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Abstract 

We expand Nakamura’s (2005) neural network based inflation forecasting experiment to an 

alternative non-linear model; a Markov switching autoregressive (MS-AR) model. The two 

non-linear models perform approximately on par and outperform the linear autoregressive 

model on short forecast horizons of one and two quarters. Furthermore, the MS-AR model is 

the best performer on longer horizons of three and four quarters. 
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1. Introduction 

There is a large literature comparing the forecasting performance of neural network (NN) 

models and linear autoregressive (AR) models; see Zhang et al. (1998). Recently, Stock & 

Watson (1999) addressed the question of forecasting performance of linear and non-linear 

models for a large number of macroeconomic time-series, including inflation. In their spirit, 

Nakamura (2005) evaluates the NN model forecasting U.S. inflation. She finds that the NN 

model outperforms univariate benchmark AR models for short horizons of one and two quar-

ters.  

However, with the exception of Binner et al. (2004) this literature does not compare in-

flation forecasts obtained from Markov switching autoregressive models with forecasts from 

NN models. This note aims at filling this gap. We provide out-of-sample evidence, using the 

data in Nakamura (2005: henceforth EN), that predictable non-linearities in U.S. inflation are 

equally well captured by the NN and MS-AR models for short horizons. In contrast, for 

longer horizons of three and four quarters, the MS-AR model is the best forecaster. It is a 

non-linear generalization of the standard AR model with a simple closed form multi-period 

forecast equation and, therefore, a viable alternative to the NN model. 

2. Forecasting Models 

Our multi-period inflation forecasts are dynamic forecasts, implying an iterative forecasting 

procedure in which a multi-period forecast is built up by a sequence of one-period forecasts. 

The general structure of the models and a description of how forecasts are obtained is pro-

vided below. 
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Benchmark Models 

Assume that k is the number of lags in a particular univariate benchmark AR model with coef-

ficients  (estimated using ordinary least squares). By iterating forward, the dynamic 

forecast of inflation h periods ahead, 

kaaa ,...,, 10

ht+π , is given by: 
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where the notation [.] indicates that the expectation is taken conditional on observed infla-

tion up to and including time t. 

tE

Markov Switching Models 

In the MS-AR models, an unobserved discrete state Markov chain governs the endogenous 

switches between different AR processes over time. Following Hamilton (1994), p. 692, the 

MS-AR models are estimated by maximum likelihood using the Hamilton-filter. To escape 

local optimums, the log-likelihood functions are maximized with simulated annealing (Goffe 

et al., 1994). The general MS-AR forecast equation is: 
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where s is the number of states, ( iStt )=Pr  is the probability of state i prevailing at time t and 

 is the probability of moving from state i at time t to state j at time t+h 

along path p in the probability tree generated by the underlying Markov chain.

( iSjS thtpt ==+ |Pr

( )iStt =Pr

)

                                                          

1 The former 

probabilities are obtained directly from the iterations through the Hamilton-filter while the 

latter are calculated using the estimated transition probability matrix. The multiplication by 

 reflects the uncertainty of the prevailing state today, or, the fact that the Markov 

 
1 The index represents any sequential ordering of the different paths that begin in state i and end 

in state j. 

1,...,1 −= hsp 1−hs
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chain is unobserved even ex post. [ ]iSE thptt =+ |π  is the forecasted inflation at time t+h along 

path p and these expectations are evaluated as in Eq. (1), i.e. by iterating forward along the 

relevant path. Therefore, Eq. (2) states that dynamic inflation forecasts from the MS-AR 

models are calculated as probability weighted averages of future inflation by traversing the 

non-recombining tree generated by the Markov chain along all possible paths. 

Neural Network Model 

We employ a recurrent neural network (RNN) model that distinguishes itself from standard 

feedforward network models in that activations are allowed to feed back to units within the 

same or preceding layer(s). This forms an internal memory system that enables an RNN to 

construct temporally sensitive internal representations in response to temporal features found 

within a data set, (Palmer-Brown et al., 2002).   

We use a combination of the Jordan (1986) network and Elman’s (1990) simple recur-

rent network to obtain forecasts: 

[ ] )),,,(( 11 gftttt fgE θθxc −+ =π ,    (3) 

where  (the context vector) is the concatenation of the previous hidden state vector and the 

previous external output vector, is the external vector of input variables (current and lagged 

inflation),  is the set of weights connecting the input layer to the hidden layer,  is the set 

of weights connecting the hidden layer to the output layer and, finally, functions f and g repre-

sent the activation vectors from the hidden and output layers respectively (we apply the hy-

perbolic tangent function to the inner products performed for f and g). 

1−tc

θ

tx

f gθ

Our RNN model employs backpropagation-through-time, an efficient gradient-descent 

learning algorithm for recurrent networks. To identify the onset of over-fitting during training 

we use a standard variant of cross-validation referred to as the leave-one-out method (Haykin, 

1999, p. 218) as a stopping criterion suitable for estimation problems with sparse data.  
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Dynamic t+h forecasts from the RNN are generated, consistent with the AR and MS-

AR-models, using an iterative procedure. Thus, the RNN is functionally equivalent to a non-

linear regression model used for time-series forecasting (Zhang et al., 1998). 

3. Data and Model Specification 

Our quarterly inflation data, calculated from the U.S. GDP deflator, covers the period 1960:1 

to 2003:1. The last 100 observations are used for forecast evaluation only. Dynamic out-of-

sample inflation forecasts are constructed for forecast horizons from 1 to 4 quarters. 

Both AR and MS-AR models are estimated using lag lengths from 1 to 8. For the MS-

AR model we assume an underlying two-state time-homogenous discrete Markov chain. Fol-

lowing Binner et al. (2004), the intercept and the volatility are allowed to switch between the 

two states while all autoregressive parameters are equal across states.2 An empirical advan-

tage of allowing the variance to change across regimes is that a higher mean could be associ-

ated with higher (idiosyncratic) variance. A regime-dependent variance can, therefore, help in 

forecasting inflation. 

The numbers of parameters in the AR and MS-AR models depend on the particular lag-

length. There are always 4 more parameters in the MS-AR model; one additional mean pa-

rameter, one additional variance parameter, and two transition probabilities. 

Our RNN model is based on two lags of inflation.3 We normalize the input variables 

prior to training to accelerate the learning process. Further, our RNN consists of 10 hidden 

                                                           
2 Binner et al. (2004) find that allowing for a different autoregressive structure in different regimes leads to a 

deterioration of out-of-sample forecasting performance. They interpret this deterioration as in-sample overfitt-

ning. 

3 EN estimates NN models with up to four lags, but only reports findings from an NN with two lags. She finds 

that this modification has essentially no impact on forecast performance. The inclusion of additional lags in our 

NN model confirms this finding. 
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units (a number determined by preliminary forecasting experiments), one external input node 

and one external output node. 

4. Results 

Mean squared error (MSE) ratios are presented in Table 1. They suggest that both the MS-AR 

models and the RNN model outperform the benchmark AR models on short forecast horizons 

of 1 and 2 quarters.  

 

 [TABLE 1] 

 

More specifically, the MSE-ratios suggest that the MS-AR outperforms the linear speci-

fication in 15 out of 16 cases. The RNN, on the other hand, yields lower MSE’s than the AR 

models in all 16 cases. In addition, one-sided tests based on Diebold and Mariano (1995) 

typically suggest that the differences are statistically significant whenever the MSE-ratios are 

low (as indicated by underlined MSE-ratios in Table 1). More specifically, forecasts from the 

MS-AR are significantly better in 11 out of 16 cases. For the RNN, they are significantly bet-

ter in 7 cases.  

For longer forecast horizons of 3 and 4 quarters, MSE-ratios indicate that MS-AR mod-

els outperform both the RNN model and the benchmark models. The forecasting performance 

of the RNN model declines rapidly with increasing horizon and the linear benchmark models 

with more than two lags are superior to the RNN model for longer horizons. A similar result 

is reported by EN. An explanation is that with gradient descent-based learning the error gradi-

ents vanish early and therefore longer temporal dependencies in the time-series data are diffi-

cult to learn (Bengio et al., 1994). Finally, Diebold Mariano test statistics show that the MS-

models are significantly better than the AR models in 14 out of 16 cases. The RNN is, on the 

other hand, significantly better than the AR model in only 3 cases. 
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For completeness, we also investigate the cases when MSE-ratios suggest that the linear 

models outperform the nonlinear models using Diebold Mariano tests. These tests reveal that 

the AR-model based on 5 lags yield significantly better forecasts than the RNN on forecast 

horizon 3. On forecast horizon 4, the AR models based on 3, 5, 6, and 7 lags outperform the 

RNN. 

The fact that the MS-AR(1) and the RNN tend to perform better (in relative terms) 

when compared to the AR(1) can be interpreted in at least 2 ways. Firstly, the additional pa-

rameters in the MS-AR(1) and the RNN are more valuable, i.e. provide more out-of-sample 

information, when the AR model is simple compared to the situation the AR model is more 

complex (contains more lags). Secondly, when a large number of lags is included, the addi-

tional parameters create too much in-sample flexibility which hurts the (relative) out-of-

sample forecasting performance. 

To summarize, our empirical findings suggest that both the RNN model and the MS-AR 

models are well-suited for capturing predictable non-linearities in U.S. inflation. However, for 

longer forecast horizons, the MS-AR model stands out as the preferred model. 
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Table 1: Out-of-sample MSE ratios. 
 

 Forecast horizon (quarters) 
MS models 1 2 3 4 
AR1 86.17 76.12 68.96 64.66 

AR2 88.61 81.11 75.11 71.54 

AR3 93.48 87.81 83.00 81.32 

AR4 97.01 93.30 88.09 86.94 

AR5 102.65 98.50 92.86 90.06 
AR6 95.39 89.44 85.16 82.24 

AR7 90.16 88.97 84.47 82.30 

AR8 91.88 89.09 85.22 82.75 

RNN model 1 2 3 4 
AR1 87.19 76.44 80.95 89.45 

AR2 93.42 86.10 93.67 102.81 
AR3 94.73 93.81 106.01 118.45 
AR4 95.53 90.93 104.58 121.14 
AR5 99.69 94.56 108.79 124.00 
AR6 94.04 95.37 111.20 127.46 
AR7 84.03 91.29 104.19 119.84 
AR8 85.14 88.99 102.18 116.05 

 
Note: In the first panel, MSEs from the MS-AR models are compared to MSEs from AR models with matching 
lag structures (100×MSEMS-AR/MSEAR). In the second panel, the MSEs from an RNN with two lags are com-
pared to MSEs from AR models with different lag structures. Underlined numbers indicate a significant one-
sided Diebold Mariano test statistic based on mean squared errors at the 5% level. 


