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ABSTRACT 
 

Self-injection locking - an efficient method to improve the spectral performance of semiconductor lasers without active 
stabilization - has already demonstrated its high potential for operation with single-longitude-mode fiber lasers. Recently, 
we demonstrated that self-injection locking of a conventional DFB laser through an external fiber optic ring cavity causes a 
drastic decrease of the laser linewidth and makes possible its direct application in a phase-sensitive optical time domain 
reflectometry (φ-OTDR) acoustic sensor system. Detection and localization of dynamic perturbations in the optical fiber 
were successfully demonstrated at the distance of 9270 m. However, the ability of the system to restore the perturbating 
frequency spectrum was not quantified. Here, we have evaluated the performance of a φ-OTDR system for 
acoustic/vibration measurements utilizing a conventional telecom DFB laser self-stabilized through an external PM optical 
fiber ring resonator. The use of PM fiber components prevents the polarization mode-hopping that is proved to be a major 
source of the laser instability, resulting in single frequency laser operation with 6 kHz linewidth. The laser diode current and 
the laser fiber configuration temperature both have been stabilized with accuracies better than 0.3%. All laser components 
have been placed into a special insulating box to protect the laser from external perturbations. Under these conditions, the 
typical duration of laser operation in self-maintaining stabilization regime is ~30 minutes. The laser long-term frequency 
drift is estimated to be less than ~30 MHz/min. This low-cost solution is directly compared with the use of a commercial, 
ultra-narrow linewidth (~ 100 Hz) fiber laser implemented into the same setup. Both systems are tested for measurement of 
the frequency of vibration applied to a fiber at a distance of 3500 m. The obtained SNR value higher than 6 dB 
demonstrates the ability of the DFB laser to be used in distributed measurements of vibrations with frequencies up to 5600 
Hz with a spatial resolution of 10 meters. 

Keywords: Phase-sensitive OTDR; optical fiber ring resonator; self-injection locking.  
 
 

1. INTRODUCTION 
 
Advanced techniques of fiber optic distributed measurements are very promising for a number of applications such as 
pressure, strain, vibration and temperature measurements [1-18]. Among distributed optical fiber sensors, distributed 
acoustic/vibration sensors (DAS/DVS), which are based on the use of an optical fiber to localize and measure acoustic 
signals or vibrations along its length, are becoming increasingly attractive for a wide range of applications. These 
include monitoring oil and gas pipelines, ensuring railway safety and perimeter security, and performing industrial 
process control. DAS/DVS involve the real-time observation of the properties (amplitude and/or phase) of the Rayleigh 
backscattered signal in a coherent optical time-domain reflectometer (OTDR) based on a highly coherent laser source, 
commonly referred to as phase-sensitive OTDR or phase-OTDR (φ-OTDR) [19-22]. A light source providing a few kHz 
linewidth and frequency drift of less than 1 MHz/min is commonly used with distributed acoustic sensors [19]. Although 
several designs have been proposed for such master sources, their high cost and complexity may limit potential 
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