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Abstract: We have demonstrated the realization of a high-polarization random fiber laser 
(RFL) output based on the hybrid Raman and Erbium gain with the tailored effect provided 
by a 45°-tilted fiber Bragg grating (45°-TFBG), revealing an improvement in the polarization 
extinction ratio (PER) and achieving a PER of ~15.3 dB. The hybrid RFL system 
incorporating the 45°-TFBG has been systematically characterized. The random lasing 
wavelength can be fixed under the extremely weak feedback effect of the 45°-TFBG with 
reflectivity of 0.09%. In addition, numerical simulation has verified that the weak feedback 
can boost the random lasing emission with fixed wavelength using a power balance model, 
which is in good accordance with the experiment results. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction
To solve two problems—high threshold and non-directivity—of random lasers (RLs), optical 
fibers have been used to confine the random laser system, bringing about the development of 
random fiber lasers (RFLs) [1]. Furthermore, a coherent RFL based on nanoparticles (NPs) 
scattering in the extremely weakly scattering regime has been obtained [2–4], which extends 
RFL from incoherent to coherent random lasing. To extend the application of RFL, D. V. 
Churkin and S. K. Turitsyn et al. have demonstrated RFLs in the telecommunication fiber 
based on a random distributed feedback due to the Raman amplified Rayleigh backscattering 
[5,6]. And X. Bao et al. have reported Rayleigh scattering-assisted Brillouin lasing with 
single frequency and narrow linewidth in cascaded low-loss communication fiber [7,8]. 
However, the threshold of random laser is still high in the telecommunication single mode 
fiber (SMF) due to the low back-scattering coefficient. Therefore, there are two main ways to 
decrease the random lasing threshold: 1) bring active fibers in the RFL system, e.g., Erbium 
doped fibers [9]; 2) add a fiber Bragg grating (FBG) to form a half-open cavity [6]. Therefore, 
H. Wu et al. have used the hybrid Erbium-Raman fiber system (ERFS) with assistance of a
FBG to obtain low threshold, high efficient RFL [10]. In the hybrid Erbium-Raman fiber with
FBG system, the role of FBG is to reflect the fixed wavelength light based on the Bragg law
and boost random lasing with the fixed wavelength. Nevertheless, in the hybrid system
without FBG, there are multi-modes stochastic lasing due to nearly equal probability of the
dense multi-longitudinal modes in ultra-long fiber cavity. The reflectivity of FBG used in the
random fiber laser system is >90% to obtain narrow random lasing with fixed wavelength.
They also have investigated the role of point reflector with reflectivity of 1%-90% on the
lasing threshold and power distribution in random fiber lasing process. The power distribution

Vol. 27, No. 3 | 4 Feb 2019 | OPTICS EXPRESS 3255 

#351544 https://doi.org/10.1364/OE.27.003255 
Journal © 2019 Received 9 Nov 2018; revised 20 Dec 2018; accepted 10 Jan 2019; published 30 Jan 2019 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.27.003255&domain=pdf&date_stamp=2019-01-30


and threshold tend to be stable when the reflectivity reaches a relatively high level [11]. In 
our previous work [2], the waveguide effect can boost the random lasing in the extremely 
weakly scattering regime. To date, super-low reflectivity (<0.1%) feedback how to influence 
the random lasing process and stabilize random lasing wavelength have not been reported in 
the RFL system. 

The polarized lasers are important in the applications of sensor and optical 
communication. Nevertheless, it is hard to obtain the polarized RFL based on Rayleigh 
scattering since the local birefringence along SMFs is strongly influenced by external 
perturbations, leading to the deterioration of the RLs characteristics. L. Zhang et al. reported 
the linearly polarized multi-wavelength Brillouin laser comb by cascading multiple Brillouin 
random lasing oscillations in a semi-open polarization maintaining fiber-based composite 
cavity [12]. B. Yao et al. have obtained singly-polarized pulse RFL using the broadband 
saturable absorption of monolayer graphene [13]. A. E. Budarnykh et al. have demonstrated 
an operation of a linearly polarized Raman fiber laser with random distributed feedback based 
on a polarization maintaining twin-core fiber [14]. H. Wu et. al. have reported a polarization-
modulated RFL that generates pulsed output is proposed due to the different lasing threshold 
for two polarization states [15]. S. Babin et. al. have proposed approach enables high-
efficiency generation of high-quality linearly-polarized laser radiation in a polarization-
maintaining fiber [16]. The hitherto reported polarized RFLs are mainly based on adding 
saturable materials or polarization-maintaining devices in the fiber system. To decrease the 
complexity and extend the application of polarized RFL, we focus on the research of low-cost 
and all fiber polarized RFLs. 

To simplify the fabrication procedures and decrease the cost of polarizers, the ultraviolet 
(UV) inscribed 45°-tilted fiber Bragg grating (45°-TFBG) has been fabricated as a polarizer 
in a standard commercial SMF that possesses significant advantages, e.g. low-cost, effective 
and all fiber system, over traditional polarizers [17–19]. In principle, the TE light through 
such grating shows large transmission loss whereas the TM-light loss remains small due to 
Brewster’s Law. Therefore, the 45°-TFBGs have been applied in optical communications and 
fiber laser systems as a broadband polarizer [20]. Moreover, the reflectivity of 45°-TFBGs is 
weak. Therefore, the 45°-TFBGs comes into our sight to research how super-low reflectivity 
influences the random laser. Furthermore, this could also provide a simple way to realize 
polarized RFL in the all fiber hybrid ERFS system. 

In this paper, firstly, characteristics of the RLs in the hybrid ERFS without 45°-TFBG 
have been investigated. The wavelengths of random lasing fluctuate randomly with time with 
the absence of the 45°-TFBG. Interestingly, when the 45°-TFBG with super-low reflectivity 
of 0.09% has been integrated in the hybrid ERFS, the RLs wavelength can be fixed and the 
threshold decreases comparing with the hybrid system without 45°-TFBGs. In our 
experiment, the reflectivity of Rayleigh backscattering of SMF is 0.05% based on the 
Rayleigh backscattering coefficient ε = 4.5 × 10−5 km−1 [21] and fiber length of 11 km, which 
is similar with that of the 45°-TFBG. Therefore, we prove that the weak feedback can boost 
random lasing with fixed wavelength in ERFS. Moreover, a low-cost, effective and all fiber 
polarized RFL with PER of 15.3 dB has been obtained since only TM light can transmit 
through the 45°-TFBG. Finally, the influence of weak feedback on boasting the random 
lasing process and fixing the lasing wavelength is simulated. 

2. Experiments 
Figure 1 shows the setup of RFL based on hybrid ERFS. A 1455 nm Raman fiber laser (IPG) 
with a maximum output power of 5 W is used to pump both the Erbium doped fiber (EDF, 2 
m length) and the SMF (11 km length) through a 1455/1550-1600 nm wavelength division 
multiplexer (WDM). The EDF provides active amplification, while the SMF provides both 
amplification based on simulated Raman scattering and feedbacks through distributed random 
Rayleigh scattering. And all the fiber ends are angle cleaved to avoid the Fresnel reflection 
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Fig. 8. Numerical simulated output spectra in forward direction for different reflectivity 
correspond to pump power of 0.5 (a), 1.5 (b), 2 (c) and 2.5 W (d). R: the reflectivity of the 45°-
TFBG. 

The relationship of reflection strength and lasing process is analyzed numerically by 
increasing the reflectivity of the 45°-TFBG (R) at different pump power, as shown in Fig. 8. 
For pump power under the lasing threshold, the peaks in the spectrum are amplified 
simultaneously with the increase of reflectivity, as shown in Fig. 8(a). However, for pump 
power higher than the threshold, the lasing wavelength (1555.19 nm, the highest reflective 
peak in the 45°-TFBG reflection profile) dominates in the output spectrum, while the 
background light, the power of the peaks with lower reflectivity and the 3-dB bandwidth of 
the lasing wavelength are all strongly suppressed with the increase of reflection, as shown in 
Fig. 8(d). Therefore, weak feedback in this level has a remarkable impact on the random 
lasing process and the dominant lasing wavelength is only selected by the highest reflective 
peak of the 45°-TFBG. Figure 9 gives the simulated backward output spectra. The 
evolutionary process of the backward spectra follows the main characteristics of the forward 
ones, except with a much lower output power and lower background light which both 
coincide with the experimental results as shown in Fig. 4. 
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Fig. 9. Numerical simulated output spectra in backward direction for different reflectivity 
correspond to pump power of 0.5 (a), 1.5 (b), 2 (c) and 2.5 W (d). 

4. Summary
In summarize, we have reported a fixed wavelength random fiber laser emission with the 
weak feedback assistance of 45°-TFBG that located in the reflection of 45°-TFBG in the 
hybrid Raman and erbium gain fiber. Meanwhile, we prove the weak feedback of 45°-TFBG 
plays a key role to obtain fixed wavelength random lasing in experiment and simulation. 
Moreover, we obtain random laser with high polarization extinction ratio of ~15.3 dB. 
Therefore, this work provides a way to control the emission wavelength by weak scattering 
feedback. 
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