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Abstract 18 

Carbon dioxide soil efflux modelling in closed dynamic respiration chambers is a challenging 19 

task. This is attributed on many occasions to the very small concentrations of carbon dioxide 20 

being transported between soil and the atmosphere. This paper describes a portable device 21 

which was made exclusively to accurately measure carbon dioxide efflux from soil locations. 22 

The blowing fan creates a forced convective flow to occur in the chamber making the K-23 

Epsilon turbulence model a necessity to model the occurring flow in the respiration chamber 24 

gas domain. Furthermore the Darcy model is applied on the porous domain to model the flow 25 

pattern within the soil. The measurement process was achieved through measuring carbon 26 

dioxide concentration, temperature and relative humidity inside the chamber in relation to time. 27 

Simulation and experimental data is obtained using ANSYS and MATLAB. A significant 28 

agreement between the experimental and numerical results was achieved.  29 
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Roman Symbols 32 

A Sample area cross section 

A` Infinitesimal planar control surface 

An Area of a single pore 

𝐁 Body force vector 

C Carbon dioxide constants in Sutherland 

equation 

C(t) Carbon dioxide concentration as a 

function of time 

C(t)̃  Carbon dioxide filtered concentration as 

a function of time 

Dn Total Integrated area for permeability 

function 

Dtotal Total area of pores 

dav  The average pore diameter for a 

segment of pore sizes 

H(z) Concentration Filter function 

K Soil permeability 

Kij Area porosity tensor 



3 
 

Kperm Permeability 

Kloss  Empirical loss coefficient 

Pk Turbulence production 

p̀ modified pressure 

Rij Resistance to flow in the porous 

medium 

rsand Sand grain diameter 

rsilt Silt grain diameter 

rclay Clay grain diameter 

T Instance of time 

𝐔 Vecloity vector field 

V Studied volume of soil 

V` The volume available to flow in an 

infinitesimal control cell surrounding 

the point 

 33 

- Greek Symbols 34 

Γe Effective thermal diffusivity 

Γ volume porosity 
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Θ Volumetric water content 

Μ Air dynamic viscosity 

μe Effective viscosity 

Ρ Air density 

 35 

 36 

1. Introduction 37 

Soil can be defined as a complex system, consisting of a mixture of organic and mineral 38 

particles, soil solution and air, resulting from the interaction between biotic and abiotic factors; 39 

it is the medium in which plants acquire water and nutrients through their roots system. It is 40 

known by scientists that one of the physical properties of carbon dioxide contained in the 41 

atmosphere is that it reflects heat back to the earth’s surface. Consequently gradually the earth’s 42 

atmosphere traps more heat.  Respiration chambers can be used to quantify the soil efflux 43 

whereby they come in different shapes and sizes this depends on their application of use. They 44 

are composed of two main parts; namely the chamber shell and the gas sensor. To quantify the 45 

amount of produced carbon dioxide at one location, an enclosed cavity or space like a chamber 46 

is used. An efflux is flowing out or forth from a porous medium (Soil) which for our case of 47 

concern is carbon dioxide. Carbon dioxide gas in the soil is produced due to the biological 48 

activity in the soil domain. This method was first proposed by Henrik Lundegardh in the form 49 

of the respiration bell [1]. In the general context, studying respiration chambers can give 50 

scientists some insight to how fertile the studied site is. That is by measuring the rate of carbon 51 

dioxide produced for a certain site of concern in order to predict its impact on global warming 52 

issues [2]. Consequently with the increase of carbon dioxide concentrations in the atmosphere, 53 
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earth responds to it [3]. Climate change is one of the most critical challenges that are facing the 54 

mankind, and it is well related to the greenhouse emissions which help trapping heat and 55 

making the earth warmer that affect directly weather patterns, people, plants and animals. 56 

Greenhouse fluxes measurement between the soil and the atmosphere is of a great importance 57 

to help to understand the biochemical parameters effects on the global warming issue. This has 58 

lead scientists to use numerical nonlinear models to predict future concentrations of carbon 59 

dioxide in the atmosphere [4]. Subsequently others used more sophisticated models such as the 60 

dynamic global vegetation model [5] as shown in Figure 1.  61 

 62 

Figure 1: IPCC IS92a projections of atmospheric CO2 concentration and the HadCM2 SUL 63 
climate model simulations of temperature over land (excluding Antarctica). 64 

 65 
The used chamber methods have been surveyed in [6] where by it showed that new methods 66 

were proposed since the early 80s with growing interest in the global warming issue, Kyoto 67 

protocol. Scientists using these chambers can quantify the soil site carbon budget [7].  68 

The rational for this study is to interpret and quantify for a specific location how soil produced 69 

carbon dioxide contributes to the greenhouse effect. This is done by using a designed 70 

respiration chamber by our research group. The main focus of this study is to use CFD 71 

numerical models to show how they can assist in making the right dynamic chamber designs 72 

to get the right measured fluxes representing the biological activity of location. This helps in 73 
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finding the right locations to install the gas sensors within the chamber and also to ensure 74 

through mixing for the gas mixture. The process is firstly conducted using CAD and secondly 75 

using CFD design optimization. The chamber uses a sampling tube connected with the sensor 76 

hence it takes samples at all the inner chamber elevations furthermore it relies on the convective 77 

flow produced by the fan to get the correct measurements instead of using a gas sensor that 78 

sucks the gas sample and takes several seconds to analyse it. The selection of the blowing fan 79 

location is also selected to draw out the carbon dioxide within the soil layer and at the same 80 

time not to cause any disturbance to the biological activity in the soil as for cooling or 81 

increasing water evaporation rates. A significant agreement between the experimental and 82 

numerical results was achieved. 83 

2. Respiration Chambers  84 

Scientists know that no ideal experimental chamber exists [8], therefore the aim is always to 85 

reduce measured errors. That is due to the great spatial variability in soil emissions, and to the 86 

fact that the quantification of these emissions is complicated by the high spatial variability 87 

exhibited by many microbial processes [9]. Respiration chambers are produced either privately 88 

for research groups or by commercial companies. The transparent chamber is intended to be 89 

used to measure total flux from a specific location, it is automated to ventilate the chamber, 90 

while the none-transparent one is the total flux excluding the flux resulting from photosynthesis 91 

process. The top hat type chamber is used for a quick site deployment where ventilation is 92 

conducted manually, mostly intended for soil flux measurements. Different types of chambers 93 

are available depending on the intended efflux quantity to be measured as shown in Figure 2. 94 

The figure presents an example of chambers produced by the Li-Cor Inc Company with the 95 

named different parts. There are four types of chambers characterised according to their 96 

operational mode these are closed dynamic, open dynamic, closed static and open static 97 

chambers.  98 
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 99 
Figure 2: An example of an air circulation closed dynamic chamber made by Li-Cor Inc 100 

model (Li-cor 6400-09)[10] . 101 

2.1. Methods of efflux Measurements 102 

Scientists have an option to choose from several methods for measuring soil carbon dioxide 103 

efflux. These methods can be summarised into four ones, starting with the chamber soda lime 104 

[11] or what is called sometimes by alkali solution method which absorbs the respired carbon 105 

dioxide from the soil, it is an easy and cheap method to apply. The second method is by using 106 

the soil carbon dioxide gradient system method [12], generally this method is much 107 

complicated and not easy to setup. It requires the insertion of the gas sensors inside the soil 108 

layers of the studied location. This action disturbs the location integrity in addition to that gas 109 

sensors are expensive. The third method is the Eddy covariance method, sometimes referred to 110 

as micrometeorological method [13], the positive point about it that it doesn’t disturb the 111 

location of study, because all the necessary sensors are attached to a tower overhead the 112 

location of study. This method can be regarded as an expensive method and represents a more 113 
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attractive option to measure carbon dioxide emissions from spacious locations such as 114 

farmlands considering that plant community canopy emissions can also be studied taking 115 

advantage of the tower setup. Finally the fourth method is by using respiration chambers that 116 

use gas sensors such as infra-red gas sensors. These chambers are easy to use and setup, they 117 

do introduce disturbance to the soil surface upper crust when using the chamber fixture method 118 

such as the clamp method.  However the cost of having several methods to choose from is the 119 

large difference in accuracy, spatial and temporal resolution, and applicability. Therefore some 120 

kind of compromise has to be made in  the choice of (accuracy and resolution) and feasibility 121 

(applicability and cost) [14]. That is why researchers have used different efflux measurement 122 

methods and cross calibration functions to overcome these uncertainties [15]. The developed 123 

methods can be used to validate and calibrate other classical methods used in carbon dioxide 124 

measurements. The problem of under or over prediction of measured efflux, as described in 125 

[16] is due to external turbulences. 126 

2.2. What is the drive behind using closed dynamic chambers? 127 

The main challenge of measuring carbon dioxide concentrations is acquiring instantaneous 128 

samples every second of time. The setback in using static chambers is that the diffusion time 129 

required by the carbon dioxide species to spread in a homogenous manner inside the top soil 130 

crust layers and inside the chamber requires longer periods of measurements. Hence relying on 131 

diffusion alone for mass transport is not practical time wise. Consequently the dynamic 132 

chamber method is used for the reason that it relies on forced mass transport for the carbon 133 

dioxide species. This is achieved through the use of a blowing fan inside the chamber. That 134 

would decrease the required time for onsite deployment and sampling. Whereas as you move 135 

down in depth from the soil surface through the soil layers mass diffusion becomes the 136 

dominant factor of species transport. Hence we are interested in drawing out the gas mixture 137 

of air and carbon dioxide for the specified 6 minutes of the experiment from the soil O, A and 138 
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B horizons. Due to that the measurement period is 6 minutes the blowing fan intention is to 139 

create the suction affect to take out the stored carbon dioxide [17].  Production velocities of 140 

carbon dioxide within the soil layers are in the order of 10−5 m/s to 10−7 m/s. So by sucking 141 

out all the carbon dioxide stored in the O and A horizons  volume the biological active has no 142 

time to replenish the complete mass taken out.  Hence by measuring it in 6 minutes biological 143 

activity will not have enough time to produce additional carbon dioxide. This study is focused 144 

mainly for closed dynamic chambers operational mode and can also be applied to static 145 

chamber mode hence no venting tube is required.   146 

3. The Designed Chamber 147 

A chamber has been designed and made at the University of the West of Scotland (UWS), 148 

sensors were fit inside it properly, which allowed experimental results to be attained. 149 

Consequently, CFD numerical simulations using ANSYS (to model the fluid flow) were 150 

conducted, and further experimental studies were carried out. When the chamber was designed, 151 

these assumptions where made: 152 

1- The chamber can operate in two modes the first is the steady mode (switched off fan) 153 

relying on diffusive mass transport. The second mode is the unsteady mode (switched 154 

on fan) relying on flow convection for mas transport, at the unsteady state the airflow 155 

should sweep over the entire covered soil surface.  156 

2- The gas efflux should be of uniform magnitude over the covered surface by the 157 

chamber. The pattern of the airflow in the chamber should be relatively uniform in 158 

speed across the swept soil surface. This is to create the necessary suction pressure to 159 

draw out the carbon dioxide gas species from the top soil layer. 160 

3- The fan inflow and outflow should ensure that a well-mixed air/CO2 mixture is 161 

circulated inside the chamber. 162 
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4- The diffusive flux is dominant in the steady state of operation likewise the advective 163 

flow is negligible, on the contrary for the unsteady state the case is vice versa. 164 

5-  The pressure difference between the inside and outside of the chamber should be kept 165 

to the minimum that is through using the chamber installation base with the soil. 166 

6- The material for chamber fabrication should be strong to avoid possible structural 167 

deformation under field conditions. A deformed chamber body may cause leakage in 168 

the system and produce errors.  169 

7- The outside surface of the chamber should be able to reflect partially solar radiation 170 

[17]. Considering that each type of used chamber shell material has a predefined 171 

transmissivity property.   172 

Based on these assumptions, a CAD model was made as shown in Figure 3 this will be used 173 

for calculating the steady-state flux. All respiration chambers have the general chamber shape 174 

configuration the design contribution is evident when a comparison is conducted between 175 

Figure 2 and Figure 3. For example a noted design difference is that the LICOR designs have 176 

no circulation fan within them blowing in a perpendicular manner on the soil surface. The built 177 

model is shown on Figure 4 installed on the grass land location where the experimental 178 

measurements were taken. A general description of the experimental apparatus is that it is a 179 

cylindrical transparent plastic (perspex) chamber having a height of 0.5125 m and a diameter 180 

of 0.38 m. These dimensions create a chamber footprint of 0.113 m2 with an internal volume 181 

of 0.06 m3. It has one cap cover at the top of the chamber to allow the proper fitting of the 182 

blowing fan configuration in addition to providing flexibility of distance control of the 183 

convective flow intensity on the soil surface. The chamber covers a circular area of the soil. 184 

During the experiment the system is placed over the soil surface at ambient temperature. 185 

 186 
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 187 

Figure 3: The agreed upon CAD design for the chamber to use for the study. 188 

 189 
Figure 4: The used designed chamber at the University of the West of Scotland, located on 190 

the grass land site. 191 
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Chamber venting happens by turning over the chamber for ventilation after the measurement 192 

then switching the fan on to blow out the accumulated carbon dioxide from within the chamber 193 

volume. The reason for not selecting a parallel to the soil blowing fan is that blowing jet hitting 194 

the chamber wall would cause a none necessary rise in internal pressure causing gas leakage 195 

out of the chamber. Hence the fans distance was thoroughly selected to produce a pressure of 196 

0.7 Pa.  This value is equivalent to blowing winds in the range from 1 m/s to 5 m/s encountered 197 

on the site location of interest this idea is discussed in [17]. 198 

 199 

3.1 The Sensing Box 200 

The sensing box as shown in Figure 5 is composed of the sensors, shown in Table 1, that are 201 

connected to a microcontroller. The first one is the temperature sensor, relative humidity, Dew 202 

point and light intensity. The second is the chemical species sensor which uses the non-203 

dispersive infrared gas analyzer which measures the carbon dioxide concentrations. The sensor 204 

can work on battery mode while on location or can be plugged to the electrical mains for Lab 205 

tests or for battery charging. The sensor box is fitted with the wireless antenna to transfer data 206 

to the wireless rotor connected to the laptop. The sensing box is fitted to a sampling tube which 207 

collects the data from within the chamber; the sampling tube has side holes to insure that 208 

sampling is taken at the different elevations inside the chamber as shown in Figure 4. By using 209 

this method a homogenous gas mixture is sampled. Meaning that better resolution 210 

concentration measurement in relation to time is achieved. A precise calibration was made 211 

before the experiments this was through measuring the standard atmospheric concentration of 212 

carbon dioxide. The sensors sampling period was modified from 30 seconds to 5 seconds. For 213 

the reason that diffusion time required 30 seconds for gas species to get to the tip of the sensor 214 

in a static chamber case. The challenge was resolved through using a convective flow pattern 215 

with the chamber. Pumping samples out of the chamber wasn’t used because some gas sensors 216 
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dump the analysed gas sample into the outer environment of the chamber. The purpose of using 217 

closed chambers is to accumulate carbon dioxide concentrations within the gas volume to 218 

capture the exponential concentration curve. Gas sensors that use gas sampling technique 219 

similar to the syringe concept are not continuous because they require several seconds for the 220 

gas sample to be pumped out of the chamber and a further several seconds to conduct sample 221 

analysis.  Due to using dynamic chamber and a 6 minute time measurement the issues of 222 

condensation is overcome basically because a homogenous temperature heat field is created 223 

within the chamber.  The used sensor properties are summarized in Table 1, while the 224 

experimental setup and data collection steps for the dynamic chamber experiment are 225 

summarised in Figure 6.  226 

Table 1: Technical details of the non-dispersive infrared gas analyzer.  227 

Accuracy: +/-50ppm, or 3% of FS 

Response time <10s 

Range    0-5000ppm 

Working Environment     0~50℃，0~95%RH (No water condense) 

Storage temperature      -20~80℃ 

Power  3.5mW 

 228 
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 229 
Figure 5: The used sensor box which has the main purpose to measure carbon dioxide 230 

concentrations. 231 

 232 
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 233 

 234 

Figure 6: The flow chart showing the experimental setup steps and data collection for the 235 

dynamic chamber experiment.  236 

 237 

3.2 Location of Study 238 

Measurements were taken in Paisley which is a town located in the western part of Glasgow 239 

city. The terrain is moderately hilly near to the location as seen in Figure 7 were the location 240 
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has an average elevation of 15 m. Site location elevation is necessary is of importance due to 241 

the relation of location height with air density. Its importance becomes apparent when 242 

calculating chamber internal pressure further more in calculating chamber air mass and rate of 243 

air volume recirculation in relation to time for the chamber gas volume.  244 

 245 

Figure 7: Topographic map of the location of study, the site is located on University of West 246 

of Scotland, the elevation key is located on the right-hand side, location is in the light green 247 
colour range. 248 

 249 

The study area is located on the prospect location tract (550.50` N, 40.26` W) [18] as shown in 250 

Figure 8. The selected site is a managed grassland located in the University of West Scotland 251 

campus on a tended lawn surface, Sampling occurred during the days of (7th- 9th May 2015). 252 

The main characteristic of the grassland site as mentioned by [19] is that it has high fertility.  253 
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A managed grass land is regarded as an ideal case for a studied site location hence Figure 4is 254 

used as visual proof of location of study.  255 

 256 

Figure 8: The managed grass land location of study at the UWS paisley campus. 257 

 258 

The chamber base is not permanently installed into to the location it is pushed smoothly into 259 

the soil surface. But the main emphasis is to preserve the soil surface integrity as evident in 260 

Figure 4. As will be evident in section 3.3 that a managed grass land location can be identified 261 

on the soil texture plot shown in Figure 9 hence its porosity and permeability values can be 262 

identified which are used as CFD simulation input values.  263 

From experiments it was evident that for a static chamber data from the university weather 264 

station is very essential for the reason that on hourly bases big temperature difference becomes 265 

evident. This is attributed for that diffusion time is long especially for a chamber with a 266 

relatively high headspace. While an average day time temperature measurement can be 267 

satisfactory for a dynamic chamber study this is because the measurement period of 6 minutes. 268 

This is for a case for acquired data from the met office. On the other hand like our case the 269 



18 
 

sensor box has a temperature sensor with it. The gas mixing period helps to create mainly a 270 

homogenous temperature field within the chambers gas volume which showed a constant 271 

temperature throughout the measurement period. The meteorological data was gathered from 272 

the university weather station [20], the average measured wind speeds were 5 m/s  on location. 273 

The chamber sensor box measured in relation to time the following parameters: ambient 274 

temperature inside the chamber was 16 Co with a dew point of 10 Co while relative humidity 275 

was 40%. The importance of site description comes from the need to link climatic factors with 276 

onsite measurements, because soil biological metabolism is strongly influenced be 277 

temperature. Atmospheric concentrations of carbon dioxide as provided by [21] on the month 278 

of May 2015 were 401ppm. 279 

3.3 Permeability Calculation 280 

There are many ways to obtain soil permeability values; its importance comes as it is an 281 

essential input parameter that is needed for the numerical modelling. This parameter is an 282 

essential input for the Darcy equation to model gas flow within the soil layers. Here we derive 283 

a reliable method to find permeability values for a soil layer as will be shown in equation (1.5). 284 

From the soil texture side experimentally the location is characterized as having a loamy sand 285 

texture which can be located on Figure 9 with poor drainage with 80% sand, 15% silt and 5% 286 

clay. Finding the location intrinsic permeability is based on the model of porous material made 287 

up of parallel tubes of uniform sizes stated in [22] as shown in equation (1.0): 288 

K =
θ

2π
Dtotal 

(1.0) 

Where θ is the soil porosity, Dtotal is the total area of pores. 289 
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 290 

Figure 9: USDA and UK-ADAS Soil textural triangle. 291 

To give the model the option of parallel tubes of different sizes pore size distribution is 292 

characterized using a histogram, this is later applied to equation (1.0). The area of a single pore 293 

area considered to have a circular area can be found using equation (1.1), where dav is the 294 

average pore diameter for a segment of pore sizes: 295 

An = 0.25πdav
2   (1.1) 

Applying Newton’s forward Integration law formula for two points on a single segment of the 296 

histogram, where the two points represent the minimum and maximum value of pore diameters 297 

at that segment: 298 

Dn = ∫ r(A)dA = (An+1 − An)
rn

2

An+1

An

 
(1.2) 

The parameter r is the mass ratio for one of the constituents found in the soil texture triangle 299 

(example ratio of sand over total sum of constituents of sand silt and clay). By substituting 300 
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equation (1.1) into (1.2) the area for a segment of pore size can be calculated using equation 301 

(1.3): 302 

Dn = π(dn+1
2 − dn

2)
rn

8
 

(1.3) 

Equation (1.3) can be extended to different size distribution by considering macro, meso and 303 

micro pores, which for simplicity can be related to the ratios of sand, silt and clay: 304 

K =
θ

2π
∑ Dn

n=3

1

=
θ

2π
(Dsand + Dsilt + Dclay) 

(1.4) 

Considering the pores diameters in equation (1.4) to be as follows for a top soil layer 305 

macropores (20 − 2000 μm), mesopores (2 − 20 μm) and micropores (0.2 − 20 μm): 306 

K =
θ

2π
∑ Dn

n=3

1

= 0.25θ((d2
2 − d1

2)rsand + (d3
2 − d2

2)rsilt

+ (d4
2 − d3

2)rclay) 

(1.5) 

In conclusion the final form takes the form shown in equation (1.6): 307 

K =
θ

2π
∑ Dn

n=3

1

= 0.25θ(a1rsand + a2rsilt + a3rclay) 

(1.6) 

Where a1 = 10−6, a2 = 10−10, a3 = 10−12. The power of this equation is that it allows the 308 

researcher to get reasonable permeability values to be used for the simulation input based on 309 

firstly calcifying the site soil type. Consequently to later extract the ratios of sand, silt and clay 310 

from the soil texture triangle shown on Figure 9. This equation is only used to calculate 311 

permeability using the soil texture triangle. Then the researcher can find soil porosity from 312 

available literature which can assist in finding the locations water content.  Depending on the 313 

soil type located on the texture triangle you can find each soil texture has different storage 314 

capacity for water according to the ratios of sand, silt and clay. These ratios have already been 315 
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found by scientists for grass land locations. Soil porosity for a loamy sand location (Grass land) 316 

is in the range of 0.45 to 0.47 as reported by [23] . 317 

3. 4 The K-Epsilon Turbulence Model 318 

To conduct the flow simulations ANSYS-CFX commercial software was used. The used 319 

turbulence model is the RANS model which is sometimes called K-Epsilon model [24]. The 320 

model is applied to the gas domain in the chamber, to resolve the occurring scalar field 321 

inside the chamber in relation to time. The turbulent kinetic energy K is defined as the 322 

variance of the fluctuations in velocity. This is followed by ε which is the turbulence Eddy 323 

dissipation, which has a dimensions of K per unit time; for example. The K-Epsilon model 324 

introduces two new variables into the system of equations. The continuity equation is equation 325 

(1.7) where ρ is the air density and 𝐔  is the velocity vector field: 326 

∂ρ

∂t
+ ∇. (ρ𝐔) = 0 

(1.7) 

The general momentum equations are:  327 

∂ρ𝐔

∂t
+ ∇. (ρ𝐔⨂𝐔) − ∇. (μ

eff
∇𝐔) = −∇p̀ + ∇. (μ

eff
∇𝐔)

T
+ 𝐁 

(1.8) 

Where 𝐁 is the sum of body forces, μ
eff

 is the effective viscosity accounting for turbulence, 328 

and p̀ is the modified pressure as defined in the following equation: 329 

p̀ = p +
2

3
ρk +

2

3
μ

t
∇̅𝐔 

(1.9) 

The model is based on the Eddy viscosity concept, so that: 330 

μ
eff

= μ + μ
t
 (1.10) 

where μ
t
 is the turbulnce viscosity. The K-Epsilon model assumes that the turbulence viscosity 331 

is linked to the turbulence kinetic energy and dissipation via the relation:  332 
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μ
t

= Cμρ
k2

ε
 

(1.11) 

The parameter Cμ = 0.09 is k − ε turbulence model constant. The values of k and ε come 333 

directly from the differential transport equations for the turbulence kinetic energy and 334 

dissipation rate:   335 

∂ρk

∂t
+ ∇. (ρ𝐔k) = ∇. ((μ +

μ
t

σk
)∇k) + Pk − ρε 

(1.12) 

In addition 336 

∂ρε

∂t
+ ∇. (ρ𝐔ε) = ∇. ((μ +

μ
t

σε

)∇ε) +
ε

k
(Cε1Pk − Cε2ρε) 

(1.13) 

Model used constants for (1.12) and (1.13) are taken as Cε1 = 1.44 is, Cε2 = 1.92, σk = 1 and  337 

σε = 1.3 .Turbulence production Pk is the due to viscous and buoyancy forces, which are 338 

modelled using equation (1.14): 339 

Pk = μ
t
∇𝐔. (∇𝐔 + ∇𝐔𝑇) −

𝟐

𝟑
∇. 𝐔(3μ

t
∇. 𝐔 + ρk) + Pkb 

(1.14) 

The average flow velocity encountered in the chamber is 2.7 m/s subsequently the flow 340 

simulation case is an incompressible flow one. Hence ∇. 𝐔 is small and the second term on the 341 

right side of equation (1.14) does not contribute significantly to the production term. Therefore, 342 

this leads to the conclusion that there is no need to use a more sophisticated turbulence model 343 

such as LES. It is commonly known that the mentioned model requires additional 344 

computational resources to be allocated to run the calculation. The aim of using CFD 345 

simulations here is mainly to capture mass transport within the chamber and soil domain, it is 346 

not of priority to capture turbulence structures because a rotating fan wheel is not considered 347 

here. 348 
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3.5 Darcy Model 349 

The Darcy model is derived from Reynolds transport theorem when applied to porous media. 350 

This is achieved mainly by considering pressure as scalar quantity in the Reynolds transport 351 

theorem. Gas exchange occurs in the studied simulation between the soil and gas medium, 352 

meaning that we can rely on the theory of air movement due to pressure fluctuations  [25]. 353 

Available in the ANSYS-CFX solver is the porous model which is at once both a generalization 354 

of the Navier-Stokes equations and of Darcy's law. The main advantage of using commercial 355 

software is that they come with efficient mesh generation algorithms and tools giving the user 356 

the advantage of using the CFD code on complex geometries.  The Darcy model [24] retains 357 

both advection and diffusion terms and can therefore be used for flows in the soil domain where 358 

such effects are important. In deriving the continuum equations, it is assumed that 359 

'infinitesimal' control volumes and surfaces are large relative to the interstitial spacing of the 360 

porous medium, but small relative to the scales that wish to resolve. Thus, from the generated 361 

mesh the given control cells and control surfaces are assumed to contain both solid and fluid 362 

regions. The volume porosity γ at a point is the ratio of the volume V` available to flow in an 363 

infinitesimal control cell surrounding the point, and the physical volume of the cell. Hence: 364 

V` = γV (1.15) 

It is assumed that the vector area A available to flow through an infinitesimal planar control 365 

surface A` is given by equation (1.16) where K = (Kij) is called the area porosity tensor: 366 

A` = K. A (1.16) 

The dot product of a symmetric rank two tensor with a vector is: 367 

K. Ai = KijAj (1.17) 

ANSYS CFX presently only allows K to be isotropic. The general scalar advection-diffusion 368 

equation in a porous medium becomes: 369 
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∂γρ𝛟

∂t
+ ∇. (ρ𝐊. 𝐔𝛟) − ∇. (ΓK. ∇𝛟) = γS 

(1.18) 

In addition to the usual production and dissipation terms S will contain transfer terms from the 370 

fluid to the solid part s of the porous medium. In particular, the equation for conservation of 371 

mass:  372 

∂γρ

∂t
+ ∇. (ρK. 𝐔) = 0 

(1.19) 

And momentum is: 373 

∂γρ𝐔

∂t
+ ∇. (ρ𝐊. 𝐔 ⊗ 𝐔) − ∇. (μ

e
K. (∇𝐔 + (∇𝐔)T) = −γR. 𝐔 + γ∇p 

(1.20) 

where 𝐔 is the true velocity, μ
e
 is the effective viscosity-either the laminar viscosity or a 374 

turbulent quantity, and R = (Rij) represnts a resistance to flow in the porous medium. This is 375 

in general a symmetric postive definite second rank tensor, in order to account for possible 376 

anisotropies in the resistance. Speaking in the limit of large resistance, a large adverse pressure 377 

gradient must be set up to balance the resistance. Consequantly  in that limit, the two terms on 378 

the right hand side of equation (1.13) are both large and of opposite sign, and the convective 379 

and diffusive terms on the left hand side are negligible. Hence equation (1.13) reduces to: 380 

𝐔 = −R−1. ∇p (1.21) 

Subsequantly in the limit of large resistance, we obtain an anisotropic version of Darcy's law, 381 

with the permeability kept proportional to the inverse of the resistance tensor. However, unlike 382 

Darcy's law, we are working with the actual fluid velocity components 𝐔, which are 383 

discontinous at discontinuity in porosity, rather than the continuous averaged superfical 384 

velocity: 385 

𝐐 = 𝐊. 𝐔 (1.22) 

Heat transfer is modeled with an equation of similar form: 386 
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∂γρH

∂t
+ ∇. (ρ𝐊. 𝐔H) − ∇. (Γe𝐊. (∇H) = γSH 

(1.23) 

Where Γe is an effective thermal diffusivity and SH contains a heat source or sink to or from 387 

the porous meduim. A generalized form of Darcy’s law is given by 388 

−
∂p

∂xi
=

μ

Kperm
Ui + Kloss

ρ

2
|𝐔|Ui 

(1.24) 

Therefore μ is the dynamic viscosity, Kperm is the permeability and Kloss  is the empirical loss 389 

coefficient.  390 

4. Numerical Analysis 391 

This section is composed of the simulation setup, results and discussion.  392 

4.1 Simulation Setup 393 

The finite element model is composed of two domains; a porous domain representing the soil, 394 

and a gas domain representing the air Figure 10. The Navier-Stokes equations are solved to 395 

resolve the occurring flow pattern in the chamber. To model the turbulent nature of the flow, 396 

the K-Epsilon turbulence model (1.9-1.14) is applied to the Navier-Stokes equations (1.8). The 397 

Darcy equation (1.24) is solved in the porous domain to resolve the occurring flow in it. Both 398 

domains model multiple species which are air and carbon dioxide. 399 

 400 
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Figure 10: on the left the image shows the gas and porous soil domain moreover the right 401 
handside image shows the generated mesh quality for both the soil and gas volume domain 402 

 403 

To solve the mentioned equations the two domains have to be broken up into discrete elements 404 

as shown on Figure 10. The tetrahedral mesh type is selected with medium size relevance centre 405 

this mesh generation algorithm generates a homogenous size of elements in both domains. 406 

Consequently this helps in providing volume elements that transport gas species at an instance 407 

of time uniformly from the bottom of the soil domain to the tip of the gas sensor located in the 408 

gas volume domain. Hence these cell volumes have a Peclet number greater than 1 for the gas 409 

domain. On the contrary for the soil domain they should have a Peclet number smaller than 1. 410 

The fan inflow and out flow boundary condition as shown in Figure 11 is set to 2.7 m/s while 411 

all other surfaces are considered as wall boundary condition.  412 

 413 

Figure 11: The inflow and out flow boundary surface for the fan location is highlighted in 414 
green. 415 

 416 

There are two soil surfaces for the porous media as shown in Figure 12. One is located inside 417 

the chamber and the other outside the chamber. The top soil surface outside the chamber is 418 

assigned an atmospheric pressure boundary condition, while inside the chamber is assigned the 419 

interface boundary condition.  420 
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 421 

Figure 12: The side boundary surfaces that have been assigned an opening boundary 422 
condition are laminated in light green. 423 

 424 

The two domains are linked up using an interface boundary condition to model the mass 425 

transport occurring between the both of them this is at the soil inside surface area inside 426 

chamber shown in Figure 13. Gas exchange is modelled at the interface soil surface between 427 

the soil and gas volume within the chamber as shown on the green surface in. 428 

 429 
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Figure 13: The highlighted boundary condition represents the interface boundary condition 430 
between the gas volume and soil porous domain furthermore represents the boundary of the 431 

porous domain with the atmosphere. 432 

The carbon dioxide efflux is a result of biological activity in the soil and plants at the location. 433 

To represent occurring biological activity without  over complicating the project through going 434 

into its chemistry the bottom surface of the porous domain is assigned a carbon dioxide source 435 

term. The porous domain is assigned a 0.45 porosity based on [23]. The simulation permeability 436 

value is calculated from equation (1.6) after analysing the soil sample experimentally resulting 437 

10-10 m2. Both atmospheric temperature and pressure are considered to be constant with time. 438 

Consequently atmospheric pressure is taken to be 1 atm and ambient temperature to be 16 Co. 439 

Time stepping is conducted using first order Euler method while a time step of 1 sec is 440 

considered. The total simulation time is 360 seconds, this time period is generally enough to 441 

capture the gas species concentration jump which usually occurs the first 120 seconds. What 442 

happens after the saturation point is that any addition of gas species doesn’t contribute to any 443 

addition of concentration jumps. In conclusion the concentration curve in relation to time after 444 

the point of saturation becomes asymptotic. This later contributes to the numerical model 445 

validation process with experimental data which as shown on Figure 16. The assigned initial 446 

condition is zero velocity with a volume fraction of one for Air. So that the simulation 447 

calculation starts with a pure air case for both the soil and gas domain. As the simulation 448 

progresses with time carbon dioxide species disperses gradually through the two domains.  The 449 

simulation is run on a 16 GB RAM machine with a quad core Intel processer.  450 

4.2 Convergence check and mesh independence 451 

Looking at Figure 14 shows plots that are necessary to conduct a convergence check for the 452 

conducted numerical simulation this is done for a 100 time iteration, hence due to no evident 453 

jumps within the solution curves and to that they are in an order of 10−3  no further mesh 454 

dependence is required. Moreover the left plot shows the convergence of the solution for the 455 



29 
 

rms velocity components in the x y and z axis. Likewise the same is conducted for the rms 456 

pressure term. The three velocity components iterate at the same extent is due to the 457 

homogenous vector filed created in the gas volume. The reason for the fluctuations with the 458 

accumulated times steps is due to the changes of flow energy inside the chamber gas volume. 459 

This is more evident on the right hand side for the convergence plot for the K-Epslion 460 

turbulence model terms. Consequently the rms term for the kinetic energy term fluctuates and 461 

the same applies for the epsilon term which is responsible for dissipating the flow kinetic 462 

energy.  463 

Furthermore commenting on Figure 15 shows a more constant iteration pattern for the rms 464 

temperature term this is attributed to a steady heat transfer rate is occurring inside the chamber. 465 

The evident noise in both rms enthalpy energy gas components is attributed to the dominance 466 

of flow convective behaviour in the gas volume.  467 

 468 

  

Figure 14:  Convergence of the solution check in relation to accumulated time step, momentum 469 
and mass solution convergence on the left and the K-Epslion components used in the turbulence 470 

model on the right. 471 
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 472 

Figure 15: A convergence check of the solution for temperature in the energy equation 473 
moreover the same check for both gases enthalpy convergence. 474 

 475 

4.3 Results and Discussion 476 

Figure 16 shows the experimental and flow simulation data obtained from the study. To 477 

examine the sensitivity and the frequency of the sensor sampling rate, samples initially were 478 

taken for two hours [26]. To conduct the carbon dioxide analysis, data from each 6 minute 479 

sampling period was manually analysed and the earliest 2-3 minute linear time period was used 480 

to calculate the carbon dioxide efflux in g/ m2. h, based on equation (1.18): 481 

Jg̅(t) =
V

A

∆C

∆t
 

 

(1.18) 

Where V is the chamber volume in m3 and A is the covered soil area in m2, ΔC/ Δt represents 482 

the carbon dioxide concentration derivative in relation to time mole/ m3h. The first 150 483 

seconds time period is the necessary time to capture the flux jump that represents biological 484 
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activity occurring on location. By using the developed MATLAB code at UWS and analysing 485 

the gathered data, this resulted in finding that the produced efflux on location is about 486 

2 mole/ m2h after 150 seconds of the experiment which is a reasonable value in relation to 487 

reported experimental data for a grass land location [27, 28] conducted using other types of 488 

chambers. Consequently a significant agreement between the experimental readings and 489 

numerical results was achieved meaning that CFD can be used to develop future respiration 490 

chamber designs as shown in Figure 16.  Many measurements where conducted several days 491 

before the 7th of May just to confirm repeatability of experiment and the obtained data. 492 

Speaking of Figure 16 it is visible from the CFD simulation, carbon dioxide concentration 493 

(subtracting 400 ppm) increases gradually with the progression of time till it becomes 494 

asymptotic with the experimental curve, noting that the asymptotic section of the data has been 495 

cropped out. No filtering function was applied for the gathered experimental data In Figure 16 496 

because dynamic chambers generate turbulence within especially for our case whereby the gas 497 

sensor is plugged directly onto the chamber. From another perspective the measured 498 

fluctuations are due to the interaction of the convective flow with the drilled holes in the 499 

sampling tube. The transient period usually has these fluctuations in concentration but are not 500 

an issue because this is due to the gas mixture reaching the sensor tip as a function of the 501 

chamber turbulence. Our concern is when the measured mixture becomes asymptotic, after this 502 

point, we have no concern anymore because the captured initial jump is the objective. These 503 

holes purpose is to allow the mixed air carbon dioxide gas mixture to be collected and guided 504 

to the sensor tip. While the numerical data in In Figure 16 shows no fluctuations this is 505 

attributed to turbulence model used whereby its dissipation term is dominant.  In Figure 16, a 506 

gauge concentration rise (similar to gauge pressure) of 100 ppm for carbon dioxide is evident 507 

during a time period of 6 minutes. The rigid limit of 100 ppm is because we are dealing with a 508 

gauge concentration measurement of carbon dioxide. This is resulting from biological activity 509 
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within the soil and from the grass cover on location. The absolute atmospheric concentration 510 

of carbon dioxide within the atmosphere can be considered as fixed and has the value of 400 511 

ppm. Usually for example at a grass land soil location the gauge average measured 512 

concentration is in the range of 60 ppm at the first 100 seconds of measurements. 513 

 514 
Figure 16: An experimental and numerical representation of carbon dioxide concentration 515 

with time inside the chamber. 516 

For both curves a discrete increase in concentration exists in relation to time. The importance 517 

of this curve comes in validating the obtained results. The gas concentration data in the 518 

simulation is taken from the same location that the sensor is located in the experiment. This 519 

ensures that correct data values are measured in relation to time and space. Sensing location is 520 

of importance because sensed concentrations increase about 30 ppm between two taken 521 

measurements as visible in Figure 16 for the case of experimental data at instance 80 and 90 522 

sec. The deviations of measurement at every 5 seconds for the experimental data case occur 523 

due to convective flow occurring within the gas volume. They are attributed to the occurring 524 
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turbulence in the dynamic run case. Commenting on the numerical simulation data the steady 525 

behaviour is due to application of the averaging method on the scalars of the Naiver Stokes 526 

equations hence that omits out measurement disturbance. In conclusion the numerical model 527 

shows the expected slope. 528 

 529 

To view the process of capturing the grass land soil eflux experimentally and its challenges a 530 

static case is covered in Figure 17. It is common knowledge that the atmosphere is composed 531 

of many gases at different volume fractions. The measured atmospheric value of carbon dioxide 532 

concentration is 402.80 ppm according to the authors in [29]. Hence to find gauge species 533 

concentration values inside the chamber atmospheric values of carbon dioxide where 534 

subtracted from the measurements. Consequently the gauge measured values where considered 535 

which start from zero to about 120 ppm as shown in Figure 17. It is evident when looking at 536 

two plotted curves that in the top figure there is lots of disturbance to the measurements; 537 

therefore a MATLAB data filter is used at the bottom plot.  The gauge concentration values 538 

are shown in the top figure while the bottom one shows the absolute concentration after 539 

applying a filtering function on it, noting that the filtered function is coloured blue furthermore 540 

the unfiltered one is in red. Classically researchers in literature use exponential function with 541 

one term to curve fit the disturbed set of data hence function (1.19) is obtained.  542 

C(t) = 414 e(4e−6)t (1.19) 

The power of using the filtering function is that it provides the initial slop to measure the 543 

biological soil activity. Consequently by multiplying the function in equation (1.19)  by a filter 544 

H(z) the general formula can be found (1.20) 545 

C(t)̃ = C(t)H(z) (1.20) 



34 
 

A MATLAB built in function is applied on the gathered dataset from the experiment this is a 546 

1-D digital filter  [30]. This kind filter is used in signal analysis furthermore it can also be 547 

applied to the collected data. A moving average filter is used and is represented by equation 548 

(1.21): 549 

y(n) =
1

windowSize
(x(n) + x(n − 1) + ⋯ + x(n − (windowSize − 1))) 

(1.21) 

Hence the numerator coefficients of the rational transfer function are defined. For the studied 550 

case it is taken as to have a value of windowSize = 30. Moreover the denominator coefficients 551 

of the rational transfer function are taken to have the value of 1. Filtering the rows or columns 552 

of the efflux matrix with the following rational transfer function (1.22): 553 

H(z) =
1

1 − 0.0333 Z−1
 

(1.22) 

From Figure 17 by curve fitting the filtered function of concentration using an exponential 554 

function with one term in relation to time equation (1.23) is obtained: 555 

C(t)̃ = 391.8 e(2.4e−5)t (1.23) 

What is evident when comparing equations (1.19) with (1.23) that both the filtered and 556 

unfiltered function with a one term exponential function didn’t capture the exact curve hence 557 

the single term function was not considered. Furthermore an exponential function with two 558 

terms was adopted for curve fitting resulting in equation (1.24): 559 

C(t)̃ = 420 e(3.5e−6)t − 504 e−0.0129t  (1.24) 

The extracted experimental equation is later used for the numerical simulation part of the 560 

project whereby this obtained equation is read in into the ANSYS-CFX code. Consequently it 561 

is assigned as a source term inside the biologically active soil. Without equation (1.24) it is 562 

very difficult to obtain correct results using CFD simulations. Both data sets are correct, one 563 
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captures every detail of gas diffusion in the chamber (unfiltered plot), and the other omits out 564 

the diffusion disturbance (filtered). 565 

 566 

Figure 17: Guage concetration top curve, absolute concentration values of measured carbon 567 
dixoide measuremnts bottom (red), filtered measurments of carbon dixoide (blue). 568 

 569 

Speaking of Figure 18 shows the soil and fluid domains during the simulation for a dynamic 570 

chamber. The soil domain is taken down to a depth of 25 cm to ensure that all the necessary 571 

flow details are captured in the simulation. Looking at the chamber gas domain, the visible 572 

streamlines represent the flow velocity field starting from the blowing fan outlet boundary 573 

which is facing the soil surface.  574 
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 575 
Figure 18: Capturing the occurring flow pattern in the studied chamber using stream lines. 576 

 577 

These stream lines hits the soil surface and travel back on a parallel path to the chamber outer 578 

shell to be sucked into the fans inlet. Based on that the same mass inflow and outflow rate 579 

occurs for the fan it can be considered to have periodic boundary condition.  The occurring 580 

circulation in the chamber is visible from the streamlines ensuring a fast homogenous mixture 581 

to be established in a short period of time. Consequently this is achieved by blowing air from 582 

a reasonable distance in relation to the soil surface. Hence this ensures the preservation of   583 

internal chamber pressure rise to a minimum. In conclusion carbon dioxide does not leak to the 584 

outside of the chamber. When the forced convective flow hits the soil surface it creates a wall 585 

shear stress. This wall shear stress produces a sucking effect that draws some of the soil carbon 586 

dioxide upwards instantaneously in the soil upper surface layers. The mixture is again sucked 587 

from the chambers headspace by the fan producing an internal periodic flow condition. The 588 

flow stream lines look symmetrical to the chambers main axis, the visible streamline 589 
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irregularities are due to the applied turbulence model, this is mostly evident from the suction 590 

side of the fan with many twisted streamlines. Leaving the fan on for longer periods than 6 591 

minutes can produce faulty fluxes due to the gradual build-up of internal pressure within the 592 

chambers gas volume. The 6 minute measurement time for a dynamic chamber case is enough 593 

to suck out all the stored carbon dioxide within the soil layers top layers.  594 

5. Conclusion  595 

The steps that pave the way to select and fit the right gas sensor at the right location within a 596 

respiration chamber have been covered in this paper. These steps start with specifying the 597 

design requirements and then proceeds to the CAD design stage.  A portable device was 598 

designed, made and tested. It was proven that it can be used to measure accurately carbon 599 

dioxide concentration resulting from biological activity at specific locations of interest. To 600 

reduce the occurrence of wrong measurements the chamber sensor takes gas samples from all 601 

the elevations within the chamber using a sampling tube. Hence the sampling tube speeds up 602 

the gas sample going to the sensor tip this process over takes the diffusion time that is usually 603 

required for sensor measurement. This makes the sensor measurement frequency much higher 604 

in resolution in relation to time. The blowing fan fitting distance from the soil surface is 605 

selected thoroughly to draw out the carbon dioxide contained at the top soil biologically active 606 

layers. This is based on the design condition to preserve the chambers inner pressure which 607 

would contribute to any leakage out of the chamber. The researcher can to some extent rely on 608 

the air viscosity properties (Energy cascade theorem) to dampen the produced kinetic energy 609 

within the gas volume.  CFD can contribute largely to the chamber development phase this in 610 

how to use it to model producing the right gas mixture ready for measurement. This is 611 

according to the experiment required sampling time, blowing fan speed and changing 612 

environmental parameters from temperature, pressure, etc. This works contribution is that it 613 
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applied a numerical model on a gas volume and soil media to model gas exchange within a 614 

respiration chamber gas volume with a blowing fan that applies a jet flow onto the soil surface.    615 

The objectives of this study were achieved by running numerical tests and then through 616 

comparing them with the onsite measurements using the designed chamber on the grass land 617 

location. Validation of the produced data from the run simulations and apparatus showed the 618 

applicability of using such an apparatus for carbon dioxide efflux measurements. The results 619 

show that the K-Epslion turbulence model can be used to model flows in the closed dynamic 620 

respiration chambers. The developed numerical model can be applied to explore the occurring 621 

flow patterns for different chamber designs with different soil site locations.  A MATLAB 622 

software can help in the data analysis stage of the project was developed.  Consequently testing 623 

and calibrating new sensor technologies compatibility with recently developed chamber 624 

designs is applicable. The merits of using CFD tools include reductions in research costs and 625 

chamber development time. CFD can predict how homogenous is a gas mixture in the chamber 626 

gas volume also it can show mixing rates through visualizing the turbulence intensity and eddy 627 

frequency and flow strain rates within the chamber gas volume. Hence knowing the sensors 628 

frequency sampling rates and linking it with CFD can help in verifying if the sensors to be used 629 

within the chamber would perform their required role or not even before making full scale 630 

chamber. We can apply the different response function of concentrations for the sensor into the 631 

model. CFD has its limitations also and requirements this depends on the accuracy of the 632 

numerical methods used, furthermore on the generated calculation mesh and the size of the 633 

finite volume elements used. This become clear especially when modelling and analysing small 634 

concentration in the order of 10−6or 10−9.   635 

 636 
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