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Introduction to Forensic VVoice Comparison

Geoffrey Stewart Morrison & Ewald Enzinger
Abstract

This chapter provides a brief introduction to forensic voice comparison. It describes different
approaches that have been used to extract information from voice recordings: auditory,
spectrographic, acoustic-phonetic, and automatic approaches. It also describes different
frameworks that have been used to draw inferences from such information: likelihood-ratio,
posterior-probability, identification/exclusion/inconclusive, and the UK framework. In
addition, the chapter describes empirical validation of forensic voice comparison systems and
briefly discusses legal admissibility.
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1 Introduction

In a court of law there is sometimes a dispute as to the identity of a speaker on an audio recording. For
example, the prosecution contends that the speaker is the defendant, whereas the defense contends that
the speaker is not the defendant. Other scenarios are possible, for example, the issue could be whether
the questioned speaker is a kidnap victim. The court may call on a forensic practitioner to compare the
recording of the speaker of questioned identity with a recording of the speaker of known identity. The
task of the forensic practitioner is to help the court decide whether the voices on the two recordings were
produced by the same speaker or by different speakers.

The present chapter provides an introduction to forensic voice comparison (aka forensic speaker
comparison, forensic speaker recognition, and forensic speaker identification). A general knowledge of
phonetics is assumed, but previous knowledge of forensic inference and statistics is not. It is our hope
that this chapter can provide phoneticians with a working sense of the challenges faced when conducting
forensic voice comparison analyses for presentation in the courtroom. We also wish to address some
current controversies concerning how such forensic voice comparison may be best implemented.

Forensic voice comparison is challenging because the quality of speech recordings in casework is often
poor and there is often mismatch between the speaking style in and the recording conditions of the
known- and questioned-speaker recordings. Recordings may contain only a few seconds of speech, they
may include background noise of various sorts (e.g., babble, ventilation system noise, vehicle noise) at
varying intensities, they may have been recorded in reverberant environments, they may have been
recorded using microphones that are distant from the speaker of interest (e.g., covert microphones,
telephone microphones picking up speakers other than the caller), they may have been transmitted
through different transmission channels (e.g., landline telephone, mobile telephone, voice over internet
protocol) that distort the signal, and they may have been saved in compressed formats (e.g., MP3) that
also distort the signal. Mismatches in speaking style and recording conditions can make two recordings
of the same speaker appear more different than they if they were recorded under the same conditions.
Mismatches in recording conditions can also mask or be mistaken for differences due to recordings
actually being of different speakers. See Ajili (2017) ch 3 for a review of the effects of speaker intrinsic
and speaker extrinsic factors on the performance of automatic speaker recognition systems.

The present chapter is structured as follows:
e Section 2 describes different approaches to extracting information from voice recordings.
e Section 3 describes frameworks for making inferences based on that information.
e Section 4 describes empirical validation.
e Section 5 briefly discusses legal admissibility and case law in some common-law jurisdictions.

The present chapter has some overlap with Morrison, Enzinger, & Zhang (2018). The latter covers some
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topics in more detail and also covers other topics not included in the present chapter.

2 Approaches to forensic voice comparison

We use the term approaches to refer to broadly different ways of extracting information from speech
recordings. Historical and current practice in forensic voice comparison can be described in terms of four
different approaches:

e auditory

e spectrographic

e acoustic-phonetic
e automatic

This section describes the different approaches, then presents information about their popularity. Many
practitioners use combinations of approaches, e.g., auditory-spectrographic or auditory-acoustic-
phonetic, but for simplicity we will describe each approach separately.

We will make a distinction between modes of practice in which the conclusion as to the strength of
evidence is directly based on subjective judgment (subjective mode), and in which it is based on relevant
data, quantitative measurements, and statistical models (statistical mode). Auditory and spectrographic
approaches are intrinsically subjective, automatic approaches intrinsically statistical, and acoustic-
phonetic approaches can be practiced in either a subjective or a statistical mode.

2.1  Auditory approaches

Auditory approaches, as the name implies, are based on listening. The practitioner listens to the known-
and questioned-speaker recordings in search of similarities in speech properties that they would expect
if the two recordings were produced by the same speaker but not if they were produced by different
speakers, and in search of differences in speech properties that they would expect if the two recordings
were produced by different speakers but not if they were produced by the same speaker. Properties that
a practitioner attends to may include vocabulary choice, pronunciation of particular words and phrases,
segmental pronunciation, intonation patterns, stress patterns, speaking rate, and voice source properties.
Practitioners who have training in auditory phonetics can transcribe and describe segmental and
suprasegmental properties, including attributing putative articulatory or physiological origins of what
they perceive auditorily.

Some (perhaps most) practitioners listen only to the known- and questioned-speaker recordings, and rely
on their training and experience to make judgments as to whether perceived differences are more likely
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to be due to same- or different-speaker origin. Some practitioners also listen to a set of foil speakers, i.e.,
speakers who sound broadly similar to the known and questioned speakers (including same sex, language
spoken, and accent spoken), speaking in a similar speaking style and under similar recording conditions.
One approach, known as blind grouping (see Cambier-Langeveld et al., 2014) is for one practitioner to
prepare recordings of foil speakers, and present the known-speaker, questioned-speaker, and foil
recordings to a second practitioner without telling the second practitioner the origin of each recording or
how many speakers there are total. Each original recording may have been cut into a number of smaller
recordings, and the recordings presented to the second practitioner are randomly labeled. The task of the
second practitioner is to group the recordings by speaker. The correctness of grouping of foil speakers
serves as a test of performance. Care must be taken that speaking style, linguistic content, or recording
conditions for the known- and questioned-speaker recordings do not make them stand out relative to the
foil recordings.

Descriptions of the auditory approach are provided in: Nolan (1997); Rose (2002); Nolan (2005); Jessen
(2008); Hollien (2016); Hollien et al. (2016).

2.2  Spectrographic approaches

Practitioners of spectrographic approaches visually compare spectrograms of words or phrases that
occur in both the known- and questioned-speaker recordings. Some protocols require the known speaker
to be recorded saying the same phrases in the same speaking style as on the questioned-speaker recording.
Practitioners look for similarities in the spectrograms that they would expect if the two recordings were
produced by the same speaker but not if they were produced by different speakers, and for differences
that they would expect if the two recordings were produced by different speakers but not if they were
produced by the same speaker. Practitioners rely on their training and experience to make judgments as
to whether differences they perceive between the known- and questioned-speaker spectrograms are more
likely to be due to same- or different-speaker origin. Practitioners may attend to segmental and
suprasegmental properties visible in the spectrograms, including fundamental frequency (f0), formants,
spectral tilt, word duration, and the effect of nasal anti-resonances (American Board of Recorded
Evidence, 1999). Rather than documenting multiple visually perceptible properties, some practitioners
use a Gestalt approach (Poza & Begault, 2005).

As with auditory approaches, some practitioners (perhaps most) only look at spectrograms from the
known- and questioned-speaker recordings, but some also look at spectrograms from foil speakers (the
latter is advocated in Gruber & Poza, 1995, and Poza & Begault, 2005).

In the early 1970s, there was a debate about whether a visual only or a visual plus auditory approach was
better. Auditory-spectrographic approaches (aka aural-spectrographic approaches) won out.
Spectrographic / auditory-spectrographic approaches have also been called “voiceprint” or “voicegram”
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approaches. The term “voiceprint” has been criticized as suggesting a false analogy with fingerprint.
Whereas fingerprints are images of friction ridge patterns which are relatively stable anatomical features,
spectrograms are not images of anatomical features and the acoustic properties that are graphically
represented in spectrograms are subject to considerable variation due to speaker behavior and recording
conditions. In the 1960s and 70s, unsubstantiated claims of near perfect performance were made by some
advocates of spectrographic approaches, and the term “voiceprint” fell into disrepute.

Descriptions of the spectrographic approach are provided in: Kersta (1962); Tosi (1979); and National
Research Council (1979). There has been substantial controversy surrounding the use of the
spectrographic approach. Reviews of the controversy around its use and admissibility are included in:
Gruber & Poza (1995); Solan & Tiersma (2003); Meuwly (2003a,b); Morrison (2014); and Morrison &
Thompson (2017).

2.3 Acoustic-phonetic approaches

Practitioners of acoustic-phonetic approaches may examine many of the same acoustic properties that
practitioners of auditory and spectrographic approaches examine via auditory or visual perception, but
practitioners of acoustic-phonetic approaches make quantitative measurements of those acoustic
properties. The most widely used acoustic-phonetic properties are fundamental frequency and formant
frequencies, but quantitative measurements can also be made of voice onset time (VOT), fricative spectra,
nasal spectra, voice source properties, speaking rate, etc. (Gold & French, 2011; French & Stevens, 2013).
A common approach involves first finding and marking the beginning and end of realizations of
particular phonemes or of major allophones of particular phonemes, for example, all tokens of /i/ or all
tokens of /ar/ not adjacent to a nasal, lateral, rhotic, or labiovelar. Human supervised formant
measurements are then made using the same sort of signal-processing algorithms and procedures as are
used in acoustic-phonetic research in general, e.g., linear predictive coding (LPC) plus a peak picking
algorithm with the optimal number of LPC coefficients selected by the human supervisor. Measurements
may be made at multiple points in time during the vowel to capture information about formant trajectories.

Since questioned-speaker recordings are often telephone recordings and traditional telephone systems
have bandpasses of around 300 Hz — 3.4 kHz, first formant (F1) frequencies close to 300 Hz (e.g., in [i]
and [u]) are often distorted, and high frequency spectral information in bursts and fricatives (e.g., in [t"]
and [s]) is often missing. Fundamental frequency is below the bandpass, but can be recovered from
harmonic spacing. Practitioners of acoustic-phonetic approaches have to take such transmission-channel
effects into account, especially when there is a mismatch in recording channel between the known- and
questioned-speaker recordings. One solution is to not use certain measurements, such as measurements
of F1 in realizations of vowels with intrinsically low F1; however, even in the middle of the bandpass,
the codecs used in mobile telephone systems can distort formants. Zhang et al. (2013) reviewed previous
research on the effects of telephone transmission on formants, and tested the effects of landline and
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mobile telephone transmission on the performance of forensic voice comparison systems.

Once they have made their measurements, some practitioners make tables or plots of the values, and use
their training and experience to subjectively assess strength of evidence via examination of those tables
or plots. For example, first versus second formant (F1-F2) values could be plotted for realizations of a
particular vowel phoneme in both the known- and questioned-speaker recording, and the visual degree
of overlap considered. Measurements made on recordings of foil speakers may also be plotted.

Other practitioners use their measurements as input to statistical models that calculate quantifications of
strength of evidence. Some practitioners directly report the output of the statistical model as a strength
of evidence statement, but others use it as input to a subjective judgment process, which may also include
consideration of the results of other analyses such as an auditory analysis.

Descriptions of acoustic-phonetic approaches (non-statistical and statistical) are provided in: Nolan
(1997); Rose (2002); Hollein (2002); Nolan (2005); Rose (2006); Jessen (2008); Rose (2013); Drygajlo
et al. (2015); Rose (2017).

2.4 Automatic approaches

Human supervised automatic approaches evolved from signal-processing engineering, and in particular
speech processing. Automatic speaker recognition techniques developed for non-forensic applications
have been adapted for forensic application. For most security applications the system has to be fully
automatic and make a decision. For example, the system must decide to grant or deny a caller access to
bank account information without intervention from a human member of staff. Also, the bank client will
initially have been cooperative in enrolling sample recordings of their voice, and the bank client can also
be asked to cooperate by calling from a quiet location and be asked to say particular words and phrases.
In contrast, in forensic application:

e the questioned speaker is generally not cooperative,

¢ the questioned speaker is not trying to be identified and they may not even be aware that they are
being recorded,

e the recording conditions and speaking styles are much more variable and the quality of the
recordings often much poorer, and

e the output of the system is not a binary decision but a quantification of strength of evidence.

Appropriate adaptation of automatic speaker recognition techniques to forensic problems is non-trivial.
It requires human supervised systems in which the practitioner carefully selects relevant data for training
and testing so that the output of the system is a meaningful quantification of strength of evidence for the
case. Inappropriate use of automatic systems is garbage in garbage out (GIGO).
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Traditional automatic approaches do not explicitly exploit acoustic-phonetic, segmental, or
suprasegmental information. Instead, they usually make spectral measurements at regular intervals, e.g.,
once every 10 ms within a 20 ms wide window. Such measurements are usually made throughout the
recorded speech of the speaker of interest, and the results are pooled irrespective of whether they
originated from vowels or consonants or realizations of particular phonemes. The most commonly made
measurements are mel frequency cepstral coefficients (MFCCs, see Davis & Mermelstein, 1980). At
each point in time, the MFCCs characterize the shape of the spectral envelope using a vector of around
14 numbers. Deltas, the rate of change of MFCC values over time, and double deltas, the rate of change
of delta values over time, are usually appended to produce a vector of around 42 numbers (see Furui,
1986). The measurements made by automatic systems, and the derivatives of those measurements, are
known as features.

The boundary between acoustic-phonetic and automatic approaches is, however, fuzzy. Some automatic
approaches use phone recognizers from automatic speech recognition systems to model information
related to specific phones or phone classes (e.g., vowels, fricatives, nasal consonants). See Ajili et al.
(2016) for an exploration of the effect of excluding particular phone classes on the performance of an
automatic forensic voice comparison system. Some systems automatically find voiced segments then
automatically measure fO and formant frequency values at regular intervals throughout those voiced
segments. The latter are called long-term formant (LTF) values (see for example Jessen et al., 2014).
Some practitioners of acoustic-phonetic approaches mark realizations of particular phonemes, but then
make MFCC measurements within those realizations. Using around 14 MFCC values provides more
information about the spectrum than fO plus two or three formant values.

The measurements made in automatic approaches are invariably used as input to statistical models. The
statistical modelling approaches used in forensic voice comparison (and automatic speaker recognition
more broadly) have evolved over the last 20 years. An approach known as GMM-UBM (Gaussian mixture
model - universal background model) was introduced around 2000 (Reynolds et al., 2000), and another
approach known as i-vector - PLDA (identity vector - probabilistic linear discriminant analysis) was
introduced around 2010 (Dehak et al., 2011; Prince & Elder, 2007). Current state of the art in automatic
speaker recognition research makes use of DNNs (deep neural networks; e.g., Richardson et al., 2015),
and these are beginning to be adopted for forensic application. GMM-UBM, i-vector PLDA, and DNN-
based systems can be considered systems that output scores. Scores are similar to likelihood ratios (see
Section 3.1) in that they take account of similarity and typicality, but their absolute values are not
interpretable. This is not a problem in applications in which a decision is made by comparing a score
value to a threshold but is a problem when the purpose is to provide a strength of evidence statement to
the court. Calibration can be used to convert scores to interpretable likelihood ratios. It was first used in
forensic voice comparison around 2007. A standard statistical modelling approach for calibration is
logistic regression (see: Pigeon et al., 2000; Gonzélez-Rodriguez et al., 2007; Morrison, 2013).

A great deal of effort in automatic speaker recognition has focused on developing statistical techniques
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for dealing with mismatches in speaking styles and recording conditions between known- and
questioned-speaker recordings (the statistical techniques are known as mismatch compensation, aka
channel or session compensation). These techniques include cepstral mean subtraction (CMS, see Furui,
1981), cepstral mean and variance normalization (CMVN, see Tibrewala & Hermansky, 1997), feature
warping (Pelecanos & Sridharan, 2001), and linear discriminant analysis (LDA). The first three are
alternatives applied to features and the latter is usually applied to i-vectors. In automatic speaker
recognition, LDA actually usually refers to the use of canonical linear discriminant functions for
dimension reduction (see Klecka, 1980) prior to using a different probabilistic classification model.

Some practitioners directly report the output of the statistical model as a strength of evidence statement,
but others use it as input to a subjective judgment process, which may also include consideration of the
results of other analyses such as auditory and acoustic-phonetic analyses.

Descriptions of automatic approaches are provided in: Ramos Castro (2007); Becker (2012); Enzinger
(2016); Marks (2017). For a review of approaches to automatic speaker recognition in general, see
Hansen & Hasan (2015).

2.5 Popularity of different approaches

Gold & French (2011) published the results of a survey of practitioners working in a mixture of private,
university, and law-enforcement or other government laboratories. In the reported results from 35
respondents:

e 2 (6%) used an auditory only approach.

e Spectrographic approaches were not mentioned.

e 25 (71%) used an auditory-acoustic-phonetic approach.
e 1 (3%) used an acoustic-phonetic-only approach.

e 7 (20%) used a human-supervised automatic approach.

In 2016, INTERPOL published the results of a survey of speaker recognition capabilities of law-
enforcement agencies in member countries (Morrison, Sahito, et al., 2016). 44 respondents stated that
their agency had speaker recognition capabilities. Of these, many reported using more than one approach,
hence the summary statistics below add up to more than 44.

e 15 (25%) used an auditory approach.
e 21 (34%) used a spectrographic or auditory-spectrographic approach.

e 25 (41%) used an auditory-acoustic-phonetic (subjective) approach.
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e 15 (25%) used an acoustic-phonetic (statistical) approach.
e 20 (33%) used a human-supervised automatic approach.

e 9 (15%) used a fully-automatic approach. (Assumed to be for investigative rather than forensic
application.)

In the results of both surveys, (auditory-)acoustic-phonetic approaches were the most popular, with
human-supervised automatic approaches second or a close third. In the results of the INTERPOL survey,
(auditory-)spectrographic approaches were also popular. Auditory-only approaches were the least
popular.

The two surveys were separated in time but also solicited responses from different groups, hence one
cannot conclude that the differences between them are due to changes in practice.

3 Frameworks for evaluation of forensic evidence

In contrast to the term approaches, which we use to refer to different ways of extracting information
from speech recordings, we use the term frameworks to refer to different ways of evaluating strength of
evidence based on that information. Frameworks therefore refer to ways of reasoning or ways of drawing
inferences. Historical and current practice can be described in terms of a number of different frameworks,
including:

e likelihood-ratio
e posterior-probability
e identification / exclusion / inconclusive
e the UK framework.
We describe each of these frameworks below, and then give information about their popularity.

Frameworks are mutually exclusive of each other. Most frameworks can be used in a subjective or a
statistical mode. In some frameworks strength of evidence can be expressed verbally or as a numeric
value. To some extent, frameworks are independent of approaches, e.g., one could use either an acoustic-
phonetic-statistical or an automatic approach in combination with either a posterior-probability or a
likelihood-ratio framework. In practice, however, certain combinations are more common than others,
e.g., a spectrographic approach combined with a verbal posterior-probability framework, an auditory-
acoustic-phonetic approach combined with the UK framework, and an automatic approach combined
with a numeric likelihood-ratio framework.
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3.1 Likelihood-ratio framework

The likelihood ratio framework is considered the logically correct framework for the evaluation of
forensic evidence by many forensic statisticians, forensic scientists, and legal scholars; see for example:
Aitken et al. (2011); Willis et al. (2015); Drygajlo et al. (2015); Morrison, Kaye, et al. (2017). General
introductions to the likelihood ratio framework include: Aitken et al. (2010); Robertson et al. (2016);
Balding & Steele (2015) ch. 1-3 and 11. Introductions in the context of forensic voice comparison include:
Rose (2002); Morrison & Thompson (2017); Morrison, Enzinger, & Zhang (2018).

3.1.1 Similarity is not enough

Just considering the degree of similarity of the voices on the known- and questioned-speaker recordings
is not enough to quantify strength of evidence. Imagine that we measured the mean fundamental
frequency of the voices on two recordings and found that they differed by 5 Hz. Would that indicate that
the two recordings are of the same speaker? Would it indicate that it is highly probable that the two
recordings are of the same speaker? You will probably answer “no” or “it depends”. The two recorded
voices are very similar on this metric, there is only a 5 Hz difference between them, but we have to
consider whether that 5 Hz difference is more likely to occur because it really is the same speaker or
more likely to occur by chance. How do we assess this? Our discussion below focuses on answering this
question using relevant data, quantitative measurements, and statistical models.

3.1.2 Histogram models

Imagine that we have multiple recordings of the known speaker (N, recordings total) and we measure
the mean fundamental frequency in each recording. We will designate each of these values an x;, value,
[ € 1...Ng. Let’s begin with a simple statistical model based on the proportion of the x;, values that
fall into 10 Hz wide ranges, e.g., what proportion of the x;, values are greater than 90 Hz and less than
or equal to 100 Hz, what proportion are greater than 100 Hz and less than or equal to 110 Hz, etc. We
can represent the results as a histogram as in Figure 1 (top panel darker rectangles).> We will draw the
histogram such that the area of each rectangle represents the proportion of measurements falling within
the range of x values which it covers. Since each rectangle represents a proportion of the whole, the
sum of the areas of all of the rectangles must be 1. We can now use the histogram as a statistical model.
We use the proportions as estimates of probability. We can use the model to estimate the probability that
the mean fundamental frequency of a recording would have a value within a specified 10 Hz wide range

1 All panels in Figure 1 were based on the same simulated data consisting of N, =100 recordings sampled from the simulated
known speaker and N,=1000 recordings sampled from the simulated relevant population. The data were generated for
illustrative purposes only and are not intended to accurately reflect real fO distributions.
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if it were produced by the known speaker. Imagine that the mean fundamental frequency of the voice on
the questioned-speaker recording, x,, is 99 Hz. This falls in the range of greater than 90 Hz and less
than or equal to 100 Hz. The area of the rectangle corresponding to this range, and hence the estimated
probability of a value falling in this range if it were produced by the known speaker is 0.0360. This gives
us a quantification of the similarity between the voice on the questioned-speaker recording and the known
speaker’s voice.

<Figure 1 about here>

We also need to consider the probability of getting an x, value of 99 Hz if the questioned speaker were
not the known speaker but some other speaker selected at random from the relevant population. We will
discuss the concept of relevant population in Section 3.1.6 below. For now let us assume that the relevant
population is adult males. We obtain recordings of a large number (N,.) of adult male speakers. This is a
sample of the relevant population. For the recording of each speaker we measure the mean fundamental
frequency, Xr; J €1..N..We then construct a histogram for these data in the same way as we did for

the data from the known speaker. This is shown in Figure 1 (top panel lighter rectangles). We use the
second histogram as our statistical model to estimate the probability that the x, value would fall within
the range greater than 90 Hz and less than or equal to 100 Hz if it came from a speaker selected at random
from the relevant population. In this example, that value is 0.0066. This provides a quantification of the
typicality of the voice on the questioned-speaker recording with respect to the relevant population.

We are now in a position to answer a question which has two parts:

e What is the probability of getting the measured property of the voice on the questioned-speaker
recording if it came from the known speaker? (What is the degree of similarity?)

VErsus

e What is the probability of getting the measured property of the voice on the questioned-speaker
recording if it came not from the known speaker but from a speaker selected at random from the
relevant population? (What is the degree of typicality?)

If we divide the answer to the first part (the similarity part) by the answer to the second part (the typicality
part), we get the ratio of the two, and we can say that we estimate that the probability of getting the
measured property of the voice on the questioned-speaker recording is 0.0360 / 0.0066 = 5.45 times
higher if it came from the known speaker than if it came from some other speaker selected at random
from the relevant population.

We can rephrase the two questions above as hypotheses:

e The measured property of the voice on the questioned-speaker recording (the evidence) came
from the known speaker.
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VErsus

e The measured property of the voice on the questioned-speaker recording (the evidence) came not
from the known speaker but from a speaker selected at random from the relevant population.

For brevity, we will refer to these as the same-speaker hypothesis and different-speaker hypothesis
respectively, and we will use the term evidence to refer to the measurement (or measurements) made on
the questioned-speaker recording.

Note that using the model described above, we would have gotten the same result had x, been any value
between 90 and 100 Hz, but if the mean of the x;, were 90 Hz then perhaps the strength of evidence
should be lower if x, is toward the top of the 90-100 Hz range than if it is toward the bottom (further
from the known-speaker mean rather than closer). We could address this by making the ranges of the
rectangles in our histograms narrower. For example, in Figure 1, the middle and bottom panels have
rectangles of widths 5 Hz and 1 Hz respectively. Using these histograms, the corresponding estimates of
the probability of getting the measured property of the voice on the questioned-speaker recording if it
came from the known speaker versus if it came from some other speaker selected at random from the
relevant population are 0.0300/0.0084 = 3.57 and 0.0300/0.0100 = 3.00 respectively.

If we continue to make the widths of the rectangles narrower and narrower, however, we will eventually
run into a problem. Because we are using proportions it does not matter exactly how many known-
speaker recordings and how many relevant-population sample recordings we have, and we do not have
to have the same number of each, but we do have to have a sufficient number of measurements in each
rectangle for the proportions to be reasonable estimates of probability. Assuming we have a limited
number of recordings that are a sample of the known speaker’s speech, and a limited number of
recordings which are a sample of the speech of speakers from the relevant population, as we make the
rectangles narrower fewer and fewer x;, and Xr; values will fall within each rectangle, and the quality
of the estimate of the probability for each rectangle will deteriorate. At the extreme, most rectangles

would have a zero count and some would have a count of one. The problem is already apparent in the
bottom panel of Figure 1.

3.1.3 Parametric statistical models (Gaussian distributions)

A solution to the problem described at the end of the previous subsection is to use a parametric model. If
we are willing to assume that the data have a Gaussian distribution (a normal distribution), then we can
get relatively good parameter estimates (estimates of the mean and variance) using comparatively little
data compared to the amount of data we would need to make a high resolution non-parametric histogram.
We calculate the sample means /i, and £, and sample variances 67 and 82 from the xy, and from

the X values. This gives us the statistics (the parameter estimates) necessary to define the two Gaussian
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distribution models plotted in Figure 2: y, = f (x|, 67) and y,. = f(x|4,, 632), where f(x|u,c2) is
the Gaussian probability density function (these were trained on the same simulated data used to train
the histograms in Figure 1). Note that just as the total area of a histogram is 1, the area under the curve
for each Gaussian distribution is 1. If we calculate the area under the curve within a range of values, e.g.,
greater than 90 Hz and less than or equal to 100 Hz, or greater than 98.5 Hz and less than or equal to 99.5
Hz, then we have a probability estimate of a value falling within that range. But if we pick an exact value,
e.g., 99 Hz, then the width of that range is zero and the area is therefore zero. The y axis value for the
curve at an exact value is not zero, but the y value does not represent probability — it represents a quantity
known as probability density or likelihood. At the value of the evidence, x,, we assess the likelihood of

the known-speaker model, y,, = f(x,|Ax, 67) (this quantifies similarity), and the likelihood of the
relevant-population model, y,, = f(xq|ﬁr,6r2) (this quantifies typicality), and we divide the former
by the latter. The result is a likelihood ratio, which is a quantification of the strength of evidence. In this
case we estimate that the likelihood of the evidence is y; i/, = 0.0279/0.0089 = 3.12 times higher

if it came from the known speaker than if it came from some other speaker selected at random from the
relevant population.?

<Figure 2 about here>
<Figure 3 about here>

Note that if we keep the degree of similarity the same, but reduce the degree of typicality, then the value
of the likelihood ratio increases: see Figure 3 top left panel, in which /i, has been increased by 10 Hz
relative to its value in Figure 2. The value of the likelihood ratio is 6.68.

Vice versa, if typicality increases the value of the likelihood ratio decreases: see Figure 3 top right panel,
in which g, has been decreased by 10 Hz relative to its value in Figure 2. The value of the likelihood
ratio is 1.88.

Also, if we keep the degree of typicality the same, but the degree of similarity increases the value of the
likelihood ratio increases: see Figure 3 bottom left panel, in which fi;, has been increased by 10 Hz
relative to its value in Figure 2. The value of the likelihood ratio is 4.12. In contrast, if similarity decreases
the value of the likelihood ratio decreases: see Figure 3 bottom right panel, in which g, has been
decreased by 10 Hz relative to its value in Figure 2. The value of the likelihood ratio is 0.99.2 The value

2 Technically when describing a likelihood ratio one should talk about probability of evidence given hypotheses if the data
are discrete, but likelihood of hypotheses given evidence if the data are continuous. This, however, is confusing for non-
statisticians, and our concern in a forensic or legal context is to avoid inducing the prosecutor’s fallacy (Thompson &
Schumann, 1987). We may therefore use phrases such as “likelihood of evidence given hypotheses” or “probability of
evidence given hypotheses” rather than the technically correct “likelihood of hypotheses given evidence”.

S If increased similarity corresponds with increased typicality, however, then in some instances the value of the likelihood
ratio could decrease as similarity increases.
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of the likelihood ratio would also change if the value of x, changed.

Statistical models are not restricted to univariate measurements and can be applied to multivariate
measurements. In addition, statistical models are not restricted to Gaussian distributions, and much more
complex distributions can be fitted. In both acoustic-phonetic statistical and automatic approaches, the
data are usually multidimensional and have complex distributions. Multivariate Gaussian mixture models
are used in both GMM-UBM and i-vector - PLDA.

3.1.4 What does a likelihood ratio mean?

Likelihood ratios can have values that are > 1 or < 1. If the value of the likelihood ratio is > 1, then the
evidence is more probable if the same-speaker hypothesis were true than if the different-speaker
hypothesis were true. If the value of the likelihood ratio is < 1, then the evidence is more probable if the
different-speaker hypothesis were true than if the same-speaker hypothesis were true. But, importantly,
what matters is not just whether a likelihood ratio is > or < 1, but how far away it is from 1. The further
the value from 1 the greater the strength of evidence.

What does the value of a likelihood ratio mean? From a normative perspective it is the amount by which
the trier of fact (the judge or the jury depending on the legal system) should change their belief regarding
the relative probabilities of the same- and different-speaker hypotheses.*

Before the trier of fact is presented with the forensic voice comparison testimony, they have some belief
as to the relative probability that the speaker on the questioned recording will be the defendant versus
that the speaker on the questioned recording will be some other speaker. A simplistic example assumes
a crime committed on an island of 101 inhabitants. One of the islanders is the defendant and the trier of
fact assumes that innocent until proven guilty implies that before considering any evidence the defendant
is no more or less likely to be the questioned speaker than any other inhabitant of the island. The prior
probability that the defendant is the questioned speaker is therefore 1/101 and the prior probability that
someone else is the questioned speaker is 100/101 (1/101 for each inhabitant multiplied by the 100
inhabitants other than the defendant). The ratio of these is (1/101)/(100/101) = 1/100. The ratio of the
prior probabilities is called the prior odds.

But the trier of fact may have already heard other evidence, and immediately prior to hearing the
likelihood ratio from the forensic voice comparison their prior odds may no longer be 1/100. For example,
if it is apparent that the voice on the questioned-speaker recording is male, and the defendant is male,
and the trier of fact is told that 50% of the other inhabitants of the island are male, then the trier of fact’s

4 This discussion is provided to explain the meaning of a likelihood ratio. It is not intended to instruct triers of fact as to how
to reason on legal matters, nor to imply that triers of fact must assign numeric values to evidence which is not the result of a
forensic analysis.
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prior odds before hearing the forensic voice comparison testimony might be 1/50.

Irrespective of the actual value of the trier of fact’s prior odds, normatively the trier of fact should update
their belief according to the following formula (the odds form of Bayes’ Theorem):

1)

prior odds X likelihood ratio = posterior odds

p(Hy) N p(ElH;) _ p(H,|E)
p(Hy) p(E[Hg) p(HglE)

1 5 1

100 X° =100 ~ 20

5= 5 1
50 50 10

In which H, stands for the same-speaker hypothesis, H; for the different-speaker hypothesis, and E
for the evidence. p(E|H) reads as probability of evidence given hypothesis, and p(H|E) reads as
probability of hypothesis given evidence. After the trier of fact has heard the strength of evidence
expressed as a likelihood ratio, the posterior odds are what their belief should be as to the relative
probabilities that the defendant is the questioned speaker versus that someone else on the island is the
questioned speaker.

Note that in the two examples at the bottom of Equation 1, the differences in the posterior odds are due
to differences in the prior odds. The evidence is the same, the strength of evidence is the same, and the
likelihood ratio calculated by the forensic practitioner is the same. Both examples use a likelihood ratio
of 5. What the trier of fact should do with the likelihood ratio is the same, irrespective of what their prior
odds are. A likelihood ratio has an unambiguous meaning. In the context of forensic voice comparison,
it is the amount by which (in light of the evidence) the trier of fact should multiply their prior odds in
order to update their belief about the relative probabilities of the same- versus the different-speaker
hypotheses being true. With suitable changes in wording, an unambiguous definition of a likelihood ratio
can be provided addressing strength of evidence questions in other branches of forensic science.

If the value of the likelihood ratio is > 1, the value of the posterior odds will be more than the value of
the prior odds, and if the value of the likelihood ratio is < 1, the value of the posterior odds will be less
than the value of the prior odds. In this sense, the likelihood ratio framework is symmetrical, it can lead
to higher belief in the probability of the same-speaker hypothesis being true over the different-speaker
hypothesis being true, or vice versa. Likelihood ratios < 1 are crammed into the range 0 to 1, whereas
likelihood ratios > 1 are in the range 1 to infinity. A value < 1 can be inverted along with inversion of
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the hypotheses, e.g., p(E|H,)/p(E|H;) = 0.001 is equivalent to p(E|H;)/p(E|Hs) = 1000, and,
rather than use a fraction, it is easier to say the probability of the evidence is 1000 times greater if the
different-speaker hypothesis were true than if the same-speaker hypothesis were true. For mathematical
convenience, log likelihood ratios are often used, e.g., log,,(0.001) = —3 and log;,(1000) = +3.
Likelihood ratios less than 1 convert to log likelihood ratios in the range minus infinity to 0, and
likelihood ratios greater than 1 convert to log likelihood ratios in the range 0 to plus infinity. The log-
odds version of Bayes’ Theorem is additive rather than multiplicative:

)

log prior odds + log likelihood ratio = log posterior odds

p(Hs) p(E|Hs)\ p(H|E)
o8 (p(Hd)> +loe <p<E|Hd)> = log (p—wdw))

log(p(Hs)) — log(p(Ha)) + log(p(E|H;)) — log(p(E|Hy)) = log(p(H|E)) — log(p(H4lE))

3.1.5 Subjective likelihood ratios and verbal expression of likelihood ratios

Based on their training and experience, it should be intuitive for a phonetician that an fO of around 120
Hz is typical for an adult male. Thus, if the voices on the known- and questioned-speaker recordings both
have values close to 120 Hz, this does not constitute strong evidence in support of the hypothesis that
they were both produced by the same speaker rather than by different speakers. In contrast, an fO of 70
Hz is atypical. Thus if the voices on the known- and questioned-speaker recordings both have values
close to 70 Hz, this does constitute strong evidence in support of the hypothesis that they were both
produced by the same speaker rather than by different speakers. Without obtaining an explicit sample of
the relevant population and without using a statistical model, it is therefore possible for a phonetician to
subjectively assign values to a likelihood ratio. The phonetician could give subjective numeric estimates
or could give a verbal expression, e.g., the evidence is much more probable if the same-speaker
hypothesis were true than if the different speaker hypothesis were true. Such statements would be
consistent with the logic of the likelihood ratio framework.

The 2015 ENFSI guideline on evaluative reporting (Willis et al., 2015) includes examples of verbal
expressions of likelihood ratios, such as shown in Table 1. Each expression is associated with a range of
numeric likelihood ratio values. Terms such as “much more probable” and “far more probable” are,
however, ambiguous. They may be interpreted differently by different people, and even differently by
the same person in different contexts.®

5> For more detailed criticism of verbal expressions and ordinal scales, see Marquis et al (2016) and Morrison & Enzinger
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<Table 1 about here>
3.1.6 Relevant population

An important issue for calculating a likelihood ratio is: What is the relevant population? On listening to
the questioned-speaker recording certain things are usually (but not always) obvious, including whether
the speaker is male or female, what language they are speaking, and broadly what accent of that language
they are speaking. If these are likely to be salient to the trier of fact and unlikely to be disputed by the
prosecution or defense, then they can be used for defining the relevant population that the forensic
practitioner will adopt. It is important that the forensic practitioner clearly communicate what relevant
population they have adopted so that the judge at an admissibility hearing and/or the trier of fact at trial
can decide whether it is appropriate, and so that the judge and/or trier of fact can understand what the
calculated value of the likelihood ratio means — one cannot understand the answer if one does not
understand the question.®

In addition, it is important to consider whether the sample is sufficiently representative of the specified
relevant population. Part of this consideration is whether the sample is sufficiently large. Also to be
considered is whether the sample is biased or is simply of some population other than the specified
relevant population. For example, imagine that the questioned speaker and known speaker are adult males
with O values of approximately 120 Hz, and that the specified relevant population is adult males, but the
sample used is actually a sample of adult females. The fO for the known and questioned speakers would
be relatively atypical with respect to the distribution of fO values in the sample of female speakers. The
calculated likelihood ratio value would therefore be large, but this value would be misleading because
the question it actually answers involves typicality with respect to the wrong population. The actual
question answered would be nonsensical: What is the probability of getting the fO of the male on the
questioned-speaker recording if it were produced by the male known speaker, versus if it were produced
by a female speaker?’ What the forensic practitioner uses as a sample of the relevant population must
be clearly communicated to the judge and/or trier of fact so that ultimately the judge and/or trier of fact
can decide whether the sample is sufficiently representative of the relevant population.

(2016). For a study of lay people’s perception of various verbal and numeric expressions of strength of evidence, see
Thompson et al. (2018).

& Selection of the relevant population in the context of forensic voice comparison is discussed in Morrison, Ochoa, &
Thiruvaran (2012); Gold & Hughes (2014); Hughes & Foulkes (2015); Hicks, Biedermann, et al. (2015, 2017); Morrison,
Enzinger, & Zhang (2016, 2017); Hughes & Rhodes (2018).

7 We note, however, that it is not always obvious whether the questioned speaker is male or female and since the different-
speaker hypothesis is that the questioned speaker is not the known speaker, the sex of the known speaker is not relevant for
defining the relevant population. In such cases the relevant population could include speakers of both sexes, e.g., males plus
females with low pitched voices or females plus males with high pitched voices.
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3.2  Posterior-probability framework

Some practitioners express their conclusions as to strength of evidence as posterior probabilities. These
could be generated using statistical models or could be subjectively assigned, and they could be expressed
numerically or verbally. For example: “There is a 95% probability that the known speaker is the speaker
on the questioned-speaker recording.” Expressions of certainty are also posterior probability expressions,
e.g., “I am 95% certain that it is the same speaker.” The American Board of Recorded Evidence protocols
for spectrographic approaches require the use of verbal expressions of posterior probability:
“identification”, “probable identification”, “possible identification”, “inconclusive”, ‘“possible

29 <¢ 2 ¢¢

exclusion”, “probable exclusion”, “exclusion” (American Board of Recorded Evidence, 1999).

The problem with expressing strength of evidence as a posterior probability is that logically in order to
calculate a posterior probability one must consider two things: the likelihood ratio and the prior
probability, see Section 3.1.4 above.® The forensic practitioner must therefore either use some arbitrary
prior, or must assign a prior based on the other evidence in the case that the trier of fact has already heard.

Unless the trier of fact tells the forensic practitioner specific priors to use, the forensic practitioner cannot
calculate the appropriate posterior probability. Given current legal practice around the world, it is
extremely unlikely that the trier of fact would provide specific priors, and in some jurisdictions this is
clearly impossible.

The task of the forensic practitioner is to assess the strength of evidence of the particular materials they
have been asked to analyze, independent of any other evidence in the case. It is the task of the trier of
fact to consider and combine all the evidence. It would be inappropriate for the forensic practitioner to
consider the other evidence in the case. Even knowing about the other evidence could bias the forensic
practitioner’s conclusion. This would mean that the strength of evidence statement that the forensic
practitioner presents to the trier of fact would not be (entirely) new independent information for the trier
of fact, and the trier of fact would be in danger of double counting the same information. Cognitive bias
is a problem of increasing concern in forensic science (see: Risinger et al., 2002; Saks et al., 2003;
National Research Council, 2009; Found, 2015; Stoel et al., 2015; National Commission on Forensic
Science, 2015; Edmond et al., 2017).

An arbitrary prior is problematic since if one practitioner used a high value for the prior and another
practitioner used a low one, and otherwise acted the same, the difference in the priors would make the
value of the first practitioner’s posterior probability higher and that of the second lower, but this
difference would have nothing to do with the materials they were asked to compare. If the value of the
arbitrary prior were not revealed, then the reported posterior probability would be misleading. If the value
of the arbitrary prior were revealed along with the value of the posterior, then the value of the likelihood

8 For coherent odds: o(H) = p(H)/p(H), and p(H) =1 —p(H). H means not H. Hence, via substitution and algebraic
derivation, the formula to convert from posterior odds to posterior probability is: p(H) = o(H)/(l + o(H)).
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ratio could be recovered, but it would have been much simpler just to present the value of the likelihood
ratio in the first place.

It may be the case that practitioners who present posterior probabilities are not aware of the logical
problems. Jackson (2009) discusses the problems with posterior probabilities and a range of other ways
that have been used to express strength of evidence (see also Hicks, Buckleton, et al., 2015)

3.3 Identification / exclusion / inconclusive framework

In an extreme version of the posterior probability framework, the practitioner only reports either
“identification”, i.e., 100% probability for same speaker, or “exclusion”, i.e., 100% probability for
different speaker, or declines to express an opinion “inconclusive”. In making an “identification” or
“exclusion” the forensic practitioner has made the decision as to same speaker or different speaker, which
is properly a decision to be made by the trier of fact who also takes other evidence into consideration.
Apart from the logical problems associated with a posterior probability framework in general,
“identification” or “exclusion” leads to additional problems. Logically, a practitioner who makes an
“identification” or an “exclusion” is claiming infallibility — if they acknowledged that they could be
wrong then they could not be 100% certain. Also, logically, the practitioner is claiming that no other
evidence in the case is relevant — the trier of fact weighs other evidence against the voice evidence, but
a posterior probability of 1 equates to a posterior odds of infinity (which could only be obtained if the
prior odds or the likelihood ratio were infinite), and no other evidence can have any counter effect against
infinitely strong evidence. The trier of fact could, of course, decide to not believe the forensic practitioner.

President Obama’s Council of Advisors on Science and Technology stated that forensic practitioners
should not be allowed to claim 100% certainty (President’s Council of Advisors on Science and
Technology, 2016, p. 19).

3.4 UK framework

In 2007, a group of forensic voice comparison practitioners and researchers in the United Kingdom
published a position statement that included a framework for evaluation of evidence (French & Harrison,
2007). This became known as the “UK framework™. It was explicitly tied to auditory-acoustic-phonetic
subjective approaches.

The framework has two stages: “consistency” and “distinctiveness”. In the first stage, the practitioner
makes a subjective judgment as to “whether the known and questioned samples are compatible, or
consistent, with having been produced by the same speaker” (French & Harrison, 2007, p. 141). The

choices are “consistent”, “not consistent”, or “no-decision”. If the practitioner decides that the samples
are “not consistent”, the practitioner may state that they were spoken by different speakers and express
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their degree of confidence that this is so (this is a posterior probability). If the practitioner decides that
the samples are “consistent”, the practitioner then makes a subjective judgment as to whether the known-
and questioned-speaker recordings fall into one of five levels of distinctiveness with respect to the
relevant population: “exceptionally-distinctive”, ‘“highly-distinctive”, “distinctive”, “moderately-

distinctive”, or “not-distinctive”.

Unlike the numerator and denominator of a likelihood ratio, “consistency” and “distinctiveness” are not
measured on the same scale, and there are no explicit algorithms for assigning values to “consistency”
or “distinctiveness”. The latter are assigned “informally via the analyst’s experience and general
linguistic knowledge rather than formally and quantitatively” (French et al., 2010, p. 144). Also, the
meaning of the conclusion is ambiguous, and there is no normatively correct way to combine it with the
strength of other evidence.

The UK framework has been criticized in Rose & Morrison (2009) and Morrison (2009, 2010, 2014). In
2015, the lead authors of the UK position statement abandoned their framework (see French, 2017) in
favor of the Association of Forensic Science Providers’ standards (Association of Forensic Science
Providers, 2009), which require the use of the likelihood ratio framework. French (2017) indicates that
they have adopted the use of verbal expressions of likelihood ratios, with the level on the ordinal scale
assigned on the basis of subjective judgment.

3.5  Popularity of different frameworks

In the Gold & French (2011) survey, the 35 respondents’ use of different frameworks was reported as
follows:

o 4 (11%) used numeric likelihood ratios.
e 3(9%) used verbal likelihood ratios.

e 14 (40%) used posterior probabilities. It was suggested that most or all of these were verbal
expressions of posterior probabilities.

e 2 (6%) used identification / exclusion / inconclusive.
e 11 (31%) used the UK framework.
e 1 (3%) was reported as “other”.

In the 2016 INTERPOL survey (Morrison, Sahito, et al., 2016), of the 44 respondents who stated that
their agency had speaker recognition capabilities, use of different frameworks was reported as follows:

e 10 (23%) used numeric likelihood ratios.
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9 (20%) used verbal likelihood ratios.

3 (7%) used numeric posterior probabilities.

4 (9%) used verbal posterior probabilities.

22 (50%) used identification / exclusion / inconclusive.

3 (7%) used the UK framework.

Some respondents reported using more than one framework, or both a numeric and verbal variant, hence
the summary statistics above add up to more than 44 (18, 41%, used numeric and/or verbal likelihood
ratios).

4 Empirical validation

The only way to know how well a forensic comparison system works is to test it. US Federal Rule of
Evidence 702 - Daubert® and England & Wales Criminal Practice Directions!® Section 19A establish
demonstration of scientific validity as a key requirement for admissibility. The following organizations
also recommend or require empirical validation of forensic methodologies: National Research Council
(2009); Forensic Science Regulator of England & Wales (2014, 2017), as part of accreditation; European
Network of Forensic Science Institutes (Drygajlo et al., 2015), specifically for forensic voice comparison;
President’s Council of Advisors on Science and Technology (2016). Morrison (2014) reviewed calls
going back to the 1960s for the validity and reliability of forensic voice comparison systems to be
empirically validated under casework conditions.

President Obama’s Council of Advisors on Science and Technology stated that:

neither experience, nor judgment, nor good professional practices (such as certification
programs and accreditation programs, standardized protocols, proficiency testing, and codes
of ethics) can substitute for actual evidence of foundational validity and reliability. The
frequency with which a particular pattern or set of features will be observed in different
samples, which is an essential element in drawing conclusions, is not a matter of “judgment.”
It is an empirical matter for which only empirical evidence is relevant. Similarly, an expert’s
expression of confidence based on personal professional experience or expressions of
consensus among practitioners about the accuracy of their field is no substitute for error rates
estimated from relevant studies. For forensic feature-comparison methods, establishing
foundational validity based on empirical evidence is thus a sine qua non. Nothing can

° William Daubert et al. v Merrell Dow Pharmaceuticals Inc., 509 US 579 (1993)
10 Criminal Practice Directions [2015] EWCA Crim 1567
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substitute for it.*t

Below we describe empirical validation of forensic comparison systems within the likelihood ratio
framework. A number of different metrics and graphics have been proposed for assessing and reporting
the degree of validity and reliability of likelihood ratio systems (see: Morrison, 2011; Meuwly et al.,
2017). Below we describe the most popular metric (Cir) and the most popular graphic (Tippett plot).

4.1 Black-box testing

Black-box testing is concerned with how well a system works, not with how it works. Black-box testing
therefore treats all systems equally, irrespective of whether they are based on auditory, spectrographic,
acoustic-phonetic, or automatic approaches.

The basic procedure for assessing validity using black-box testing is as follows. The tester presents the
system with pairs of voice recordings. The tester knows whether each pair is a same-speaker pair or a
different-speaker pair, but the system being tested must not know. For each pair, the system outputs a
strength of evidence value. For simplicity, let us imagine a system that outputs “same-speaker” or
“different-speaker” (this is an identification / exclusion framework). Table 2 shows the possible input
and output combinations, and their correctness. If the answer is correct, the tester assigns it a penalty
value of 0. If the answer is incorrect (a miss or a false alarm), the tester assigns it a penalty value of 1.
After all the test pairs have been presented, the tester sums the penalty values and divides by the total
number of pairs, i.e., calculates the mean penalty value. Usually, the proportion of misses for all same-
speaker input and the proportion of false alarms for all different-speaker input are calculated, then the
mean of those two proportions is calculated. The resulting value is called classification error rate (its
inverse is correct classification rate).

<Table 2 about here>

4.2  Log likelihood ratio cost (Cir)

Classification error rate is not appropriate for assessing the validity of a system that outputs likelihood
ratios. Classification error rate requires a same-speaker or different-speaker decision to be made, which
logically requires deciding whether the value of a posterior probability exceeds a threshold or not. Also,
even if one decided to use the neutral likelihood ratio value of 1 as a threshold, the further a likelihood
ratio from 1 the greater the strength of evidence indicated. If, for example, the tester knew that the input
was a different-speaker pair and the system returned a likelihood ratio of 1.1, that would be a false alarm
and would attract a penalty value of 1. But if the system returned a likelihood ratio of 1000, that would

11 President’s Council of Advisors on Science and Technology (2016) p. 6, emphasis in original.
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also be a false alarm and also attract a penalty value of 1, even though a likelihood ratio of 1000 would
be much more misleading to the trier of fact than a likelihood ratio of 1.1.

To perform empirical validation compatible with the likelihood ratio framework, instead of assigning
penalty values of either 0 or 1 depending on a threshold, the procedure for calculating the log likelihood
ratio cost (Cur; see: Brummer & du Preez, 2006; Gonzélez-Rodriguez et al., 2007; Morrison, 2011)
assigns a penalty value according to the magnitude of the likelihood ratio. The function for calculating
Cur is given in Equation 3:

(3)
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Where Ag and A, are likelihood ratio outputs corresponding to same- and different-speaker inputs
respectively, and Ny and N, are the number of same- and different-speaker inputs respectively. Figure
4 plots the penalty functions for likelihood ratio outputs corresponding to same- and different-speaker
inputs, i.e., the functions within Equation 3’s left and right summations respectively.

<Figure 4 about here>

When the input is a same-speaker pair, large positive log likelihood ratios are good and are assigned low
penalty values, small positive log likelihood ratios are not as good and are assigned higher penalty values,
negative log likelihood ratios are bad and are assigned yet higher penalty values with higher penalty
values for larger magnitude negative log likelihood ratios. Mutatis mutandis for when the input is a
different-speaker pair.

The better the performance of the system, the lower the value of Cir. A “perfect” system would always
give infinite likelihood ratios when the input is same-speaker and always give likelihood ratios of zero
when the input is different-speaker, and the value of Ciir would be 0. Perfect systems do not exist for non-
trivial problems, so in practice Cur will never reach 0. A system which always outputs a likelihood ratio
of 1 irrespective of the input would provide no useful information to the trier of fact, and would have a
Cir value of 1. In practice, because systems are trained and tested on different data, Ciir values can be
greater than 1. If a system has a Cir value much greater than 1, then it is probably miscalibrated and better
performance would be achieved if it were calibrated (see Section 2.4).

4.3  Tippett plots

The first step in drawing a Tippett plot (Meuwly, 2001) is the same as the first step in calculating Cir:
input same-speaker and different-speaker pairs to the system and get the corresponding output. The next
step is to rank all the same-speaker results in ascending order, and all the different-speaker results in
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ascending order. Then the cumulative empirical distribution for each group of values is plotted. If, for
example, there are Ny=100 same-speaker outputs, Ay, the lowest ranked A, (i=1) is plotted at its log

likelihood ratio value on the x axis and at its proportional rank on the y axis, i.e.,at y =i/N;, = 1/100.
The second lowest ranked Ay, (i=2) is plotted at x = A,,, y = 2/100, the third at x = A,,, ¥ =
3/100, etc. The y values of the plotted points represent the proportion of likelihood ratios from same-
speaker test pairs that have likelihood ratio values less than or equal to the value indicated on the x axis.
Conventionally, the points are joined by lines and no symbols are drawn at the actual point values. A
similar procedure is used for the A, values, but the y values of the plotted points represent the proportion
of likelihood ratios from different-speaker test pairs that have likelihood ratio values greater than or equal
to the value indicated on the x axis.

Figure 5 shows two example Tippett plots based on artificial data created for illustrative purposes. The
curve rising to the right represents the same-speaker results, and the curve rising to the left represents the
different speaker results. Learning to fully appreciate the information in Tippett plots may take some
time, but at a basic level the further to the right and the shallower the slope of the same-speaker curve
and the further to the left and the shallower the slope of the different-speaker curve the better the
performance. A Tippett plot with fewer or less extreme values for misleading test output, i.e., same-
speaker pairs resulting in negative log likelihood ratios and different-speaker pairs resulting in positive
log likelihood ratios, generally indicates better performance even if the magnitudes of the log likelihood
ratios pointing in the correct directions are less extreme. In Figure 5, the Tippett plot in the bottom panel
represents a system with better performance than that in the top panel.

The Cur values corresponding to the top and bottom panels in Figure 5 are 0.548 and 0.101 respectively.
Tippet plots include all test results and therefore contain much more information than Cir. Curis a single
value summary metric, and is a many to one mapping — multiple different Tippet plots could correspond
to the same Curvalue.

<Figure 5 about here>

4.4  Appropriate test data

It is important to use test data that represent the relevant population and reflect the speaking styles and
recording conditions for the case under investigation. Tests conducted using data that represent other
populations and reflect other conditions may be highly misleading with respect to how well the forensic
analysis system will perform when used in the case. A system that works well with studio quality audio
recordings may work very poorly under casework conditions that include a mismatch between the
known- and questioned-speaker recordings and poor quality recording conditions, e.g., due to
background noise, reverberation, transmission through communication channels, and being saved in
compressed formats. When putting together test pairs, one member of each pair must reflect the
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conditions of the known-speaker recording and the other must reflect the conditions of the questioned-
speaker recording.

Whether the test data are sufficiently representative of the relevant population and sufficiently reflective
of the speaking styles and recording conditions of the case is a judgment that will initially be made by
the forensic practitioner, but the forensic practitioner must clearly communicate what they have done so
that ultimately the appropriateness of their decision can be considered by the judge at an admissibility
hearing and/or the trier of fact at trial.

It is important to test the system that is actually used to compare the known- and questioned-speaker
recordings. For example, if an automatic system is used, but the output of the automatic system is used
as input to a subjective judgment process which also includes consideration of the results of analyses
based on other approaches, it is the output of the final subjective judgment process that must be
empirically validated.

For admissibility, the judge first has to consider whether the test data were sufficiently representative of
the relevant population and sufficiently reflective of the speaking styles and recording conditions of the
case. If the judge decides that the data are sufficient, then the judge can consider whether the
demonstrated degree of performance is sufficient to warrant the admission of testimony based on the
forensic comparison system.

In addition, for systems based on statistical models, the test data must not be the same data as were used
to train the statistical models. Training and testing on the same data gives misleadingly good results
compared to when statistical models are tested on new data. In actual application, the known- and
questioned-speaker recordings are new data. Therefore it is performance on new data that matters. Test
data must therefore come from a completely separate sample of the relevant population, or a procedure
known as cross-validation should be used to avoid training and testing on the same data.

5 Legal admissibility and case law

This section briefly discusses legal admissibility and case law in some common-law jurisdictions: United
States (particularly Federal cases), Australia (particularly New South Wales), United Kingdom
(particularly Northern Ireland and England & Wales), and Canada. We provide somewhat longer
summaries of the Canadian cases because, unlike the cases from the other jurisdictions, they have not
been previously described in an academic archival venue.

51 United States

In the United States, through the 1960s, 70s, and 80s, testimony based on spectrographic / auditory-
spectrographic approaches was often proffered in court proceedings. Based on published rulings, the rate
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of admission appears to have been somewhat greater than the rate of exclusion. By the 1990s there had
been a substantial decline in the number of cases in which it was proffered. In 2003 in Angleton,*? in an
admissibility hearing held under Federal Rule of Evidence (FRE) 702 and the criteria established by the
Supreme Court in the 1993 case of Daubert,®® the court ruled an auditory-spectrographic approach
inadmissible. Among other criteria, FRE 702 - Daubert requires consideration of the empirically
demonstrated level of performance of the forensic analysis system. The court found that demonstration
of an adequate level of performance was lacking. Based on published rulings, no attempt to admit a
spectrographic or auditory-spectrographic approach appears to have survived an FRE 702 - Daubert
challenge since then.

In 2015 in Ahmed,** testimony was proffered which was in-part based on an automatic approach, but
which was combined with auditory and acoustic-phonetic approaches to reach an ultimately subjective
assessment of the strength of evidence. An FRE 702 - Daubert admissibility hearing was held, but before
the judge ruled on the matter the case was resolved via a negotiated plea deal. Thus no decision on
admissibility was issued in that case. During the hearing, questions were raised as to whether appropriate
data had been used to train the automatic component of the system, whether the system had been
empirically tested under conditions reflecting those of the case, and whether the subjective procedure for
combining the output of the automatic component and the outputs of the subjective auditory and acoustic-
phonetics components was influenced by cognitive bias.

For more detailed discussion of admissibility of forensic voice comparison testimony in the United States
see Morrison & Thompson (2017).

5.2 Australia

In New South Wales in 1977 in Gilmore®® the court ruled testimony based on an auditory-spectrographic
approach admissible. The decision was based in part on the fact that such testimony had been ruled
admissible by a number of courts in the United States in the early to mid 1970s. In a 2012 admissibility
hearing in the New South Wales case of Ly, the admissibility of testimony based on an auditory-
spectrographic approach was challenged. Despite the change that had occurred in the US with respect to
admissibility of auditory-spectrographic approaches, the court in Ly ruled that Gilmore was precedential
and that the testimony was therefore admissible (for further discussion, see Enzinger & Morrison, 2017).

[N

2 United States v Robert N. Angleton, 269 F.Supp. 2nd 892 (S.D. Tex. 2003)

3 William Daubert et al. v Merrell Dow Pharmaceuticals Inc., 509 US 579 (1993)

4 United States v Ali Ahmed, Madhi Hashi, & Muhamed Yusuf, No. 12-661 (E.D.N.Y.)

5 R v Gilmore, 1977, 2 NSWLR 935

5 Rv Ly, NSW District Court, 2010/295928 (note that this is a reference to an earlier hearing in the case)

[N

[N

[N
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Arguable, in Ly the practitioner used a mixture of auditory, spectrographic, and acoustic-phonetic
subjective approaches, with subjective-judgment used to combine the results. We are aware of several
other instances in which auditory-spectrographic-acoustic-phonetic-subjective or auditory-acoustic-
phonetic-subjective analyses have been admitted in courts in several Australian jurisdictions.

In 2008 in Hufnagl,!” testimony based on an acoustic-phonetic statistical approach was admitted (see
Rose, 2013). In 2017, testimony based on an automatic approach was submitted in a New South Wales
case, but the case was resolved by plea deal before going to trial (see Morrison, 2018b, in which questions
are raised with respect to whether appropriate data were used for training and whether performance was
empirically tested under conditions reflecting those of the case).

5.3  United Kingdom

There are rulings from Northern Ireland and from England & Wales specific to the admissibility of
forensic voice comparison testimony. We are not aware of any such rulings from Scotland.

In Northern Ireland in the 2002 case of O’Doherty,'® the appeal court ruled an auditory-only approach
inadmissible, but auditory-acoustic-phonetic subjective approaches admissible. It was reported that most
practitioners considered auditory-only approaches to be unreliable.

In England & Wales in 1991 in Robb,*® the appeal court ruled an auditory-only approach admissible. In
2008 in Flynn,? the appeal court opined that Robb was still precedential and that courts in England &
Wales should not follow the example set in Northern Ireland in O ’Doherty. The opinion in Flynn was
echoed in the 2015 appeal court ruling in Slade.?*

The appeal court in Slade considered the admissibility of new evidence consisting of forensic voice
comparison testimony based in-part on an automatic approach, but which was combined with an
auditory-acoustic-phonetic subjective approach to reach an ultimately subjective assessment of the
strength of evidence. Some empirical testing of the performance of the automatic component of the
analysis was presented, but the court was not satisfied with the quantity and quality of the data used to
train and test the automatic system. Nor was it satisfied with the empirically demonstrated level of
performance of the system. Also note that what was tested was not the whole auditory-acoustic-phonetic-
automatic plus combination-via-subjective-judgment system actually used to assess strength of evidence,
but only the automatic component. What needs to be tested is the performance of the whole system, not

17 R v Hufnagl, NSW District Court, 2008

18 R v O’Doherty [2002] NICA 20 / [2003] 1 Cr AppR 5
19 R v Robb [1991] 93 Cr App R 161

20 R v Flynn and St John [2008] EWCA Crim 970

2L Rv Slade et al. [2015] EWCA Crim 71
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just a component of the system (Forensic Science Regulator, 2014, §3.3.1-3.3.2). The appeal court ruled
the testimony based in-part on the automatic analysis inadmissible. The ruling was specific to this
instance, and did not preclude testimony based on an automatic approach being admissible in future cases.
Ironically, testimony based on auditory-only and auditory-acoustic-phonetic subjective approaches had
been admitted at trial despite the fact that they had not undergone any empirical testing (admissibility of
these approaches does not appear to have been challenged at any point in the proceedings).

Shortly before the appeal in Slade, new Criminal Practice Directions on admissibility of expert evidence
(CPD 19A) were introduced.?? The CPD 19A admissibility criteria are similar to those of FRE 702 -
Daubert. It is not clear whether they had any impact on the decision in Slade, but it may be that they will
have an impact on future admissibility decisions. For more detailed discussion of admissibility of forensic
voice comparison testimony in England & Wales and Northern Ireland see Morrison (2018a).%

5.4 Canada

In the 1998 labor arbitration case of Ontario Hydro v Canadian Union of Public Employees,?* testimony
was proffered from a university-based academic who taught applied linguistics, speech-language
pathology, and phonetics and phonology, and who had conducted research in analysis of normal,
pathological, and foreign-accented speech. He performed an auditory-only analysis. The Board of
Avrbitration considered a number of admissibility criteria identified in rulings made by courts of law. The
Board found that the academic was not qualified as an expert in forensic voice comparison because he
had no training or experience specifically in that field. The Board found that “his knowledge and
experience as a phonetician are not sufficient for this purpose”. The Board also found that “there is
nothing to indicate that the method used by [the academic] to reach a conclusion regarding voice
identification in this case has gained any acceptance and, based on the evidence, we find that it fails to
meet a threshold test of reliability.” The standards against which the Board compared the academic’s
auditory-only analysis were, however, those of organizations such as the American Board of Recorded
Evidence (1999) which required auditory plus spectrographic analysis, and no mention was made of
criticisms of the auditory-spectrographic approach (this case was prior to the US case of Angleton).

In 2018 in R v Dunstan® in a Charter Section 8 Application?® the Ontario Superior Court of Justice
considered forensic voice comparison testimony from three practitioners. For this judge-only hearing

22 Criminal Practice Directions [2015] EWCA Crim 1567

3 For a history of forensic voice comparison in the UK from another perspective, see French (2017).
4 Ontario Hydro v Canadian Union of Public Employees [1998] OLAA No 691

% R v Dunstan [2018] ONSC 4153

6 Canadian Charter of Rights and Freedoms, s 8, Part | of the Constitution Act, 1982, being Schedule B to the Canada Act
1982 (UK), 1982, ¢ 11. Section 8 provides protection against unreasonable search and seizure.

N

N

N
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none of the testimony was ruled admissible or inadmissible per se, but in her ruling the judge commented
on the appropriateness of the different methodologies used by the practitioners. The recording of interest
was of a telephone call made to a police call center six years previously. The recording was noisy and
had been saved in a lossy compressed format. The total duration of the speech of the speaker of
questioned identity was approximately 10 seconds.

At trial, testimony had been presented by an audio engineer. He applied noise reduction to the questioned-
speaker recording, then created multiple compilations in each of which the questioned-speaker recording
was either non-synchronously intercalated/concatenated or synchronously mixed with a time-warped
recording of either the known speaker, the practitioner, or a third speaker. The judge at the Section 8
hearing concluded that “The comparisons were not fair and reliable.” Reasons included the following:
Of several known-speaker recordings available, the particular known-speaker recordings used had been
selected because they were the ones that sounded the most similar to the questioned speaker. The known-
speaker recordings had been time-warped to make them more similar to the recording of the questioned
speaker.

One of two practitioners to testify at the Section 8 hearing was a speech-language pathologist who
conducted an auditory-acoustic-phonetic subjective analysis. The acoustic-phonetic component was
based on acoustic measurements of jitter in vocal fold vibration. No data representative of a relevant
population were used (a comparison was made with a recording of the practitioner’s own voice), N0
empirical validation was conducted, and the practitioner’s conclusion was reported as a subjective
posterior probability. The judge concluded that the practitioner “was not an objective, unbiased witness...
He did not express, either in his report or in his testimony, an understanding of his duty to the court to be
impartial, independent and unbiased.” “[He] said that his task was to find similarities between the two
voices, so he did not report dissimilarities that he observed.” “[He] was unable to say what proportion of
Canadian males have a jitter measurement of 7 per cent ... He did not give evidence from which it can be
concluded that the nine test results he provided represent an empirically sound basis from which to draw
inferences about voices in the forensic context”.

The other practitioner to testify at the Section 8 hearing was the first author of the present chapter. He
performed a human-supervised automatic analysis, which included a statistical procedure to reduce the
likelihood of overstating the strength of evidence (Morrison & Poh, 2018), and a statistical procedure to
take account of the six-year gap between the questioned- and known-speaker recordings even though the
recordings available for training and testing were made only hours to days apart.?’ Steps were also taken
to reduce the potential for cognitive bias, including that the practitioner did not listen to both the
questioned- and known-speaker recordings, he listened to the questioned-speaker recording to prepare it
for input into the automatic system but his assistant prepared the known-speaker recording. The
automatic system was trained/optimized using multiple recordings of just over 100 speakers specially

27 This was developed specifically for use in this case building on research reported in Kelly & Hansen (2016).
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collected with the intention of representing the relevant population and reflecting the recording
conditions in this case — male General Canadian English speakers made multiple mobile telephone calls
to the same police call center using the same call recording system as had been used to record the
questioned-speaker recording six years previously. Empirical validation was conducted using the same
recordings (cross-validation was used to avoid training and testing on the same data) and the validation
results were reported. The questioned- and known-speaker recordings were then compared, and the
likelihood ratio value output by the system was directly reported as the strength of evidence statement.
The calculated likelihood ratio value was close to 1. In theory, a likelihood ratio value of 1 should have
no effect on the trier of fact’s belief as to the relative probabilities of the same- and different-speaker
hypotheses, the posterior odds should be equal to the prior odds, but the practitioner was called to testify
in order to contrast his methodology and result with the other practitioners” methodologies and their
strong claims about the identity of the questioned speaker. The judge “accept[ed] that [the practitioner]
is very well qualified in his field”, but had reservations about his application of the human-supervised
automatic approach: 1. “it is novel and must be carefully scrutinized.” 2. The questioned-speaker speech
was only 10 seconds long.?® 3. With respect to the statistical procedure used to compensate for the six-
year time difference between the questioned- and known speaker recording, she was concerned that it
had not been adequately validated.?® 4. With respect to the speakers intended to be representative of the
relevant population, who were all police officers, she was concerned that police officers may speak
differently from other speakers of General Canadian English.*°

6 Conclusion

Although the case law and rulings on legal admissibility in common-law jurisdictions remain mixed, we
believe that the future of forensic voice comparison lies in the use of human-supervised automatic
approaches within the likelihood ratio framework, with empirical testing of system performance under
casework conditions and direct reporting of the calculated likelihood ratio value. We argue that this is
the most practical way to meet rigorous applications of legal admissibility criteria such as those of FRE

2 This does not seem to have taken into account that the performance of the forensic voice comparison system was
empirically validated under conditions reflecting those of the case under investigation, including the condition that questioned-
speaker speech had a duration of 10 seconds. We would argue that a decision on whether to use the output of a system should
be made on the basis of consideration of results of empirical testing of that system under conditions reflecting those of the
case, rather than directly on what those conditions happen to be.

29 Published papers including descriptions of the data used to train the statistical procedure were submitted along with the
original report, and the practitioner offered to provide a supplemental report he had prepared on the validation of the statistical
procedure.

30 This was an argument advanced by the party who proposed the same-speaker hypothesis. We do not believe that this
argument has any merit, but, even if it did, the same-speaker hypothesis they proposed was that the questioned speaker was a
particular police officer. Hence there was no basis for their objection that the sample recordings were recordings of police
officers and that typicality was therefore assessed with respect to male General Canadian English speakers who were police
officers rather than with respect to male General Canadian English speakers in general.
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702 - Daubert and CPD 19A.

Systems in which the output is directly based on subjective judgment are not transparent, not replicable,
and are highly susceptible to cognitive bias. Even if an explanation is given, there is no way to know
whether it corresponds to what actually happened in the practitioner’s mind or whether it is a post hoc
rationalization. In contrast, systems based on relevant data, quantitative measurements, and statistical
models are transparent and replicable. The procedures can be described in exact detail, and the data and
software used can even be provided.

It should be noted that procedures based on relevant data, quantitative measurements, and statistical
models do require subjective judgments, but these are judgments about relevant populations and relevant
data which are far removed from the output of the system. The appropriateness of such judgments should
be debated before the judge at an admissibility hearing and/or the trier of fact at trial. After these initial
judgments, the remainder of the system is objective. Systems based on relevant data, quantitative
measurements, and statistical models are therefore much more resistant to the potential influence of
cognitive bias than are systems in which the output is directly based on subjective judgment.

In addition, procedures based directly on subjective judgment generally require considerable human time
to perform each test trial. Thus they are practically difficult to test compared to an automatic procedure
that can run thousands of test trials in seconds. If a subjective procedure were found to outperform an
automatic procedure, it would be preferred, but performance would have to be empirically demonstrated
under relevant conditions.

We prefer automatic approaches over acoustic-phonetic statistical approaches because we have found
the former to outperform the latter, especially under forensically realistic conditions or conditions
approaching forensically realistic conditions (see: Enzinger et al., 2012; Zhang et al., 2013; Zhang &
Enzinger, 2013; Enzinger, 2014; Enzinger & Kasess, 2014; Jessen et al., 2014; Enzinger & Morrison,
2017).3! We also prefer automatic approaches because acoustic-phonetic approaches generally require
much greater investment of human time and therefore take longer and are more expensive.

In evaluation of strength of evidence for presentation in court, it would be inappropriate for a system to
be fully automatic, it should be human supervised. The forensic practitioner is responsible for
determining an appropriate question to ask and selecting appropriate data and statistical models in order
to answer that question. An automatic system is a tool, and inappropriate use of the tool will lead to
inappropriate results. A potential danger of automatic systems is that they could be too easy to use, and
therefore too easy to misuse. Appropriate training and knowledge is therefore essential.

31 These are primarily papers written by ourselves. Our backgrounds are in acoustic phonetics, and we thus had an interest in
empirically assessing the performance of acoustic-phonetic-statistical approaches under casework conditions. Other than our
work, there is very little published work in which acoustic-phonetic-statistical and automatic systems have both been
empirically tested on the same test data under forensically realistic or close to forensically realistic conditions.
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Table 1. Examples of verbal expressions of likelihood ratios and corresponding ranges of numeric
likelihood ratio values in the 2015 ENFSI guideline on evaluative reporting.

The forensic findings are

Verbal Expression

slightly more
more
appreciably more
much more
far more
exceedingly more

probable given one proposition relative to the other.

Range of Values
2-10
10-100
100 — 1000
1000 — 10,000
10,000 — 1 million

1 million +

Table 2. List of input and output possibilities and corresponding correctness for a system which outputs

either “same-speaker” or “different-speaker”.

input

same-speaker

different-speaker

output

same-speaker

different-speaker

v x
hit miss
x v
false alarm correct rejection
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Figure 1. Histogram models for likelihood ratio calculation. The same data are modeled using histograms
with different rectangle widths, i.e., from top to bottom: 10 Hz, 5 Hz, 1 Hz.

Figure 2. Gaussian distributions for likelihood ratio calculation. The distributions were fitted to the same
data as represented by the histograms in Figure 1.

Figure 3. Gaussian distributions for likelihood ratio calculation. The distributions are shifted relative to
Figure 2 in order to represent different degrees of typicality (top row) and different degrees of similarity
(bottom row).

Figure 4. Cir penalty functions.

Figure 5. Example Tippett plots.
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