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Abstract

Can a neural network learn the concept of visual simi-
larity? In this work, this question is addressed by training
a deep learning model for the specific task of measuring the
similarity between a pair of pictures in content-based im-
age retrieval datasets. Traditionally, content-based image
retrieval systems rely on two fundamental tasks: 1) com-
puting meaningful image representations from pixels and 2)
measuring accurate visual similarity between those repre-
sentations. Whereas in the last few years several methods
have been proposed to find high quality image represen-
tations including SIFT [21], VLAD [15] or RMAC [40],
most techniques still depend on standard metrics such as
Euclidean distance or cosine similarity for the visual simi-
larity task. However, standard metrics are independent from
data and might be missing the nonlinear inner structure of
visual representations. In this paper, we propose to learn
a non-metric visual similarity function directly from image
representations to measure how alike two images are. Ex-
periments on standard image retrieval datasets show that
results are boosted when using the proposed method over
standard metrics.

1. Introduction

For humans, deciding whether two images are visually
similar or not is, to some extent, a natural task. However,
in computer vision, this is a challenging problem and al-
gorithms do not always succeed in matching pictures that
contain similar-looking elements. This is mainly because
of the well-known semantic gap problem, which refers to
the difference or gap between low-level image pixels and
high-level semantic concepts. Estimating visual similarity
is a fundamental task that seeks to break this semantic gap
by accurately evaluating how alike two or more pictures are.
Visual similarity is crucial for many computer vision areas
including image retrieval, image classification and object
recognition, among others.
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Figure 1: System overview. For any pair of images Ii and
Ij ,K-dimensional visual representations are extracted from
a first CNN. Then, visual representation vectors are con-
catenated and fed into the visual similarity neural network,
which outputs a score si,j as the similarity estimation be-
tween the original images.

Given a query image, content-based image retrieval
(CBIR) systems rank pictures in a dataset according to how
similar they are with respect to the input. This can be bro-
ken into two fundamental tasks: 1) computing meaningful
image representations that capture the most salient visual
information from pixels and 2) measuring accurate visual
similarity between these image representations to rank im-
ages according to a similarity score.

In the last years, several methods to represent visual in-
formation from raw pixels in images have been proposed,
first by designing handcrafted features such as SIFT [21],
SURF [3] or BRIEF [5], then by compacting these local
features into a single global image descriptor using different
techniques such as BOW [36], Fisher Vectors [26] or VLAD
[15] and more recently by extracting deep image represen-
tations from neural networks, including Neural Codes [2],
CroW [16] or RMAC [40]. However, once two images are
described by feature vectors, visual similarity is commonly
measured by computing a standard metric between them.
Although regular distance metrics, such as Euclidean dis-
tance or cosine similarity, are fast and easy to implement,
they do not take into account the possible interdependency
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within the dataset, which means that even if a strong non-
linear data dependency is occurring in the visual collection,
they might not be able to capture it. This suggests that learn-
ing a similarity estimation directly from visual data can im-
prove the performance on image retrieval tasks, provided
that the likely nonlinearity dependencies within the dataset
are precisely learned by the similarity function.

Visual similarity learning is closely related to distance
metric learning, a field of machine learning that seeks to
learn a metric from data for the specific task of interest. Tra-
ditionally, distance metric learning algorithms were based
on linear metrics such as the Mahalanobis distance. How-
ever, if the visual data presents any nonlinear interdepen-
dency, better results are expected when using nonlinear ap-
proaches. According to some studies [38], standard metric
axioms are not valid for human perception of visual simi-
larity and hence, visual similarity functions should not nec-
essarily satisfy distance metric conditions. Deep learning-
based similarity learning methods are mostly focused on
learning an optimal mapping from pixels to a linear space in
which Euclidean distance can be applied. Instead, we pro-
pose a simple approach based on neural networks to learn
a non-metric similarity score in the manifold of samples in
the feature space.

Figure 1 shows an overview of the proposed methodol-
ogy. By training a deep learning model, we can estimate a
visual similarity function that outperforms methods based
on standard metric computations. One convolutional neural
network (CNN) extracts image representations from a pair
of input images, while a second neural network computes
the visual similarity score. The visual similarity neural net-
work is trained using both pairs of similar and dissimilar
images in three stages. The output score of the similarity
network can be directly applied as a similarity estimation
to rank images in a CBIR system. Experimental results on
image retrieval standard datasets show that our network is
able to discriminate when a pair of images is similar or dis-
similar and improve cosine similarity score on top of that.

The paper is laid out as follows: Section 2 introduces the
related work. In Section 3, the deep architecture that learns
the similarity estimation from a pair of images is described.
Datasets and experimental details are presented in Section
4. Results are discussed in Section 5. Section 6 provides
concluding remarks.

2. Related Work
Content-Based Image Retrieval. Content-based im-

age retrieval searches for images by considering their visual
content. Given a query image, pictures in a collection are
usually ranked according to their visual similarity with re-
spect to the query. One common approach is to represent the
local visual content of images by a set of hand-crafted fea-
tures, such as SIFT [21], SURF [3] or BRIEF [5]. As a sin-

gle image may contain hundreds of these hand-crafted fea-
tures, aggregation methods like bag-of-words (BOW) [36],
Fisher Vectors [26] or VLAD [15] are typically used to en-
code local features into a global compact vector, thereby im-
proving computational efficiency and scalability. Recently,
because of the latest advancements on deep learning, fea-
tures obtained from deep learning methods such as convo-
lutional neural networks (CNN) have rapidly become the
new state-of-the-art in image retrieval.

Deep Learning for Image Retrieval. Instead of hand-
crafted features, deep image retrieval uses activations from
CNNs as image representations. At first, related work
[2, 34, 41, 20] proposed to extract these image represen-
tations from one of the last fully connected layers of a net-
work trained on ImageNet [32], a popular image classifi-
cation dataset. When deeper networks such as GoogLeNet
[37] and VGG [35] appeared, some authors [1, 45, 34, 44]
proposed to use mid-layer representations obtained from
the convolutional layers instead of the fully connected ac-
tivations. Since then, there have been several attempts to
aggregate these high-dimensional convolutional representa-
tions into a compact vector. For example, [10, 45] com-
pacted deep features by using VLAD, [24] encoded the neu-
ral codes into an histogram of words, [1, 16] applied sum-
pooling to obtain a compact representation and [31, 40] ag-
gregated deep features by max-pooling them into a new
vector. A different approach is to train the network to di-
rectly learn compact binary codes end-to-end [8, 19]. Fi-
nally, some authors have shown that fine-tunning the net-
works with similar data to the target task increases the per-
formance significantly [2, 11, 30, 33].

These methods are focused on finding high quality fea-
tures to represent visual content efficiently. Then, visual
similarity is computed by simply applying a standard met-
ric distance to these representations. General metrics, such
as Euclidean distance or cosine similarity, however, might
be failing to consider the inner data structure of these vi-
sual representations. Learning a similarity function directly
from data may help to capture the human perception of vi-
sual similarity in a better way.

Similarity Learning. Some of the most popular similar-
ity learning works proposed so far, such as OASIS [6] and
MLR [23], are based on linear metric learning by optimiz-
ing the weights of a linear transformation matrix. Although
linear methods are easier to optimize and less prone to over-
fitting, nonlinear algorithms are expected to achieve higher
accuracy modeling the possible nonlinearities of data. Non-
linear similarity learning based on deep learning has been
recently applied to many different visual contexts. In low-
level image matching, CNNs have been trained to match
pairs of patches for stereo matching [46, 22] and optical
flow [9, 39]. In high-level image matching, deep learning
techniques have been proposed to learn low-dimensional



embedding spaces in face verification [7], retrieval [43, 42],
classification [13, 29, 25] and product search [4], either by
using siamese [7] or triplet [42] architectures.

In general, these methods rely on learning a mapping
from image pixels to a low dimensional target space to com-
pute the final similarity decision by using a standard metric.
They are designed to find the best projection in which a lin-
ear distance can be successfully applied. Instead of project-
ing the visual data into some linear space, that may or may
not exist, our approach seeks to learn the non-metric visual
similarity score itself. Similarly, [18] and [12] used a CNN
to decide whether or not two input images are a match, ap-
plied to pedestrian reindentification and patch matching, re-
spectively. In these methods, the networks are trained as a
binary classification problem (i.e. same or different pedes-
trian/patch), whereas in an image retrieval ranking problem,
a regression score is required. Inspired by the results of
[41], which showed that combining deep features with sim-
ilarity learning techniques can be very beneficial for the per-
formance of image retrieval systems, we propose to train a
deep learning algorithm to learn non-metric similarities for
image retrieval and improve results in top of high quality
image representation methods.

3. Learning Visual Similarity
Here, we describe a deep architecture that learns the

mapping from a pair of images to a similarity score.

3.1. Definition

Visual similarity is the task that measures how related
two images are by using their visual content. Given n
samples in the training image collection I , for each image
Ii ∈ I with i ∈ [1, n], a global d-dimensional represen-
tation xi ∈ Rd is obtained as xi = f(Ii, wf ), where f is
the function that maps images into global features and wf

is the set of parameters of f . We define si,j as the similarity
score which measures how alike two images Ii and Ij are.
The higher si,j is, the more similar Ii and Ij are. The aim
is to learn a visual similarity function S that computes the
similarity score from global image representations as:

si,j = S(xi, xj) = g(f(Ii, wf ), f(Ij , wf ), wg) (1)

where g is a nonlinear function and wg is the set of param-
eters to optimize.

Note that g does not have to be a metric in order to be
a similarity function and thus, it is not required to satisfy
the rigid constraints of metric axioms, i.e. non-negativity,
identity of indiscernibles, symmetry and triangle inequality.
Some non-metric similarity works such as [38] suggest that
these restrictions are not compatible with human percep-
tion. As an example, they showed that although a centaur
might be visually similar to both a person and a horse, the

person and the horse are not similar to each other. A possi-
ble explanation for this phenomenon is that when compar-
ing two images, human beings may pay more attention to
similarities and thus, similar portions of the images may be
more discriminative than dissimilar parts. To overcome the
issues associated with applying strong rigid constraints to
visual similarity, we propose to learn the non-metric simi-
larity function g using a neural network approach.

3.2. Image Representation

First, we describe the image representation method f we
use in our system. As this work aims to learn a non-metric
similarity estimation from visual data, our efforts are not fo-
cused on improving existing image representation methods,
but to learn how to compare them. Without loss of general-
ity, we use the state-of-the-art RMAC descriptor proposed
in [40] as image representation method, although any other
image representation method can be considered as well.

RMAC or Regional Maximum Activations of Convolu-
tion is a deep global image representation obtained from the
last convolutional layer of a pre-trained CNN on ImageNet
classification task [32]. When an image is fed into the net-
work, the last convolutional layer outputs a W × H × K
response, where K is the number of filters and W and H
are the spatial width and height of the output, respectively,
that depend on the network architecture as well as on the
size of the input image. The response of the k-th filter of
the last convolutional layer can be represented by Ωk, a 2D
tensor of size W ×H . If Ωk(p) is the response at a partic-
ular position p, and R is a spatial region within the feature
map, the regional feature vector fR is defined as:

fR = [fR,1 . . . fR,k . . . fR,K ]> (2)

where fR,k = maxp∈R Ωk(p). Thus, fR consists of the
maximum activation of each filter inside the region R. Sev-
eral regional features are extracted at different multi-scale
overlapping regions. Each of these regional vectors is in-
dependently post-processed with `2-normalization, PCA-
whitening and `2-normalization, as suggested in [14]. Fi-
nally, regional vectors are summed and `2-normalized once
again to obtain the final compact vector. The size of the fi-
nal vector isK, which is independent of the size of the input
image, its aspect ratio or the number of regions used.

3.3. Similarity Network

To compare two images and obtain their visual similar-
ity score we learn the similarity function g by training a
deep learning architecture. Given two input images Ii and
Ij , we first extract their image representations xi and xj ,
respectively, as explained in Section 3.2. Then, the two
K-dimensional global vectors are concatenated along the
third dimension (i.e. depth) and fed into the similarity net-
work, as shown in Figure 1. This process is different to the



(a) Siamese network (b) Similarity network

Figure 2: Differences between a siamese architecture (a),
where the network is trained to map pixels into high-quality
vector representations, and our architecture (b), where the
network is trained to learn a similarity function in top of
vector representations. Moreover, in the similarity network,
weights are not necessarily shared.

standard siamese architecture [7] because the latest maps
images into vector representations and updates the shared
weights according to the learning protocol and our approach
trains and updates the similarity network on top of high-
quality vector representations. Figure 2 shows the differ-
ence between both approaches.

The similarity network is composed by a set of fully con-
nected layers, each one of them followed by a ReLU non-
linearity layer [17]. The input of the network is fixed to be
of 1×K × 2 size, so the size of the first layer, as it is fully
connected, is 1×K × 2× Ch, where Ch is the number of
channels. The hidden layers are of size 1 × Ch × 2 × Ch.
On the other hand, the output layer is of size 1×Ch×2×1
and it is not followed by a ReLU layer, as the output score
is expected to cover a full range of values, both positive and
negative. Finally, during training, we add an `1-norm loss
function layer to compute the regression loss L as:

L(Ii, Ij) = |si,j − yi,j | = |g(xi, xj , wg)− yi,j | (3)

where si,j is the network output and yi,j is the annotated
score. Four configurations A-D with different number of
filters Ch and number of hidden layers are proposed and
tested during our experiments (Table 1).

3.4. Training Similarity

The visual similarity network is trained in three stages.
In each stage the weights are initialized by the trained
weights of the previous stage while the learned task gets
progressively more difficult.

Stage 1: Standard Metric

In the first stage, we use the network to learn a standard
similarity function based on the cosine similarity. We gen-

Table 1: Network architectures A-D. Fully connected layers
denoted as FC-{number of filters}. Last row is the number
of parameters (in millions) of each configuration.

A B C D
FC-1024 FC-4096 FC-8192 FC-4096

ReLU ReLU ReLU ReLU

FC-1024 FC-4096 FC-8192 FC-4096

ReLU ReLU ReLU ReLU

- - - FC-4096

- - - ReLU

FC-1 FC-1 FC-1 FC-1

2.1 21 76 38

erate random pairs of vectors, xi and xj , and we assign the
cosine similarity between them as the score label yi,j :

yi,j =
xi · xj
‖xi‖‖xj‖

(4)

In order to train the model in the full range of possible val-
ues, pairs are produced so that the cosine similarity is uni-
formly distributed within the training set.

Stage 2: Visual Similarity

In the second stage, the basic similarity network learns to in-
crease the similarity score when given two matching images
and to decrease it when a pair of images is not a match. The
weights in this training stage are initialized by the weights
obtained during Stage 1. We now use pairs of image rep-
resentation vectors xi and xj , randomly chosen from our
training image dataset. The score label is set to:

yi,j =

{
xi·xj

‖xi‖‖xj‖ + ∆, if xi and xj are similar
xi·xj

‖xi‖‖xj‖ −∆, otherwise
(5)

where ∆ is the margin parameter. Thus, the model learns to
discriminate when a pair of images are similar (dissimilar)
and assigns it a higher (lower) value than the standard score.

In this stage, the model learns how to compute a simi-
larity score from examples of images that are known to be
matching or non-matching. Therefore a relevant dataset to
the final retrieval task should be used. Similarity between
pairs might be decided using different techniques, such as
image classes, score based on local features or manual la-
beling, among others. Without loss of generality, we con-
sider two images as similar when they belong to the same
class and as dissimilar when they belong to different classes.



Figure 3: Difficult pairs misclassified after Stage 2. (Up-
per) Lower row: (dissimilar) similar images in which the
network score is (lower) higher than the cosine similarity.

Stage 3: Hard Examples

In the final stage, the similarity network is refined by train-
ing it specifically by using difficult pairs of images. Pre-
vious works [11, 30] have shown that fine-tunning neural
networks using difficult samples is very helpful in terms of
performance. This is easy to understand: if the network is
only trained by using easy pairs (e.g. a car and a dog), it will
not be able to discriminate between difficult pairs (e.g. a car
and a van). To choose the set of hard pairs we compute the
scores of a random set of image pairs by using the network
trained in Stage 2. Those pairs in which the network output
is worse than the cosine similarity measure are selected as
difficult pairs for retraining1. Examples of difficult image
pairs can be seen in Figure 3.

4. Experiments

In this section, we present the datasets and the experi-
mental details used in our experiments.

4.1. Testing Datasets

Our approach is evaluated on the standard image re-
trieval datasets described below.

Oxford5k [27]: a dataset that consists of 5,062 images
of 11 different Oxford landmarks. The query set contains
55 annotated images, 5 per landmark.

Paris6k [28]: a datasets that consists of 6,412 images
of 11 different Paris landmarks. The query set contains 55
annotated images, 5 per landmark.

Land5k: a validation subset of the Landmarks database

1A worse score is a score that is lower in the case of a match and higher
in the case of a non-match.

[2]. It consists of the 4,915 validation images from 529
classes. A random selection of 45 images is used as queries.

Oxford105k, Paris106k: the large-scale versions of Ox-
ford5k and Paris6k, respectively. They include 100,000 dis-
tractor images from Flickr [27].

In both the Oxford5k and the Paris6k collections query
images are cropped according to the region of interest pro-
vided by the authors of the datasets. Evaluation is per-
formed by computing the mean Average Precision (mAP),
using the provided ground truth and algorithms. For Land-
marks5k we consider an image to be relevant to the query
when it belongs to the same class.

4.2. Training Datasets

For the purposes of this work, having a training dataset
as similar as possible to the final similarity task is essential.
We create several versions of the training dataset to evaluate
the effect of using different samples in the training process.

Landmarks-clean [11]: an automatically cleaned sub-
set of Landmarks [2] dataset which officially contains about
49,000 images from 586 landmarks. However, due to bro-
ken URLs, we could only download 33,119 training images
and 4,915 validation images. This dataset does not contain
images from classes that overlap with Oxford5k and Paris6k
datasets as they were manually removed.

Landmarks-clean-extra: the Landmarks-clean collec-
tion in addition to about 500 images from Oxford5k and
1,700 images from Paris6k classes. In total, it contains
35,342 training images belonging to 605 different land-
marks. Note that query images are not added in any case
and they remain unseen by the system.

Landmarks-clean-extra-500: the Landmarks-clean
collection plus 250 random images from each of the Ox-
ford5k and Paris6k datasets. In total, it contains 33,619
training images.

4.3. Experimental Details

Image Representation. To compute RMAC represen-
tations we use the VGG16 network [35], which has been
previously pre-trained on the ImageNet dataset [32]. Un-
less otherwise stated, we use the default values proposed
in [40] to obtain 512-dimensional RMAC vectors. VGG16
network is used off-the-shelf without any retraining or fine-
tunning performed on top of it. Experimental results have
shown that RMAC representations are very sensitive to the
PCA matrices used in the post-processing step. As we are
keeping query images unseen by the system and not using
them in the PCA matrices computation as in [40], our re-
sults are slightly different to theirs.

Visual Similarity Learning. Similarity learning is
trained using almost a million of random pairs, of which
half of the pairs are visual matches and the other half are
non-matches. PCA whitening is done using Paris5k images.



As RMAC representation performs better in high resolution
images, we re-scale all the images up to 1024 pixels, keep-
ing the original aspect ratio of the pictures. For the similar-
ity network, four different configurations A-D (Table 1) are
explored during our experiments. The network is optimized
using backpropagation and stochastic gradient descent. We
use a learning rate of 0.001, a batch size of 100, a weight
decay of 0.0005 and momentum of 0.9.

Computational cost. Standard metrics are relatively fast
and computationally cheap. Our visual similarity network
involves the use of millions of parameters that inevitable in-
crease the computational cost. However, it is still feasible
to compute in a reasonable amount of time. In our exper-
iments, training time is about 5 hours in a GeForce GTX
1080 GPU and testing time for a pair of images is 1.25 ms
on average (0.35 ms when using cosine similarity).

5. Results
In this section, we present the experimental results when

visual similarity is learned with our method.

5.1. Architecture Discussion

As shown in Table 1 four different configurations A-D
for the similarity neural network are proposed. We com-
pare the performance of each one during Stage 1, when the
network is trained with the standard cosine similarity mea-
surement. If sl is the network score and yl is the cosine
similarity of the l-th pair with l = 1..L, we evaluate each
network by computing the mean squared error, MSE, and
the correlation coefficient, ρ, as:

MSE =
1

L

L∑
l=1

(sl − yl)2 (6)

ρ =
1

L− 1

L∑
l=1

sl − µs

σs

yl − µy

σy
(7)

where µs and σs are the mean and standard deviation of
the vector of network scores s, respectively, and µy and σy
are the mean and standard deviation of the vectors of cosine
similarities y, respectively.

Results can be seen in Table 2. Unsurprisingly, the con-
figuration with bigger number of parameters, C, achieves
the best MSE and ρ results, both in training and validation
sets. However, the performance of networks B and D is
very close to the performance of network C. As network B
requires only 21 million parameters and network C requires
76 million parameters, we keep configuration B as our de-
fault architecture for the rest of the experiments.

5.2. Evaluation of the similarity network

To evaluate our similarity network, we compute the mAP
at each stage of the training process (Section 4.2). Results

Table 2: MSE and ρ in networks A-D. Training: 22.5 mil-
lion random pairs. Validation: 7.5 million random pairs.

Training Data Validation Data

MSE ρ MSE ρ

A 0.00021 0.946 0.00035 0.909

B 0.00008 0.978 0.00019 0.965

C 0.00007 0.982 0.00012 0.974

D 0.00009 0.978 0.00019 0.964

when using different training datasets can be found in Table
3. Cosine similarity is computed as a baseline. We denote as
DeepCosine the results obtained after the first stage, when
the network is trained to mimic cosine similarity. Naturally,
DeepCosine performs worse than the cosine similarity, as it
is an estimation of the cosine metric. DeepSim refers to the
results obtained after the second stage, when the network is
fine-tunned to learn visual similarity with random pairs of
images. DeepSimH are the results after the last stage, when
the network is trained by using both random and hard pairs
of images. We compare our approach against the standard
similarity learning algorithm OASIS [6].

Out similarity networks outperform OASIS in all the
testing datasets. Moreover when using Landmarks-clean-
extra as training dataset, results are boosted with respect
to the standard metric, achieving improvements ranging
from 20% (Oxford5k) to 40% (Pairs6k). When using a
small subset of images from Oxford5k and Paris6k classes,
i.e. Landmarks-clean-extra-500 dataset, our similarity net-
works also improve mAP with respect to the cosine simi-
larity in the three testing datasets. This indicates that visual
similarity can be learnt even when using a reduced subset
of the target image domain. However, visual similarity does
not transfer well across domains when no images of the tar-
get domain are used during training. For example, when
training with Landmarks-clean dataset, the visual similarity
estimated using either OASIS and our DeepSim and Deep-
SimH only improves over cosine similarity in the Land5k
testing scenario, as both training and testing images belongs
to the same domain of image classes.

These results show that our network is able to learn
whether two images are similar or not and improve the co-
sine similarity metric accordingly. Figure 4 shows how the
mAP is affected when using DeepSimH network and choos-
ing different values of ∆. Except when ∆ = 0 (i.e. visual
similarity is not learned), mAP is always improved with re-
spect to the standard cosine similarity metric.



Table 3: mAP when using different training datasets and
several ∆ values.

Oxford5k Paris6k Land5k

Cosine Similarity 0.665 0.638 0.564

DeepCosine 0.638 0.596 0.549

Landmarks-clean

OASIS [6] 0.514 0.385 0.578

DeepSim (∆ 0.2) 0.658 0.460 0.669

DeepSimH (∆ 0.2) 0.655 0.503 0.697

DeepSimH (∆ 0.4) 0.637 0.504 0.737

DeepSimH (∆ 0.6) 0.613 0.514 0.776

DeepSimH (∆ 0.8) 0.600 0.511 0.783

Landmarks-clean-extra-500

OASIS [6] 0.570 0.651 0.589

DeepSim (∆ 0.2) 0.717 0.654 0.671

DeepSimH (∆ 0.2) 0.719 0.677 0.693

DeepSimH (∆ 0.4) 0.703 0.701 0.745

DeepSimH (∆ 0.6) 0.703 0.716 0.776

DeepSimH (∆ 0.8) 0.685 0.710 0.803

Landmarks-clean-extra

OASIS [6] 0.619 0.853 0.579

DeepSim (∆ 0.2) 0.718 0.757 0.668

DeepSimH (∆ 0.2) 0.786 0.860 0.662

DeepSimH (∆ 0.4) 0.794 0.878 0.706

DeepSimH (∆ 0.6) 0.789 0.885 0.735

DeepSimH (∆ 0.8) 0.808 0.891 0.758

5.3. Comparison with the state of the art

Finally, we compare our method against several state-of-
the-art techniques (Table 4). As standard practice, works are
split into two main groups: off-the-shelf and fine-tunning
approaches. Off-the-shelf are techniques that extract visual
representations by using CNNs trained on ImageNet dataset
[32] without modifying the network. On the other hand,
fine-tunning methods retrain the network to compute more
accurate visual representation. For a fair comparison, we
do not consider methods that apply query expansion or im-
age re-ranking. When using off-the-shelf RMAC features,

Figure 4: mAP versus ∆. Rigid lines are DeepSimH scores,
dashed lines are cosine similarity scores.

our DeepSimH approach outperforms previous methods in
every dataset. To compare against fine-tunned methods, we
compute RMAC vectors using the fine-tunned version of
VGG16 proposed in [30] and training our DeepSimH ex-
actly in the same way as in the off-the-shelf version. Ac-
curacy is significantly improved when using our similarity
network instead of the analogous cosine similarity method
[30]. DeepSimH achieves the best mAP precision in three
out of four datasets, and comes second in the fourth.

6. Conclusions

We have presented a method for learning visual similar-
ity directly from visual data. Instead of using a rigid metric
distance, such as the standard cosine similarity, we propose
to train a neural network model to learn a similarity estima-
tion between a pair of visual representations previously ex-
tracted from input images. Our method outperforms state-
of-the-art approaches based on rigid distances in standard
image retrieval collection of images and experimental re-
sults showed that learning a non-metric visual similarity
function is beneficial in image retrieval tasks.

We end with some interesting open questions. Firstly,
as the entirety of our similarity computation is now based
on a network architecture, this opens the possibility of true
end-to-end training for content based image retrieval. An-
other question concerns efficient computation of exact or
approximate K-nearest neighbours based on the learned net-
work similarity functions. These questions are the subject
of planned future work.



Table 4: mAP results for different state-of-the-art techniques. Dim is the dimensionality of the image representation. Simi-
larity is the similarity method used to rank dataset images. * symbol is used to denote our implementation. In this table, we
use ∆ = 0.8. Approaches using off-the-shelf and fine-tunned features are showed separately.

Method Dim Similarity Oxford5k Oxford105k Paris6k Paris106k

O
ff

-t
he

-s
he

lf

Neural Codes [2] 512 L2 0.435 0.392 - -

Razavian et al. [34] 4096 Averaged L2 0.322 - 0.495 -

Wan et al. [41] 4096 OASIS [6] 0.466 - 0.867 -

SPoC [1] 256 Cosine 0.657 0.642 - -

DeepIndex [20] 28k Inverted Index - - 0.812 -

Ng et al. [45] 128 L2 0.593 - 0.59 -

CroW [16] 512 L2 0.708 0.653 0.797 0.722

Mohedano et al. [24] 25k Cosine 0.739 0.593 0.82 0.648

Salvador et al. [33] 512 Cosine 0.588 - 0.656 -

RMAC [40] 512 Cosine 0.669 0.616 0.83 0.757

RMAC+DeepSimH * 512 DeepSimH 0.808 0.772 0.891 0.818

Fi
ne

-t
un

ni
ng

Neural Codes [2] 512 L2 0.557 0.522 - -

Gordo et al. [11] 512 Cosine 0.831 0.786 0.871 0.797

Wan et al. [41] 4096 OASIS [6] 0.783 - 0.947 -

Radenovic et al. [30] 512 Cosine 0.77 0.692 0.838 0.764

Salvador et al. [33] 512 Cosine 0.71 - 0.798 -

[30]+DeepSimH * 512 DeepSimH 0.882 0.821 0.882 0.829
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[30] F. Radenović, G. Tolias, and O. Chum. Cnn image retrieval
learns from bow: Unsupervised fine-tuning with hard exam-
ples. In Proceedings of the IEEE European Conference on
Computer Vision, pages 3–20, 2016. 2, 5, 7, 8

[31] A. S. Razavian, J. Sullivan, S. Carlsson, and A. Maki. Vi-
sual instance retrieval with deep convolutional networks.
ITE Transactions on Media Technology and Applications,
4(3):251–258, 2016. 2

[32] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015. 2, 3, 5, 7
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