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The influence of magnetic anisotropy of a ferromagnetic film on the phenomenon of exchange bias

is studied here. Hysteresis behavior in the two-spin model of a ferro/antiferromagnetic (FM/AFM)

bilayer with exchange bias has been investigated in detail. In this model a half-space of an AFM

with fixed magnetic configuration comes in contact with a two-layer FM film. Twelve different

types of magnetization curves M(H) (both with and without hysteresis) have been found. Some

of the M(H) curves demonstrate unusual features, such as plateaus and inclined segments. The

hysteresis loop becomes asymmetric if surface anisotropy is taken into account. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4758774]

Introduction

Layered ferro/antiferromagnetic (FM/AFM) systems are

important objects for the read/write heads of modern data

storage devices. They demonstrate the exchange bias

effect,1–3 which takes place in the shift of the hysteresis loop

from the H¼ 0 position: M(H) 6¼�M(�H) after field cool-

ing. At the same time, coercivity is increased greatly. In

recent experiments4,5 asymmetric hysteresis loops, inclined

segments of the M¼M(H) curves, and horizontal plateaus

(steps) in the M(H) curves were observed. This complicated

behavior is not caused by the kinetics of magnetization re-

versal (by the finite rate of field change in the experiment),

but is apparently caused by certain nonuniform and nonco-

linear (canted) states of the magnetic layers. This correlates

with the fact that all modern theories of the exchange bias

phenomenon6–10 involve nonuniform states (domain walls or

incomplete domain walls) and/or interface roughness to

explain many peculiar features of this phenomenon.

In our previous works11,12 two simple theoretical models

of the FM/AFM bilayer with exchange bias (the “two-spin

model” and the “continuous model”) were proposed. In par-

ticular, the two-spin model is the simplest possible model,

which allows nonuniform magnetic states. Despite simplicity,

it can qualitatively explain many features of the exchange

bias phenomenon. All possible magnetic structures of the

two-spin model were found in Ref. 11; however, the detailed

study of the hysteresis phenomenon was beyond the scope of

the previous paper. The properties of the domain walls in a

bilayer FM/AFM system with imperfect interface and their

connection with the exchange bias phenomenon were dis-

cussed in Ref. 13.

The goal of the present paper is to determine all possible

types of the M(H) curves (all shapes of the hysteresis loops

and the magnetization reversal without hysteresis), which

arise in the two-spin model. This paper is organized as fol-

lows. Chapter 1 defines the two-spin model. Chapter 2 exam-

ines the regions of stability of different collinear phases and

presents the mechanism of the onset of hysteresis. Chapter 3

lists all types of M(H) curves and defines the corresponding

regions in the plane defined by the system parameters.

Chapter 4 examines the hysteresis in the two-spin model in

yet more detail. Chapter 5 briefly examines the case where

the anisotropy constants are different for two FM layers

(which simulates surface anisotropy). Chapter 5 is followed

by the conclusion.

1. Model

The present paper uses the two-spin model introduced in

Ref. 11. Consider a FM/AFM bilayer consisting of a mag-

netic hard AFM subsystem, in which all magnetic moments

are fixed and do not rotate during field reversal, and a FM

subsystem consisting of two magnetic layers. (In Ref. 12 it

was demonstrated that many features of field dependencies

of magnetization in the two-layer model and the continuous

model of thin FM layer are the same after renormalization of

exchange interaction constants. On the other hand, perhaps

the two-layer system represents a particular case pertaining

to the problem. In any case this model can be used for the

description of real two-layer films studied experimentally.)

The magnetic state is determined by the rotation angles ui of

the magnetization vectors in the easy plane. In addition, a

weak easy-axis anisotropy in this plane is taken into account.

It is also assumed that the external magnetic field is directed

along the easy axis. The magnetic state of the system is

assumed to be uniform along the interface. The energy of the

systems is

E ¼� J0 cos u1 � J cos ðu1 � u2Þ �
b1

2
cos2 u1

� b2

2
cos2 u2 � Hðcos u1 þ cos u2Þ; (1)

where J0 represents the exchange interaction across the inter-

face (FM–AFM exchange, assumed to be ferromagnetic), J
is the exchange interaction between two FM layers, bi are

the anisotropy constants for the two FM layers, and H is the

external magnetic field. Indices 1 and 2 correspond to the

layer adjacent to the interface and the second FM layer (on

the free boundary of the FM), respectively. The possible

equilibrium states are given by the equations @E/@ui¼ 0,

i¼ 1, 2, namely:
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ðHþ J0Þsinu1þ J sinðu1�u2Þ þ b1 sinu1 cosu1 ¼ 0; (2)

H sin u2 þ J sinðu2 � u1Þ þ b2 sin u2 cos u2 ¼ 0: (3)

First we note that the collinear structures ("" and ##
phases, u1¼u2¼ 0, p) with vectors Mi parallel to each

other and parallel or antiparallel to the direction of the mag-

netic field, respectively, are solutions of Eqs. (2) and (3).

The solutions with antiparallel directions of the vectors Mi

("# and #" phases) also exist. In Secs. 1–4, we consider the

case of equal anisotropy constants for the two FM layers:

b1¼b2¼ b (the case b1 6¼b2 is studied in Sec. 5). Upon cer-

tain conditions there also exists a canted (noncollinear) solu-

tion of Eqs. (2) and (3) with ui 6¼ 0, p. This is the two-spin

equivalent of the “incomplete domain wall” object discussed

in the exchange bias literature. In the presence of anisotropy

(even for b1¼b2) the canted solutions ui¼ui (H) cannot be

found analytically. It is easy to show that the magnetization

curve M(H) for b1¼b2 is antisymmetric with respect to the

exchange bias field H¼�J0/2. (Energy (1) is invariant under

the transformation /i! p � /i, H!�J0 � H.) The hyster-

esis loop possessing this symmetry is called “symmetric hys-

teresis loop” in the exchange bias literature, and the opposite

is the “asymmetric hysteresis loop” (see Sec. 5).

2. The boundaries of the hysteresis loop

In our previous work11 the transformation of the collin-

ear "" phase (u1¼u2¼ 0) to the canted phase was consid-

ered. This transition corresponds to the bifurcation of the

solution u1¼u2¼ 0. In vicinity of the bifurcation point

there are canted solutions of Eqs. (2) and (3) that are infini-

tesimally close to the collinear phase. In order to find this

point we linearize Eqs. (2) and (3) with respect to the angles

ui and look for the nonzero solutions of the linearized equa-

tions. This gives the bifurcation field

H"" ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2

0 þ 4J2

q
� ðJ0 þ 2JÞ

� ��
2� b: (4)

It is marked in Fig. 1 as point (a).

In the absence of hysteresis (see below) the "" phase is

stable for H>H"", while for H<H"" the canted phase is sta-

ble. When hysteresis is present, however (as shown in Fig. 1),

H"" gives the lower boundary on the hysteresis loop, and the

canted phase is stable even for H>H"".
The dynamical stability of any given structure (collinear

or canted) is determined by the Hessian of the potential

energy surface E¼E(u1, u2), i.e.,

K ¼ @2E

@u2
1

@2E

@u2
2

� @2H

@u1@u2

� �2

: (5)

The structure in question is stable for K> 0, which cor-

responds to the minimum of potential energy. At the saddle

point of potential energy surface (K¼ 0) the structure loses

stability. For the collinear "" phase

K ¼ ðH þ bÞ ðH þ J0 þ bÞ þ Jð2H þ J0 þ 2bÞ; (6)

and, by comparing with Eq. (4), we obtain the expected

result that it loses stability exactly at the bifurcation point.

Analysis of the stability of the ## phase ( u1,2¼p) can

be done in a similar way, and the result is

H## ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2

0 þ 4J2

q
þ 2J0 � J0

� ��
2þ b: (7)

The antiparallel phase "# (u1¼ 0, u2¼ p) corresponds to the

plateau (a region with M¼ const, or, more specifically,

M¼ 0 in this case) in the field dependence of magnetization

M(H). Another possible antiparallel phase, #" (u1¼p,

u2¼ 0) always has higher energy compared to the "# phase

(for J0> 0), and therefore it is not important for the present

paper. The antiparallel phases lose stability at

H"# ¼ �J0=2 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ0=2� J þ bÞ2 � J2

q
: (8)

Equation (4) determines one of the boundaries of the hyster-

esis loop (or, in general, the region of magnetization

reversal) in the H axis. As will be shown below, for small

enough anisotropy there is no hysteresis, and magnetization

switches via the uniform magnetization reversal process

through a region of the canted phase. It roughly corresponds

to the picture of both spins rotating as one with the change

of H, with the angle u1 � u2 between two spins being rather

small. The ""-canted phase transition is of the second order

in this case.

Hysteresis appears when the derivative dM/dH for the

canted phase becomes negative at the bifurcation point

(see Fig. 1). To determine the critical values of the parame-

ters for which the hysteresis appears (dM/dH¼1), we find

the slope of the M(H) curve in the canted phase near the

bifurcation point. To do this, we expand the Eqs. (2) and (3)

into a series with respect to the variables ui up to cubic

terms:

ðH þ J0 þ J þ bÞu1 � Ju2 �
1

6
ðH þ J0 þ 4bÞu3

1

� J

6
ðu1 � u2Þ3 ¼ 0; (9)

ðH þ J þ bÞu2 � Ju1 �
J

6
ðH þ 4bÞu3

2 þ
J

6
ðu1 � u2Þ3 ¼ 0;

(10)

FIG. 1. Transformation of the collinear "" phase into the canted phase:

(a)—bifurcation point, (b)—the point with dM/dH¼1. The hysteresis loop

is filled.
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and look for the solutions in the form of power series with

respect to small deviations of the magnetic field from its

bifurcation value e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H � H""

p
: ui�ui

(0)eþui
(1)e3 þ ….

In the first order in e we obtain the bifurcation field and the

relation between the amplitudes of the two angles:

u2 � u1ðJ0 þ J1Þ=2J; (11)

where J1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2

0 þ 4J2
p

. In the third order in e we obtain the

values of the angles u1,2:

u2
1;2 �

e2J1ðJ1 7 J0Þ
bðJ2

0 þ 2J2Þ � J2ðJ1 � 2JÞ : (12)

The dependence of magnetization of the system on the

magnetic field near the bifurcation point is given by the

formula

MðHÞ � 2� ðH � H""Þ
J2

1

bðJ2
0 þ 2J2Þ � J2ðJ1 � 2JÞ : (13)

For the given values of parameters J and J0, hysteresis

appears for the critical value of the anisotropy parameter:

bc1 ¼ J2 J1 � 2J

J2
0 þ 2J2

: (14)

There is no hysteresis for b<bc1. This is in qualitative

agreement with the experiment: for different systems with

exchange bias, both uniform magnetization reversal and hys-

teresis are observed.

3. Dependence of the shape of the hysteresis on the
anisotropy parameter

In this section we analyze and classify all possible types

of the M(H) dependence (both with and without hysteresis),

which arise in the model of Sec. 1 for different values of ani-

sotropy parameter b/J and FM–AFM exchange parameter

J0/J. A numerical solution of Eqs. (2) and (3) was obtained by

a relaxation algorithm. Namely, a (local) minimum of the total

energy (1) is found by solving the system of differential equa-

tions @ui/@t¼�@E/@ui (i¼ 1, 2) numerically, which is done

by the iterative procedure ui ! ui � e @E/@ui, where e is a

sufficiently small parameter. Magnetization curves M(H) cor-

responding to several characteristic values Zi of the exchange

interaction and anisotropy are depicted in Fig. 2. Points Zi in

the (b/J, J0/J) plane are presented in Fig. 3. In general there

can be more than one local minimum of the energy E(ui),

which results in hysteresis behavior. These minima can be

found by starting the relaxation algorithm from different ini-

tial values of ui. To simulate the hysteresis, we ran the relaxa-

tion algorithm twice for each point Zi and for each value of H,

starting in vicinity of the collinear phases "" and ##, respec-

tively (solid curves in Fig. 2). In addition, when appropriate,

we started in vicinity of the "# phase, which sometimes gives

new energy minima (dashed curves in Fig. 2).

In total, twelve different types of the M(H) dependence

were found. They correspond to twelve different regions in

the (b/J, J0/J) plane (Fig. 3). For each region, one point Zi

was chosen arbitrarily. The regions are separated by the

curves bci(J0/J), i¼ 1,…, 5 in Fig. 3. The expressions for

bc1…bc4 were found analytically (and verified by numerical

simulations), while the curve bc5(J0/J) was obtained numeri-

cally. Equation (14) gives the expression for the critical

value bc1 of anisotropy, for which hysteresis appears. For

b<bc1 there is no hysteresis (Fig. 2, points Z1, Z4). The sec-

ond critical value of anisotropy

bc2 ¼ 1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2 þ J2

0

q
� 2J

� �

is obtained from the condition H""¼H##, where the expres-

sions for H"", H## are given by Eqs. (4) and (7). For b> bc2

there is a region of H for which both collinear phases (""
and ##) are dynamically stable. For bc1<b< bc2 there are

two hysteresis loops separated by a region of the canted

phase or the "# phase (Fig. 2, points Z2, Z5, Z6, Z12). For

FIG. 2. Different shapes of the M(H) hysteresis loop for different values of

magnetic anisotropy b/J and the FM–AFM exchange parameter J0/J.
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b>bc2, however, there is a single hysteresis loop (Fig. 2,

points Z3, Z7 – Z11). The third critical anisotropy bc3 corre-

sponds to the appearance of the M¼ 0 plateau (the "#
phase). For b>bc3 there is a M¼ 0 plateau in the M(H)

curve (Fig. 2, points Z5 – Z8, Z10 – Z12). From the condition

H"#¼�J0/2, where H"# is given by Eq. (8), we obtain

bc3¼ 2J � J0/2. The fourth critical anisotropy bc4 corre-

sponds to the coexistence of the collinear phases "" (or ##)
and "#. For bc3<b< bc4 the "# phase only appears in the

middle of the region of the canted phase (Fig. 2, points Z5,

Z8) or inside the hysteresis loop (Fig. 2, point Z10). For

b>bc4 (Fig. 2, points Z6, Z7, Z11, Z12) the "# phase takes

part in the formation of the hysteresis loop(s). The value of

bc4 can be determined from the condition H""¼H"#, where

H"# is given by Eq. (8). It is given by the implicit expression

J0 ¼
bþ J

2b
J þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ 4b2

q� �
� b:

Finally, for b> bc5 (Fig. 2, points Z9 – Z12) the canted phase

is suppressed and hysteresis involves collinear phases

only. Magnetization curves in Fig. 2 demonstrate experimen-

tally observed4,5 features, such as inclined segments and

horizontal plateaus.

4. Regions of hysteresis for fixed values of anisotropy

In this section we look at hysteresis behavior in more

detail. We fix the anisotropy b and the FM–AFM exchange

J0 and study the state of the system as a function of parame-

ters J, H (Fig. 4). We rewrite expressions (4), (7), (8) for the

collinear-canted transition lines in the form J¼ J(H, b, J0)

J1 ¼ �
ðH þ bÞðH þ J0 þ bÞ
ð2H þ J0 þ 2bÞ ; (15)

J3 ¼
ðH � bÞðH þ J0 � bÞ
ð2H þ J0 � 2bÞ ; (16)

J5 ¼ �
ðH � bÞðH þ J0 þ bÞ

ðJ0 þ 2bÞ ; (17)

for the "" phase (line A1 in Fig. 4), the ## phase (line A3),

and the "# phase (line A5), respectively. Lines J1, J3 cross at

the point H¼�J0/2, J ¼ J0 ¼ J2
0=8b� b=2.

½ðHþ J0Þcos u1 þ 2b cos2u1 � b�ðH cos u2 þ 2b cos2u2 � bÞ
þ½ðHþ J0Þcos u1 þ 2b cos2u1 þH cos u2 þ 2b cos2u2 � 2b�
� J cosðu1 �u2Þ ¼ 0; (18)

where the angles ui are not known explicitly. Eqs. (9), (10),

and (18) give the dependence J3¼ J(H) to describe the right

boundary of the hysteresis loop (see line A2 in Fig. 4). From

Eq. (18) it follows that for fixed anisotropy b there exists a

maximum value of the exchange constant J for which hyster-

esis takes place. It corresponds to H¼�J0/2 and

J ¼ J00 ¼ J2
0 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32b2=J2

0

q� �
=16bþ b=2:

In the limit of a large enough exchange interaction (J �1/b)

at the right boundary of the hysteresis loop we obtain u1�p
�u2� arccos(2b/J0), M� 8(b/J0)2, and the right boundary

of the hysteresis loop (line A2 in Fig. 4) is given by J� J00

�(J0/b) (H þ J0/2)/4.

The curves Ai in this figure determine the regions of

existence of different structures of the FM system, and the

hysteresis loops are located between lines A1A2 and A4A3.

FIG. 3. Different types of the M(H) dependence in the plane of the parame-

ters (b/J, J0/J).

FIG. 4. Regions of hysteresis in the plane of the parameters (J/J0, H/J0) for fixed values of anisotropy b: b/J0¼ 0.2 (a), 0.066 (b), and 0.33 (c).
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In Fig. 4 domain of stability of the parallel phase ("") is

situated to the right of curve A1, which starts at point H¼�b
in the limit J ! 0 and asymptotically approaches infinity as

H!�J0/2 � b. The domain of stability of the parallel phase

(##) is located on the left of curve A3, which starts at point

H¼�J0 þ b and asymptotically tends to infinity as H !
�J0/2 þ b. The region below curve A5 (which lies between

points H¼�J0 � b and H¼ b) corresponds to the antiparal-

lel phase ("#). Finally, the triangular area between the curves

A1, A3, A5 corresponds to the canted phase. For the fixed ani-

sotropy parameter, the shape of the hysteresis loop changes

with a change in parameter J.

For the point Z2 (see Fig. 4) the hysteresis loop splits

into two loops (Fig. 2, Z2). For the line A5 (with

J< J0þ 2b) we observe the plateau of the antiparallel phase

("#) in the M(H) dependence (Fig. 2, Z5). Upon further

decrease in exchange interaction, this plateau occupies the

entire region between the hysteresis loops (Z6), but the

canted phase still remains inside each of the two hysteresis

loops. If magnetic anisotropy is small enough (Fig. 4(b)),

there exists a domain of parameter J, for which there is no

hysteresis (in contrast to FM systems without exchange

bias).

5. The case of different anisotropy constants for the two FM
layers (b1 6¼b2)

We now briefly consider the case where b1 6¼ b2, i.e., the

case of different anisotropy constants for the two layers of

the ferromagnet. This simulates the presence of surface ani-

sotropy arising due to broken lattice symmetry at the FM/

AFM interface. Eqs. (4), (7), and (8) for the boundary of sta-

bility of various collinear phases change into

H"" ¼ �
1

2
ð2J þ J0 þ b1 þ b2Þ þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2 þ ðJ0 þ b1 � b2Þ2

q
;

(19)

H## ¼�
1

2
ð�2Jþ J0þb1þb2Þ�

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2þðJ0�b1þb2Þ2

q
;

(20)

H"# ¼�
1

2
ðJ0þb1�b2Þ

þ1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ0�b1�b2Þ2þ2J0ðb1þb2ÞþJ2

0�4JJ0�4J2
0

q
;

(21)

respectively. The number of different possible types of the

M(H) curves for this is extremely large. We do not attempt a

complete classification here, instead in Fig. 5 we present two

typical M(H) curves with b1 6¼ b2. One can easily see that the

dependence M(H) is no longer antisymmetric under the

transformation H ! �J0 � H. In other words, for b1 6¼b2

asymmetric hysteresis loops are observed. This demonstrates

on the qualitative level that the presence of surface anisot-

ropy at the FM/AFM interface leads to an asymmetric hys-

teresis loop, an experimentally observed feature of exchange

bias systems.

Conclusion

In the present paper we have studied both analytically

and numerically the hysteresis phenomenon in a FM/AFM

bilayer in the framework of the “two-spin model” (two ferro-

magnetic layers in contact with a hard antiferromagnet).

Twelve different types of magnetization curves M(H) (both

with and without hysteresis) were found for different values

of parameters in the system (J0/J and b/J). Explicit expres-

sions for the boundaries of respective regions of the (J0/J, b/J)

plane were obtained.

Also the case of different anisotropy constants for the

two ferromagnetic layers (surface anisotropy) was consid-

ered. Asymmetric M(H) curves were obtained in this case.

Despite the simplicity of the model, it is able to reproduce

many experimentally observed features of the exchange bias

phenomenon.
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