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Abstract
Simulations examining pattern competition have been performed on a horizontal homogeneously
heated layer that is bounded by an isothermal plane above an adiabatic plane. Several different circu-
lation patterns arose as the heating regime applied to the horizontal layer was modified. The sequence
of the patterns formed as the Grashof number was increased had the following order: laminar, z-axis
rolls, squares, hexagons and pentagons, pentagons and then two different square modes of differing
orientations. Fourier analysis was used to determine how the key modes interact in the presence of
different patterns.

Nomenclature

cp specific heat capacity at constant pres-
sure (J kg−1 K−1)

e internal energy (J kg−1)

Gr Grashof number (-) Grc critical Grashof number = 197.71 (-)
g acceleration due to gravity (m s−2) k thermal conductivity (W m−1 K−1)
L characteristic length (m) Pr Prandtl number (-)
p pressure (kg m−1 s−2) Ra Rayleigh number (-)
S momentum source terms (kg m−2 s−2) Ṡ energy source terms(kg m−1 s−3)
Ṡi internal heat source (kg m−1 s−3) T temperature (K)
Tr reference temperature (K) t time (s)
u velocity vector, [u, v, w] (m s−1) x position vector, [x, y, z] (m)
α thermal diffusivity (m2 s−1) β expansion coefficient (K−1)
� reduced Grashof number (-) µ dynamic viscosity (kg m−1 s−1)
ν kinematic viscosity (m2 s−1) ρ density (kg m−3)

1 Introduction
The numerical simulation of the early stage transition regime of an internally heated convective flow
has importance in the development of flows found in engineering and geophysical situations. Ex-
amples of such convection processes include flows driven by density differences arising from heat
generated by the radioactive decay of elements in the Earth’s mantle (Houseman, 1988; Schmalzl
et al., 1995; Schubert et al., 1993) and in nuclear reactors (Asfia and Dhir, 1996), from biochemi-
cal and chemical reactions or from the application of electric currents to conducting fluids (Roberts,
1967; Tritton and Zarraga, 1967). To help understand the formation of the flow structures generated,
simulations have been performed on a horizontal layer at a Prandtl number of 7.
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Figure 1: Diagram of the homogeneous layer with an isothermal surface above an adiabatic surface.
The coordinate axis at the origin and the midlayer and spanwise planes are also indicated.

2 Theory
A rectangular layer that has an aspect ratio of

�
1 : 4

√
3 : 12

�
was defined according to Ichikawa et al.

(2006) where the respective resolution of [30 : 104 : 180] was used to simulate the cellular convective
flow of an incompressible fluid (Figure 1). The flow was resolved by the conservation equations of
mass (1a), momentum (1b) and thermal energy (1c) using the solver, ANSYS CFX (ANSYS, 2007),
where an earlier form of the solver successfully modelled convection rolls in an isothermally bounded
cavity (Arter et al., 1987).

∂ρ

∂t
+∇ · (ρu) =0 (1a)

∂ρu

∂t
+∇ · (ρu⊗ u) =∇p +∇ · µ

�
∇u + (∇u)T

�
− gρcβ (T − Tc) + S (1b)

∂ρe

∂t
+∇ · (ρue) =∇ · (λT ) + p∇ · u + µ

�
∇u + (∇u)T

�
: ∇u + Ṡ (1c)

Where e, p, T , t and u are the internal energy, pressure, temperature, time and the fluid velocity
vector. The fluid properties are defined by the specific heat capacity at constant pressure, cp, thermal
conductivity, k, dynamic viscosity, µ and the density, ρ. The terms, S and Ṡ introduce the momentum
and energy source terms into the respective transport equations. β is the expansion coefficient and g
is the acceleration due to gravity.

The boundary conditions applied to the planes above and below internally heated layer, were an
isothermal plane (T = Tr)above an adiabatic plane (∂T

∂x = 0). The remaining boundaries between the
planes are defined as periodic conditions in order treat the planes as two infinitely sized boundaries.

The Grashof number with the form Gr = gβṠiL5/2ν2k was used to control the value of internal heat
source applied to the horizontal layer. Where Ṡi and L are the internal heat source and the width of
the layer, whilst ν = µ/ρ is the kinematic viscosity and α = k/cpµ is the thermal diffusivity. Note
that Ṡi was estimated by assuming a temperature difference across the layer and then adjusting the
characteristic length to give different Ṡi and therefore Gr.

The Prandtl number, Pr = ν/α, has been shown to have little influence on critical limit of Gr that
could be correlated over the range 0.1 < Pr < 35 for inclined homogeneous heated flows between
two isothermal planes (Generalis and Nagata, 2003; Gershuni et al., 1974). Thus, a Pr of 7 was
selected to avoid a strong influence of the thermal diffusivity on the critical limit of Gr, where the
product, GrPr, gives the Rayleigh number, Ra, another measure of the stability of cellular convective
flows.
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3 Results and Discussion

0.0

0.2

0.4

0.6

0.8

1.0

1.2

−2 0 2 4 6 8 10 12 14 16 18 20

∆
T

s
/∆

T
i

(-
)

ε

(a) Temperature difference

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

−2 0 2 4 6 8 10 12 14 16 18 20

C
el

l
S
iz

e
(m

)

ε

(b) Convection cell size (y: ; z: ;)

Figure 2: Profiles of the non-dimensionalised temperature difference and circulation cell size as the
value of � is increased

For the case of the internally heated layer with an isothermal plane above an adiabatic plane, � =
(Gr − Grc)/Grc was increased from −0.42 to 17 where Grc = 197.71 or the critical value of Ra
that was reported as 1386 by Ichikawa et al. (2006). The resultant solutions for the convection ini-
tially take the form of a laminar layer, which is then disturbed by the circulation cells that are formed
when � > 0 as indicated by the change in characteristic parameters plotted in Figures 2 and 3. Figure
2 presents the non-dimensionalised temperature difference (Figure 2a) and the increase in the ap-
proximate circulation cell size (Figure 2b), whilst Figure 3 presents the non-dimensionalised velocity
components (Figure 3a) and the first six Fourier space modes (Figure 3b).

The stable structures are formed in the following sequence: longitudinal rolls then squares, hexagons,
pentagons and again squares; however the squares have different orientations as depicted in Figures 4
and 5. Note that when �� 17 the heated layer becomes unstable, which corresponds to the range of �
for stable hexagonal circulation cells reported by Tveitereid and Palm (1976) for the case of internal
heated convection in a similarly bounded horizontal layer. This is despite the formation of several
different patterns in the current study, which were also indicated in the analysis of Roberts (1967).

The evolution of the temperature (Figure 2a) has a peak at � = 0, which is then followed by an
asymptotic decrease as � is increased. The temperature difference is consistent with those reported
by Ichikawa et al. (2006) at � ≈ 2.6. Note that the heat flux through the upper isothermal boundary
was up to about −300 W m−2, which may be the cause of the deviation in the temperature difference
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Figure 3: Profiles of the non-dimensionalised velocity components and the relative amplitude of the
first six modes in Fourier space as the value of � is increased

from the laminar state observed in Figure 2a. At the same time that there is a change in the tempera-
ture profile, the size of various circulation cells that are formed are indicated in Figure 2b. The cells
increase in size as � is augmented and are comparatively stretched along the z-axis when �� 6. Note
that at � = 3.9 and 4.7, the value of Pr was slightly less than the specified value of 7. This had no
significant impact on the temperature, cell sizes, velocity components or the Fourier modes as � is
augmented in the profiles observed in Figures 2 and 3. Especially as the resolved flow field at � = 4.5
gave the same distribution of the circulation cells to those observed at � = 4.7, where the distribution
can be seen in the temperature and u velocity component contours presented in Figures 4h and 5h.

The velocity components depicted in Figure 3a display a significant increase in the u and v velocity
components at � = 0; however the w velocity component does not increases until � > 1.1 and again at
� > 2. The increases in velocity are respectively associated with changes in the state of the fluid layer
(see also Figures 4 and 5), from z-axis rolls to squares to what could be considered isotropic hexagons
(Groh et al., 2007). However, Groh et al. (2007) stated that hexagons are isotropic in two dimensions,
which is not the case in this study as the hexagons are isotropic in all three spatial dimensions. The
velocities become anisotropic at values of � � 6 as the velocities lose their similarity and there is a
concurrent change in the flow state and the circulation cells are stretched along the z-axis.

Therefore, a Fourier analysis of u velocities estimated in the midlayer plane (Figure 1) was performed
to identify the significant modes that categorise the different states. Fourier space modes have long
been used in the description and prediction of the formation rolls, hexagonal and squares in various
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(a) � = −0.012 (b) � = 0.002 (c) � = 0.019 (d) � = 0.588

(e) � = 1.093 (f) � = 1.598 (g) � = 2.608 (h) � = 4.500

(i) � = 6.217 (j) � = 9.825 (k) � = 13.434 (l) � = 17.042

(m) � = −0.012 −→ � = 17.042

Figure 4: Temperature contours on the midlayer and spanwise planes in Figure 1.

forms of thermal convection. The technique first introduced by Busse (1967) was applied recently
in the analysis of rolls and hexagonal cells in an experimental study of convection in a so-called fer-
rofluid that was driven by two magnetic fields at right angles to one another (Groh et al., 2007). A new
saddle node bifurcation was identified by (Groh et al., 2007) as a result of this analysis that bridges
hexagons and stripes. In the study performed here, the relative amplitude of the first six Fourier space
modes are found to vary with �.
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(e) � = 1.093 (f) � = 1.598 (g) � = 2.608 (h) � = 4.500

(i) � = 6.217 (j) � = 9.825 (k) � = 13.434 (l) � = 17.042

(m) � = −0.012 −→ � = 17.042

Figure 5: u velocity component contours on the midlayer and spanwise planes in Figure 1.

The modes plotted in Figure 3b correspond to the first six Fourier space modes. The first mode is
associated with the z-axis rolls (see Figures 4b to 4e and 5b to 5e) that are observed in the range
0 < � < 1 with the increase amplitude, which is relative to the maximum of all the observed fre-
quencies. The first of three square circulation cell states (Figures 4f and 5f), the relative amplitude
of the sixth mode is also significant (Figure 3b); thus according to linear theory this state should be
associated with rolling waves in the y-axis direction.
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The next states are observed at � = 2.6 where all of the six modes show some effect on the horizontal
layer (Figure 3b). Examining both the temperature (Figures 4g & 4h) and u velocities (Figure 5g
& 4h), hexagonal and several pentagonal circulation cells are observed. At � = 2.6 the first, third
and fifth modes all have a similar relative amplitude whilst the second and sixth modes are within
±0.08 of this amplitude and the fourth mode is quite different. However, at � = 3.9, the modes have
a relative amplitude of 0.13 ± 0.03 except for the third mode. Whilst at � = 4.5 and 4.7, the modes
are arranged into two groups at relative amplitudes of 0.17±0.06 for the first, second and fifth modes
and at 0.50 ± 0.07 for the remaining modes.

At � = 6.2, there is a spread of the modes, where what seems to be distorted pentagons (Figures 4i
& 5i) are the only circulation cells present. At this point the relative amplitude of the third and sixth
modes become insignificant when compared to the other four modes.

At � ≈ 10 a second square state is formed (Figures 4j & 5j), but this state varies in orientation and
also the modes that characterise its behaviour (i.e. modes 1 and 4 rather than modes 1 and 6). A third
square state is formed at � > 13 (Figures 4k & 4l with 5k & 5l), where again the orientation of the
cells is changed and the significant modes are the first and third modes whilst the fourth and sixth
modes are insignificant. However, in this case spokes are formed within the circulation cell. As � is
increased towards the transient regime, the square circulation cell is stretched along the z-axis, which
can be associated with either the first or the fifth mode (Figure 3b).

Both Groh et al. (2007) and Thiele and Eckert (1998) categorised the evolution of circulation cells
from hexagons to other structures via two distinct methods, as previously mentioned Groh et al.
(2007) examined the Fourier space modes whilst Thiele and Eckert (1998) used a stochastic geo-
metrical method to identify the different structures. However, in the case of Groh et al. (2007) only
rolls were formed from the stretching of the hexagons as magnetic fields were altered. Thiele and
Eckert (1998) showed that both hexagons and pentagons could coexist in a Bénard-Marangoni layer
via analysis of the vertices of the circulations cells. It was also shown that the state could change
from hexagonal cells to pentagons then to squares through the loss of one or two of these vertices.
These vertices could be considered equivalent to the Fourier space modes, which have been used here
to identify or categorise the different circulation cells predicted by the simulations performed here.
However, in the case of Thiele and Eckert (1998) the patterns were initially hexagonal before reduc-
tion in the significance of one or two of the vertices, whilst in the current study the initial patterns
were z-axis rolls followed by squares, then hexagons and pentagons and then back to squares as the
importance of the different modes changed with the increase in �.

Nevertheless, hexagonal cells are the preferred mode for the instability evolution of homogeneous
systems. In the case where there is no isotropy breaking, rolls seem to be the preferred mode of evo-
lution; however, when breaking of isotropy is introduced, for example via a temperature dependence
of material properties such as viscosity (Busse, 1967), then the importance of the rolls diminishes as
the magnitude of the isotropy breaking term increases.

In our work here, we have considered the case where the boundary conditions were not symmetric
and an additional heat flux was applied homogeneously. Our numerical studies have shown that for
Prandtl numbers of O(10), the preferred mode of instability is hexagons. Work to identify the stability
characteristics as a function of the Grashof and wave numbers is on-going. In addition, further studies
have been performed that examined the instability of internally heated layers of fixed depth that are
rigid, conducting or insulating boundaries (Generalis and Busse, 2008). The effect that a pressure
gradient has on the circulation cells that were generated has also been investigated.
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