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Nonlinear networks with time-delayed couplings may show strong and weak chaos, depending on the scaling
of their Lyapunov exponent with the delay time. We study strong and weak chaos for semiconductor lasers, either
with time-delayed self-feedback or for small networks. We examine the dependence on the pump current and
consider the question of whether strong and weak chaos can be identified from the shape of the intensity trace,
the autocorrelations, and the external cavity modes. The concept of the sub-Lyapunov exponent A, is generalized
to the case of two time-scale-separated delays in the system. We give experimental evidence of strong and weak
chaos in a network of lasers, which supports the sequence of weak to strong to weak chaos upon monotonically
increasing the coupling strength. Finally, we discuss strong and weak chaos for networks with several distinct
sub-Lyapunov exponents and comment on the dependence of the sub-Lyapunov exponent on the number of a
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laser’s inputs in a network.
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I. INTRODUCTION

In the interdisciplinary science of complex systems one
often encounters large dynamical systems described as net-
works of nonlinear units. Examples range from neural over
social networks to technological applications with networks
of coupled lasers [1-5]. The dynamical units of the network
exchange information with a finite propagation velocity, which
results in time delays in the transmission. Especially in
the case of coupled semiconductor lasers, the delay time is
typically much larger than the characteristic time scales of
the intensity dynamics. Hence the study of delay-coupled
dynamical systems is currently an active field of research [6,7].

Time-delayed feedback on a single system may already
generate instabilities leading to deterministic chaos [8—10]. As
an example, the emission of a semiconductor laser can become
unstable and develop chaotic fluctuations of the light intensity
if the laser beam is reflected back into the device by a distant
mirror. Networks of nonlinear units may similarly become
chaotic due to time-delayed coupling of the nodes [11].

If all units are identical, which means in practice that they
are sufficiently similar, the network can synchronize onto
a common trajectory. Even if the delay time is extremely
large, complete (zero-lag) synchronization is possible [12—14].
Chaos synchronization has been discussed in the context of
secure communication [15,16].

Recently, two different kinds of chaos have been identified
for chaotic networks of time-continuous systems with time-
delayed couplings: strong and weak chaos [17]. In the limit
of large delay times, the maximal Lyapunov exponent (LE)
of the network saturates at a nonzero value for strong chaos,
whereas it scales with the inverse delay time for weak chaos.
A similar phenomenon has been reported for time-discrete
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maps with delay [9]. Also for steady states and periodic orbits
the Floquet exponents show similar scaling properties [18,19].
Only networks exhibiting weak chaos can synchronize to a
common chaotic trajectory.

In this paper we extend the investigations on strong and
weak chaos presented in Ref. [17] by focusing on the dynamics
of semiconductor lasers. In Sec. II we complete the discussion
of the scaling behavior of the LE for a single chaotic unit
with delayed self-feedback in the limit of large delays, which
has been sketched in Ref. [17]. This system is investigated in
Sec. III for semiconductor lasers. As presented in Ref. [17],
numerical simulations of the Lang-Kobayashi equations yield
the transition from weak to strong chaos and back to weak
chaos upon monotonically increasing the coupling strength.
We extend this result by discussing the scaling just at the
transition and the dependence of the scaling on the laser pump
current. Autocorrelations, spatial representations of the chaotic
intensity, and external cavity modes are calculated for our
additional investigation and we follow the question of whether
one can deduce the type of chaos from a single trajectory. An
extension of the criterion for the occurrence of strong and weak
chaos is given for the case of two time-scale-separated self-
feedbacks. In Sec. IV networks of semiconductor lasers are
considered. The relation of the stability of the synchronization
manifold to the eigenvalue gap of the coupling matrix and
the master stability function is specialized for semiconductor
lasers. We report on an experiment on semiconductor lasers
that supports the sequence of weak to strong to weak chaos with
increasing coupling strength. Finally, we present a generalized
investigation of networks with several distinct sub-LEs and
certain network patterns.

II. SCALING OF THE MAXIMAL LYAPUNOV EXPONENT

We first consider a single chaotic unit with time-delayed
self-feedback and derive general properties of the LE in the
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limit of large delay times, extending the scaling argument of
our earlier work [17]. Our general model reads

x = F(x) + oH(x,), (1

where x = x(¢) € RM is the state vector with M degrees
of freedom and x, = x(# — t) with the time delay t > 0.
The field F describes the nondelayed part of the nonlinear
dynamical system, H1is a coupling function, and o is the overall
coupling strength. The linearization of the delay system Eq. (1)
is given by

8x = DF(x)8X + 0 DH (X;)8X, ()

and can be used to calculate LEs for a given trajectory x(t),
which is obtained by integration of Eq. (1). The maximal LE

Am 1s defined by
1 6x(@)l }
=lim —-In{———¢. 3)
=00 t { ll8x(70) |

Since the system under investigation is a delay system, we
formally obtain infinitely many LEs. In practice, after some
transient time, the system relaxes onto the most unstable mode
revealing the maximal exponent.

One can also define a conditional LE for delay systems, in
analogy to drive-response systems. In a drive-response setup
(where the drive is denoted by D and the response by R), this
conditional LE Ax describes the evolution of a perturbation
applied to the response system R [20]. It relates to the
synchronization properties of the system: If the conditional LE
is negative, R is in a state of generalized synchronization with
D. Since the conditional LE relates to a subsystem, it is often
called a sub-Lyapunov exponent. The Abarbanel setup [21]
for testing the sign of Ay is shown in Fig. 1. Considering
a delay system as a nondelayed dynamical unit A=TR
driven by a transmission line A, = D, the sub-Lyapunov
exponent of the unit arises from the instantaneous part of the
equations of motion and therefore has been referred to as an
instantaneous Lyapunov exponent [17]. However, in this paper
we keep the notion of sub-Lyapunov exponent and denote
it as Ag.

We obtain A by integrating the linearization

8’X0 = DF(X)SXO’ (4)
1 ll8x0 ()l }
% 7 “{||sxO<to>|| ®

(®) "
ee

FIG. 1. Test setups for conditional Lyapunov exponents. (a)
Abarbanel test for generalized synchronization between D and R
with test unit R'. If R and R’ synchronize completely, D and R
are in a state of generalized synchronization. (b) Test for strong and
weak chaos corresponding to the Abarbanel test such that A, = D,
A=TR,and B=TR'If Aand B synchronize completely, A is in a
state of weak chaos.
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Alternatively, we can define A via the evolution operator of
Eq' (4),

dxo(t) = U(t,19)dx¢(to), (6)
with U(ty,t9) = 1. Then
1
Ao = max lim — In[eig;{U " (,10)U (t,10)}]. (7
i t—o0 2t

It is important to mention that although the delay term
is skipped in the defining equation for Xy, the feedback
parameters o and t enter indirectly via the trajectory x(),
which is inserted in the linearization (4). It is possible to
measure the sign of the sub-LE A using an auxiliary system
approach [17], in analogy to the Abarbanel test for general
synchronization [21].

If A9 > 0, we call the resulting chaotic dynamics strong
chaos; otherwise, if A < O but the delay system is still chaotic,
we define weak chaos. As we have documented in recent
work [17], the sign of A( has two major implications. First, for
a single-delay system it determines the scaling of the maximal
LE with the delay time. Second, for a network of delay-coupled
units it determines the possibility to synchronize the units. If
the units are strongly chaotic, the delayed coupling cannot
compensate for the exponential divergence of two nearby
trajectories of any two systems in the network. In contrast,
for weak chaos, synchronization is in principle possible and
depends on the network topology.

(a) Strong chaos Ay > 0. In order to derive a scaling
relation XA,,(t), we have to assume that Ao(7) = const. In a
strict sense this is never true, but for sufficiently large T one
always observes a saturation effect and a decrease of remaining
fluctuations in Ao(7), so the assumption of a constant value is
valid. We start from the linearization (2). If Ao > 0, for large ©
the instantaneous term becomes dominant and the delay term
becomes negligible. This can be seen from the coordinate
transformation

3x(1) = €™ 8z(t), 8)
which results in

82 =[DF(X) — Ao - 1182+ 0e ™ DH(x,)8z,.  (9)

The resulting Lyapunov exponent of the transformed system
can therefore be estimated as A, ~ 0. This implies that in the
original coordinates A, & A¢, meaning that the LE becomes
independent of t for large delays.

(b) Weak chaos Ly < 0. In this case we can estimate the
scaling of the LE by considering a stroboscopic sequence of
the evolution of our linear system 8x,(6) = 8x(6 + nt) with
n € N and 0 €] — 7,0]. One can introduce a growth factor
(Lyapunov multiplier) by [|6Xp+1] = 1, ||8Xn ]|, so that the LE
becomes

m_hm—zmun_ InC, (10)

o0 IT

where C is the geometric mean of all multipliers. In the
following, we show that for sufficiently large delay times the
multipliers y1,, do not depend on 7, hence the LE is of order .
This means that in weak chaos a perturbation of the chaotic
system grows on the time scale of the delay time. Thus we
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introduce the variation-of-constants formula, which provides
an integral version of our initial delay differential equation (2),
and evaluate it at 6 = 0,

8Xn+1(0) = U,(0, — T)an(())
0
+U/ dt U,(0,t)D H [Xy(2)]6Xp(2). (11

It contains the evolution operator U,(t,,t;) of the auxiliary
system (4) on the nth 7 interval. This operator is exponential
in tp — 1, i.e., with respect to a suitable matrix norm it holds
that for 1, > 1,

U (&2, t)|l < Up expla(ty — 11)], 12)

with Ag < o < 0. The bound provided by Uy and « should
cover potential bursts typical of the linearization of a chaotic
flow. Because of this exponential bound, there is some time
7o o o~ !, such that the term with U (0, — 7) can be neglected
in Eq. (11), if T > 79. Additionally, the integral has only
significant contributions in a small range close to the end
of the integration interval, namely, for ¢ € [—19,0]. This is
due to the fact that none of the other factors in the integrand
evolves exponentially in such a way that the exponential decay
as depicted in Eq. (12) could be compensated for. The factor
D H[x,(?)] is constant on average and the term §x,(¢) does
not counteract the evolution operator due to the positive LE
considered here. This means that a further increase of T beyond
79 does not affect the integral and the multiplier introduced
above can be estimated by

0
o
= T | L 2 400Dl

0

(13)

In leading order, this expression does not depend on the delay
time. It depends on Ag, o, and a set q of other (yet unknown)
statistical properties of the chaotic trajectory. Hence we can
write

1
Am = —InC(Xo,0,q). (14)
T

This can be compared to a Floquet problem, in which the
driving trajectory is t periodic [x(f) = x(f + 7)] and the
coupling is linear and diagonal (D H[x(#)] = 1). One obtains
C = _U/)\.O.

III. SINGLE LASER WITH TIME-DELAYED
SELF-FEEDBACK

We demonstrate the occurrence of strong and weak chaos in
a paradigmatic system with large delay time: a semiconductor
laser with delayed self-feedback. Here we briefly revisit and
extend some results discussed in our earlier work [17]. Our
system is modeled by the Lang-Kobayashi (LK) equations

14+ia

&) =
i(t) = (p — D)Jw — yn(t) — [T + GynOIED)I,

where £(t) and n(¢) denote the complex electric field and
the excess carrier density, respectively. The feedback is
characterized by a delay 7 and a strength ¢. The parameters

Gyn(t)E(t) + o exp(—iwpT)E(t — 1),
(15)

+ 0(e™%%).

PHYSICAL REVIEW E 88, 012902 (2013)

2 (a) 1.5 (b)
~ 1 /L« .
Im “\ ©n
g 0 ~ .
~ ‘\\\ 7

0 5 10 15 20 25 30

o (ns’l)

FIG. 2. (Color online) (a) Maximal LE A,, (solid line) and sub-LE
Ao (dashed line) of a single laser with self-feedback for a delay time
7 = 10 ns vs coupling strength o. (b) Enlarged view of (a) for small
coupling strengths o. Both figures have been adapted from Ref. [17].

involved can be found in Table I in Appendix A. We have
omitted the intensity-dependent nonlinear gain saturation.
Nevertheless, for the applied pump currents all results coincide
qualitatively with the results of the complete rate equations.
Unless stated otherwise, all diagrams are made for a delay time
of T = 10 ns and a pump current of p = 1.02.

We calculate the maximal LE A, and the sub-LE Ag
according to Eqgs. (1)—(5). In order to approximate the formal
limits as well as possible with a finite simulation run, we
typically choose an integration period of 1000 delay times.
If huge fluctuations occur on the linearization during this
interval, we also average over an ensemble of trajectories with
different initial conditions. The chosen interval length also
covers sufficiently many cycles of the typical low-frequency
fluctuations occurring in feedback lasers. Instead of using the
usual norms for [|§x(¢)| (see, e.g., Ref. [8]), we restricted
the evaluation on the electric field component and considered
only |8£(¢)|, which is no longer a norm in the formal sense,
but still yields very low fluctuations of the final exponent. The
nonvanishing matrix elements in D F[x(7)] connecting §& and
dn guarantee in all regimes of the LK equations studied here
that the leading Lyapunov vector affects the §€ components.
Thus the obtained LE is the same as if also dn were present
in the measure of §x(¢). Numerical calculations with different
(semi)norms confirm this property for examples in both strong
and weak chaos.

Figure 2 shows A, (solid line) and Ay (dashed line) of
a single laser with self-feedback dependent on the coupling
strength 0. We observe a transition from periodic behavior
(Goldstone mode with A,, = 0) to weak chaos and from there
transitions to strong chaos and back to weak chaos upon
monotonically increasing the coupling strength.

Figure 3 shows the different behaviors of the maximal LE
and the sub-LE for the regimes of weak [Fig. 3(a)] and strong
chaos [Fig. 3(b)] dependent on the delay time t. As soon as the
delay time is large compared with the internal time scales of the
laser, the sub-LE X remains constant with increasing 7 for both
weak and strong chaos. For weak chaos, A, decreases like 1/t
for growing t. For strong chaos, A,, converges exponentially
to the positive sub-LE 1.

The product A,,T is the relevant dimensionless quantity
describing chaoticity in systems with delay. For weak chaos
this product as a function of t has two properties. First, it
saturates at a constant value C that depends on the coupling
strength [Fig. 3(c)]. According to the analytical calculations
underlying Eq. (14), this dependence is primarily caused by
different values of the sub-LE Ay(o) as shown in Fig. 3(a).
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FIG. 3. (Color online) Maximal LE ,, (solid line) and sub-LE X,
(dashed line) of a single laser with self-feedback for (a) weak chaos
(0 =21ns7!) and (b) strong chaos (¢ = 12 ns™!) vs delay time .
(c) Product A,,7 of a single laser with self-feedback vs delay time t
for weak chaos (o = 21 ns~!) with onset of saturation at 7y, & 50 ns.
(d) At for strong chaos (o = 12ns™"). (e) In(JA,, — Ao|/0) of a
single laser with self-feedback vs delay time t for strong chaos
(0 = 12 ns7!). (c) and (e) have been adapted from Ref. [17].

Second, the delay time 7y, for which the product A, T4, reaches
the saturation value up to a fixed distance § depends on o: The
closer to the critical coupling strength o,;; where Ay = 0, the
larger the saturation delay Tq.

For strong chaos, on the contrary, X, T grows linearly with
increasing 7 [Fig. 3(d)] since A,, becomes constant, as shown
in Fig. 3(b). Figure 3(e) confirms that the convergence 1, —
Ao > 0 happens exponentially with t. The characteristic
exponent of this convergence, however, is much larger (i.e., the
convergence is slower) than one would expect from analytic
calculations for a simple model with constant coefficients. This
effect is caused by the fluctuations of D F[x(¢)], which act like
multiplicative noise in Egs. (2) and (4) [22].
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FIG. 4. (Color online) (a) Maximal LE A,, (solid line) and sub-LE
Ao (dashed line) and (b) product A,,7 (black solid line) of a single
laser with self-feedback in comparison with the least-squares fit of
/7 (red dashed line) for critical coupling strength where the transition
between strong and weak chaos occurs (o = 13.4 ns™!) vs delay
time 7.
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FIG. 5. Product A,t of a single laser with self-feedback vs
coupling strength o for a delay time v = 100 ns. Figure has been
adapted from Ref. [17].

Figure 4 shows the special limit case between strong and
weak chaos when the sub-LE Ao = 0 for sufficiently large
delay times 7. In Fig. 4(a) one can see that the maximal LE
still decays with increasing t. However, it does so very slowly.
Figure 4(b) shows the consequence for the product A,, 7 at the
critical point: It neither grows linearly with 7 like for strong
chaos nor does it saturate at a constant value for finite delay
times like for weak chaos. From the viewpoint of the saturation
behavior for weak chaos, the delay time 7y, at which the
product A, T saturates, has been shifted towards infinity at the
critical point. The product A,,T rather tends to grow like /7,
as shown by the least-squares fit with /T (red dashed line)
in Fig. 4(b). A rigorous explanation of this scaling behavior
is still missing, but in comparison with a simplified linear
model, in which the fluctuations of D F[x(¢)] are replaced by
multiplicative noise, the emergence of the /T scaling is a
natural consequence of a restricted random walk [22].

Figure 5 shows that for weak chaos and a very large delay
time T — oo, the product 1,7 undergoes a phase transition
and diverges in the proximity of the critical coupling strengths
Oit,1 (gray line) and o2 (black line). We were able to find
transitions between strong and weak chaos by changing the
coupling strength ¢ also for the Rssler and Lorenz dynamics.
The Stuart-Landau, FitzHugh-Nagumo, and continuous Ikeda
dynamics show only weak chaos.

A. Scaling of the sub-Lyapunov exponent
with the laser pump current

We study the dependence of the sub-LE on the laser pump
current. Figure 6(a) shows the sub-LE as a function of the
feedback strength o for different values of the pump current.
We find that the curves all follow the same pattern described
in the preceding section. The sub-LE is negative for small and
large values of the feedback strength. The agreement is even
quantitative. We find that the sub-LE and coupling strength
scale with the square root of the effective pump current /p — 1
above the lasing threshold. Figure 6(b) shows the maximum of
the sub-LE g max, the feedback strength o max for which the
sub-LE is maximal, and the critical feedback strength oy cit,
where Ao = 0 as a function of the effective pump current p — 1.
The data are shown on a double-logarithmic scale, indicating
a slope of 1/2. In Fig. 6(c) the sub-LEs are rescaled with
/P — 1. We find that this scaling relation holds well for small
coupling strengths. For larger coupling strengths the sub-LEs
diverge for different pump currents.
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FIG. 6. (Color online) (a) Sub-LE A, of a single laser with
self-feedback for a delay time v = 10 ns and several different pump
currents p vs coupling strength o. (b) Maxima A max Of the sub-LEs
Ao, coupling strengths oy max Of these maxima, and critical coupling
strengths o, where Ag = 0 for several different pump currents p
vs effective pump current p — 1 on a double-logarithmic scale. (c)
Data collapse of rescaled sub-LEs A¢/+/p — 1 vs rescaled coupling
strengths o//p — 1 for 11 different pump currents p ranging from
p = 1.02to 1.50.

To explain this scaling behavior, we introduce the following
rescaling of the laser parameters:

Gy n
TN /p =1

r &
YNa /P =1
_ 1 o
© VGNNG T /p =T
= JTGyNa/p — 11,

with Ji = Y Ng1. Such a scaling reproduces the scaling
behavior that we found numerically: The coupling strength
K and the Lyapunov exponent (which scales inversely with
time) scale with /p — 1. The LK equations (15) can then be
rewritten as

N =

dE 1+lOl i0 ~

— = NE + Ke'""E(s — ©),

ds 2

IN (16)
)4

— ==|1- IN + D|E

'R F[ . —p —(cy/p—IN+ 1| l]

with ¢ = /GNNoi/T and T = /TGnyNson/p — 17. We
assume small coupling strength K < 1, small carrier densities
N = O(K), and a reasonably high pump current c/p — 1 =
O(1). The ratio of photon and carrier lifetimes y /I is a small
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FIG. 7. Example trajectories (intensity traces) of a single laser
with a self-feedback of t = 10 ns for (a) weak chaos (¢ = 21 ns™")
and (b) strong chaos (o = 6 ns~!) vs time ¢.

parameter as well. In leading order, we obtain the following
equations:

dE  1+i .

a I L KeE(s — 7).

ds 2

e (17)
14 2

X _Ya—ep.

s 1ﬂ( |[E|%)

These equations only depend on the pump current through the
value of the time delay. Since for large delays the exact value
of the time delay does not influence the sub-LE, we recover the
scaling behavior found numerically. For increasing coupling
strength K, the mapping becomes less exact, as can be seen in
Fig. 6(c). This results from the fact that the rescaled model (17)
is a weak coupling approximation.

B. Autocorrelations and space-time patterns
for strong and weak chaos

In this section we discuss the question of whether the differ-
ence between strong and weak chaos can be identified from the
laser time series itself. Figure 7 shows two example trajectories
(intensity traces) of a single laser with self-feedback for the
regimes of weak and strong chaos. For both strong and weak
chaos, there is a characteristic structure of high peaks that is
significantly higher for weak chaos than for strong chaos. This
may be caused by the larger coupling strength.

Figure 8 shows the laser trajectories for weak and strong
chaos in space-time diagrams where the vertical axis denotes
the number of the current delay window of length T and
the horizontal axis denotes the time offset 7 in this delay

80,
605 w

40 n
20""

T

Oo

t (ns)

FIG. 8. (Color online) Space-time diagram of a laser trajectory
(reddish, high intensity; bluish, low intensity) for a single laser with
a self-feedback of T = 10 ns for (a) weak chaos (¢ = 21 ns™') and
(b) strong chaos (¢ = 6 ns™!) vs the number of the current delay
window of length t (vertical axis) and the time offset # in this window
(horizontal axis).
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FIG. 9. Time-shifted autocorrelations C,, of a single laser with
a self-feedback of 7 = 10 ns for (a) weak chaos (¢ = 21 ns~!) and
(b) strong chaos (o = 6 ns™!) vs time shift A in units of the delay
time t.

window. In such a representation, the exponential separation of
chaotic trajectories evolves horizontally in the space direction
for strong chaos. This is due to the divergence between two
nearby trajectories on the internal time scale of the laser,
which is much shorter than the delay time 7. In contrast,
weak chaos evolves vertically in the (discrete) time direction
since the divergence between two nearby trajectories happens
on the long time scale of the delay. Accordingly, the islands
of high intensity (red) extend vertically farther in the time
direction for weak chaos than they do for strong chaos. In both
kinds of visualization (intensity trace and space-time diagram),
however, one cannot strictly distinguish between strong and
weak chaos in an unambiguous qualitative way.

Figure 9 depicts the time-shifted autocorrelations C,y, of
a single laser with self-feedback for the regimes of weak and
strong chaos. For weak chaos, one clearly sees the high auto-
correlation peaks at multiples of the delay time . Although
for strong chaos the chaotic behavior evolves predominantly
on the internal time scale of the laser and for weak chaos it
evolves on the time scale of the delay, there are non-negligible
autocorrelations after multiples of the delay time t even for
strong chaos. However, they are significantly smaller than for
weak chaos and decay faster with increasing time shift A.

Considering the autocorrelations Cyyo A= after one delay
time t in Fig. 10(a), we observe that they do not decay for
large delay times with increasing t but remain constant, not
only for weak chaos but also for strong chaos. In Fig. 10(b) we
depict the autocorrelations Cyyo o=, With a time shift of one
delay time 7 dependent on the coupling strength o. There is
no sharp transition at the critical coupling strengths.

We conclude that a linear measure such as the autocorrela-
tion function cannot clearly uncover the difference between
strong and weak chaos. Instead, we propose the usage of
nonlinear measures in order to detect a more significant differ-

1.0 : 1.0, ,
038 @ s D)
506 5 o6
© 0! - 02
00 20 40 60 s0o 100 "% s 10 15 20 25 30
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FIG. 10. (a) Autocorrelations C,,, with a time shift of A = 7 for
a single laser with self-feedback for weak chaos (¢ = 21 ns~!, solid
line) and strong chaos (o0 = 6 ns™', dashed line) vs delay time 7. (b)
Autocorrelations C,y, With a time shift of A = t for a single laser
with a self-feedback of ¢ = 10 ns vs coupling strength o.
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ence in the relationship between x(¢) and x(¢r — 7). The idea is
motivated by the fact that in weak chaos for sufficiently large
delay times, the system can be considered to be in a state of gen-
eralized synchronization with its own time-delayed feedback,
whereas in strong chaos the state of the system is formally
independent of its input. Note that this independence does
not imply the total absence of linear correlations, as we have
demonstrated. Hence the detection of strong and weak chaos
from time series can be reduced to the problem of detecting
generalized synchronization [23,24]. We refer to the relevant
methods used in this context, such as the evaluation of nearest
neighbors [25], mutual information, or transfer entropy [26].
However, we assume severe computational difficulties regard-
ing memory usage and run-time connected with the necessary
delay embedding. Additionally, it might even be impossible to
detect generalized synchronization from a finite time series.

C. External cavity modes for strong and weak chaos

We can relate the strongly or weakly chaotic behavior of
a laser subjected to delayed feedback to the properties of the
external cavity modes (ECMs) of the laser. These ECMs are
rotating wave solutions of the LK equations of the form E(¢) =
Epe’® and n(t) = n with constant amplitude Ey, frequency w,
and carrier density n of the laser. The spectrum of ECMs is
often represented in the (w,n) plane. In this plane the ECMs
lie on an ellipse. External cavity modes located on the lower
half are focus solutions called modes. The solutions located
on the upper half of the ellipse are saddle points also referred
to as antimodes.

Depending on the laser parameters, the ECMs have different
stability properties. In the chaotic regime, the ECMs can
be seen as the skeleton of the chaotic attractor [27,28]. In
the low-frequency fluctuation regime, which occurs for low
pump currents and moderate to strong coupling strengths,
the intensity slowly increases, followed by a sudden power
dropout. During the buildup process, the trajectory travels
along the modes in the direction of the maximal gain mode,
until the trajectory is expelled along the unstable manifold of
an antimode. This causes the power dropout. In the coherence
collapse regime, the dynamics can be described as a chaotic
itinerancy between modes and antimodes.

In the long delay limit, the characteristic equation of a
steady state, such as the ECM solutions, has two types of
solutions, which show a different scaling behavior with the
delay time [18]. The strongly unstable spectrum consists
of isolated points, which are approximated by the unstable
eigenvalues of the Jacobian of the LK equations without
delayed terms. These eigenvalues do not scale with the delay.
Besides this strongly unstable spectrum, the characteristic
equation has an infinite number of solutions, forming the
pseudocontinuous spectrum. The real part of these solutions
scales inversely with the delay.

One can thus distinguish between strongly and weakly
unstable ECMs in an analogous way as we distinguish between
strong and weak chaos. The local eigenvalues of the Jacobian
without delay terms play a role similar to the sub-LE Ag:
Strongly unstable ECMs have unstable local eigenvalues and
thus a strongly unstable spectrum. The maximal eigenvalue
is approximated by these local eigenvalues and does not
change with the delay. The weakly unstable (and the stable)
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FIG. 11. (Color online) Projection of the laser dynamics onto the
(w,n) plane for a delay time T = 10 ns and a pump current p = 1.10.
Thick blue dots denote weakly unstable or stable ECMs and medium
thick red dots represent strongly unstable ECMs. (a) Strongly chaotic
trajectory for & = 20 ns~'. The modes and antimodes involved in the
dynamics are strongly unstable. (b) Dynamics around the transition
point between strong and weak chaos shown for o = 29.28 ns~!.
The trajectory approximates the transition point between weakly
and strongly unstable modes on the ellipse. (c) Weakly chaotic laser
dynamics for o = 40 ns~!. All the modes involved in the dynamics
are weakly unstable.

ECMs have stable local eigenvalues. The strongly unstable
spectrum does not exist in this case; these ECMs only
have a pseudocontinuous spectrum. Hence the real part of
the maximal eigenvalue scales inversely with the delay, just
like the maximal LE A, for weak chaos [29].

In Fig. 11 we show the projection of the laser dynamics
onto the external cavity modes. In the strongly chaotic regime,
all the modes involved in the dynamics are strongly unstable,
as illustrated in Fig. 11(a). Around the transition point between
strong and weak chaos, a few (two or three) weakly unstable
modes are involved in the dynamics, as shown in Fig. 11(b),
while most of the modes involved in the dynamics are weakly
unstable in the weakly chaotic regime, as shown in Fig. 11(c).
These features are independent of the pump current. The
antimodes are always strongly unstable, in both the weakly
and strongly chaotic regimes.

D. Sub-Lyapunov exponents for two self-feedbacks
with time-scale-separated delays

Until now we have considered only a single laser with self-
feedback and have discussed the sub-LE in this context. Now
we generalize our investigation by introducing a second self-
feedback with a much smaller delay. The linearized equation
describing the maximal LE is

8x = DF(x)8x + osDH (X;)8X;, + 01D H(X,)8X, (18)

where 7, and 7; are the shortest and longest feedback delays,
respectively. Additionally to the sub-LE A [defined by Eq. (4)]
we introduce another sub-LE A ; defined by

8‘X0,s = DF(X)éXgs + 0sDH (X, )0Xo 5.1, - (19)

Thus, for Ao ; we consider a subsystem that includes only the
shorter self-feedback. As before, the inserted dynamics x(z) is
the trajectory of the full system.

PHYSICAL REVIEW E 88, 012902 (2013)

2@ Ty Ty
R A
g
~
0 10 20 30

o (ns”)

1.3 (b).. )”o---}”o,s—)‘T‘

FIG. 12. (Color online) Maximal LE A,, (solid line) and sub-LEs
Ao,s and Xy (dashed and dotted lines) for a single laser with two self-
feedbacks 7; and 7, for (a) ; = 10 ns, 7, = 0.1 ns, and o, = 5 ns™!
vs coupling strength ¢ := o; and (b) 7, = 0.1 ns, o, = 5 ns~!, and
0, = 10 ns™! (strong chaos) vs delay time 7 := ;.

Figure 12(a) shows the sub-LEs Ay and X ; together with
the maximal LE A,, for the case when t; is much larger than ;.
We observe that Ag ; < A¢ holds for strong chaos and Ao ; > A
for weak chaos. Furthermore, for large o both sub-LEs change
their signs at approximately the same coupling strength and
can hence both be used as an indicator for strong or weak
chaos there. For small o, however, only A ; changes its sign,
indicating the transition between weak and strong chaos. Thus
Ao.s 1s the new relevant sub-LE in a system with two time-
scale-separated delays. This is confirmed by Fig. 12(b), which
shows that for strong chaos, A,, — Ao holds for increasing
7;. For weak chaos, we find A,, ~ 1/1; (not shown in Fig. 12).

IV. NETWORKS OF LASERS WITH
TIME-DELAYED COUPLINGS

A. Master stability formalism

We investigate complete chaotic synchronization of N
identical coupled laser elements. The state of each element is
described by x’ withi = 1, ..., N.We start from the physically
motivated ansatz

N
¥ =Fx)+o Z GUH(x!). (20)
j=1

The matrix G € R¥*¥ contains the network topology. Here
G is the normalized coupling strength with which the laser i
receives input from laser j. In order to guarantee the existence
of the completely synchronized state x!'(z) = X)) ==
xV(t) =: s(¢), the row sum of G has to be constant for all rows
and we choose ) G/ = 1. Then the synchronized state s()
reduces Eq. (20) to

$ = F(s) + oH(s,). 2n

The stability properties of the synchronized state s(¢) are well
described by the master stability formalism from Pecora and
Carroll [30]. For completeness, we summarize the main ideas
introduced in their work. A small perturbation is applied to
the synchronized state such that x'(f) = s(¢) + 8x'(¢). The
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equations of motion are then linearized around s(¢) and the
perturbations obey the equations of motion

N
8x = DF(9)8x' +0 Y G DH(s;)x.. (22)
j=1

This set of equations can be decoupled into the amplitudes
£X(1) of the network eigenmodes g¢ € R”. The corresponding
network eigenvalues are y; with G-gf =gt and k =
1,...,N. The transformation §x' =Y, g“&* leads to N
independent equations

£ = DF(5)E" + oy DH(s,)E". (23)

Integration of this equation for the k-th perturbation mode
g“ yields the maximal LE X;, which tells us about the
stability of the mode, meaning that a perturbation §x(¢) =
[8x'(2),8x2(t), . .. ,8xY ()] in direction of g¢ grows or decays
exponentially. By construction, there exists at least y; = 1
with the eigenvector g' = (1,1, ...,1)T. It corresponds to a
perturbation 8x'(t) = 8s(¢), i = 1... N, within the synchro-
nization manifold (SM). This special perturbation determines,
whether the synchronous dynamics is chaotic (A > 0) or
not. The other modes correspond to linear combinations of
differences between the laser elements and therefore the
necessary condition to find stable complete synchronization
isAr <Ofork =2,...,N. Since all |y,| < 1, the knowledge
of the master stability function A(y) is sufficient to predict,
whether a network of coupled lasers described by the coupling
matrix G is able to display complete synchronization or not.

B. Master stability function for weak chaos

Here we show the general master stability function for the
limit of large delays in weak chaos. To this end, we make use
of the scaling behavior A,, = O(r~"). The initial point of our
considerations is a generalization of Eq. (23), which reads

y = Ay + k B@t)y-, 24

where A(t) := DF|[s(t)] and B(t) := DH[s(t — 7)]. The ex-
ponent Ay(x) provides the master stability function. Transfor-
mation with z = exp(—Ayt)y yields a system with exponent
Az=0

z=[A(t) — Ay - 1]z + ke ™" B(t)z,. (25)

Weak chaos has the important property, that by changing
At) > A(t) =A@)+¢-1 with ¢ € R and |g] < Ay, We
affect the LE only in the order of T~!. Therefore, if ¢ itself is
decreasing with 7, the effect on the exponent is of a smaller
order in 7, i.e. O(7?) with p < —1. Then for sufficiently large
7, removing A, from the first term on the RHS of Eq. (25)
leads to

y = AQ)Y + ke N B(t)y., (26)

with the exponent A; = O(t?). Comparison of the equivalent

Egs. (24) and (26) shows, that in the /eading order of 1,
rescaling of the coupling strength k — k" = « exp(—Ay7) led
to an exponent Ay &~ 0. From the knowledge of the zero-
crossing at k', we directly obtain the scaling law

1 K
Ay(k) = - In prk 27
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Although in general the value of «’ is unknown, this logarith-
mic law allows us to connect the maximal LE from within the
SM with the stability of all transversal modes of a network.
We refer to Eq. (23), in which k = o y,. Assume the maximal
LE A,, = Ay of the SM is known. It corresponds to y; = 1, so
Am = A1 = A(o']) is the point at which we can fix the master
stability function. Then for an arbitrary y; we obtain from
Eq. (27) the exponent

1
Move) = dm + —Inlyil. (28)

Here we have made use of the fact that the exponent depends
only on the absolute value |«| for large delays. This scaling
relation also holds for steady states [14]. Transversal stability
of the kth mode is given if A(oyx) < 0. This leads to the
synchronization criterion

Ivel < e ™7, (29)

which connects transversal and longitudinal stability in a
network exhibiting weak chaos.

C. Master stability function for the Lang-Kobayashi dynamics

We now investigate the master stability function A(y) for
the LK equations dynamics. For strong chaos, A(y) is constant
since the delay term becomes exponentially small in the master
stability equation (23) for T — oco. Consequently, complete
synchronization of networks with identical, strongly chaotic
units is excluded on principle.

For weak chaos, A(y) basically exhibits a logarithmic
dependence on y. However, we observe two deviations. As
a first deviation, A(y) does not diverge to —oo for y — 0 but
has a finite value A(0): the sub-LE X. It is important to note
here that the sub-LE A is equal to the LE of any perturbation
mode with y = 0 of a network (e.g., the mode of complete
synchronization of the two outer lasers in a bidirectionally
coupled chain of three lasers) since then the delay term drops
out in the master stability equation (23) too.

A second deviation can be considered as an effect of
the finiteness of the delay time t. Figure 13 shows for
several different coupling strengths and pump currents that
the exponent v in A ~ In(Jy|") = vIn(|y|) is smaller than
one. We were able to find this deviation also for the Lorenz

® (I:20nsfl,p: 1.02
10 [ = o=40ns",p=1.02
*6=80ns ", p=102

-1

° o= ,p=15 i
066nsp1()om

5 ° ° o.°°°'°.
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g oooos!
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*

4 i) 0
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FIG. 13. (Color online) Product A7 of the master stability function
A(y) and the delay time 7 = 10 ns for the SM and several different
coupling strengths ¢ and pump currents p in the weak chaos regime
vs In(|y ).
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dynamics. For constant delay time T and constant laser pump
current p, the exponent gets closer to one for larger o, i.e., for
weaker chaos. Moreover, if the coupling strength o is adjusted
such that the sub-LE X is the same for two different pump
currents, then the slope is closer to one for a smaller pump
current. As presented in the preceding section, a condition for
synchronization in a network [Eq. (29)] can be derived from
the behavior of A(y). Due to the empirically observed slope
smaller than one, this condition should be refined to

lyal < e/, (30)

where y» is the eigenvalue of the coupling matrix G with the
second largest modulus.

D. Experimental evidence of strong and weak chaos
in bidirectionally delay-coupled lasers

In a system with two bidirectionally delay-coupled lasers
without self-feedback or multiple delays, identical chaos
synchronization is not stable due to symmetry breaking
[31]. However, chaos synchronization can still exist in the
generalized sense [21]. Here we give experimental and
numerical evidence that the implications of strong and weak
chaos regimes also apply to the case of generalized chaos
synchronization.

In the context of delay-coupled elements, correlation
measures can fail to detect synchronization if the number of
coupled elements is large [24]. However, the cross-correlation
function is still a good indicator to identify generalized
synchronization between two delay-coupled lasers. We present
an example of such a cross-correlation function in Fig. 14,
which shows distinct peaks at the delay time t and its odd
multiples. In this figure the large correlation peak at the delay
time indicates that the lasers are generally synchronized. We
argue that generalized chaos synchronization is only possible
if the lasers are operating in the weak chaos regime. In contrast,
a low correlation peak at a time lag t is to be expected if the
lasers are operating in the strong chaos regime [Fig. 9(b)].

Our fiber-optics-based experimental arrangement is
schematically shown in Fig. 15. We use two single-mode
fiber-pigtailed discrete-mode semiconductor lasers, emitting
at 1542 nm. The lasers have been hand-selected in order to
achieve well-matched parameters. The laser temperatures and
currents are stabilized to an accuracy of 0.01 K and 0.01 mA,
respectively. The lasers are biased at a current of 1.251,, with
Iy, = 11.7 mA being the solitary laser threshold current. As
shown in Fig. 15, the coupling path includes two 90/10 optical

1
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FIG. 14. Cross-correlation function of two bidirectionally delay-
coupled lasers in the chaotic regime (7 = 63 ns).
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FIG. 15. Fiber-based experimental setup of two mutually delay-
coupled semiconductor lasers. OC, , stand for the optical couplers,
PC is the polarization controller, Att is the variable attenuator, and
PD denotes the photodetectors.

couplers OC| ,, a polarization controller PC, and an optical
attenuator Att. The maximum mutual coupling obtained in
this experimental arrangement can be estimated to be ~40%
of the emitted light. The 10% outputs of OC, , are used for
detection.

The values of the cross correlation between the intensities
emitted by lasers 1 and 2 for a time shift of t are shown in
Fig. 16(a) as a function of the coupling strength o . For strong
couplings o > 0.3, a region of large correlation is found.
Decreasing the coupling strength to 0.1 < o < 0.3 results in
a sudden decrease of the correlation. A second region of large
correlation can be identified for weak couplings o ~ 0.05.
The correlation decreases again for the weakest couplings
o < 0.05. The numerical results, shown in Fig. 16(b), agree
with the experimental results. For large couplings, the two
coupled lasers are highly correlated. A distinct region of low
correlation can be seen for intermediate couplings, while
the correlation increases again for the weakest coupling
strengths. The numerical simulations do not reproduce the
correlation decrease towards zero coupling since spontaneous
emission noise sources are not considered. The numerical
results of the time-shifted cross correlations for the two
bidirectionally coupled lasers shown in Fig. 16(b) are similar
to the autocorrelations of a single laser with self-feedback
shown in Fig. 10(b). The parameters used in the numerical
simulations are listed in Table II in Appendix B.

Several dynamical states are observed for variation of
the coupling along the correlation curve in Fig. 16(a). The
lasers operate in continuous waves with noisy fluctuations
in the absence of coupling. For an increasing coupling
strength, the lasers follow a quasiperiodic route via undamped

1.0 1.0
L 081TA Q(i e w4 508 (b)
<06, ~C Dl < 06
¢ 0-4“; y £ 04
Q s
O 02f %p O 02
0.0 0.0
00 02 04 06 08 10 0 5 10 15 20 25 30
o (normalized) o(ns™)

FIG. 16. (a) Experimentally measured and (b) numerically cal-
culated cross correlations Cess With a time shift of A =t for a
bidirectionally coupled pair of lasers as a function of the coupling
strength o. The delay time is v = 10ns in the numerics and
T = 63 ns in the experiments, corresponding to the long delay limit.
The experimental coupling strength is normalized to the maximum
coupling obtained in the setup, which is about 40% of the emitted
light.
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FIG. 17. Optical spectra for points denoted as (a) B and (b) C in
Fig. 16(a).

relaxation oscillations reaching a chaotic state at point A.
The delay-induced dynamics produces a dramatic increase
in the laser optical linewidth, which increases from a few
MHz to several GHz due to the coupling. We present in
Fig. 17 a typical shape of the optical spectra of the chaotic
laser for points denoted as B and C in Fig. 16(a). These
two spectra are qualitatively similar apart from their different
width, but correspond to significantly different correlation and
synchronization properties. In order to characterize the optical
spectra, we have measured their width, defined as the —20 dB
frequency width. The —20 dB width of the optical spectrum is
9, 20, 26, and 35 GHz for points A, B, C, and D, respectively.
We observe irregular (chaotic) dynamics in the whole range
from A to D. However, the correlation plot indicates qualitative
transitions of the synchronization behavior between A and
B and between B and C, respectively. More precisely, the
experimental correlation plot shows a large correlation around
A and from C to D, indicating that the lasers are generally
synchronized in these regions. The degree of synchronizability
stems from the dynamical regime the lasers are operating in.
Therefore, we can infer that the lasers operate in a weak chaos
regime in the two high-correlation (synchronization) regions,
i.e., for 0 > 0.3 and o ~ 0.05. In contrast, a region of low
correlation measure can be seen for intermediate couplings
o ~ 0.1. This can be associated with a strong chaos dynamical
regime. The numerical correlation plot shows a similar
clear distinction between different correlation regions, with
a window of low correlation around o ~ 2.5 ns~!. This low
correlation can be linked to a strong chaos dynamical regime.
Our experimental results on two delay-coupled semicon-
ductor lasers presented here support the sequence of weak to
strong to weak chaos with an increasing coupling strength.
Even though the master stability function cannot be directly
applied to the generally synchronized solution, the influence
of the dynamical regime on the synchronization is clearly
substantiated by our experimental and numerical results.

E. Networks with several distinct sub-Lyapunov exponents

In a network we can define a sub-LE for each individual
unit. If the network is not completely symmetric then these sub-
LEs may differ from each other, even if the units are identical.
For example, in a chain of three bidirectionally coupled lasers,
the middle laser is in a different coupling situation from the
outer lasers. The occurrence of strong or weak chaos now
depends on both sub-LEs present in the network. Figure 18(a)
shows that this dependence is simple: The maximal LE A,
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FIG. 18. (Color online) (a) Maximal LE A,, (solid line) and sub-
LEs ) of the inner laser (dashed line) and the outer lasers (dot-dashed
line) of a chain of three lasers (see left) for a coupling delay time of
7 = 10 ns vs coupling strength ¢. (b) Maximal LE ,, (solid line)
and sub-LEs A (dashed and dot-dashed lines) of pair of two lasers
with distinct pump currents (see left) for a coupling delay time of
7 = 10 ns vs coupling strength o.

of the network converges to the maximal sub-LE. This means
that additional strongly chaotic units do not further increase the
value of the complete network’s maximal LE for strong chaos.

The individual units in the network may be nonidentical,
e.g., two bidirectionally coupled lasers with different pump
currents [Fig. 18(b)] (p; = 1.02 and p, = 1.50). Also in this
case in the strongly chaotic regime the largest sub-LE deter-
mines the maximal LE of the network. For nonidentical lasers
we observe multiple transitions between strong and weak
chaos for increasing coupling strength o. These additional
transitions are interrupted by periodic intervals.

As a consequence, we conclude that for large coupling
delays, complete synchronization is excluded on principle for
arbitrary networks that contain at least one strongly chaotic
unit. Cluster synchronization between the weakly chaotic
units, however, is still possible. These clusters are then driven
by the strongly chaotic units.

F. Sub-Lyapunov exponents for certain network patterns

In the preceding section we have shown that identical lasers
with a different number of inputs may have distinct sub-LEs.
In this section we address the question of whether the number
of inputs is the only criterion that determines the sub-LE for
otherwise constant system parameters. We emphasize that the
accumulated coupling strength of the inputs is constant for all
considered network patterns.

Figure 19(a) shows a comparison of the sub-LEs of several
networks where each laser receives input from exactly one
laser. A single laser with self-feedback [a single-delay system
(SDS)] and the bidirectionally coupled pair, for which the
experimental evidence of strong and weak chaos has been
provided in Sec. IV D, can be seen as limit cases of unidirec-
tional rings containing one and two lasers. They are compared
with a unidirectional ring of three lasers. Although the pair
and the triangle cannot synchronize identically [Fig. 19(c)],
their sub-LEs are exactly the same as the one of the SDS.
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FIG. 19. (Color online) (a) Sub-LEs A, for several network
patterns where the lasers receive input from one laser (see left) in
comparison with 1, of a bidirectional triangle of lasers for a coupling
delay time T = 10 ns vs coupling strength o. (b) Sub-LEs A of the
inner and outer lasers of a chain of three lasers in comparison with
Ao of a pair of lasers (see left) for a coupling delay time v = 10 ns
vs coupling strength . (c) Cross correlation C between the lasers
in several network patterns for a coupling delay time 7 = 10 ns vs
coupling strength o.

Also the sub-LE of a laser driven by a SDS is equal to the
sub-LE of the SDS, even in the strong chaos regime, when it
does not synchronize to its drive. In all cases the lasers receive
coherent input from a single source that exhibits the specific
statistics of a laser trajectory. It does not matter if the statistics
comes from a synchronized laser or an unsynchronized one,
as long as it is typical for a single laser. This can also be nicely
seen in Fig. 19(a) by the sub-LE of a bidirectionally coupled
triangle. If the coupling strength o is not large enough to induce
synchronization, as seen in Fig. 19(c), each laser receives
incoherently superimposed input. Hence the sub-LE of the
bidirectional triangle is then different from the sub-LEs of the
networks with input from one laser. As soon as the bidirectional
triangle synchronizes, however, its sub-LE becomes equal to
the networks with input from one laser.

Figure 19(b) shows two distinct sub-LEs of the inner and
outer lasers of a chain of three bidirectionally coupled lasers
in comparison with the sub-LE of the bidirectional pair. If
the coupling strength o is large enough for the outer lasers to
synchronize, as seen in Fig. 19(c), then the inner laser receives
the coherent superposition of the signals of the outer lasers.
In consequence, the chain can be reduced to a bidirectional
pair of unsynchronized lasers. Indeed, Fig. 19(b) confirms that
the sub-LEs of the outer and inner lasers of the chain become
identical and also equal to the sub-LE of the bidirectional pair
in this regime.

Figure 20(a) shows a comparison of the sub-LEs of several
network configurations (depicted on the left side) in which the
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FIG. 20. (Color online) (a) Sub-LEs A, for several network
patterns where the lasers receive input from two lasers (see left) for a
coupling delay time v = 10 ns vs coupling strength o. (b) Sub-LEs
Ao for several network patterns where the lasers receive input from
three lasers (see left) for a coupling delay time T = 10 ns vs coupling
strength o. (c) Sub-LEs X, of a laser driven by one, two, or three
independent SDSs for a coupling delay time T = 10 ns vs coupling
strength o.

lasers receive input from two other lasers. Figure 20(b) shows
a comparison of the sub-LEs of several networks (depicted on
the left side) where the lasers receive input from three other
lasers. In both diagrams it turns out that for small coupling
strengths in a partial range of the strong chaos regime, the
sub-LE indeed depends solely on the number of inputs and is
equal for networks that have the same number of inputs. For
larger coupling strengths, however, the sub-LEs differ from
each other, as the coherence level induced by the coupling
depends on the topology.

Figure 20(c) shows a comparison of the sub-LEs of a
laser that receives unidirectional input from one, two, or
three mutually uncoupled lasers with self-feedback. Hence
Fig. 20(c) shows the dependence of the sub-LE on the
number of completely incoherently superimposed inputs. For
an increasing number of inputs, the properties of the received
summed signal become less similar to those of a laser and
increasingly similar to those of noise. We observe that with an
increasing number of inputs, the sub-LE gets larger for large
coupling strengths ¢ and smaller for small o.

V. CONCLUSION

In this paper we extended the investigations on strong and
weak chaos of Ref. [17] by focusing on the dynamics of
semiconductor lasers. Strong and weak chaos show different
scaling properties of the maximal LE with the delay time. The
sign of the artificial sub-LE A distinguishes between strong
and weak chaos. The transition sequence of weak to strong
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chaos and back to weak chaos upon monotonically increasing
the coupling strength o of a single laser’s self-feedback was
shown for numerical calculations of the LK equations. At the
transition between strong and weak chaos, the sub-LE vanishes
Ao = 0. At this transition we found A,, T ~ /7. Transitions
between strong and weak chaos by changing o could also be
found for the Rossler and Lorenz dynamics.

Importantly, the difference between strong and weak chaos
is not directly visible from the trajectory, although the
difference of the trajectories induces the transitions between
the two types of chaos. In addition, a linear measure such as
the autocorrelation function cannot unambiguously reveal the
difference between strong and weak chaos either. Although the
autocorrelations after one delay time are significantly higher
for weak chaos than for strong chaos, it was not possible to
detect a qualitative difference. However, we could relate the
trajectories of strong and weak chaos to the properties of the
external cavity modes of the laser. If two time-scale-separated
self-feedbacks are present, the shorter feedback has to be taken
into account for the definition of a new sub-LE A¢ ;, which in
this case determines the occurrence of strong or weak chaos.
We showed that the sub-LE scales with the square root of the
effective pump current /p — 1, as well in its magnitude as in
the position of the critical coupling strengths.

For networks of delay-coupled lasers, we explained using
the master stability formalism the condition |y;| < e=*»* for
stable chaos synchronization. Hence synchronization of any
network depends only on the properties of a single laser and
the eigenvalue gap of the coupling matrix. The master stability
function for the LK dynamics was refined for a better predic-
tion of synchronization. We provided experimental evidence of
strong and weak chaos in bidirectionally delay-coupled lasers,
which supports the sequence of weak to strong to weak chaos.
For networks with several distinct sub-LEs it was shown that
the maximal sub-LE of the network determines whether the
network’s maximal LE scales strongly or weakly with increas-
ing delay time. As a consequence, complete synchronization
of a network is excluded for arbitrary networks that contain
at least one strongly chaotic laser. Finally, we showed that the
sub-LE of a driven laser depends on the number of incoherently
superimposed inputs from desynchronized input lasers.
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APPENDIX A: PARAMETERS FOR THE SIMULATION
OF THE LANG-KOBAYASHI EQUATIONS

Unless stated otherwise in the text, the constants listed in
Table I were used in the simulation of the LK equations.

TABLE I. Constants used in the simulation of the LK equations.
Values are taken from Ref. [32].

Parameter Symbol Value
linewidth enhancement factor o 5
differential optical gain Gy 2.142 x 10* 57!
laser frequency wo 2mc/(635 nm)
pump current relative to Ji, p 1.02
threshold pump current

of solitary laser Jin Y Nsol
carrier decay rate y 0.909 x 10° s7!
carrier number of solitary laser Nsol 1.707 x 108
cavity decay rate r 0.357 x 10" 57!

APPENDIX B: CRITICAL COUPLING STRENGTHS
DEPENDENT ON THE PUMP CURRENT

Table I1 lists the critical coupling strengths for which 1o = 0
and at which the transitions from weak to strong chaos and
from strong to weak chaos appear, dependent on the pump
current p.

TABLE II. Critical coupling strengths where Ao =0 and
at which the transitions from weak to strong chaos (o) and
from strong to weak chaos (ot 2) happen, dependent on the pump
current p.

P Ocrit, 1 (nsil) Ocrit,2 (nsil)
1.02 0.80 13.44
1.05 0.96 20.80
1.10 1.44 29.28
1.15 1.76 35.68
1.20 2.08 40.64
1.25 2.40 45.12
1.30 2.72 48.96
1.35 2.88 52.64
1.40 3.20 56.16
1.45 3.36 58.88
1.50 3.68 61.92
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