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AbstractIn this report we discuss the problem of combining spatially-distributed predictions fromneural networks. An example of this problem is the prediction of a wind vector-�eldfrom remote-sensing data by combining bottom-up predictions (wind vector predictionson a pixel-by-pixel basis) with prior knowledge about wind-�eld con�gurations. This taskcan be achieved using the scaled-likelihood method, which has been used by Morgan andBourlard (1995) and Smyth (1994), in the context of Hidden Markov modelling.



Combining Spatially Distributed Predictions From Neural Networks 21 IntroductionNeural networks have been used very successfully in a wide variety of domains for per-forming classi�cation or regression tasks. A characteristic of most currently successfulapplications is that the input patterns are either independent (as in static pattern clas-si�cation) or related over time, rather than being spatially distributed. To extend theuse of neural networks to spatially distributed tasks, such as the prediction of a windvector-�eld from remote-sensing data, typically it is necessary to combine local bottom-uppredictions (wind vector predictions on a pixel-by-pixel basis, based on, e.g. remote sens-ing observations) with global prior knowledge (typical wind-�eld con�gurations, includingweather fronts). In this report I show how the prior information and local predictions canbe combined using Bayes' theorem to obtain the posterior distribution for the features ofinterest (the wind-�eld). This approach is not limited to remote-sensing data, but appliesgenerally to problems where multiple predictions are to be fused with the incorporationof prior knowledge.2 The generative modelling approachSuppose we wish to carry out inference on some variables X given some data Y = y. Inprinciple the inferential procedure is straightforward; we build a model for P (X;Y ), andthen condition of Y = y to obtain a posterior for X. (If the whole posterior is di�cultto compute, we may be happy with drawing samples from the posterior, e.g. by MarkovChain Monte Carlo (MCMC) methods.)
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Figure 1: A graphical model illustrating the factorization of P (X;Y ) = P (X)Qki=1 P (YijXi).Note that the links joining the X nodes are undirected, giving overall a chain graphstructure.Of course the joint distribution P (X ;Y ) may be factorized as P (X)P (Y jX). Under aspatial arrangement of data there may be a component of Y and a component of X ateach spatial position. (In the wind �eld example the Y component is the observationsmade by a satellite on a region of the sea, and X is the wind vector for that region.) Ifit is assumed that P (Y jX) = Qki=1 P (YijXi), i.e. that the Y observation at each spatial



Combining Spatially Distributed Predictions From Neural Networks 3location depends only on the corresponding X, then we obtainP (X jY ) / P (X) kYi=1P (YijXi): (1)The factorization of P (Y jX) is illustrated as a graphical model in Figure 1.Note that it is necessary to have a sensor model that gives P (YijXi) in order to carryout inference. In the next section we present an alternative approach which makes use ofpredictions of P (XijYi).3 The scaled-likelihood methodIt may happen that we have a system that predicts P (XijYi) for each spatial location,and we would like to fuse these predictions with a prior on X. The predictions cannot bedirectly incorporated into equation 1, however, using Bayes' theorem we obtainP (YijXi) = P (XijYi)P (Yi)P (Xi) : (2)For inference of X , the data Y is �xed and so the factor P (Yi) in equation 2 need not beconsidered. If we de�ne the scaled likelihood (SL) for location i asLi(Yi) = P (XijYi)P (Xi) (3)then we obtain P (X jY ) / P (X) kYi=1Li(Yi): (4)Thus we have a principled method for the fusion of the predictions P (XijYi), i = 1; : : : kwith the prior P (X). The marginal distribution P (Xi) may be estimated from the dataused to train the predictor, perhaps incorporating some other prior knowledge. (Note thatThe scaled-likelihood trick has been used by Morgan and Bourlard (1995) and Smyth(1994) in the context of Hidden Markov models, but not, I believe, in the spatial context.There are a number of issues concerning the merits of the generative and scaled-likelihoodapproaches:� The generative approach requires the development a sensor model P (YijXi). Thismay need to be quite a complex model, although the predictive distribution P (XijYi)is actually quite simple, i.e. the generative approach may spend a lot of resourceson modelling P (YijXi) which are not particularly relevant to the task of inferringX. On the other hand, having a model for P (YijXi) is necessary for the detectionof outliers.



Combining Spatially Distributed Predictions From Neural Networks 4� Training the models. The scaled-likelihood approach clearly requires the existence oftraining examples of X, decoupling the training of the prior and recognition models.The generative model could be trained using simply P (Y ), the likelihood of theobservations, but if X information is available it would be desirable to use it. Forexample, the parameters in the model for P (Y ) = PX P (X)P (Y jX) may not beidenti�able based solely on Y data, but may be if both X and Y data were used.� Morgan and Bourlard (1995) have used additional contextual information in theprediction of P (XijYi). In the spatial situation this additional information mightbe the Y values in spatial locations adjacent to the ith position. Although strictlythis would violate the assumptions in equation 1, it may be partially justi�ed usingarguments similar to those for the Helmholtz machine (Dayan, Hinton, Neal andZemel, 1995). In a two-layer Helmholtz machine a feedforward network predicts theposterior distribution forX using the Y values. Our suggestion is to use feedforwardnetworks to approximate the likelihood part of the posterior, and then to combinethis term with the prior on X to obtain an approximate posterior.Finally we note that it is not necessary that the prior distribution of X be representedby a fully connected graph. For example, we are currently experimenting with tree-structured directed acyclic graph models of images (following the work of Bouman andShapiro (1994)). In this case our prior is over the classi�cations of pixels (e.g. into road,sky, vegetation etc. classes), and is obtained in an hierarchical manner. Message passingmethods (Pearl, 1988) can then be used to �nd e�ciently some properties of the posterior.AcknowledgementsThis work is funded by EPSRC grant GR/L03088, Combining Spatially Distributed Pre-dictions From Neural Networks. I thank the Isaac Newton Institute for MathematicalSciences for its hospitality while this paper was being written, and Chris Bishop, DanCornford, Xiaojuan Feng and Ian Nabney for comments on an earlier draft.References[1] C. A. Bouman and M. Shapiro. A Multiscale Random Field Model for Bayesian Image Seg-mentation. IEEE Transactions on Image Processing, 3(2):162{177, 1994.[2] P. Dayan, G. E. Hinton, R. M. Neal, and R. S. Zemel. The Helmholtz Machine. NeuralComputation, 7(5):889{904, 1995.[3] N. Morgan and H. A. Bourlard. Neural Networks for Statistical Recognition of ContinuousSpeech. Proceedings of the IEEE, 83(5):742{770, 1995.[4] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Mor-gan Kaufmann, San Mateo, CA, 1988.[5] P. Smyth. Hidden Markov models for fault detection in dynamic systems. Pattern Recogntion,27(1):149{164, 1994.


