on the likelihood surface�� The solutionscW will be stable if vec�VR�Tvec�G� is negative for all such directions� where G � ��L��W��N

evaluated atW � cW � 
VR� Now� from �	���

CG � SC��W �W�

� SW���I�WTW��� �W�

� SW���I� cWTcW� 
�RTVTVR��� �W� ����

�The �vec���� operator converts a matrix into a vector by �stacking� its columns one above the other� It thus has
the property that vec�A�Tvec�B� � tr �ATB��
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since VTW � �� Ignoring the term in 
� then gives�

CG � S�cW � 
VR����I� cWTcW��� � �cW� 
VR��

� ScW���I� cWTcW��� � cW � S
VR���I� cWTcW��� � 
VR�

� 
SVR���I� cWTcW��� � 
VR� ����

since ScW���I�cWTcW� � cW at the stationary point� Then substituting for cW gives ��I�cWTcW �
RTKqR� such that

CG � 
SVR�RTK��
q R�� 
VR� so

G � 
C��V��iK
��
q � I�R� ����

where

�i �

�� �i � � � �
� � � � �
� � � � � � � � �

�� � ����

with �i in the corresponding position to ui in V� Then

vec�VR�Tvec�G� � tr �GTVR� �

� 
tr
�
RT��iK

��
q � I�VTC��VR

	
�

� 
��i�ki � 	�u
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��ui� ��
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where ki is the value in Kq in the corresponding position to �i� Since C
�� is positive de�nite�

clearly uTi C
��ui is always positive� When ki � �j � the expression given by ��
� is negative �and

the maximum a stable one� for �i � �j � For �i 	 �j the critical point must be a saddle point�
If ki � ��� the stationary point can never be stable since� from ����� �� is the average of d � q�

eigenvalues� and so �i 	 �� for at least one of those eigenvalues� except when all those eigenvalues
are identical� Such a case is considered in the next section�

From this� by considering all possible perturbationsV� it can be seen that the only stable maximum
occurs whenW comprises the q principal eigenvectors� for which �i � �j � �i �� j�

A�� Equality of Eigenvalues

Equality of any of the q principal eigenvalues does not a�ect the presented analysis� However�
consideration must be given to the instance when all the d� q minor �discarded� eigenvalue�s� are
equal and identical to the smallest principal �retained� eigenvalue�s�� �In practice� particularly in
the case of sampled covariance matrices� this is unlikely��

Consider the example of extracting two components from data with a covariance matrix possessing
eigenvalues �� 	 and 	� In this case� the second principal axis is not uniquely de�ned within the
minor subspace� The spherical noise distribution de�ned by ��� in addition to explaining the
residual variance� can also optimally explain the second principal component� Because �� � ���
the variable l� from equation ���� is zero� and W e�ectively only comprises a single vector �its
two columns will be linearly dependent�� The combination of this single vector and the noise
distribution represents the maximum of the likelihood�

B An EM Algorithm for PCA

We now derive an EM algorithm for maximising the likelihood �	��� following Rubin and Thayer
�	
����



	� Probabilistic Principal Component Analysis

In the EM approach� we consider the latent variables fxng to be �missing� data� If their values
were known� estimation ofW would be straightforward by maximising the likelihood for the model
given by equation ���� which is equivalent to the standard least�squares solution to equation ����
However� for a given tn� we are ignorant of the value of xn which generated it� although we do
know the joint distribution of the observed and latent variables� p�t�x�� In the E�step we use this
quantity to calculate the expectation of the corresponding complete�data log�likelihoodwith respect
to the posterior distribution of xn given the observed tn and the current parameter values� In the

M�step� new parameter values fW and e�� are determined which maximise the expected complete�
data log�likelihood and this is guaranteed to increase the likelihood of interest�

Q
n p�tn�� unless it

is already at a local maximum �Dempster� Laird� and Rubin 	
��� Bishop 	

���

The complete�data log�likelihood is given by�

LC �
NX
n��

lnfp�tn�xn�g� ����

where� from equations ��� and ���

p�tn�xn� � ����
���d�� exp

�
�
k tn �Wxn � � k�

���

�
�����q�� exp

�
�
	

�
xTnxn

�
� ��	�

In the Estep� we take the expectation with respect to the distribution p�xnjtn�W� ����

hLCi � constant terms�
d

�
ln�� �

NX
n��

�
�
	

�
tr �hxnx

T

ni�

�
	

���
tr ��tn � ���tn � ��T � ��tn � ��hxni

TWT �Whxnx
T

niW
T�

� ����

with

hxni � ��
�I�WTW���WT�tn � ��� ����

hxnx
T

ni � �����I�WTW��� � hxnihxni
T� ����

Note that these statistics are computed using the current ��xed� values of the parameters� and
that ���� is simply the posterior mean from equation ���� where we exploit the identity that
WT���I�WWT��� � ���I�WTW���WT� This latter form is preferred as we only need invert
a q � q matrix� rather than the d� d matrix C� Together with �
�� this leads to equation �����

In the Mstep� hLCi is maximised with respect toW and �� by di�erentiating equation ���� and
setting the derivatives to zero� Calculating these derivatives� substituting for hxni and hxnx

T

ni and
some further manipulation leads to the parameter updates�fW � SW���I�M��WTSW���� and ����

e�� � 	

d
tr
h
S� SWM��fWT

i
� ����

where S andM are again given by

S �
	

N

NX
n��

�tn � ���tn � ��T� ����

M � ��I�WTW� ����

Note that the �rst instance ofW in equation ���� above is the old value of the weights� while the

second instance fW is the new value calculated from equation �����

To maximise the likelihood then� in the E�step the necessary statistics from ���� and ���� are
calculated implicitly using ���� and ����� and the new parameters calculated in the M�step using
���� and ����� This procedure is repeated until the algorithm is judged to have converged�
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C Optimal Least�Squares Reconstruction

One of the motivations for adopting PCA in many applications� notably in data compression� is
the property of optimal leastsquares linear reconstruction� That is for all orthogonal projections
x �WTt of the data� the leastsquares reconstruction error

E�
rec �

	

N

NX
n��

k tn �WWTtn k
� ��
�

is minimised when the columns ofW span the principal subspace of the data covariance matrix�
�For simpli�cation� and without loss of generality� we assume here that the data has zero mean��

We may still obtain this property from our probabilistic formalism� without the need to determine
the exact orthogonal projectionW� by �nding the optimal reconstruction of the posterior mean
vectors hxni� To do this we simply minimise

E�
rec �

	

N

NX
n��

k tn �Bhxni k
�� ����

over the reconstruction matrix B� which is equivalent to a linear regression problem giving

B � TThXi �hXiThXi�
��

� ��	�

where T is the N � d matrix whose rows are tn and X the N � q matrix with corresponding rows
hxni�

Since� from ����� hXi � TWM��� ��	� gives

B � SW�WTSW���M� ����

where S � TTT andM � ��I�WTW�

The reconstruction �tn of tn is then given by�

�tn � Bhxni�

� BM��WTtn�

� SW�WTSW���WTtn� ����

Note that in general this projection of tn is not orthogonal� However� at the converged solution�
with the substitutionW � Uq��q � ��I����R� ���� becomes�

�tn �W�WTW���Mhxni� ����

�W�WTW���WTtn� ����

which is the expected orthogonal projection� The implication is thus that in the data compression
context� at the maximum likelihood solution� the variables hxni can be transmitted down the chan
nel and the original data vectors optimally reconstructed using equation ���� given the parameters
W and ��� Substituting for B in equation ���� gives E�

rec � �d� q��� and the noise term �� thus
represents the expected squared reconstruction error per �lost� dimension�


