
energies

Article

Accelerated Particle Swarm Optimization for
Photovoltaic Maximum Power Point Tracking under
Partial Shading Conditions

Muhannad Alshareef 1, Zhengyu Lin 1,* , Mingyao Ma 2 and Wenping Cao 1

1 Power Electronics, Machine and Power System Group, Aston University, Birmingham B4 7ET, UK;
alsharem@aston.ac.uk (M.A.); w.p.cao@aston.ac.uk (W.C.)

2 School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China;
miyama@hfut.edu.cn

* Correspondence: z.lin@ieee.org; Tel.: +44-121-204-3722

Received: 23 December 2018; Accepted: 13 February 2019; Published: 15 February 2019
����������
�������

Abstract: This paper presents an accelerated particle swarm optimization (PSO)-based maximum
power point tracking (MPPT) algorithm to track global maximum power point (MPP) of photovoltaic
(PV) generation under partial shading conditions. Conventional PSO-based MPPT algorithms have
common weaknesses of a long convergence time to reach the global MPP and oscillations during the
searching. The proposed algorithm includes a standard PSO and a perturb-and-observe algorithm as
the accelerator. It has been experimentally tested and compared with conventional MPPT algorithms.
Experimental results show that the proposed MPPT method is effective in terms of high reliability,
fast dynamic response, and high accuracy in tracking the global MPP.
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1. Introduction

Rising global energy demands and environmental concerns have led to the fast development of
renewable energy technologies. Solar energy as the primary source of renewables can be utilized by
Photovoltaics (PV), and has had a rapid growth in the last 30 years [1–5].

PV has a nonlinear electrical characteristic, and it is a challenge to reach PV’s optimal performance
under changing irradiation conditions. Numerous maximum power point tracking (MPPT) techniques
have been developed to maximize the PV output power, such as perturb-and-observe (P&O) and
incremental conductance (INC) [6,7]. These conventional MPPT methods are appropriate under
uniform irradiation conditions [8,9].

In order to deliver sufficient power, both series and parallel configurations of PV modules are
commonly used [10]. In practice, part of the PV arrays can be covered by clouds, leaves, and dust, so
partial shading is often unavoidable. Partial shading will greatly reduce the PV module production,
and lead to multiple local maximum power points, as shown in Figure 1. The latter effect makes the
conventional MPPT algorithms (such as P&O or INC) difficult to track the global MPP [11–13].

In order to find the global MPP under partial shading conditions, many global MPP searching
algorithms have been proposed in the literature [14–37].

The MPPT algorithm proposed in [14] is actually an enhancement of the INC algorithm that may
find the global MPP by determining all local MPPs. A Fibonacci-based MPPT method is proposed
in [15,16], which uses two measured power points to decide the action of the following operating point.
Its difference from the P&O methods is that Fibonacci-based MPPT methods change the step size to
improve the tracking speed.
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Figure 1. Photovoltaic (PV) output power curves of three different partial shading patterns. (a) partial 

shading pattern 1; (b) partial shading pattern 2; and (c) partial shading pattern 3. 
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that the number of local MPPs and their locations can be recognized at the start of scanning process. 

However, as argued in [19], this method could not find the correct location of local MPPs when a 

voltage mismatch exists between the modules. In reference [20], it is found that the PV current can be 

influenced by partial shading conditions. However, this particular relationship is not always accurate, 

as argued in [21]. The MPPT method proposed in [22] is simply a P&O algorithm, and its voltage step 

sizes is solely based on dividing rectangles technique. However, this method does not ensure 
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Artificial intelligence (AI)-based MPPT algorithms are proposed in [26–29], which include 

particle swarm optimization (PSO), ant colony, and firefly algorithms. The PSO algorithm is popular 
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MPPT algorithm is the long tracking time toward the MPP within large search spaces. A hybrid PSO-
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This paper proposes an accelerated PSO (APSO) based MPPT algorithm. The particle with the 

highest fitness value (PV power) is perturbed by a P&O MPPT algorithm to search for the global MPP 

so that the best particle moves faster to the global MPP, and at the same time attracts the remaining 

particles to converge toward it more quickly. Hence, the search time needed for convergence could 

be significantly reduced. Additionally, there is no need to add any constraint on the optimal particle 

Figure 1. Photovoltaic (PV) output power curves of three different partial shading patterns. (a) partial
shading pattern 1; (b) partial shading pattern 2; and (c) partial shading pattern 3.

A partial shading detection method is proposed in [17] by directly measuring each PV module
voltage to find mismatch. This strategy is simple and can be easily applied, but it requires a voltage
sensor for every PV module, which will increase the system cost. This method is improved in [18] so
that the number of local MPPs and their locations can be recognized at the start of scanning process.
However, as argued in [19], this method could not find the correct location of local MPPs when a
voltage mismatch exists between the modules. In reference [20], it is found that the PV current can be
influenced by partial shading conditions. However, this particular relationship is not always accurate,
as argued in [21]. The MPPT method proposed in [22] is simply a P&O algorithm, and its voltage
step sizes is solely based on dividing rectangles technique. However, this method does not ensure
attainment of the global MPP. A neural-network-based MPPT for various partial shading conditions is
presented in [23]. The main drawback of this system is that it requires the measurement of the sun
irradiance and PV module’s temperature.

In reference [24], a two-stage MPPT technique is proposed. The first stage is to move the operating
point near the MPP before it converges to the MPP in the second stage. This method added more
complexity to the system, which needs more circuits for open circuit voltage and short circuit current
measurements. In addition, this method does not guarantee to track the global MPP under partial
shading conditions. In reference [25], it is proposed that every PV module is connected to a DC–DC
converter (PV power optimizer) so that each PV module will work on the MPP, and the total PV array
output power could be optimized. The main drawback of this arrangement is the high cost of the
PV system.

Artificial intelligence (AI)-based MPPT algorithms are proposed in [26–29], which include particle
swarm optimization (PSO), ant colony, and firefly algorithms. The PSO algorithm is popular for MPPT
because of its simplicity of the mathematical structure and implementation [30,31].

Several PSO-based MPPT algorithms [32,33] have been developed for PV systems to resolve the
multiple local MPP problems. However, as claimed in [34], one particular issue of the PSO based MPPT
algorithm is the long tracking time toward the MPP within large search spaces. A hybrid PSO-based
MPPT was proposed to identify the global MPP in several nearby peaks [35]. A simplified PSO-based
MPPT algorithm is proposed in [36] to simplify the search approach. However, in the abovementioned
PSO-based MPPT algorithms, the global MPP searching restarting issue is not discussed, which is
required when the shading patterns change.

This paper proposes an accelerated PSO (APSO) based MPPT algorithm. The particle with
the highest fitness value (PV power) is perturbed by a P&O MPPT algorithm to search for the
global MPP so that the best particle moves faster to the global MPP, and at the same time attracts
the remaining particles to converge toward it more quickly. Hence, the search time needed for
convergence could be significantly reduced. Additionally, there is no need to add any constraint on
the optimal particle velocity. The proposed strategy can improve MPPT effectiveness without adding
any additional complexity.

The rest of this paper is organized as follows. The standard PSO strategy is briefly introduced
in Section 2. Section 3 subsequently describes the proposed APSO approach. Experimental results of



Energies 2019, 12, 623 3 of 18

using the proposed algorithm and other MPPT algorithms are presented and compared in Section 4.
Finally, conclusions are given in Section 5.

2. Overview of Particle Swarm Optimization Algorithm

In 1995, Eberhart and Kennedy first proposed particle swarm optimization (PSO) algorithm,
which was motivated by bird flocking and fish schooling [33] to deal with issues where the best
solution can be represented in point or on a surface in a dimensional space. Numerous particles
(agents) are employed in PSO algorithm, and each agent can share the information within their own
search process. There are two basic rules need to be followed by each particle: tracking the most
effective performing particle, and determining the optimum conditions acquired by the particle itself.

By following the above two rules, each particle can eventually progress to the optimal solution.
The following two equations can be used to characterize the standard PSO method:

θk+1
i = wθk

i + c1r1

[
Pbest − Xk

i ]+c2r2[Gbest − Xk
i

]
(1)

Xk+1
i = Xk

i + θk+1
i (2)

where Xk
i is the position of the particle i, and θk

i represents its velocity. The iteration number is denoated
by k, and w is the inertia weight. r1 and r2 are random values distributed within [0, 1], and the cognitive
and social coefficients are described by c1 and c2, respectively. Pbest is used to store the best experience
by the particle itself, and the best position of all particles is kept in Gbest.

For a DC to DC power converter, assuming the output voltage is a constant, the input voltage
(i.e., PV voltage) can be calculated from the output voltage Vo and the duty cycle d. For example, for a
Boost converter used in this research, the input voltage can be calculated as:

Vin = Vo × (1 − d) (3)

Therefore, to apply PSO algorithm in PV applications, the particle position (Xk
i ) in Equations (1)

and (2) can be considered as the duty cycle (dk
i ) of the PV converter, while the velocity (θk

i ) can be
considered as the change of the duty cycle (∆dk

i ). Therefore, PSO method for MPPT can be expressed
by Equations (4) and (5):

∆dk+1
i = w∆dk

i + c1r1

[
Pbest − dk

i

]
+ c2r2

[
Gbest − dk

i

]
(4)

dk+1
i = dk

i + ∆dk+1
i (5)

The change of the duty cycle ∆dk
i is influenced by two variables: the best solution founded by

the particle itself (Pbest), and the best solution in the entire population (Gbest). If the current duty cycle
dk

i is far away from these two values, it will be updated by a large velocity. When the condition in
Equation (7) is satisfied, Pbest in Equation (6) will be updated; otherwise, Pbest retains its present value.
Then, the fitness value of each particle will be evaluated to see if Gbest value needs to be updated.

Pbest = dk
i (6)

f
(

dk
i

)
> f (Pbest) (7)

where f is the objective function that should be maximized.
The flowchart of the standard PSO algorithm is shown in Figure 2, and each step is described

as follows:

Step 1: Initialize the particles randomly in the search space.
Step 2: Evaluate the fitness value of each particle by sending the candidate solution to the

objective function.
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Step 3: Update Pbest and Gbest.
Step 4: Update the position and velocity of each particle.
Step 5: Re-initialize the PSO algorithm unless the constrain is met. In other words, the algorithm

stops when the Gbest is founded.
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Figure 2. Flowchart of the standard particle swarm optimization (PSO) method.

Figure 3 shows how a standard PSO algorithm scan the P–V curve of a PV module to find the
global maximum power point under partial shading conditions. The P–V curve in Figure 3 has three
local MPPs. Firstly, three initial duty cycles (particles) are given as follow: X1 = 0.2, X2 =0.5, X3 = 0.8.
The output PV power is selected as the fitness function value to be maximized.

The PSO algorithm operates the PV Boost converter under these three duty cycles (position of
particles), and the PV voltage and PV current can be measured for each duty cycle. Then, the PV output
power (fitness value) can be calculated. The particle X2 is served as Gbest because it has the highest
PV output power (as shown in Figure 3a). The velocity ∆dk+1

i and position dk+1
i of each particle is

updated accordingly after the first iteration.
After updating three duty cycle values, new PV output power for each duty cycle can be obtained

in the second iteration. As shown in Figure 3b, it can be seen that X2 is still the best particle. It is
worth noting that as soon as the particles move to Gbest, the velocity becomes smaller. Since all duty
cycles achieve higher PV output power, the velocity direction of these particles remains unchanged
and moved to Gbest. After several interactions, it can be observed that all particles reach global MPP
(GMPP) after several iterations, as shown in Figure 3c.
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global maximum power point (GMPP).

3. Proposed Accelerated PSO Algorithm

As discussed in Section 2, the PV power converter pulse width modulation (PWM) duty cycle d is
selected to represent the particle position in the proposed APSO algorithm, and the output power of
the PV array is selected as the fitness function value.

The flowchart of the proposed APSO algorithm is shown in Figure 4, and the main steps are
discussed in detail as follow:

Step 1 (Parameter Selection): The number of particles is three. A complete optimization analysis has
been done in [24], and it claimed that three particles deliver the best performance.

Step 2 (APSO Initialization): In the proposed APSO algorithm, the particles are placed on fixed
positions. The first particle is set as 10% of the PV open circuit voltage (Voc), the third particle
is set as 90% of Voc. The first and third particles defined the PSO search space. The second
particle is randomly set between 10% and 90% of Voc.

Step 3 (Fitness Evaluation): The purpose of the PSO-based MPPT method is to maximize the PV
output power. PV voltage and current are measured to compute the PV output power as the
fitness value for evaluation.

Step 4 (Update the Global Value): The particle which has the best fitness value is selected as the Gbest.
In conventional PSO-based MPPT algorithms, Gbest is usually fixed. In this proposed APSO
method, P&O MPPT algorithm is used to directly perturb the Gbest to accelerate the global
MPP searching, so that Gbest will be moved towards a higher fitness value. In conventional
PSO-based MPPT algorithms, the velocity of the particle is reducing when the particle is
moving toward the Gbest. In this proposed APSO method, Gbest can move to a higher fitness
value via P&O algorithm, and simultaneously attracts the remaining particle more rapidly to
converge toward it. Therefore, the convergence time could be decreased.

Also, in this proposed APSO method, there is no need to search for local best Pbest. So, Equation (4)
can be modified to (8), and the convergence of the algorithm only depends on the Gbest. Furthermore,
the new equation will reduce the calculation complexity.

∆dk+1
i = w∆dk

i + β
[

Gbest − dk
i

]
(8)

where β = 0.1–0.7, which is the coefficient.
So, the new particle position can be determined as Equation (9):

dk+1
i = w∆dk

i + (1 − β)dk
i + βGbest (9)

Step 5 (Update the Velocity and Position of Each Particle): Once all the particles are assessed,
the position and velocity of each particle need to be updated.
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Step 6 (Convergence Determination): Two convergence criteria will be examined in this step. If the
particle’s velocity becomes lower than a set value or if the maximum iteration number is
reached, the algorithm computation will be stopped, and the global MPP is found.

Step 7 (Re-initialization): The global MPP position frequently changes with the environmental
conditions. This requires the APSO algorithm to be reinitialized and search for the new
global MPP. In this research, Equation (10) is used to identify the environmental conditions
changes and reinitialize the APSO algorithm.

PPV, new − PPV, last

PPV, last
> ∆P(%) (10)
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Figure 4. Flowchart of the proposed accelerated PSO (APSO) algorithm.

The operating principle of the proposed APSO algorithm is demonstrated in Figure 5. Three
PWM duty cycles (particles) of the PV power converter were selected, as shown in Figure 5a. The first
and third particles defined the MPP searching range of APSO method. Then, the fitness function
value (PV output power) of all the three particles is evaluated. Then, one optimal duty cycle (Gbest) is
identified, say at X2 = 0.60. During the first iteration, particles X1 and X3 followed the optimal particle
position X2 to arrive at their new location for the next iteration. X2 represents the particle with the
highest fitness value (Gbest). P&O algorithm is employed to move X2 toward the global MPP. By end of
this iteration, X2 value is also updated, as shown in Figure 5b. The particles position and velocity of
the three particles are updated via more iterations.

It is observed that the proposed method identifies the GMPP at the end of the second iteration (X2

= 0.52) as shown in Figure 5c. This process continues until particles X1 and X3 reach the global MPP as
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illustrated in Figure 5d. The proposed APSO algorithm can move the operating point to the global
MPP quicker and has faster convergence speed compared to the conventional PSO algorithm. If a large
change of environmental condition is detected, the particles (duty cycles) will be re-initialized, and the
APSO algorithm is run again to search for the new global MPP.
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4. Experimental Results

4.1. Experimental Setup Configuration

The performance of the proposed APSO method is verified experimentally. The experimental
setup is shown in Figures 6 and 7, which includes a PV simulator (Chroma 62050H-600S Programmable
DC Power Supply) as the PV source, four 12 V VRLA batteries as the energy storage, and a 200 W
Boost converter as the PV power converter. The proposed APSO method was implemented in a
TMS320F28335 microcontroller. The PV simulator can mimic the behavior of PV array exposed to
various shading patterns, as shown in Figure 1.

4.2. Setting the Parameter Values of the Particle Swarm Optimization Algorithm

The parameters of MPPT methods in comparison study are shown in Table 1. They are determined
through offline simulation. The search starting point for P&O algorithm is set as the duty cycle of 0.2.

Table 1. Parameters of MPPT methods in comparison study.

Parameter P&O PSO Proposed APSO

Number of Particles d = 0.2 3 3
w ∆d = 0.01 0.4 —
c1 — 1.2 —
c2 — 1.4 —
β — — 0.1–0.7

Sampling time 0.12 s 0.12 s 0.12 s
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4.3. Case Studies

To evaluate the proposed APSO algorithm and compare it with different MPPT algorithms under
various shading patterns, three test scenarios have been defined in this study. In the experiments, the
voltage and current are measured through the oscilloscope readings. The voltage measurement Vm has
a typical uncertainty ∆Vm of ±0.3 V, and the current measurement Im has a typical uncertainty ∆Im of
±10 mA. The power measurement uncertainty ∆Pm can be obtained by:

∆Pm ∼= Vm∆Im + Im∆Vm (11)

In this research, the typical power measurement uncertainty is between ±0.5 to ±1.0 W.
Scenario 1: PV output has three MPPs, and the GMPP occurs in the middle at V = 23 V, as shown

in Figure 8. The experiment results of the voltage, current, and power waveforms for this scenario are
shown in Figure 9. It was noticed that the proposed APSO algorithm reached the GMPP in 2.4 s with
PV output power 40.56 W (Figure 9a). The conventional PSO algorithm took longer time with 4.6 s and
GMPP is about 39.44 W (Figure 9b). On the other hand, it takes 3.2 s to reach GMPP using Simplified
PSO method in [36] with PV output power 40.37 W (Figure 9c). However, the P&O algorithm got
trapped at the right local MPP with 35.87 W (Figure 9d). Also, the oscillation can be observable in
this method. From the experiment results, it is clearly that the proposed APSO method has a quicker
convergence speed than the standard PSO algorithm.
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Scenario 2: In this scenario, PV output has three MPPs, and the GMPP occurs in the highest
voltage at V = 32V (As shown in Figure 10). The experiment results for four MPPT algorithms as
described in scenario 2 can be found in Figure 11. It was noticed that the proposed APSO algorithm
rapidly identifies the GMPP in just 1.9 s, and output power is 73.33 W. Standard PSO algorithm was
able to climb to the GMPP within 3 s for the same PV output power. On the other hand, it takes 2.8 s
to track GMPP using Simplified PSO method in [36] with PV output power 70.31 W. In this scenario,
the P&O algorithm can track the GMPP when its initial duty cycle value is set as 0.2, and the output
power is 72.00 W.

It should be noted that whether the P&O algorithm can track the GMPP depends on the search
starting point. For example, if the search starting point is from the duty cycle of 0.6 in this scenario, the
P&O algorithm will not find the GMPP.

Scenario 3: In this scenario, the PV has two MPPs (Figure 12). Four different algorithms were
tested, and the experimental results are shown in Figure 13. The output PV power of the proposed
APSO algorithm is about 76.51 W and reaches GMPP within 2.3 s. On the other hand, the standard PSO
method arrived to the GMPP with convergence time 4.2 s and with 72.17 W. It takes 3.2 s to acquire the
GMPP with Simplified PSO method [36] and PV output power is about 76.39 W. The P&O method got
caught in one of the local MPPs and PV output power is about 44.1 W.
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40.76 

99 

97 
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Table 2 summarized the comparison experimental results of four MPPT algorithm.

Table 2. Summary of Comparison results of APSO, PSO, simplified PSO in [36], and P&O methods in
terms of power tracked, efficiency, and tracking time.

Shading
Scenario Method Vmpp (V) Impp (A) Pmpp (W) Rated

Power (W)
Efficiency

(%)
Tracking
Time (s)

Scenario (1)

APSO 23.54 1.72 40.56

40.76

99 2.4
PSO 22.55 1.75 39.44 97 4.6

PSO [36] 23.45 1.72 40.37 99 3.2
P&O 30.89 1.16 35.87 76 1.1

Scenario (2)

APSO 31.54 2.32 73.33

73.62

99 1.9
PSO 31.54 2.3 73.33 99 3

PSO [36] 31.44 2.23 70.31 96 2.8
P&O 32.24 2.233 72.00 98 1.9

Scenario (3)

APSO 22.01 3.47 76.51

76.53

99 2.3
PSO 22.07 3.27 72.17 94 4.2

PSO [36] 21.95 3.48 76.39 99 3.2
P&O 31.31 1.41 44.1 58 1.2

4.4. Test under Partial Shading Variations

The proposed APSO was also tested under the variation of partial shading patterns. In this
experiment, the shaded pattern is changed from scenario 3 to scenario 2 and then to scenario 1.
Figure 14a–d show the experiment results of the proposed APSO, PSO, Simplified PSO in [36], and
P&O MPPT, respectively. After detecting the occurrence of partial shading, P&O reaches the GMPP
rapidly (scenario 2). However, it got trapped in one of the local MPPs once the shaded pattern was
changed from scenario 2 to scenario 1. The experiment results show that the proposed APSO algorithm
is very sensitive to any variation in shaded patterns. On the other hand, the standard PSO algorithm
suffers from large oscillation before it reaches the MPP. Moreover, its convergence time is longer than
the proposed APSO algorithm. The experiment results indicate that the proposed APSO can track
GMPP successfully within a shorter time and exhibit lower oscillations during the transients than the
standard PSO algorithm.
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5. Conclusions

This paper presents an accelerated particle-swarm-optimization-based MPPT technique to track
the global MPP for a PV system under partial shading conditions. The proposed algorithm has a
combination of PSO and P&O MPPT algorithms to accelerate the MPP searching, and it is verified
through experiments under various partial shading conditions. According to the experiment results,
the proposed APSO algorithm can clearly distinguish the GMPP from local MPPs in all test scenarios,
including the change of shading patterns. Compared to the conventional PSO algorithm, the proposed
algorithm offers higher convergence speed and better dynamic response.
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