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Abstract

In this report we discuss the problem of combining spatially-distributed predictions from
neural networks. An example of this problem is the prediction of a wind vector-field
from remote-sensing data by combining bottom-up predictions (wind vector predictions
on a pixel-by-pixel basis) with prior knowledge about wind-field configurations. This task
can be achieved using the scaled-likelihood method, which has been used by Morgan and
Bourlard (1995) and Smyth (1994), in the context of Hidden Markov modelling.
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1 Introduction

Neural networks have been used very successfully in a wide variety of domains for per-
forming classification or regression tasks. A characteristic of most currently successful
applications is that the input patterns are either independent (as in static pattern clas-
sification) or related over time, rather than being spatially distributed. To extend the
use of neural networks to spatially distributed tasks, such as the prediction of a wind
vector-field from remote-sensing data, typically it is necessary to combine local bottom-up
predictions (wind vector predictions on a pixel-by-pixel basis, based on, e.g. remote sens-
ing observations) with global prior knowledge (typical wind-field configurations, including
weather fronts). In this report I show how the prior information and local predictions can
be combined using Bayes’ theorem to obtain the posterior distribution for the features of
interest (the wind-field). This approach is not limited to remote-sensing data, but applies
generally to problems where multiple predictions are to be fused with the incorporation
of prior knowledge.

2 The generative modelling approach

Suppose we wish to carry out inference on some variables X given some data Y = y. In
principle the inferential procedure is straightforward; we build a model for P(X,Y’), and
then condition of Y = y to obtain a posterior for X. (If the whole posterior is difficult
to compute, we may be happy with drawing samples from the posterior, e.g. by Markov
Chain Monte Carlo (MCMC) methods.)
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Figure 1: A graphical model illustrating the factorization of P(X,Y) = P(X) Hle P(Y;|X;).
Note that the links joining the X nodes are undirected, giving overall a chain graph
structure.

Of course the joint distribution P(X,Y ) may be factorized as P(X)P(Y|X). Under a
spatial arrangement of data there may be a component of Y and a component of X at
each spatial position. (In the wind field example the Y component is the observations
made by a satellite on a region of the sea, and X is the wind vector for that region.) If
it is assumed that P(Y'|X) = [[%_, P(Y;|X;), i.e. that the Y observation at each spatial
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location depends only on the corresponding X, then we obtain

k
P(X]Y) x P(X) [] P(Yil X)) (1)
i=1

The factorization of P(Y | X) is illustrated as a graphical model in Figure 1.

Note that it is necessary to have a sensor model that gives P(Y;|X;) in order to carry
out inference. In the next section we present an alternative approach which makes use of
predictions of P(X;|Y;).

3 The scaled-likelihood method

It may happen that we have a system that predicts P(X;|Y;) for each spatial location,
and we would like to fuse these predictions with a prior on X. The predictions cannot be
directly incorporated into equation 1, however, using Bayes’ theorem we obtain

P(X;|Y;)P(Y)

P(Yz‘Xz) = P(X,) : (2)

For inference of X, the data Y is fixed and so the factor P(Y;) in equation 2 need not be
considered. If we define the scaled likelihood (SL) for location 7 as

L) = e Q

then we obtain .
P(X|Y) < P(X) [] Li(Y)). (4)

i=1

Thus we have a principled method for the fusion of the predictions P(X;|Y;), i =1,...k
with the prior P(X). The marginal distribution P(X;) may be estimated from the data
used to train the predictor, perhaps incorporating some other prior knowledge. (Note that

The scaled-likelihood trick has been used by Morgan and Bourlard (1995) and Smyth
(1994) in the context of Hidden Markov models, but not, I believe, in the spatial context.

There are a number of issues concerning the merits of the generative and scaled-likelihood
approaches:

e The generative approach requires the development a sensor model P(Y;|X;). This
may need to be quite a complex model, although the predictive distribution P(X;|Y;)
is actually quite simple, i.e. the generative approach may spend a lot of resources
on modelling P(Y;|X;) which are not particularly relevant to the task of inferring
X. On the other hand, having a model for P(Y;|X;) is necessary for the detection
of outliers.
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e Training the models. The scaled-likelihood approach clearly requires the existence of
training examples of X, decoupling the training of the prior and recognition models.
The generative model could be trained using simply P(Y'), the likelihood of the
observations, but if X information is available it would be desirable to use it. For
example, the parameters in the model for P(Y') = 3~ x P(X)P(Y |X) may not be
identifiable based solely on Y data, but may be if both X and Y data were used.

e Morgan and Bourlard (1995) have used additional contextual information in the
prediction of P(X;|Y;). In the spatial situation this additional information might
be the Y values in spatial locations adjacent to the ith position. Although strictly
this would violate the assumptions in equation 1, it may be partially justified using
arguments similar to those for the Helmholtz machine (Dayan, Hinton, Neal and
Zemel, 1995). In a two-layer Helmholtz machine a feedforward network predicts the
posterior distribution for X using the Y values. Our suggestion is to use feedforward
networks to approximate the likelihood part of the posterior, and then to combine
this term with the prior on X to obtain an approximate posterior.

Finally we note that it is not necessary that the prior distribution of X be represented
by a fully connected graph. For example, we are currently experimenting with tree-
structured directed acyclic graph models of images (following the work of Bouman and
Shapiro (1994)). In this case our prior is over the classifications of pixels (e.g. into road,
sky, vegetation etc. classes), and is obtained in an hierarchical manner. Message passing
methods (Pearl, 1988) can then be used to find efficiently some properties of the posterior.
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