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The magnetic structure (including domanization) of a thin ferromagnetic film in contact with a

rigid antiferromagnet is investigated under the assumption that the interface is rough and

contains individual atomic steps of different signs, isolated “dipole of the steps,” and a

space-ordered periodic system of steps of alternate signs. VC 2011 American Institute of Physics.

[doi: 10.1063/1.3671860]

The problem of coexistence of ferromagnetic (FM) and

antiferromagnetic (AFM) phases first occurred in the study

of Co/CoO alloys1 and was first investigated theoretically

in 1962.2 Currently due to the practical use of the giant

magnetoresistance phenomenon in the information reading

elements magnetic multilayer FM/AFM nanosystems are

widely investigated. As a rule, in the theoretical description

of the interface simple classical models of magnets in the

exchange approximation are used, and layers of a thickness

of several interatomic distances are considered.3,4 Special

attention is drawn to the “exchange bias” (EB) of these

systems.5,6 Some experimentally observed features of this

phenomenon, that have been observed experimentally,7

have been investigated theoretically in the previous

works.8,9 These features were considered to be related to the

emergence of inhomogeneous states in the FM subsystem

of unfilled domain boundaries (DB), parallel to the inter-

faces. At the same time, it was suggested that AFM is

“magnetically rigid” and layered, and the ordered layers are

parallel to the interface. Thus, it was believed that the inter-

face is uncompensated, and the local field, applied from the

AFM side on the FM subsystem, leads to EB. However,

in some experiments EB was observed in a compensated

interface (for example, in the case of AFM ordered in a

“checkered” pattern). Numerical experiments would point to

the fact that in this case inhomogeneous states of the DB

type appear and are oriented perpendicular to the interface.

In this work it is shown that this phenomenon is possible in

the case of a layered AFM as a result of roughness of the

interface. This roughness can be modeled by a sequence of

atomic steps of alternating signs on the interface. As shown

previously,10–12 every such step is related to a “half-

vortices” type disturbance that turns into a DB, perpendicu-

lar to the interface, in the magnetic structure of the FM.

I. THE MAGNETIC STRUCTURE OF FERROMAGNETIC
FILMS IN CONTACT WITH THE AFM IN THE PRESENCE OF
ATOMIC STEPS AT THE INTERFACE

Let us consider the continuous model of a FM film of

thickness h� a (where a is interatomic distance) in contact

with a rigid layered AFM (consider the orientation of AFM

magnetic moments to be fixed). Presence of large easy-plane

anisotropy, “shaping” the magnetic moments into a plane, is

assumed. In this plane their orientation is defined only by

their angle of rotation u(x, z) (scalar model) in the easy

plane, where x is the coordinate running along the interface,

and z is the perpendicular one. In the case of isotropy of

magnetic properties in the easy plane redistribution of mag-

netization has the form of a magnetic vortex (Fig. 1(a)),

while if magnetic anisotropy in the easy plane is considered

(biaxial magnetic) this distribution is transformed into a DB,

perpendicular to the interface (Fig. 1(b)).

In the isotropic case in the long wavelength limit,

when the exchange energy can be expressed as Eex

¼
Ð

dxdzðJ=2ÞðruÞ2, magnetization distribution is defined

by the Laplace equation:

@2u
@x2
þ @

2u
@z2
¼ 0; z < 0; (1)

supplemented by boundary conditions on the surface of a

ferromagnetic @u=@zjz¼�h¼ 0 and a condition at the inter-

face. Since we assume that exchange interaction through the

interface, which is characterized by exchange constant J0,

has the same order as exchange interaction in the bulk FM

with a constant J, then just the quadratic terms can be left in

the interaction energy through the interface, and the bound-

ary condition can be written as

@u
@z

����
z¼0

¼ � J0

Ja
ðu0ðxÞ � ~uðxÞÞ; (2)

where u0(x) is the distribution of magnetization on the

interface in a FM, and ~uðxÞ is the fixed distribution of mag-

netization on the interface in an AFM. As ~uðxÞ it is conven-

ient to select function ~uðxÞ¼ 2arctg exp(lx) with l �1/a (let

l¼ 2/pa). ((In the limit l ! 1 we have ~uðxÞ¼ph(x),

where h(x) is a step function.) We now turn to a new field

variable u(x,z)¼ @u/@x, for which Eq. (1) and the boundary

condition at the free boundary retain their form, and in the

boundary condition (2) for @u/@z and u0 instead of ~uðxÞ there

is the function g(x)¼l/ch(lx), that transforms into d(x) in

the limit l!1.

In terms of the variable u(x,z) solution of Eq. (1), satisfy-

ing the boundary conditions at the free boundary of the FM,

has the form
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uðx; zÞ ¼
ð1

0

dk chkðzþ hÞ cosðkxÞuðkÞ: (3)

Substituting Eq. (3) into the boundary condition on the inter-

face we obtain the final expression for the distribution of

magnetization in the FM:

uðx; zÞ ¼
ð1

0

cosðkxÞchðkðzþ hÞÞdk
chðekhÞchðkhÞ 1þ eðJa=J0Þkh thðkhÞ½ � ; (4)

where e¼ a/h� 1. In the bulk of the FM (at z� a) x-kernel

of the Fourier transform approximately reduces to the

expression ch(k(h� jzj))/ch(kh) and in this region the solu-

tion takes the form

uðx; zÞ � p
h

cos
p
2

1� jzj
h

� �
ch

p
2

x

h
cos p 1� jzj

h

� �
þ chp

p
h

� ��1

:

(5)

At the free boundary u(x,z¼�h)¼ p/(2hch(px/2h)) and the

magnetization distribution is transformed to

u x; z ¼ �hð Þ � 2arctg exp px=2hð Þ; (6)

and at z! 0 from Eq. (3) we have u! ~u¼ 2arctg exp(px/2a).

Thus, as distance from the interface increases from zero to h
region of localization of magnetization distribution inhomoge-

neity increases from a to h.

Let us consider the effect of additional magnetic anisot-

ropy in the easy plane. Its energy is given by Ean¼ – (b/2)

cos2 u. (It is assumed that the ground state direction of the

easy axis in the plane coincides with the x-axis.) Single-ion

anisotropy constant b, as a rule, is much smaller than the

exchange constant J. Note that in this thin film ferromagnet

an additional easy-plane anisotropy with an effective con-

stant bef¼ 4p emerges due to the magnetic dipole interac-

tion. In view of the magnetic anisotropy equation (1)

transforms to the static two-dimentional sine Gordon

equation:

@2u
@x2
þ @

2u
@z2
� 1

2l2
sin 2u ¼ 0; z < 0; (7)

where
ffiffiffiffiffiffiffiffi
J=b

p
� l is the magnetic length of the ferromagnet.

In the infinite medium solution of this equation for the DB,

parallel to the z-axis, has the form

u ¼ 2arctg exp
x

l

� 	
: (8)

In order to qualitatively analyze the transformation of the

magnetization distribution near the step at the interface

(“half” of the magnetic vortex) in the DB in the bulk of the

ferromagnet, consider the model in which a piecewise para-

bolic function is chosen as the anisotropy energy (piece-wise

linear model of the Klein-Gordon equation): Ean¼ (b/2)u2

when 0<u< p/2 and Ean¼ (b/2)(p�u)2 when p/2<u
<p. Equation (7) is transformed into a static Klein-Gordon

equation:

@2u
@x2
þ @

2u
@z2
� u

l2
¼ 0; z < 0; x < 0; (9)

while Eqs. (3) and (4) are transformed in the following

manner:

uðx; zÞ ¼
ð1

0

dk ch~kðzþ hÞ cosðkxÞuðkÞ

¼
ð1

0

cosðkxÞ chð~kðzþ hÞÞdk

chðekhÞchð~khÞ 1þ eðJa=J0Þ~kh thð~khÞ
h i ; (10)

where ~k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1=l2

q
. At the free boundary of the FM

film when h� a solution has the form uðx; z ¼ �hÞ
�
Ð1

0
dk cos kx sec hð~khÞ: The asymptotics of this expression

at large distances is determined by the Fourier transform for

small values of k. Expanding sec hð~khÞ into a series for small

values of k up to terms �k2, we obtain the asymptotics of

solutions as x!1 (for comparison, asymptotics for an iso-

tropic FM and for DB in an infinite anisotropic ferromagnet

with jzj ¼ h are given below):

u � 2

l
exp � x

l

� 	
; infinite anisotropic ferromagnet; (11)

u � p
h

exp � p
2

x

h

� 	
; film of an isotropic ferromagnet; (12)

u � plffiffiffiffiffi
2h
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ h2
p exp �

ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

l2

x

h

r !
;

film of an anisitropic ferromagnet: (13)

Comparison of these expressions shows that the domain wall

forms at distance l from the step at the interface, while when

FIG. 1. Magnetization distribution in the FM film that is in contact with a

rigid layered AFM in the presence of an atomic step at the interface: in ab-

sence of magnetic anisotropy (a), and when anisotropy is taken into consid-

eration (b).
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jzj< l distribution of magnetization displays vortex charac-

ter. Qualitatively, magnetization distribution in anisotropic

ferromagnetic film is shown in Figure 1(b).

II. THE MAGNETIC STRUCTURE OF A FERROMAGNETIC
FILM IN CONTACT WITH THE AFM IN THE PRESENCE
OF A ROUGH INTERFACE

Consider the simplest model of a rough interface surface

between FM/AFM, in which the heterogeneity of the inter-

face appears as a periodic sequence of atomic steps of alter-

nating sign. We assume that the roughness is weak (low

density of steps) and the distance between the steps L is sig-

nificantly greater than the magnetic length: L� l. In addi-

tion, we assume that the thickness of the FM film h� l, and

in the film of the anisotropic FM domain walls form, which

are related to the steps at the interface. If the steps are of the

same sign s¼ (z0 (x> 0)� z0 (x< 0))/a¼61, where z0 is the

interface coordinate, there are two different magnetization

distributions of the vortex type in its vicinity (see Fig. 2)

with different values of the topological charge r ¼ ð1=2pÞÞ
dvuðvÞ ¼ 61, where v is the azimuthal angle of the step

bypass. Since for a given sign s arbitrary values r¼61 are

possible, an arbitrary alternation of the vortices and antivor-

tices at the interface is also possible. Fig. 3 shows the sim-

plest configurations with a sequence of vortices (Fig. 3(a))

and the regular alternation of vortices and antivortices

(Fig. 3(b)). When vortices are in sequence a regular periodic

sequence of domain boundaries of the same sign, which tre-

pel each other, is formed in the bulk of the FM. Configura-

tion of domain walls (DW), perpendicular to the interface, is

stable. Prom a physicist’s point of view, more interesting is

the case when vortices and antivortices associated with the

steps at the interface alternate periodically. In a strong mag-

netic field applied along the anisotropy axis and a smaller

magnetic field of spin-slope in the AFM, magnetization of

the FM is directed along it everywhere in the bulk. When the

magnitude of the field near the surface is decreased closed

domains form that are bounded by the DB, connecting the

two nearest atomic steps of different signs (see Fig. 4(a)).

Figure shows that this results in formation of the vortex –

antivortex pair. With further decrease in the field magnitude

closed domains “germinate” through the bulk of the FM

film, forming in the zero field a structure, in which the num-

ber of vortices coincides with the number of antivortices, in

particular, of the type shown in Fig. 3(b).

Consider the configuration of the domain structure in a

regular alternation of vortices and antivortices at the FM/

AFM interface. Due to the interaction of the closest DB they

take on a curved shape that is determined by competition of

FIG. 3. Domain structure of the FM film near a step interface: (a) when the

vortex system at the interface is periodic and (b) when vortices and antivor-

tices alternate regularly at the interface.

FIG. 2. Magnetization distribution in FM subsystem near atomic step at the

interface: vortex configuration (V), r¼ 1 (a), and antivortex configuration

(AV), r¼ –1 (b).

FIG. 4. Associated with the surface dipole of an isolated step in the domain

of the FM film: (a) domain in an external magnetic field with a trailing do-

main boundary (DB), connecting the vortex and antivortex at the interface,

and (b) domain in the absence of external field in the case when h� L.
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attraction energies between DBs and the change in energy of

DB itself due to an increase in its length. As you know,

parallel domain walls of different signs attract and their

attractive energy (per unit of length of DB) is equal to

Eint¼�E0/ch2 (DX/2l), where DX is the distance between

DBs,13 and decreases exponentially at large distances:

Eint��4E0 exp(�DX/l), where E0 ¼ 2
ffiffiffiffiffi
Jb
p

is the unit of

length of DB. Since the attractive energy quickly decreases

with increasing distance, it is natural to assume that

for curved DBs in the given equation the following sub-

stitution can be made: DX!DX(z). Let us check this

assumption.

We compute the interaction of weakly curved DBs. We

use the piecewise parabolic model for the magnetic aniso-

tropic energy. In this model an isolated domain wall, ori-

ented along the z-axis and having slight deviations X(z) from

the main straight-line state of its center along the x-axis, is

described by Eq. (9), defined for the entire axis �1< x<1
and containing on the right side the following expression: ph
(X(z) – x)/l2. Function u¼ du/dx introduced earlier also sat-

isfies the static Klein-Gordon equation with the d-function

on the right side:

@2u

@x2
þ @

2u

@z2
� u

l2
¼ p

l2
dðXðzÞ � xÞ: (14)

The Green’s function of this equation in an infinite system is

well known:

Gðx� x0; z� z0Þ ¼ 2K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðz� z0Þ2

q
=l

� �
;

where K0(p) is the modified Bessel function. Because it

decreases exponentially rapidly with distance, then, neglect-

ing the edge effects at distances dz� l from the boundaries,

magnetization deformation caused by the curved DB at large

distances can be approximately represented as

uðx; zÞ �
ffiffiffi
p
p

2l
ffiffiffiffi
2l
p

ðh

0

dz0ððx� Xðz0ÞÞ2 þ ðz� z0Þ2Þ�1=4

� exp � 1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� Xðz0ÞÞ2 þ ðz� z0Þ2

q� �
: (15)

Let us calculate the interaction energy between two slightly-

curved DBs of different signs, found at average distance L
from each other. If u1,2 are magnetization fields of two

walls, then energy of their interaction is equal to

Eint ¼ 2J

ðh

0

dz2

ð
dxððdu1=dxÞðdu2=dxÞ þ u1u2=l2Þ;

where integration is carried out near the second wall. For

magnetization of the second DB we can approximately take

the function: u2¼ 0 when x> LþX2(z2)þ l/2, u2¼ p when

x< LþX2(z2) – l/2, and u2¼�(x – L – X2(z2))p/lþ p/2 when

–l/2< x – L – X2< l/2. Then, subject to the natural inequal-

ities L� l and L�X2(z2)�X1(z1)� l, where Xn(zn) are

coordinates of DB centers at point zn, at an arbitrary ratio of

parameters L and h interaction energy of two DBs is reduced

to the expression

Eint � �E0

p
ffiffiffi
p
p

4
ffiffiffi
2
p 1ffiffiffiffiffi

lL
p

ðh

0

dz1

ðh

0

dz2

� exp � 1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ X2ðz2Þ � X1ðz1ÞÞ2 þ ðz2 � z1Þ2

q
 �
:

(16)

The exponent in this formula decreases by e times at

z2 – z1� 2Ll, and the terms in the radicans are of the order of

magnitude of L2, L(X2�X1) and Ll. Therefore, when

inequalities above are true, energy Eq. (16) takes the form

Eint � �ðp=2Þ2E0

ð
dz exp½�ðL� 2XðzÞÞ=l�:

Since L� 2X(z)¼DX(z) (and DX(z) is the distance between

DBs) in the case of parallel linear dislocations,

this expression agrees qualitatively with the above. (It is

considered that because of symmetry considerations X2(z)

¼�X1(z).) The difference by a factor of 1.5 between the

numerical coefficients is due to the use of different models:

the sine Gordon model and the piecewise linear model of the

Klein-Gordon equation. In the case of correct alternation of

the vortex and antivortex features at the interface distances

between the DBs at a fixed value of z equal to L 6 2X(z), and

the estimated energy per DB is:

Eint � �2E0

ðh

0

dz exp � L

l

� �
ch

2XðzÞ
l

: (17)

Length of the curved DB is

k ¼
ðh

0

dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdXðzÞ=dzÞ2

q
;

and excess energy is determined by the formula

Ecur �
E0

2

ðh

0

dz
dXðzÞ

dz

� �2

: (18)

Thus, the total additional energy of one DB of the periodic

domain structure associated with the bending of the DB

equals to

DE � E0

ðh

0

dz
1

2

dX

dz

� �2

�2 exp � L

l

� �
ch 2

X

l

� �" #
; (19)

and the corresponding equation for the shape of the curved

DB has the form

d2X

dz2
þ 4

l
e�L=lsh 2

X

l

� �
¼ 0 (20)

with the boundary conditions at the boundaries of the FM

film: Xjz¼0¼ 0; dX=dzjz¼�h¼ 0: Equation (20) has the follow-

ing solution that satisfies the specified boundary conditions:

XðzÞ ¼ l Arc ch 1=dn
z

h
KðkÞ; k

� 	� 	
; (21)

where dn(p,k) is the Jacobi elliptic function, K(k) is the com-

plete elliptic integral of the first kind, and the modulus of the

elliptic function k is defined by the equation
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

KðkÞ ¼ 2
ffiffiffi
2
p h

l
exp � L

2l

� �
(22)

and is associated with maximal displacement of the DB at

the free boundary of ferromagnetic films: k¼ th(X(h)/l).
From the latter we see that for X(h)� l the modulus of

the elliptic function k� 1 and k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

� 1: The entire

curve of the DB is concentrated in the area Dz� hl/
X(h)¼ l exp(L/2l)� h, which is significantly greater that the

thickness of the layer near the interface dz� l, where trans-

formation of the magnetization vortex distribution into a

formed DB occurs. In the most fascinating from a physicist’s

point of view case, when l�X(h)� L and the effect of DB

bending manifests itself, but the shift is small compared to

the distance between the walls, there is the following restric-

tion on the thickness of the FM film: l exp(L/2l)� h� L
exp(L/2l). When these inequalities are true, the solution

of Eq. (21) in a narrow region near the boundary z< l is

approximately reduced to a linear dependence X(z)�
zX(h)/h, then near Dz a fast access to the limiting value

X(h)� h exp(�L/2l) is observed. (The deviation from

this value in the bulk of the FM plate is insignificant:

X(z)�X(h)� (X(h)2/2l) (z/h� 1)2 and will not be taken into

account here.) Despite the fact that the average internal field

acting on the FM film from the direction of the AFM surface

is zero, the average magnetization of the FM subsystem is

different from zero. It is double-degenerate in direction and

is (on average per unit length of the FM film) equals

M � M0h2exp �L=2lð Þ: (23)

In reality, the FM film should be broken into superdomains

with different directions of the average magnetization in

each of them. At the docking of superdomains correct alter-

nation of vortices and antivortices is disturbed and vortex/

vortex or antivortex/antivortex pairs are formed.

III. MAGNETIC STRUCTURE OF A FM HAVING A STEPWISE
DIPOLE WITH S1,2 5 61 AT THE INTERFACE

When periodicity in distribution of atomic steps at the

interface is disturbed pairs of steps of different signs that are

most closely spaced from each other form stepwise dipoles

that weakly interact with other dipoles (Fig. 4(b)), and a

problem of the structure associated with the dipole of the

two DBs emerges. In the case of a stepwise dipole at the

FM/AFM interface a pair of gravitating DBs with opposite

topological charges emerges in the FM. For this configura-

tion it is easy to find an exact solution of Eq. (7). Note that it

is not an exact solution of the original problem, since it does

not take into account the boundary conditions (2) and vortex

magnetization distribution near the atomic step and does not

contain the constant for the exchange interaction through the

interface. However, the distribution of the magnetic

moments in the thickness on the order of magnetic length

correctly describes the true distribution qualitatively.) If we

move to a new field variable u¼ u/2 and new “coordinates”

x¼ ln, z¼ ils we get the well known sinusoidal Klein-

Gordon equation (SGE) uss� unnþ sin u¼ 0.14 Solution of

Eq. (7) for interacting DBs corresponds to a fixed bion

solution of SGE,15 which translates into the following

expression:

u ¼ 2arctg

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

�

chð�ðzþ hÞ=l

chð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

x=lÞ

 !
; (24)

where the parameter of solution � is determined by the

boundary condition at z¼ 0 and satisfies the equation

� chð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

L=2lÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

chð�h=lÞ (25)

where L is the distance between the fixed DBs at the inter-

face at z¼ 0. (Solution of Eq. (24) automatically satisfies the

condition at z¼ –h.) The position of domain boundaries is

defined by the condition u¼p/2, and according to the solu-

tion of Eq. (24) is determined by the equation

� ch
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p L� 2XðzÞ

2l

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

ch �
zþ h

l

� �
: (26)

Consider the case where the size of the step dipole at the

interface is significantly less than the thickness of the FM

film: L� h. (However, the film has to remain thin enough

(ln(h/l)< L/l) to avoid formation of closed domains of the

type shown in Fig. 4(a)). As will be shown, in this case dis-

placements of the DBs X(z¼�h)¼X0 are on the order of

magnitude of the step size of the dipole X0� L. In this case it

follows from the boundary conditions that ��X0/h� 1 and

from the relationship (25) it follows that

X0 ¼ L=2� l ln h=lð Þ; (27)

and the equation for the shape of the DB becomes

XðzÞ � L

2
� l ln

h

l

� �
� X0

zþ h

h
: (28)

This formula is valid in the entire volume of the FM film

except in the narrow range dz� h(l/X0)� h near the free sur-

face of the film, in which formula (28) is modified as

follows:

XðzÞ � X0 1� 1

2

X0

l

� �
zþ h

h

� �2
" #

; (29)

which corresponds to the formulated boundary conditions.

To calculate the total change in magnetization associated

with the presence of a surface dipole step, expression (28)

can be used, which gives a value of

dM ¼ M0hL 1þ 2
l

L
ln

h

L

� �
: (30)

IV. CONCLUSION

Under investigation was the distribution of magnetiza-

tion field in the ferromagnetic layer in contact with a rigid

antiferromagnet with a rough interface surface that is mod-

eled by a sequence of atomic steps of alternating signs. The

cases of an isolated step associated with a magnetic vortex
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(in the absence of anisotropy in the plane of easy magnetiza-

tion of a FM) or DB (taking into account this anisotropy),

step surface dipole (isolated pair of steps of different signs in

the FM/AFM interface plane), and periodic system of alter-

nating surface steps with alternating steps are considered.

The change in FM magnetization associated with the rough-

ness of the DB is calculated.
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