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Learning Non-Metric Visual Similarity for Image Retrieval

Noa Garciaa,∗, George Vogiatzisa

aAston University, Birmingham B4 7ET, United Kingdom

Abstract

Measuring visual similarity between two or more instances within a data distribution is a
fundamental task in image retrieval. Theoretically, non-metric distances are able to generate
a more complex and accurate similarity model than metric distances, provided that the non-
linear data distribution is precisely captured by the system. In this work, we explore neural
networks models for learning a non-metric similarity function for instance search. We argue
that non-metric similarity functions based on neural networks can build a better model of
human visual perception than standard metric distances. As our proposed similarity function
is differentiable, we explore a real end-to-end trainable approach for image retrieval, i.e. we
learn the weights from the input image pixels to the final similarity score. Experimental
evaluation shows that non-metric similarity networks are able to learn visual similarities
between images and improve performance on top of state-of-the-art image representations,
boosting results in standard image retrieval datasets with respect standard metric distances.

Keywords: Image Retrieval, Visual Similarity, Non-Metric Learning

1. Introduction

For humans, deciding whether two im-
ages are visually similar or not is, to some
extent, a natural task. However, in com-
puter vision, this is a challenging prob-
lem and algorithms do not always succeed
in matching pictures that contain similar-
looking elements. This is mainly because
of the well-known semantic gap problem,
which refers to the difference or gap between
low-level image pixels and high-level seman-
tic concepts. Estimating visual similarity
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(Noa Garcia), g.vogiatzis@aston.ac.uk (George
Vogiatzis)

is a fundamental task that seeks to break
this semantic gap by accurately evaluating
how alike two or more pictures are. Visual
similarity is crucial for many computer vi-
sion areas including image retrieval, image
classification and object recognition, among
others.

Given a query image, content-based im-
age retrieval systems rank pictures in a
dataset according to how similar they are
with respect to the input. This can be bro-
ken into two fundamental tasks: 1) comput-
ing meaningful image representations that
capture the most salient visual information
from pixels and 2) measuring accurate vi-
sual similarity between these image repre-
sentations to rank images according to a
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Figure 1: Retrieval system based on metric distances versus our proposed model. (a) Standard
systems use a metric distance function to estimate the visual similarity between a pair of feature vectors
obtained from a feature extraction model. (b) Our proposed model estimates the similarity score, Si,j , from
a pair of visual vectors by using a non-metric similarity network.

similarity score.

In the last years, several methods to rep-
resent visual information from raw pixels
in images have been proposed, first by de-
signing handcrafted features such as SIFT
[1], then by compacting these local features
into a single global image descriptor using
different techniques such as Fisher Vectors
[2] and more recently by extracting deep
image representations from neural networks
[3]. However, once two images are described
by feature vectors, visual similarity is com-
monly measured by computing a standard
metric between them. Although regular dis-
tance metrics, such as Euclidean distance or
cosine similarity, are fast and easy to imple-
ment, they do not take into account the pos-
sible interdependency within the dataset,
which means that even if a strong nonlinear
data dependency is occurring in the visual
collection, they might not be able to capture
it. This suggests that learning a similar-
ity estimation directly from visual data can
improve the performance on image retrieval
tasks, provided that the likely nonlinear-
ity dependencies within the dataset are pre-
cisely learned by the similarity function.

In this work, we propose a model to learn
a non-metric visual similarity function on

top of image representations for pushing ac-
curacy in image retrieval tasks. This idea
is shown in Figure 1. As in standard image
retrieval systems, we extract K-dimensional
visual vectors from images by using a con-
volutional neural network (CNN) architec-
ture. Then, a visual similarity neural net-
work is used to estimate the similarity score
between a pair of images. Note that in stan-
dard systems this score is usually computed
with a metric distance.

We design a supervised regression learn-
ing protocol so that different similarity de-
grees between images are precisely cap-
tured. Then, we directly apply the output
of the model as a similarity estimation to
rank images accordingly. In this way, the
similarity network can be seen as a replace-
ment of the standard metric distance com-
putation, being able to mathematically fit
visual human perception better than stan-
dard metrics and to improve results on top
of them. The proposed similarity network
is end-to-end differentiable, which allows us
to build an architecture for real end-to-end
training: from the input image pixels to the
final similarity score. Experimental evalu-
ation shows that performance on standard
image retrieval datasets is boosted when the
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similarity function is directly learnt from
the visual data instead of using a rigid met-
ric distance.

Many techniques have been envisaged
to boost image retrieval performance in
the past, such as query expansion and re-
ranking [4], network fine-tunning [3, 5] or
feature fusion [6, 7]. However, these tech-
niques are not competitors of our method
but optional add-ons, as we argue that
the methodology proposed in this work can
be applied along with all of them in the
same way as they are being applied on sys-
tems based on metric distances. Moreover,
training a similarity network as we pro-
pose is computationally simpler than fine-
tuning the whole feature representation net-
work (i.e. network fine-tunning), extracting
multiple features using different networks
(i.e. feature fusion) or computing multiple
queries per image (i.e. query expansion and
re-ranking).

The main contributions of this work are
summarised as follows:

1. We present a neural network architec-
ture to model visual similarities, which
introduces a new and simple method
to boost performance in image retrieval
by only training the last stage of the
system.

2. We propose a novel regression loss func-
tion specifically designed for improv-
ing similarity scores on top of standard
metrics in image retrieval tasks.

3. We design a real end-to-end system for
content-based image retrieval that can
be trained from the input image pixels
to the final similarity score.

4. We empirically show the efficacy of
our method in standard image retrieval
datasets. Via our ablation study, we
show that the proposed system can
successfully compute visual similarities

on top of different standard retrieval
features, outperforming cosine similar-
ity and metric learning in most of the
datasets.

This paper is structured as follows: a re-
vision of relevant work can be found in Sec-
tion 2; our method is detailed in Section 3;
experimental evaluation is described in Sec-
tion 4; and conclusions are stated in 5.

2. Related Work

In this section relevant work in image re-
trieval and similarity learning is carefully re-
viewed.

2.1. Content-Based Image Retrieval

Content-based image retrieval searches
for images by considering their visual con-
tent. Given a query image, pictures in a
collection are ranked according to their vi-
sual similarity with respect to the query.
Early methods represent the visual content
of images by a set of hand-crafted features,
such as SIFT [1]. As a single image may
contain hundreds of these features, aggre-
gation techniques like bag-of-words (BOW)
[8], Fisher Vectors [2] or VLAD [9] en-
code local descriptors into a compact vector,
thereby improving computational efficiency
and scalability. More recently, because of
the latest advancements on deep learning,
features obtained from convolutional neural
networks (CNN) have rapidly become the
new state-of-the-art in image retrieval.

2.2. Deep Learning for Image Retrieval

Deep image retrieval extracts activations
from CNNs as image representations. At
first, some methods [3, 10, 11, 12] pro-
posed to use representations from one of
the last fully connected layers of networks
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pre-trained on the classification ImageNet
dataset [13]. When deeper networks such
as GoogLeNet [14] and VGG [15] appeared,
some authors [16, 17, 10, 18] showed that
mid-layer representations obtained from the
convolutional layers performed better in
the retrieval task. Since then, there have
been several attempts to aggregate these
high-dimensional convolutional representa-
tions into a compact vector. For example,
[19, 17] compacted deep features by using
VLAD, [20] encoded the neural codes into
an histogram of words, [16, 21] applied sum-
pooling to obtain a compact representation
and [22, 23] aggregated deep features by
max-pooling them into a new vector. A dif-
ferent approach is to train the network to
directly learn compact binary codes end-to-
end [24, 25]. Some authors have shown that
fine-tunning the networks with similar data
to the target task increases the performance
significantly [3, 26, 27, 28, 5]. Finally, recent
work has shown that adding attention mod-
els to select meaningful features can be also
beneficial for image retrieval [29, 30].

All of these methods are focused on find-
ing high quality features to represent vi-
sual content efficiently and visual similar-
ity is computed by simply applying a stan-
dard metric distance. General metrics, such
as Euclidean distance or cosine similarity,
however, might be failing to consider the
inner data structure of these visual repre-
sentations. Learning a similarity function
directly from data may help to capture the
human perception of visual similarity in a
better way.

2.3. Similarity Learning

Some of the most popular similarity
learning work, such as OASIS [31] and MLR
[32], are based on linear metric learning by
optimizing the weights of a linear trans-

formation matrix. For example, Yang et
al. [33] proposed a framework for rank-
ing elements in retrieval tasks by solving
a linear optimization problem. Although
linear methods are easier to optimize and
less prone to overfitting, nonlinear algo-
rithms are expected to achieve higher ac-
curacy modeling the possible nonlinearities
of data.

Nonlinear similarity learning based on
deep learning has been recently applied to
many different visual contexts. In low-level
image matching, CNNs have been trained to
match pairs of patches for stereo matching
[34, 35] and optical flow [36, 37]. In high-
level image matching, deep learning tech-
niques have been proposed to learn low-
dimensional embedding spaces in face veri-
fication [38], retrieval [39, 40], classification
[41, 42, 43] and product search [44], either
by using siamese [38] or triplet [40] architec-
tures. More recently, deep similarity learn-
ing has also been applied to fabric image
retrieval [45] by using triplets of samples
to ensure that similar features are mapped
closer than non-similar features.

In general, these methods rely on learn-
ing a mapping from image pixels to a low
dimensional target space to compute the fi-
nal similarity decision by using a standard
metric. They are designed to find the best
projection in which a linear distance can
be successfully applied. Instead of project-
ing the visual data into some linear space,
that may or may not exist, our approach
seeks to learn the non-metric visual simi-
larity score itself. Similarly, [46] and [47]
used a CNN to decide whether or not two
input images are a match, applied to pedes-
trian re-identification and patch matching,
respectively. In these methods, the net-
works are trained as a binary classifica-
tion problem (i.e. same or different pedes-
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trian/patch), whereas in an image retrieval
ranking problem, a regression score is re-
quired. Inspired by the results of [11], which
showed that combining deep features with
similarity learning techniques can be very
beneficial for the performance of image re-
trieval systems, we propose to train a deep
learning algorithm to learn non-metric sim-
ilarities for image retrieval and improve re-
sults in top of high quality image represen-
tation methods.

Neural networks have been previously
proposed to model relationships between
objects in different domains, such as clas-
sification in few-shot learning [48, 49] or
visual question answering [50]. The main
difference between these methods and this
work lies in the optimization problem to be
solved: whereas [48, 49, 50] aim to learn if a
certain relation between a pair of images is
occurring by optimizing a classification loss
function (e.g. whether a query image is sim-
ilar to a samples from a known class or not),
we introduce a novel loss function specif-
ically designed to solve ranking problems,
which improves similarity scores on top of
a standard metric by returning a regression
value (i.e. how similar the two images are).

3. Methodology

In this section we present our proposed
method to learn a non-metric visual simi-
larity function from the visual data distri-
bution for image retrieval.

3.1. Visual Similarity

Visual similarity measures how alike two
images are. Formally, given a pair of images
Ii and Ij in a collection of images ξ, we de-
fine si,j as their similarity score. The higher
si,j is, the more similar Ii and Ij are. To

compute si,j, images are represented by K-
dimensional image representations, which
are obtained by mapping image pixels into
the feature space RK , as xk = f(Ik, wf )
with Ik ∈ ξ, where f(·) is a non-linear image
representation function and wf its parame-
ters. We propose to learn a visual similar-
ity function, g(·), that maps a pair of image
representations xi and xj into a visual score
as:

si,j = g(f(Ii, wf ), f(Ij, wf ), wg)

s.t. si,j > si,k → Ii, Ij more

similar than Ii, Ik (1)

with Ii, Ij, Ik ∈ ξ and wg being the trainable
parameters of the similarity function.

Visual similarity functions are commonly
based on metric distance functions such as
g(xi, xj) =

xi·xj

‖xi‖‖xj‖ or g(xi, xj) = ‖xi − xj‖,
i.e. cosine similarity and Euclidean dis-
tance, respectively. Metric distance func-
tions, d(·), perform mathematical compar-
isons between pairs of objects in a collection
Π, by satisfying the following axioms:

1. d(a, b) ≥ 0 (non-negativity)

2. d(a, b) = 0↔ a = b (identity)

3. d(a, b) = d(b, a) (symmetry)

4. d(a, b) ≤ d(a, c) + d(c, b) (triangle in-
equality)

with ∀a, b, c ∈ Π.
However, metric axioms are not always

the best method to represent visual human
perception [51, 52, 53]. For example, non-
negative and identity axioms are not re-
quired in visual perception as long as rel-
ative similarity distances are maintained.
Symmetry axiom is not always true, as hu-
man similarity may be influenced by the or-
der of the objects being compared. Finally,
triangle inequality does not correspond to
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Figure 2: Triangle inequality in image retrieval. Triangle inequality does not fit human visual percep-
tion, where distAB is expected to be bigger than distAC plus distCB.

visual human perception either. It can be
easily seen when considering the images of
a person, a horse and a centaur: although
a centaur might be visually similar to both
a person and a horse, the person and the
horse are not similar to each other. A vi-
sual example applied to image retrieval can
be seen in Figure 2.

For a better mathematical representation
of the visual human perception, we propose
to learn a non-metric visual similarity func-
tion without requiring to satisfy the rigid
metric axioms.

3.2. Similarity Network

To fit visual human perception better
than metric distance functions, we propose
to learn a similarity function from the visual
data using neural networks. This similarity
network is composed of a set of fully con-
nected layers, each one of them, except by
the last one, followed by a ReLU [54] non-
linearity.

The input of the network is a concate-
nated pair of image representations vectors,
xi and xj, which can be obtained using any
standard technique, such as [3, 23] or any
other. The output is a similarity score, si,j.
In that way, the similarity network learns

the similarity function, g(·), from the im-
age representation vectors and replaces the
metric distance function used in standard
systems.

At this point, we would like to note that
the proposed similarity network is concep-
tually different to the siamese architecture
in [38], as shown in Figure 3. Siamese net-
works use pairs of images to learn the fea-
ture extraction function, f(·), which maps
image pixels images into vector represen-
tations. Then, similarity is still computed
with a metric distance function, such as co-
sine similarity or Euclidean distance. In
contrast, our approach learns the function
g(·) on top of the image representations, re-
placing the standard metric distance com-
putation.

3.3. Similarity Training

We design the training of the similar-
ity network as a supervised regression task.
However, as providing similarity labels for
every possible pair of training images is in-
feasible, we propose a training procedure in
which the visual similarity is learned pro-
gressively using standard image classifica-
tion annotations. The model is trained
to discriminate whether two images, Ii, Ij,

6
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Siamese networks (left) learn to map pixels into
vector representations, whereas Similarity networks
(right) learn a similarity function on top of the vec-
tor representations.

are similar or dissimilar. Then, a similar-
ity score, si,j, is assigned accordingly by
improving a standard similarity function,
sim(·). To optimize the weights, wg, of
the similarity function g(·) from Equation
1, the following regression loss function is
computed between each training pair of im-
age representations, xi, xj:

L(Ii, Ij) = |si,j − `i,j(sim(xi, xj) + ∆)

− (1− `i,j)(sim(xi, xj)−∆)|
(2)

where ∆ is a margin parameter and `i,j is
defined as:

`i,j =

{
1 if Ii and Ij are similar

0 otherwise
(3)

In other words, the similarity network
learns to increase the similarity score when
two matching images are given and to de-
crease it when a pair of images is not a
match. Similarity between pairs might be
decided using different techniques, such as
image classes, score based on local fea-
tures or manual labeling, among others [55].
Without loss of generality, we consider two
images as similar when they belong to the

same annotated class and as dissimilar when
they belong to different classes.

Choosing appropriate examples when us-
ing pairs or triplets of samples in the train-
ing process is crucial for a successful train-
ing [26, 27, 56]. This is because if the net-
work is only trained by using easy pairs (e.g.
a car and a dog), it will not be able to dis-
criminate between difficult pairs (e.g. a car
and a van). We design our training pro-
tocol by emphasizing the training of diffi-
cult examples. First, we randomly select
an even number of similar and dissimilar
pairs of training samples and train the sim-
ilarity network until convergence. We then
choose a new random set of images and com-
pute the similarity score between all possi-
ble pairs by using the converged network.
Pairs in which the network output is worse
than the metric distance function measure
are selected as difficult pairs for retraining,
where a worse score means a score that is
lower in the case of a match and higher in
the case of a non-match. Finally, the diffi-
cult pairs are added to the training process
and the network is trained until convergence
one more time. Examples of difficult image
pairs are shown in Figure 4.

4. Experimental Evaluation

In this section, we present the experimen-
tal evaluation we perform to validate the
proposed non-metric similarity network.

4.1. Image Retrieval Datasets

Our approach is evaluated on three stan-
dard image retrieval datasets: Oxford5k
[57], Paris6k [58] and Land5k, a vali-
dation subset of Landmarks [3] dataset.
Oxford5k consists on 5,062 images of 11
different Oxford landmarks and 55 query
images. Paris6k contains 6,412 images of
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Dissimilar images Similar images

Figure 4: Example of difficult pairs. Dissimilar images with lower score than the metric distance (left)
and similar images with higher score than the metric distance (right).

11 different Paris landmarks and 55 queries.
Land5k consists of 4,915 images from 529
classes with a random selection of 45 im-
ages to be used as queries. For experi-
ments on larger datasets, we also use the
standard large-scale versions Oxford105k
and Paris106k, by including 100,000 dis-
tractor images [57]. In both Oxford5k
and Paris6k collections query images are
cropped according to the region of inter-
est and evaluation is performed by comput-
ing the mean Average Precision (mAP). For
Land5k results are also reported as mAP,
considering an image to be relevant to a
query when they both belong to the same
class.

For training, we use the cleaned version
of the Landmarks [3] dataset from [26].
Due to broken URLs, we could only down-
load 33,119 images for training and 4,915
for validation. To ensure visual similarity
is learnt from relevant data, we create two
more training sets, named Landmarks-
extra500 and Landmarks-extra, by
randomly adding about 500 and 2000 im-
ages from Oxford5k and Paris6k classes
to Landmarks, respectively. Query im-
ages are not added in any case and they
remain unseen by the system.

4.2. Experimental Details

Image Representation. Unless other-
wise stated, we use RMAC [23] as image
representation method. VGG16 network is
used off-the-shelf without any retraining or
fine-tunning. Images are re-scaled up to
1024 pixels, keeping their original aspect ra-
tio. RMAC features are very sensitive to
the PCA matrices used for normalization.
For consistency, we use the PCA whiten-
ing matrices trained on Paris5k on all the
datasets, instead of using different matri-
ces in each testing collection. This leads to
slightly worse results than the ones provided
in the original paper.
Similarity Training. We use cosine

similarity, sim(xi, xj) =
xi·xj

‖xi‖‖xj‖ , as the sim-

ilarity function in Equation 2. For a faster
convergence, we warm-up the weights of the
similarity network by training it with ran-
dom generated pairs of vectors and ∆ = 0.
In this way, the network first learns to im-
itate the cosine similarity. Visual similar-
ity is then trained using almost a million
of image pairs. We experiment with several
values of the margin parameter ∆, ranging
from 0.2 to 0.8. The network is optimized
using backpropagation and stochastic gra-
dient descent with a learning rate of 0.001,
a batch size of 100, a weight decay of 0.0005
and a momentum of 0.9.
Computational cost. Standard metric
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Config Architecture Params MSE ρ
A FC-1024, FC-1024, FC-1 2.1M 0.00035 0.909
B FC-4096, FC-4096, FC-1 21M 0.00019 0.965
C FC-8192, FC-8192, FC-1 76M 0.00012 0.974
D FC-4096, FC-4096, FC-4096, FC-1 38M 0.00019 0.964

Table 1: Architecture Discussion. Fully connected layers are denoted as (FC-{filters}).

functions are relatively fast and computa-
tionally cheap. Our visual similarity net-
work involves the use of millions of param-
eters that inevitable increase the computa-
tional cost. However, it is still feasible to
compute the similarity score in a reason-
able amount of time. In our experiments,
training time is about 5 hours in a GeForce
GTX 1080 GPU without weight warm-up
and testing time for a pair of images is 1.25
ms on average (0.35 ms when using cosine
similarity in CPU).

4.3. Architecture Discussion

We first experiment with four different
architectures (Table 1) and compare the
performance of each configuration during
the network warm-up (∆ = 0), by using
22.5 million and 7.5 million pairs of ran-
domly generated vectors for training and
validation, respectively. During the train-
ing warm-up, the network is intended to
imitate the cosine similarity. We evaluate
each architecture by computing the mean
squared error, MSE, and the correlation
coefficient, ρ, between the network output
and the cosine similarity. Configuration C,
which is the network with larger number
of parameters, achieves the best MSE and
ρ results. Considering a trade-off between
performance and number of parameters of
each architecture, we keep configuration B
as our default architecture for the rest of the
experiments.

4.4. Similarity Evaluation

We then study the benefits of using a non-
metric similarity network for image retrieval
by comparing it to several similarity meth-
ods. RMAC [23] is used as image represen-
tation method in all the experiments. Sim-
ilarity functions under evaluation are:

• Cosine: the similarity between a pair
of vectors is computed with the cosine
similarity: cosine(xi, xj) =

xi·xj

‖xi‖‖xj‖ .

No training is required.

• OASIS: well-established OASIS algo-
rithm [31] is used to learn a linear func-
tion to map a pair of vectors into a sim-
ilarity score. The training of the matrix
transformation is performed in a super-
vised way by providing the class of each
image.

• Linear: we learn an affine transfor-
mation matrix to map a pair of vec-
tors into a similarity score by optimiz-
ing Equation 2 in a supervised training.
Classes of images are provided during
training. The margin ∆ is set to 0.2.

• SimNet, SimNet*: the similarity
function is learnt with our proposed
similarity network by optimizing Equa-
tion 2 with (SimNet*) or without (Sim-
Net) difficult pairs refinement. Classes
of images are provided during train-
ing and different margin ∆ are tested,
ranging from 0.2 to 0.8.

9
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Landmarks Landmarks-extra500 Landmarks-extra
Ox5k Pa6k La5k Ox5k Pa6k La5k Ox5k Pa6k La5k

Cosine 0.665 0.638 0.564 0.665 0.638 0.564 0.665 0.638 0.564
OASIS 0.514 0.385 0.578 0.570 0.651 0.589 0.619 0.853 0.579

Linear (0.2) 0.598 0.660 0.508 0.611 0.632 0.514 0.602 0.581 0.502
SimNet (0.2) 0.658 0.460 0.669 0.717 0.654 0.671 0.718 0.757 0.668

SimNet* (0.2) 0.655 0.503 0.697 0.719 0.677 0.693 0.786 0.860 0.662
SimNet* (0.4) 0.637 0.504 0.737 0.703 0.701 0.745 0.794 0.878 0.706
SimNet* (0.6) 0.613 0.514 0.776 0.703 0.716 0.776 0.789 0.885 0.735
SimNet* (0.8) 0.600 0.511 0.783 0.685 0.710 0.803 0.808 0.891 0.758

Table 2: Similarity Evaluation. mAP when using different similarity functions. ∆ value is set in brackets.

VGG16 RES50 MAC RMAC [26]

0.
48
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18

0.
54 0.

64
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47

0.
75

0.
89

0.
88

Cosine
SimNet
SimNet*

Paris6k

Figure 5: Image Representation Discussion.
mAP for different visual similarity techniques on
top of different feature extraction methods.

Results are summarize in Table 2.
Trained similarity networks (SimNet, Sim-
Net*) outperform trained linear methods
(OASIS, Linear) in all but one testing
datasets. As all Linear, SimNet and Sim-
Net* are trained using the same super-
vised learning protocol and images, the
results suggest that the improvement ob-
tained in our method is not because of
the supervision but because of the non-
metric nature of the model, which is sup-
posed to fit the human visual perception
more accurately. Moreover, when using

Landmarks-extra as training dataset,
results are boosted with respect to the
standard metric, achieving improvements
ranging from 20% (Oxford5k) to 40%
(Pairs6k). When using Landmarks-
extra500 dataset, our similarity networks
also improve mAP with respect to the co-
sine similarity in the three testing datasets.
This indicates that visual similarity can be
learnt even when using a reduced subset of
the target image domain. However, visual
similarity does not transfer well across do-
mains when no images of the target domain
are used during training, which is a well-
known problem in metric learning systems
[59]. In that case, cosine similarity is the
best option over all the methods.

4.5. Image Representation Discussion

Next, we study the generalisation of our
similarity networks when used on top of dif-
ferent feature extraction methods: the out-
put of a VGG16 network [15], the output of
a ResNet50 network [60], MAC [23], RMAC
[23] and the model from [27]. We com-
pare the results of our networks, SimNet
and SimNet*, against cosine similarity. Re-
sults are provided in Figure 5. Our similar-
ity networks outperform cosine similarity in
all the experiments, improving retrieval re-
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Figure 6: Domain Adaptation mAP when using different number of target samples in the training set.

sults when used on top of any standard fea-
ture extraction method. Moreover, perfor-
mance is boosted when SimNet* is applied,
specially in features with poor retrieval per-
formance, such as ResNets.

4.6. Domain Adaptation

We further investigate the influence of
the training dataset on the similarity score
when it is transfered between different do-
mains or collections of images. As already
noted in Table 2, visual similarity does not
transfer well across domains, and a subset of
samples from the target dataset is required
during training to learn a meaningful simi-
larity function. This is mainly because sim-
ilarity estimation is a problem-dependent
task, as the similarity between a pair of
elements depends on the data collection.
Thus, in Figure 6, we explore the effect on
performance when we use different subsets
of samples from the target collection in ad-
dition to the Landmarks dataset. To add
relevant samples progressively to the train-
ing set, we assign a class label to each image
in the Oxford5k and Paris6k collections.
These datasets do not provide class labels
per se, so to overcome this issue, we use the
file name of each image as its class label.

There is a clear correlation between the
similarity network performance and the
number of samples from the target dataset
used during training. Indeed, in agreement
with previous work in metric learning [59],
we observe that not considering samples
from the target dataset to train a similar-
ity function might be harmful. The simi-
larity network, however, outperforms stan-
dard metric results even when a small num-
ber of samples from the target collection is
used during training: only 100 images from
Oxford5k and 250 images from Paris6k are
required to outperform cosine similarity in
Oxford5k and Paris6k datasets, respec-
tively. This suggests that the similarity net-
work is able to generalise from a small sub-
set of target samples, instead of memorising
distances in the training collection.

4.7. End-to-End Training

So far, we have isolated the similarity
computation part to verify that the im-
provement in the testing datasets compared
to when using other similarity methods is,
in fact, due to the visual similarity network.
However, with all the modules of the re-
trieval system being differentiable, an end-
to-end training model is also possible. End-
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Figure 7: End-to-End model. MAC as feature extraction and SimNet as visual similarity.

Features Sim. Ox5k Pa6k La5k

MAC Cosine 0.481 0.539 0.494

MAC SimNet 0.509 0.683 0.589

MAC SimNet 0.555 0.710 0.685

Table 3: End-to-End Training. mAP when fine-
tunning different parts of the pipeline. In gray , the
modules that are fine-tunned in every experiment.

to-end methods have been shown to achieve
outstanding results in many different prob-
lems, including the aggregation of video fea-
tures [61], stereo matching [47], person re-
identification [46] or self-driving cars [62].
In image retrieval, however, only end-to-end
methods for learning the feature representa-
tions are proposed [5, 27], leaving the final
similarity score to be computed with a co-
sine similarity. In this section we explore a
real end-to-end training architecture for im-
age retrieval, which is presented in Figure 7.

For the feature extraction part, we adopt
MAC [23], although any differentiable im-
age representation method can be used. To
obtain MAC vectors, images are fed into
a VGG16 network [15]. The output of
the last convolutional layer is max-pooled
and l2-normalized. For the visual similar-
ity part, we use SimNet with ∆ = 0.2.
As the whole architecture is end-to-end

differentiable, the weights are fine-tunned
through backpropagation. We first train the
similarity network by freezing the VGG16
weights. Then, we unfreeze all the lay-
ers and fine-tune the model one last time.
As all the layers have been already pre-
trained, the final end-to-end fine-tunning is
performed in only about 200,000 pairs of im-
ages from Landarmarks-extra dataset
for just 5,000 iterations.

Results are provided in Table 3. There
is a significant improvement when using the
similarity network instead of the cosine sim-
ilarity, as already seen in the previous sec-
tion. When the architecture is trained end-
to-end results are improved even more, since
fine-tuning the entire architecture allows a
better fit to a particular dataset.

4.8. State of the Art Comparison

Finally, we compare our method against
several state-of-the-art techniques. As stan-
dard practice, works are split into two
groups: off-the-shelf and fine-tunned. Off-
the-shelf are techniques that extract image
representations by using pre-trained CNNs,
whereas fine-tunned methods retrain the
network parameters with a relevant dataset
to compute more accurate visual represen-
tation. For a fair comparison, we only con-
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sider methods that represent each image
with a single visual vector, without query
expansion or image re-ranking.

Off-the-shelf results are shown in Table 4
and fine-tunned results are presented in Ta-
ble 5. When using off-the-shelf RMAC fea-
tures, our SimNet* approach outperforms
previous methods in every dataset. To com-
pare against fine-tunned methods, we com-
pute RMAC vectors using the fine-tunned
version of VGG16 proposed in [27]. Accu-
racy is boosted when our similarity network
is used instead of the analogous cosine sim-
ilarity method [27]. SimNet* achieves the
best mAP precision in Oxford5k dataset
and comes second in Oxford105k and
Paris106k after [5], which uses the more
complex and higher-dimensional ResNet
network [60] for image representation.

5. Conclusions

We have presented a method for learning
visual similarity directly from visual data.
Instead of using a metric distance func-
tion, we propose to train a neural network
model to learn a similarity score between a
pair of visual representations. Our method
is able to capture visual similarity better
than other techniques, mostly because of
its non-metric nature. As all the layers in
the similarity network are differentiable, we
also propose an end-to-end trainable archi-
tecture for image retrieval. Experiments
on standard collections show that results
are considerably improved when a similarity
network is used. Finally, our work can push
performance in image retrieval systems on
top of high-quality image features, while it
can still be applied with query expansion or
image re-ranking methods.
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Method Dim Similarity Ox5k Ox105k Pa6k Pa106k

Babenko et al. [3] 512 L2 0.435 0.392 - -
Razavian et al. [10] 4096 Averaged L2 0.322 - 0.495 -
Wan et al. [11] 4096 OASIS 0.466 - 0.867 -
Babenko et al. [16] 256 Cosine 0.657 0.642 - -
Yue et al. [17] 128 L2 0.593 - 0.59 -
Kalantidis et al. [21] 512 L2 0.708 0.653 0.797 0.722
Mohedano et al. [20] 25k Cosine 0.739 0.593 0.82 0.648
Salvador et al. [28] 512 Cosine 0.588 - 0.656 -
Tolias et al. [23] 512 Cosine 0.669 0.616 0.83 0.757
Jimenez et al. [29] 512 Cosine 0.712 0.672 0.805 0.733
Ours (∆ = 0.8) 512 SimNet* 0.808 0.772 0.891 0.818

Table 4: State of the Art Comparison (Off-the-shelf). Dim corresponds to the dimensionality of the
feature representation and Similarity is the similarity function.

Method Dim Similarity Ox5k Ox105k Pa6k Pa106k

Babenko et al. [3] 512 L2 0.557 0.522 - -
Gordo et al. [26] 512 Cosine 0.831 0.786 0.871 0.797
Wan et al. [11] 4096 OASIS 0.783 - 0.947 -
Radenovic et al. [27] 512 Cosine 0.77 0.692 0.838 0.764
Salvador et al. [28] 512 Cosine 0.71 - 0.798 -
Gordo et al. [5] 2048 Cosine 0.861 0.828 0.945 0.906
Ours (∆ = 0.8) 512 SimNet* 0.882 0.821 0.882 0.829

Table 5: State of the Art Comparison (Fine-tunned). Dim corresponds to the dimensionality of the
feature representation and Similarity is the similarity function.
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Highlights

• To introduce a neural network to model visual similarities.

• To propose a regression loss for improving standard metrics in image retrieval.

• To improve image retrieval with a simple and effective method.

• To design a real end-to-end system for content-based image retrieval.

• To show the efficacy of the method via multiple experiments.
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