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Abstract. The behaviour of control functions in safety critical software systems is 
typically bounded to prevent the occurrence of known system level hazards. These 
bounds are typically derived through safety analyses and can be implemented 
through the use of necessary design features. However, the unpredictability of real 
world problems can result in changes in the operating context that may invalidate 
the behavioural bounds themselves, for example, unexpected hazardous operating 
contexts as a result of failures or degradation. For highly complex problems it may 
be infeasible to determine the precise desired behavioural bounds of a function that 
addresses or minimises risk for hazardous operation cases prior to deployment. This 
paper presents an overview of the safety challenges associated with such a problem 
and how such problems might be addressed. A self-management framework is pro-
posed that performs on-line risk management. The features of the framework are 
shown in context of employing intelligent adaptive controllers operating within 
complex and highly dynamic problem domains such as Gas-Turbine Aero Engine 
control. Safety assurance arguments enabled by the framework necessary for certifi-
cation are also outlined. 

1   Introduction 

The use of Artificial Intelligence (AI) in highly critical roles has long been a subject of 
scepticism and controversy within the safety community. Although such technology is 
being increasingly acclaimed for its qualities and performance capabilities their inherent 
unpredictability has gained limited recognition within current safety development stan-
dards and guidelines [1].  At the macro level, AI paradigms such as Multi-Agent Systems 
may be employed in the complex simulation management and control of Systems of Sys-
tems [2]. At the micro-level, intelligent machine learning paradigms can be employed for 
control systems such as Artificial Neural Networks (ANNs) and Fuzzy Logic Systems 
(FLSs).  

There are many motivations for using AI paradigms - some of which include address-
ing incomplete specifications, uncertainty, unexpected conditions, complexity and chang-
ing environments. Many of these AI paradigms fall into the category of self-* or autono-
mous systems. These are Self-Managed systems that are capable of self-configuration, 
self-adaptation, self-healing, self-monitoring and self-tuning [3].  



The emergence of self-governing or autonomous solutions to address complex, highly 
dynamical and unpredictable real world problems has led to major challenges in achieving 
compelling and acceptable safety assurance necessary for certification. Previous work on 
the safety of Intelligent Adaptive Systems [4-6]  has addressed these issues by employing 
design features and a set of behavioural (functional) safety bounds within which such 
paradigms are able to learn and adapt their behaviour once deployed. This can be achieved 
using self-* algorithms such as self-tuning and self-generation [5]. Although this may be 
sufficient for problems where the functional safety requirements are well defined in some 
other problems it may be necessary to change the defined safety bounds themselves post 
certification in the event of unexpected failures or system degradation.  

In section 2, the problem of managing unexpected operating conditions is highlighted 
in context of the Gas Turbine Aero-Engine. Section 3 of the paper presents an argument 
about how such operating conditions can be addressed through adaptive systems. Section 
4 presents a framework detailing key activities, how they contribute to safety assurance 
and major safety challenges in context of Gas Turbine Aero-Engine control.  

2   Problem Definition: Managing Changing Requirements 

 Gas Turbine Engines (GTE) are a real world example of a complex and a highly dy-
namical system that is comprised of many interconnected components. GTEs are internal 
combustion heat engines which convert heat energy into mechanical energy. There are 
three main elements within the GTE namely; compressor, combustion chamber and a 
turbine placed on a common shaft. The GTE illustrated in Figure 1 shows the typical 
mechanism for producing thrust and highlights the engine acronyms. The initial stage 
involves atmospheric air entering the engine body. Air that is drawn in then enters the 
compressor which is divided into the LP and HP (Low and High Pressure) compressor 
units (twin-spool). Air pressure is first raised by the LP Compressor unit and then further 
increased by the HP Compressor unit. The Inlet Guide Vane (IGV) is used to match the air 
from the fan to the HP compressor characteristics. Pressurised air then reaches the com-
bustion chamber where engine fuel is mixed with the compressed air and ignited at con-
stant pressure. This results in a rise in temperature and expansion of the gases. A percent-
age of the airflow is then mixed with the combusted gas from the turbine exit. This is then 
ejected through the jet pipe and variable nozzle area to produce a propulsive thrust.  
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Figure 1. Typical Mechanical Layout of a Twin-Spool Gas Turbine Aero-Engine  



At the system-level, a major engine hazard is engine ‘surge’ which can lead to loss of 
thrust (XGN – ref. Figure 1) or engine destruction. Engine surge is caused by excessive 
aerodynamic pulsations transmitted across the engine and is of particular concern during 
high thrust demand. For typical GTEs, there is a ‘surge line’ which is used as a measure of 
aerodynamic stability. As shown in Figure 2 the ‘surge line’ defines various surge points 
across the engine speed range. To provide safety assurance that the risk of engine surge is 
controlled a ‘working line’ is defined that specifies an extreme of allowable engine behav-
iour at the system level.  

 
Figure 2. Typical engine surge margins and working lines 

At the local level of the engine there are various controllers designed to fulfil engine 
design objectives and performance efficiency. An example of such objectives is shown in 
the “expected operating conditions” column in Table 1. 

Table 1. Operating Context Dependant Engine Safety Objectives 

Objectives for Expected Operating Conditions Objectives for Collision Avoidance 
LPSM ൒ 6.6%,HPSM ൒ 6.6% 
JPT ൑ 833୭C, TBT ൑ 813୭C  
dTBT/dt ൑ 1320୭/s 
ܪܰ ൑ ܮܰ,101% ൑ 101% 

LPSM ൒ 1%,HPSM ൒ 1% 
TBT ൑ 1730୭C  
... 

 

LPSM and HPSM are Low and High Pressure Surge Margins that indicate how close 
the engine is to instability and the surge condition. To avoid control system design flaws 
in such complex systems, rigorous analytical techniques are needed to cope with various 
types of changes. Such changes include changing goals, user requirements and operational 
and system conditions. Engine control is typically designed to accommodate for predicted 
changes such as expected engine degradation and wear between service intervals. Suitable 
AI controllers can be employed to address operating context changes given specified 
safety objectives. For example, previous work [7] has demonstrated the use of fuzzy logic 
systems for control of Inlet Guide Vanes, fuel flow (WFE), and engine nozzle (NOZZ) 
using Mamdani and Takagi-Sugeno [8] fuzzy rules. Such work has been shown to offer 
improved performance (such as thrust maximisation) over linear or non-linear polynomial 
schedulers [7]. 

In real world scenarios the engine may be expected to perform in the event of ‘unex-
pected’ changes such as unexpected and abrupt excessive turbine blade wear or excessive 
turbine blade over-heating (i.e. prolonged TBT ൐ 2000୭C resulting in high risk of immi-
nent blade failure). Such emergency scenarios may arise when the engine is on-line, in 
operation and where immediate maintenance is unavailable. For such cases, the assumed 
safety objectives may no longer be valid. For example, column “objectives of collision 
avoidance” in Table 1 defines appropriate safety objectives that enable maximum thrust to 
avoid imminent collision. These safety objectives are far more flexible than that defined 
for ‘normal’ expected operating contexts but are not suitable for ‘normal’ operating condi-
tions. The implication of such changes in the objectives is that the intelligent controllers 



can adapt themselves to offer a suitable solution from a context-specific solution space. 
Forcing intelligent controllers to adapt according to a single fixed set of objectives could 
result in the inability of the adaptive system to find an appropriate solution to address the 
current operating conditions given engine capabilities and constraints. Such ‘intelligent’ 
solutions could contribute to exacerbating the risk of an accident when they are forcibly 
(an unavoidably) used out of context. Addressing unexpected engine changes through the 
use of intelligent self-* systems can greatly increase the probability of achieving system 
or mission goals when operating in stochastic environments.   

As an example, our previous work employed the Safety Critical Artificial Neural Net-
work [5] (SCANN) within the GTE. SCANN is a ‘hybrid’ nonlinear function approxima-
tor that exploits both fuzzy and neural network paradigms for mutual benefit and over-
comes many problems traditionally associated with ANNs [9]. Through manual hazard 
analysis (prior to deployment) functional safety barriers (that only allow actions to be 
executed once defined preconditions are satisfied [10]) for the SCANN function are de-
rived and guarante behaviour to lie within derived behavioural bounds and prevent the 
occurrence of identified failure modes [4]. However, during on-line learning and adapta-
tion the behavioural bounds are always fixed thereby leading to possible adaptations 
within a single pre-defined operating context. This means that under unexpected condi-
tions the behavioural bounds may instantly become invalid and safety assurance can no 
longer be provided that the risk of hazard occurrence or accident can be minimised. Fur-
thermore, it is shown that such low-level behavioural bounds are impractical for safety 
engineers to determine for multiple-input controllers [4]. Further difficulties arise since 
each adaptive controller cannot be considered independently of other adaptive controllers. 
To address the problem of control under unexpected engine operating conditions safety 
assurance needs to be provided for determining valid controller solutions “on-the-fly”.  

3 Dynamic, Real-time, On-line Risk Management 
The term ‘risk’ is defined in Defence Standard 00-56 [11] as the combination of the 

probability, or frequency, and the consequence of an accident. Thus an argument that a 
system is ‘safe’ is primarily based upon demonstrating that an acceptable level of risk has 
been achieved. Risk management as defined in [11] comprises of six main activities which 
are hazard identification, risk analysis, estimation, evaluation, reduction and acceptance. 
There are many risk management techniques employed when the system (engine) is off-
line and during service intervals. For example, Grid computing [12] and multi-agent en-
gine scheduling [13] are some approaches that employ artificially intelligent paradigms 
for diagnosis and prognosis. To address cases when the engine control system is required 
to operate outside the defined operating conditions an on-line risk management scheme is 
needed. This scheme is termed hereafter as Dynamic Risk Management. Already there are 
several domains that deal with the problem of Dynamic Risk Management in the field of 
robotics [14], financial critical decisions [15], security [16] and many others. However, 
such approaches need to address the key issue of providing compelling safety assurance 
required for certification and operation within ‘safety-critical environments’. So far, most 
forms of evidence are based upon empirical performance analysis results [15]. Sole reli-
ance on such forms of evidence is inappropriate for certification.  

Figure 7 presents the top level of a dynamic risk management safety assurance argu-
ment for using intelligent adaptive systems to manage risk in unexpected operating condi-
tions. The argument is expressed using Goal Structuring Notation (GSN) [17] and is 
commonly used for composing safety case argument patterns. The focus of the argument 



is to capture product evidence-based safety arguments (that is in the spirit of current UK 
Defence Standard 00-56 [11]).  

The top goal of the argument G1 abstractly refers to an “adaptive system”. This might 
be a single or n interconnected system of systems that have the ability to achieve evolving 
objectives through self-* algorithms. The instantiated definition of an adaptive system is 
defined by context C1 e.g. SCANN. The constraints associated with employing an adap-
tive system are that the behaviour must be controllable to address failures common across 
all operating conditions. For example, assurance must be provided that the behaviour of a 
neural network non-linear function approximator does not exhibit discontinuity of output. 
As captured by context C3, goal G1 requires a known and intentionally complete list of 
hazards that may be generated through well known conventional safety processes (i.e.  
Preliminary Hazard Identification). The ‘sufficiency’ of the risk reduction as stated in 
context C2 is dependent on the nature of the overarching argument G1 is used within. The 
management of risk is performed on-line, post certification and whilst the system is in 
operation as stated by C5.  

Figure 7. GSN safety argument for Dynamic On-Line Risk Management 

Context C4 is concerned with the operating conditions for which the argument is appli-
cable. ‘Unexpected’ conditions are not the same as ‘unknown’ conditions - overly-high 
TBT is ‘unexpected’ because of regular engine maintenance but such a condition is not 
‘unknown’ in that it can be preconceived during safety analyses. Another example of 
unexpected but known condition is excessive environmental temperature changes - where 
a change of only one degree centigrade in external can increase internal temperatures by 
several tens of degrees [18]. Context C4 is specific to the type of problems addressed and 
the requirements of the solution – such as component failures (blade material random 
failures) or degradation. As required for certification, context C4 delineates the scope of 
applicability of the adaptive system. 

Strategy S1 decomposes the argument over major activities associated with managing 
risk “on-the-fly” and autonomously. As acknowledged by assumption A1, the dynamic 
risk management activities have to be conducted with the view that the system states are 
not constant during these activities. Strategy S1 breaks the argument into five sub-goals. 
The first sub-goal G2 is concerned with determining the level of risk associated with the 
identified hazards. This presents a “situational awareness” of the current state in terms of 
the risk associated with known hazard occurrence.  The achievement of G2 will rely upon 
sufficient and appropriate monitoring of the environment as stated by G7. This may in-
clude inputs from all levels of the system, environment, components (such as current 



system state – health of components), safety objectives, mission objectives, current adap-
tive system configuration, their capabilities, status etc. If there are faulty sensors resulting 
in incorrect or delayed readings then such issues may lead to unrepresentative risk deter-
mination and result in unnecessary or incorrect action (in terms of risk management). 
Work presented on smart sensors [19] attempt to address such problems. Goals G8 and G9 
aim to assess risk for current and predicted future states. The prediction of risk is ex-
tremely important because of the on-line, real-time nature of the risk management. With-
out such prediction, risk reduction plans may become immediately outdated and the proc-
ess of risk management may never reach the execution of a suitable risk reduction plan 
(thereby becoming stuck in ‘observation’ and ‘orientation’ modes). The length of predic-
tion of future risks in the temporal sense can be used later to ‘life’ proposed solutions and 
provide valid stopping conditions. For example, when attempting to address the issue of 
excessive NH shaft speed, in the time taken to find a solution the system enters a condi-
tion where TBT is over the prescribed limits. As a result, non-functional temporal issues 
will play an important role and must be addressed through prediction and ‘validity’ of 
plans based on non-functional temporal properties. Prediction will rely upon the provision 
of a suitable model that captures the cause-consequence relationship of relevant variables. 
Failures with the modelling and it’s output would result in ‘invalid’ risk reduction plans 
and could introduce new risks. The argument of high fidelity modelling and how associ-
ated failure modes are addressed will therefore involve decomposition of goal G9.  

The next step for risk management is assuring that an adaptive system ‘configuration’ 
or ‘solution’ can indeed by determined and that such a solution does not result in introduc-
ing new and unnecessary safety risks (G3). For example, safety risks can be prioritised 
based on the system level effects – maximising thrust to avoid an accident is acceptable 
given that risks associated with over-TBT and shaft overspeed are of lower priority. Risks 
are therefore managed depending on the highest level of risk and the solution (which may 
be non-dominant). This gives rise to the notion of determinability of managing such risks 
through an adaptive system configuration as stated in G10. Approaches to identify valid 
solutions can be used to further decompose goal G11. 

The behaviour of the adaptive components must comply with the derived adaptive sys-
tem configuration solution (G5). One safety concern is that the enforcement itself may 
introduce new risks and failures especially since it is performed in real-time and whilst the 
system is in operation. For example, defining new functional safety barriers for the 
SCANN may result in problems with the current operating control point – this may result 
in a control output spike (or high derivative changes) resulting in local-level failure 
modes. 

Finally, G6 provides assurance that the applicability of the adaptive system for the con-
text in which it has been defined is valid.  

Due to space constraints a fully decomposed safety argument is not shown here. The 
following section shows how activities within a self-management framework can contrib-
ute to generating suitable forms of safety argument and assurance for Figure 7. 

4 A ‘Safe’ Self-Management Framework 
A conceptual framework is illustrated in Figure 8 and aims to address the safety argu-

ment goals in Figure 7. The framework is based on the three layer architecture conceptual 
model for self-management of autonomous agent and intelligent systems [20]. 

The Component Control Layer consists of a set of adaptive interconnected and interde-
pendent controllers that will adhere to a derived risk reduction solution. For example, this 
may contain SCANN non-linear function controllers for IGV, WFE and NOZZ whose 



function can be adapted using self-* intelligent algorithms. This layer can report current 
status of its components to higher layers such as the current configuration (i.e. fuzzy rules 
that define their current function or behaviour) in addition to component health, degrada-
tion and faults. Such data contributes to the internal situation awareness model of the 
current state that is used for analysis and prediction.  

 
Figure 8. Conceptual framework for unexpected operating conditions on-line 

The Change Management Layer observes relevant environmental changes, maintains 
plans and effects changes to the Component Control Layer. The Change Management 
Layer responds to new states reported by the Component Layer and responds to new ob-
jectives required of the system introduced from the operating conditions and environment. 
This layer contains the “what” must be done, “why” it should be done and “how” in the 
form of a Safety Policy [21]. This layer also contains solutions generated from self-* intel-
ligent algorithms and manages changes upon the adaptive controller behaviour in on-line 
fashion without introducing new risks. Because of the on-line application of the frame-
work and the dynamic nature of the problem this layer also manages the ‘life’ or the ‘va-
lidity’ of the plans and solutions generated and requests re-planning if the assumptions of 
the plans and solutions no longer hold for the current operating conditions. 

The Goal Management Layer deals with dynamic risk reduction through generating 
suitable planning and solutions using high-fidelity models for situation awareness and 
prediction. This layer takes as input the current states, safety goals, performance goals and 
constraints. A hierarchical relationship is formed from the operational\mission (macro) 
level down to local (micro) levels. This layer produces a Safety Policy that expresses what 
current prioritised safety (risk related) objectives need to be achieved, why they need to be 
achieved and by whom (adaptive controllers that will fulfil the Policy). In addition, the 
layer also generates solutions based on the input of the Safety Policy. Multi-Objective 
intelligent algorithms are employed with a high-fidelity model of the system and predic-
tion techniques. ‘Prediction’ of risk and future states has a major role in defining the ‘va-
lidity’ of the plans and solutions.  

The entire framework operates on-line and continuously thereby becoming the main 
approach for adaption of the controllers. The framework operation has also been defined 
in the spirit of the Observe-Orient-Decide-Act (OODA) loop commonly employed for 
highly dynamic environments for safety-based risk management. To understand how the 
framework contributes to the safety assurance argument the following section proposes 
possible solutions in context of the GTE. 



4.1 Goal Based Safety Policy Generator 

Control in GTEs often requires the satisfaction of competing performance and safety 
objectives that are related to engine degradation, stability, structural integrity, steady-state, 
transient accuracy, thrust performance, stall margins and many others (Table 1). Multi-
objective optimisation is the process by which optimal solutions are sought for two or 
more competing objectives under specified constraints. For highly complex problem do-
mains it may become apparent that there is no single ideal optimal solution. An improve-
ment in one of the objectives will lead to degradation in one or more of the remaining 
objectives. For example, in an effort to minimise fuel flow and reduce turbine blade tem-
perature (safety objective) the maximum thrust force is reduced (degrading the perform-
ance objective). Such solutions are known as ‘non-dominated’ solutions. An additional 
problem is that whilst the engine is in operation, each of these objectives can be related to 
a safety or performance classification depending on the current operating conditions and 
risk levels. For example, for an aircraft to avoid an impending collision, “maximise fuel 
flow” may be seen as a safety objective during an abrupt manoeuvre. Such a solution 
would be non-dominant since it would negatively impact the engine temperatures and 
reduce the surge margins (LPSM and HPSM). Alternatively, for a non-threat scenario 
“maximise fuel flow” can be classed as a ‘performance’ objective (whereby risk of plat-
form destruction is no longer in the intolerable region).   

The Goal-Based Safety Policy Generator is used to address the problem of ‘what’ 
should be done and ‘why’ based on sound safety reasoning.  The inputs into this block are 
many and include goals and their status from the operational\mission\macro level (e.g. 
“avoid collision risk”, “no threat”). At the platform system level we may have goals (e.g. 
max(Thrust) immediately, min(Fuel Consumption) over 1 hour) and status e.g. “High 
NHDem”, “Low Fuel”. At the boundary of the engine level there may be goals i.e. 
min(TBT) immediately, ܶܶܤ ൑ 813௢ܥ and conditions e.g. “Excessive Turbine Blade 
Degradation”, “ܶܶܤ ൌ 813௢ܥ”.  At the local component level there are controllers, with 
health conditions that must be chosen to fulfil the hierarchy of identified safety objectives 
i.e. NOZZ & WFE control or WFE control only. There is a clear need to model the de-
composition of goals, criteria\objectives, conditions, risk and temporal properties in real-
time, such that guidance is provided on ‘how’ the self-* algorithms must adapt the con-
trollers in order to address the prominent and prioritised set of risks.  

The problem can be managed through the derivation and maintenance of a Safety Pol-
icy whilst the engine is in operation. A Safety Policy describes how the physical integrity 
of the system can be protected, what must be done to protect the system and reasoning 
using dynamic system relationships. Figure 9 shows an example of an aero-engine safety 
policy for high thrust demand during “Collision Avoidance”.  

There are several challenges associated with generating such a safety policy. The first 
is ‘perception’ – there must be sensors that reliably determine the current system and 
world state. Sensor flaws would result in invalid policy derivation (out of context) 
whereby risk of accident occurrence may not be reduced or even identified. With appro-
priate ‘perception’ there needs to be an appropriate model of the current goals and how 
such goals can be suitably decomposed. The model needs to capture objectives from mis-
sion level to component level. This can be achieved through safety analyses performed 
prior to certification and deployment and would include identification of engine level 
objectives outlined in section 2. Missing or superfluous goals would mean solutions are 
not generated or do not address current operating conditions. The cause-effect relationship 
between local objectives and system level effects (e.g. engine surge, turbine blade failure 
etc.) also needs to be understood and modelled (e.g. increase in WFE increases XGN, 



increase in NH increases TBT). These relationships form a knowledge base and enable 
automated policy decomposition. Failures in the relationships would also result in a 
flawed policy that could in turn, lead to increased risk of hazard occurrence.  
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Figure 9. Example of engine safety policy decomposition for collision avoidance  

Another aspect that must be addressed is defining the current safety objectives e.g. 
LPSM. These must be derived based on predictive techniques that understand short term 
and long term goal satisfaction. In the example presented in Figure 9, the collision avoid-
ance is the current highest risk to the platform therefore surge margins can be drastically 
reduced. Although this may increase the risk of failure in the long term the new objective 
(LPSM > 0.5%) enables appropriate solutions to address the most highly prioritised safety 
risks. This also means that the risks associated with goals need to be determined dynami-
cally, whilst on-line and prioritised. Current state information input into the Safety Policy 
generator would include the current risk levels associated with the current state e.g. tur-
bine blades have degraded (medium risk), imminent collision (High Risk) etc. Such risk 
levels can determine the goal decomposition of the Safety Policy. Contradictions and 
conflicts when deriving a suitable safety policy can occur where there are several high 
risks that need to be addressed simultaneously. For example, this may include conflict of 
resources, duties and objectives as detailed in [21]. The occurrence of unexpected condi-
tions at run-time is when such policy conflicts may arise. Such problems can be addressed 
through the use of high-fidelity models and decision making for on-line conflict preven-
tion and resolution [21]. On-line detection of safety policies that are unable to be fulfilled 
due to temporal resource constraints need to be resolved by other ‘governing’ components 
or agents within the system e.g. Full-Authority-Digital-Electric-Control (FADEC).  

Non-functional temporal issues and prediction play an important role in generating the 
Safety Policy. Validity of the policy will be dependent on the current operating context. 
To reduce the probability of a generated safety policy requiring re-planning and drastic 
change, prediction techniques can be employed through the use of a suitable high-fidelity 
model. The prediction would determine expected future states of the system e.g. TBT is 
near limits, engine is being used heavily therefore the predicted time before blade failure 
is t. Time t can then be used to provide a ‘life’ of validity of the Safety Policy and where 
risk management techniques need to accomplish their activities within the allocated pre-
dicted temporal resources. To complete the Safety Policy, low level controller solutions 
need to be generated that define how current safety risks are addressed. 



The approach of using ‘intelligent’ solutions to solve multi-objective problems involv-
ing risk is not a new problem especially in the domain of finance [15] and security [16]. 
For Safety Policy decomposition we have identified the challenge of addressing numerous 
risk-related objectives well above the level of adaptive controller solutions.  Techniques in 
Operations Research such as Non-linear Programming (NLP) [22] can be used to address 
such problems through minimising weighted sum of deviations from goals. Other tech-
niques such as lexicographic goal programming described in [22]  categorises goals into 
levels such that a goal of a particular-level may be of greater priority than one assigned at 
a different level. For safety, this approach is appealing because it enables the distinction 
between performance and safety related objectives and is particularly effective when there 
is a clear priority ordering amongst the goals to be achieved. This can be achieved by 
inputting risk associated with known hazards and relating the current and predicted states 
to determine prioritisation. The safety challenge is to generate Pareto-efficient solutions 
thereby resulting in the most effective risk reduction plan possible given the capabilities 
of the system. A sub-optimal plan could result in exacerbating existing risks. ‘Governor’ 
agents and multi-agent architectures [23] are seen as approaches to address such prob-
lems. In any case, safety assurance needs to be provided that the safety policy has been 
appropriately decomposed, and that the safety policy is ‘valid’ for the current and pre-
dicted future operating contexts.  

4.2 Component (Controller) Solution Generator 

The Component Solution Generator adopts a bottom-up approach to determine ‘how’ 
adaptive controllers will meet the defined safety policy which is provided as input. Exist-
ing approaches to address unexpected operating conditions using adaptive controllers 
include the Situational Controller Methodology (SCM) [18] which has been applied to 
GTE control. SCM uses neural network pattern recognition algorithms and predefined 
controller solutions to determine the ideal controller for the current operating context. 
Such a solution is ‘rigid’ in that the actual scenario may not fall into any particular pre-
defined situation and there is no opportunity for re-planning using existing scenario-based 
solutions (interpolation problems). As highlighted in [18] this greatly limits the potential 
for acceptable risk reduction strategies by focussing on a limited and potentially inade-
quate solution space. Other work on the use of Evolutionary algorithms for devising opti-
mal Engine schedulers include the Multi-Objective Genetic Algorithm (MOGA) [7]. As 
described in [7] MOGA has been shown to be a competent algorithm for finding optimal 
fuzzy schedulers for GTE control. MOGA is composed of three levels and uses genetic 
algorithms to search for an optimal controller solution of fuzzy control rules. The first two 
levels generate and analyse the performance (using objectives in Table 1) of potential 
solutions at different engine operation points (such as 54, 65, 75, 85, 95% NH). The last 
level selects the best fuzzy solution (by making trade-offs between objectives). However, 
such a scheme is limited to off-line aero-engine design and there is little or no safety as-
surance that the behaviour of the scheduler will not lead to system-level hazards (such as 
discontinuity of function output). An alternative solution introduced here uses a combina-
tion of the above mentioned approaches (including the SCANN) for mutual benefit (in 
terms of safety assurance) and is illustrated in Figure 9.  

As depicted in Figure 9, the Component Solution Generator works on the principle of 
using high-fidelity cause-effect models of the system to generate valid risk reduction con-
troller solutions. The first step is to input the safety policy which is generated in the previ-
ous phase of the framework and specifies safety objectives e.g. LPSM > 0.5%, safety 
goals e.g. max(XGN) and the proposed actions contracted out to IGV and WFE adaptive 



controllers. The adaptive controllers (whether they are fuzzy, neural, reactive or delibera-
tive agents) must address failure modes associated with their behaviour that are common 
to all possible configurations that may be applied (e.g. functional safety barriers). For 
example, failure modes such as ‘omission’ and ‘commission’ of output given an input are 
applicable to all potential desired controller functions. The safety argument must therefore 
assure that the adaptive controller addresses such failures through appropriate design 
features or otherwise as described previously with the SCANN [4]. Such a safety argu-
ment can contribute to the decomposition of goal G5 in Figure 7 whereby the adaptive 
controller will be able to adhere to proposed solutions without causing failures modes that 
are common to all potential system states.  

 
 

Figure 9. Approach for ‘safe’ dynamic control of solution space 

In Figure 9, the main role of the scenario-scheduler knowledge base is to reduce the 
time taken for Multi-Objective intelligent algorithms to find a valid solution and contrib-
ute to goal G12. The knowledge base would consist of a catalogue of known (foreseeable 
but unexpected) and unknown (self-generated) operating conditions, respective safety 
policies and controller based solutions (e.g. Takagi-Sugeno fuzzy rules that define con-
troller behaviour). Part of the catalogue can be preconceived through safety analyses and 
updated through during post-deployment use when valid solutions are found. Through the 
philosophy of ‘expect the unexpected’ the time taken to generate a valid solution and re-
planning can contribute to achieving non-functional temporal goals (e.g. avoid imminent 
collision). It is likely that the actual operating conditions may not match precisely with 
any particular item in the knowledge base. Instead, the mappings in the knowledge base 
can be used as a ‘starting’ point for multi-objective solution searches. The unexpected 
conditions detailed in ‘C4’ of the safety argument can provide input into this knowledge-
base and provide assurance that a solution is determinable in the time provided if it is 
sufficiently close to the actual operating conditions.  

The next step is for the safety-based multi-objective learning and adaptation algorithms 
to find potential solutions (and contribute to G10). This step must consider solutions and 
effects of the proposed solutions for all controllers defined in the safety policy. Employing 
MOGA is ideal in this case however given the inter-relationship of controlled variables, 
treating each controller independently would lead to flawed and conflicting solutions. As 
a result, this would lead to problems in providing assurance that a valid solution can be 
provided within the allocated temporal resources (G4). To further address the temporal 
resource and ‘validity’ issues, the knowledge base can be used as ‘seeds’ of the MOGA 
solution finding. Therefore MOGA is tasked with the role of finding a valid solution given 
the safety policy for all controllers simultaneously. This approach addresses the ‘rigidity’ 
of the SCM and solution space limitations of the SCANN. The engine operating condi-
tions are likely to be continuously changing and as a result, the Component Solution Gen-
erator is likely to continuously iterate. For each solution finding iteration, the current 
control scheme can be used as a starting point if the operating context is on a predicted 
path. If the operating context changes abruptly then the knowledge base can be used for a 



new ‘seed’. If none is available (or even close enough) then the multi-objective search 
algorithm can devise a solution using a default schedule.   

To address the safety concern that the generated solutions might be invalid for the cur-
rent operating context the high-fidelity model is used to assess the risk reduction of the 
derived solution based on the safety policy. To delineate valid and invalid solutions a 
dynamic safety discriminator function can be employed and also used as a stopping condi-
tion. This function takes in as input the proposed solutions, a high-fidelity engine model 
and the safety policy. Predictive techniques are then used to determine whether the solu-
tion is an acceptable risk reduction plan. Unlike existing approaches, the safety discrimi-
nator function is required to identify the current states and predict future states (in accor-
dance with G2 and G3). As the accuracy of any model can be affected significantly by 
even minute changes in the behaviour or state of the modelled system, special mecha-
nisms need to be employed to maintain the high-fidelity of the model through these 
changes. Examples of such mechanisms include system state monitors and on-line ma-
chine learning modules that continuously adjust the model in line with the actual behav-
iour of the system. Similarly strict requirements must be fulfilled by the on-line model 
analysis that determines valid controller solutions (e.g. function parameters) from the 
high-fidelity model. In particular, accurate predictions and a fast response time are essen-
tial for the dynamic risk management to be effective. Failures in the model and it’s fidelity 
would mean that the proposed solution may introduce or exacerbate risks. To address 
failures of the safety discriminator function it must be argued through product-based ana-
lytical and empirical means that the model of the system is indeed of high-fidelity (for G3 
and G4). Potential safety argument goals for high-fidelity simulation and modelling de-
fined in [24] can be used to decompose such a safety argument goal. Safety requirements 
defined for the Situation Awareness Model defined in [14] also apply to the high-fidelity 
system model and contribute to decomposing goals G2, G3 and G4.  
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Figure 10. (a) Delineation of solutions through prediction (b) block diagram of the Rolls 

Royce Aero-Engine Model 

Determining potential controller solution failures such as function derivatives and func-
tion output extremes will rely upon the effects exhibited by the high-fidelity model. The 
limitation of such an approach is that every proposed solution needs to be checked against 
the model. This can be time consuming and places heavy reliance on the system model. 
An example of the safety discriminator function is presented in Figure 10 (a) and shows 
how controller solutions are rejected or accepted based on various current and predicted 
risk factors. This is produced using a Matlab and Simulink model of a Rolls Royce GTE 
as shown in Figure 10 (b). The model accommodates degradation variables of various 



parts of the engine as well as actuator faults and is an ideal example for analysing the 
benefits of ‘dynamically’ changing functional safety requirements.   

To address goal G3 in Figure 7, assurance needs be provided that the devised solutions 
can be ‘safely’ enforced and applied to the current on-line control of actuators. The actual 
solution will inevitably depend on the precise nature of the adaptive systems employed. In 
this case, if we consider the SCANN operating within the GTE, the ‘old’ controller behav-
iour must be switched with the ‘new’ controller behaviour. An approach to address this 
problem is to employ additional ‘smoothing’ functions that enable the transition between 
the solutions. Such ‘smoothing’ functions would address derivative changes that would 
introduce new risks in terms of hardware failure e.g. if the rate of opening the engine 
nozzle is too fast. Such limiters can be defined on the boundaries of the adaptive control-
ler function and must be designed to enable transition within the ‘life’ and temporal valid-
ity of the safety policy. The provision of modifications within the component layer of the 
framework i.e. component creation, deletion and interconnection provides the necessary 
capabilities to address the failure modes associated with enforcing a safety policy.  

5   Conclusions 
This paper has shown the challenges of exposing ‘intelligent’ adaptive systems to un-

expected operating conditions in the context of a highly dynamical and complex problem 
domain. The presented self-management framework identifies key activities and shows 
how they contribute to the dynamic risk management safety argument. The framework has 
shown how behaviour-based approaches for generating safety arguments are highly reliant 
on the provision of high-fidelity models. Through the framework, low level component 
solutions are shown to be highly dependent on the management of a hierarchy of goals 
and constraints. Also outlined is how features of the framework enable controller solu-
tions to be generated on-line and how prediction and historical knowledge base can con-
tribute to addressing identified safety challenges such as validity and non-functional re-
sources. Much work remains for a complete solution and the focus of remaining work 
includes the provision of safety assurance for automated safety policy generation, high-
fidelity modelling and employing a multi-agent architecture for problem solving that 
would enable a highly scalable and modular solution. 
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