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Abstract 

This chapter describes a number of signal-processing and statistical-modeling techniques that 
are commonly used to calculate likelihood ratios in human-supervised automatic approaches 
to forensic voice comparison. Techniques described include mel frequency cepstral 
coefficients (MFCCs) feature extraction, Gaussian mixture model - universal background 
model (GMM-UBM) systems, i-vector - probabilistic linear discriminant analysis (i-vector 
PLDA) systems, deep neural network (DNN) based systems (including senone posterior i-
vectors, bottleneck features, and embeddings / x-vectors), mismatch compensation, and score 
to likelihood ratio conversion (aka calibration). Empirical validation of forensic voice 
comparison systems is also covered. The aim of the chapter is to bridge the gap between 
general introductions to forensic voice comparison and the highly technical automatic 
speaker recognition literature from which the signal-processing and statistical-modeling 
techniques are mostly drawn. Knowledge of the likelihood ratio framework for the evaluation 
of forensic evidence is assumed. It is hoped that the material presented here will be of value 
to students of forensic voice comparison and to researchers interested in learning about 
statistical modeling techniques that could potentially also be applied to data from other 
branches of forensic science. 
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1 Introduction 

The purpose of forensic voice comparison (aka forensic speaker comparison, forensic speaker 
recognition, and forensic speaker identification) is to assist a court of law to decide whether the voices 
on two (or more) recordings were produced by the same speaker or by different speakers. For simplicity, 
in the present chapter we will assume that there is one recording of a speaker of known identity (the 
known-speaker recording) and one recording of a speaker whose identity is in question (the questioned-
speaker recording). Common scenarios include that the questioned-speaker recording is of a telephone 
call made to a call center, is of an intercepted telephone call, or is made using a covert recording device, 
and the known-speaker recording is of a police interview with a suspect or is of a telephone call made by 
a person who is in custody. The known-speaker recording is often an existing recording in which the 
identity of the speaker is not disputed, but sometimes a recording is made specifically for the purpose of 
conducting a forensic voice comparison analysis (practice varies depending on jurisdiction, laboratory 
policy, and the circumstances of the particular case).  

There is usually a mismatch between the questioned- and known-speaker recordings in terms of speaker-
intrinsic conditions, or speaker-extrinsic conditions, or both. Speaker-intrinsic variability can be due to 
multiple factors including differences in speaking style (e.g., casual versus formal and quiet versus loud), 
emotion (e.g., calm, angry, happy, sad), tiredness or physical stress (e.g., being out of breath), and elapsed 
time (the way a speaker speaks varies from minute to minute, hour to hour, day to day, etc. with larger 
differences occurring over longer time differences, Kelly & Hansen, 2016). In addition, the words and 
phrases that a speaker says vary from occasion to occasion. Speaker-extrinsic variability can be due to 
multiple factors including background noise that can vary in loudness and type (e.g., office noise, 
ventilation system noise, traffic noise, crowd noise – as well as noise being captured on the recording, 
speaking in a noisy environment also causes speakers to change the way they speak), reverberation (e.g., 
echoes in rooms with hard walls and floors), distance of the speaker from the microphone, the quality of 
the microphone and other components of the recording equipment, transmission of the recording through 
different communication channels that distort and degrade the signal in different ways (e.g., landline 
telephone, mobile telephone, Voice over Internet Protocol VoIP), and the format in which the recording 
is saved (in order to reduce the file size formats such as MP3 distort and degrade the signal). Intrinsic 
and extrinsic variability leads to mismatches between questioned- and known-speaker recordings within 
cases, and leads to different conditions and different mismatches from case to case. 

Historically and in present practice, a number of different approaches have been used to extract 
information from voice recordings and a number of different frameworks have been used to draw 
inferences from that information. In auditory and spectrographic approaches information is extracted 
using subjective judgment, by listening to the recordings and by looking at graphical representations of 
parts of the recordings respectively (spectrograms are time by frequency by intensity plots of the acoustic 
signal). In conjunction with auditory and spectrographic approaches, inferences have almost invariably 
been drawn on the basis of subjective judgment. In acoustic-phonetic and human-supervised automatic 
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approaches information is extracted in the form of quantitative measurements of the acoustic properties 
of the audio recordings. For the acoustic-phonetic approach, inferences can be drawn via statistical 
models, although in practice it is more common for practitioners of this approach to draw inferences on 
the basis of subjective judgment, e.g., by making a plot of the measured values from different recordings 
and then looking at the plot. For the automatic approach, inferences are invariably drawn via the use of 
statistical models. Even if inferences are drawn via statistical models, rather than directly reporting the 
output of the statistical model many practitioners use the output of the statistical model as input to a 
subjective judgment that also includes consideration of other information such as their subjective 
judgment based on auditory and acoustic-phonetic approaches (for arguments against this practice see 
Morrison and Stoel, 2014). It should be noted that even if the output of a quantitative-measurement and 
statistical-model approach is directly reported, such an approach still requires subjective judgments in 
decisions such as the choice of data used to train the statistical models. These subjective judgments are, 
however, as far removed as possible from the forensic practitioner’s final conclusion, so of all the 
approaches this one is most resistant to cognitive bias (for recent reviews of cognitive bias in the context 
of forensic science see Found, 2015, Stoel et al., 2015, National Commission on Forensic Science, 2015, 
Edmond et al., 2017). 

As of February 2019 there are no published national or international standards specific to forensic voice 
comparison. The International Organization for Standardization (ISO) is developing ISO 21043 Forensic 
Sciences (including Part 3 Analysis, Part 4 Interpretation, and Part 5 Reporting) (Wilson-Wilde, 2018), 
and ISO 22842 Validation of Automatic Biometric Methods for Forensic Purposes, Part 1 Evidence 
Evaluation Framework. Although broader in scope, the final versions of which may be applicable to 
forensic voice comparison. The England and Wales Forensic Science Regulator’s Codes of Practice and 
Conduct (Forensic Science Regulator, 2017) and their appendices relating to specific branches of forensic 
science are effectively national standards in that forensic laboratories in the UK can seek accreditation 
to the Codes, usually in combination with accreditation to ISO 17025:2015 General Requirements for 
The Competence of Testing and Calibration Laboratories. There is an appendix to the codes for Speech 
and Audio Forensic Services (Forensic Science Regulator, 2016). The European Network of Forensic 
Science Institutes (ENFSI) has published Methodological Guidelines for Best Practice in Forensic 
Semiautomatic and Automatic Speaker Recognition (Drygajlo et al., 2015). The Speaker Recognition 
Subcommittee of the Organization of Scientific Area Committees for Forensic Science (OSAC SR) has 
established a set of principles for performing forensic voice comparison and is developing a standard for 
Validation of Forensic Speaker Recognition for the Purpose of Informing Legal Admissibility Decisions.  

Both the ENFSI guidelines and the OSAC SR principles include use of the likelihood ratio framework 
for drawing inferences, and empirical validation of system performance under conditions reflecting those 
of the cases to which they are applied. The Forensic Science Regulator’s codes also require methods to 
be validated. In forensic voice comparison these are not new ideas: quantitative-measurement and 
statistical-model based implementations of the likelihood ratio framework date back to the 1990s, and 
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calls for forensic voice comparison systems to be empirically validated under conditions reflecting 
casework conditions date back to the 1960s (for reviews see Morrison, 2009, and Morrison, 2014, 
respectively). The ENFSI guidelines and the OSAC SR principles also include the use of transparent and 
reproducible methods and procedures, and the use of procedures that reduce the potential for cognitive 
bias. Morrison and Thompson (2017) and Morrison (2018a) have argued that transparent quantitative-
measurement and statistical-model based implementation of the likelihood ratio framework with 
empirical validation under casework conditions would be the only practical way to comply with the 
admissibility criteria set out in United States Federal Rules of Evidence 702 and the Daubert trilogy of 
Supreme Court rulings (Daubert v. Merrell Dow Pharmaceuticals, 1993; General Electric v. Joiner, 
1997; and Kumho Tire v. Carmichael, 1999), and those set out in England and Wales Criminal Practice 
Directions (2015) section 19A. 

In order to reduce the potential for cognitive bias, increase transparency and reproducibility, facilitate 
validation under conditions reflecting casework conditions, and to draw inferences that are logically 
correct, we believe that the most practical approach is the human-supervised automatic approach used 
in conjunction with statistical-model based implementation of the likelihood ratio framework with direct 
reporting of the output of the statistical model. The performance of acoustic-phonetic approaches have 
been found to be much poorer than the performance of automatic approaches (see Enzinger et al., 2012; 
Zhang et al., 2013; Enzinger, 2014; Enzinger and Kasess, 2014; Jessen et al., 2014; Enzinger and 
Morrison, 2017). Acoustic-phonetic approaches are also much more time-consuming and costly in skilled 
human labor, which makes empirical validation practically difficult. In the present chapter, we therefore 
discuss only the human-supervised automatic approach and statistical-model based implementation of 
the likelihood ratio framework. We assume the reader is familiar with the likelihood ratio framework, 
which has been described elsewhere in the present volume. Our aim is to provide an overview of a 
number of signal-processing and statistical-modeling techniques that are commonly used to calculate 
likelihood ratios in human-supervised automatic approaches to forensic voice comparison. We aim to 
bridge the gap between general introductions to forensic voice comparison and the highly technical (and 
often fragmented) automatic speaker recognition literature from which the signal-processing and 
statistical-modeling techniques are mostly drawn. The automatic speaker recognition literature is often 
fragmented because many influential papers are short conference-proceedings papers that do not provide 
fully detailed descriptions of the techniques they apply. 

For readers unfamiliar with forensic voice comparison, we recommend general introductions such as 
Morrison and Thompson (2017), Morrison et al. (2018), and Morrison and Enzinger (2019). These 
include discussions of the likelihood ratio framework, empirical validation, and legal admissibility. In 
the present chapter we go into greater technical detail regarding the calculation of likelihood ratios than 
is provided in such general introductions, but still attempt to make the material relatively accessible to 
an audience with a limited background in signal processing and statistical modeling. We have in mind 
researchers from other branches of forensic science and students of forensic voice comparison. There are 
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alternatives to and multiple variants of many of the feature-extraction and statistical-modeling techniques 
we describe below. We do not attempt to be comprehensive, and describe only some of the variants that 
have commonly been used in forensic voice comparison. For overviews of automatic speaker recognition 
in general see Kinnunen and Lee (2010), Hansen and Hasan (2015), Fernández Gallardo (2016) §2.4, 
Ajili (2017) ch. 4 (and see Hansen and Bořil, 2018, for a review of intrinsic and extrinsic variability in 
the context of automatic speaker recognition). These publications cover some of the same topics as the 
present chapter but are aimed at an audience with a background in signal processing.  

The chapter is structured as follows:  

 Section 2 describes extraction of features from voice recordings, in particular extraction of mel 
frequency cepstral coefficients (MFCCs). 

 Section 3 describes mismatch compensation in the feature domain, in particular cepstral mean 
subtraction (CMS), cepstral mean and variance normalization (CMVN), and feature warping. 

 Section 4 describes the Gaussian mixture model - universal background model (GMM-UBM) 
approach. 

 Section 5 describes the identity-vector - probabilistic linear discriminant analysis (i-vector PLDA) 
approach, including mismatch compensation in the i-vector domain using canonical linear 
discriminant functions (CLDF). In the automatic speaker recognition literature, the latter is 
known as linear discriminant analysis (LDA). 

 Section 6 describes deep neural network (DNN) based approaches, in particular those using 
senone posterior i-vectors, bottleneck features, and speaker embeddings (aka x-vectors). 

 Section 7 describes score to likelihood ratio conversion (aka calibration) using logistic regression. 
This can be applied to the output of GMM-UBM, i-vector PLDA, or DNN-based systems. 

 Section 8 discusses empirical validation of forensic voice comparison systems. 

GMM-UBM is an older approach, in use from about 2000. It has mostly been replaced by the i-vector 
PLDA approach, in use from about 2010. We describe GMM-UBM because it is still used by some 
forensic practitioners, it is somewhat more straightforward to describe than i-vector PLDA, and part of 
the discussion of the GMM-UBM approach provides a foundation for understanding the i-vector PLDA 
approach. Since about 2015 state-of-the-art systems in automatic speaker recognition research have been 
based on DNNs, and commercial DNN-based forensic voice comparison systems were first released 
around 2018. DNNs are generally used to create vectors (alternatives to i-vectors) that are then fed into 
PLDA models. 

Color versions of the figures in this chapter are available at [URL TBA]. 
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2 Feature extraction 

In the context of forensic voice comparison, features are the acoustic measurements made on voice 
recordings. We describe the most commonly used features in automatic approaches to forensic voice 
comparison, mel frequency cepstral coefficients (MFCCs), and their derivatives, deltas and double deltas. 

For reviews of feature extraction methods in automatic speaker recognition, see Chaudhary et al. (2017), 
Dişken et al. (2017), and Tirumala et al. (2017). 

 

2.1 Mel frequency cepstral coefficients (MFCCs) 

Mel frequency cepstral coefficients (MFCCs; see Davis and Mermelstein, 1980) are spectral 
measurements made at regular intervals, i.e., once every few milliseconds, during the sections of the 
recording corresponding to the speech of the speaker of interest. The noun “cepstrum” and adjective 
“cepstral” were coined by Bogert et al. (1963) via rearrangements of the letters in the words “spectrum” 
and “spectral”. “Mel” refers to a frequency scaling that, unlike hertz, reflects human perception of 
frequency (Stevens et al., 1937). MFCCs are standard in speech processing in general, not just in 
automatic speaker recognition. In contrast to its use in automatic speech recognition, there is no 
principled reason for using mel scaling for automatic speaker recognition. Other variants of cepstral 
coefficients could be used, but MFCCs work well and are the most popular (Tirumala et al., 2017).  

The steps for extracting MFCC measurements from voice recordings are described below, see also Figure 
1 in which the numbers within black circles correspond to the numbered steps below.  

1. The speech signal is multiplied by a bell-shaped window (e.g., a hamming window) with a 
duration typically on the order of 20 ms. The shape of the window is designed to reduce the 
impact of the window itself on the measurement of the spectrum (see Harris, 1978). 

2. The power spectrum of the windowed signal is calculated using a discrete Fourier transform (DFT, 
or for computational efficiency a fast Fourier transform, FFT). A complex waveform, such as a 
windowed speech signal, can be constructed by adding together at each point in time the 
instantaneous intensities of a series of simple sine waves (the idea that any arbitrary waveform 
can be constructed using such a series is credited to Fourier, 1808). A Fourier analysis determines 
the frequencies, intensities, and phases of the sine waves that would have to be added together to 
make the observed complex waveform. The power spectrum consists of the frequencies and 
intensities of the sine wave components. For automatic speaker recognition, information about 
phase is usually discarded. 

3. The power spectrum is multiplied by a filterbank. This is a series of triangular shaped filters, e.g., 
26 filters, that are equally spaced on the mel frequency scale. Each filter has a 50% overlap with 
each of its neighbors. Since forensic voice comparison often involves telephone recordings, the 
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frequency range covered by the filters may be restricted to the traditional landline telephone 
bandpass (300 Hz – 3.4 kHz).  

4. The intensities of the filterbank outputs are scaled logarithmically. The fact that this is log 
intensity will be relevant for feature domain mismatch compensation as described in Section 3 
below. 

5. A discrete cosine transform (DCT) is fitted to the output of the filterbank. A DCT is similar to a 
Fourier transform but all components are cosines of the same phase (or the opposite phase if the 
coefficient value is negative). The components are orthogonal: a constant, half a period of a cosine, 
one period of a cosine, one and a half periods of a cosine, etc. The process of fitting a DCT 
involves selecting values for the weights, or coefficients, on each component which result in the 
best fit to the data. Using all the DCT coefficients, the values of the original data can be recovered. 
Using only the first few DCT coefficients results in a smoothed version of the original data, i.e., 
a smoothed spectrum (aka a cepstrum). The higher order coefficients tend to capture statistical 
noise. 

6. The first few DCT coefficients (e.g., the 1st through 14th DCT coefficients) are used as a vector 
of MFCCs. The 0th coefficient encodes the mean intensity of the signal and is usually discarded 
since this can be affected by factors not related to who is speaking (e.g., the distance of the speaker 
to the microphone or automatic gain control on the recording system). 

The window is advanced in time, e.g., a 20-ms long window is advanced by 10 ms. Each range of time 
covered by a window is called a frame, and there is usually a 50% overlap between adjacent frames. 
Steps 1 through 6 are then repeated to produce another vector of MFCC values. The window is repeatedly 
advanced until MFCC vectors have been extracted from all sections of the recording corresponding to 
the speech of the speaker of interest. Since one MFCC vector is extracted every few milliseconds, a 
relatively large number of feature vectors is extracted, e.g., 100 feature vectors per second if the frame 
advance is 10 ms.  

<Insert Figure 1 about here> 

 

2.2 Deltas and double deltas 

Deltas are derivatives of MFCCs and encode the local rate of change of MFCC values over time (see 
Furui, 1986). Double deltas are the second derivatives of MFCCs and encode the local rate of change of 
delta values over time. Vectors of deltas and double deltas are concatenated with the MFCC vectors to 
produce longer feature vectors, e.g., if the original MFCC vector has 14 values, the MFCC + delta vector 
will have 28, and the MFCC + delta + double delta vector will have 42. 

Delta values are calculated separately for each MFCC dimension. In each dimension, a linear regression 
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is fitted to a contiguous set of MFCC values, e.g., the MFCC value at the frame in time where the delta 
is being measured plus the MFCC values from the same dimension in the two preceding and the two 
following frames. Measurements are usually made over the ±2 or ±3 adjacent frames. The value of the 
slope of the fitted linear regression is used as the delta value. 

Double deltas are calculated in the same way as deltas, but based on the delta values rather than on the 
MFCC values. 

The statistical modeling steps of automatic speaker recognition systems usually discard information 
regarding the original time sequence of the feature vectors, hence the deltas and double deltas encode the 
only time-sequence information that is exploited. DNN embedding systems are an exception to this. 

 

2.3 Voice activity detection (VAD) and diarization 

Either prior to or after extracting MFCCs, the speech of the speaker of interest should be separated from 
periods of silence, transient noises, and the speech of other speakers. Either only the speech of the speaker 
of interest should be measured, or only measurements corresponding to the speech of the speaker of 
interest should be kept. This is done by either manually or automatically marking the beginning and end 
of each utterance (stretch of speech) of interest. An automatic procedure may be followed by manual 
checking and correction as needed.  

The process of finding utterances is called voice activity detection (VAD, aka speech activity detection, 
SAD). A simple automatic voice activity detector (also abbreviated as VAD) may be based solely on 
root-mean-square (RMS) amplitude, and thus simply find louder parts of the recording. Such simple 
VADs may not, however, perform well under conditions that include background noise, as is common 
in forensic voice comparison (see Mandasari et al. 2012). More sophisticated VADs employ algorithms 
to distinguish speech from other sounds and noises (e.g., Sohn et al., 1999; Beritelli and Spadaccini, 2011; 
Sadjadi and Hansen, 2013). 

The process of attributing different utterances in the recording to different speakers is called diarization. 
Automatic diarization is itself a form of automatic speaker recognition and may itself make use of 
MFCCs.  

 

3 Mismatch compensation in the feature domain 

The acoustic properties of voice recordings can vary because they are produced by different speakers, 
but also because of other factors such as differences in speaking styles (e.g., casual, formal, whispering, 
shouting), differences in background noise and/or reverberation, differences in the distance of the speaker 
to the microphone, different types of microphones, transmission through different communication 
channels (e.g., landline telephone, mobile telephone, VoIP), and being saved in different formats (in 
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order to reduce the size of the files stored, formats such as MP3 use lossy compression which discards 
some acoustic information and distorts remaining acoustic information). Mismatch compensation 
techniques seek to maximize between-speaker differences and minimize differences due to other factors. 
Feature domain mismatch compensation techniques generally attempt to reduce differences due to 
recording and transmission channels and differences due to acoustic noise.  

We describe three commonly used feature domain mismatch compensation techniques: cepstral mean 
subtraction (CMS), cepstral mean and variance normalization (CMVN), and feature warping.  

 

3.1 Cepstral mean subtraction (CMS) and Cepstral mean and variance normalization (CMVN) 

Cepstral mean subtraction (CMS; Furui, 1981) as a mismatch compensation technique is based on the 
premise that the speech signal, which is changing rapidly over time, is convolved with a channel that is 
invariant over time (it is linear time invariant, LTI). This is a good model for a traditional landline 
telephone system, the effect of which is essentially to pass the speech signal through a bandpass filter. 
Different microphones have different frequency responses. Some may be more sensitive to lower 
frequency sounds, some to higher frequency sounds, etc. Microphones and other basic components of 
recording systems can be treated as linear time invariant. Differences in the signal due to differences in 
the distance from the speaker to the microphone can also be treated as linear time invariant effects, as 
long as the distance does not change during the recording. 

Convolution in the time domain is equivalent to multiplication in the frequency domain. Since MFCCs 
are frequency domain representations they can be considered the result of multiplying the dynamic 
speech signal and the invariant channel. But note that in generating MFCCs, intensity was logarithmically 
scaled (Step 4 in Section 2.1 above). Multiplication on a linear scale is equivalent to addition on a 
logarithmic scale, hence we should consider MFCCs the result of adding the speech signal and the 
channel in the log frequency domain.  

Assuming the channel is invariant over time, it can be estimated by taking the mean of the cepstral 
coefficients over time. For the value in each dimension in each frame, the mean for that dimension is 
subtracted. What remains are the dynamic aspects of the original MFCC features. Deltas and double 
deltas are calculated on the raw MFCCs before CMS is applied to the MFCCs, and (although not 
obviously theoretically motivated) CMS is then usually applied to the deltas and double deltas.  

As well as removing the effect of the invariant channel, CMS also removes the speech signal’s mean. If 
there is a substantial channel mismatch between the questioned- and known-speaker recordings, 
removing the effect of the channel will tend to lead to better performance despite the loss of the speech-
signal mean information (but CMS will tend to lead to worse performance if there is in fact no channel 
mismatch, Reynolds, 1994). For each recording, the mean of the feature values in each dimension will 
be 0, hence statistical models applied to the post-CMS features are designed to exploit what remains: 



forensic speech statistics - 2019-02-16a GSM Page 11 of 50 

non-normalities (in terms of skewness, kurtosis, and multimodalities), variance, and multidimensional 
correlations. 

Although the theoretical motivation is less immediately obvious, cepstral mean and variance 
normalization (CMVN; Vikki and Laurila, 1998) is a statistically obvious extension to CMS in which, 
as well as subtracting the mean, the variance of each MFCC dimension is scaled to 1.  

CMS and CMVN can be applied globally, i.e., using the mean and variance of MFCC values from the 
whole of the speech of the speaker of interest in a particular recording, or can be applied locally, i.e., 
using the mean and variance of the MFCC values from the speech of the speaker of interest within a 
window that is a few seconds long. Such local application is discussed below in the context of feature 
warping. 

 

3.2 Feature warping 

Rather than assuming that there is a channel effect that is invariant throughout the recording, feature 
warping (Pelecanos and Sridharan, 2001) is based on the assumption that there may be a slowly changing 
channel effect convolved with a rapidly changing speech signal. It also assumes that there may be slowly 
changing additive noise. Since these are assumed to be slowly changing, their effect on the MFCC values 
is assumed to be stable locally, i.e., over a period of a few seconds. 

The implementation of feature warping is described below, see also Figure 2. Feature warping is applied 
separately to each feature vector dimension. It is based on finding where the current feature value lies 
relative to the empirical distribution of the values in, for example, the preceding 1.5 s and the following 
1.5 s (±150 frames), and then warping that value to the corresponding value in a target distribution. The 
target distribution is usually a Gaussian distribution with a mean of 0 and variance of 1. 

1. Obtain the feature values from the 150 frames preceding the current frame, and the 150 frames 
following the current frame. 

2. Sort the 301 values (including the current value) in ascending order, and calculate each value’s 
rank proportional to the total number of values. This can be represented graphically as a plot of 
the empirical cumulative distribution of the feature values.  

3. Find the value of the empirical cumulative distribution, yempirical, which corresponds to the current 
feature value, xoriginal.  

4. On the target cumulative probability distribution, locate the point ytarget = yempirical.  

5. Read off the corresponding xwarped value from the target cumulative probability distribution.  

<Insert Figure 2 about here> 
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Deltas and double deltas are calculated on the raw MFCCs before feature warping is applied to the 
MFCCs, and feature warping is then applied to the deltas and double deltas. 

Figure 3 shows an example of the effect of applying feature warping to mismatched recording conditions. 
The histograms in the leftmost column represent the distribution of the 1st order MFCC values extracted 
from a studio-quality speech recording. The histograms in the next three columns show the distributions 
of the 1st order MFCC values extracted after having applied various signal processing techniques to 
simulate the different conditions of a questioned-speaker recording and a known-speaker recording from 
a case (top and bottom rows respectively). Notice how the distributions change after each step and how 
the distributions under the simulated questioned- and known-speaker conditions diverge from one 
another. The histograms in the rightmost column show the distributions after feature warping is applied. 
Notice how the distributions are now warped to approximate the same target distribution. 

<Insert Figure 3 about here> 

Making all univariate distributions the same may seem extreme, but the temporal ordering of vectors is 
not altered and so correlations across dimensions are not lost. The correlations of interest are ultimately 
due to time and frequency patterns in the acoustic signal resulting from the articulation of speech sounds. 
Particular time and frequency patterns result from the articulation of particular speech sounds. Statistical 
models applied to the warped features are designed to exploit these multidimensional correlations. 
Empirically, feature warping can outperform CMS and CMVN (see for example: Pelecanos and 
Sridharan, 2001; Silva and Medina, 2017). 

 

4 GMM-UBM 

This section describes the Gaussian mixture model - universal background model approach (GMM-UBM; 
see Reynolds et al., 2000). 

The GMM-UBM model is a specific-source model,1 i.e., it builds a model for the specific known-speaker 
recording in the case, and thus answers the following two-part question: 

What would be the probability of obtaining the feature vectors of the questioned-speaker 
recording if the questioned speaker were the known speaker? 

versus 

What would be the probability of obtaining the feature vectors of the questioned-speaker 
recording if the questioned speaker were not the known speaker, but some other speaker selected 
at random from the relevant population? 

                                                           
1 For a discussion of the distinction between specific-source and common-source models, see Ommen and Saunders (2018). 
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Conceptually, the answer to the first part of the question provides the numerator for the likelihood ratio 
and the answer to the second part provides the denominator. 

A Gaussian mixture model (GMM), is a probability density function constructed by adding together a 
number of individual Gaussian distributions. Assuming a multivariate distribution, each of 
the 𝐺 component Gaussian distributions, 𝑓(𝒙|𝝁𝑔, 𝚺𝑔), in the mixture has a mean vector 𝝁𝑔, a covariance 
matrix 𝚺𝑔, and a weight 𝑤𝑔, see Equation 4. Usually, diagonal-only covariance matrices are used – a 
larger number of Gaussian components with diagonal-only covariance matrices can achieve the same 
degree of fit as a smaller number of components with full covariance matrices, and the former approach 
is more computationally efficient. In the present context, 𝒙 is a feature vector after application of feature 
domain mismatch compensation, and 𝑦 is the probability density (likelihood) of the model evaluated at 
𝒙. 

(4) 

𝑦 = ∑ 𝑤𝑔𝑓(𝒙|𝝁𝑔, 𝚺𝑔)

𝐺

𝑔=1

, ∑ 𝑤𝑔

𝐺

𝑔=1

= 1,     𝑤𝑔 ≥ 0 

 

 

4.1 Training the relevant-population model (the UBM): Expectation maximization (EM) 
algorithm 

The mean vectors, covariance matrices, and weights for a GMM are trained using the expectation 
maximization (EM) algorithm (Dempster et al., 1977; Hastie et al., 2009, §8.5). Although the data in 
forensic voice comparison are multivariate, for simplicity of exposition we describe the EM algorithm 
below assuming univariate data. Also see Figure 4 which shows an example of a two-component GMM 
being trained on artificial data that were created for illustrative purposes. In the one dimensional case, 
assume that we have scalar training data, 𝑥𝑖, 𝑖 ∈ {1, … , 𝑁}.  

1. The number of Gaussian components, 𝐺, to use must be specified. A commonly used number of 
Gaussian components is 1024 (the optimal value will depend on the particular application and 
amount of training data available).  

2. A starting point is needed. A common approach is to use a k-means clustering algorithm (see 
Arthur and Vassilvitskii, 2007; Hastie et al., 2009, §14.3) to cluster the data into the same number 
of clusters as there are Gaussian components. For each Gaussian component, the initial mean 
value, 𝜇𝑔,0, is trained using the data from one of these clusters. The initial variance, 𝜎𝑔,0

2 , for all 
components is usually set to the sample variance of the whole of the training data (in the 
multivariate case the initial covariance matrix is diagonal only). Equal initial weights, 𝑤𝑔,0 =
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1 𝐺⁄ , are usually assigned to all components.2  

3. The expectation step asks how likely each training datum is assuming it had it come from the 
distribution of one of the Gaussian components. For each training datum, 𝑥𝑖 , this question is 
repeated for each of the 𝐺 components. The answers, 𝛾𝑔,𝑖 , are called responsibilities. Each is 
calculated as the relative likelihood for the combination of a particular training datum, 𝑥𝑖, and a 
particular Gaussian component, 𝑔, see Equation 5. 

(5) 

𝛾𝑔,𝑖 =
𝑤𝑔,0𝑓(𝑥𝑖|𝜇𝑔,0, σ𝑔,0)

∑ 𝑤𝑗,0𝑓(𝑥𝑖|𝜇𝑗,0, σ𝑗,0)𝐺
𝑗=1

𝛾𝑔,𝑖 =
𝑤𝑔𝑓(𝒙𝑗𝑖

|𝝁𝑔, 𝚺𝑔)

∑ 𝑤𝑙𝑓(𝒙𝑗𝑖
|𝝁𝑙 , 𝚺𝑙)𝐺

𝑙=1

 

 

 

4. The maximization step recalculates the means, variances, and weights. To calculate the new 
mean, 𝜇𝑔,1, and new variance, 𝜎𝑔,1

2 , for a Gaussian component, 𝑔, all the training data are used 
with each datum, 𝑥𝑖, weighted by its responsibility, 𝛾𝑔,𝑖, see Equation 6a and 6b. The new weight 
for the Gaussian component, 𝑤𝑔,1, is the mean of the responsibilities for that component, see 
Equation 6c. 

(6a) 

𝜇𝑔,1 =
∑ 𝛾𝑔,𝑖𝑥𝑖

𝑁
𝑖=1

∑ 𝛾𝑔,𝑖
𝑁
𝑖=1

 

(6b) 

𝜎𝑔,1
2 =

∑ 𝛾𝑔,𝑖(𝑥𝑖 − 𝜇𝑔,1)
2𝑁

𝑖=1

∑ 𝛾𝑔,𝑖
𝑁
𝑖=1

 

(6c) 

𝑤𝑔,1 =
1

𝑁
∑ 𝛾𝑔,𝑖

𝑁

𝑖=1

 

5. Steps 3 and 4 are repeated multiple times, each time updating the means, variances, and weights 

                                                           
2 Other approaches include binary splitting (see Ueda et al., 2000), and random seed. For the latter, the initial mean value, 𝜇𝑔,0, 
of each component is set to a randomly selected 𝑥𝑖 value from the training data. If a random seed is used, each random seed 
will lead to a different solution. Training may be repeated multiple times using multiple random seeds and the result with the 
best fit to the data used. 



forensic speech statistics - 2019-02-16a GSM Page 15 of 50 

for all 𝐺 Gaussian components. Each repetition is called an iteration. 

6. The algorithm stops when it converges on a solution. Convergence occurs when, from one 
iteration to the next, the change in the goodness of fit of the model to the training data becomes 
smaller than a pre-specified threshold. Alternatively, the algorithm stops after a pre-specified 
number of iterations. 

<Insert Figure 4 about here> 

The first step in using a GMM-UBM is to train a GMM using feature vectors extracted from recordings 
of a sample of speakers representative of the relevant population for the case. Feature vectors from 
recordings of all the speakers in the sample are pooled and used to train a GMM which is called a 
universal background model (UBM). This is the model which will be used to calculate the denominator 
of the likelihood ratio.  

 

4.2 Training the known-speaker model: Maximum a posteriori (MAP) adaptation 

The model for calculating the numerator of the likelihood ratio, a speaker model, is also a GMM, but 
rather than training the model from scratch, the known-speaker GMM is adapted from the UBM 
(Reynolds et al., 2000). One reason for this is that successful training of a GMM with a large number of 
Gaussian components in a high dimensional space requires a large amount of training data. The UBM is 
trained using data from a large number of speakers, but the known-speaker GMM has to be trained using 
data from one speaker, and often only one relatively short recording of that speaker is available. The 
procedure for adapting a single-speaker GMM from the UBM is a form of maximum a posteriori 
adaptation (MAP). It is similar to the EM algorithm, but usually only one iteration of MAP adaptation 
is applied, usually only the means are adapted, and the means are only partially adapted. A new mean is 
the result of a weighted mixture of the original mean from the UBM, 𝜇𝑔,UBM, and what would be the new 
mean if the standard EM algorithm were applied, 𝜇𝑔,EM (the latter is 𝜇𝑔,1 in Equation 6a above). The 
new mean is calculated using Equation 7, in which 𝛼𝑔, the weight for mixing the EM and UBM means, 
is known as the adaptation coefficient, and 𝜏 is known as the relevance factor.  

(7) 

𝜇𝑔,1 = 𝛼𝑔𝜇𝑔,EM + (1 − 𝛼𝑔)𝜇𝑔,UBM = 𝛼𝑔

∑ 𝛾𝑔,𝑖𝑥𝑖
𝑁
𝑖=1

∑ 𝛾𝑔,𝑖
𝑁
𝑖=1

+ (1 − 𝛼𝑔)𝜇𝑔,0 

 

𝛼𝑔 =
𝑁𝑤𝑔,1

𝑁𝑤𝑔,1 + 𝜏
 

If the new weight for a Gaussian component, 𝑤𝑔,1, is large, i.e., lots of adaptation training data are 
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associated with that Gaussian component, then 𝛼𝑔 is larger and the new mean depends more on the EM 
mean, whereas if 𝑤𝑔,1 is small, 𝛼𝑔 is smaller and the new mean depends more on the UBM mean.3 This 
can therefore be thought of as a form of Bayesian adaptation with the UBM mean as the prior mean. The 
more sample data associated with a Gaussian component the closer its posterior mean will be to the 
sample mean. Increasing 𝜏 gives globally greater weight to the UBM means (the value for 𝜏 used in 
Reynolds et al., 2000, was 16). 

Figure 5 shows an example of a two-dimensional UBM and a MAP adapted known-speaker GMM.  

<Insert Figure 5 about here> 

 

4.3 Calculating a score 

Assume that a multivariate UBM population model was trained on a sample of data from the relevant 
population, and has mean vectors 𝝁𝑟𝑗

, covariance matrices 𝚺𝑟𝑗
, and weights 𝑤𝑟𝑗

, 𝑗 ∈ {1 … 𝐺}. Assume 

that a multivariate GMM known-speaker model was trained on data from the known speaker, and has 
mean vectors 𝝁𝑘𝑗

, covariance matrices 𝚺𝑘𝑗
, and weights 𝑤𝑘𝑗

, 𝑗 ∈ {1 … 𝐺}. Also, assume that the data 

from the questioned-speaker recording consists of 𝑁𝑞  feature vectors: 𝒙𝑞𝑖
, 𝑖 ∈ {1 … 𝑁𝑞}. 

To calculate a likelihood ratio, Λ𝑞𝑖,𝑘, for a single feature vector from the questioned-speaker recording, 
𝒙𝑞𝑖

, the likelihood of the known-speaker model is evaluated given that feature vector, the likelihood of 
the population model is evaluated given that feature vector, and the former is divided by the latter, see 
Equation 8 and a graphical example in Figure 5.  

(8) 

Λ𝑞𝑖,𝑘 =
∑ 𝑤𝑘𝑗

𝑓 (𝒙𝑞𝑖
|𝝁𝑘𝑗

, 𝚺𝑘𝑗
)𝐺

𝑗=1

∑ 𝑤𝑟𝑗
𝑓 (𝒙𝑞𝑖

|𝝁𝑟𝑗
, 𝚺𝑟𝑗

)𝐺
𝑗=1

  

 

Note, however, that if a feature vector is extracted every 10 ms, then there will be 100 feature vectors for 
every second of speech in the questioned-speaker recording. The total number of feature vectors, 𝑁𝑞, 
from the questioned speaker recording may be in the thousands or tens of thousands. We do not want to 
report a likelihood ratio at the first 10-ms mark, a likelihood ratio at the second 10-ms mark, etc. We 
want to report a single value quantifying the strength of evidence associated with the whole of the 
questioned-speaker speech. Our next step toward this is to calculate the mean of the per-feature-vector 

                                                           
3 If only the means are adapted, the “new” weights are only used for this calculation, and it is actually the old UBM weights 
that are used for the speaker model. 
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log likelihood ratios, as in Equation 9. 

(9) 

𝑆𝑞,𝑘 =
1

𝑁𝑞
∑ log(Λ𝑞𝑖,𝑘)

𝑁𝑞

𝑖=1

 

 

We will call the mean of the per-feature-vector log likelihood ratios, 𝑆𝑞,𝑘, a score. We will not call it a 
likelihood ratio. Multiplying all the per-feature-vector likelihood ratios together, or adding all the per-
feature-vector log likelihood ratios together, is known as naïve Bayes fusion. It is naïve because it 
assumes there is no correlation between the likelihood ratio values being combined. So that score values 
are not heavily dependent on the duration of the questioned-speaker recording, a score is calculated as 
the mean of the per-feature-vector log likelihood ratio values rather than as their sum, but this still ignores 
correlation. In fact, the likelihood ratio values come from a series of feature vectors taken from adjacent 
frames of speech recording with 50% overlap between adjacent frames (see Section 2.1). Substantial 
correlation between the frame-by-frame likelihood ratio values is therefore expected. In addition, in 
training the UBM and the GMM speaker models we have estimated a large number of parameter values, 
e.g., 42 dimensions × (1024 means + 1024 variances) + 1024−1 weights = 87,039 parameter values. 
Unless we had an extremely large amount of data, those estimates may be poor. Thus, we are not safe to 
treat the value of 𝑆𝑞,𝑘 as an appropriate answer to the question posed by the same-speaker and different-
speaker hypotheses in the case. To fix this problem, we will implement an additional step: score to 
likelihood ratio conversion (aka calibration). This is the topic of Section 7 below – some readers may 
wish to skip directly to Section 7 and return to Sections 5 and 6 later. 

 

4.4 Remarks regarding UBM training data 

The UBM is the model which represents the relevant population. The data used to train the UBM should 
therefore be a sample that is representative of the relevant population in the case. In addition, the training 
data should reflect the speaking style and recording conditions of the known-speaker recording. Any 
mismatch between the questioned-speaker data and the data used to train the known-speaker model, the 
model in the numerator of the likelihood ratio, will then be the same as the mismatch between the 
questioned-speaker data and the data used to train the population model, the model in the denominator 
of the likelihood ratio. Feature-level mismatch compensation techniques cannot be assumed to be 100% 
effective, and a difference in the conditions of the data used to train the model in the numerator and the 
model in the denominator would be expected to bias the calculated value of the score (see Morrison, 
2018b). 
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5 i-vector PLDA 

5.1 i-vectors 

An i-vector is a single vector representing the speaker information extracted from a single recording. The 
“i” stands for “identity”. The lengths of i-vectors extracted from different recordings are the same 
irrespective of the lengths of the recordings. i-vectors are described in: Kenny et al. (2005); Matrouf et 
al. (2007); Dehak et al. (2011); Matějka et al. (2011); Bousquet et al. (2013). 

Below we describe a set of procedures for calculating i-vectors that are one of the sets of procedures 
tested in Bousquet et al. (2013). These are not the most commonly used procedures, but are 
approximately equivalent to the more commonly used procedures and easier to explain and understand. 
Further below, we give a brief overview of the more commonly used procedures, with additional details 
provided in Appendix A. 

To generate an i-vector from a speech recording, we begin by training a UBM on feature vectors extracted 
from recordings of a large number of speakers under a variety of recording conditions. The standard 
approach is to use a very large diverse set of speakers in a diverse range of recording conditions. Ideally, 
the training data should include multiple recordings from each speaker, the multiple recordings including 
different recording conditions. In the standard approach the training data for the UBM do not represent 
the case-specific relevant population or the case-specific conditions.4 

After training the UBM, the next step is to train a GMM for each recording in a set of recordings that are 
representative of the relevant population for the case and that reflect the recording conditions of the 
questioned- and known-speaker recordings in the case (when the amount of case-relevant data is small, 
domain adaptation may be used, see García-Romero and McCree, 2014). The GMM for each recording 
is trained using mean-only MAP adaptation from the UBM. Since each GMM is adapted from the same 
UBM, the mean vectors in different GMMs have a parallel structure (they lie in the same vector space), 
e.g., the first mean of the mean vector of the first component in the GMM for one recording is parallel to 
the first mean of the mean vector of the first component in the GMM for another recording because they 
were both adapted from the first mean of the mean vector of the first component in the UBM, mutatis 
mutandis for every mean in the mean vector of every component. We take all the mean vectors from all 
the components in the GMM, and concatenate them to form a supervector. For example, if we have 42 
dimensional features, hence 42 dimensional mean vectors, we take the mean vector from the first 
component, the mean vector from the second component, and concatenate them to form a vector that has 
42 + 42 = 84 dimensions. We then concatenate the latter vector with the mean vector from the third 
component to form a vector that has 84 + 42 = 126 dimensions. We continue until we have concatenated 

                                                           
4 Enzinger (2016) ch. 4, obtained favorable results when a relatively small amount of case-specific data were used for training 
the UBM, i.e., data that represented the relevant population for the case and reflected the conditions of the questioned- and 
known-speaker recordings in the case. One should be cautious, however, because training with small amounts of data may 
give unstable results. 
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the mean vectors from all the components. If there are 1024 components, the supervector has 43,008 
dimensions. We generate one supervector for each recording of each speaker.  

Next, we reduce the number of dimensions using principal component analysis (PCA). PCA finds new 
dimensions which are linear combinations of the original dimensions such that the first PCA dimension 
accounts for the largest amount of variance in the training data, the second PCA dimension accounts for 
the largest remaining amount of variance in the training data after the first dimension is removed, the 
third PCA dimension accounts for the largest remaining amount of variance in the training data after the 
first and second dimensions are removed, etc. The number of dimensions is reduced by only using the 
first few PCA dimensions. These dimensions capture most of the variance in the data. Figure 6 shows an 
example of a reduction from two original dimensions to one PCA dimension. The PCA dimension is in 
the direction of maximum variance in the original two-dimensional space. (The initial development of 
PCA is credited to Pearson, 1901.) 

<Insert Figure 6 about here> 

The supervectors are reduced from tens of thousands of dimensions to a much smaller number of 
dimensions, e.g., 400 dimensions. The reduced-dimension vectors are the i-vectors. The PCA dimensions 
are in the directions of maximum variance in the original space, irrespective of whether the variance is 
primarily due to speaker or condition (or other) differences, hence the result is sometimes called the total 
variability space. 

Conceptually, i-vectors are the result of a mapping from supervectors onto a linear subspace with a lower 
number of dimensions. This is represented in Equation 10, in which 𝒔  is a recording-specific 
supervector, 𝒎 is the supervector for the UBM, and 𝒗 is the i-vector for the specific recording (𝜺 is a 
residual error term). 𝐓 is a low-rank matrix representing the linear subspace of the supervector space 
on which the i-vectors lie. The 𝐓  matrix is designed such that the i-vectors have a few hundred 
dimensions rather than the tens of thousands of dimensions of the supervectors.  

(10) 

𝒔 = 𝒎 + 𝐓𝒗 + 𝜺 

The more commonly used procedures for extracting i-vectors do not use PCA for dimension reduction, 
but instead a form of factor analysis. The 𝐓 matrix is trained using an iterative maximum likelihood 
technique (the EM algorithm). Rather than first adapting a GMM from the UBM, then concatenating a 
supervector, and then reducing its dimensions, a more direct procedure is used to map from feature 
vectors to i-vectors. The first step is to calculate the Baum-Welch statistics for each recording. The 0th 
order Baum-Welch statistics are based on the probability that a feature vector of a recording 𝑗 would 
belong to component 𝑔 of the UBM (like the responsibilities in the EM algorithm). For each feature 
vector, one value is calculated for each of the 𝐺 components, thus we have a matrix with 𝑁𝑗 columns 
(as many columns as there are feature vectors in the recording) and 𝐺 rows of responsibilities. We then 
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sum over the columns to create a set of 𝐺 0th order statistics for recording 𝑗. The 1st order Baum-Welch 
statistics are based on the deviations of the feature vectors of a recording from the mean vector of each 
component 𝑔 of the UBM, weighted by the probabilities that the feature vectors of the recording would 
belong to component 𝑔 (the responsibilities of component 𝑔 for the feature vectors). Deviations are 
calculated on a per-feature-dimension basis, hence for each of the 𝑁𝑗 feature vectors, 𝑀 values are 
calculated for each of the 𝐺 components (where 𝑀 is the number of feature dimensions). We thus have 
an 𝑁𝑗 by 𝑀 by 𝐺 matrix. We sum over the first of these dimensions to arrive at a set of 1st order 
statistics for recording 𝑗, consisting of 𝐺 vectors each of length 𝑀. The 𝐓 matrix is trained using the 
0th and 1st order Baum-Welch statistics from a set of training recordings, and an i-vector for a given 
recording can then be directly calculated using the 𝐓 matrix and the 0th and 1st order Baum-Welch 
statistics from that recording. We provide mathematical details in Appendix A. For greater detail, see the 
references cited at the beginning of this section. 

i-vectors are usually “whitened”, i.e., subjected to radial Gaussianization and length normalization, so 
that they conform better to the assumptions of subsequent statistical modeling procedures (see García-
Romero and Espy-Wilson, 2009). After whitening it is only the direction of an i-vector away from the 
origin of the i-vector space that is relevant (whitened i-vectors define points that lie on the hypersurface 
of a hypersphere). 

 

5.2 i-vector domain mismatch compensation (LDA) 

A common i-vector domain mismatch compensation technique is known in the automatic speaker 
recognition literature as linear discriminant analysis (LDA). In practice, linear discriminant analysis is 
not actually performed (i.e., neither likelihoods, nor posterior probabilities, not classification results are 
output), but canonical linear discriminant functions (CLDFs) are calculated and used to transform and 
reduce the dimensionality of the i-vectors (see Klecka, 1980; Fisher, 1936, is credited with the initial 
development of discriminant analysis and discriminant functions). In contrast to PCA which finds new 
dimensions that maximize the total variance, LDA finds dimensions that maximize the ratio of between-
category variance versus within-category variance. CLDFs are trained, using i-vectors from training data 
that include multiple recordings of each speaker, with different recordings in different conditions. Each 
speaker is treated as a category, thus the CLDFs maximize the ratio of between-speaker variance to 
within-speaker variance, much of the within-speaker variance being due to variability in speaking styles 
and recording conditions. Only the first few CLDFs are used so as to primarily capture between-speaker 
variance. The CLDFs are used to transform the i-vectors into a new smaller set of dimensions, e.g., 50 
dimensions rather than 400.  

Figure 7 shows an example of CLDF reduction from two dimensions to one dimension. The same data 
are used for Figures 6 and 7 in order to illustrate the differences between the PCA and CLDF procedures. 
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CLDFs could be calculated for supervectors rather than i-vectors, but there can be problems with 
attempting to train CLDFs in such a high-dimensional space. 

<Insert Figure 7 about here> 

 

5.3 PLDA 

An i-vector approach produces a single i-vector for each recording. Hence, unlike in the case of GMM-
UBM, there is a single vector for the known-speaker recording rather than a set of vectors that could be 
used to train a known-speaker model. A different modeling approach is therefore used to calculate 
likelihood ratios from i-vectors. In the automatic speaker recognition literature, this is known as 
probabilistic linear discriminant analysis (PLDA). PLDA is described in: Prince and Elder (2007); 
Kenny (2010); Brümmer and de Villiers (2010); Sizov et al. (2014). 

PLDA is a common-source model,5 i.e., it does not build a model for the specific known-speaker 
recording in the case, but instead answers the following two-part question: 

What would be the probability of obtaining the feature vectors of the questioned-speaker 
recording and the feature vectors of the known-speaker recording if the questioned speaker and 
the known speaker were the same speaker, a speaker selected at random from the relevant 
population? 

versus 

What would be the probability of obtaining the feature vectors of the questioned-speaker 
recording and the feature vectors of the known-speaker recording if the questioned speaker and 
the known speaker were different speakers, each selected at random from the relevant 
population?6 

Conceptually, the answer to the first part of the question provides the numerator for the likelihood ratio 
and the answer to the second part provides the denominator. 

Assume that we have a sample of 𝑁 speakers from the relevant population with multiple recordings of 
each speaker, and that some recordings of each sample speaker are in the questioned-speaker condition 
and others are in the known-speaker condition. We calculate an i-vector for each recording and apply i-
vector domain mismatch compensation. Imagine that we also have a known-speaker recording and a 

                                                           
5 For a discussion of the distinction between specific-source and common-source models, see Ommen and Saunders (2018). 
6 An objection may be raised that the known speaker was not selected at random, but on the basis of other evidence. The 
forensic practitioner’s task, however, is to assess the strength of the particular evidence they have been asked to analyze – 
they should not consider the other evidence in the case, considering all the evidence is the role of the trier of fact. For the 
forensic practitioner’s task, it is therefore acceptable to make the statistical assumption that the known speaker was selected 
at random from the relevant population. 
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questioned-speaker recording, and we calculate an i-vector for each of the two recording and apply i-
vector domain mismatch compensation, resulting in i-vectors 𝒗𝑘 and 𝒗𝑞 respectively. 

In practice, we fit a multivariate model, but to simplify the explanation below we will describe a 
univariate model. We assume that both the within-speaker and between-speaker distributions are 
Gaussian. We also assume equal within-speaker variance for all speakers.  

If 𝑣𝑘  and 𝑣𝑞  came from the same speaker (𝑞 = 𝑘), they would both come from a within-speaker 
distribution with a mean 𝜇𝑘 and variance 𝜎𝑘

2. If they came from different speakers (𝑞 ≠ 𝑘), one would 
come from a within-speaker distribution with a mean 𝜇𝑘 and variance 𝜎𝑘

2, and the other from a within-
speaker distribution with a mean 𝜇𝑞 and variance 𝜎𝑞

2. We want to calculate a likelihood ratio as shown 
in Equation 12, i.e., the joint likelihood for 𝑣𝑘 and 𝑣𝑞 if they both came from the same within-speaker 
distribution versus the joint likelihood for 𝑣𝑘  and 𝑣𝑞  if each came from a different within-speaker 
distribution. If we assume equal variance for all speakers, including the questioned- and known-speaker, 
we can pool the i-vectors from all speakers in the sample of the population, calculate the pooled within-
speaker variance, 𝜎̂𝑤

2 , and then substitute that for 𝜎𝑘
2 and 𝜎𝑞

2, as in Equation 12c. 

(12a) 

Λ𝑞,𝑘 =
𝑓(𝑣𝑞 , 𝑣𝑘|𝐻𝑞=𝑘)

𝑓(𝑣𝑞 , 𝑣𝑘|𝐻𝑞≠𝑘)
 

(12b) 

Λ𝑞,𝑘 =
𝑓(𝑣𝑞|𝜇𝑘, 𝜎𝑘

2)𝑓(𝑣𝑘|𝜇𝑘, 𝜎𝑘
2)

𝑓(𝑣𝑞|𝜇𝑞, 𝜎𝑞
2)𝑓(𝑣𝑘|𝜇𝑘, 𝜎𝑘

2)
 

(12c) 

Λ𝑞,𝑘 =
𝑓(𝑣𝑞|𝜇𝑘, 𝜎̂𝑤

2 )𝑓(𝑣𝑘|𝜇𝑘, 𝜎̂𝑤
2 )

𝑓(𝑣𝑞|𝜇𝑞, 𝜎̂𝑤
2 )𝑓(𝑣𝑘|𝜇𝑘, 𝜎̂𝑤

2 )
 

 

We do not know the values for 𝜇𝑘 and 𝜇𝑞. For each speaker, 𝑟, in the sample of the relevant population, 
let us calculate the mean of the speaker’s i-vectors: 𝜇̂𝑟, 𝑟 ∈ {1 … 𝑁}. Since we do not know the value 
for 𝜇𝑘, let us randomly pick one of the speakers from the sample of the population and use their mean 
𝜇̂𝑖, and since we do not know the value for 𝜇𝑞, let us randomly pick another of the speakers from the 
population and use their mean 𝜇̂𝑗 . We impose the condition that 𝑖 ≠ 𝑗 . We can now calculate a 
likelihood ratio as in Equation 13. 

(13) 
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Λ𝑞,𝑘,𝑖,𝑗 =
𝑓(𝑣𝑞|𝜇̂𝑖 , 𝜎̂𝑤

2 )𝑓(𝑣𝑘|𝜇̂𝑖 , 𝜎̂𝑤
2 )

𝑓(𝑣𝑞|𝜇̂𝑗 , 𝜎̂𝑤
2 )𝑓(𝑣𝑘|𝜇̂𝑖 , 𝜎̂𝑤

2 )
 

 

If we pick two more speakers at random, we will calculate a different value for the likelihood ratio. Let 
us imagine that we pick lots of random pairs of speakers and consider the average likelihood ratio value. 

If 𝑣𝑘 and 𝑣𝑞 are far apart, then the numerator of the likelihood ratio will always be relatively small 
because 𝜇𝑖 cannot be close to both 𝑣𝑘 and 𝑣𝑞. The denominator of the likelihood ratio will sometimes 
be relatively high because it is possible for 𝜇𝑖 to be close to 𝑣𝑘 and 𝜇𝑗 to be close to 𝑣𝑞. On average, 
the denominator will be larger than the numerator and the average value of the likelihood ratio will 
therefore be low. 

If 𝑣𝑘 and 𝑣𝑞 are close to each other and atypical with respect to the population, i.e., both out on the 
same tail of the distribution, then the value of the numerator of the likelihood ratio will usually be small 
because the probability of 𝜇𝑖 being close to 𝑣𝑘 and 𝑣𝑞 is small, but when 𝜇𝑖 is close to 𝑣𝑘 and 𝑣𝑞 
the value of the numerator will be large. On average the value of the denominator will be even lower 
because the probability of both 𝜇𝑖 and 𝜇𝑗 being out on the same tail of the distribution and therefore 
one being close to 𝑣𝑘 and the other being close to 𝑣𝑞 will be lower than the probability of only 𝜇𝑖 
being out on that tail of the distribution. On average, the numerator will be larger than the denominator 
and the average value of the likelihood ratio will therefore be high. 

If 𝑣𝑘 and 𝑣𝑞 are close to each other but typical with respect to the population, i.e., both in the middle 
of the distribution, then the value of the numerator of the likelihood ratio will usually be large because 
the probability of 𝜇𝑖 being in the middle of the distribution and therefore being close to 𝑣𝑘 and 𝑣𝑞 
will be large, but the value of the denominator will also usually be large because the probability of both 
𝜇𝑖 and 𝜇𝑗 being in the middle of the distribution and therefore one being close to 𝑣𝑘 and the other 
being close to 𝑣𝑞 will also be large. On average, the values of numerator and denominator will be about 
the same and the average value of the likelihood ratio will therefore be close to 1. 

In general, the average calculated value of the likelihood ratio will reflect how similar 𝑣𝑘 and 𝑣𝑞 are 
to each other, and how typical they are with respect to the sample of the population. 

Rather than selecting pairs of speakers at random, we could systematically go through all possible 
combinations of speakers in our sample of the population and calculate the mean likelihood ratio, as in 
Equation 14 (the sum in parenthesis in the denominator is from 1 to 𝑁−1 since 𝑗= 𝑖 is skipped). 

(14) 
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Λ𝑞,𝑘 =

1
𝑁

∑ (𝑓(𝑣𝑞|𝜇̂𝑖 , 𝜎̂𝑤
2 )𝑓(𝑣𝑘|𝜇̂𝑖 , 𝜎̂𝑤

2 ))𝑁
𝑖=1

1
𝑁

∑ (𝑓(𝑣𝑘|𝜇̂𝑖 , 𝜎̂𝑤
2 ) 1

𝑁−1
∑ 𝑓(𝑣𝑞|𝜇̂𝑗 , 𝜎̂𝑤

2 )𝑁−1
𝑗=1 , 𝑗 ≠ 𝑖)𝑁

𝑖=1

 

 

Rather than a discrete summation using the mean of each speaker in the sample of the relevant population, 
we can model the distribution of the speaker means and use integration. The speaker means are treated 
as nuisance parameters and “integrated out”. We calculate the mean and the variance of the speaker 
means: 𝜇̂𝑏  and 𝜎̂𝑏

2  – this gives us the between-speaker distribution. Converting from discrete 
summation to integration, we arrive at Equation 15a. For Gaussian distributions, there is a closed-form 
solution for the integrals, as given in Equation 15b. Equation 15b uses bivariate Gaussian distributions. 
The covariance matrix in the numerator has positive off-diagonal elements, hence if the values of 𝑣𝑘 
and 𝑣𝑞 are similar, e.g., both high or both low, the likelihood is greater. In contrast, the covariance 
matrix in the denominator is diagonal only, hence the likelihood is not greater if similarity is greater, e.g., 
the likelihood would be the same if both 𝑣𝑘 and 𝑣𝑞 are high or if one is high and the other is low. The 
smaller the within-speaker variance, 𝜎̂𝑤

2 , the larger the off-diagonal elements, 𝜎̂𝑏
2, will be relative to the 

on-diagonal elements, 𝜎̂𝑤
2 + 𝜎̂𝑏

2, and the greater the effect of similarity on the value of the likelihood 
ratio.  

(15a) 

Λ𝑞,𝑘 =
∫ 𝑓(𝑣𝑞|𝜇𝑟 , 𝜎̂𝑤

2 )𝑓(𝑣𝑘|𝜇𝑟 , 𝜎̂𝑤
2 )𝑓(𝜇𝑟|𝜇̂𝑏, 𝜎̂𝑏

2)𝑑𝜇𝑟

∫ 𝑓(𝑣𝑞|𝜇𝑟 , 𝜎̂𝑤
2 )𝑓(𝜇𝑟|𝜇̂𝑏, 𝜎̂𝑏

2)𝑑𝜇𝑟 ∫ 𝑓(𝑣𝑘|𝜇𝑟 , 𝜎̂𝑤
2 )𝑓(𝜇𝑟|𝜇̂𝑏, 𝜎̂𝑏

2)𝑑𝜇𝑟

 

(15b) 

Λ𝑞,𝑘 =

𝑓 ([
𝑣𝑞

𝑣𝑘
] | [

𝜇̂𝑏

𝜇̂𝑏
] , [

𝜎̂𝑤
2 + 𝜎̂𝑏

2 𝜎̂𝑏
2

𝜎̂𝑏
2 𝜎̂𝑤

2 + 𝜎̂𝑏
2])

𝑓(𝑣𝑞|𝜇̂𝑏, 𝜎̂𝑤
2 + 𝜎̂𝑏

2)𝑓(𝑣𝑘|𝜇̂𝑏, 𝜎̂𝑤
2 + 𝜎̂𝑏

2)
=

𝑓 ([
𝑣𝑞

𝑣𝑘
] | [

𝜇̂𝑏

𝜇̂𝑏
] , [

𝜎̂𝑤
2 + 𝜎̂𝑏

2 𝜎̂𝑏
2

𝜎̂𝑏
2 𝜎̂𝑤

2 + 𝜎̂𝑏
2])

𝑓 ([
𝑣𝑞

𝑣𝑘
] | [

𝜇̂𝑏

𝜇̂𝑏
] , [

𝜎̂𝑤
2 + 𝜎̂𝑏

2 0

0 𝜎̂𝑤
2 + 𝜎̂𝑏

2])

 

 

Example PLDA numerator and denominator distributions are shown in Figure 8: values of 𝜇̂𝑏 = 0, 𝜎̂𝑤
2  

= 0.25, 𝜎̂𝑏
2 = 1, 𝑣𝑘 = −1.5, and 𝑣𝑞 = −1 were selected for illustrative purposes only; the calculated 

likelihood ratio value is 2.4. 

<Insert Figure 8 about here> 

To calculate the likelihood ratio for actual i-vectors, which are multivariate vectors, we use Equation 16, 
which is the multivariate equivalent of Equation 15b (𝚺̂𝑤  and 𝚺̂𝑏  are within- and between-speaker 
covariance matrices respectively).  
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(16) 

Λ𝑞,𝑘 =

𝑓 ([
𝒗𝑞

𝒗𝑘
] | [

𝝁̂𝑏

𝝁̂𝑏
] , [

𝚺̂𝑤 + 𝚺̂𝑏 𝚺̂𝑏

𝚺̂𝑏 𝚺̂𝑤 + 𝚺̂𝑏

])

𝑓(𝒗𝑞|𝝁̂𝑏, 𝚺̂𝑤 + 𝚺̂𝑏)𝑓(𝒗𝑘|𝝁̂𝑏, 𝚺̂𝑤 + 𝚺̂𝑏)
 

 

In practice, the output of PLDA is treated as a score and subjected to score to likelihood ratio conversion, 
see Section 7.  

What we have described above is known as the two-covariance version of PLDA. There are at least two 
other versions of PLDA (that Sizov et al., 2014, label standard and simplified). The latter are more 
complex than the two-covariance version in that they include dimension reduction to work in speaker-
variability and session-variability subspaces. Since the latter include subspace modeling, they are not 
usually preceded by CLDF transformation, whereas since the two-covariance version does not include 
subspace modeling it should be preceded by CLDF transformation. For further details of the two-
covariance version of PLDA and for details of the standard and simplified versions of PLDA, see the 
references cited at the beginning of this section. For a comparison of the three, see Sizov et al. (2014).  

 

6 DNN-based systems 

Artificial neural networks are machine learning models that consist of nodes (neurons) that are organized 
in layers, and connections between the nodes (synapses). An example of the architecture of an artificial 
neural network is shown in Figure 9. This is an example of a standard feedforward fully-connected 
architecture, i.e., all units in a given layer are connected to all the units in the preceding layer and all the 
units in the following layer. The example has an input layer, two hidden layers, and an output layer. A 
hidden layer is any layer other than the input or output layer. The number of hidden layers is a design 
choice (this example happens to have two hidden layers). An artificial neural network with more than 
one hidden layer is known as a deep neural network (DNN). A value is presented at each input node, e.g., 
the set of input nodes accepts a feature vector, 𝒙. Each input node then has an activation level, ℎ0,𝑛𝑎

, 
corresponding to an 𝑥 value. Each input node is connected to each node in the first hidden layer via 
connections each of which is given a weight, 𝑤𝑙𝑗−1,𝑛𝑎,𝑙𝑗,𝑛𝑏

, where 𝑙𝑗−1 and 𝑙𝑗 index the layers (in this 

case the input layer, 𝑙𝑗−1 = 0, and the first hidden layer, 𝑙𝑗 = 1), and 𝑛𝑎 and 𝑛𝑏 index the particular 
nodes that are connected. Each node in the first hidden layer then has an activation level, ℎ𝑙𝑗,𝑛𝑏

, that is 

a function, 𝜑, of the weighted sum of the values presented to the input layer, see Equation 17 (𝑏𝑙𝑗,𝑛𝑏
 is 

a node-specific bias term). A non-linear function, e.g., a sigmoidal function, is usually used. 

(17) 
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ℎ𝑙𝑗,𝑛𝑏
= 𝜑 (𝑏𝑙𝑗,𝑛𝑏

+ ∑ 𝑤𝑙𝑗−1,𝑛𝑎,𝑙𝑗,𝑛𝑏
ℎ𝑙𝑗−1,𝑛𝑎

𝑁𝑎

𝑛𝑎=1

) 

 

The activation levels of nodes in higher layers are in turn based on weighted sums of the activation levels 
of the nodes in the immediately preceding layer.  

<Insert Figure 9 about here> 

Usually, the task of the network is to predict the category that the input belongs to, and each node in the 
output layer represents a category. For example, for an optical character recognition system, the input 
could be an image of a character (i.e., a letter of the alphabet, a number, or a punctuation mark), each 
output node would represent a particular character, and the relative level of activation of an output node 
would represent the strength of the model’s prediction that the input image is of the character 
corresponding to that output node. All else being equal, in order to classify the image, one would select 
the character corresponding to the output node with the highest level of activation. The activations of the 
output nodes can be scaled to represent posterior probabilities. 

Training an artificial neural network is the process of setting the connection weights (and node-specific 
biases) so as to optimize the network’s performance on the classification task. A standard supervised 
training algorithm is backpropagation. This is an iterative process similar to the EM algorithm. Starting 
from an initial state (e.g., a random seeding of the weights), it involves presenting inputs for which the 
categories are known, comparing the activation levels of the output nodes with the desired activation 
levels given the known category of the input, and adjusting the weights so as to reduce the error, i.e., to 
lead to higher relative activation of the output node corresponding to the known category of the input. 
For more detailed introductions to artificial neural networks, including network training, see Duda et al. 
(2000) ch. 6, and Hastie et al. (2009) ch. 11.  

In current state-of-the-art automatic speaker recognition systems, three DNN approaches are common: 
(1) DNN senone posterior i-vector systems, (2) Bottleneck feature based systems, and (3) DNN speaker 
embedding systems. We provide a brief overview of each.  

 

6.1 DNN senone posterior i-vector systems 

A senone posterior i-vector system can be considered a variant of an i-vector PLDA system, but using a 
DNN to train the UBM rather than using the EM algorithm (see García-Romero et al., 2014; Kenny et 
al., 2014; Lei et al., 2014). In contrast to standard i-vectors, senone posterior i-vectors are designed to 
explicitly capture information about how speakers pronounce speech sounds. 

The input to the DNN consists of a series of feature vectors (e.g., MFCC + delta + double delta). The 
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DNN is trained to classify the input into sequences of speech sounds, e.g., triphones. For simplicity, we 
present an example based on orthography rather than speech sounds: The word “forensic” contains the 
trigraphs “for”, “ore”, “ren”, “ens”, “nsi”, and “sic”. In general, the sequences of speech sounds are called 
senones. (Although there has been a shift and broadening of meaning to its current use in automatic 
speaker recognition, the term “senone” was originally coined in Hwang and Huang, 1992, to mean a 
subphonetic unit.) 

Standard supervised training techniques are used to train the DNN to classify a large number of different 
senones (e.g., between 5000 and 10,000). A “true” category label for the senone corresponding to each 
feature vector is typically computed using an automatic speech recognition system. The DNN is trained 
using a large number of recordings for a large number of speakers in diverse recording conditions. The 
activation of each output node of the DNN is scaled to represent the posterior probability for the senone 
it was trained on.  

The UBM consist of a GMM in which each component Gaussian corresponds to a DNN output node. 
Feature vectors from a new set of multiple recordings of multiple speakers are presented to the DNN. 
The activation of each DNN output node, 𝑔, is obtained for each feature vector, 𝒙𝑖, and is used as the 
responsibility, 𝛾𝑔,𝑖, in Equation 6 (the version of Equation 6 given in Section 4.1 was for univariate data, 
the corresponding multivariate version is actually used). The 𝒙𝑖 and 𝛾𝑔,𝑖 provide all the information 
necessary to train the UBM in a single iteration.  

 

6.2 Bottleneck feature based systems 

In a bottleneck feature based system (see Yaman et al., 2012; García-Romero and McCree, 2015; Lozano-
Díez et al., 2016; Matějka et al., 2016) a DNN is trained in the same way as in the senone posterior i-
vector system but one layer in the DNN, the bottleneck layer, has a substantially smaller number of nodes 
than the other hidden layers, e.g., 60–80 nodes in the bottleneck layer compared to 1000–1500 nodes in 
other layers. The bottleneck layer is designed to capture information about the phonetic content of voice 
recordings. The small number of nodes provides a compact representation of this information. The 
bottleneck layer may be between other hidden layers, or may be immediately before the output layer. 

For each input feature vector (e.g., MFCC + delta + double delta), the activations of the nodes in the 
bottleneck layer are used as a new feature vector, a bottleneck feature vector. The bottleneck feature 
vectors are usually concatenated with the original MFCC + delta + double delta feature vectors and the 
concatenated feature vectors then used as input to a standard UBM-based i-vector PLDA system (note 
that the activations of the DNN’s output layer are not used).  
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6.3 DNN speaker embedding systems (x-vector systems) 

A DNN speaker embedding system is described in Snyder et al. (2017), and specific values given below 
are those of that system (other variants are described in: Peddinti, Chen, et al., 2015; Peddinti, Povey, 
and Khudanpur, 2015; Snyder et al., 2018). In this context, embeddings are fixed-length vectors that are 
used instead of i-vectors as input to PLDA. These embeddings are also known as x-vectors. In contrast 
to senone posterior i-vector systems and bottleneck feature systems that are trained to classify senones, 
a DNN embedding system is trained to classify speakers. 

Rather than the input layer of a DNN speaker embedding system accepting a single feature vector, it is 
organized to accept a two-dimensional matrix in which one dimension is the elements of the MFCC 
vectors (that represent the frequency components of the signal at the time corresponding to each vector), 
and the other dimension is time. Time is discretized according to the frame shifts used when extracting 
the series of MFCC vectors from the voice recording. Deltas and double deltas are not included in the 
input feature vectors, instead each node in the input layer is connected to the MFCC vectors from 5 
contiguous frames, i.e., the MFCC vectors corresponding to the frames at times t–2, t–1, t, t+1, t+2. 
Nodes in the first hidden layer are connected to nodes at times t–2, t, t+2 of the input layer, and nodes 
the second hidden layer are connected to nodes at times t–3, t, t+3 of the first hidden layer, see Figure 
10. The input layer ultimately spans frames t–7 to t+7.7 The second hidden layer is followed by two 
more hidden layers that are unidimensional – their nodes are only connected to nodes at time t of the 
preceding layer, hence the time dimension has been collapsed. All the layers described so far are called 
frame-level layers. Layers that receive inputs from multiple times are said to splice those inputs together.  

<Insert Figure 10 about here> 

The next layer in the DNN is called a statistics pooling layer. The whole sequence of MFCC vectors 
from the speech of the speaker of interest in a recording is presented to the system, the input layer sees 
15 frames at a time (frames t–7 through t+7) and t is advanced one frame at a time through the entire 
sequence of MFCC vectors. For each node in the immediately preceding layer, the statistics pooling layer 
has two nodes, one calculates the mean of the activation of the preceding layer’s node over all t, and the 
other calculates the standard deviation of the activation of the preceding layer’s node over all t. The 
statistics pooling layer provides a fixed-length vector irrespective of the length of the recording. 

The values of the statistics pooling layer are used as an input vector to a set of three more layers, including 
the output layer. These are called segment-level layers.8 The second of these layers has fewer nodes than 

                                                           
7 The weights for the connections from the input layer to the nodes in the first hidden layer are not independent of each other. 
The weights on different connections entering a first-layer node generally differ from each other, but the same set of weights 
are used for the set of connections entering each and every first-layer node. 
8 In the automatic speaker recognition literature, the term “segment” refers to all the speech of the speaker of interest in the 
whole recording. It is the latter meaning which is intended, as opposed to the meaning of “segment” in phonetics, which is an 
individual speech sound, a realization of a phoneme. 
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the first, e.g., 300 versus 512 nodes, hence the second is a bottleneck. The activations of either the first 
layer or the second layer (or both) can be used as an embedding. As with i-vectors, CLDF for mismatch 
compensation and dimension reduction can be applied before PLDA.  

Training the DNN makes use of recordings of several thousand speakers. Multiple recordings of each 
speaker are used, with different recordings reflecting different conditions. In addition to recordings 
genuinely recorded under different conditions, the range of variability is often increased by entering the 
same recordings multiple times after they have undergone processing to simulate multiple other 
conditions, e.g., addition of different types and levels of noise and addition of different degrees of 
reverberation. The aim is for the DNN to learn the speaker-dependent properties of the input and to learn 
to ignore the condition-dependent properties. The activations of the nodes in the output layer indicate 
posterior probabilities for the speakers in the training set. The ultimate aim, however, is not to build a 
system that classifies those particular speakers, hence the activations of the DNN’s output layer are not 
used as input to the PLDA. Instead, the aim is to generate fixed-length vectors that characterize the 
different speech properties of different speakers in general. Those are the embeddings, and it is the 
embeddings that are used as input to the PLDA. 

 

7 Score to likelihood ratio conversion (calibration) 

Score to likelihood ratio conversion (aka calibration), particularly using logistic regression, is described 
in: Pigeon et al. (2000), Ramos Castro (2007), González-Rodríguez et al. (2007), Morrison (2013), 
Morrison and Poh (2018), Ferrer et al. (2019). 

Scores are similar to likelihood ratios in that, for a specific-source model, they take account of the 
similarity of the voice on the questioned-speaker recording with respect to the voice of the known speaker 
and the typicality of the voice on the questioned-speaker recording with respect to the voices of speakers 
in the relevant population, or, for a common-source model, they take account of the similarity of the 
voices on the questioned- and known-speaker recordings and their typicality with respect to the voices 
of speakers in the relevant population.9  

In forensic voice comparison, scores that take account of both similarity and typicality are generated 
using models such as GMM-UBM and PLDA. Because of violations of modeling assumptions or lack of 
sufficient training data, however, scores are not interpretable as meaningful likelihood ratio values 
answering the question posed by the same- and different-speaker hypotheses in the case. An additional 
step is needed to convert scores to interpretable likelihood ratios. Another way of looking at the problem 
is that scores are likelihood ratios, but their values are not interpretable because they are not calibrated. 

                                                           
9 Scores that are based only on similarity do not account for typicality with respect to the relevant population and this cannot 
be remedied at the score to likelihood ratio conversion stage (see Morrison and Enzinger, 2018). 
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The score to likelihood ratio conversion process is therefore also known as calibration, and for brevity 
we will henceforth tend to use the latter term.  

In order to obtain data for training a calibration model, feature vectors from a large number of same-
speaker pairs of recordings and a large number of different-speaker pairs of recordings are input to the 
GMM-UBM system, the i-vector PLDA system, or the DNN-based system, and a set of same-speaker 
scores and a set of different-speaker scores are obtained. The training data should come from a sample 
of the relevant population, and should be distinct from the data that were used to train earlier models in 
the system. Also, one member of each pair should have conditions reflecting those of the known-speaker 
recording and the other should have conditions reflecting those of the questioned-speaker recording. 
Training using data that do not reflect the relevant population and the conditions of the case will lead to 
miscalibrated results and poorer performance. Mandasari et al. (2013) and Mandasari et al. (2015) 
illustrated that training using recordings that matched the durations of the test recordings resulted in 
better performance than using longer-duration training recordings, and that training using recordings 
whose signal to noise ratios matched those of the test recordings resulted in better performance than using 
training recordings whose signal to noise ratios did not match those of the test recordings.10 

A simple score to likelihood ratio conversion model makes use of two Gaussian distributions with equal 
variance. We calculate the mean for the same-speaker model, 𝜇̂𝑠, using the same-speaker training scores, 
and the mean for the different-speaker model,  𝜇̂𝑑 , using the different-speaker training scores. We 
calculate a single variance, 𝜎̂2 , using data pooled from both categories, i.e., a pooled variance. To 
calculate a likelihood ratio, we first calculate a score, 𝑆𝑞,𝑘 , for the comparison of the voices on the 
questioned-speaker and known-speaker recordings. We then calculate the likelihood of the same-speaker 
model at the value of 𝑆𝑞,𝑘, the likelihood of the different-speaker model at the value of 𝑆𝑞,𝑘, and divide 
the former by the latter, see Equation 18.  

(18) 

Λ𝑞,𝑘 =
𝑓(𝑆𝑞,𝑘|𝜇̂𝑠, 𝜎̂2)

𝑓(𝑆𝑞,𝑘|𝜇̂𝑑 , 𝜎̂2)
 

The calculation of a likelihood ratio using this pooled-variance two-Gaussian model is illustrated in the 
top panel of Figure 11 in which, for illustrative purposes, 𝜇̂𝑠 = +0.5, 𝜇̂𝑑 = −1.5, and 𝜎̂2 = 1. The 
likelihood ratio value calculated for an illustrative test score of +0.5 is 0.399/0.054 = 7.39. 

<Insert Figure 11 about here> 

Note that whereas in the feature domain the data were multivariate and had complex distributions and 

                                                           
10 The aim of Mandasari et al. (2013) and Mandasari et al. (2015) was to find automatic procedures to address this problem 
rather than relying on a human expert to select data on a case by case basis; see also McLaren et al. (2014). 
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we fitted models requiring a large number of parameter values to be estimated, in the score domain the 
data are univariate and we fit models requiring only a small number of parameter values to be estimated 
(e.g., two means and one variance). We can therefore obtain better parameter estimates in the score 
domain than in the feature domain, and hence the output of the score to likelihood ratio conversion model 
is well calibrated. 

The value of a score has no meaning by itself, but if one score has a higher value than another score then 
the higher valued score indicates greater relative support for the same-speaker hypothesis over the 
different-speaker hypothesis than does the lower valued score. Thus, although we do not know whether 
both scores correspond to likelihood ratios less than 1, or both to likelihood ratios greater than 1, or one 
to a likelihood ratio less than 1 and the other to a likelihood ratio greater than 1, and we do not know 
whether they correspond to likelihood ratios that are close to each other or far from each other, we do 
know that the higher valued score corresponds to a higher valued likelihood ratio than does the lower 
valued score. The model for converting from scores to likelihood ratios should therefore be monotonic, 
that is, it should preserve the ranking of scores, a lower ranked score should not be converted to a higher 
likelihood ratio value than the likelihood ratio value corresponding to a higher ranked score. In the model 
described above, using two Gaussians with the same variance results in a monotonic conversion. Using 
a different variance for each Gaussian would not be monotonic. 

The pooled-variance two-Gaussian model is a linear discriminant analysis model, and can be shown to 
reduce to a linear model in a logged odds space or in log likelihood ratio space. A linear model has the 
form 𝑦 = 𝑎 + 𝑏𝑥, and requires the estimation of only two parameter values, an intercept, 𝑎, and a slope, 
𝑏. If natural logarithms are used in calculating the score, the intercept and slope are as shown in Equation 
19, and the output is the natural logarithm of the likelihood ratio.  

(19a) 

log(Λ𝑞,𝑘) = 𝑎 + 𝑏𝑆𝑞,𝑘 

(19b) 

𝑎 = −
𝜇̂𝑠

2 − 𝜇̂𝑑
2

2𝜎̂2
= −𝑏(𝜇̂𝑠 + 𝜇̂𝑑) 2⁄  

(19c) 

𝑏 =
𝜇̂𝑠 − 𝜇̂𝑑

𝜎̂2
 

This version of the model is illustrated in the middle panel of Figure 11, in which 𝑎 = +1 and 𝑏 = +2. 
The illustrative test score of +0.5 converts to a natural log likelihood ratio of 1 + 2 × 0.5 = 2, which as 
before is a likelihood ratio of 7.39. 

In practice, it is more common to use logistic regression rather than linear discriminant analysis. If the 
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assumptions of Gaussian distributions with equal variances hold, then logistic regression and linear 
discriminant analysis will give the same results (Hastie et al., 2009, §4.4.5). Logistic regression, however, 
is more robust to violations of those assumptions, thus in general it results in better performance. The 
same-speaker and the different-speaker scores are used to train the logistic regression model (see Figure 
11 bottom panel), which is linear in the log likelihood ratio space (see Figure 11 middle panel), hence 
training results in calculation of the values for the intercept, 𝑎, and slope, 𝑏. These values are then used 
in Equation 19a to convert the score value to a log likelihood ratio value. 

Logistic regression is trained using an iterative procedure that minimizes the deviance statistic (see 
Menard, 2010; Hosmer et al., 2013). It is usually used to calculate a posterior probability (see Figure 11 
bottom panel), but by converting from posterior probability to posterior odds and training the model 
using equal priors for the same-speaker and the different-speaker categories, the output is interpretable 
as a log likelihood ratio (see Figure 11 middle panel). Logistic regression is a discriminative procedure 
rather than a generative procedure and hence does not provide separate values that could be interpreted 
as the numerator and denominator of the likelihood ratio. Its output is not literally the ratio of two 
likelihoods, but the interpretation of its output as a likelihood ratio is justified by its analogy with linear 
discriminant analysis.  

 

8 Validation 

Empirical validation of a forensic analysis system under conditions reflecting those of the case to which 
it is to be applied is required to inform admissibility decisions under United States Federal Rules of 
Evidence 702 and the Daubert trilogy of Supreme Court rulings (Daubert v. Merrell Dow 
Pharmaceuticals, 1993; General Electric v. Joiner, 1997; and Kumho Tire v. Carmichael, 1999), and 
under England and Wales Criminal Practice Directions (2015) section 19A. This has been emphasized 
by President Obama’s Council of Advisors on Science and Technology (2016) and by the England and 
Wales Forensic Science Regulator (2014). As mentioned in the introduction, there have been calls from 
the 1960s onward for the performance of forensic voice comparison systems to be empirically validated 
under casework conditions (for a review see Morrison, 2014), and such validation is advocated by the 
ENFSI guidelines (Drygajlo et al., 2015) and the OSAC SR principles. 

The results of a validation study depend on both the system that is tested and the conditions under which 
it is tested. In order to provide information that will be helpful in understanding how well a forensic voice 
comparison system will perform when applied in a particular case, what must be tested is the system that 
will actually be used in the case, and it must be tested using test recordings that are sufficiently 
representative of the relevant population and sufficiently reflective of the conditions of the questioned- 
and known-speaker recordings in the case. Results of tests of the system with other populations or under 
other conditions (or tests of other systems) will in general not be informative as to the performance of 
the system when applied in the particular case, and could be highly misleading. Since there can be 
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substantial variation in relevant population and recording conditions from case to case, case-specific 
validation may be required.  

In black-box validation studies, pairs of recordings are entered into the forensic voice comparison system, 
and in response to each input pair the system outputs a likelihood ratio. In each pair, one member of the 
pair must have conditions that reflect those of the questioned-speaker recording and the other must have 
conditions that reflect those of the known-speaker recording. Some pairs must be same-speaker pairs, 
and others must be different-speaker pairs. For each pair, the goodness (or badness) of the likelihood 
ratio output is assessed with respect to the tester’s knowledge of whether the input was a same-speaker 
or a different-speaker pair. Traditional performance metrics such as false-alarm rate and miss rate depend 
on making binary decision by applying a threshold to a posterior probability, and are therefore 
inconsistent with the likelihood ratio framework. An appropriate metric would be based directly on the 
likelihood ratio value of the output and would take account of the magnitude of the likelihood ratio value. 
Given a same-speaker input, a good output would be a likelihood ratio value that is much larger than 1, 
a less good output would be a value that is only a little larger than 1, a bad output would be a value less 
than 1, and a worse output would be a value much less than 1. Mutatis mutandis for a different-speaker 
input for which a good output would be a value much less than 1.  

In the forensic voice comparison literature, the log likelihood ratio cost (Cllr) is a popular metric for 
quantifying system performance (Brümmer and du Preez, 2006, González-Rodríguez et al., 2007, 
Morrison, 2011, Drygajlo et al., 2015, Morrison and Enzinger, 2016, Meuwly et al., 2017). The formula 
for calculating Cllr is given in Equation 20, in which Λ𝑠  and Λ𝑑  are likelihood ratio outputs 
corresponding to same- and different-speaker input pairs respectively, and 𝑁𝑠 and 𝑁𝑑 are the number 
of same- and different-speaker input pairs respectively.  

(20)  

𝐶llr =
1

2
(

1

𝑁𝑠
∑ log2 (1 +

1

Λ𝑠𝑖

)

𝑁𝑠

𝑖=1

+
1

𝑁𝑑
∑ log2 (1 + Λ𝑑𝑗

)

𝑁𝑑

𝑗=1

) 

Figure 12 plots the penalty functions for log likelihood ratio outputs corresponding to same- and 
different-speaker input pairs. These are the functions within Equation 20’s left and right summations 
respectively. If the input is a log likelihood ratio from a same-speaker pair and its value is much greater 
than 0 it receives a small penalty value, but if its value is lower it receives a higher penalty value. If the 
input is a log likelihood ratio from a different-speaker pair and its value is much less than 0 it receives a 
small penalty value, but if its value is higher it receives a higher penalty value. Cllr is calculated as the 
mean of the penalty values with equal weight given to the set of same-speaker penalty values as to the 
set of different-speaker penalty values. 

<Insert Figure 12 about here> 
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Smaller Cllr values indicate better performance. Cllr values generally lie in the range 0 to 1. Cllr values 
cannot be less than or equal to 0. A system that gave no useful information and always responded with a 
likelihood ratio of 1, irrespective of the input, would have a Cllr value of 1. Cllr values substantially greater 
than 1 can be produced by uncalibrated or miscalibrated systems. 

In the forensic voice comparison literature, a popular graphical representation of system performance is 
a Tippett plot (Meuwly, 2001; González-Rodríguez et al., 2007; Drygajlo et al., 2015; Morrison and 
Enzinger, 2016; Meuwly et al., 2017; Morrison and Enzinger, 2019). Tippett plots consist of plots of the 
empirical cumulative probability distribution of the likelihood ratio values resulting from same-speaker 
inputs and of the empirical cumulative probability distribution of the likelihood ratio values resulting 
from different-speaker inputs. The tradition is to plot lines joining the data points rather than to plot the 
data points themselves. Examples are shown in Figure 13. The y-axis values corresponding to the curves 
rising to the right give the proportion of same-speaker test results with log likelihood ratio values less 
than or equal to the corresponding value on the x-axis. The y-axis values corresponding to the curves 
rising to the left give the proportion of different-speaker test results with log likelihood ratio values 
greater than or equal to the corresponding value on the x-axis. In general, shallower curves with greater 
separation between the two curves indicates better performance. Tippett plots can also reveal problems 
such as bias in the output.  

<Insert Figure 13 about here> 

In the top panel of Figure 13 the separation between the same-speaker and different-speaker curves is 
small and the system is clearly biased – both the same-speaker and different-speaker curves are too far 
to the right. The middle panel of Figure 13 shows the results of a validation of a better performing system. 
This Tippett plot has somewhat greater separation between the same-speaker and different-speaker 
curves and the results are not obviously biased. The second system was actually the same as the first 
system except that it included a logistic-regression calibration stage whereas the first did not. The bottom 
panel of Figure 13 shows the results of a validation of a system with substantially better performance – 
the same-speaker and different-speaker curves have greater separation and are shallower. The Cllr values 
calculated on the same validation results as shown in the top, middle, and bottom panels of Figure 13 are 
1.068, 0.698, and 0.307 respectively. 

Given the range of possible forensic voice comparison systems and the case to case variability in relevant 
population and in recording conditions, there is no validation study that is representative across systems 
and across casework conditions. Below we list a number of published studies that report on empirical 
validation of several different systems under several different sets of conditions (including a series of 
papers in a journal virtual special issue in which multiple different systems were tested under the same 
conditions). Full references are provided in the list. These references are not repeated in the main 
reference list at the end of the chapter unless the publications are referenced elsewhere in the chapter. 
The references are listed by year of publication, and those published in the same year are listed in 
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alphabetical order. Publications are only included in the list if they report on empirical validation of 
human-supervised automatic forensic voice comparison systems under conditions that reasonably closely 
reflect forensic casework conditions, the systems output likelihood ratio values, and the validation results 
are reported using metrics and graphics that are consistent with the likelihood ratio framework. We 
apologize if we have inadvertently omitted any studies that meet these criteria. The list was current as of 
February 2019. We expect more validation studies to be published in the future. 

Unless the relevant population and conditions of a published study reflect those of a particular case and 
the system validated in the study is the one that will be used in that particular case, the published study 
should not be used in a debate as to whether testimony derived from that forensic voice comparison 
system should be admitted in that particular case. If no validation study exists that sufficiently closely 
reflects the relevant population and conditions for the case, a case-specific validation study will have to 
be conducted. We would also suggest that there is no one-size-fits-all validation threshold and that 
whether the level of performance of a system is sufficient should be decided on a case by case basis. 
Poorer recording conditions will lead to poorer performance, but a system with relatively poor 
performance may still be capable of providing useful information to the court in the form of a moderately 
sized likelihood ratio value – Tippett plots will give an indication of the range of possible likelihood ratio 
values that the system could generate under the test conditions.  

 

8.1 List of published validation studies 

Solewicz, Y.A., Becker, T., Jardine, G., and Gfroerer, S. 2012. Comparison of speaker recognition 
systems on a real forensic benchmark. In Proceedings of Odyssey 2012, The Speaker and 
Language Recognition Workshop, pp. 85–91. International Speech Communication Association. 
http://isca-speech.org/archive/odyssey_2012/od12_086.html  

Solewicz, Y.A., Jardine, G., Becker, T., and Gfroerer, S. 2013. Estimated intra-speaker variability 
boundaries in forensic speaker recognition casework. In: Proceedings of Biometric Technologies 
in Forensic Science (BTFS), pp. 30–33. http://www.ru.nl/clst/btfs/proceedings/ 

van der Vloed, D., Bouten, J., and van Leeuwen, D. 2014. NFI-FRITS: A forensic speaker recognition 
database and some first experiments. In Proceedings of Odyssey 2014, The Speaker and 
Language Recognition Workshop, pp. 6–13. International Speech Communication Association. 
http://cs.uef.fi/odyssey2014/program/pdfs/21.pdf 

Enzinger E. 2016. Comparison of GMM-UBM and i-vector models under casework conditions: Case 1 
revisited. In Implementation of forensic voice comparison within the new paradigm for the 
evaluation of forensic evidence, Ch. 4. Doctoral dissertation, University of New South Wales. 
http://handle.unsw.edu.au/1959.4/55772  

Enzinger, E., Morrison, G.S., and Ochoa, F. 2016. A demonstration of the application of the new 
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http://dx.doi.org/10.1016/j.specom.2016.10.001 [errata published in (2017) 92: 23. 
http://dx.doi.org/10.1016/j.specom.2017.04.005] 

Enzinger E. and Morrison G.S. (2017). Empirical test of the performance of an acoustic-phonetic 
approach to forensic voice comparison under conditions similar to those of a real case. Forensic 
Science International, 277: 30–40. http://dx.doi.org/10.1016/j.forsciint.2017.05.007 

Silva, G.D. da and Medina, C.A. 2017. Evaluation of MSR Identity Toolbox under conditions 
reflecting those of a real forensic case (forensic_eval_01). Speech Communication, 94: 42–49. 
http://dx.doi.org/10.1016/j.specom.2017.09.001 

van der Vloed, D., Jessen, M., and Gfroerer, S. 2017. Experiments with two forensic automatic speaker 
comparison systems using reference populations that (mis)match the test language. Proceedings 
of the Audio Engineering Society Conference on Forensic Audio, paper 2-1. 

Morrison, G.S. 2018. The impact in forensic voice comparison of lack of calibration and of 
mismatched conditions between the known-speaker recording and the relevant-population sample 
recordings. Forensic Science International, 283, e1–e7. 
http://dx.doi.org/10.1016/j.forsciint.2017.12.024 

Zhang, C. and Tang, C. 2018. Evaluation of Batvox 3.1 under conditions reflecting those of a real 
forensic voice comparison case (forensic_eval_01). Speech Communication, 100, 13–17. 
https://doi.org/10.1016/j.specom.2018.04.008 

Kelly, F., Fröhlich, A., Dellwo, V., Forth, O., Kent, S., and Alexander, A. 2019. Evaluation of 
VOCALISE under conditions reflecting those of a real forensic voice comparison case 
(forensic_eval_01). Speech Communication. In Press. 

Jessen, M., Bortlík, J., Schwarz, P., and Solewicz, Y.A. 2019. Evaluation of Phonexia automatic 
speaker recognition software under conditions reflecting those of a real forensic voice 
comparison case (forensic_eval_01). Speech Communication. In Press. 

Jessen, M., Meir, G., and Solewicz, Y.A. 2019. Evaluation of Nuance Forensics 9.2 and 11.1 under 
conditions reflecting those of a real forensic voice comparison case (forensic_eval_01). Speech 
Communication. In Press. 

 

9 Conclusion 

We have described signal-processing and statistical-modeling techniques that are commonly used to 
calculate likelihood ratios in human-supervised automatic approaches to forensic voice comparison. We 
hope that we have fulfilled our aim of bridging the gap between general introductions to forensic voice 
comparison and the highly technical and often fragmented automatic speaker recognition literature from 
which the signal-processing and statistical-modeling techniques are mostly drawn. We hope that this has 
been of value to students of forensic voice comparison and to researchers interested in understanding 
statistical modeling techniques that could potentially also be applied to data from other branches of 
forensic science.  
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11 Appendix A: Mathematical details of T matrix training and i-vector extraction 

This appendix provides details of the procedures usually used for 𝐓 matrix training and extraction of i-
vectors. It is based on the factor analysis procedure described in Dehak et al. (2011). 

1. Feature vectors from all the speakers in the training set are pooled and then used to train a UBM 

with the parameter set Ω = {𝑤𝑔, 𝝁𝑔, 𝚺𝑔}
𝑔=1

𝐺 , i.e., 𝐺 Gaussians with mean vectors 𝝁𝑔, diagonal-

only covariance matrices 𝚺𝑔, and weights 𝑤𝑔. 

2. For each recording 𝑗 in the training and test sets, centralized 0th and 1st order Baum-Welch 
statistics, 𝑛𝑔,𝑗 and 𝐟𝑔,𝑗, are computed with respect to the UBM, see Equation 21 in which: 𝒙𝑗𝑖

 
is the 𝑖th feature vector of recording 𝑗; 𝛾𝑔,𝑖 is a responsibility (Equation 21c is the multivariate 
equivalent of Equation 5 in Section 4.1); 𝑁𝑗 is the number of feature vectors extracted from 
recording 𝑗; 𝑛𝑔,𝑗  is the probability that the feature vectors of recording 𝑗 would belong to 
Gaussian 𝑔 of the UBM; and 𝐟𝑔,𝑗 is the sum, over all vectors in the recording, of the deviation 
of each vector from the UBM mean vector, weighted by the probability that it belongs to Gaussian 
𝑔. 

(21a) 
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𝑛𝑔,𝑗 = ∑ 𝛾𝑔,𝑖

𝑁𝑗

𝑖=1

 

(21b) 

𝐟𝑔,𝑗 = ∑ 𝛾𝑔,𝑖

𝑁𝑗

𝑖=1

(𝒙𝑗𝑖
− 𝝁𝑔) 

(21c) 

𝛾𝑔,𝑖 =
𝑤𝑔𝑓(𝒙𝑗𝑖

|𝝁𝑔, 𝚺𝑔)

∑ 𝑤𝑙𝑓(𝒙𝑗𝑖
|𝝁𝑙 , 𝚺𝑙)𝐺

𝑙=1

 

 

3. A maximum-likelihood estimate of the 𝐓 matrix is trained using the training data and an EM 
algorithm (Kenny et al., 2005; Matrouf et al., 2007). First, each element of the 𝐓 matrix is 
initialized by random draws from the standard Gaussian distribution. In the expectation step, for 
each recording 𝑗 ∈ {1 … 𝐽} in the training set, we evaluate the posterior distribution of 𝜙𝑗 given 

the Baum-Welch statistics {𝑛𝑔,𝑗 , 𝐟𝑔,𝑗}
𝑔=1

𝐺  from that recording. Assuming a standard Gaussian 

prior for 𝜙𝑗  and using the current estimate of the 𝐓 matrix (denoted as 𝐓old), the first and 

second moments, 〈𝜙𝑗〉 and 〈𝜙𝑗𝜙𝑗
𝑡〉, of the posterior are calculated as in Equations 22a and 22b. 

𝐋𝑗
−1 is the posterior covariance matrix. 𝚺𝑔 is the covariance matrix of the 𝑔th Gaussian of the 

UBM. In the maximization step, the 𝐓 matrix is updated as in Equation 22d (see Proposition 3 
in Kenny et al., 2005, §III). Often, a minimum divergence step is added after the maximization 
step, in which the 𝐓 matrix is updated so that the empirical i-vector distribution better conforms 
to a standard Gaussian prior (Kenny, 2008, §II-B; Glembek, 2012, §3.6.4). This is achieved by 
computing the dot-product of the matrix 𝐓𝑔,ML after the maximization step and the matrix Q 
obtained using a symmetrical decomposition (e.g., Cholesky decomposition) of 𝐏−1 , the 
covariance matrix of the prior, Equations 20e–20g. Empirically, adding the minimum divergence 
step results in faster convergence of the training algorithm. The expectation-maximization and 
minimum divergence steps are repeated for multiple iterations. 

(22a) 

𝐋𝒋 = 𝐈 + ∑ 𝑛𝑔,𝑗𝐓𝑔,old
𝑡 𝚺𝑔

−1𝐓𝑔,old

𝐺

𝑔=1

 

(22b) 

〈𝜙𝑗〉 = 𝐋𝑗
−1 ∑ 𝐓𝑔,old

𝑡 𝚺𝑔
−1 𝐟𝑔,𝑗

𝐺

𝑔=1

 

(22c) 
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〈𝜙𝑗𝜙𝑗
𝑡〉 = 𝐋𝑗

−1 + 〈𝜙𝑗〉〈𝜙𝑗〉𝑡 

(22d) 

𝐓𝑔,ML = (∑ 𝑛𝑔,𝑗

𝐽

𝑗=1

〈𝜙𝑗𝜙𝑗
𝑡〉)

−1

(∑ 𝐟𝑔,𝑗

𝐽

𝑗=1

〈𝜙𝑗〉𝑡) 

(22e) 

𝐏−1 =
1

𝐽
∑ 𝐋𝑗

−1 + 〈𝜙𝑗〉〈𝜙𝑗〉𝑡

𝐽

𝑗=1

 

(22f) 
Q𝐐𝒕 = 𝐏−1 

(22g) 
𝐓𝑔,MD = 𝐓𝑔,ML Q 

(22h) 

𝐓new = [

𝐓1,MD
⋮

𝐓𝐺,MD

] 

 

4. For each recording, 𝑗, in the training and test sets, an i-vector is obtained as the posterior mean 

〈𝜙𝑗〉  using the Baum-Welch statistics {𝑛𝑔,𝑗 , 𝐟𝑔,𝑗}
𝑔=1

𝐺  computed from recording 𝑗 . The 

calculations are the same as in Equations 22a and 22b, but using the final estimate of the 𝐓 
matrix. 
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13 Figure captions 

 

Figure 1. Procedure for the calculation of MFCCs. The numbers in black circles correspond to the 
numbered steps in the main text. DFT = discrete Fourier transform. DCT = discrete cosine transform. 

 

Figure 2. Feature warping. The original feature value is replaced by the warped feature value. The 
warping is achieved by mapping from the empirical cumulative probability distribution of the original 
feature values to a parametric target cumulative probability distribution, in this case the standard 
cumulative Gaussian distribution. 

 

Figure 3. Examples of the effects of channel and feature warping on the distribution of MFCCs. The first 
column represents MFCC values extracted from a high-quality audio signal (the same in both rows). The 
next three columns represent the results of sequentially applying various signal processing techniques to 
simulate casework conditions. The top row represents a simulated questioned-speaker recording 
condition and the bottom row represents a simulated known-speaker recording condition. The final 
column represents the results of applying feature warping to the values represented in the immediately 
preceding column, applied separately to the simulated questioned-speaker recording condition and to the 
simulated known-speaker recording condition. 

 

Figure 4. Example of using the EM algorithm to train a two-component GMM. The example is based on 
artificial data that were created for illustrative purposes. The dotted curve represents the distribution that 
was used to generate the data. The dashed curve represents the fitted GMM, and the black curve and the 
white curve represent the two Gaussian components of the fitted GMM. The top panel shows the initial 
GMM distribution based on a random seed. The data points (the circles on the x axis) are shaded 
according to their responsibilities with respect to the two components. The second panel shows the fitted 
GMM distribution after 1 iteration of maximization (along with the responsibilities after that iteration). 
The third panel shows the results after 20 iterations, and the bottom panel the results after 40 iterations. 

 

Figure 5. Example of using a GMM-UBM model to calculate a likelihood ratio for a single questioned-
speaker-recording feature vector. This example is based on artificial two-dimensional data generated for 
illustrative purposes. The UBM is represented by the surface drawn with the darker mesh and the MAP 
adapted known-speaker GMM is represented by the surface drawn with the lighter mesh. The x-y location 
of the vertical line indicates a questioned-speaker-recording feature vector value at which the likelihoods 
of the UBM and the known-speaker GMM are being evaluated (the likelihoods are given by the z values 
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of the intersections of the vertical line with each of the surfaces). 

 

Figure 6. Example of using PCA to reduce the data from two dimensions to one dimension. The example 
uses artificial data created for illustrative purposes. Different shaped symbols represent different speakers 
and the two different intensities of shading represent two different conditions, e.g., a questioned-speaker-
recording condition and a known-speaker-recording condition. The PCA dimension (represented by the 
oblique axis) is in the direction of maximum variance in the original x-y space. 

 

Figure 7. Example of using CLDF for mismatch compensation and to reduce the data from two 
dimensions to one dimension. The example uses artificial data created for illustrative purposes (the same 
data as used for Figures 6). Different shaped symbols represent different speakers and the two different 
intensities of shading represent two different conditions, e.g., a questioned-speaker-recording condition 
and a known-speaker-recording condition. The CLDF dimension (represented by the oblique axis) is in 
the direction in the original x-y space that has the maximum ratio of between- versus within-speaker 
variance. 

 

Figure 8. Example of using a PLDA model to calculate a score for a pair of i-vectors. The numerator of 
the PLDA model is represented by the surface drawn with the lighter mesh and the denominator is 
represented by the surface drawn with the darker mesh. The x-y location of the vertical line indicates the 
values of the i-vectors 𝑣𝑞  and 𝑣𝑘  (extracted from the questioned- and known -speaker recordings 
respectively) at which the likelihoods of numerator and denominator of the PLDA model are being 
evaluated (the likelihoods are given by the z values of the intersections of the vertical line with each of 
the surfaces). 

 

Figure 9. Simplified example of the architecture of a feed-forward DNN consisting of an input layer, 
two hidden layers, and an output layer. Not all connection between nodes have been drawn, and weights 
have been indicated for only a few connections. 

 

Figure 10. Illustration of the architecture of a DNN embedding system. Only the time-dimension is 
shown for the frame level (the frequency dimension is not shown). The input layer (at the bottom) spans 
t–7 through t+7. The time dimension is collapsed by the third hidden layer of the frame level. The 
statistics pooling layer calculates the mean and standard deviation of each node in the preceding layer 
when the whole of the speech of interest in a recording is passed by the input layer. The frequency 
dimension is shown for the segment level.  
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Figure 11. Example of using linear discriminant analysis or logistic regression to convert a score to a 
likelihood ratio. The example uses artificial data created for illustrative purposes. Different-speaker 
training scores are shown as grey triangles and same-speaker training scores are shown as white circles. 
The top panel shows a linear discriminant analysis model fitted to the data. The middle and bottom panels 
can be derived from the top panel. The middle and bottom panels can also be derived by fitting a logistic 
regression model to the same data. The vertical line represents a score value that is being converted to a 
likelihood ratio value. In the top panel the output is clearly the ratio of two likelihoods. The middle panel 
shown that the conversion from scores to log likelihood ratio values is a linear function. (In reality the 
plotted training data are illustrative only and the plotted functions show ideal values based on specified 
parametric distributions.) 

 

Figure 12. Penalty functions for calculating Cllr. The same-speaker and different-speaker curves 
correspond to the functions within Equation 20’s left and right summations respectively. 

 

Figure 13. Examples of Tippett plots. The three plots represent three different systems tested on the same 
test data. The examples are based on artificial data created for illustrative purposes. The data represent 
50 same-speaker test pairs and 200 different-speaker test pairs – imbalance in the number of same-
speaker and different-speaker test pairs is usual since it is easier to construct different-speaker pairs than 
same-speaker pairs. The Cllr values corresponding to the results shown in the top, middle, and bottom 
panels are 1.068, 0.698, and 0.307 respectively. 
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